WorldWideScience

Sample records for network structure learning

  1. PARALLEL ALGORITHM FOR BAYESIAN NETWORK STRUCTURE LEARNING

    Directory of Open Access Journals (Sweden)

    S. A. Arustamov

    2013-03-01

    Full Text Available The article deals with implementation of a scalable parallel algorithm for structure learning of Bayesian network. Comparative analysis of sequential and parallel algorithms is done.

  2. Learning Latent Structure in Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    Latent structure in complex networks, e.g., in the form of community structure, can help understand network dynamics, identify heterogeneities in network properties, and predict ‘missing’ links. While most community detection algorithms are based on optimizing heuristic clustering objectives...... prediction performance of the learning based approaches and other widely used link prediction approaches in 14 networks ranging from medium size to large networks with more than a million nodes. While link prediction is typically well above chance for all networks, we find that the learning based mixed...... membership stochastic block model of Airoldi et al., performs well and often best in our experiments. The added complexity of the LD model improves link predictions for four of the 14 networks....

  3. A Decomposition Algorithm for Learning Bayesian Network Structures from Data

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Cordero Hernandez, Jorge

    2008-01-01

    It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...... the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks....

  4. Learning and structure of neuronal networks

    Indian Academy of Sciences (India)

    We study the effect of learning dynamics on network topology. Firstly, a network of discrete dynamical systems is considered for this purpose and the coupling strengths are made to evolve according to a temporal learning rule that is based on the paradigm of spike-time-dependent plasticity (STDP). This incorporates ...

  5. Learning and structure of neuronal networks

    Indian Academy of Sciences (India)

    Corresponding author. E-mail: Kiran.Kolwankar@gmail.com. Abstract. We study the effect of learning dynamics on network topology. Firstly, a network of dis- crete dynamical systems is considered for this purpose and the coupling strengths are made to evolve according to a temporal learning rule that is based on the ...

  6. Structure Learning in Power Distribution Networks

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-13

    Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as these related to demand response, outage detection and management, and improved load-monitoring. Here, inspired by proliferation of the metering technology, we discuss statistical estimation problems in structurally loopy but operationally radial distribution grids consisting in learning operational layout of the network from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time – which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.

  7. Learning Bayesian Network Model Structure from Data

    National Research Council Canada - National Science Library

    Margaritis, Dimitris

    2003-01-01

    In this thesis I address the important problem of the determination of the structure of directed statistical models, with the widely used class of Bayesian network models as a concrete vehicle of my ideas...

  8. Stochastic margin-based structure learning of Bayesian network classifiers.

    Science.gov (United States)

    Pernkopf, Franz; Wohlmayr, Michael

    2013-02-01

    The margin criterion for parameter learning in graphical models gained significant impact over the last years. We use the maximum margin score for discriminatively optimizing the structure of Bayesian network classifiers. Furthermore, greedy hill-climbing and simulated annealing search heuristics are applied to determine the classifier structures. In the experiments, we demonstrate the advantages of maximum margin optimized Bayesian network structures in terms of classification performance compared to traditionally used discriminative structure learning methods. Stochastic simulated annealing requires less score evaluations than greedy heuristics. Additionally, we compare generative and discriminative parameter learning on both generatively and discriminatively structured Bayesian network classifiers. Margin-optimized Bayesian network classifiers achieve similar classification performance as support vector machines. Moreover, missing feature values during classification can be handled by discriminatively optimized Bayesian network classifiers, a case where purely discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.

  9. Structure of Small World Innovation Network and Learning Performance

    Directory of Open Access Journals (Sweden)

    Shuang Song

    2014-01-01

    Full Text Available This paper examines the differences of learning performance of 5 MNCs (multinational corporations that filed the largest number of patents in China. We establish the innovation network with the patent coauthorship data by these 5 MNCs and classify the networks by the tail of distribution curve of connections. To make a comparison of the learning performance of these 5 MNCs with differing network structures, we develop an organization learning model by regarding the reality as having m dimensions, which denotes the heterogeneous knowledge about the reality. We further set n innovative individuals that are mutually interactive and own unique knowledge about the reality. A longer (shorter distance between the knowledge of the individual and the reality denotes a lower (higher knowledge level of that individual. Individuals interact with and learn from each other within the small-world network. By making 1,000 numerical simulations and averaging the simulated results, we find that the differing structure of the small-world network leads to the differences of learning performance between these 5 MNCs. The network monopolization negatively impacts and network connectivity positively impacts learning performance. Policy implications in the conclusion section suggest that to improve firm learning performance, it is necessary to establish a flat and connective network.

  10. Learning Networks, Networked Learning

    NARCIS (Netherlands)

    Sloep, Peter; Berlanga, Adriana

    2010-01-01

    Sloep, P. B., & Berlanga, A. J. (2011). Learning Networks, Networked Learning [Redes de Aprendizaje, Aprendizaje en Red]. Comunicar, XIX(37), 55-63. Retrieved from http://dx.doi.org/10.3916/C37-2011-02-05

  11. Learning Orthographic Structure With Sequential Generative Neural Networks.

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-04-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain. Copyright © 2015 Cognitive Science Society, Inc.

  12. Bayesian network structure learning using chaos hybrid genetic algorithm

    Science.gov (United States)

    Shen, Jiajie; Lin, Feng; Sun, Wei; Chang, KC

    2012-06-01

    A new Bayesian network (BN) learning method using a hybrid algorithm and chaos theory is proposed. The principles of mutation and crossover in genetic algorithm and the cloud-based adaptive inertia weight were incorporated into the proposed simple particle swarm optimization (sPSO) algorithm to achieve better diversity, and improve the convergence speed. By means of ergodicity and randomicity of chaos algorithm, the initial network structure population is generated by using chaotic mapping with uniform search under structure constraints. When the algorithm converges to a local minimal, a chaotic searching is started to skip the local minima and to identify a potentially better network structure. The experiment results show that this algorithm can be effectively used for BN structure learning.

  13. Structure Learning for Deep Neural Networks Based on Multiobjective Optimization.

    Science.gov (United States)

    Liu, Jia; Gong, Maoguo; Miao, Qiguang; Wang, Xiaogang; Li, Hao

    2017-05-05

    This paper focuses on the connecting structure of deep neural networks and proposes a layerwise structure learning method based on multiobjective optimization. A model with better generalization can be obtained by reducing the connecting parameters in deep networks. The aim is to find the optimal structure with high representation ability and better generalization for each layer. Then, the visible data are modeled with respect to structure based on the products of experts. In order to mitigate the difficulty of estimating the denominator in PoE, the denominator is simplified and taken as another objective, i.e., the connecting sparsity. Moreover, for the consideration of the contradictory nature between the representation ability and the network connecting sparsity, the multiobjective model is established. An improved multiobjective evolutionary algorithm is used to solve this model. Two tricks are designed to decrease the computational cost according to the properties of input data. The experiments on single-layer level, hierarchical level, and application level demonstrate the effectiveness of the proposed algorithm, and the learned structures can improve the performance of deep neural networks.

  14. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  15. Structure Learning and Statistical Estimation in Distribution Networks - Part I

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-13

    Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as those related to demand response, outage detection and management, and improved load-monitoring. In this two part paper, inspired by proliferation of the metering technology, we discuss estimation problems in structurally loopy but operationally radial distribution grids from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. In Part I, the objective is to learn the operational layout of the grid. Part II of this paper presents algorithms that estimate load statistics or line parameters in addition to learning the grid structure. Further, Part II discusses the problem of structure estimation for systems with incomplete measurement sets. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time– which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.

  16. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.

    Science.gov (United States)

    Adabor, Emmanuel S; Acquaah-Mensah, George K; Oduro, Francis T

    2015-02-01

    Bayesian Networks have been used for the inference of transcriptional regulatory relationships among genes, and are valuable for obtaining biological insights. However, finding optimal Bayesian Network (BN) is NP-hard. Thus, heuristic approaches have sought to effectively solve this problem. In this work, we develop a hybrid search method combining Simulated Annealing with a Greedy Algorithm (SAGA). SAGA explores most of the search space by undergoing a two-phase search: first with a Simulated Annealing search and then with a Greedy search. Three sets of background-corrected and normalized microarray datasets were used to test the algorithm. BN structure learning was also conducted using the datasets, and other established search methods as implemented in BANJO (Bayesian Network Inference with Java Objects). The Bayesian Dirichlet Equivalence (BDe) metric was used to score the networks produced with SAGA. SAGA predicted transcriptional regulatory relationships among genes in networks that evaluated to higher BDe scores with high sensitivities and specificities. Thus, the proposed method competes well with existing search algorithms for Bayesian Network structure learning of transcriptional regulatory networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Paradoxes of Social Networking in a Structured Web 2.0 Language Learning Community

    Science.gov (United States)

    Loiseau, Mathieu; Zourou, Katerina

    2012-01-01

    This paper critically inquires into social networking as a set of mechanisms and associated practices developed in a structured Web 2.0 language learning community. This type of community can be roughly described as learning spaces featuring (more or less) structured language learning resources displaying at least some notions of language learning…

  18. Learning Orthographic Structure with Sequential Generative Neural Networks

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-01-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in…

  19. Structured learning via convolutional neural networks for vehicle detection

    Science.gov (United States)

    Maqueda, Ana I.; del Blanco, Carlos R.; Jaureguizar, Fernando; García, Narciso

    2017-05-01

    One of the main tasks in a vision-based traffic monitoring system is the detection of vehicles. Recently, deep neural networks have been successfully applied to this end, outperforming previous approaches. However, most of these works generally rely on complex and high-computational region proposal networks. Others employ deep neural networks as a segmentation strategy to achieve a semantic representation of the object of interest, which has to be up-sampled later. In this paper, a new design for a convolutional neural network is applied to vehicle detection in highways for traffic monitoring. This network generates a spatially structured output that encodes the vehicle locations. Promising results have been obtained in the GRAM-RTM dataset.

  20. Structure Learning and Statistical Estimation in Distribution Networks - Part II

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-13

    Limited placement of real-time monitoring devices in the distribution grid, recent trends notwithstanding, has prevented the easy implementation of demand-response and other smart grid applications. Part I of this paper discusses the problem of learning the operational structure of the grid from nodal voltage measurements. In this work (Part II), the learning of the operational radial structure is coupled with the problem of estimating nodal consumption statistics and inferring the line parameters in the grid. Based on a Linear-Coupled(LC) approximation of AC power flows equations, polynomial time algorithms are designed to identify the structure and estimate nodal load characteristics and/or line parameters in the grid using the available nodal voltage measurements. Then the structure learning algorithm is extended to cases with missing data, where available observations are limited to a fraction of the grid nodes. The efficacy of the presented algorithms are demonstrated through simulations on several distribution test cases.

  1. Learning Signaling Network Structures with Sparsely Distributed Data

    OpenAIRE

    Sachs, Karen; Itani, Solomon; Carlisle, Jennifer; Nolan, Garry P.; Pe'er, Dana; Lauffenburger, Douglas A.

    2009-01-01

    Flow cytometric measurement of signaling protein abundances has proved particularly useful for elucidation of signaling pathway structure. The single cell nature of the data ensures a very large dataset size, providing a statistically robust dataset for structure learning. Moreover, the approach is easily scaled to many conditions in high throughput. However, the technology suffers from a dimensionality constraint: at the cutting edge, only about 12 protein species can be measured per cell, f...

  2. Monitoring of Students' Interaction in Online Learning Settings by Structural Network Analysis and Indicators.

    Science.gov (United States)

    Ammenwerth, Elske; Hackl, Werner O

    2017-01-01

    Learning as a constructive process works best in interaction with other learners. Support of social interaction processes is a particular challenge within online learning settings due to the spatial and temporal distribution of participants. It should thus be carefully monitored. We present structural network analysis and related indicators to analyse and visualize interaction patterns of participants in online learning settings. We validate this approach in two online courses and show how the visualization helps to monitor interaction and to identify activity profiles of learners. Structural network analysis is a feasible approach for an analysis of the intensity and direction of interaction in online learning settings.

  3. Using multi-step proposal distribution for improved MCMC convergence in Bayesian network structure learning.

    Science.gov (United States)

    Larjo, Antti; Lähdesmäki, Harri

    2015-12-01

    Bayesian networks have become popular for modeling probabilistic relationships between entities. As their structure can also be given a causal interpretation about the studied system, they can be used to learn, for example, regulatory relationships of genes or proteins in biological networks and pathways. Inference of the Bayesian network structure is complicated by the size of the model structure space, necessitating the use of optimization methods or sampling techniques, such Markov Chain Monte Carlo (MCMC) methods. However, convergence of MCMC chains is in many cases slow and can become even a harder issue as the dataset size grows. We show here how to improve convergence in the Bayesian network structure space by using an adjustable proposal distribution with the possibility to propose a wide range of steps in the structure space, and demonstrate improved network structure inference by analyzing phosphoprotein data from the human primary T cell signaling network.

  4. Distance metric learning for complex networks: Towards size-independent comparison of network structures

    Science.gov (United States)

    Aliakbary, Sadegh; Motallebi, Sadegh; Rashidian, Sina; Habibi, Jafar; Movaghar, Ali

    2015-02-01

    Real networks show nontrivial topological properties such as community structure and long-tail degree distribution. Moreover, many network analysis applications are based on topological comparison of complex networks. Classification and clustering of networks, model selection, and anomaly detection are just some applications of network comparison. In these applications, an effective similarity metric is needed which, given two complex networks of possibly different sizes, evaluates the amount of similarity between the structural features of the two networks. Traditional graph comparison approaches, such as isomorphism-based methods, are not only too time consuming but also inappropriate to compare networks with different sizes. In this paper, we propose an intelligent method based on the genetic algorithms for integrating, selecting, and weighting the network features in order to develop an effective similarity measure for complex networks. The proposed similarity metric outperforms state of the art methods with respect to different evaluation criteria.

  5. Learning the Structure of Bayesian Network from Small Amount of Data

    Directory of Open Access Journals (Sweden)

    Bogdan COCU

    2009-12-01

    Full Text Available Many areas of artificial intelligence must handling with imperfection ofinformation. One of the ways to do this is using representation and reasoning withBayesian networks. Creation of a Bayesian network consists in two stages. First stage isto design the node structure and directed links between them. Choosing of a structurefor network can be done either through empirical developing by human experts orthrough machine learning algorithm. The second stage is completion of probabilitytables for each node. Using a machine learning method is useful, especially when wehave a big amount of leaning data. But in many fields the amount of data is small,incomplete and inconsistent. In this paper, we make a case study for choosing the bestlearning method for small amount of learning data. Means more experiments we dropconclusion of using existent methods for learning a network structure.

  6. Sparse Regression Based Structure Learning of Stochastic Reaction Networks from Single Cell Snapshot Time Series.

    Directory of Open Access Journals (Sweden)

    Anna Klimovskaia

    2016-12-01

    Full Text Available Stochastic chemical reaction networks constitute a model class to quantitatively describe dynamics and cell-to-cell variability in biological systems. The topology of these networks typically is only partially characterized due to experimental limitations. Current approaches for refining network topology are based on the explicit enumeration of alternative topologies and are therefore restricted to small problem instances with almost complete knowledge. We propose the reactionet lasso, a computational procedure that derives a stepwise sparse regression approach on the basis of the Chemical Master Equation, enabling large-scale structure learning for reaction networks by implicitly accounting for billions of topology variants. We have assessed the structure learning capabilities of the reactionet lasso on synthetic data for the complete TRAIL induced apoptosis signaling cascade comprising 70 reactions. We find that the reactionet lasso is able to efficiently recover the structure of these reaction systems, ab initio, with high sensitivity and specificity. With only 6000 possible reactions and over 102000 network topologies. In conjunction with information rich single cell technologies such as single cell RNA sequencing or mass cytometry, the reactionet lasso will enable large-scale structure learning, particularly in areas with partial network structure knowledge, such as cancer biology, and thereby enable the detection of pathological alterations of reaction networks. We provide software to allow for wide applicability of the reactionet lasso.

  7. Learning conditional Gaussian networks

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard

    This paper considers conditional Gaussian networks. The parameters in the network are learned by using conjugate Bayesian analysis. As conjugate local priors, we apply the Dirichlet distribution for discrete variables and the Gaussian-inverse gamma distribution for continuous variables, given...... a configuration of the discrete parents. We assume parameter independence and complete data. Further, to learn the structure of the network, the network score is deduced. We then develop a local master prior procedure, for deriving parameter priors in these networks. This procedure satisfies parameter...... independence, parameter modularity and likelihood equivalence. Bayes factors to be used in model search are introduced. Finally the methods derived are illustrated by a simple example....

  8. An empirical comparison of popular structure learning algorithms with a view to gene network inference

    Czech Academy of Sciences Publication Activity Database

    Djordjilović, V.; Chiogna, M.; Vomlel, Jiří

    2017-01-01

    Roč. 88, č. 1 (2017), s. 602-613 ISSN 0888-613X R&D Projects: GA ČR(CZ) GA16-12010S Institutional support: RVO:67985556 Keywords : Bayesian networks * Structure learning * Reverse engineering * Gene networks Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.845, year: 2016 http:// library .utia.cas.cz/separaty/2017/MTR/vomlel-0477168.pdf

  9. Neural-Fitted TD-Leaf Learning for Playing Othello With Structured Neural Networks

    NARCIS (Netherlands)

    van den Dries, Sjoerd; Wiering, Marco A.

    2012-01-01

    This paper describes a methodology for quickly learning to play games at a strong level. The methodology consists of a novel combination of three techniques, and a variety of experiments on the game of Othello demonstrates their usefulness. First, structures or topologies in neural network

  10. An Analysis of Density and Degree-Centrality According to the Social Networking Structure Formed in an Online Learning Environment

    Science.gov (United States)

    Ergün, Esin; Usluel, Yasemin Koçak

    2016-01-01

    In this study, we assessed the communication structure in an educational online learning environment using social network analysis (SNA). The communication structure was examined with respect to time, and instructor's participation. The course was implemented using ELGG, a network learning environment, blended with face-to-face sessions over a…

  11. bnstruct: an R package for Bayesian Network structure learning in the presence of missing data.

    Science.gov (United States)

    Franzin, Alberto; Sambo, Francesco; Di Camillo, Barbara

    2017-04-15

    A Bayesian Network is a probabilistic graphical model that encodes probabilistic dependencies between a set of random variables. We introduce bnstruct, an open source R package to (i) learn the structure and the parameters of a Bayesian Network from data in the presence of missing values and (ii) perform reasoning and inference on the learned Bayesian Networks. To the best of our knowledge, there is no other open source software that provides methods for all of these tasks, particularly the manipulation of missing data, which is a common situation in practice. The software is implemented in R and C and is available on CRAN under a GPL licence. francesco.sambo@unipd.it. Supplementary data are available at Bioinformatics online.

  12. Incorporating expert knowledge when learning Bayesian network structure: a medical case study.

    Science.gov (United States)

    Julia Flores, M; Nicholson, Ann E; Brunskill, Andrew; Korb, Kevin B; Mascaro, Steven

    2011-11-01

    Bayesian networks (BNs) are rapidly becoming a leading technology in applied Artificial Intelligence, with many applications in medicine. Both automated learning of BNs and expert elicitation have been used to build these networks, but the potentially more useful combination of these two methods remains underexplored. In this paper we examine a number of approaches to their combination when learning structure and present new techniques for assessing their results. Using public-domain medical data, we run an automated causal discovery system, CaMML, which allows the incorporation of multiple kinds of prior expert knowledge into its search, to test and compare unbiased discovery with discovery biased with different kinds of expert opinion. We use adjacency matrices enhanced with numerical and colour labels to assist with the interpretation of the results. We present an algorithm for generating a single BN from a set of learned BNs that incorporates user preferences regarding complexity vs completeness. These techniques are presented as part of the first detailed workflow for hybrid structure learning within the broader knowledge engineering process. The detailed knowledge engineering workflow is shown to be useful for structuring a complex iterative BN development process. The adjacency matrices make it clear that for our medical case study using the IOWA dataset, the simplest kind of prior information (partially sorting variables into tiers) was more effective in aiding model discovery than either using no prior information or using more sophisticated and detailed expert priors. The method for generating a single BN captures relationships that would be overlooked by other approaches in the literature. Hybrid causal learning of BNs is an important emerging technology. We present methods for incorporating it into the knowledge engineering process, including visualisation and analysis of the learned networks. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Learning Networks for Lifelong Learning

    OpenAIRE

    Sloep, Peter

    2008-01-01

    Presentation in a seminar organized by Christopher Hoadley at Penn State University, October 2004.Contains general introduction into the Learning Network Programme and a demonstration of the Netlogo Simulation of a Learning Network.

  14. Structural Conditions for Collaboration and Learning in Innovation Networks: Using an Innovation System Performance Lens to Analyse Agricultural Knowledge Systems

    NARCIS (Netherlands)

    Hermans, F.; Klerkx, L.W.A.; Roep, D.

    2015-01-01

    Purpose: We investigate how the structural conditions of eight different European agricultural innovation systems can facilitate or hinder collaboration and social learning in multidisciplinary innovation networks. Methodology: We have adapted the Innovation System Failure Matrix to investigate the

  15. Statistical machine learning to identify traumatic brain injury (TBI) from structural disconnections of white matter networks.

    Science.gov (United States)

    Mitra, Jhimli; Shen, Kai-Kai; Ghose, Soumya; Bourgeat, Pierrick; Fripp, Jurgen; Salvado, Olivier; Pannek, Kerstin; Taylor, D Jamie; Mathias, Jane L; Rose, Stephen

    2016-04-01

    Identifying diffuse axonal injury (DAI) in patients with traumatic brain injury (TBI) presenting with normal appearing radiological MRI presents a significant challenge. Neuroimaging methods such as diffusion MRI and probabilistic tractography, which probe the connectivity of neural networks, show significant promise. We present a machine learning approach to classify TBI participants primarily with mild traumatic brain injury (mTBI) based on altered structural connectivity patterns derived through the network based statistical analysis of structural connectomes generated from TBI and age-matched control groups. In this approach, higher order diffusion models were used to map white matter connections between 116 cortical and subcortical regions. Tracts between these regions were generated using probabilistic tracking and mean fractional anisotropy (FA) measures along these connections were encoded in the connectivity matrices. Network-based statistical analysis of the connectivity matrices was performed to identify the network differences between a representative subset of the two groups. The affected network connections provided the feature vectors for principal component analysis and subsequent classification by random forest. The validity of the approach was tested using data acquired from a total of 179 TBI patients and 146 controls participants. The analysis revealed altered connectivity within a number of intra- and inter-hemispheric white matter pathways associated with DAI, in consensus with existing literature. A mean classification accuracy of 68.16%±1.81% and mean sensitivity of 80.0%±2.36% were achieved in correctly classifying the TBI patients evaluated on the subset of the participants that was not used for the statistical analysis, in a 10-fold cross-validation framework. These results highlight the potential for statistical machine learning approaches applied to structural connectomes to identify patients with diffusive axonal injury. Copyright

  16. Structure Learning of Bayesian Networks by Estimation of Distribution Algorithms with Transpose Mutation

    Directory of Open Access Journals (Sweden)

    D.W. Kim

    2013-08-01

    Full Text Available Estimation of distribution algorithms (EDAs constitute a new branch of evolutionary optimization algorithms that were developed as a natural alternative to genetic algorithms (GAs. Several studies have demonstrated that the heuristic scheme of EDAs is effective and efficient for many optimization problems. Recently, it has been reported that the incorporation of mutation into EDAs increases the diversity of genetic information in the population, thereby avoiding premature convergence into a suboptimal solution. In this study, we propose a new mutation operator, a transpose mutation, designed for Bayesian structure learning. It enhances the diversity of the offspring and it increases the possibility of inferring the correct arc direction by considering the arc directions in candidate solutions as bi-directional, using the matrix transpose operator. As compared to the conventional EDAs, the transpose mutation-adopted EDAs are superior and effective algorithms for learning Bayesian networks.

  17. Mutual information preconditioning improves structure learning of Bayesian networks from medical databases.

    Science.gov (United States)

    Meloni, Antonella; Ripoli, Andrea; Positano, Vincenzo; Landini, Luigi

    2009-11-01

    Bayesian networks (BNs) represent one of the most successful tools for medical diagnosis, selection of the optimal treatment, and prediction of the treatment outcome. In this paper, we present an algorithm for BN structure learning, which is a variation of the standard search-and-score approach. The proposed algorithm overcomes the creation of redundant network structures that may include nonsignificant connections between variables. In particular, the algorithm finds what relationships between the variables must be prevented, by exploiting the binarization of a square matrix containing the mutual information (MI) among all pairs of variables. Two different binarization methods are implemented. The first one is based on the maximum relevance minimum redundancy selection strategy. The second one uses a threshold. The MI binary matrix is exploited as a preconditioning step for the subsequent greedy search procedure that optimizes the network score, reducing the number of possible search paths in the greedy search. Our algorithm has been tested on two different medical datasets and compared against the standard search-and-score algorithm as implemented in the DEAL package.

  18. Learning Networks for Lifelong Learning

    NARCIS (Netherlands)

    Koper, Rob

    2004-01-01

    Presentation in a seminar organized by Christopher Hoadley at Penn State University, October 2004.Contains general introduction into the Learning Network Programme and a demonstration of the Netlogo Simulation of a Learning Network.

  19. Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons.

    Science.gov (United States)

    Siri, Benoît; Quoy, Mathias; Delord, Bruno; Cessac, Bruno; Berry, Hugues

    2007-01-01

    The aim of the present paper is to study the effects of Hebbian learning in random recurrent neural networks with biological connectivity, i.e. sparse connections and separate populations of excitatory and inhibitory neurons. We furthermore consider that the neuron dynamics may occur at a (shorter) time scale than synaptic plasticity and consider the possibility of learning rules with passive forgetting. We show that the application of such Hebbian learning leads to drastic changes in the network dynamics and structure. In particular, the learning rule contracts the norm of the weight matrix and yields a rapid decay of the dynamics complexity and entropy. In other words, the network is rewired by Hebbian learning into a new synaptic structure that emerges with learning on the basis of the correlations that progressively build up between neurons. We also observe that, within this emerging structure, the strongest synapses organize as a small-world network. The second effect of the decay of the weight matrix spectral radius consists in a rapid contraction of the spectral radius of the Jacobian matrix. This drives the system through the "edge of chaos" where sensitivity to the input pattern is maximal. Taken together, this scenario is remarkably predicted by theoretical arguments derived from dynamical systems and graph theory.

  20. Learning Parsimonious Classification Rules from Gene Expression Data Using Bayesian Networks with Local Structure.

    Science.gov (United States)

    Lustgarten, Jonathan Lyle; Balasubramanian, Jeya Balaji; Visweswaran, Shyam; Gopalakrishnan, Vanathi

    2017-03-01

    The comprehensibility of good predictive models learned from high-dimensional gene expression data is attractive because it can lead to biomarker discovery. Several good classifiers provide comparable predictive performance but differ in their abilities to summarize the observed data. We extend a Bayesian Rule Learning (BRL-GSS) algorithm, previously shown to be a significantly better predictor than other classical approaches in this domain. It searches a space of Bayesian networks using a decision tree representation of its parameters with global constraints, and infers a set of IF-THEN rules. The number of parameters and therefore the number of rules are combinatorial to the number of predictor variables in the model. We relax these global constraints to a more generalizable local structure (BRL-LSS). BRL-LSS entails more parsimonious set of rules because it does not have to generate all combinatorial rules. The search space of local structures is much richer than the space of global structures. We design the BRL-LSS with the same worst-case time-complexity as BRL-GSS while exploring a richer and more complex model space. We measure predictive performance using Area Under the ROC curve (AUC) and Accuracy. We measure model parsimony performance by noting the average number of rules and variables needed to describe the observed data. We evaluate the predictive and parsimony performance of BRL-GSS, BRL-LSS and the state-of-the-art C4.5 decision tree algorithm, across 10-fold cross-validation using ten microarray gene-expression diagnostic datasets. In these experiments, we observe that BRL-LSS is similar to BRL-GSS in terms of predictive performance, while generating a much more parsimonious set of rules to explain the same observed data. BRL-LSS also needs fewer variables than C4.5 to explain the data with similar predictive performance. We also conduct a feasibility study to demonstrate the general applicability of our BRL methods on the newer RNA sequencing gene

  1. Learning Bayesian network structure using a cloud-based adaptive immune genetic algorithm

    Science.gov (United States)

    Song, Qin; Lin, Feng; Sun, Wei; Chang, KC

    2011-06-01

    A new BN structure learning method using a cloud-based adaptive immune genetic algorithm (CAIGA) is proposed. Since the probabilities of crossover and mutation in CAIGA are adaptively varied depending on X-conditional cloud generator, it could improve the diversity of the structure population and avoid local optimum. This is due to the stochastic nature and stable tendency of the cloud model. Moreover, offspring structure population is simplified by using immune theory to reduce its computational complexity. The experiment results reveal that this method can be effectively used for BN structure learning.

  2. Learning Networks for Lifelong Learning

    NARCIS (Netherlands)

    Koper, Rob

    2004-01-01

    Presentation at: "Learning Designs in a Networked World A Dutch - Canada Education Seminar", October 15th, 2004, University of Alberta, Edmonton, Canada. Similar presentation as: http://hdl.handle.net/1820/278

  3. Multilayer Optical Learning Networks

    Science.gov (United States)

    Wagner, Kelvin; Psaltis, Demetri

    1987-08-01

    In this paper we present a new approach to learning in a multilayer optical neural network which is based on holographically interconnected nonlinear Fabry-Perot etalons. The network can learn the interconnections that form a distributed representation of a desired pattern transformation operation. The interconnections are formed in an adaptive and self aligning fashion, as volume holographic gratings in photorefractive crystals. Parallel arrays of globally space integrated inner products diffracted by the interconnecting hologram illuminate arrays of nonlinear Fabry-Perot etalons for fast thresholding of the transformed patterns. A phase conjugated reference wave interferes with a backwards propagating error signal to form holographic interference patterns which are time integrated in the volume of the photorefractive crystal in order to slowly modify and learn the appropriate self aligning interconnections. A holographic implementation of a single layer perceptron learning procedure is presented that can be extendept ,to a multilayer learning network through an optical implementation of the backward error propagation (BEP) algorithm.

  4. A Learning Dashboard to Monitor an Open Networked Learning Community

    Science.gov (United States)

    Grippa, Francesca; Secundo, Giustina; de Maggio, Marco

    This chapter proposes an operational model to monitor and assess an Open Networked Learning Community. Specifically, the model is based on the Intellectual Capital framework, along the Human, Structural and Social dimensions. It relies on the social network analysis to map several and complementary perspectives of a learning network. Its application allows to observe and monitor the cognitive behaviour of a learning community, in the final perspective of tracking and obtaining precious insights for value generation.

  5. Learning the local Bayesian network structure around the ZNF217 oncogene in breast tumours.

    Science.gov (United States)

    Prestat, Emmanuel; de Morais, Sérgio Rodrigues; Vendrell, Julie A; Thollet, Aurélie; Gautier, Christian; Cohen, Pascale A; Aussem, Alex

    2013-05-01

    In this study, we discuss and apply a novel and efficient algorithm for learning a local Bayesian network model in the vicinity of the ZNF217 oncogene from breast cancer microarray data without having to decide in advance which genes have to be included in the learning process. ZNF217 is a candidate oncogene located at 20q13, a chromosomal region frequently amplified in breast and ovarian cancer, and correlated with shorter patient survival in these cancers. To properly address the difficulties in managing complex gene interactions given our limited sample, statistical significance of edge strengths was evaluated using bootstrapping and the less reliable edges were pruned to increase the network robustness. We found that 13 out of the 35 genes associated with deregulated ZNF217 expression in breast tumours have been previously associated with survival and/or prognosis in cancers. Identifying genes involved in lipid metabolism opens new fields of investigation to decipher the molecular mechanisms driven by the ZNF217 oncogene. Moreover, nine of the 13 genes have already been identified as putative ZNF217 targets by independent biological studies. We therefore suggest that the algorithms for inferring local BNs are valuable data mining tools for unraveling complex mechanisms of biological pathways from expression data. The source code is available at http://www710.univ-lyon1.fr/∼aaussem/Software.html. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Dynamic Information Networks: Geometry, Topology and Statistical Learning for the Articulation of Structure

    Science.gov (United States)

    2015-06-23

    G. Leibon, S. Pauls, D. Rockmore, and R. Savell, Topological structures in the equities market network PNAS 2008 105 (52) 20589-20594; published...example  is  a  deeper  look  at  the   Tea  Party    in  112th  Congress  whose  members  are   best

  7. Learning dynamic Bayesian networks with mixed variables

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard

    This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learned...

  8. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.

    Science.gov (United States)

    Siri, Benoît; Berry, Hugues; Cessac, Bruno; Delord, Bruno; Quoy, Mathias

    2008-12-01

    We present a mathematical analysis of the effects of Hebbian learning in random recurrent neural networks, with a generic Hebbian learning rule, including passive forgetting and different timescales, for neuronal activity and learning dynamics. Previous numerical work has reported that Hebbian learning drives the system from chaos to a steady state through a sequence of bifurcations. Here, we interpret these results mathematically and show that these effects, involving a complex coupling between neuronal dynamics and synaptic graph structure, can be analyzed using Jacobian matrices, which introduce both a structural and a dynamical point of view on neural network evolution. Furthermore, we show that sensitivity to a learned pattern is maximal when the largest Lyapunov exponent is close to 0. We discuss how neural networks may take advantage of this regime of high functional interest.

  9. Collaborative learning in networks.

    Science.gov (United States)

    Mason, Winter; Watts, Duncan J

    2012-01-17

    Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions.

  10. Research, Boundaries, and Policy in Networked Learning

    DEFF Research Database (Denmark)

    This book presents cutting-edge, peer reviewed research on networked learning organized by three themes: policy in networked learning, researching networked learning, and boundaries in networked learning. The "policy in networked learning" section explores networked learning in relation to policy...

  11. Learning Networks for Professional Development & Lifelong Learning

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    Sloep, P. B. (2009). Learning Networks for Professional Development & Lifelong Learning. Presentation at a NeLLL seminar with Etienne Wenger held at the Open Universiteit Nederland. September, 10, 2009, Heerlen, The Netherlands.

  12. deal: A Package for Learning Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Susanne G. Boettcher

    2003-12-01

    Full Text Available deal is a software package for use with R. It includes several methods for analysing data using Bayesian networks with variables of discrete and/or continuous types but restricted to conditionally Gaussian networks. Construction of priors for network parameters is supported and their parameters can be learned from data using conjugate updating. The network score is used as a metric to learn the structure of the network and forms the basis of a heuristic search strategy. deal has an interface to Hugin.

  13. Associative learning in biochemical networks.

    Science.gov (United States)

    Gandhi, Nikhil; Ashkenasy, Gonen; Tannenbaum, Emmanuel

    2007-11-07

    It has been recently suggested that there are likely generic features characterizing the emergence of systems constructed from the self-organization of self-replicating agents acting under one or more selection pressures. Therefore, structures and behaviors at one length scale may be used to infer analogous structures and behaviors at other length scales. Motivated by this suggestion, we seek to characterize various "animate" behaviors in biochemical networks, and the influence that these behaviors have on genomic evolution. Specifically, in this paper, we develop a simple, chemostat-based model illustrating how a process analogous to associative learning can occur in a biochemical network. Associative learning is a form of learning whereby a system "learns" to associate two stimuli with one another. Associative learning, also known as conditioning, is believed to be a powerful learning process at work in the brain (associative learning is essentially "learning by analogy"). In our model, two types of replicating molecules, denoted as A and B, are present in some initial concentration in the chemostat. Molecules A and B are stimulated to replicate by some growth factors, denoted as G(A) and G(B), respectively. It is also assumed that A and B can covalently link, and that the conjugated molecule can be stimulated by either the G(A) or G(B) growth factors (and can be degraded). We show that, if the chemostat is stimulated by both growth factors for a certain time, followed by a time gap during which the chemostat is not stimulated at all, and if the chemostat is then stimulated again by only one of the growth factors, then there will be a transient increase in the number of molecules activated by the other growth factor. Therefore, the chemostat bears the imprint of earlier, simultaneous stimulation with both growth factors, which is indicative of associative learning. It is interesting to note that the dynamics of our model is consistent with certain aspects of

  14. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.

    Science.gov (United States)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  15. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  16. Brain Networks of Explicit and Implicit Learning

    Science.gov (United States)

    Yang, Jing; Li, Ping

    2012-01-01

    Are explicit versus implicit learning mechanisms reflected in the brain as distinct neural structures, as previous research indicates, or are they distinguished by brain networks that involve overlapping systems with differential connectivity? In this functional MRI study we examined the neural correlates of explicit and implicit learning of artificial grammar sequences. Using effective connectivity analyses we found that brain networks of different connectivity underlie the two types of learning: while both processes involve activation in a set of cortical and subcortical structures, explicit learners engage a network that uses the insula as a key mediator whereas implicit learners evoke a direct frontal-striatal network. Individual differences in working memory also differentially impact the two types of sequence learning. PMID:22952624

  17. Effects of hierarchical levels on social network structures within communities of learning

    NARCIS (Netherlands)

    Rehm, M.; Gijselaers, W.H.; Segers, M.S.R.

    2014-01-01

    Facilitating an interpersonal knowledge transfer among employees constitutes a key building block in setting up organizational training initiatives. With practitioners and researchers looking for innovative training methods, online Communities of Learning (CoL) have been promoted as a promising

  18. Learning the Relationship between the Primary Structure of HIV Envelope Glycoproteins and Neutralization Activity of Particular Antibodies by Using Artificial Neural Networks

    Science.gov (United States)

    Buiu, Cătălin; Putz, Mihai V.; Avram, Speranta

    2016-01-01

    The dependency between the primary structure of HIV envelope glycoproteins (ENV) and the neutralization data for given antibodies is very complicated and depends on a large number of factors, such as the binding affinity of a given antibody for a given ENV protein, and the intrinsic infection kinetics of the viral strain. This paper presents a first approach to learning these dependencies using an artificial feedforward neural network which is trained to learn from experimental data. The results presented here demonstrate that the trained neural network is able to generalize on new viral strains and to predict reliable values of neutralizing activities of given antibodies against HIV-1. PMID:27727189

  19. Redes de aprendizaje, aprendizaje en red Learning Networks, Networked Learning

    Directory of Open Access Journals (Sweden)

    Peter Sloep

    2011-10-01

    Full Text Available Las redes de aprendizaje (Learning Networks son redes sociales en línea mediante las cuales los participantes comparten información y colaboran para crear conocimiento. De esta manera, estas redes enriquecen la experiencia de aprendizaje en cualquier contexto de aprendizaje, ya sea de educación formal (en escuelas o universidades o educación no-formal (formación profesional. Aunque el concepto de aprendizaje en red suscita el interés de diferentes actores del ámbito educativo, aún existen muchos interrogantes sobre cómo debe diseñarse el aprendizaje en red para facilitar adecuadamente la educación y la formación. El artículo toma este interrogante como punto de partida, y posteriormente aborda cuestiones como la dinámica de la evolución de las redes de aprendizaje, la importancia de fomentar la confianza entre los participantes y el papel central que desempeña el perfil de usuario en la construcción de la confianza, así como el apoyo entre compañeros. Además, se elabora el proceso de diseño de una red de aprendizaje, y se describe un ejemplo en el contexto universitario. Basándonos en la investigación que actualmente se lleva a cabo en nuestro propio centro y en otros lugares, el capítulo concluye con una visión del futuro de las redes de aprendizaje.Learning Networks are on-line social networks through which users share knowledge with each other and jointly develop new knowledge. This way, Learning Networks may enrich the experience of formal, school-based learning and form a viable setting for professional development. Although networked learning enjoys an increasing interest, many questions remain on how exactly learning in such networked contexts can contribute to successful education and training. Put differently, how should networked learning be designed best to facilitate education and training? Taking this as its point of departure, the chapter addresses such issues as the dynamic evolution of Learning Networks

  20. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  1. Quantitative learning strategies based on word networks

    Science.gov (United States)

    Zhao, Yue-Tian-Yi; Jia, Zi-Yang; Tang, Yong; Xiong, Jason Jie; Zhang, Yi-Cheng

    2018-02-01

    Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network.

  2. Rethinking the learning of belief network probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Musick, R.

    1996-03-01

    Belief networks are a powerful tool for knowledge discovery that provide concise, understandable probabilistic models of data. There are methods grounded in probability theory to incrementally update the relationships described by the belief network when new information is seen, to perform complex inferences over any set of variables in the data, to incorporate domain expertise and prior knowledge into the model, and to automatically learn the model from data. This paper concentrates on part of the belief network induction problem, that of learning the quantitative structure (the conditional probabilities), given the qualitative structure. In particular, the current practice of rote learning the probabilities in belief networks can be significantly improved upon. We advance the idea of applying any learning algorithm to the task of conditional probability learning in belief networks, discuss potential benefits, and show results of applying neural networks and other algorithms to a medium sized car insurance belief network. The results demonstrate from 10 to 100% improvements in model error rates over the current approaches.

  3. Modeling a Neural Network as a Teaching Tool for the Learning of the Structure-Function Relationship

    Science.gov (United States)

    Salinas, Dino G.; Acevedo, Cristian; Gomez, Christian R.

    2010-01-01

    The authors describe an activity they have created in which students can visualize a theoretical neural network whose states evolve according to a well-known simple law. This activity provided an uncomplicated approach to a paradigm commonly represented through complex mathematical formulation. From their observations, students learned many basic…

  4. Structure learning in action

    Science.gov (United States)

    Braun, Daniel A.; Mehring, Carsten; Wolpert, Daniel M.

    2010-01-01

    Learning to learn’ phenomena have been widely investigated in cognition, perception and more recently also in action. During concept learning tasks, for example, it has been suggested that characteristic features are abstracted from a set of examples with the consequence that learning of similar tasks is facilitated—a process termed ‘learning to learn’. From a computational point of view such an extraction of invariants can be regarded as learning of an underlying structure. Here we review the evidence for structure learning as a ‘learning to learn’ mechanism, especially in sensorimotor control where the motor system has to adapt to variable environments. We review studies demonstrating that common features of variable environments are extracted during sensorimotor learning and exploited for efficient adaptation in novel tasks. We conclude that structure learning plays a fundamental role in skill learning and may underlie the unsurpassed flexibility and adaptability of the motor system. PMID:19720086

  5. Evolving production network structures

    DEFF Research Database (Denmark)

    Grunow, Martin; Gunther, H.O.; Burdenik, H.

    2007-01-01

    When deciding about future production network configurations, the current structures have to be taken into account. Further, core issues such as the maturity of the products and the capacity requirements for test runs and ramp-ups must be incorporated. Our approach is based on optimization...... modelling and assigns products and capacity expansions to production sites under the above constraints. It also considers the production complexity at the individual sites and the flexibility of the network. Our implementation results for a large manufacturing network reveal substantial possible cost...... reductions compared to the traditional manual planning results of our industrial partner....

  6. Exploring the structural regularities in networks

    CERN Document Server

    Shen, Hua-Wei; Guo, Jia-Feng

    2011-01-01

    In this paper, we consider the problem of exploring structural regularities of networks by dividing the nodes of a network into groups such that the members of each group have similar patterns of connections to other groups. Specifically, we propose a general statistical model to describe network structure. In this model, group is viewed as hidden or unobserved quantity and it is learned by fitting the observed network data using the expectation-maximization algorithm. Compared with existing models, the most prominent strength of our model is the high flexibility. This strength enables it to possess the advantages of existing models and overcomes their shortcomings in a unified way. As a result, not only broad types of structure can be detected without prior knowledge of what type of intrinsic regularities exist in the network, but also the type of identified structure can be directly learned from data. Moreover, by differentiating outgoing edges from incoming edges, our model can detect several types of stru...

  7. Social Networks and Network Structures

    Science.gov (United States)

    2006-11-01

    Research in Command & Control • Latent Semantic Analysis – Team communication – Emergent team dynamics – Shared situation awareness • Dynamic Network...requirements – Information technology requirements 28 LSA Essentials of Latent Semantic Analysis 29 Communication Analysis • Goal: Automatically monitor and

  8. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  9. Learning Python network programming

    CERN Document Server

    Sarker, M O Faruque

    2015-01-01

    If you're a Python developer or a system administrator with Python experience and you're looking to take your first steps in network programming, then this book is for you. Basic knowledge of Python is assumed.

  10. [Network structures in biological systems].

    Science.gov (United States)

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  11. Language Choice & Global Learning Networks

    Directory of Open Access Journals (Sweden)

    Dennis Sayers

    1995-05-01

    Full Text Available How can other languages be used in conjunction with English to further intercultural and multilingual learning when teachers and students participate in computer-based global learning networks? Two portraits are presented of multilingual activities in the Orillas and I*EARN learning networks, and are discussed as examples of the principal modalities of communication employed in networking projects between distant classes. Next, an important historical precedent --the social controversy which accompanied the introduction of telephone technology at the end of the last century-- is examined in terms of its implications for language choice in contemporary classroom telecomputing projects. Finally, recommendations are offered to guide decision making concerning the role of language choice in promoting collaborative critical inquiry.

  12. Changing Conditions for Networked Learning?

    DEFF Research Database (Denmark)

    Ryberg, Thomas

    2011-01-01

    of social technologies. I argue that we are seeing the emergence of new architectures and scales of participation, collaboration and networking e.g. through interesting formations of learning networks at different levels of scale, for different purposes and often bridging boundaries such as formal......In this talk I should like to initially take a critical look at popular ideas and discourses related to web 2.0, social technologies and learning. I argue that many of the pedagogical ideals particularly associated with web 2.0 have a longer history and background, which is often forgotten...

  13. Researching Design, Experience and Practice of Networked Learning

    DEFF Research Database (Denmark)

    Hodgson, Vivien; de Laat, Maarten; McConnell, David

    2014-01-01

    and final section draws attention to a growing topic of interest within networked learning: that of networked learning in informal practices. In addition, we provide a reflection on the theories, methods and settings featured in the networked learning research of the chapters. We conclude the introduction......In the introductory chapter, we explore how networked learning has developed in recent years by summarising and discussing the research presented in the chapters of the book. The chapters are structured in three sections, each highlighting a particular aspect of practice. The first section focuses...

  14. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  15. Blending Formal and Informal Learning Networks for Online Learning

    Science.gov (United States)

    Czerkawski, Betül C.

    2016-01-01

    With the emergence of social software and the advance of web-based technologies, online learning networks provide invaluable opportunities for learning, whether formal or informal. Unlike top-down, instructor-centered, and carefully planned formal learning settings, informal learning networks offer more bottom-up, student-centered participatory…

  16. THE GOVERNANCE STRUCTURE OF COOPERATIVE NETWORKS

    National Research Council Canada - National Science Library

    Rosileia Milagres

    2014-01-01

    .... The analysis shows that the governance structure is influenced by the objectives established, the partners' experience, the types of knowledge and the context where network is inserted. The case highlights the importance of learning during the process, but, although present, it can be negatively influenced by the context and the possibility of future partnerships.

  17. Neural networks and perceptual learning

    Science.gov (United States)

    Tsodyks, Misha; Gilbert, Charles

    2005-01-01

    Sensory perception is a learned trait. The brain strategies we use to perceive the world are constantly modified by experience. With practice, we subconsciously become better at identifying familiar objects or distinguishing fine details in our environment. Current theoretical models simulate some properties of perceptual learning, but neglect the underlying cortical circuits. Future neural network models must incorporate the top-down alteration of cortical function by expectation or perceptual tasks. These newly found dynamic processes are challenging earlier views of static and feedforward processing of sensory information. PMID:15483598

  18. Network structure of production

    Science.gov (United States)

    Atalay, Enghin; Hortaçsu, Ali; Roberts, James; Syverson, Chad

    2011-01-01

    Complex social networks have received increasing attention from researchers. Recent work has focused on mechanisms that produce scale-free networks. We theoretically and empirically characterize the buyer–supplier network of the US economy and find that purely scale-free models have trouble matching key attributes of the network. We construct an alternative model that incorporates realistic features of firms’ buyer–supplier relationships and estimate the model’s parameters using microdata on firms’ self-reported customers. This alternative framework is better able to match the attributes of the actual economic network and aids in further understanding several important economic phenomena. PMID:21402924

  19. Advanced Polymer Network Structures

    Science.gov (United States)

    2016-02-01

    characteristic time 02 /UmaLJ =τ . Topologically bound monomers interact through the sum of the purely repulsive LJ potential ( arc 6/12= ) or so-called Weeks...3 Content of the simulated polymer double network. Self- attraction coefficient between particles within a network (first or second) is fixed at 1...technique to the study the microscopic topology and dynamics of a wide variety of polymer networks and gels.5–8 The pair interaction between

  20. Structuring for Organizational Learning.

    Science.gov (United States)

    Hong, Jacky

    1999-01-01

    The learning organization concept tends to assume homogeneity of thinking, ignoring differences among individual members. The processes of transferring soft and hard knowledge may not be the same. Alternative organizational structures such as team, circular, or "hypertext" are needed for effective knowledge management and organizational…

  1. The Structural Underpinnings of Policy Learning: A Classroom Policy Simulation

    Science.gov (United States)

    Bird, Stephen

    This paper investigates the relationship between the centrality of individual actors in a social network structure and their policy learning performance. In a dynamic comparable to real-world policy networks, results from a classroom simulation demonstrate a strong relationship between centrality in social learning networks and grade performance. Previous research indicates that social network centrality should have a positive effect on learning in other contexts and this link is tested in a policy learning context. Second, the distinction between collaborative learning versus information diffusion processes in policy learning is examined. Third, frequency of interaction is analyzed to determine whether consistent, frequent tics have a greater impact on the learning process. Finally, the data arc analyzed to determine if the benefits of centrality have limitations or thresholds when benefits no longer accrue. These results demonstrate the importance of network structure, and support a collaborative conceptualization of the policy learning process.

  2. Learning Processes of Layered Neural Networks

    OpenAIRE

    Fujiki, Sumiyoshi; FUJIKI, Nahomi, M.

    1995-01-01

    A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward neural network, and a learning equation similar to that of the Boltzmann machine algorithm is obtained. By applying a mean field approximation to the same stochastic feed-forward neural network, a deterministic analog feed-forward network is obtained and the back-propagation learning rule is re-derived.

  3. Identifying Gatekeepers in Online Learning Networks

    Science.gov (United States)

    Gursakal, Necmi; Bozkurt, Aras

    2017-01-01

    The rise of the networked society has not only changed our perceptions but also the definitions, roles, processes and dynamics of online learning networks. From offline to online worlds, networks are everywhere and gatekeepers are an important entity in these networks. In this context, the purpose of this paper is to explore gatekeeping and…

  4. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure......Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  5. Discovering network structure beyond communities.

    Science.gov (United States)

    Nishikawa, Takashi; Motter, Adilson E

    2011-01-01

    To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.

  6. Discovering Network Structure Beyond Communities

    OpenAIRE

    Nishikawa, Takashi; Motter, Adilson E.

    2011-01-01

    To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes chara...

  7. Collective network for computer structures

    Energy Technology Data Exchange (ETDEWEB)

    Blumrich, Matthias A [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Chen, Dong [Croton On Hudson, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Takken, Todd E [Brewster, NY; Steinmacher-Burow, Burkhard D [Wernau, DE; Vranas, Pavlos M [Bedford Hills, NY

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  8. Inferring network structure from cascades

    Science.gov (United States)

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  9. Temporal difference learning for the game Tic-Tac-Toe 3D: Applying structure to neural networks

    NARCIS (Netherlands)

    Van De Steeg, Michiel; Drugan, Madalina M.; Wiering, Marco

    2016-01-01

    When reinforcement learning is applied to large state spaces, such as those occurring in playing board games, the use of a good function approximator to learn to approximate the value function is very important. In previous research, multi-layer perceptrons have often been quite successfully used as

  10. Network anomaly detection a machine learning perspective

    CERN Document Server

    Bhattacharyya, Dhruba Kumar

    2013-01-01

    With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents mach

  11. Efficient Learning Strategy of Chinese Characters Based on Network Approach

    Science.gov (United States)

    Yan, Xiaoyong; Fan, Ying; Di, Zengru; Havlin, Shlomo; Wu, Jinshan

    2013-01-01

    We develop an efficient learning strategy of Chinese characters based on the network of the hierarchical structural relations between Chinese characters. A more efficient strategy is that of learning the same number of useful Chinese characters in less effort or time. We construct a node-weighted network of Chinese characters, where character usage frequencies are used as node weights. Using this hierarchical node-weighted network, we propose a new learning method, the distributed node weight (DNW) strategy, which is based on a new measure of nodes' importance that considers both the weight of the nodes and its location in the network hierarchical structure. Chinese character learning strategies, particularly their learning order, are analyzed as dynamical processes over the network. We compare the efficiency of three theoretical learning methods and two commonly used methods from mainstream Chinese textbooks, one for Chinese elementary school students and the other for students learning Chinese as a second language. We find that the DNW method significantly outperforms the others, implying that the efficiency of current learning methods of major textbooks can be greatly improved. PMID:23990887

  12. Efficient learning strategy of Chinese characters based on network approach.

    Science.gov (United States)

    Yan, Xiaoyong; Fan, Ying; Di, Zengru; Havlin, Shlomo; Wu, Jinshan

    2013-01-01

    We develop an efficient learning strategy of Chinese characters based on the network of the hierarchical structural relations between Chinese characters. A more efficient strategy is that of learning the same number of useful Chinese characters in less effort or time. We construct a node-weighted network of Chinese characters, where character usage frequencies are used as node weights. Using this hierarchical node-weighted network, we propose a new learning method, the distributed node weight (DNW) strategy, which is based on a new measure of nodes' importance that considers both the weight of the nodes and its location in the network hierarchical structure. Chinese character learning strategies, particularly their learning order, are analyzed as dynamical processes over the network. We compare the efficiency of three theoretical learning methods and two commonly used methods from mainstream Chinese textbooks, one for Chinese elementary school students and the other for students learning Chinese as a second language. We find that the DNW method significantly outperforms the others, implying that the efficiency of current learning methods of major textbooks can be greatly improved.

  13. Efficient learning strategy of Chinese characters based on network approach.

    Directory of Open Access Journals (Sweden)

    Xiaoyong Yan

    Full Text Available We develop an efficient learning strategy of Chinese characters based on the network of the hierarchical structural relations between Chinese characters. A more efficient strategy is that of learning the same number of useful Chinese characters in less effort or time. We construct a node-weighted network of Chinese characters, where character usage frequencies are used as node weights. Using this hierarchical node-weighted network, we propose a new learning method, the distributed node weight (DNW strategy, which is based on a new measure of nodes' importance that considers both the weight of the nodes and its location in the network hierarchical structure. Chinese character learning strategies, particularly their learning order, are analyzed as dynamical processes over the network. We compare the efficiency of three theoretical learning methods and two commonly used methods from mainstream Chinese textbooks, one for Chinese elementary school students and the other for students learning Chinese as a second language. We find that the DNW method significantly outperforms the others, implying that the efficiency of current learning methods of major textbooks can be greatly improved.

  14. Confidence sets for network structure

    CERN Document Server

    Airoldi, Edoardo M; Wolfe, Patrick J

    2011-01-01

    Latent variable models are frequently used to identify structure in dichotomous network data, in part because they give rise to a Bernoulli product likelihood that is both well understood and consistent with the notion of exchangeable random graphs. In this article we propose conservative confidence sets that hold with respect to these underlying Bernoulli parameters as a function of any given partition of network nodes, enabling us to assess estimates of 'residual' network structure, that is, structure that cannot be explained by known covariates and thus cannot be easily verified by manual inspection. We demonstrate the proposed methodology by analyzing student friendship networks from the National Longitudinal Survey of Adolescent Health that include race, gender, and school year as covariates. We employ a stochastic expectation-maximization algorithm to fit a logistic regression model that includes these explanatory variables as well as a latent stochastic blockmodel component and additional node-specific...

  15. Towards a Pattern Language for Networked Learning

    NARCIS (Netherlands)

    Goodyear, Peter; Avgeriou, Paris; Baggetun, Rune; Bartoluzzi, Sonia; Retalis, Simeon; Ronteltap, Frans; Rusman, Ellen

    2004-01-01

    The work of designing a useful, convivial networked learning environment is complex and demanding. People new to designing for networked learning face a number of major challenges when they try to draw on the experience of others – whether that experience is shared informally, in the everyday

  16. Personalized Learning Network Teaching Model

    Science.gov (United States)

    Feng, Zhou

    Adaptive learning system on the salient features, expounded personalized learning is adaptive learning system adaptive to learners key to learning. From the perspective of design theory, put forward an adaptive learning system to learn design thinking individual model, and using data mining techniques, the initial establishment of personalized adaptive systems model of learning.

  17. Evolution of individual versus social learning on social networks.

    Science.gov (United States)

    Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo

    2015-03-06

    A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of 'cultural models' exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Projection learning algorithm for threshold - controlled neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Reznik, A.M.

    1995-03-01

    The projection learning algorithm proposed in [1, 2] and further developed in [3] substantially improves the efficiency of memorizing information and accelerates the learning process in neural networks. This algorithm is compatible with the completely connected neural network architecture (the Hopfield network [4]), but its application to other networks involves a number of difficulties. The main difficulties include constraints on interconnection structure and the need to eliminate the state uncertainty of latent neurons if such are present in the network. Despite the encouraging preliminary results of [3], further extension of the applications of the projection algorithm therefore remains problematic. In this paper, which is a continuation of the work begun in [3], we consider threshold-controlled neural networks. Networks of this type are quite common. They represent the receptor neuron layers in some neurocomputer designs. A similar structure is observed in the lower divisions of biological sensory systems [5]. In multilayer projection neural networks with lateral interconnections, the neuron layers or parts of these layers may also have the structure of a threshold-controlled completely connected network. Here the thresholds are the potentials delivered through the projection connections from other parts of the network. The extension of the projection algorithm to the class of threshold-controlled networks may accordingly prove to be useful both for extending its technical applications and for better understanding of the operation of the nervous system in living organisms.

  19. What Online Networks Offer: Online Network Compositions and Online Learning Experiences of Three Ethnic Groups

    NARCIS (Netherlands)

    Lecluijze, Susanne Elisabeth; de Haan, M.J.|info:eu-repo/dai/nl/074405624; Ünlüsoy, A.|info:eu-repo/dai/nl/322909309

    2015-01-01

    This exploratory study examines ethno-cultural diversity in youth ́s narratives regarding their online learning experiences while also investigating how these narratives can be understood from the analysis of their online network structure and composition. Based on ego-network data of 79 respondents

  20. Adapting Bayes Network Structures to Non-stationary Domains

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre

    2006-01-01

    When an incremental structural learning method gradually modifies a Bayesian network (BN) structure to fit observations, as they are read from a database, we call the process structural adaptation. Structural adaptation is useful when the learner is set to work in an unknown environment, where a BN...

  1. Adapting Bayes Network Structures to Non-stationary Domains

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre

    2008-01-01

    When an incremental structural learning method gradually modifies a Bayesian network (BN) structure to fit a sequential stream of observations, we call the process structural adaptation. Structural adaptation is useful when the learner is set to work in an unknown environment, where a BN...

  2. Structurally Dynamic Spin Market Networks

    Science.gov (United States)

    Horváth, Denis; Kuscsik, Zoltán

    The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.

  3. Conditions for Productive Learning in Network Learning Environments

    DEFF Research Database (Denmark)

    Ponti, M.; Dirckinck-Holmfeld, Lone; Lindström, B.

    2004-01-01

    The Kaleidoscope1 Jointly Executed Integrating Research Project (JEIRP) on Conditions for Productive Networked Learning Environments is developing and elaborating conceptual understandings of Computer Supported Collaborative Learning (CSCL) emphasizing the use of cross-cultural comparative......: Pedagogical design and the dialectics of the digital artefacts, the concept of collaboration, ethics/trust, identity and the role of scaffolding of networked learning environments.   The JEIRP is motivated by the fact that many networked learning environments in various European educational settings...... are designed without a deep understanding of the pedagogical, communicative and collaborative conditions embedded in networked learning. Despite the existence of good theoretical views pointing to a social understanding of learning, rather than a traditional individualistic and information processing approach...

  4. A Collaborative Learning Network Approach to Improvement: The CUSP Learning Network.

    Science.gov (United States)

    Weaver, Sallie J; Lofthus, Jennifer; Sawyer, Melinda; Greer, Lee; Opett, Kristin; Reynolds, Catherine; Wyskiel, Rhonda; Peditto, Stephanie; Pronovost, Peter J

    2015-04-01

    Collaborative improvement networks draw on the science of collaborative organizational learning and communities of practice to facilitate peer-to-peer learning, coaching, and local adaption. Although significant improvements in patient safety and quality have been achieved through collaborative methods, insight regarding how collaborative networks are used by members is needed. Improvement Strategy: The Comprehensive Unit-based Safety Program (CUSP) Learning Network is a multi-institutional collaborative network that is designed to facilitate peer-to-peer learning and coaching specifically related to CUSP. Member organizations implement all or part of the CUSP methodology to improve organizational safety culture, patient safety, and care quality. Qualitative case studies developed by participating members examine the impact of network participation across three levels of analysis (unit, hospital, health system). In addition, results of a satisfaction survey designed to evaluate member experiences were collected to inform network development. Common themes across case studies suggest that members found value in collaborative learning and sharing strategies across organizational boundaries related to a specific improvement strategy. The CUSP Learning Network is an example of network-based collaborative learning in action. Although this learning network focuses on a particular improvement methodology-CUSP-there is clear potential for member-driven learning networks to grow around other methods or topic areas. Such collaborative learning networks may offer a way to develop an infrastructure for longer-term support of improvement efforts and to more quickly diffuse creative sustainment strategies.

  5. Chinese lexical networks: The structure, function and formation

    Science.gov (United States)

    Li, Jianyu; Zhou, Jie; Luo, Xiaoyue; Yang, Zhanxin

    2012-11-01

    In this paper Chinese phrases are modeled using complex networks theory. We analyze statistical properties of the networks and find that phrase networks display some important features: not only small world and the power-law distribution, but also hierarchical structure and disassortative mixing. These statistical traits display the global organization of Chinese phrases. The origin and formation of such traits are analyzed from a macroscopic Chinese culture and philosophy perspective. It is interesting to find that Chinese culture and philosophy may shape the formation and structure of Chinese phrases. To uncover the structural design principles of networks, network motif patterns are studied. It is shown that they serve as basic building blocks to form the whole phrase networks, especially triad 38 (feed forward loop) plays a more important role in forming most of the phrases and other motifs. The distinct structure may not only keep the networks stable and robust, but also be helpful for information processing. The results of the paper can give some insight into Chinese language learning and language acquisition. It strengthens the idea that learning the phrases helps to understand Chinese culture. On the other side, understanding Chinese culture and philosophy does help to learn Chinese phrases. The hub nodes in the networks show the close relationship with Chinese culture and philosophy. Learning or teaching the hub characters, hub-linking phrases and phrases which are meaning related based on motif feature should be very useful and important for Chinese learning and acquisition.

  6. Predictive structural dynamic network analysis.

    Science.gov (United States)

    Chen, Rong; Herskovits, Edward H

    2015-04-30

    Classifying individuals based on magnetic resonance data is an important task in neuroscience. Existing brain network-based methods to classify subjects analyze data from a cross-sectional study and these methods cannot classify subjects based on longitudinal data. We propose a network-based predictive modeling method to classify subjects based on longitudinal magnetic resonance data. Our method generates a dynamic Bayesian network model for each group which represents complex spatiotemporal interactions among brain regions, and then calculates a score representing that subject's deviation from expected network patterns. This network-derived score, along with other candidate predictors, are used to construct predictive models. We validated the proposed method based on simulated data and the Alzheimer's Disease Neuroimaging Initiative study. For the Alzheimer's Disease Neuroimaging Initiative study, we built a predictive model based on the baseline biomarker characterizing the baseline state and the network-based score which was constructed based on the state transition probability matrix. We found that this combined model achieved 0.86 accuracy, 0.85 sensitivity, and 0.87 specificity. For the Alzheimer's Disease Neuroimaging Initiative study, the model based on the baseline biomarkers achieved 0.77 accuracy. The accuracy of our model is significantly better than the model based on the baseline biomarkers (p-value=0.002). We have presented a method to classify subjects based on structural dynamic network model based scores. This method is of great importance to distinguish subjects based on structural network dynamics and the understanding of the network architecture of brain processes and disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Exploring dynamic mechanisms of learning networks for resource conservation

    Directory of Open Access Journals (Sweden)

    Petr Matous

    2015-06-01

    Full Text Available The importance of networks for social-ecological processes has been recognized in the literature; however, existing studies have not sufficiently addressed the dynamic nature of networks. Using data on the social learning networks of 265 farmers in Ethiopia for 2011 and 2012 and stochastic actor-oriented modeling, we explain the mechanisms of network evolution and soil conservation. The farmers' preferences for information exchange within the same social groups support the creation of interactive, clustered, nonhierarchical structures within the evolving learning networks, which contributed to the diffusion of the practice of composting. The introduced methods can be applied to determine whether and how social networks can be used to facilitate environmental interventions in various contexts.

  8. Stochastic Variational Learning in Recurrent Spiking Networks

    Directory of Open Access Journals (Sweden)

    Danilo eJimenez Rezende

    2014-04-01

    Full Text Available The ability to learn and perform statistical inference with biologically plausible recurrent network of spiking neurons is an important step towards understanding perception and reasoning. Here we derive and investigate a new learning rule for recurrent spiking networks with hidden neurons, combining principles from variational learning and reinforcement learning. Our network defines a generative model over spike train histories and the derived learning rule has the form of a local Spike Timing Dependent Plasticity rule modulated by global factors (neuromodulators conveying information about ``novelty on a statistically rigorous ground.Simulations show that our model is able to learn bothstationary and non-stationary patterns of spike trains.We also propose one experiment that could potentially be performed with animals in order to test the dynamics of the predicted novelty signal.

  9. Stability from Structure : Metabolic Networks Are Unlike Other Biological Networks

    NARCIS (Netherlands)

    Van Nes, P.; Bellomo, D.; Reinders, M.J.T.; De Ridder, D.

    2009-01-01

    In recent work, attempts have been made to link the structure of biochemical networks to their complex dynamics. It was shown that structurally stable network motifs are enriched in such networks. In this work, we investigate to what extent these findings apply to metabolic networks. To this end, we

  10. Network Learning and Innovation in SME Formal Networks

    Directory of Open Access Journals (Sweden)

    Jivka Deiters

    2013-02-01

    Full Text Available The driver for this paper is the need to better understand the potential for learning and innovation that networks canprovide especially for small and medium sized enterprises (SMEs which comprise by far the majority of enterprises in the food sector. With the challenges the food sector is facing in the near future, learning and innovation or more focused, as it is being discussed in the paper, ‘learning for innovation’ are not just opportunities but pre‐conditions for the sustainability of the sector. Network initiatives that could provide appropriate support involve social interaction and knowledge exchange, learning, competence development, and coordination (organization and management of implementation. The analysis identifies case studies in any of these orientations which serve different stages of the innovation process: invention and implementation. The variety of network case studies cover networks linked to a focus group for training, research, orconsulting, networks dealing with focused market oriented product or process development, promotional networks, and networks for open exchange and social networking.

  11. Using Social Networks to Enhance Teaching and Learning Experiences in Higher Learning Institutions

    Science.gov (United States)

    Balakrishnan, Vimala

    2014-01-01

    The paper first explores the factors that affect the use of social networks to enhance teaching and learning experiences among students and lecturers, using structured questionnaires prepared based on the Push-Pull-Mooring framework. A total of 455 students and lecturers from higher learning institutions in Malaysia participated in this study.…

  12. Learning in innovation networks: Some simulation experiments

    Science.gov (United States)

    Gilbert, Nigel; Ahrweiler, Petra; Pyka, Andreas

    2007-05-01

    According to the organizational learning literature, the greatest competitive advantage a firm has is its ability to learn. In this paper, a framework for modeling learning competence in firms is presented to improve the understanding of managing innovation. Firms with different knowledge stocks attempt to improve their economic performance by engaging in radical or incremental innovation activities and through partnerships and networking with other firms. In trying to vary and/or to stabilize their knowledge stocks by organizational learning, they attempt to adapt to environmental requirements while the market strongly selects on the results. The simulation experiments show the impact of different learning activities, underlining the importance of innovation and learning.

  13. A Transfer Learning Approach for Network Modeling

    Science.gov (United States)

    Huang, Shuai; Li, Jing; Chen, Kewei; Wu, Teresa; Ye, Jieping; Wu, Xia; Yao, Li

    2012-01-01

    Networks models have been widely used in many domains to characterize the interacting relationship between physical entities. A typical problem faced is to identify the networks of multiple related tasks that share some similarities. In this case, a transfer learning approach that can leverage the knowledge gained during the modeling of one task to help better model another task is highly desirable. In this paper, we propose a transfer learning approach, which adopts a Bayesian hierarchical model framework to characterize task relatedness and additionally uses the L1-regularization to ensure robust learning of the networks with limited sample sizes. A method based on the Expectation-Maximization (EM) algorithm is further developed to learn the networks from data. Simulation studies are performed, which demonstrate the superiority of the proposed transfer learning approach over single task learning that learns the network of each task in isolation. The proposed approach is also applied to identification of brain connectivity networks of Alzheimer’s disease (AD) from functional magnetic resonance image (fMRI) data. The findings are consistent with the AD literature. PMID:24526804

  14. Community structure in introductory physics course networks

    CERN Document Server

    Traxler, Adrienne L

    2015-01-01

    Student-to-student interactions are foundational to many active learning environments, but are most often studied using qualitative methods. Network analysis tools provide a quantitative complement to this picture, allowing researchers to describe the social interactions of whole classrooms as systems. Past results from introductory physics courses have suggested a sharp division in the formation of social structure between large lecture sections and small studio classroom environments. Extending those results, this study focuses on calculus-based introductory physics courses at a large public university with a heavily commuter and nontraditional student population. Community detection network methods are used to characterize pre- and post-course collaborative structure in several sections, and differences are considered between small and large classes. These results are compared with expectations from earlier findings, and comment on implications for instruction and further study.

  15. Automated segmentation of 3D anatomical structures on CT images by using a deep convolutional network based on end-to-end learning approach

    Science.gov (United States)

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2017-02-01

    We have proposed an end-to-end learning approach that trained a deep convolutional neural network (CNN) for automatic CT image segmentation, which accomplished a voxel-wised multiple classification to directly map each voxel on 3D CT images to an anatomical label automatically. The novelties of our proposed method were (1) transforming the anatomical structures segmentation on 3D CT images into a majority voting of the results of 2D semantic image segmentation on a number of 2D-slices from different image orientations, and (2) using "convolution" and "deconvolution" networks to achieve the conventional "coarse recognition" and "fine extraction" functions which were integrated into a compact all-in-one deep CNN for CT image segmentation. The advantage comparing to previous works was its capability to accomplish real-time image segmentations on 2D slices of arbitrary CT-scan-range (e.g. body, chest, abdomen) and produced correspondingly-sized output. In this paper, we propose an improvement of our proposed approach by adding an organ localization module to limit CT image range for training and testing deep CNNs. A database consisting of 240 3D CT scans and a human annotated ground truth was used for training (228 cases) and testing (the remaining 12 cases). We applied the improved method to segment pancreas and left kidney regions, respectively. The preliminary results showed that the accuracies of the segmentation results were improved significantly (pancreas was 34% and kidney was 8% increased in Jaccard index from our previous results). The effectiveness and usefulness of proposed improvement for CT image segmentations were confirmed.

  16. A Robust Method for Inferring Network Structures.

    Science.gov (United States)

    Yang, Yang; Luo, Tingjin; Li, Zhoujun; Zhang, Xiaoming; Yu, Philip S

    2017-07-12

    Inferring the network structure from limited observable data is significant in molecular biology, communication and many other areas. It is challenging, primarily because the observable data are sparse, finite and noisy. The development of machine learning and network structure study provides a great chance to solve the problem. In this paper, we propose an iterative smoothing algorithm with structure sparsity (ISSS) method. The elastic penalty in the model is introduced for the sparse solution, identifying group features and avoiding over-fitting, and the total variation (TV) penalty in the model can effectively utilize the structure information to identify the neighborhood of the vertices. Due to the non-smoothness of the elastic and structural TV penalties, an efficient algorithm with the Nesterov's smoothing optimization technique is proposed to solve the non-smooth problem. The experimental results on both synthetic and real-world networks show that the proposed model is robust against insufficient data and high noise. In addition, we investigate many factors that play important roles in identifying the performance of ISSS.

  17. Social Structures for Learning

    NARCIS (Netherlands)

    I.M. Bogenrieder (Irma); B. Nooteboom (Bart)

    2001-01-01

    textabstractThis article investigates what learning groups there are in organizations, other than the familiar 'communities of practice'. It first develops an interdisciplinary theoretical framework for identifying, categorizing and understanding learning groups. For this, it employs a

  18. Learning Bayesian networks for discrete data

    KAUST Repository

    Liang, Faming

    2009-02-01

    Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.

  19. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    Science.gov (United States)

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli, and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  20. Adaptive Learning in Weighted Network Games

    NARCIS (Netherlands)

    Bayer, Péter; Herings, P. Jean-Jacques; Peeters, Ronald; Thuijsman, Frank

    2017-01-01

    This paper studies adaptive learning in the class of weighted network games. This class of games includes applications like research and development within interlinked firms, crime within social networks, the economics of pollution, and defense expenditures within allied nations. We show that for

  1. From network structure to network reorganization: implications for adult neurogenesis

    Science.gov (United States)

    Schneider-Mizell, Casey M.; Parent, Jack M.; Ben-Jacob, Eshel; Zochowski, Michal R.; Sander, Leonard M.

    2010-12-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells.

  2. Electronic Social Networks, Teaching, and Learning

    Science.gov (United States)

    Pidduck, Anne Banks

    2010-01-01

    This paper explores the relationship between electronic social networks, teaching, and learning. Previous studies have shown a strong positive correlation between student engagement and learning. By extending this work to engage instructors and add an electronic component, our study shows possible teaching improvement as well. In particular,…

  3. Realizing Wisdom Theory in Complex Learning Networks

    Science.gov (United States)

    Kok, Ayse

    2009-01-01

    The word "wisdom" is rarely seen in contemporary technology and learning discourse. This conceptual paper aims to provide some clear principles that answer the question: How can we establish wisdom in complex learning networks? By considering the nature of contemporary calls for wisdom the paper provides a metatheoretial framework to evaluate the…

  4. NASA Engineering Network Lessons Learned

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Lessons Learned system provides access to official, reviewed lessons learned from NASA programs and projects. These lessons have been made available to the...

  5. Neural networks for relational learning: An experimental comparison

    OpenAIRE

    Uwents, Werner; Monfardini, Gabriele; Blockeel, Hendrik; Gori, Marco De; Scarselli, Franco

    2011-01-01

    In the last decade, connectionist models have been proposed that can process structured information directly. These methods, which are based on the use of graphs for the representation of the data and the relationships within the data, are particularly suitable for handling relational learning tasks. In this paper, two recently proposed architectures of this kind, i.e. Graph Neural Networks (GNNs) and Relational Neural Networks (RelNNs), are compared and discussed, along with their correspond...

  6. Structure Mapping for Social Learning.

    Science.gov (United States)

    Christie, Stella

    2017-07-01

    Analogical reasoning is a foundational tool for human learning, allowing learners to recognize relational structures in new events and domains. Here I sketch some grounds for understanding and applying analogical reasoning in social learning. The social world is fundamentally characterized by relations between people, with common relational structures-such as kinships and social hierarchies-forming social units that dictate social behaviors. Just as young learners use analogical reasoning for learning relational structures in other domains-spatial relations, verbs, relational categories-analogical reasoning ought to be a useful cognitive tool for acquiring social relations and structures. Copyright © 2017 Cognitive Science Society, Inc.

  7. Neural Network Enhanced Structure Determination of Osteoporosis, Immune System, and Radiation Repair Proteins Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation will utilize self learning neural network technology to determine the structure of osteoporosis, immune system disease, and excess radiation...

  8. Community structure of complex networks based on continuous neural network

    Science.gov (United States)

    Dai, Ting-ting; Shan, Chang-ji; Dong, Yan-shou

    2017-09-01

    As a new subject, the research of complex networks has attracted the attention of researchers from different disciplines. Community structure is one of the key structures of complex networks, so it is a very important task to analyze the community structure of complex networks accurately. In this paper, we study the problem of extracting the community structure of complex networks, and propose a continuous neural network (CNN) algorithm. It is proved that for any given initial value, the continuous neural network algorithm converges to the eigenvector of the maximum eigenvalue of the network modularity matrix. Therefore, according to the stability of the evolution of the network symbol will be able to get two community structure.

  9. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  10. Networked Learning and Network Science: Potential Applications to Health Professionals' Continuing Education and Development.

    Science.gov (United States)

    Margolis, Alvaro; Parboosingh, John

    2015-01-01

    Prior interpersonal relationships and interactivity among members of professional associations may impact the learning process in continuing medical education (CME). On the other hand, CME programs that encourage interactivity between participants may impact structures and behaviors in these professional associations. With the advent of information and communication technologies, new communication spaces have emerged that have the potential to enhance networked learning in national and international professional associations and increase the effectiveness of CME for health professionals. In this article, network science, based on the application of network theory and other theories, is proposed as an approach to better understand the contribution networking and interactivity between health professionals in professional communities make to their learning and adoption of new practices over time. © 2015 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.

  11. Idea Management: Perspectives from Leadership, Learning, and Network Theory

    NARCIS (Netherlands)

    D. Deichmann (Dirk)

    2012-01-01

    textabstractIn this dissertation, we focus on how leadership styles, individual learning behaviors, and social network structures drive or inhibit organizational members to repeatedly generate and develop innovative ideas. Taking the idea management programs of three multinational companies as the

  12. Leadership in Network Learning: Business Action Research at Monash University

    Science.gov (United States)

    Haslett, Tim; Barton, John; Stephens, John; Schell, Liz; Olsen, Jane

    2010-01-01

    Purpose: The purpose of this paper is to explain the emergent nature of leadership in a university-based learning network of mature-aged practitioner-scholars. Design/methodology/approach: The paper draws on previously published work, interviews, and current research. Findings: The paper finds that once initial structures have been established,…

  13. Evolutionary epistemology and dynamical virtual learning networks.

    Science.gov (United States)

    Giani, Umberto

    2004-01-01

    This paper is an attempt to define the main features of a new educational model aimed at satisfying the needs of a rapidly changing society. The evolutionary epistemology paradigm of culture diffusion in human groups could be the conceptual ground for the development of this model. Multidimensionality, multi-disciplinarity, complexity, connectivity, critical thinking, creative thinking, constructivism, flexible learning, contextual learning, are the dimensions that should characterize distance learning models aimed at increasing the epistemological variability of learning communities. Two multimedia educational software, Dynamic Knowledge Networks (DKN) and Dynamic Virtual Learning Networks (DVLN) are described. These two complementary tools instantiate these dimensions, and were tested in almost 150 online courses. Even if the examples are framed in the medical context, the analysis of the shortcomings of the traditional educational systems and the proposed solutions can be applied to the vast majority of the educational contexts.

  14. On the topological structure of multinationals network

    Science.gov (United States)

    Joyez, Charlie

    2017-05-01

    This paper uses a weighted network analysis to examine the structure of multinationals' implantation countries network. Based on French firm-level dataset of multinational enterprises (MNEs) the network analysis provides information on each country position in the network and in internationalization strategies of French MNEs through connectivity preferences among the nodes. The paper also details network-wide features and their recent evolution toward a more decentralized structure. While much has been said on international trade network, this paper shows that multinational firms' studies would also benefit from network analysis, notably by investigating the sensitivity of the network construction to firm heterogeneity.

  15. Learning and Model-checking Networks of I/O Automata

    DEFF Research Database (Denmark)

    Mao, Hua; Jaeger, Manfred

    2012-01-01

    We introduce a new statistical relational learning (SRL) approach in which models for structured data, especially network data, are constructed as networks of communicating nite probabilistic automata. Leveraging existing automata learning methods from the area of grammatical inference, we can...... learn generic models for network entities in the form of automata templates. As is characteristic for SRL techniques, the abstraction level aorded by learning generic templates enables one to apply the learned model to new domains. A main benet of learning models based on nite automata lies in the fact...

  16. A Social Network Analysis of Teaching and Research Collaboration in a Teachers' Virtual Learning Community

    Science.gov (United States)

    Lin, Xiaofan; Hu, Xiaoyong; Hu, Qintai; Liu, Zhichun

    2016-01-01

    Analysing the structure of a social network can help us understand the key factors influencing interaction and collaboration in a virtual learning community (VLC). Here, we describe the mechanisms used in social network analysis (SNA) to analyse the social network structure of a VLC for teachers and discuss the relationship between face-to-face…

  17. Peer Apprenticeship Learning in Networked Learning Communities: The Diffusion of Epistemic Learning

    Science.gov (United States)

    Jamaludin, Azilawati; Shaari, Imran

    2016-01-01

    This article discusses peer apprenticeship learning (PAL) as situated within networked learning communities (NLCs). The context revolves around the diffusion of technologically-mediated learning in Singapore schools, where teachers begin to implement inquiry-oriented learning, consistent with 21st century learning, among students. As these schools…

  18. Neural network models of learning and categorization in multigame experiments

    Directory of Open Access Journals (Sweden)

    Davide eMarchiori

    2011-12-01

    Full Text Available Previous research has shown that regret-driven neural networks predict behavior in repeated completely mixed games remarkably well, substantially equating the performance of the most accurate established models of learning. This result prompts the question of what is the added value of modeling learning through neural networks. We submit that this modeling approach allows for models that are able to distinguish among and respond differently to different payoff structures. Moreover, the process of categorization of a game is implicitly carried out by these models, thus without the need of any external explicit theory of similarity between games. To validate our claims, we designed and ran two multigame experiments in which subjects faced, in random sequence, different instances of two completely mixed 2x2 games. Then, we tested on our experimental data two regret-driven neural network models, and compared their performance with that of other established models of learning and Nash equilibrium.

  19. Distributed Structure-Searchable Toxicity Database Network

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Distributed Structure-Searchable Toxicity (DSSTox) Database Network provides a public forum for search and publishing downloadable, structure-searchable,...

  20. Structural equations in language learning

    NARCIS (Netherlands)

    Moortgat, M.J.

    In categorial systems with a fixed structural component, the learning problem comes down to finding the solution for a set of typeassignment equations. A hard-wired structural component is problematic if one want to address issues of structural variation. Our starting point is a type-logical

  1. Personalizing Access to Learning Networks

    DEFF Research Database (Denmark)

    Dolog, Peter; Simon, Bernd; Nejdl, Wolfgang

    2008-01-01

    In this article, we describe a Smart Space for Learning™ (SS4L) framework and infrastructure that enables personalized access to distributed heterogeneous knowledge repositories. Helping a learner to choose an appropriate learning resource or activity is a key problem which we address in this fra......In this article, we describe a Smart Space for Learning™ (SS4L) framework and infrastructure that enables personalized access to distributed heterogeneous knowledge repositories. Helping a learner to choose an appropriate learning resource or activity is a key problem which we address...... in this framework, enabling personalized access to federated learning repositories with a vast number of learning offers. Our infrastructure includes personalization strategies both at the query and the query results level. Query rewriting is based on learning and language preferences; rule-based and ranking...

  2. Social structure of Facebook networks

    Science.gov (United States)

    Traud, Amanda L.; Mucha, Peter J.; Porter, Mason A.

    2012-08-01

    We study the social structure of Facebook “friendship” networks at one hundred American colleges and universities at a single point in time, and we examine the roles of user attributes-gender, class year, major, high school, and residence-at these institutions. We investigate the influence of common attributes at the dyad level in terms of assortativity coefficients and regression models. We then examine larger-scale groupings by detecting communities algorithmically and comparing them to network partitions based on user characteristics. We thereby examine the relative importance of different characteristics at different institutions, finding for example that common high school is more important to the social organization of large institutions and that the importance of common major varies significantly between institutions. Our calculations illustrate how microscopic and macroscopic perspectives give complementary insights on the social organization at universities and suggest future studies to investigate such phenomena further.

  3. Exploring the Community Structure of Complex Networks

    OpenAIRE

    Drago, Carlo

    2016-01-01

    Regarding complex networks, one of the most relevant problems is to understand and to explore community structure. In particular it is important to define the network organization and the functions associated to the different network partitions. In this context, the idea is to consider some new approaches based on interval data in order to represent the different relevant network components as communities. The method is also useful to represent the network community structure, especially the ...

  4. Social Learning Network Analysis Model to Identify Learning Patterns Using Ontology Clustering Techniques and Meaningful Learning

    Science.gov (United States)

    Firdausiah Mansur, Andi Besse; Yusof, Norazah

    2013-01-01

    Clustering on Social Learning Network still not explored widely, especially when the network focuses on e-learning system. Any conventional methods are not really suitable for the e-learning data. SNA requires content analysis, which involves human intervention and need to be carried out manually. Some of the previous clustering techniques need…

  5. Analysing Health Professionals' Learning Interactions in an Online Social Network: A Longitudinal Study.

    Science.gov (United States)

    Li, Xin; Verspoor, Karin; Gray, Kathleen; Barnett, Stephen

    2016-01-01

    This paper summarises a longitudinal analysis of learning interactions occurring over three years among health professionals in an online social network. The study employs the techniques of Social Network Analysis (SNA) and statistical modeling to identify the changes in patterns of interaction over time and test associated structural network effects. SNA results indicate overall low participation in the network, although some participants became active over time and even led discussions. In particular, the analysis has shown that a change of lead contributor results in a change in learning interaction and network structure. The analysis of structural network effects demonstrates that the interaction dynamics slow down over time, indicating that interactions in the network are more stable. The health professionals may be reluctant to share knowledge and collaborate in groups but were interested in building personal learning networks or simply seeking information.

  6. Deep Learning in Neural Networks: An Overview

    OpenAIRE

    Schmidhuber, Juergen

    2014-01-01

    In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpr...

  7. Logarithmic learning for generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2014-12-01

    Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Communication on the structure of biological networks

    Indian Academy of Sciences (India)

    Abstract. Networks are widely used to represent interaction pattern among the components in complex systems. Structures of real networks from different domains may vary quite significantly. As there is an interplay between network architecture and dynamics, structure plays an impor- tant role in communication and ...

  9. Distributed Extreme Learning Machine for Nonlinear Learning over Network

    Directory of Open Access Journals (Sweden)

    Songyan Huang

    2015-02-01

    Full Text Available Distributed data collection and analysis over a network are ubiquitous, especially over a wireless sensor network (WSN. To our knowledge, the data model used in most of the distributed algorithms is linear. However, in real applications, the linearity of systems is not always guaranteed. In nonlinear cases, the single hidden layer feedforward neural network (SLFN with radial basis function (RBF hidden neurons has the ability to approximate any continuous functions and, thus, may be used as the nonlinear learning system. However, confined by the communication cost, using the distributed version of the conventional algorithms to train the neural network directly is usually prohibited. Fortunately, based on the theorems provided in the extreme learning machine (ELM literature, we only need to compute the output weights of the SLFN. Computing the output weights itself is a linear learning problem, although the input-output mapping of the overall SLFN is still nonlinear. Using the distributed algorithmto cooperatively compute the output weights of the SLFN, we obtain a distributed extreme learning machine (dELM for nonlinear learning in this paper. This dELM is applied to the regression problem and classification problem to demonstrate its effectiveness and advantages.

  10. Reinforcement learning account of network reciprocity.

    Directory of Open Access Journals (Sweden)

    Takahiro Ezaki

    Full Text Available Evolutionary game theory predicts that cooperation in social dilemma games is promoted when agents are connected as a network. However, when networks are fixed over time, humans do not necessarily show enhanced mutual cooperation. Here we show that reinforcement learning (specifically, the so-called Bush-Mosteller model approximately explains the experimentally observed network reciprocity and the lack thereof in a parameter region spanned by the benefit-to-cost ratio and the node's degree. Thus, we significantly extend previously obtained numerical results.

  11. True Nature of Supply Network Communication Structure

    Directory of Open Access Journals (Sweden)

    Lokhman Hakim bin Osman

    2016-04-01

    Full Text Available Globalization of world economy has altered the definition of organizational structure. Global supply chain can no longer be viewed as an arm-length structure. It has become more complex. The complexity demands deeper research and understanding. This research analyzed a structure of supply network in an attempt to elucidate the true structure of the supply network. Using the quantitative Social Network Analysis methodology, findings of this study indicated that, the structure of the supply network differs depending on the types of network relations. An important implication of these findings would be a more focus resource management upon network relationship development that is based on firms’ positions in the different network structure. This research also contributes to the various strategies of effective and efficient supply chain management.

  12. Core-Periphery Structure in Networks

    OpenAIRE

    Rombach, M. Puck; Porter, Mason A.; Fowler, James H.; Mucha, Peter J

    2012-01-01

    Intermediate-scale (or `meso-scale') structures in networks have received considerable attention, as the algorithmic detection of such structures makes it possible to discover network features that are not apparent either at the local scale of nodes and edges or at the global scale of summary statistics. Numerous types of meso-scale structures can occur in networks, but investigations of such features have focused predominantly on the identification and study of community structure. In this p...

  13. Global Electricity Trade Network: Structures and Implications

    Science.gov (United States)

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S. F.; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825

  14. Global Electricity Trade Network: Structures and Implications.

    Science.gov (United States)

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S F; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions.

  15. Portability and networked learning environments

    NARCIS (Netherlands)

    Collis, Betty; de Diana, I.P.F.

    1994-01-01

    Abstract The portability of educational software is defined as the likelihood of software usage, with or without adaptation, in an educational environment different from that for which it was originally designed and produced. Barriers and research relevant to the portability of electronic learning

  16. Learning to trust : network effects through time.

    NARCIS (Netherlands)

    Barrera, D.; Bunt, G. van de

    2009-01-01

    This article investigates the effects of information originating from social networks on the development of interpersonal trust relations in the context of a dialysis department of a Dutch medium-sized hospital. Hypotheses on learning effects are developed from existing theories and tested using

  17. Learning to trust: network effects through time

    NARCIS (Netherlands)

    Barrera, D.; van de Bunt, G

    2009-01-01

    This article investigates the effects of information originating from social networks on the development of interpersonal trust relations in the context of a dialysis department of a Dutch medium-sized hospital. Hypotheses on learning effects are developed from existing theories and tested using

  18. Social Networking Services in E-Learning

    Science.gov (United States)

    Weber, Peter; Rothe, Hannes

    2016-01-01

    This paper is a report on the findings of a study conducted on the use of the social networking service NING in a cross-location e-learning setting named "Net Economy." We describe how we implemented NING as a fundamental part of the setting through a special phase concept and team building approach. With the help of user statistics, we…

  19. Learning chaotic attractors by neural networks

    NARCIS (Netherlands)

    Bakker, R; Schouten, JC; Giles, CL; Takens, F; van den Bleek, CM

    2000-01-01

    An algorithm is introduced that trains a neural network to identify chaotic dynamics from a single measured time series. During training, the algorithm learns to short-term predict the time series. At the same time a criterion, developed by Diks, van Zwet, Takens, and de Goede (1996) is monitored

  20. Social Networking Sites as a Learning Tool

    Science.gov (United States)

    Sanchez-Casado, Noelia; Cegarra Navarro, Juan Gabriel; Wensley, Anthony; Tomaseti-Solano, Eva

    2016-01-01

    Purpose: Over the past few years, social networking sites (SNSs) have become very useful for firms, allowing companies to manage the customer-brand relationships. In this context, SNSs can be considered as a learning tool because of the brand knowledge that customers develop from these relationships. Because of the fact that knowledge in…

  1. Learning in Networks for Sustainable Development

    NARCIS (Netherlands)

    Lansu, Angelique; Boon, Jo; Sloep, Peter; Van Dam-Mieras, Rietje

    2010-01-01

    The didactic model of remote internships described in this study provides the flexibility needed to support networked learners, i.e. to facilitate the development and subsequent assessment of their competences. The heterogeneity of the participants (students, employers, tutors) in the learning

  2. Taxonomies of networks from community structure

    Science.gov (United States)

    Onnela, Jukka-Pekka; Fenn, Daniel J.; Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2012-09-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.

  3. Learning networks and communication skills

    Directory of Open Access Journals (Sweden)

    Kerry Musselbrook

    2000-12-01

    Full Text Available The increase in student numbers in further and higher education over the last decade has been dramatic, placing greater pressures on academic staff in terms of contact hours. At the same time public funding of universities has decreased. Furthermore, the current pace of technological innovation and change and the fact that there are fewer jobs for life with clear pathways for progression mean that more of us need to be engaged in learning throughout our lives in order to remain competitive in the job-market. That is the reality of lifelong learning. Students are consequently demanding (especially as they are having to meet more of the costs of education themselves a more flexible learning framework. This framework should be able to accommodate all types of learners - part-time, mature, remote and disabled students. The revised Disability Discrimination Act, which came into force in October 1999, only temporarily excludes education from its remit and has already challenged university practices. (Another JlSC-funded initiative, Disability Information Systems in Higher Education, addresses just this issue: http://www.disinhe.ac.uk. All this is set against a backdrop of the government's stated vision for a more inclusive, less elitist education system with opportunities for all, and the requirement for a professional and accountable community of university teachers.

  4. Developing student engagement in networked teaching and learning practices through problem- and project-based learning approaches

    DEFF Research Database (Denmark)

    Lerche Nielsen, Jørgen; Andreasen, Lars Birch

    2012-01-01

    This paper focuses on how learner engagement can be facilitated through use of social media and communication technologies. The discussions are based on the Danish Master’s Programme of ICT and Learning (MIL), where students study in groups within a networked learning structure. The paper reflect...... on the challenges for students as both independent and interconnected learners.......This paper focuses on how learner engagement can be facilitated through use of social media and communication technologies. The discussions are based on the Danish Master’s Programme of ICT and Learning (MIL), where students study in groups within a networked learning structure. The paper reflects...

  5. Robustness and structure of complex networks

    Science.gov (United States)

    Shao, Shuai

    This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks

  6. Patient-Centered Network of Learning Health Systems: Developing a resource for clinical translational research.

    Science.gov (United States)

    Finney Rutten, L J; Alexander, A; Embi, P J; Flores, G; Friedman, C; Haller, I V; Haug, P; Jensen, D; Khosla, S; Runger, G; Shah, N D; Winden, T; Roger, V L

    2017-02-01

    The Learning Health System Network clinical data research network includes academic medical centers, health-care systems, public health departments, and health plans, and is designed to facilitate outcomes research, pragmatic trials, comparative effectiveness research, and evaluation of population health interventions. The Learning Health System Network is 1 of 13 clinical data research networks assembled to create, in partnership with 20 patient-powered research networks, a National Patient-Centered Clinical Research Network. Herein, we describe the Learning Health System Network as an emerging resource for translational research, providing details on the governance and organizational structure of the network, the key milestones of the current funding period, and challenges and opportunities for collaborative science leveraging the network.

  7. Collaborative Supervised Learning for Sensor Networks

    Science.gov (United States)

    Wagstaff, Kiri L.; Rebbapragada, Umaa; Lane, Terran

    2011-01-01

    Collaboration methods for distributed machine-learning algorithms involve the specification of communication protocols for the learners, which can query other learners and/or broadcast their findings preemptively. Each learner incorporates information from its neighbors into its own training set, and they are thereby able to bootstrap each other to higher performance. Each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. After being seeded with an initial labeled training set, each learner proceeds to learn in an iterative fashion. New data is collected and classified. The learner can then either broadcast its most confident classifications for use by other learners, or can query neighbors for their classifications of its least confident items. As such, collaborative learning combines elements of both passive (broadcast) and active (query) learning. It also uses ideas from ensemble learning to combine the multiple responses to a given query into a single useful label. This approach has been evaluated against current non-collaborative alternatives, including training a single classifier and deploying it at all nodes with no further learning possible, and permitting learners to learn from their own most confident judgments, absent interaction with their neighbors. On several data sets, it has been consistently found that active collaboration is the best strategy for a distributed learner network. The main advantages include the ability for learning to take place autonomously by collaboration rather than by requiring intervention from an oracle (usually human), and also the ability to learn in a distributed environment, permitting decisions to be made in situ and to yield faster response time.

  8. Immunization of networks with community structure

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Naoki [Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)], E-mail: masuda@mist.i.u-tokyo.ac.jp

    2009-12-15

    In this study, an efficient method to immunize modular networks (i.e. networks with community structure) is proposed. The immunization of networks aims at fragmenting networks into small parts with a small number of removed nodes. Its applications include prevention of epidemic spreading, protection against intentional attacks on networks, and conservation of ecosystems. Although preferential immunization of hubs is efficient, good immunization strategies for modular networks have not been established. On the basis of an immunization strategy based on eigenvector centrality, we develop an analytical framework for immunizing modular networks. To this end, we quantify the contribution of each node to the connectivity in a coarse-grained network among modules. We verify the effectiveness of the proposed method by applying it to model and real networks with modular structure.

  9. Geometric and Network Model for Knowledge Structure and Mindspace

    OpenAIRE

    Chris Arney

    2012-01-01

    This paper describes an adaptive, complex network architecture for knowledge representation in virtual mindspace. Structures and processes for knowing, remembering, thinking, learning, deciding, and communicating describe a virtual geometric space (mathematical model) of a notional mind. This mindspace model can be visualized as a workspace and this paper provides a glimpse of a virtual model of the mind.

  10. Geometric and Network Model for Knowledge Structure and Mindspace

    Directory of Open Access Journals (Sweden)

    Chris Arney

    2012-02-01

    Full Text Available This paper describes an adaptive, complex network architecture for knowledge representation in virtual mindspace. Structures and processes for knowing, remembering, thinking, learning, deciding, and communicating describe a virtual geometric space (mathematical model of a notional mind. This mindspace model can be visualized as a workspace and this paper provides a glimpse of a virtual model of the mind.

  11. Airline network structure in competitive market

    Directory of Open Access Journals (Sweden)

    Babić Danica D.

    2014-01-01

    Full Text Available Airline's network is the key element of its business strategy and selected network structure will not have influence only on the airline's costs but could gain some advantage in revenues, too. Network designing implies that an airline has to make decisions about markets that it will serve and how to serve those markets. Network choice raises the following questions for an airline: a what markets to serve, b how to serve selected markets, c what level of service to offer, d what are the benefits/cost of the that decisions and e what is the influence of the competition. We analyzed the existing airline business models and corresponding network structure. The paper highlights the relationship between the network structures and the airline business strategies. Using a simple model we examine the relationship between the network structure and service quality in deregulated market.

  12. Network Structure, Collaborative Context, and Individual Creativity

    DEFF Research Database (Denmark)

    Stea, Diego; Soda, Giuseppe; Pedersen, Torben

    2016-01-01

    outcomes often assumes that different network structures embody specific individual behaviors. This paper challenges the widespread assumption that dense, heavily bonded network structures imply a collaborative attitude on the part of network actors. We propose that collaboration can also be contextual......Network research has yet to determine whether bonding ties or bridging ties are more beneficial for individual creativity, but the debate has mostly overlooked the organizational context in which such ties are formed. In particular, the causal chain connecting network structures and individual...... and exogenous to a network’s structural characteristics, such that it moderates the effects of both dense and brokered networks on individual creativity. Specifically, we argue that knowledge acquisition and, in turn, individual creativity are more likely when an individual’s network position has a good fit...

  13. Learning in a Network: A "Third Way" between School Learning and Workplace Learning?

    Science.gov (United States)

    Bottrup, Pernille

    2005-01-01

    Purpose--The aim of this article is to examine network-based learning and discuss how participation in network can enhance organisational learning. Design/methodology/approach--In recent years, companies have increased their collaboration with other organisations, suppliers, customers, etc., in order to meet challenges from a globalised market.…

  14. Networks and Inter-Organizational Learning: A Critical Review.

    Science.gov (United States)

    Beeby, Mick; Booth, Charles

    2000-01-01

    Reviews literature on knowledge management and organizational learning; highlights the significance of networks, alliances, and interorganizational relationships. Refines a model of organizational learning to account for different levels: individual, interdepartmental, team, organizational, and interorganizational learning. (Contains 62…

  15. Influence of Learning Styles on Social Structures in Online Learning Environments

    Science.gov (United States)

    Cela, Karina; Sicilia, Miguel-Ángel; Sánchez-Alonso, Salvador

    2016-01-01

    In e-learning settings, the interactions of students with one another, with the course content and with the instructors generate a considerable amount of information that may be useful for understanding how people learn online. The objective of the present research was to use social network analysis to explore the social structure of an e-learning…

  16. Sensitive Dependence of Optimal Network Dynamics on Network Structure

    Directory of Open Access Journals (Sweden)

    Takashi Nishikawa

    2017-11-01

    Full Text Available The relation between network structure and dynamics is determinant for the behavior of complex systems in numerous domains. An important long-standing problem concerns the properties of the networks that optimize the dynamics with respect to a given performance measure. Here, we show that such optimization can lead to sensitive dependence of the dynamics on the structure of the network. Specifically, using diffusively coupled systems as examples, we demonstrate that the stability of a dynamical state can exhibit sensitivity to unweighted structural perturbations (i.e., link removals and node additions for undirected optimal networks and to weighted perturbations (i.e., small changes in link weights for directed optimal networks. As mechanisms underlying this sensitivity, we identify discontinuous transitions occurring in the complement of undirected optimal networks and the prevalence of eigenvector degeneracy in directed optimal networks. These findings establish a unified characterization of networks optimized for dynamical stability, which we illustrate using Turing instability in activator-inhibitor systems, synchronization in power-grid networks, network diffusion, and several other network processes. Our results suggest that the network structure of a complex system operating near an optimum can potentially be fine-tuned for a significantly enhanced stability compared to what one might expect from simple extrapolation. On the other hand, they also suggest constraints on how close to the optimum the system can be in practice. Finally, the results have potential implications for biophysical networks, which have evolved under the competing pressures of optimizing fitness while remaining robust against perturbations.

  17. Communication on the structure of biological networks

    Indian Academy of Sciences (India)

    Among all biological networks studied here, the undirected structure of neuronal networks not only possesses the small-world property but the same is also expressed remarkably to a higher degree compared to any randomly generated network which possesses the same degree sequence. A relatively high percentage of ...

  18. Network quotients: structural skeletons of complex systems.

    Science.gov (United States)

    Xiao, Yanghua; MacArthur, Ben D; Wang, Hui; Xiong, Momiao; Wang, Wei

    2008-10-01

    A defining feature of many large empirical networks is their intrinsic complexity. However, many networks also contain a large degree of structural repetition. An immediate question then arises: can we characterize essential network complexity while excluding structural redundancy? In this article we utilize inherent network symmetry to collapse all redundant information from a network, resulting in a coarse graining which we show to carry the essential structural information of the "parent" network. In the context of algebraic combinatorics, this coarse-graining is known as the "quotient." We systematically explore the theoretical properties of network quotients and summarize key statistics of a variety of "real-world" quotients with respect to those of their parent networks. In particular, we find that quotients can be substantially smaller than their parent networks yet typically preserve various key functional properties such as complexity (heterogeneity and hub vertices) and communication (diameter and mean geodesic distance), suggesting that quotients constitute the essential structural skeletons of their parent networks. We summarize with a discussion of potential uses of quotients in analysis of biological regulatory networks and ways in which using quotients can reduce the computational complexity of network algorithms.

  19. Idea Management: Perspectives from Leadership, Learning, and Network Theory

    OpenAIRE

    Deichmann, Dirk

    2012-01-01

    textabstractIn this dissertation, we focus on how leadership styles, individual learning behaviors, and social network structures drive or inhibit organizational members to repeatedly generate and develop innovative ideas. Taking the idea management programs of three multinational companies as the research setting, we investigate, in four empirical papers using different sources and methods, how innovative behavior can be supported, influenced, or changed. Within this context, we concentrate ...

  20. Structure of triadic relations in multiplex networks

    Science.gov (United States)

    Cozzo, Emanuele; Kivelä, Mikko; De Domenico, Manlio; Solé-Ribalta, Albert; Arenas, Alex; Gómez, Sergio; Porter, Mason A.; Moreno, Yamir

    2015-07-01

    Recent advances in the study of networked systems have highlighted that our interconnected world is composed of networks that are coupled to each other through different ‘layers’ that each represent one of many possible subsystems or types of interactions. Nevertheless, it is traditional to aggregate multilayer networks into a single weighted network in order to take advantage of existing tools. This is admittedly convenient, but it is also extremely problematic, as important information can be lost as a result. It is therefore important to develop multilayer generalizations of network concepts. In this paper, we analyze triadic relations and generalize the idea of transitivity to multiplex networks. By focusing on triadic relations, which yield the simplest type of transitivity, we generalize the concept and computation of clustering coefficients to multiplex networks. We show how the layered structure of such networks introduces a new degree of freedom that has a fundamental effect on transitivity. We compute multiplex clustering coefficients for several real multiplex networks and illustrate why one must take great care when generalizing standard network concepts to multiplex networks. We also derive analytical expressions for our clustering coefficients for ensemble averages of networks in a family of random multiplex networks. Our analysis illustrates that social networks have a strong tendency to promote redundancy by closing triads at every layer and that they thereby have a different type of multiplex transitivity from transportation networks, which do not exhibit such a tendency. These insights are invisible if one only studies aggregated networks.

  1. PARTNERS IN LEARNING NETWORK FOR UKRAINIAN TEACHERS

    Directory of Open Access Journals (Sweden)

    K. Sereda

    2011-05-01

    Full Text Available The network «Partners in Learning Network» is presented in the article – the Ukrainian segment of global educational community. PILN is created with support of the Microsoft company for teachers who use information communication technology in their professional work. The PILN's purpose and value for Ukrainian teachers, for their professional dialogue and collaboration are described in the article. Functions of PILN's communities for teacher’s cooperation, the joint decision of questions and an exchange of ideas and of technique, teaching tools for increase of level of ICT introduction in educational process are described.

  2. Learning Bayesian networks from big meteorological spatial datasets. An alternative to complex network analysis

    Science.gov (United States)

    Gutiérrez, Jose Manuel; San Martín, Daniel; Herrera, Sixto; Santiago Cofiño, Antonio

    2016-04-01

    The growing availability of spatial datasets (observations, reanalysis, and regional and global climate models) demands efficient multivariate spatial modeling techniques for many problems of interest (e.g. teleconnection analysis, multi-site downscaling, etc.). Complex networks have been recently applied in this context using graphs built from pairwise correlations between the different stations (or grid boxes) forming the dataset. However, this analysis does not take into account the full dependence structure underlying the data, gien by all possible marginal and conditional dependencies among the stations, and does not allow a probabilistic analysis of the dataset. In this talk we introduce Bayesian networks as an alternative multivariate analysis and modeling data-driven technique which allows building a joint probability distribution of the stations including all relevant dependencies in the dataset. Bayesian networks is a sound machine learning technique using a graph to 1) encode the main dependencies among the variables and 2) to obtain a factorization of the joint probability distribution of the stations given by a reduced number of parameters. For a particular problem, the resulting graph provides a qualitative analysis of the spatial relationships in the dataset (alternative to complex network analysis), and the resulting model allows for a probabilistic analysis of the dataset. Bayesian networks have been widely applied in many fields, but their use in climate problems is hampered by the large number of variables (stations) involved in this field, since the complexity of the existing algorithms to learn from data the graphical structure grows nonlinearly with the number of variables. In this contribution we present a modified local learning algorithm for Bayesian networks adapted to this problem, which allows inferring the graphical structure for thousands of stations (from observations) and/or gridboxes (from model simulations) thus providing new

  3. Network repair based on community structure

    Science.gov (United States)

    Wang, Tianyu; Zhang, Jun; Sun, Xiaoqian; Wandelt, Sebastian

    2017-06-01

    Real-world complex systems are often fragile under disruptions. Accordingly, research on network repair has been studied intensively. Recently proposed efficient strategies for network disruption, based on collective influence, call for more research on efficient network repair strategies. Existing strategies are often designed to repair networks with local information only. However, the absence of global information impedes the creation of efficient repairs. Motivated by this limitation, we propose a concept of community-level repair, which leverages the community structure of the network during the repair process. Moreover, we devise a general framework of network repair, with in total six instances. Evaluations on real-world and random networks show the effectiveness and efficiency of the community-level repair approaches, compared to local and random repairs. Our study contributes to a better understanding of repair processes, and reveals that exploitation of the community structure improves the repair process on a disrupted network significantly.

  4. Maximum Entropy Learning with Deep Belief Networks

    Directory of Open Access Journals (Sweden)

    Payton Lin

    2016-07-01

    Full Text Available Conventionally, the maximum likelihood (ML criterion is applied to train a deep belief network (DBN. We present a maximum entropy (ME learning algorithm for DBNs, designed specifically to handle limited training data. Maximizing only the entropy of parameters in the DBN allows more effective generalization capability, less bias towards data distributions, and robustness to over-fitting compared to ML learning. Results of text classification and object recognition tasks demonstrate ME-trained DBN outperforms ML-trained DBN when training data is limited.

  5. Active Learning for Node Classification in Assortative and Disassortative Networks

    CERN Document Server

    Moore, Cristopher; Zhu, Yaojia; Rouquier, Jean-Baptiste; Lane, Terran

    2011-01-01

    In many real-world networks, nodes have class labels, attributes, or variables that affect the network's topology. If the topology of the network is known but the labels of the nodes are hidden, we would like to select a small subset of nodes such that, if we knew their labels, we could accurately predict the labels of all the other nodes. We develop an active learning algorithm for this problem which uses information-theoretic techniques to choose which nodes to explore. We test our algorithm on networks from three different domains: a social network, a network of English words that appear adjacently in a novel, and a marine food web. Our algorithm makes no initial assumptions about how the groups connect, and performs well even when faced with quite general types of network structure. In particular, we do not assume that nodes of the same class are more likely to be connected to each other---only that they connect to the rest of the network in similar ways.

  6. Exploring biological network structure with clustered random networks

    Directory of Open Access Journals (Sweden)

    Bansal Shweta

    2009-12-01

    Full Text Available Abstract Background Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions and the extent of clustering (the tendency for a set of three nodes to be interconnected are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Results Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics. Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. Conclusion ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in

  7. Exploring biological network structure with clustered random networks.

    Science.gov (United States)

    Bansal, Shweta; Khandelwal, Shashank; Meyers, Lauren Ancel

    2009-12-09

    Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions) and the extent of clustering (the tendency for a set of three nodes to be interconnected) are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks) provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics.Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in unraveling the functional consequences of the structural

  8. Dictionary Networking in an LSP Learning Context

    DEFF Research Database (Denmark)

    Nielsen, Sandro

    2007-01-01

    and usage of a subject-field, particularly when they have to read, write or translate domain-specific texts. The modern theory of dictionary functions presented in Bergenholtz and Tarp (2002) opens up exciting new possibilities for theoretical and practical lexicography and encourages lexicographers...... text production, but discusses an individual dictionary for a particular function. It is shown that in a general context of learning accounting and its relevant LSP with a view to writing or translating financial reporting texts, the modern theory of dictionary functions provides a good theoretical...... and practical basis. This paper describes how the study of communication-oriented and cognitive-oriented functions may lead to the creation of a network of four on-line accounting dictionaries for learning accounting and its LSP. The dictionary network described consists of two monolingual and two bilingual...

  9. Learning and coordinating in a multilayer network

    CERN Document Server

    Lugo, Haydee

    2014-01-01

    We introduce a two layer network model for social coordination incorporating two relevant ingredients: a) different networks of interaction to learn and to obtain a payoff , and b) decision making processes based both on social and strategic motivations. Two populations of agents are distributed in two layers with intralayer learning processes and playing interlayer a coordination game. We find that the skepticism about the wisdom of crowd and the local connectivity are the driving forces to accomplish full coordination of the two populations, while polarized coordinated layers are only possible for all-to-all interactions. Local interactions also allow for full coordination in the socially efficient Pareto-dominant strategy in spite of being the riskier one.

  10. Learning and coordinating in a multilayer network

    Science.gov (United States)

    Lugo, Haydée; Miguel, Maxi San

    2015-01-01

    We introduce a two layer network model for social coordination incorporating two relevant ingredients: a) different networks of interaction to learn and to obtain a pay-off, and b) decision making processes based both on social and strategic motivations. Two populations of agents are distributed in two layers with intralayer learning processes and playing interlayer a coordination game. We find that the skepticism about the wisdom of crowd and the local connectivity are the driving forces to accomplish full coordination of the two populations, while polarized coordinated layers are only possible for all-to-all interactions. Local interactions also allow for full coordination in the socially efficient Pareto-dominant strategy in spite of being the riskier one.

  11. Machine Learning for ATLAS DDM Network Metrics

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Vamosi, Ralf

    2016-01-01

    The increasing volume of physics data is posing a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from our ongoing automation efforts. First, we describe our framework for distributed data management and network metrics, automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  12. STRUCTURE AND COOPTATION IN ORGANIZATION NETWORK

    Directory of Open Access Journals (Sweden)

    Valéria Riscarolli

    2007-10-01

    Full Text Available Business executive are rethinking business concept, based on horizontalization principles. As so, most organizational functions are outsourced, leading the enterprise to build business through a network of organizations. Here we study the case of Cia Hering’s network of organizations, a leader in knit apparel segment in Latin America (IEMI, 2004, looking at the network’s structure and levels of cooptation. A theoretical model was used using Quinn et al. (2001 “sun ray” network structure as basis to analyze the case study. Main results indicate higher degree of structural conformity, but incipient degree of coopetation in the network.

  13. Learning of N-layers neural network

    Directory of Open Access Journals (Sweden)

    Vladimír Konečný

    2005-01-01

    Full Text Available In the last decade we can observe increasing number of applications based on the Artificial Intelligence that are designed to solve problems from different areas of human activity. The reason why there is so much interest in these technologies is that the classical way of solutions does not exist or these technologies are not suitable because of their robustness. They are often used in applications like Business Intelligence that enable to obtain useful information for high-quality decision-making and to increase competitive advantage.One of the most widespread tools for the Artificial Intelligence are the artificial neural networks. Their high advantage is relative simplicity and the possibility of self-learning based on set of pattern situations.For the learning phase is the most commonly used algorithm back-propagation error (BPE. The base of BPE is the method minima of error function representing the sum of squared errors on outputs of neural net, for all patterns of the learning set. However, while performing BPE and in the first usage, we can find out that it is necessary to complete the handling of the learning factor by suitable method. The stability of the learning process and the rate of convergence depend on the selected method. In the article there are derived two functions: one function for the learning process management by the relative great error function value and the second function when the value of error function approximates to global minimum.The aim of the article is to introduce the BPE algorithm in compact matrix form for multilayer neural networks, the derivation of the learning factor handling method and the presentation of the results.

  14. Network structure of inter-industry flows

    Science.gov (United States)

    McNerney, James; Fath, Brian D.; Silverberg, Gerald

    2013-12-01

    We study the structure of inter-industry relationships using networks of money flows between industries in 45 national economies. We find these networks vary around a typical structure characterized by a Weibull link weight distribution, exponential industry size distribution, and a common community structure. The community structure is hierarchical, with the top level of the hierarchy comprising five industry communities: food industries, chemical industries, manufacturing industries, service industries, and extraction industries.

  15. Network structure of inter-industry flows

    CERN Document Server

    McNerney, James; Silverberg, Gerald

    2012-01-01

    We study the structure of inter-industry relationships using networks of money flows between industries in 20 national economies. We find these networks vary around a typical structure characterized by a Weibull link weight distribution, exponential industry size distribution, and a common community structure. The community structure is hierarchical, with the top level of the hierarchy comprising five industry communities: food industries, chemical industries, manufacturing industries, service industries, and extraction industries.

  16. Network structure of inter-industry flows

    OpenAIRE

    McNerney, J.; Fath, B.D.; G. Silverberg

    2012-01-01

    We study the structure of inter-industry relationships using networks of money flows between industries in 20 national economies. We find these networks vary around a typical structure characterized by a Weibull link weight distribution, exponential industry size distribution, and a common community structure. The community structure is hierarchical, with the top level of the hierarchy comprising five industry communities: food industries, chemical industries, manufacturing industries, servic...

  17. Learning in Neural Networks: VLSI Implementation Strategies

    Science.gov (United States)

    Duong, Tuan Anh

    1995-01-01

    Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.

  18. Learning Affinity via Spatial Propagation Networks

    OpenAIRE

    Liu, Sifei; De Mello, Shalini; Gu, Jinwei; Zhong, Guangyu; Yang, Ming-Hsuan; Kautz, Jan

    2017-01-01

    In this paper, we propose spatial propagation networks for learning the affinity matrix for vision tasks. We show that by constructing a row/column linear propagation model, the spatially varying transformation matrix exactly constitutes an affinity matrix that models dense, global pairwise relationships of an image. Specifically, we develop a three-way connection for the linear propagation model, which (a) formulates a sparse transformation matrix, where all elements can be the output from a...

  19. Network Structure of Inter-Industry Flows

    NARCIS (Netherlands)

    McNerney, J.; Fath, B.D.; Silverberg, G.P.

    2015-01-01

    We study the structure of inter-industry relationships using networks of money flows between industries in 45 national economies. We find these networks vary around a typical structure characterized by a Weibull link weight distribution, exponential industry size distribution, and a common community

  20. A Co-Citation Network of Young Children's Learning with Technology

    National Research Council Canada - National Science Library

    Kai-Yu Tang; Ming-Chaun Li; Ching-Ting Hsin; Chin-Chung Tsai

    2016-01-01

      This paper used a novel literature review approach--co-citation network analysis--to illuminate the latent structure of 87 empirical papers in the field of young children's learning with technology (YCLT...

  1. THE IMPACTS OF SOCIAL NETWORKING SITES IN HIGHER LEARNING

    OpenAIRE

    Mohd Ishak Bin Ismail; Ruzaini Bin Abdullah Arshah

    2016-01-01

    Social networking sites, a web-based application have permeated the boundary between personal lives and student lives. Nowadays, students in higher learning used social networking site such as Facebook to facilitate their learning through the academic collaboration which it further enhances students’ social capital. Social networking site has many advantages to improve students’ learning. To date, Facebook is the leading social networking sites at this time which it being widely used by stude...

  2. Optimized null model for protein structure networks.

    Science.gov (United States)

    Milenković, Tijana; Filippis, Ioannis; Lappe, Michael; Przulj, Natasa

    2009-06-26

    Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs) as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model for RIGs, by

  3. Optimized null model for protein structure networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model

  4. The Design, Experience and Practice of Networked Learning

    DEFF Research Database (Denmark)

    Gleerup, Janne; Heilesen, Simon; Helms, Niels Henrik

    2014-01-01

    . The Design, Experience and Practice of Networked Learning will prove indispensable reading for researchers, teachers, consultants, and instructional designers in higher and continuing education; for those involved in staff and educational development, and for those studying post graduate qualifications...... in learning and teaching. This, the second volume in the Springer Book Series on Researching Networked Learning, is based on a selection of papers presented at the 2012 Networked Learning Conference held in Maastricht, The Netherlands....

  5. Machine learning for identifying botnet network traffic

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2013-01-01

    . Due to promise of non-invasive and resilient detection, botnet detection based on network traffic analysis has drawn a special attention of the research community. Furthermore, many authors have turned their attention to the use of machine learning algorithms as the mean of inferring botnet......-related knowledge from the monitored traffic. This paper presents a review of contemporary botnet detection methods that use machine learning as a tool of identifying botnet-related traffic. The main goal of the paper is to provide a comprehensive overview on the field by summarizing current scientific efforts....... The contribution of the paper is three-fold. First, the paper provides a detailed insight on the existing detection methods by investigating which bot-related heuristic were assumed by the detection systems and how different machine learning techniques were adapted in order to capture botnet-related knowledge...

  6. Network structure and travel time perception.

    Science.gov (United States)

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time.

  7. Neural Networks for protein Structure Prediction

    DEFF Research Database (Denmark)

    Bohr, Henrik

    1998-01-01

    This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...

  8. The Relationships Between Policy, Boundaries and Research in Networked Learning

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Sinclair, Christine

    2016-01-01

    The biennial Networked Learning Conference is an established locus for work on practice, research and epistemology in the field of networked learning. That work continues between the conferences through the researchers’ own networks, ‘hot seat’ debates, and through publications, especially...... conferences, such as the inclusion of sociomaterial perspectives and recognition of informal networked learning. The chapters here each bring a particular perspective to the themes of Policy, Boundaries and Research in Networked Learning which we have chosen as the focus of the book. The selection...

  9. Network Structure, Collaborative Context, and Individual Creativity

    DEFF Research Database (Denmark)

    Stea, Diego; Soda, Giuseppe; Pedersen, Torben

    2016-01-01

    and exogenous to a network’s structural characteristics, such that it moderates the effects of both dense and brokered networks on individual creativity. Specifically, we argue that knowledge acquisition and, in turn, individual creativity are more likely when an individual’s network position has a good fit...... with the network’s organizational context. Thus, actors in dense network structures acquire more knowledge and eventually become more creative in organizational contexts where collaboration is high. Conversely, brokers who arbitrage information across disconnected network contacts acquire more valuable knowledge...

  10. How and What Do Academics Learn through Their Personal Networks

    Science.gov (United States)

    Pataraia, Nino; Margaryan, Anoush; Falconer, Isobel; Littlejohn, Allison

    2015-01-01

    This paper investigates the role of personal networks in academics' learning in relation to teaching. Drawing on in-depth interviews with 11 academics, this study examines, first, how and what academics learn through their personal networks; second, the perceived value of networks in relation to academics' professional development; and, third,…

  11. Learning as Issue Framing in Agricultural Innovation Networks

    Science.gov (United States)

    Tisenkopfs, Talis; Kunda, Ilona; Šumane, Sandra

    2014-01-01

    Purpose: Networks are increasingly viewed as entities of learning and innovation in agriculture. In this article we explore learning as issue framing in two agricultural innovation networks. Design/methodology/approach: We combine frame analysis and social learning theories to analyse the processes and factors contributing to frame convergence and…

  12. Leading to learn in networks of practice: Two leadership strategies

    NARCIS (Netherlands)

    Soekijad, M.; van den Hooff, B.J.; Agterberg, L.C.M.; Huysman, M.H.

    2011-01-01

    This paper outlines two leadership strategies to support organizational learning through networks of practice (NOPs). An in-depth case study in a development organization reveals that network leaders cope with a learning tension between management involvement and emergent learning processes by

  13. Deep learning and the electronic structure problem

    Science.gov (United States)

    Mills, Kyle; Spanner, Michael; Tamblyn, Isaac

    In the past decade, the fields of artificial intelligence and computer vision have progressed remarkably. Supported by the enthusiasm of large tech companies, as well as significant hardware advances and the utilization of graphical processing units to accelerate computations, deep neural networks (DNN) are gaining momentum as a robust choice for many diverse machine learning applications. We have demonstrated the ability of a DNN to solve a quantum mechanical eigenvalue equation directly, without the need to compute a wavefunction, and without knowledge of the underlying physics. We have trained a convolutional neural network to predict the total energy of an electron in a confining, 2-dimensional electrostatic potential. We numerically solved the one-electron Schrödinger equation for millions of electrostatic potentials, and used this as training data for our neural network. Four classes of potentials were assessed: the canonical cases of the harmonic oscillator and infinite well, and two types of randomly generated potentials for which no analytic solution is known. We compare the performance of the neural network and consider how these results could lead to future advances in electronic structure theory.

  14. Information transfer in community structured multiplex networks

    Science.gov (United States)

    Solé Ribalta, Albert; Granell, Clara; Gómez, Sergio; Arenas, Alex

    2015-08-01

    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  15. Information transfer in community structured multiplex networks

    Directory of Open Access Journals (Sweden)

    Albert eSolé Ribalta

    2015-08-01

    Full Text Available The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.. The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  16. Is Artificial Neural Network Suitable for Damage Level Determination of Rc- Structures?

    OpenAIRE

    Baltacıoğlu, A. K.; Öztürk, B.; Civalek, Ö.; Akgöz, B.

    2010-01-01

    In the present study, an artificial neural network (ANN) application is introduced for estimation of damage level of reinforced concrete structures. Back-propagation learning algorithm is adopted. A typical neural network architecture is proposed and some conclusions are presented. Applicability of artificial neural network (ANN) for the assessment of earthquake related damage is investigated

  17. Information transfer in community structured multiplex networks

    CERN Document Server

    Solé-Ribalta, Albert; Gómez, Sergio; Arenas, Alex

    2015-01-01

    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer ...

  18. Learning network theory : its contribution to our understanding of work-based learning projects and learning climate

    OpenAIRE

    Poell, R.F.; Moorsel, M.A.A.H. van

    1996-01-01

    This paper discusses the relevance of Van der Krogt's learning network theory (1995) for our understanding of the concepts of work-related learning projects and learning climate in organisations. The main assumptions of the learning network theory are presented and transferred to the level of learning groups in organisations. Four theoretical types of learning projects are distinguished. Four different approaches to the learning climate of work groups are compared to the approach offered by t...

  19. A Team Formation and Project-based Learning Support Service for Social Learning Networks

    NARCIS (Netherlands)

    Spoelstra, Howard; Van Rosmalen, Peter; Van de Vrie, Evert; Obreza, Matija; Sloep, Peter

    2014-01-01

    The Internet affords new approaches to learning. Geographically dispersed self-directed learners can learn in computer-supported communities, forming social learning networks. However, self-directed learners can suffer from a lack of continuous motivation. And surprisingly, social learning networks

  20. ERT Conditions for Productive Learning in Networked Learning Environments: Leadership Report

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Lone

    This report provides a concluding account of the activities within the European Research Team: Conditions for Productive Learning in Networked Learning Environmentments......This report provides a concluding account of the activities within the European Research Team: Conditions for Productive Learning in Networked Learning Environmentments...

  1. Industrial entrepreneurial network: Structural and functional analysis

    Science.gov (United States)

    Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.

    2016-12-01

    Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.

  2. THE COMMERCIAL BANK AS NETWORK STRUCTURE

    Directory of Open Access Journals (Sweden)

    D. O. Dyl

    2010-05-01

    Full Text Available The article examines the problems of the modern enterprise as a network structure that meets the increasing processes of globalization and the rise of postmodern trends. The definition of the term «a network of commercial bank» and the main characteristics of such a definition are given.

  3. WEB BASED LEARNING OF COMPUTER NETWORK COURSE

    Directory of Open Access Journals (Sweden)

    Hakan KAPTAN

    2004-04-01

    Full Text Available As a result of developing on Internet and computer fields, web based education becomes one of the area that many improving and research studies are done. In this study, web based education materials have been explained for multimedia animation and simulation aided Computer Networks course in Technical Education Faculties. Course content is formed by use of university course books, web based education materials and technology web pages of companies. Course content is formed by texts, pictures and figures to increase motivation of students and facilities of learning some topics are supported by animations. Furthermore to help working principles of routing algorithms and congestion control algorithms simulators are constructed in order to interactive learning

  4. On local optima in learning bayesian networks

    DEFF Research Database (Denmark)

    Dalgaard, Jens; Kocka, Tomas; Pena, Jose

    2003-01-01

    This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness...... is set at maximum, KES corresponds to the greedy equivalence search algorithm (GES). When greediness is kept at minimum, we prove that under mild assumptions KES asymptotically returns any inclusion optimal BN with nonzero probability. Experimental results for both synthetic and real data are reported...

  5. Learning Reproducibility with a Yearly Networking Contest

    KAUST Repository

    Canini, Marco

    2017-08-10

    Better reproducibility of networking research results is currently a major goal that the academic community is striving towards. This position paper makes the case that improving the extent and pervasiveness of reproducible research can be greatly fostered by organizing a yearly international contest. We argue that holding a contest undertaken by a plurality of students will have benefits that are two-fold. First, it will promote hands-on learning of skills that are helpful in producing artifacts at the replicable-research level. Second, it will advance the best practices regarding environments, testbeds, and tools that will aid the tasks of reproducibility evaluation committees by and large.

  6. Stochastic Online Learning in Dynamic Networks under Unknown Models

    Science.gov (United States)

    2016-08-02

    Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for...12211 Research Triangle Park, NC 27709-2211 Online learning , multi-armed bandit, dynamic networks REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S... Online Learning in Dynamic Networks under Unknown Models Report Title This research aims to develop fundamental theories and practical algorithms for

  7. Graduate Employability: The Perspective of Social Network Learning

    Science.gov (United States)

    Chen, Yong

    2017-01-01

    This study provides a conceptual framework for understanding how the graduate acquire employability through the social network in the Chinese context, using insights from the social network theory. This paper builds a conceptual model of the relationship among social network, social network learning and the graduate employability, and uses…

  8. Nonparametric inference of network structure and dynamics

    Science.gov (United States)

    Peixoto, Tiago P.

    The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among

  9. Moral learning in an integrated social and healthcare service network.

    Science.gov (United States)

    Visse, Merel; Widdershoven, Guy A M; Abma, Tineke A

    2012-09-01

    The traditional organizational boundaries between healthcare, social work, police and other non-profit organizations are fading and being replaced by new relational patterns among a variety of disciplines. Professionals work from their own history, role, values and relationships. It is often unclear who is responsible for what because this new network structure requires rules and procedures to be re-interpreted and re-negotiated. A new moral climate needs to be developed, particularly in the early stages of integrated services. Who should do what, with whom and why? Departing from a relational and hermeneutic perspective, this article shows that professionals in integrated service networks embark upon a moral learning process when starting to work together for the client's benefit. In this context, instrumental ways of thinking about responsibilities are actually counterproductive. Instead, professionals need to find out who they are in relation to other professionals, what core values they share and what responsibilities derive from these aspects. This article demonstrates moral learning by examining the case of an integrated social service network. The network's development and implementation were supported by responsive evaluation, enriched by insights of care ethics and hermeneutic ethics.

  10. Empirical Models of Social Learning in a Large, Evolving Network.

    Directory of Open Access Journals (Sweden)

    Ayşe Başar Bener

    Full Text Available This paper advances theories of social learning through an empirical examination of how social networks change over time. Social networks are important for learning because they constrain individuals' access to information about the behaviors and cognitions of other people. Using data on a large social network of mobile device users over a one-month time period, we test three hypotheses: 1 attraction homophily causes individuals to form ties on the basis of attribute similarity, 2 aversion homophily causes individuals to delete existing ties on the basis of attribute dissimilarity, and 3 social influence causes individuals to adopt the attributes of others they share direct ties with. Statistical models offer varied degrees of support for all three hypotheses and show that these mechanisms are more complex than assumed in prior work. Although homophily is normally thought of as a process of attraction, people also avoid relationships with others who are different. These mechanisms have distinct effects on network structure. While social influence does help explain behavior, people tend to follow global trends more than they follow their friends.

  11. Network Structure, Collaborative Context, and Individual Creativity

    DEFF Research Database (Denmark)

    Soda, Giuseppe; Stea, Diego; Pedersen, Torben

    2017-01-01

    attitude on the part of the embedded actors and propose that the level of collaboration in a network can be independent from that network’s structural characteristics, such that it moderates the effects of closed and brokering network positions on the acquisition of knowledge that supports creativity....... Individuals embedded in closed networks acquire more knowledge and become more creative when the level of collaboration in their network is high. Brokers who arbitrage information across disconnected contacts acquire more knowledge and become more creative when collaboration is low. An analysis of employee...

  12. Boltzmann learning of parameters in cellular neural networks

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    1992-01-01

    The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...... by unsupervised adaptation of an image segmentation cellular network. The learning rule is applied to adaptive segmentation of satellite imagery...

  13. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  14. GlobalMIT: learning globally optimal dynamic bayesian network with the mutual information test criterion.

    Science.gov (United States)

    Vinh, Nguyen Xuan; Chetty, Madhu; Coppel, Ross; Wangikar, Pramod P

    2011-10-01

    Dynamic Bayesian networks (DBN) are widely applied in modeling various biological networks including the gene regulatory network (GRN). Due to the NP-hard nature of learning static Bayesian network structure, most methods for learning DBN also employ either local search such as hill climbing, or a meta stochastic global optimization framework such as genetic algorithm or simulated annealing. This article presents GlobalMIT, a toolbox for learning the globally optimal DBN structure from gene expression data. We propose using a recently introduced information theoretic-based scoring metric named mutual information test (MIT). With MIT, the task of learning the globally optimal DBN is efficiently achieved in polynomial time. The toolbox, implemented in Matlab and C++, is available at http://code.google.com/p/globalmit. vinh.nguyen@monash.edu; madhu.chetty@monash.edu Supplementary data is available at Bioinformatics online.

  15. Verification of Three-Phase Dependency Analysis Bayesian Network Learning Method for Maize Carotenoid Gene Mining.

    Science.gov (United States)

    Liu, Jianxiao; Tian, Zonglin

    2017-01-01

    Mining the genes related to maize carotenoid components is important to improve the carotenoid content and the quality of maize. On the basis of using the entropy estimation method with Gaussian kernel probability density estimator, we use the three-phase dependency analysis (TPDA) Bayesian network structure learning method to construct the network of maize gene and carotenoid components traits. In the case of using two discretization methods and setting different discretization values, we compare the learning effect and efficiency of 10 kinds of Bayesian network structure learning methods. The method is verified and analyzed on the maize dataset of global germplasm collection with 527 elite inbred lines. The result confirmed the effectiveness of the TPDA method, which outperforms significantly another 9 kinds of Bayesian network learning methods. It is an efficient method of mining genes for maize carotenoid components traits. The parameters obtained by experiments will help carry out practical gene mining effectively in the future.

  16. The Deep Structure of Organizational Online Networking

    DEFF Research Database (Denmark)

    Trier, Matthias; Richter, Alexander

    2015-01-01

    While research on organizational online networking recently increased significantly, most studies adopt quantitative research designs with a focus on the consequences of social network configurations. Very limited attention is paid to comprehensive theoretical conceptions of the complex phenomenon...... of organizational online networking. We address this gap by adopting a theoretical framework of the deep structure of organizational online networking with a focus on their emerging meaning for the employees. We apply and assess the framework in a qualitative case study of a large-scale implementation...... of a corporate social network site (SNS) in a global organization. We reveal organizational online networking as a multi-dimensional phenomenon with multiplex relationships that are unbalanced, primarily consist of weak ties and are subject to temporal change. Further, we identify discourse drivers...

  17. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex......A complex network is a systems in which a discrete set of units interact in a quantifiable manner. Representing systems as complex networks have become increasingly popular in a variety of scientific fields including biology, social sciences and economics. Parallel to this development complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  18. Fundamental structures of dynamic social networks

    DEFF Research Database (Denmark)

    Sekara, Vedran; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann

    2016-01-01

    , and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals...... and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection...... a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework...

  19. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  20. Deep Convolutional Neural Networks: Structure, Feature Extraction and Training

    Directory of Open Access Journals (Sweden)

    Namatēvs Ivars

    2017-12-01

    Full Text Available Deep convolutional neural networks (CNNs are aimed at processing data that have a known network like topology. They are widely used to recognise objects in images and diagnose patterns in time series data as well as in sensor data classification. The aim of the paper is to present theoretical and practical aspects of deep CNNs in terms of convolution operation, typical layers and basic methods to be used for training and learning. Some practical applications are included for signal and image classification. Finally, the present paper describes the proposed block structure of CNN for classifying crucial features from 3D sensor data.

  1. Learning network theory : its contribution to our understanding of work-based learning projects and learning climate

    NARCIS (Netherlands)

    Poell, R.F.; Moorsel, M.A.A.H. van

    1996-01-01

    This paper discusses the relevance of Van der Krogt's learning network theory (1995) for our understanding of the concepts of work-related learning projects and learning climate in organisations. The main assumptions of the learning network theory are presented and transferred to the level of

  2. Structural measures for multiplex networks.

    Science.gov (United States)

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2014-03-01

    Many real-world complex systems consist of a set of elementary units connected by relationships of different kinds. All such systems are better described in terms of multiplex networks, where the links at each layer represent a different type of interaction between the same set of nodes rather than in terms of (single-layer) networks. In this paper we present a general framework to describe and study multiplex networks, whose links are either unweighted or weighted. In particular, we propose a series of measures to characterize the multiplexicity of the systems in terms of (i) basic node and link properties such as the node degree, and the edge overlap and reinforcement, (ii) local properties such as the clustering coefficient and the transitivity, and (iii) global properties related to the navigability of the multiplex across the different layers. The measures we introduce are validated on a genuinely multiplex data set of Indonesian terrorists, where information among 78 individuals are recorded with respect to mutual trust, common operations, exchanged communications, and business relationships.

  3. Structure-based control of complex networks with nonlinear dynamics

    CERN Document Server

    Zañudo, Jorge G T; Albert, Réka

    2016-01-01

    Given the network of interactions underlying a complex system, what can we learn about controlling such a system solely from its structure? Over a century of research in control theory has given us tools to answer this question, which were widely applied in science and engineering. Yet the current tools do not always consider the inherently nonlinear dynamics of real systems and the naturally occurring system states in their definition of "control", a term whose interpretation varies across disciplines. Here we use a new mathematical framework for structure-based control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors and which are guaranteed to be effective regardless of the dynamic details and parameters of the underlying system. We use this framework on several real networks, compar...

  4. Controlling congestion on complex networks: fairness, efficiency and network structure.

    Science.gov (United States)

    Buzna, Ľuboš; Carvalho, Rui

    2017-08-22

    We consider two elementary (max-flow and uniform-flow) and two realistic (max-min fairness and proportional fairness) congestion control schemes, and analyse how the algorithms and network structure affect throughput, the fairness of flow allocation, and the location of bottleneck edges. The more realistic proportional fairness and max-min fairness algorithms have similar throughput, but path flow allocations are more unequal in scale-free than in random regular networks. Scale-free networks have lower throughput than their random regular counterparts in the uniform-flow algorithm, which is favoured in the complex networks literature. We show, however, that this relation is reversed on all other congestion control algorithms for a region of the parameter space given by the degree exponent γ and average degree 〈k〉. Moreover, the uniform-flow algorithm severely underestimates the network throughput of congested networks, and a rich phenomenology of path flow allocations is only present in the more realistic α-fair family of algorithms. Finally, we show that the number of paths passing through an edge characterises the location of a wide range of bottleneck edges in these algorithms. Such identification of bottlenecks could provide a bridge between the two fields of complex networks and congestion control.

  5. Distance Learning Plan Development: Initiating Organizational Structures

    National Research Council Canada - National Science Library

    Poole, Clifton

    1998-01-01

    .... Army distance learning plan managers to examine the DLPs they were directing. The analysis showed that neither army nor civilian distance learning plan managers used formalized requirements for organizational structure development (OSD...

  6. Structure and function of complex brain networks

    Science.gov (United States)

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  7. How structure determines correlations in neuronal networks.

    Directory of Open Access Journals (Sweden)

    Volker Pernice

    2011-05-01

    Full Text Available Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for networks of neurons that use action potentials for communication. We study correlations in dynamic networks with arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the currently limited understanding of structure-dynamics relations in complex networks.

  8. Cooperative Learning for Distributed In-Network Traffic Classification

    Science.gov (United States)

    Joseph, S. B.; Loo, H. R.; Ismail, I.; Andromeda, T.; Marsono, M. N.

    2017-04-01

    Inspired by the concept of autonomic distributed/decentralized network management schemes, we consider the issue of information exchange among distributed network nodes to network performance and promote scalability for in-network monitoring. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among autonomic distributed network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of 89.21% (sharing data) and 88.37% (sharing clusters) compared to 88.06% for nodes without cooperative learning capability. The overall performance indicates that cooperative learning is promising for distributed in-network traffic classification.

  9. Structural Connectivity Networks of Transgender People

    NARCIS (Netherlands)

    Hahn, Andreas; Kranz, Georg S; Küblböck, Martin; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2015-01-01

    Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF)

  10. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    Science.gov (United States)

    Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr

    2017-10-01

    Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  11. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    Directory of Open Access Journals (Sweden)

    Chernoded Andrey

    2017-01-01

    Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  12. A Topological Perspective of Neural Network Structure

    Science.gov (United States)

    Sizemore, Ann; Giusti, Chad; Cieslak, Matthew; Grafton, Scott; Bassett, Danielle

    The wiring patterns of white matter tracts between brain regions inform functional capabilities of the neural network. Indeed, densely connected and cyclically arranged cognitive systems may communicate and thus perform distinctly. However, previously employed graph theoretical statistics are local in nature and thus insensitive to such global structure. Here we present an investigation of the structural neural network in eight healthy individuals using persistent homology. An extension of homology to weighted networks, persistent homology records both circuits and cliques (all-to-all connected subgraphs) through a repetitive thresholding process, thus perceiving structural motifs. We report structural features found across patients and discuss brain regions responsible for these patterns, finally considering the implications of such motifs in relation to cognitive function.

  13. Cooperation in networks where the learning environment differs from the interaction environment.

    Directory of Open Access Journals (Sweden)

    Jianlei Zhang

    Full Text Available We study the evolution of cooperation in a structured population, combining insights from evolutionary game theory and the study of interaction networks. In earlier studies it has been shown that cooperation is difficult to achieve in homogeneous networks, but that cooperation can get established relatively easily when individuals differ largely concerning the number of their interaction partners, such as in scale-free networks. Most of these studies do, however, assume that individuals change their behaviour in response to information they receive on the payoffs of their interaction partners. In real-world situations, subjects do not only learn from their interaction partners, but also from other individuals (e.g. teachers, parents, or friends. Here we investigate the implications of such incongruences between the 'interaction network' and the 'learning network' for the evolution of cooperation in two paradigm examples, the Prisoner's Dilemma game (PDG and the Snowdrift game (SDG. Individual-based simulations and an analysis based on pair approximation both reveal that cooperation will be severely inhibited if the learning network is very different from the interaction network. If the two networks overlap, however, cooperation can get established even in case of considerable incongruence between the networks. The simulations confirm that cooperation gets established much more easily if the interaction network is scale-free rather than random-regular. The structure of the learning network has a similar but much weaker effect. Overall we conclude that the distinction between interaction and learning networks deserves more attention since incongruences between these networks can strongly affect both the course and outcome of the evolution of cooperation.

  14. Structure formation in active networks

    CERN Document Server

    Köhler, Simone; Bausch, Andreas R

    2011-01-01

    Structure formation and constant reorganization of the actin cytoskeleton are key requirements for the function of living cells. Here we show that a minimal reconstituted system consisting of actin filaments, crosslinking molecules and molecular-motor filaments exhibits a generic mechanism of structure formation, characterized by a broad distribution of cluster sizes. We demonstrate that the growth of the structures depends on the intricate balance between crosslinker-induced stabilization and simultaneous destabilization by molecular motors, a mechanism analogous to nucleation and growth in passive systems. We also show that the intricate interplay between force generation, coarsening and connectivity is responsible for the highly dynamic process of structure formation in this heterogeneous active gel, and that these competing mechanisms result in anomalous transport, reminiscent of intracellular dynamics.

  15. Towards a Social Networks Model for Online Learning & Performance

    Science.gov (United States)

    Chung, Kon Shing Kenneth; Paredes, Walter Christian

    2015-01-01

    In this study, we develop a theoretical model to investigate the association between social network properties, "content richness" (CR) in academic learning discourse, and performance. CR is the extent to which one contributes content that is meaningful, insightful and constructive to aid learning and by social network properties we…

  16. The Fire Learning Network: A promising conservation strategy for forestry

    Science.gov (United States)

    Bruce E. Goldstein; William H. Butler; R. Bruce. Hull

    2010-01-01

    Conservation Learning Networks (CLN) are an emerging conservation strategy for addressing complex resource management challenges that face the forestry profession. The US Fire Learning Network (FLN) is a successful example of a CLN that operates on a national scale. Developed in 2001 as a partnership between The Nature Conservancy, the US Forest Service, and land-...

  17. Social networks as ICT collaborative and supportive learning media ...

    African Journals Online (AJOL)

    ... ICT collaborative and supportive learning media utilisation within the Nigerian educational system. The concept of ICT was concisely explained vis-à-vis the social network concept, theory and collaborative and supportive learning media utilisation. Different types of social network are highlighted among which Facebook, ...

  18. Problems in the Deployment of Learning Networks In Small Organizations

    NARCIS (Netherlands)

    Shankle, Dean E.; Shankle, Jeremy P.

    2006-01-01

    Please, cite this publication as: Shankle, D.E., & Shankle, J.P. (2006). Problems in the Deployment of Learning Networks In Small Organizations. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence Conference. March 30th-31st, Sofia, Bulgaria:

  19. The Practices of Student Network as Cooperative Learning in Ethiopia

    Science.gov (United States)

    Reda, Weldemariam Nigusse; Hagos, Girmay Tsegay

    2015-01-01

    Student network is a teaching strategy introduced as cooperative learning to all educational levels above the upper primary schools (grade 5 and above) in Ethiopia. The study was, therefore, aimed at investigating to what extent the student network in Ethiopia is actually practiced in line with the principles of cooperative learning. Consequently,…

  20. Learning Networks--Enabling Change through Community Action Research

    Science.gov (United States)

    Bleach, Josephine

    2016-01-01

    Learning networks are a critical element of ethos of the community action research approach taken by the Early Learning Initiative at the National College of Ireland, a community-based educational initiative in the Dublin Docklands. Key criteria for networking, whether at local, national or international level, are the individual's and…

  1. Didactic Networks: A Proposal for e-learning Content Generation

    Directory of Open Access Journals (Sweden)

    F. Javier Del Alamo

    2010-12-01

    Full Text Available The Didactic Networks proposed in this paper are based on previous publications in the field of the RSR (Rhetorical-Semantic Relations. The RSR is a set of primitive relations used for building a specific kind of semantic networks for artificial intelligence applications on the web: the RSN (Rhetorical-Semantic Networks. We bring into focus the RSR application in the field of elearning, by defining Didactic Networks as a new set of semantic patterns oriented to the development of elearning applications. The different lines we offer in our research fall mainly into three levels: (1 The most basic one is in the field of computational linguistics and related to Logical Operations on RSR (RSR Inverses and plurals, RSR combinations, etc, once they have been created. The application of Walter Bosma's results regarding rhetorical distance application and treatment as semantic weighted networks is one of the important issues here. (2 In parallel, we have been working on the creation of a knowledge representation and storage model and data architecture capable of supporting the definition of knowledge networks based on RSR. (3 The third strategic line is in the meso-level, the formulation of a molecular structure of knowledge based on the most frequently used patterns. The main contribution at this level is the set of Fundamental Cognitive Networks (FCN as an application of Novak's mental maps proposal. This paper is part of this third intermediate level, and the Fundamental Didactic Networks (FDN are the result of the application of rhetorical theory procedures to the instructional theory. We have formulated a general set of RSR capable of building discourse, making it possible to express any concept, procedure or principle in terms of knowledge nodes and RSRs. The Instructional knowledge can then be elaborated in the same way. This network structure expressing the instructional knowledge in terms of RSR makes the objective of developing web-learning

  2. Identifying community structure in complex networks

    Science.gov (United States)

    Shao, Chenxi; Duan, Yubing

    2015-07-01

    A wide variety of applications could be formulated to resolve the problem of finding all communities from a given network, ranging from social and biological network analysis to web mining and searching. In this study, we propose the concept of virtual attractive strength between each pair of node in networks, and then give the definition of community structure based on the proposed attractive strength. Furthermore, we present a community detection method by moving vertices to the clusters that produce the largest attractive strengths to them until the division of network reaches unchanged. Experimental results on synthetic and real networks indicate that the proposed approach has favorite effectiveness and fast convergence speed, which provides an efficient method for exploring and analyzing complex systems.

  3. EduCamp Colombia: Social Networked Learning for Teacher Training

    OpenAIRE

    Diego Ernesto Leal Fonseca

    2011-01-01

    This paper describes a learning experience called EduCamp, which was launched by the Ministry of Education of Colombia in 2007, based on emerging concepts such as e-Learning 2.0, connectivism, and personal learning environments. An EduCamp proposes an unstructured collective learning experience, which intends to make palpable the possibilities of social software tools in learning and interaction processes while demonstrating face-to-face organizational forms that reflect social networked lear...

  4. Active random noise control using adaptive learning rate neural networks with an immune feedback law

    Science.gov (United States)

    Sasaki, Minoru; Kuribayashi, Takumi; Ito, Satoshi

    2005-12-01

    In this paper an active random noise control using adaptive learning rate neural networks with an immune feedback law is presented. The adaptive learning rate strategy increases the learning rate by a small constant if the current partial derivative of the objective function with respect to the weight and the exponential average of the previous derivatives have the same sign, otherwise the learning rate is decreased by a proportion of its value. The use of an adaptive learning rate attempts to keep the learning step size as large as possible without leading to oscillation. In the proposed method, because of the immune feedback law change a learning rate of the neural networks individually and adaptively, it is expected that a cost function minimize rapidly and training time is decreased. Numerical simulations and experiments of active random noise control with the transfer function of the error path will be performed, to validate the convergence properties of the adaptive learning rate Neural Networks with the immune feedback law. Control results show that adaptive learning rate Neural Networks control structure can outperform linear controllers and conventional neural network controller for the active random noise control.

  5. Learning Networks for Lifelong Learning: An Exploratory Survey on Distance Learners’ preferences

    NARCIS (Netherlands)

    Berlanga, Adriana; Rusman, Ellen; Eshuis, Jannes; Hermans, Henry; Sloep, Peter

    2010-01-01

    Berlanga, A. J., Rusman, E., Eshuis, J., Hermans, H., & Sloep, P. B. (2010, 3 May). Learning Networks for Lifelong Learning: An Exploratory Survey on Distance Learners’ preferences. Presentation at the 7th International Conference on Networked Learning (NLC-2010), Aalborg, Denmark.

  6. Latent Semantic Analysis As a Tool for Learner Positioning in Learning Networks for Lifelong Learning

    Science.gov (United States)

    van Bruggen, Jan; Sloep, Peter; van Rosmalen, Peter; Brouns, Francis; Vogten, Hubert; Koper, Rob; Tattersall, Colin

    2004-01-01

    As we move towards distributed, self-organised learning networks for lifelong learning to which multiple providers contribute content, there is a need to develop new techniques to determine where learners can be positioned in these networks. Positioning requires us to map characteristics of the learner onto characteristics of learning materials…

  7. The neighborhood MCMC sampler for learning Bayesian networks

    Science.gov (United States)

    Alyami, Salem A.; Azad, A. K. M.; Keith, Jonathan M.

    2016-07-01

    Getting stuck in local maxima is a problem that arises while learning Bayesian networks (BNs) structures. In this paper, we studied a recently proposed Markov chain Monte Carlo (MCMC) sampler, called the Neighbourhood sampler (NS), and examined how efficiently it can sample BNs when local maxima are present. We assume that a posterior distribution f(N,E|D) has been defined, where D represents data relevant to the inference, N and E are the sets of nodes and directed edges, respectively. We illustrate the new approach by sampling from such a distribution, and inferring BNs. The simulations conducted in this paper show that the new learning approach substantially avoids getting stuck in local modes of the distribution, and achieves a more rapid rate of convergence, compared to other common algorithms e.g. the MCMC Metropolis-Hastings sampler.

  8. Reverse engineering highlights potential principles of large gene regulatory network design and learning.

    Science.gov (United States)

    Carré, Clément; Mas, André; Krouk, Gabriel

    2017-01-01

    Inferring transcriptional gene regulatory networks from transcriptomic datasets is a key challenge of systems biology, with potential impacts ranging from medicine to agronomy. There are several techniques used presently to experimentally assay transcription factors to target relationships, defining important information about real gene regulatory networks connections. These techniques include classical ChIP-seq, yeast one-hybrid, or more recently, DAP-seq or target technologies. These techniques are usually used to validate algorithm predictions. Here, we developed a reverse engineering approach based on mathematical and computer simulation to evaluate the impact that this prior knowledge on gene regulatory networks may have on training machine learning algorithms. First, we developed a gene regulatory networks-simulating engine called FRANK (Fast Randomizing Algorithm for Network Knowledge) that is able to simulate large gene regulatory networks (containing 10(4) genes) with characteristics of gene regulatory networks observed in vivo. FRANK also generates stable or oscillatory gene expression directly produced by the simulated gene regulatory networks. The development of FRANK leads to important general conclusions concerning the design of large and stable gene regulatory networks harboring scale free properties (built ex nihilo). In combination with supervised (accepting prior knowledge) support vector machine algorithm we (i) address biologically oriented questions concerning our capacity to accurately reconstruct gene regulatory networks and in particular we demonstrate that prior-knowledge structure is crucial for accurate learning, and (ii) draw conclusions to inform experimental design to performed learning able to solve gene regulatory networks in the future. By demonstrating that our predictions concerning the influence of the prior-knowledge structure on support vector machine learning capacity holds true on real data (Escherichia coli K14 network

  9. Supervised Learning with Complex-valued Neural Networks

    CERN Document Server

    Suresh, Sundaram; Savitha, Ramasamy

    2013-01-01

    Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks.  Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computati...

  10. Hierarchical Structures in Hypertext Learning Environments

    NARCIS (Netherlands)

    Bezdan, Eniko; Kester, Liesbeth; Kirschner, Paul A.

    2011-01-01

    Bezdan, E., Kester, L., & Kirschner, P. A. (2011, 9 September). Hierarchical Structures in Hypertext Learning Environments. Presentation for the visit of KU Leuven, Open University, Heerlen, The Netherlands.

  11. Learning the Structure of Mixed Graphical Models.

    Science.gov (United States)

    Lee, Jason D; Hastie, Trevor J

    2015-01-01

    We consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our approach is a natural generalization of these two lines of work to the mixed case. The penalization scheme involves a novel symmetric use of the group-lasso norm and follows naturally from a particular parametrization of the model. Supplementary materials for this paper are available online.

  12. Community Structure in Online Collegiate Social Networks

    Science.gov (United States)

    Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason

    2009-03-01

    Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.

  13. Online experimentation and interactive learning resources for teaching network engineering

    OpenAIRE

    Mikroyannidis, Alexander; Gomez-Goiri, Aitor; Smith, Andrew; Domingue, John

    2017-01-01

    This paper presents a case study on teaching network engineering in conjunction with interactive learning resources. This case study has been developed in collaboration with the Cisco Networking Academy in the context of the FORGE project, which promotes online learning and experimentation by offering access to virtual and remote labs. The main goal of this work is allowing learners and educators to perform network simulations within a web browser or an interactive eBook by using any type of ...

  14. Reconstructing cancer drug response networks using multitask learning.

    Science.gov (United States)

    Ruffalo, Matthew; Stojanov, Petar; Pillutla, Venkata Krishna; Varma, Rohan; Bar-Joseph, Ziv

    2017-10-10

    Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer. The reconstructed networks correctly identify several shared key proteins and pathways while simultaneously highlighting many cell type specific proteins. We used top proteins from each drug network to predict survival for patients prescribed the drug. Predictions based on proteins from the in-vitro derived networks significantly outperformed predictions based on known cancer genes indicating that Multi-Task learning can indeed identify accurate drug response networks.

  15. A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Sho Fukuda

    2014-12-01

    Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks

  16. Rumor propagation on networks with community structure

    Science.gov (United States)

    Zhang, Ruixia; Li, Deyu

    2017-10-01

    In this paper, based on growth and preferential attachment mechanism, we give a network generation model aiming at generating networks with community structure. There are three characteristics for the networks generated by the generation model. The first is that the community sizes can be nonuniform. The second is that there are bridge hubs in each community. The third is that the strength of community structure is adjustable. Next, we investigate rumor propagation behavior on the generated networks by performing Monte Carlo simulations to reveal the influence of bridge hubs, nonuniformity of community sizes and the strength of community structure on the dynamic behavior of the rumor propagation. We find that bridge hubs have outstanding performance in propagation speed and propagation size, and larger modularity can reduce rumor propagation. Furthermore, when the decay rate of rumor spreading β is large, the final density of the stiflers is larger if the rumor originates in larger community. Additionally, when on networks with different strengths of community structure, rumor propagation exhibits greater difference in the density of stiflers and in the peak prevalence if the decay rate β is larger.

  17. Structural systems identification of genetic regulatory networks.

    Science.gov (United States)

    Xiong, Hao; Choe, Yoonsuck

    2008-02-15

    Reverse engineering of genetic regulatory networks from experimental data is the first step toward the modeling of genetic networks. Linear state-space models, also known as linear dynamical models, have been applied to model genetic networks from gene expression time series data, but existing works have not taken into account available structural information. Without structural constraints, estimated models may contradict biological knowledge and estimation methods may over-fit. In this report, we extended expectation-maximization (EM) algorithms to incorporate prior network structure and to estimate genetic regulatory networks that can track and predict gene expression profiles. We applied our method to synthetic data and to SOS data and showed that our method significantly outperforms the regular EM without structural constraints. The Matlab code is available upon request and the SOS data can be downloaded from http://www.weizmann.ac.il/mcb/UriAlon/Papers/SOSData/, courtesy of Uri Alon. Zak's data is available from his website, http://www.che.udel.edu/systems/people/zak.

  18. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    Science.gov (United States)

    Nitta, Tohru

    2017-10-01

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  19. Structural health monitoring using wireless sensor networks

    Science.gov (United States)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  20. Incidental and intentional learning of verbal episodic material differentially modifies functional brain networks.

    Directory of Open Access Journals (Sweden)

    Marie-Therese Kuhnert

    Full Text Available Learning- and memory-related processes are thought to result from dynamic interactions in large-scale brain networks that include lateral and mesial structures of the temporal lobes. We investigate the impact of incidental and intentional learning of verbal episodic material on functional brain networks that we derive from scalp-EEG recorded continuously from 33 subjects during a neuropsychological test schedule. Analyzing the networks' global statistical properties we observe that intentional but not incidental learning leads to a significantly increased clustering coefficient, and the average shortest path length remains unaffected. Moreover, network modifications correlate with subsequent recall performance: the more pronounced the modifications of the clustering coefficient, the higher the recall performance. Our findings provide novel insights into the relationship between topological aspects of functional brain networks and higher cognitive functions.

  1. Enhancing Formal E-Learning with Edutainment on Social Networks

    Science.gov (United States)

    Labus, A.; Despotovic-Zrakic, M.; Radenkovic, B.; Bogdanovic, Z.; Radenkovic, M.

    2015-01-01

    This paper reports on the investigation of the possibilities of enhancing the formal e-learning process by harnessing the potential of informal game-based learning on social networks. The goal of the research is to improve the outcomes of the formal learning process through the design and implementation of an educational game on a social network…

  2. An ART neural network model of discrimination shift learning

    NARCIS (Netherlands)

    Raijmakers, M.E.J.; Coffey, E.; Stevenson, C.; Winkel, J.; Berkeljon, A.; Taatgen, N.; van Rijn, H.

    2009-01-01

    We present an ART-based neural network model (adapted from [2]) of the development of discrimination-shift learning that models the trial-by-trial learning process in great detail. In agreement with the results of human participants (4-20 years of age) in [1] the model revealed two distinct learning

  3. Structuring Cooperative Learning in Teaching English Pronunciation

    Science.gov (United States)

    Chen, Hsuan-Yu; Goswami, Jaya S.

    2011-01-01

    Classrooms incorporating Cooperative Learning (CL) structures facilitate a supportive learning environment for English Language Learners (ELLs). Accurate pronunciation by ELLs is important for communication, and also benefits academic achievement. The known benefits of CL for ELLs make it a desirable learning environment to teach pronunciation…

  4. EduCamp Colombia: Social Networked Learning for Teacher Training

    Directory of Open Access Journals (Sweden)

    Diego Ernesto Leal Fonseca

    2011-03-01

    Full Text Available This paper describes a learning experience called EduCamp, which was launched by the Ministry of Education of Colombia in 2007, based on emerging concepts such as e-Learning 2.0, connectivism, and personal learning environments. An EduCamp proposes an unstructured collective learning experience, which intends to make palpable the possibilities of social software tools in learning and interaction processes while demonstrating face-to-face organizational forms that reflect social networked learning ideas. The experience opens new perspectives for the design of technology training workshops and for the development of lifelong learning experiences.

  5. Facilitative Components of Collaborative Learning: A Review of Nine Health Research Networks.

    Science.gov (United States)

    Leroy, Lisa; Rittner, Jessica Levin; Johnson, Karin E; Gerteis, Jessie; Miller, Therese

    2017-02-01

    Collaborative research networks are increasingly used as an effective mechanism for accelerating knowledge transfer into policy and practice. This paper explored the characteristics and collaborative learning approaches of nine health research networks. Semi-structured interviews with representatives from eight diverse US health services research networks conducted between November 2012 and January 2013 and program evaluation data from a ninth. The qualitative analysis assessed each network's purpose, duration, funding sources, governance structure, methods used to foster collaboration, and barriers and facilitators to collaborative learning. The authors reviewed detailed notes from the interviews to distill salient themes. Face-to-face meetings, intentional facilitation and communication, shared vision, trust among members and willingness to work together were key facilitators of collaborative learning. Competing priorities for members, limited funding and lack of long-term support and geographic dispersion were the main barriers to coordination and collaboration across research network members. The findings illustrate the importance of collaborative learning in research networks and the challenges to evaluating the success of research network functionality. Conducting readiness assessments and developing process and outcome evaluation metrics will advance the design and show the impact of collaborative research networks. Copyright © 2017 Longwoods Publishing.

  6. Learning about learning: Mining human brain sub-network biomarkers from fMRI data.

    Science.gov (United States)

    Bogdanov, Petko; Dereli, Nazli; Dang, Xuan-Hong; Bassett, Danielle S; Wymbs, Nicholas F; Grafton, Scott T; Singh, Ambuj K

    2017-01-01

    Modeling the brain as a functional network can reveal the relationship between distributed neurophysiological processes and functional interactions between brain structures. Existing literature on functional brain networks focuses mainly on a battery of network properties in "resting state" employing, for example, modularity, clustering, or path length among regions. In contrast, we seek to uncover functionally connected subnetworks that predict or correlate with cohort differences and are conserved within the subjects within a cohort. We focus on differences in both the rate of learning as well as overall performance in a sensorimotor task across subjects and develop a principled approach for the discovery of discriminative subgraphs of functional connectivity based on imaging acquired during practice. We discover two statistically significant subgraph regions: one involving multiple regions in the visual cortex and another involving the parietal operculum and planum temporale. High functional coherence in the former characterizes sessions in which subjects take longer to perform the task, while high coherence in the latter is associated with high learning rate (performance improvement across trials). Our proposed methodology is general, in that it can be applied to other cognitive tasks, to study learning or to differentiate between healthy patients and patients with neurological disorders, by revealing the salient interactions among brain regions associated with the observed global state. The discovery of such significant discriminative subgraphs promises a better data-driven understanding of the dynamic brain processes associated with high-level cognitive functions.

  7. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James

    2014-01-01

    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  8. Robustness in Weighted Networks with Cluster Structure

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2014-01-01

    Full Text Available The vulnerability of complex systems induced by cascade failures revealed the comprehensive interaction of dynamics with network structure. The effect on cascade failures induced by cluster structure was investigated on three networks, small-world, scale-free, and module networks, of which the clustering coefficient is controllable by the random walk method. After analyzing the shifting process of load, we found that the betweenness centrality and the cluster structure play an important role in cascading model. Focusing on this point, properties of cascading failures were studied on model networks with adjustable clustering coefficient and fixed degree distribution. In the proposed weighting strategy, the path length of an edge is designed as the product of the clustering coefficient of its end nodes, and then the modified betweenness centrality of the edge is calculated and applied in cascade model as its weights. The optimal region of the weighting scheme and the size of the survival components were investigated by simulating the edge removing attack, under the rule of local redistribution based on edge weights. We found that the weighting scheme based on the modified betweenness centrality makes all three networks have better robustness against edge attack than the one based on the original betweenness centrality.

  9. Theoretical framework on selected core issues on conditions for productive learning in networked learning environments

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Lone; Svendsen, Brian Møller; Ponti, Marisa

    The report documents and summarises the elements and dimensions that have been identified to describe and analyse the case studies collected in the Kaleidoscope Jointly Executed Integrating Research Project (JEIRP) on Conditions for productive learning in network learning environments....

  10. Digital associative memory neural network with optical learning capability

    Science.gov (United States)

    Watanabe, Minoru; Ohtsubo, Junji

    1994-12-01

    A digital associative memory neural network system with optical learning and recalling capabilities is proposed by using liquid crystal television spatial light modulators and an Optic RAM detector. In spite of the drawback of the limited memory capacity compared with optical analogue associative memory neural network, the proposed optical digital neural network has the advantage of all optical learning and recalling capabilities, thus an all optics network system is easily realized. Some experimental results of the learning and the recalling for character recognitions are presented. This new optical architecture offers compactness of the system and the fast learning and recalling properties. Based on the results, the practical system for the implementation of a faster optical digital associative memory neural network system with ferro-electric liquid crystal SLMs is also proposed.

  11. THE IMPACTS OF SOCIAL NETWORKING SITES IN HIGHER LEARNING

    Directory of Open Access Journals (Sweden)

    Mohd Ishak Bin Ismail

    2016-02-01

    Full Text Available Social networking sites, a web-based application have permeated the boundary between personal lives and student lives. Nowadays, students in higher learning used social networking site such as Facebook to facilitate their learning through the academic collaboration which it further enhances students’ social capital. Social networking site has many advantages to improve students’ learning. To date, Facebook is the leading social networking sites at this time which it being widely used by students in higher learning to communicate to each other, to carry out academic collaboration and sharing resources. Learning through social networking sites is based on the social interaction which learning are emphasizing on students, real world resources, active students` participation, diversity of learning resources and the use of digital tools to deliver meaningful learning. Many studies found the positive, neutral and negative impact of social networking sites on academic performance. Thus, this study will determine the relationship between Facebook usage and academic achievement. Also, it will investigate the association of social capital and academic collaboration to Facebook usage.

  12. An Evaluation Framework for Large-Scale Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Knudsen, Thomas Phillip; Madsen, Ole Brun

    2004-01-01

    An evaluation framework for large-scale network structures is presented, which facilitates evaluations and comparisons of different physical network structures. A number of quantitative and qualitative parameters are presented, and their importance to networks discussed. Choosing a network...... is closed by an example of how the framework can be used. The framework supports network planners in decision-making and researchers in evaluation and development of network structures....

  13. Social Network Structures among Groundnut Farmers

    Science.gov (United States)

    Thuo, Mary; Bell, Alexandra A.; Bravo-Ureta, Boris E.; Okello, David K.; Okoko, Evelyn Nasambu; Kidula, Nelson L.; Deom, C. Michael; Puppala, Naveen

    2013-01-01

    Purpose: Groundnut farmers in East Africa have experienced declines in production despite research and extension efforts to increase productivity. This study examined how social network structures related to acquisition of information about new seed varieties and productivity among groundnut farmers in Uganda and Kenya.…

  14. Structural network efficiency predicts conversion to dementia

    NARCIS (Netherlands)

    Tuladhar, A.; van Uden, I.W.M.; Rutten-Jacobs, L.C.A.; van der Holst, H.; van Norden, A.; de Laat, K.; Dijk, E.; Claassen, J.A.H.R.; Kessels, R.P.C.; Markus, H.S.; Norris, David Gordon; de Leeuw, F.E.

    2016-01-01

    Objective: To examine whether structural network connectivity at baseline predicts incident all-cause dementia in a prospective hospital-based cohort of elderly participants with MRI evidence of small vessel disease (SVD). Methods: A total of 436 participants from the Radboud University Nijmegen

  15. Structures and Statistics of Citation Networks

    Science.gov (United States)

    2011-05-01

    assignment procedure ( QAP ) (14) and its regression counterpart MRQAP (15) have been used to detect structural significance and compare networks in...Correcting Codes. Hamming, R.W. 2, s.l. : Bell System Technical Journal, 1950, Vol. 29, pp. 147--160. 14. QAP Partialling as a Test of Spuriousness* 1

  16. The Max-Min High-Order Dynamic Bayesian Network for Learning Gene Regulatory Networks with Time-Delayed Regulations.

    Science.gov (United States)

    Li, Yifeng; Chen, Haifen; Zheng, Jie; Ngom, Alioune

    2016-01-01

    Accurately reconstructing gene regulatory network (GRN) from gene expression data is a challenging task in systems biology. Although some progresses have been made, the performance of GRN reconstruction still has much room for improvement. Because many regulatory events are asynchronous, learning gene interactions with multiple time delays is an effective way to improve the accuracy of GRN reconstruction. Here, we propose a new approach, called Max-Min high-order dynamic Bayesian network (MMHO-DBN) by extending the Max-Min hill-climbing Bayesian network technique originally devised for learning a Bayesian network's structure from static data. Our MMHO-DBN can explicitly model the time lags between regulators and targets in an efficient manner. It first uses constraint-based ideas to limit the space of potential structures, and then applies search-and-score ideas to search for an optimal HO-DBN structure. The performance of MMHO-DBN to GRN reconstruction was evaluated using both synthetic and real gene expression time-series data. Results show that MMHO-DBN is more accurate than current time-delayed GRN learning methods, and has an intermediate computing performance. Furthermore, it is able to learn long time-delayed relationships between genes. We applied sensitivity analysis on our model to study the performance variation along different parameter settings. The result provides hints on the setting of parameters of MMHO-DBN.

  17. Towards a learning networked organisation: human capital, compatibility and usability in e-learning systems.

    Science.gov (United States)

    Ivergård, Toni; Hunt, Brian

    2005-03-01

    In all parts of organisations there flourish developments of different new subsystems in areas of knowledge and learning. Over recent decades, new systems for classification of jobs have emerged both at the level of organisations and at a macro-labour market level. Recent developments in job evaluation systems make it possible to cope with the new demands for equity at work (between, for example, genders, races, physical abilities). Other systems have emerged to describe job requirements in terms of skills, knowledge and competence. Systems for learning at work and web-based learning have created a demand for new ways to classify and to understand the process of learning. Often these new systems have been taken from other areas of the organisation not directly concerned with facilitating workplace learning. All these new systems are of course closely interrelated but, in most organisations, a major problem is the severe lack of cohesion and compatibility between the different subsystems. The aim of this paper is to propose a basis for how different human resource systems can be integrated into the business development of an organisation. We discuss this problem and develop proposals alternative to integrated macro-systems. A key element in our proposition is a structure for classification of knowledge and skill to be used in all parts of the process. This structure should be used as an added dimension or an overlay on all other subsystems of the total process. This will facilitate a continued use of all existing systems within different organisations. We develop Burge's (personal communication) model for learning to show that learning is not a successive linear process, but rather an iterative process. In this way we emphasise the need for greater involvement of learners in the development of learning systems towards increased usability in a networked system. This paper is divided into two parts which are closely related. The first part gives an overview of the

  18. Learning oncogenetic networks by reducing to mixed integer linear programming.

    Science.gov (United States)

    Shahrabi Farahani, Hossein; Lagergren, Jens

    2013-01-01

    Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.

  19. Structure constrained by metadata in networks of chess players.

    Science.gov (United States)

    Almeira, Nahuel; Schaigorodsky, Ana L; Perotti, Juan I; Billoni, Orlando V

    2017-11-09

    Chess is an emblematic sport that stands out because of its age, popularity and complexity. It has served to study human behavior from the perspective of a wide number of disciplines, from cognitive skills such as memory and learning, to aspects like innovation and decision-making. Given that an extensive documentation of chess games played throughout history is available, it is possible to perform detailed and statistically significant studies about this sport. Here we use one of the most extensive chess databases in the world to construct two networks of chess players. One of the networks includes games that were played over-the-board and the other contains games played on the Internet. We study the main topological characteristics of the networks, such as degree distribution and correlations, transitivity and community structure. We complement the structural analysis by incorporating players' level of play as node metadata. Although both networks are topologically different, we show that in both cases players gather in communities according to their expertise and that an emergent rich-club structure, composed by the top-rated players, is also present.

  20. Information diffusion in structured online social networks

    Science.gov (United States)

    Li, Pei; Zhang, Yini; Qiao, Fengcai; Wang, Hui

    2015-05-01

    Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.

  1. Tensegrity II. How structural networks influence cellular information processing networks

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  2. Network structure of multivariate time series

    Science.gov (United States)

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-01

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  3. The fundamental structures of dynamic social networks

    CERN Document Server

    Sekara, Vedran; Lehmann, Sune

    2015-01-01

    Networks provide a powerful mathematical framework for analyzing the structure and dynamics of complex systems (1-3). The study of group behavior has deep roots in the social science literature (4,5) and community detection is a central part of modern network science. Network communities have been found to be highly overlapping and organized in a hierarchical structure (6-9). Recent technological advances have provided a toolset for measuring the detailed social dynamics at scale (10,11). In spite of great progress, a quantitative description of the complex temporal behavior of social groups-with dynamics spanning from minute-by-minute changes to patterns expressed on the timescale of years-is still absent. Here we uncover a class of fundamental structures embedded within highly dynamic social networks. On the shortest time-scale, we find that social gatherings are fluid, with members coming and going, but organized via a stable core of individuals. We show that cores represent social contexts (9), with recur...

  4. Unsupervised learning in neural networks with short range synapses

    Science.gov (United States)

    Brunnet, L. G.; Agnes, E. J.; Mizusaki, B. E. P.; Erichsen, R., Jr.

    2013-01-01

    Different areas of the brain are involved in specific aspects of the information being processed both in learning and in memory formation. For example, the hippocampus is important in the consolidation of information from short-term memory to long-term memory, while emotional memory seems to be dealt by the amygdala. On the microscopic scale the underlying structures in these areas differ in the kind of neurons involved, in their connectivity, or in their clustering degree but, at this level, learning and memory are attributed to neuronal synapses mediated by longterm potentiation and long-term depression. In this work we explore the properties of a short range synaptic connection network, a nearest neighbor lattice composed mostly by excitatory neurons and a fraction of inhibitory ones. The mechanism of synaptic modification responsible for the emergence of memory is Spike-Timing-Dependent Plasticity (STDP), a Hebbian-like rule, where potentiation/depression is acquired when causal/non-causal spikes happen in a synapse involving two neurons. The system is intended to store and recognize memories associated to spatial external inputs presented as simple geometrical forms. The synaptic modifications are continuously applied to excitatory connections, including a homeostasis rule and STDP. In this work we explore the different scenarios under which a network with short range connections can accomplish the task of storing and recognizing simple connected patterns.

  5. Hybrid E-Learning Tool TransLearning: Video Storytelling to Foster Vicarious Learning within Multi-Stakeholder Collaboration Networks

    Science.gov (United States)

    van der Meij, Marjoleine G.; Kupper, Frank; Beers, Pieter J.; Broerse, Jacqueline E. W.

    2016-01-01

    E-learning and storytelling approaches can support informal vicarious learning within geographically widely distributed multi-stakeholder collaboration networks. This case study evaluates hybrid e-learning and video-storytelling approach "TransLearning" by investigation into how its storytelling e-tool supported informal vicarious…

  6. One pass learning for generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2016-01-01

    Generalized classifier neural network introduced as a kind of radial basis function neural network, uses gradient descent based optimized smoothing parameter value to provide efficient classification. However, optimization consumes quite a long time and may cause a drawback. In this work, one pass learning for generalized classifier neural network is proposed to overcome this disadvantage. Proposed method utilizes standard deviation of each class to calculate corresponding smoothing parameter. Since different datasets may have different standard deviations and data distributions, proposed method tries to handle these differences by defining two functions for smoothing parameter calculation. Thresholding is applied to determine which function will be used. One of these functions is defined for datasets having different range of values. It provides balanced smoothing parameters for these datasets through logarithmic function and changing the operation range to lower boundary. On the other hand, the other function calculates smoothing parameter value for classes having standard deviation smaller than the threshold value. Proposed method is tested on 14 datasets and performance of one pass learning generalized classifier neural network is compared with that of probabilistic neural network, radial basis function neural network, extreme learning machines, and standard and logarithmic learning generalized classifier neural network in MATLAB environment. One pass learning generalized classifier neural network provides more than a thousand times faster classification than standard and logarithmic generalized classifier neural network. Due to its classification accuracy and speed, one pass generalized classifier neural network can be considered as an efficient alternative to probabilistic neural network. Test results show that proposed method overcomes computational drawback of generalized classifier neural network and may increase the classification performance. Copyright

  7. Network learning: a methodological propose to shareholders and executives education

    Directory of Open Access Journals (Sweden)

    Daniel Jardim Pardini

    2012-07-01

    Full Text Available DOI: http://dx.doi.org/10.5007/2175-8077.2012v14n33p25 This article aims to analyze the dynamics of the learning networks operation of business and the differential of this methodological practice to other conventional models of teaching. The review of the epistemological theories of learning and educational psychology identified constructivism collective (LAROCHELLE et al., 1998 as the approach that most closely resembles conceptions of teaching in network format. To understand the way they are planned and organized networks and their distinctions for other types of courses targeted at executives use the methods of case study and thematic analysis. The study highlight the differences in entrepreneurial learning networks, still little diffusined in Brazil, for the traditional teaching methods taught in the open courses postgraduate to the public and in-company to complement and update the learning people in executive business function.

  8. Tweetstorming PLNs: Using Twitter to Brainstorm about Personal Learning Networks

    NARCIS (Netherlands)

    Sie, Rory; Boursinou, Eleni; Rajagopal, Kamakshi; Pataraia, Nino

    2012-01-01

    Sie, R., Boursinou, E., Rajagopal, K., & Pataraia, N. (2011). Tweetstorming PLNs: Using Twitter to Brainstorm about Personal Learning Networks. In Proceedings of The PLE Conference 2011. July, 10-12, 2011, Southampton, UK.

  9. Using machine learning, neural networks and statistics to predict bankruptcy

    NARCIS (Netherlands)

    Pompe, P.P.M.; Feelders, A.J.; Feelders, A.J.

    1997-01-01

    Recent literature strongly suggests that machine learning approaches to classification outperform "classical" statistical methods. We make a comparison between the performance of linear discriminant analysis, classification trees, and neural networks in predicting corporate bankruptcy. Linear

  10. Personal Profiles: Enhancing Social Interaction in Learning Networks

    NARCIS (Netherlands)

    Berlanga, Adriana; Bitter-Rijpkema, Marlies; Brouns, Francis; Sloep, Peter; Fetter, Sibren

    2009-01-01

    Berlanga, A. J., Bitter-Rijpkema, M., Brouns, F., Sloep, P. B., & Fetter, S. (2011). Personal Profiles: Enhancing Social Interaction in Learning Networks. International Journal of Web Based Communities, 7(1), 66-82.

  11. A review of active learning approaches to experimental design for uncovering biological networks.

    Directory of Open Access Journals (Sweden)

    Yuriy Sverchkov

    2017-06-01

    Full Text Available Various types of biological knowledge describe networks of interactions among elementary entities. For example, transcriptional regulatory networks consist of interactions among proteins and genes. Current knowledge about the exact structure of such networks is highly incomplete, and laboratory experiments that manipulate the entities involved are conducted to test hypotheses about these networks. In recent years, various automated approaches to experiment selection have been proposed. Many of these approaches can be characterized as active machine learning algorithms. Active learning is an iterative process in which a model is learned from data, hypotheses are generated from the model to propose informative experiments, and the experiments yield new data that is used to update the model. This review describes the various models, experiment selection strategies, validation techniques, and successful applications described in the literature; highlights common themes and notable distinctions among methods; and identifies likely directions of future research and open problems in the area.

  12. Thermodynamic efficiency of learning a rule in neural networks

    Science.gov (United States)

    Goldt, Sebastian; Seifert, Udo

    2017-11-01

    Biological systems have to build models from their sensory input data that allow them to efficiently process previously unseen inputs. Here, we study a neural network learning a binary classification rule for these inputs from examples provided by a teacher. We analyse the ability of the network to apply the rule to new inputs, that is to generalise from past experience. Using stochastic thermodynamics, we show that the thermodynamic costs of the learning process provide an upper bound on the amount of information that the network is able to learn from its teacher for both batch and online learning. This allows us to introduce a thermodynamic efficiency of learning. We analytically compute the dynamics and the efficiency of a noisy neural network performing online learning in the thermodynamic limit. In particular, we analyse three popular learning algorithms, namely Hebbian, Perceptron and AdaTron learning. Our work extends the methods of stochastic thermodynamics to a new type of learning problem and might form a suitable basis for investigating the thermodynamics of decision-making.

  13. A constructive algorithm for unsupervised learning with incremental neural network

    OpenAIRE

    Wang, Jenq-Haur; Wang, Hsin-Yang; Chen, Yen-Lin; Liu, Chuan-Ming

    2015-01-01

    Artificial neural network (ANN) has wide applications such as data processing and classification. However, comparing with other classification methods, ANN needs enormous memory space and training time to build the model. This makes ANN infeasible in practical applications. In this paper, we try to integrate the ideas of human learning mechanism with the existing models of ANN. We propose an incremental neural network construction framework for unsupervised learning. In this framework, a neur...

  14. Dynamic Network Centrality Summarizes Learning in the Human Brain

    OpenAIRE

    Mantzaris, Alexander V.; Bassett, Danielle S.; Wymbs, Nicholas F.; Estrada, Ernesto; Porter, Mason A.; Mucha, Peter J; Grafton, Scott T.; Higham, Desmond J.

    2012-01-01

    We study functional activity in the human brain using functional Magnetic Resonance Imaging and recently developed tools from network science. The data arise from the performance of a simple behavioural motor learning task. Unsupervised clustering of subjects with respect to similarity of network activity measured over three days of practice produces significant evidence of `learning', in the sense that subjects typically move between clusters (of subjects whose dynamics are similar) as time ...

  15. Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data

    Science.gov (United States)

    2015-07-01

    Bayesian networks. In IJCNN, pp. 2391– 2396. Ghahramani, Z., & Jordan, M. I. (1997). Factorial hidden markov models. Machine Learning, 29(2-3), 245–273...algorithms like EM (which require inference). 1 INTRODUCTION When learning the parameters of a Bayesian network from data with missing values, the...missing at random assumption (MAR), but also for a broad class of data that is not MAR. Their analysis is based on a graphical representation for

  16. Methods and applications for detecting structure in complex networks

    Science.gov (United States)

    Leicht, Elizabeth A.

    The use of networks to represent systems of interacting components is now common in many fields including the biological, physical, and social sciences. Network models are widely applicable due to their relatively simple framework of vertices and edges. Network structure, patterns of connection between vertices, impacts both the functioning of networks and processes occurring on networks. However, many aspects of network structure are still poorly understood. This dissertation presents a set of network analysis methods and applications to real-world as well as simulated networks. The methods are divided into two main types: linear algebra formulations and probabilistic mixture model techniques. Network models lend themselves to compact mathematical representation as matrices, making linear algebra techniques useful probes of network structure. We present methods for the detection of two distinct, but related, network structural forms. First, we derive a measure of vertex similarity based upon network structure. The method builds on existing ideas concerning calculation of vertex similarity, but generalizes and extends the scope to large networks. Second, we address the detection of communities or modules in a specific class of networks, directed networks. We propose a method for detecting community structure in directed networks, which is an extension of a community detection method previously only known for undirected networks. Moving away from linear algebra formulations, we propose two methods for network structure detection based on probabilistic techniques. In the first method, we use the machinery of the expectation-maximization (EM) algorithm to probe patterns of connection among vertices in static networks. The technique allows for the detection of a broad range of types of structure in networks. The second method focuses on time evolving networks. We propose an application of the EM algorithm to evolving networks that can reveal significant structural

  17. The Contribution of Social Networks to Individual Learning in Service Organizations

    Science.gov (United States)

    Poell, Rob F.; Van der Krogt, Ferd J.

    2007-01-01

    This study investigates how social networks in service organizations contribute to employee learning. Two specific types of social network seem especially relevant to individual learning: first, the service network, where employees carry out and improve their work, which may lead to learning; and second, the learning network, where employees…

  18. Structural determinants of criticality in biological networks.

    Science.gov (United States)

    Valverde, Sergi; Ohse, Sebastian; Turalska, Malgorzata; West, Bruce J; Garcia-Ojalvo, Jordi

    2015-01-01

    Many adaptive evolutionary systems display spatial and temporal features, such as long-range correlations, typically associated with the critical point of a phase transition in statistical physics. Empirical and theoretical studies suggest that operating near criticality enhances the functionality of biological networks, such as brain and gene networks, in terms for instance of information processing, robustness, and evolvability. While previous studies have explained criticality with specific system features, we still lack a general theory of critical behavior in biological systems. Here we look at this problem from the complex systems perspective, since in principle all critical biological circuits have in common the fact that their internal organization can be described as a complex network. An important question is how self-similar structure influences self-similar dynamics. Modularity and heterogeneity, for instance, affect the location of critical points and can be used to tune the system toward criticality. We review and discuss recent studies on the criticality of neuronal and genetic networks, and discuss the implications of network theory when assessing the evolutionary features of criticality.

  19. Structural Determinants of Criticality in Biological Networks

    Directory of Open Access Journals (Sweden)

    Sergi eValverde

    2015-05-01

    Full Text Available Many adaptive evolutionary systems display spatial and temporal features, such as long-range correlations, typically associated with the critical point of a phase transition in statistical physics. Empirical and theoretical studies suggest that operating near criticality enhances the functionality of biological networks, such as brain and gene networks, in terms for instance of information processing, robustness and evolvability. While previous studies have explained criticality with specific system features, we still lack a general theory of critical behaviour in biological systems. Here we look at this problem from the complex systems perspective, since in principle all critical biological circuits have in common the fact that their internal organisation can be described as a complex network. An important question is how self-similar structure influences self-similar dynamics. Modularity and heterogeneity, for instance, affect the location of critical points and can be used to tune the system towards criticality. We review and discuss recent studies on the criticality of neuronal and genetic networks, and discuss the implications of network theory when assessing the evolutionary features of criticality.

  20. Community structure in the phonological network

    Directory of Open Access Journals (Sweden)

    Cynthia S. Q. Siew

    2013-08-01

    Full Text Available Community structure, which refers to the presence of densely connected groups within a larger network, is a common feature of several real-world networks from a variety of domains such as the human brain, social networks of hunter-gatherers and business organizations, and the World Wide Web (Porter et al., 2009. Using a community detection technique known as the Louvain optimization method, 17 communities were extracted from the giant component of the phonological network described in Vitevitch (2008. Additional analyses comparing the lexical and phonological characteristics of words in these communities against words in randomly generated communities revealed several novel discoveries. Larger communities tend to consist of short, frequent words of high degree and low age of acquisition ratings, and smaller communities tend to consist of longer, less frequent words of low degree and high age of acquisition ratings. Real communities also contained fewer different phonological segments compared to random communities, although the number of occurrences of phonological segments found in real communities was much higher than that of the same phonological segments in random communities. Interestingly, the observation that relatively few biphones occur very frequently and a large number of biphones occur rarely within communities mirrors the pattern of the overall frequency of words in a language (Zipf, 1935. The present findings have important implications for understanding the dynamics of activation spread among words in the phonological network that are relevant to lexical processing, as well as understanding the mechanisms that underlie language acquisition and the evolution of language.

  1. On the relationships between generative encodings, regularity, and learning abilities when evolving plastic artificial neural networks.

    Directory of Open Access Journals (Sweden)

    Paul Tonelli

    Full Text Available A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1 the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2 synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT. Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1 in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2 whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities.

  2. On the relationships between generative encodings, regularity, and learning abilities when evolving plastic artificial neural networks.

    Science.gov (United States)

    Tonelli, Paul; Mouret, Jean-Baptiste

    2013-01-01

    A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities.

  3. Structure and mechanics of aegagropilae fiber network.

    Science.gov (United States)

    Verhille, Gautier; Moulinet, Sébastien; Vandenberghe, Nicolas; Adda-Bedia, Mokhtar; Le Gal, Patrice

    2017-05-02

    Fiber networks encompass a wide range of natural and manmade materials. The threads or filaments from which they are formed span a wide range of length scales: from nanometers, as in biological tissues and bundles of carbon nanotubes, to millimeters, as in paper and insulation materials. The mechanical and thermal behavior of these complex structures depends on both the individual response of the constituent fibers and the density and degree of entanglement of the network. A question of paramount importance is how to control the formation of a given fiber network to optimize a desired function. The study of fiber clustering of natural flocs could be useful for improving fabrication processes, such as in the paper and textile industries. Here, we use the example of aegagropilae that are the remains of a seagrass (Posidonia oceanica) found on Mediterranean beaches. First, we characterize different aspects of their structure and mechanical response, and second, we draw conclusions on their formation process. We show that these natural aggregates are formed in open sea by random aggregation and compaction of fibers held together by friction forces. Although formed in a natural environment, thus under relatively unconstrained conditions, the geometrical and mechanical properties of the resulting fiber aggregates are quite robust. This study opens perspectives for manufacturing complex fiber network materials.

  4. Structure of the human chromosome interaction network.

    Directory of Open Access Journals (Sweden)

    Sergio Sarnataro

    Full Text Available New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.

  5. Improving the Robustness of Complex Networks with Preserving Community Structure

    Science.gov (United States)

    Yang, Yang; Li, Zhoujun; Chen, Yan; Zhang, Xiaoming; Wang, Senzhang

    2015-01-01

    Complex networks are everywhere, such as the power grid network, the airline network, the protein-protein interaction network, and the road network. The networks are ‘robust yet fragile’, which means that the networks are robust against random failures but fragile under malicious attacks. The cascading failures, system-wide disasters and intentional attacks on these networks are deserving of in-depth study. Researchers have proposed many solutions to improve the robustness of these networks. However whilst many solutions preserve the degree distribution of the networks, little attention is paid to the community structure of these networks. We argue that the community structure of a network is a defining characteristic of a network which identifies its functionality and thus should be preserved. In this paper, we discuss the relationship between robustness and the community structure. Then we propose a 3-step strategy to improve the robustness of a network, while retaining its community structure, and also its degree distribution. With extensive experimentation on representative real-world networks, we demonstrate that our method is effective and can greatly improve the robustness of networks, while preserving community structure and degree distribution. Finally, we give a description of a robust network, which is useful not only for improving robustness, but also for designing robust networks and integrating networks. PMID:25674786

  6. Learning structured representations of data

    CSIR Research Space (South Africa)

    Barnard, E

    2009-11-01

    Full Text Available Bayesian networks have shown themselves to be useful tools for the analysis and modelling of large data sets. However, their complete generality leads to computational and modelling complexities that have limited their applicability. We propose...

  7. Finding local community structure in networks

    Science.gov (United States)

    Clauset, Aaron

    2005-08-01

    Although the inference of global community structure in networks has recently become a topic of great interest in the physics community, all such algorithms require that the graph be completely known. Here, we define both a measure of local community structure and an algorithm that infers the hierarchy of communities that enclose a given vertex by exploring the graph one vertex at a time. This algorithm runs in time O(k2d) for general graphs when d is the mean degree and k is the number of vertices to be explored. For graphs where exploring a new vertex is time consuming, the running time is linear, O(k) . We show that on computer-generated graphs the average behavior of this technique approximates that of algorithms that require global knowledge. As an application, we use this algorithm to extract meaningful local clustering information in the large recommender network of an online retailer.

  8. Hierarchical Neural Network Structures for Phoneme Recognition

    CERN Document Server

    Vasquez, Daniel; Minker, Wolfgang

    2013-01-01

    In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a  Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.

  9. Learning algorithms for feedforward networks based on finite samples

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M.; Iyengar, S.S.

    1994-09-01

    Two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by feedforward networks, are discussed. The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can be directly adapted to concept learning problems.

  10. Walk modularity and community structure in networks

    OpenAIRE

    Mehrle, David; Strosser, Amy; Harkin, Anthony

    2014-01-01

    Modularity maximization has been one of the most widely used approaches in the last decade for discovering community structure in networks of practical interest in biology, computing, social science, statistical mechanics, and more. Modularity is a quality function that measures the difference between the number of edges found within clusters minus the number of edges one would statistically expect to find based on random chance. We present a natural generalization of modularity based on the ...

  11. Social Software: Participants' Experience Using Social Networking for Learning

    Science.gov (United States)

    Batchelder, Cecil W.

    2010-01-01

    Social networking tools used in learning provides instructional design with tools for transformative change in education. This study focused on defining the meanings and essences of social networking through the lived common experiences of 7 college students. The problem of the study was a lack of learner voice in understanding the value of social…

  12. Social Media and Social Networking Applications for Teaching and Learning

    Science.gov (United States)

    Yeo, Michelle Mei Ling

    2014-01-01

    This paper aims to better understand the experiences of the youth and the educators with the tapping of social media like YouTube videos and the social networking application of Facebook for teaching and learning. This paper is interested in appropriating the benefits of leveraging of social media and networking applications like YouTube and…

  13. Social Networks and Performance in Distributed Learning Communities

    Science.gov (United States)

    Cadima, Rita; Ojeda, Jordi; Monguet, Josep M.

    2012-01-01

    Social networks play an essential role in learning environments as a key channel for knowledge sharing and students' support. In distributed learning communities, knowledge sharing does not occur as spontaneously as when a working group shares the same physical space; knowledge sharing depends even more on student informal connections. In this…

  14. Optimizing Knowledge Sharing In Learning Networks Through Peer Tutoring

    OpenAIRE

    Hsiao, Amy; Brouns, Francis; Kester, Liesbeth; Sloep, Peter

    2009-01-01

    Hsiao, Y. P., Brouns, F., Kester, L., & Sloep, P. B. (2009). Optimizing Knowledge Sharing In Learning Networks Through Peer Tutoring. In D. Kinshuk, J. Sampson, J. Spector, P. Isaías, P. Barbosa & D. Ifenthaler (Eds.). Proceedings of IADIS International Conference Cognition and Exploratory Learning in Digital Age (CELDA 2009) (pp. 550-551). November, 20-22, 2009, Rome, Italy: Springer.

  15. Optimizing Knowledge Sharing In Learning Networks Through Peer Tutoring

    NARCIS (Netherlands)

    Hsiao, Amy; Brouns, Francis; Kester, Liesbeth; Sloep, Peter

    2009-01-01

    Hsiao, Y. P., Brouns, F., Kester, L., & Sloep, P. B. (2009). Optimizing Knowledge Sharing In Learning Networks Through Peer Tutoring. In D. Kinshuk, J. Sampson, J. Spector, P. Isaías, P. Barbosa & D. Ifenthaler (Eds.). Proceedings of IADIS International Conference Cognition and Exploratory Learning

  16. Student Learning Networks on Residential Field Courses: Does Size Matter?

    Science.gov (United States)

    Langan, A. Mark; Cullen, W. Rod; Shuker, David M.

    2008-01-01

    This article describes learner and tutor reports of a learning network that formed during the completion of investigative projects on a residential field course. Staff and students recorded project-related interactions, who they were with and how long they lasted over four phases during the field course. An enquiry based learning format challenged…

  17. Structure and dynamics of core-periphery networks

    CERN Document Server

    Csermely, Peter; Wu, Ling-Yun; Uzzi, Brian

    2013-01-01

    Recent studies uncovered important core/periphery network structures characterizing complex sets of cooperative and competitive interactions between network nodes, be they proteins, cells, species or humans. Better characterization of the structure, dynamics and function of core/periphery networks is a key step of our understanding cellular functions, species adaptation, social and market changes. Here we summarize the current knowledge of the structure and dynamics of "traditional" core/periphery networks, rich-clubs, nested, bow-tie and onion networks. Comparing core/periphery structures with network modules, we discriminate between global and local cores. The core/periphery network organization lies in the middle of several extreme properties, such as random/condensed structures, clique/star configurations, network symmetry/asymmetry, network assortativity/disassortativity, as well as network hierarchy/anti-hierarchy. These properties of high complexity together with the large degeneracy of core pathways e...

  18. Complex network perspective on structure and function of ...

    Indian Academy of Sciences (India)

    , uncovering complex network structure and function from these networks is becoming one of the most important topics in system biology. This work aims at studying the structure and function of Staphylococcus aureus (S. aureus) metabolic ...

  19. Learning difficulties: collaborative inter-organisational information system use within UK retail supply networks

    OpenAIRE

    Emberson, Caroline; Storey, John

    2008-01-01

    Inter-organisational information systems (IOIS) have been introduced to support collaborative retail supply relationships, yet how these systems are used is not well understood. This paper presents analysis of an ideographic case study of a dynamic United Kingdom grocery sector supply network. Using Archer's (1995) social change theory we explore how changes to buyer-supplier relationship structures re-conditioned individual actors' situational logics in a way that created network learning di...

  20. FeUdal Networks for Hierarchical Reinforcement Learning

    OpenAIRE

    Vezhnevets, Alexander Sasha; Osindero, Simon; Schaul, Tom; Heess, Nicolas; Jaderberg, Max; Silver, David; Kavukcuoglu, Koray

    2017-01-01

    We introduce FeUdal Networks (FuNs): a novel architecture for hierarchical reinforcement learning. Our approach is inspired by the feudal reinforcement learning proposal of Dayan and Hinton, and gains power and efficacy by decoupling end-to-end learning across multiple levels -- allowing it to utilise different resolutions of time. Our framework employs a Manager module and a Worker module. The Manager operates at a lower temporal resolution and sets abstract goals which are conveyed to and e...

  1. A Contextualised Multi-Platform Framework to Support Blended Learning Scenarios in Learning Networks

    NARCIS (Netherlands)

    De Jong, Tim; Fuertes, Alba; Schmeits, Tally; Specht, Marcus; Koper, Rob

    2008-01-01

    De Jong, T., Fuertes, A., Schmeits, T., Specht, M., & Koper, R. (2009). A Contextualised Multi-Platform Framework to Support Blended Learning Scenarios in Learning Networks. In D. Goh (Ed.), Multiplatform E-Learning Systems and Technologies: Mobile Devices for Ubiquitous ICT-Based Education (pp.

  2. The teacher as designer? What is the role of ‘learning design’ in networked learning?

    DEFF Research Database (Denmark)

    Konnerup, Ulla; Ryberg, Thomas; Sørensen, Mia Thyrre

    2018-01-01

    (TEL), networked learning, designs for learning and draw out their development and branching to understand potentially different ontological or epistemological roots they draw on. Further, we wish to inquire into how the area of ‘Learning Design’ relate to or distances itself from the philosophy...

  3. QSAR modelling using combined simple competitive learning networks and RBF neural networks.

    Science.gov (United States)

    Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E

    2018-04-01

    The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.

  4. Learning Local Components to Understand Large Bayesian Networks

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Xiang, Yanping; Cordero, Jorge

    2009-01-01

    (domain experts) to extract accurate information from a large Bayesian network due to dimensional difficulty. We define a formulation of local components and propose a clustering algorithm to learn such local components given complete data. The algorithm groups together most inter-relevant attributes...... in a domain. We evaluate its performance on three benchmark Bayesian networks and provide results in support. We further show that the learned components may represent local knowledge more precisely in comparison to the full Bayesian networks when working with a small amount of data....

  5. Understanding the Context of Learning in an Online Social Network for Health Professionals' Informal Learning.

    Science.gov (United States)

    Li, Xin; Gray, Kathleen; Verspoor, Karin; Barnett, Stephen

    2017-01-01

    Online social networks (OSN) enable health professionals to learn informally, for example by sharing medical knowledge, or discussing practice management challenges and clinical issues. Understanding the learning context in OSN is necessary to get a complete picture of the learning process, in order to better support this type of learning. This study proposes critical contextual factors for understanding the learning context in OSN for health professionals, and demonstrates how these contextual factors can be used to analyse the learning context in a designated online learning environment for health professionals.

  6. SOCIAL NETWORKS AS A MEANS OF LEARNING PROCESS

    Directory of Open Access Journals (Sweden)

    T. Arhipova

    2015-02-01

    Full Text Available This paper presents an analysis of social networks in terms of their possible use in the education system. The integration of new information and communication technologies with the technologies of learning is gradually changing the concept of modern education and promotes educational environment focused on the interests and personal development, achievement of her current levels of education, internationalization and increasing access to educational resources, creating conditions for mobility of students and teachers improving the quality of education and the formation of a single educational space. The peculiarity of such an environment is to provide creative research activity of the teacher and students in the learning process. Network services provide the means by which students can act as active creators of media content. The paper presents the results of a study of the advantages and disadvantages of using web communities in the educational process. Articulated pedagogical conditions of the effective organization of educational process in the virtual learning environment using social networks. The experience of the use of social networks in the learning process of the university. Such networking technologies, such as forums, blogs, wikis, educational portals and automated systems for distance learning, having undoubted didactic and methodological advantages, inferior social networks in terms of involving users in their communication space, as well as compliance with the intellectual, creative and social needs.

  7. Deterministic learning enhanced neutral network control of unmanned helicopter

    Directory of Open Access Journals (Sweden)

    Yiming Jiang

    2016-11-01

    Full Text Available In this article, a neural network–based tracking controller is developed for an unmanned helicopter system with guaranteed global stability in the presence of uncertain system dynamics. Due to the coupling and modeling uncertainties of the helicopter systems, neutral networks approximation techniques are employed to compensate the unknown dynamics of each subsystem. In order to extend the semiglobal stability achieved by conventional neural control to global stability, a switching mechanism is also integrated into the control design, such that the resulted neural controller is always valid without any concern on either initial conditions or range of state variables. In addition, deterministic learning is applied to the neutral network learning control, such that the adaptive neutral networks are able to store the learned knowledge that could be reused to construct neutral network controller with improved control performance. Simulation studies are carried out on a helicopter model to illustrate the effectiveness of the proposed control design.

  8. Teachers' Self-Initiated Professional Learning through Personal Learning Networks

    Science.gov (United States)

    Tour, Ekaterina

    2017-01-01

    It is widely acknowledged that to be able to teach language and literacy with digital technologies, teachers need to engage in relevant professional learning. Existing formal models of professional learning are often criticised for being ineffective. In contrast, informal and self-initiated forms of learning have been recently recognised as…

  9. Learning Networks using Learning Design. A firt collection of papers

    NARCIS (Netherlands)

    Koper, Rob; Spoelstra, Howard; Burgos, Daniel

    2004-01-01

    CONTENT
    THE LEARNING DESIGN SPECIFICATION. INTRODUCTION
    1. Modeling units of study from a pedagogical perspective. The pedagogical meta-model behind EML 2. Representing the Learning Design of Units of Learning 3. Educational Modelling Language: Modelling reusable, interoperable, rich and

  10. Approximation methods for efficient learning of Bayesian networks

    CERN Document Server

    Riggelsen, C

    2008-01-01

    This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order to provide a coherent treatment of matters, thereby helping the reader to gain a thorough understanding of the whole concept of learning Bayesian networks from (in)complete data, this publication combines in a clarifying way all the issues presented in the papers with previously unpublished work.

  11. Breast image feature learning with adaptive deconvolutional networks

    Science.gov (United States)

    Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.

    2012-03-01

    Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).

  12. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

    Science.gov (United States)

    Walter, Florian; Röhrbein, Florian; Knoll, Alois

    2015-12-01

    The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Structural host-microbiota interaction networks.

    Science.gov (United States)

    Guven-Maiorov, Emine; Tsai, Chung-Jung; Nussinov, Ruth

    2017-10-01

    Hundreds of different species colonize multicellular organisms making them "metaorganisms". A growing body of data supports the role of microbiota in health and in disease. Grasping the principles of host-microbiota interactions (HMIs) at the molecular level is important since it may provide insights into the mechanisms of infections. The crosstalk between the host and the microbiota may help resolve puzzling questions such as how a microorganism can contribute to both health and disease. Integrated superorganism networks that consider host and microbiota as a whole-may uncover their code, clarifying perhaps the most fundamental question: how they modulate immune surveillance. Within this framework, structural HMI networks can uniquely identify potential microbial effectors that target distinct host nodes or interfere with endogenous host interactions, as well as how mutations on either host or microbial proteins affect the interaction. Furthermore, structural HMIs can help identify master host cell regulator nodes and modules whose tweaking by the microbes promote aberrant activity. Collectively, these data can delineate pathogenic mechanisms and thereby help maximize beneficial therapeutics. To date, challenges in experimental techniques limit large-scale characterization of HMIs. Here we highlight an area in its infancy which we believe will increasingly engage the computational community: predicting interactions across kingdoms, and mapping these on the host cellular networks to figure out how commensal and pathogenic microbiota modulate the host signaling and broadly cross-species consequences.

  14. Prespeech motor learning in a neural network using reinforcement.

    Science.gov (United States)

    Warlaumont, Anne S; Westermann, Gert; Buder, Eugene H; Oller, D Kimbrough

    2013-02-01

    Vocal motor development in infancy provides a crucial foundation for language development. Some significant early accomplishments include learning to control the process of phonation (the production of sound at the larynx) and learning to produce the sounds of one's language. Previous work has shown that social reinforcement shapes the kinds of vocalizations infants produce. We present a neural network model that provides an account of how vocal learning may be guided by reinforcement. The model consists of a self-organizing map that outputs to muscles of a realistic vocalization synthesizer. Vocalizations are spontaneously produced by the network. If a vocalization meets certain acoustic criteria, it is reinforced, and the weights are updated to make similar muscle activations increasingly likely to recur. We ran simulations of the model under various reinforcement criteria and tested the types of vocalizations it produced after learning in the different conditions. When reinforcement was contingent on the production of phonated (i.e. voiced) sounds, the network's post-learning productions were almost always phonated, whereas when reinforcement was not contingent on phonation, the network's post-learning productions were almost always not phonated. When reinforcement was contingent on both phonation and proximity to English vowels as opposed to Korean vowels, the model's post-learning productions were more likely to resemble the English vowels and vice versa. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The Student Experience of Learning Using Networked Technologies: An Emergent Progression of Expanding Awareness

    Science.gov (United States)

    Cutajar, Maria

    2017-01-01

    This article reports on phenomenographic research which explored the qualitative differences in post-secondary students' accounts of their networked learning experiences. Data was generated using semi-structured interviews with a purposive sample of participants. Phenomenographic analysis led to a configuration of variation in students' accounts…

  16. A Co-Citation Network of Young Children's Learning with Technology

    Science.gov (United States)

    Tang, Kai-Yu; Li, Ming-Chaun; Hsin, Ching-Ting; Tsai, Chin-Chung

    2016-01-01

    This paper used a novel literature review approach--co-citation network analysis--to illuminate the latent structure of 87 empirical papers in the field of young children's learning with technology (YCLT). Based on the document co-citation analysis, a total of 206 co-citation relationships among the 87 papers were identified and then graphically…

  17. Higher-order structure and epidemic dynamics in clustered networks.

    Science.gov (United States)

    Ritchie, Martin; Berthouze, Luc; House, Thomas; Kiss, Istvan Z

    2014-05-07

    Clustering is typically measured by the ratio of triangles to all triples regardless of whether open or closed. Generating clustered networks, and how clustering affects dynamics on networks, is reasonably well understood for certain classes of networks (Volz et al., 2011; Karrer and Newman, 2010), e.g. networks composed of lines and non-overlapping triangles. In this paper we show that it is possible to generate networks which, despite having the same degree distribution and equal clustering, exhibit different higher-order structure, specifically, overlapping triangles and other order-four (a closed network motif composed of four nodes) structures. To distinguish and quantify these additional structural features, we develop a new network metric capable of measuring order-four structure which, when used alongside traditional network metrics, allows us to more accurately describe a network׳s topology. Three network generation algorithms are considered: a modified configuration model and two rewiring algorithms. By generating homogeneous networks with equal clustering we study and quantify their structural differences, and using SIS (Susceptible-Infected-Susceptible) and SIR (Susceptible-Infected-Recovered) dynamics we investigate computationally how differences in higher-order structure impact on epidemic threshold, final epidemic or prevalence levels and time evolution of epidemics. Our results suggest that characterising and measuring higher-order network structure is needed to advance our understanding of the impact of network topology on dynamics unfolding on the networks. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.

    Science.gov (United States)

    Gu, Weiwei; Gong, Li; Lou, Xiaodan; Zhang, Jiang

    2017-10-13

    Network embedding which encodes all vertices in a network as a set of numerical vectors in accordance with it's local and global structures, has drawn widespread attention. Network embedding not only learns significant features of a network, such as the clustering and linking prediction but also learns the latent vector representation of the nodes which provides theoretical support for a variety of applications, such as visualization, link prediction, node classification, and recommendation. As the latest progress of the research, several algorithms based on random walks have been devised. Although those algorithms have drawn much attention for their high scores in learning efficiency and accuracy, there is still a lack of theoretical explanation, and the transparency of those algorithms has been doubted. Here, we propose an approach based on the open-flow network model to reveal the underlying flow structure and its hidden metric space of different random walk strategies on networks. We show that the essence of embedding based on random walks is the latent metric structure defined on the open-flow network. This not only deepens our understanding of random- walk-based embedding algorithms but also helps in finding new potential applications in network embedding.

  19. The complex channel networks of bone structure

    CERN Document Server

    Costa, Luciano da Fontoura; Beletti, Marcelo E

    2006-01-01

    Bone structure in mammals involves a complex network of channels (Havers and Volkmann channels) required to nourish the bone marrow cells. This work describes how three-dimensional reconstructions of such systems can be obtained and represented in terms of complex networks. Three important findings are reported: (i) the fact that the channel branching density resembles a power law implies the existence of distribution hubs; (ii) the conditional node degree density indicates a clear tendency of connection between nodes with degrees 2 and 4; and (iii) the application of the recently introduced concept of hierarchical clustering coefficient allows the identification of typical scales of channel redistribution. A series of important biological insights is drawn and discussed

  20. Uncovering Gene Regulatory Networks from Time-Series Microarray Data with Variational Bayesian Structural Expectation Maximization

    Directory of Open Access Journals (Sweden)

    Huang Yufei

    2007-01-01

    Full Text Available We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probability (APP of network topology. In particular, we propose a variational Bayesian structural expectation maximization algorithm that can learn the posterior distribution of the network model parameters and topology jointly. We also show how the obtained APPs of the network topology can be used in a Bayesian data integration strategy to integrate two different microarray data sets. The proposed VBSEM algorithm has been tested on yeast cell cycle data sets. To evaluate the confidence of the inferred networks, we apply a moving block bootstrap method. The inferred network is validated by comparing it to the KEGG pathway map.

  1. Structuring institutions to exploit learning technologies: a cybernetic model

    Directory of Open Access Journals (Sweden)

    Oleg Liber

    1998-12-01

    Full Text Available Educational management is looking to Communication and Information Technologies (C&IT to make education cheaper and maybe even more effective (e.g. Dealing, 1997. But despite over two decades of computer-based learning, and despite the still considerable faith in the future possibilities of C&IT, so far there is no evidence that this promise is anywhere near being realized. The reasons for this may be insufficient machines of adequate capability, a lack of training, inadequate networking and poor software. However, I believe that there is a more fundamental reason for its failure to make a significant impact: that the way education and its institutions are structured actively gets in the way of learning technology becoming effective. I suggest that the role of educational institutions is to connect learners with teachers, and that the teacher's purpose is to transform the world-views of the students. Rather than transmitters of knowledge, they are systems for managing learning conversations. Current forms of organization manage learning conversations in a particular way, which is inimical to the best use of learning technologies. C&IT offers an alternative way of managing learning, but which cannot be layered on top of existing organizational structures.

  2. The network structure of human personality according to the NEO-PI-R: matching network community structure to factor structure.

    Directory of Open Access Journals (Sweden)

    Rutger Goekoop

    Full Text Available INTRODUCTION: Human personality is described preferentially in terms of factors (dimensions found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. AIM: To directly compare the ability of network community detection (NCD and principal component factor analysis (PCA to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R. METHODS: 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. RESULTS: At facet level, NCS showed a best match (96.2% with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80% with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. CONCLUSION: We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.

  3. The Network Structure of Human Personality According to the NEO-PI-R: Matching Network Community Structure to Factor Structure

    Science.gov (United States)

    Goekoop, Rutger; Goekoop, Jaap G.; Scholte, H. Steven

    2012-01-01

    Introduction Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. Aim To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). Methods 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. Results At facet level, NCS showed a best match (96.2%) with a ‘confirmatory’ 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with ‘confirmatory’ 5-FS and ‘exploratory’ 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. Conclusion We present the first optimized network graph of personality traits according to the NEO-PI-R: a ‘Personality Web’. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network. PMID:23284713

  4. The network structure of human personality according to the NEO-PI-R: matching network community structure to factor structure.

    Science.gov (United States)

    Goekoop, Rutger; Goekoop, Jaap G; Scholte, H Steven

    2012-01-01

    Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. At facet level, NCS showed a best match (96.2%) with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.

  5. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.

    Science.gov (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff

    2016-09-14

    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  6. Networking for Learning The role of Networking in a Lifelong Learner's Professional Development

    NARCIS (Netherlands)

    Rajagopal, Kamakshi

    2016-01-01

    This dissertation discusses the role the social activity of networking plays in lifelong learners’ professional and personal continuous development. The main hypothesis of this thesis is that networking is a learning strategy for lifelong learners, in which conversations are key activities through

  7. Information diversity in structure and dynamics of simulated neuronal networks.

    Science.gov (United States)

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Nykter, Matti; Kesseli, Juha; Ruohonen, Keijo; Yli-Harja, Olli; Linne, Marja-Leena

    2011-01-01

    Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.

  8. Information Diversity in Structure and Dynamics of Simulated Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Tuomo eMäki-Marttunen

    2011-06-01

    Full Text Available Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance (NCD. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviours are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses.We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.

  9. Reinforcement learning for routing in cognitive radio ad hoc networks.

    Science.gov (United States)

    Al-Rawi, Hasan A A; Yau, Kok-Lim Alvin; Mohamad, Hafizal; Ramli, Nordin; Hashim, Wahidah

    2014-01-01

    Cognitive radio (CR) enables unlicensed users (or secondary users, SUs) to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs). Reinforcement learning (RL) is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables a source node to search for a least-cost route to its destination node. While there have been increasing efforts to enhance the traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function, exploitation, and exploration, as well as learning rate) through simulation. New approaches and recommendations are proposed to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and the new approaches proposed in this paper improves SUs' network performance without significantly jeopardizing PUs' network performance, specifically SUs' interference to PUs.

  10. Stable Matching with Incomplete Information in Structured Networks

    OpenAIRE

    Ling, Ying; Wan, Tao; Qin, Zengchang

    2015-01-01

    In this paper, we investigate stable matching in structured networks. Consider case of matching in social networks where candidates are not fully connected. A candidate on one side of the market gets acquaintance with which one on the heterogeneous side depends on the structured network. We explore four well-used structures of networks and define the social circle by the distance between each candidate. When matching within social circle, we have equilibrium distinguishes from each other sinc...

  11. Globally Networked Collaborative Learning in Industrial Design

    Science.gov (United States)

    Bohemia, Erik; Ghassan, Aysar

    2012-01-01

    This article explores project-based cross-cultural and cross-institutional learning. Using Web 2.0 technologies, this project involved more than 240 students and eighteen academic staff from seven international universities. The focus of this article relates to a project-based learning activity named "The Gift". At each institution the…

  12. Visualising the invisible: a network approach to reveal the informal social side of student learning.

    Science.gov (United States)

    Hommes, J; Rienties, B; de Grave, W; Bos, G; Schuwirth, L; Scherpbier, A

    2012-12-01

    World-wide, universities in health sciences have transformed their curriculum to include collaborative learning and facilitate the students' learning process. Interaction has been acknowledged to be the synergistic element in this learning context. However, students spend the majority of their time outside their classroom and interaction does not stop outside the classroom. Therefore we studied how informal social interaction influences student learning. Moreover, to explore what really matters in the students learning process, a model was tested how the generally known important constructs-prior performance, motivation and social integration-relate to informal social interaction and student learning. 301 undergraduate medical students participated in this cross-sectional quantitative study. Informal social interaction was assessed using self-reported surveys following the network approach. Students' individual motivation, social integration and prior performance were assessed by the Academic Motivation Scale, the College Adaption Questionnaire and students' GPA respectively. A factual knowledge test represented student' learning. All social networks were positively associated with student learning significantly: friendships (β = 0.11), providing information to other students (β = 0.16), receiving information from other students (β = 0.25). Structural equation modelling revealed a model in which social networks increased student learning (r = 0.43), followed by prior performance (r = 0.31). In contrast to prior literature, students' academic motivation and social integration were not associated with students' learning. Students' informal social interaction is strongly associated with students' learning. These findings underline the need to change our focus from the formal context (classroom) to the informal context to optimize student learning and deliver modern medics.

  13. Structure Learning in Bayesian Sensorimotor Integration.

    Directory of Open Access Journals (Sweden)

    Tim Genewein

    2015-08-01

    Full Text Available Previous studies have shown that sensorimotor processing can often be described by Bayesian learning, in particular the integration of prior and feedback information depending on its degree of reliability. Here we test the hypothesis that the integration process itself can be tuned to the statistical structure of the environment. We exposed human participants to a reaching task in a three-dimensional virtual reality environment where we could displace the visual feedback of their hand position in a two dimensional plane. When introducing statistical structure between the two dimensions of the displacement, we found that over the course of several days participants adapted their feedback integration process in order to exploit this structure for performance improvement. In control experiments we found that this adaptation process critically depended on performance feedback and could not be induced by verbal instructions. Our results suggest that structural learning is an important meta-learning component of Bayesian sensorimotor integration.

  14. Up the ANTe: Understanding Entrepreneurial Leadership Learning through Actor-Network Theory

    Science.gov (United States)

    Smith, Sue; Kempster, Steve; Barnes, Stewart

    2017-01-01

    This article explores the role of educators in supporting the development of entrepreneurial leadership learning by creating peer learning networks of owner-managers of small businesses. Using actor-network theory, the authors think through the process of constructing and maintaining a peer learning network (conceived of as an actor-network) and…

  15. Deep Manifold Learning Combined With Convolutional Neural Networks for Action Recognition.

    Science.gov (United States)

    Chen, Xin; Weng, Jian; Lu, Wei; Xu, Jiaming; Weng, Jiasi

    2017-09-15

    Learning deep representations have been applied in action recognition widely. However, there have been a few investigations on how to utilize the structural manifold information among different action videos to enhance the recognition accuracy and efficiency. In this paper, we propose to incorporate the manifold of training samples into deep learning, which is defined as deep manifold learning (DML). The proposed DML framework can be adapted to most existing deep networks to learn more discriminative features for action recognition. When applied to a convolutional neural network, DML embeds the previous convolutional layer's manifold into the next convolutional layer; thus, the discriminative capacity of the next layer can be promoted. We also apply the DML on a restricted Boltzmann machine, which can alleviate the overfitting problem. Experimental results on four standard action databases (i.e., UCF101, HMDB51, KTH, and UCF sports) show that the proposed method outperforms the state-of-the-art methods.

  16. Designing networked learning for innovation in teacher learning groups

    NARCIS (Netherlands)

    Vrieling, Emmy; Wopereis, Iwan

    2017-01-01

    This study searches for guidelines to facilitate teacher-learning groups (TLGs) that aim to create sustainable knowledge (i.e., knowledge-creating TLGs). The ‘Dimensions of Social Learning (DSL) Framework’ is applied as a starting point to analyse the groups’ social configuration. The study explores

  17. Fundamental structures of dynamic social networks

    DEFF Research Database (Denmark)

    Sekara, Vedran; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann

    2016-01-01

    unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit...... a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework......Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships...

  18. Adult Learning in Alternative Food Networks

    Science.gov (United States)

    Etmanski, Catherine; Kajzer Mitchell, Ingrid

    2017-01-01

    This chapter describes the role small-scale organic farmers are playing as adult educators in alternative food networks and as leaders for food systems transformation. Findings are drawn from a survey of organic farmers in British Columbia, Western Canada.

  19. Dynamics and control of diseases in networks with community structure.

    Directory of Open Access Journals (Sweden)

    Marcel Salathé

    2010-04-01

    Full Text Available The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc. depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.

  20. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  1. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  2. Lifelong learning networks for sustainable regional development

    NARCIS (Netherlands)

    De Kraker, Joop; Cörvers, Ron; Ruelle, Christine; Valkering, Pieter

    2010-01-01

    Sustainable regional development is a participatory, multi-actor process, involving a diversity of societal stakeholders, administrators, policy makers, practitioners and scientific experts. In this process, mutual and collective learning plays a major role as participants have to exchange and

  3. Entropy-based generation of supervised neural networks for classification of structured patterns.

    Science.gov (United States)

    Tsai, Hsien-Leing; Lee, Shie-Jue

    2004-03-01

    Sperduti and Starita proposed a new type of neural network which consists of generalized recursive neurons for classification of structures. In this paper, we propose an entropy-based approach for constructing such neural networks for classification of acyclic structured patterns. Given a classification problem, the architecture, i.e., the number of hidden layers and the number of neurons in each hidden layer, and all the values of the link weights associated with the corresponding neural network are automatically determined. Experimental results have shown that the networks constructed by our method can have a better performance, with respect to network size, learning speed, or recognition accuracy, than the networks obtained by other methods.

  4. Robust adaptive learning of feedforward neural networks via LMI optimizations.

    Science.gov (United States)

    Jing, Xingjian

    2012-07-01

    Feedforward neural networks (FNNs) have been extensively applied to various areas such as control, system identification, function approximation, pattern recognition etc. A novel robust control approach to the learning problems of FNNs is further investigated in this study in order to develop efficient learning algorithms which can be implemented with optimal parameter settings and considering noise effect in the data. To this aim, the learning problem of a FNN is cast into a robust output feedback control problem of a discrete time-varying linear dynamic system. New robust learning algorithms with adaptive learning rate are therefore developed, using linear matrix inequality (LMI) techniques to find the appropriate learning rates and to guarantee the fast and robust convergence. Theoretical analysis and examples are given to illustrate the theoretical results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Community and Social Network Sites as Technology Enhanced Learning Environments

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Christiansen, Ellen

    2008-01-01

    This paper examines the affordance of the Danish social networking site Mingler.dk for peer-to-peer learning and development. With inspiration from different theoretical frameworks, the authors argue how learning and development in such social online systems can be conceptualised and analysed....... Theoretically the paper defines development in accordance with Vygotsky's concept of the zone of proximal development, and learning in accordance with Wenger's concept of communities of practice. The authors suggest analysing the learning and development taking place on Mingler.dk by using these concepts...... supplemented by the notion of horizontal learning adopted from Engestrm and Wenger. Their analysis shows how horizontal learning happens by crossing boundaries between several sites of engagement, and how the actors' multiple membership enables the community members to draw on a vast amount of resources from...

  6. Complexity, theory and praxis: researching collaborative learning and tutoring processes in a networked learning community

    OpenAIRE

    de Laat, M.; Lally, V.

    2004-01-01

    This paper explores the complexity of researching networked learning and tutoring on two levels. Firstly, on the theoretical level, we argue that the nature of praxis in networked environments (that is, learning and tutoring) is so complex that no single theoretical model, among those currently available, is a sufficiently powerful, descriptively, rhetorically, inferentially or in its application to real contexts, to provide a framework for a research agenda that takes into account the key as...

  7. Adaptive learning in tracking control based on the dual critic network design.

    Science.gov (United States)

    Ni, Zhen; He, Haibo; Wen, Jinyu

    2013-06-01

    In this paper, we present a new adaptive dynamic programming approach by integrating a reference network that provides an internal goal representation to help the systems learning and optimization. Specifically, we build the reference network on top of the critic network to form a dual critic network design that contains the detailed internal goal representation to help approximate the value function. This internal goal signal, working as the reinforcement signal for the critic network in our design, is adaptively generated by the reference network and can also be adjusted automatically. In this way, we provide an alternative choice rather than crafting the reinforcement signal manually from prior knowledge. In this paper, we adopt the online action-dependent heuristic dynamic programming (ADHDP) design and provide the detailed design of the dual critic network structure. Detailed Lyapunov stability analysis for our proposed approach is presented to support the proposed structure from a theoretical point of view. Furthermore, we also develop a virtual reality platform to demonstrate the real-time simulation of our approach under different disturbance situations. The overall adaptive learning performance has been tested on two tracking control benchmarks with a tracking filter. For comparative studies, we also present the tracking performance with the typical ADHDP, and the simulation results justify the improved performance with our approach.

  8. Application of structured support vector machine backpropagation to a convolutional neural network for human pose estimation.

    Science.gov (United States)

    Witoonchart, Peerajak; Chongstitvatana, Prabhas

    2017-08-01

    In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Machine learning using a higher order correlation network

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.C.; Doolen, G.; Chen, H.H.; Sun, G.Z.; Maxwell, T.; Lee, H.Y.

    1986-01-01

    A high-order correlation tensor formalism for neural networks is described. The model can simulate auto associative, heteroassociative, as well as multiassociative memory. For the autoassociative model, simulation results show a drastic increase in the memory capacity and speed over that of the standard Hopfield-like correlation matrix methods. The possibility of using multiassociative memory for a learning universal inference network is also discussed. 9 refs., 5 figs.

  10. Social Networking Sites and Addiction: Ten Lessons Learned

    OpenAIRE

    Daria J. Kuss; Mark D. Griffiths

    2017-01-01

    Online social networking sites (SNSs) have gained increasing popularity in the last decade, with individuals engaging in SNSs to connect with others who share similar interests. The perceived need to be online may result in compulsive use of SNSs, which in extreme cases may result in symptoms and consequences traditionally associated with substance-related addictions. In order to present new insights into online social networking and addiction, in this paper, 10 lessons learned concerning onl...

  11. How structure determines correlations in neuronal networks

    National Research Council Canada - National Science Library

    Pernice, Volker; Staude, Benjamin; Cardanobile, Stefano; Rotter, Stefan

    2011-01-01

    Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting...

  12. Towards structural controllability of local-world networks

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shiwen, E-mail: sunsw80@126.com [Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Computer Vision and System (Tianjin University of Technology), Ministry of Education, Tianjin 300384 (China); Ma, Yilin; Wu, Yafang; Wang, Li; Xia, Chengyi [Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Computer Vision and System (Tianjin University of Technology), Ministry of Education, Tianjin 300384 (China)

    2016-05-20

    Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world effect is an important ingredient which should be taken into consideration in the complete description of real-world complex systems. In this letter, structural controllability of a class of local-world networks is investigated. Through extensive numerical simulations, firstly, effects of local world size M and network size N on structural controllability are examined. For local-world networks with sparse topological configuration, compared to network size, local-world size can induce stronger influence on controllability, however, for dense networks, controllability is greatly affected by network size and local-world effect can be neglected. Secondly, relationships between controllability and topological properties are analyzed. Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is discussed. These results can help to deepen the understanding of structural complexity and connectivity patterns of complex systems. - Highlights: • Structural controllability of a class of local-world networks is investigated. • For sparse local-world networks, compared to network size, local-world size can bring stronger influence on controllability. • For dense networks, controllability is greatly affected by network size and the effect of local-world size can be neglected. • Structural controllability against targeted node attacks is discussed.

  13. Gamification of learning deactivates the Default Mode Network

    Directory of Open Access Journals (Sweden)

    Paul Alexander Howard-Jones

    2016-01-01

    Full Text Available We hypothesised that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN and deactivation of Default Mode Network (DMN regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer, Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards. DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

  14. Gamification of Learning Deactivates the Default Mode Network.

    Science.gov (United States)

    Howard-Jones, Paul A; Jay, Tim; Mason, Alice; Jones, Harvey

    2015-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

  15. The Use Of Social Networking Sites For Learning In Institutions Of Higher Learning

    Directory of Open Access Journals (Sweden)

    Mange Gladys Nkatha

    2015-08-01

    Full Text Available Abstract Institutions of higher learning are facing greater challenges to change and subjected to various transformations in the surrounding environment including technology. These challenge and motivate them to explore new ways to improve their teaching approaches. This study sought to investigate the use of social networking site in institutions of higher learning. To this end two objectives were formulated 1 to investigate the current state of the use of social networking sites by the students 2 investigate how social networking sites can be used to promote authentic learning in institutions of higher learning. The study adopted exploratory approach using descriptive survey design where a sample of 10 67 students were picked from Jomo Kenyatta University of Agriculture and Technology JKUAT main campus. The findings indicate the use of social networking sites is a viable option as the students are not only members of social networking sites but also that majority have access to the requisite technological devices. Additionally recommendations for ensuring authentic learning were presented. The researcher recommends the exploration of the leveraging of the existing social networking sites for learning in conjunction with key stakeholders.

  16. "FORCE" learning in recurrent neural networks as data assimilation

    Science.gov (United States)

    Duane, Gregory S.

    2017-12-01

    It is shown that the "FORCE" algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning algorithm, leads to an extension to include interactions between the weight updates for different neurons, and can represent relationships within groups of multiple target output signals.

  17. Social inheritance can explain the structure of animal social networks

    Science.gov (United States)

    Ilany, Amiyaal; Akçay, Erol

    2016-01-01

    The social network structure of animal populations has major implications for survival, reproductive success, sexual selection and pathogen transmission of individuals. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose a simple and generally applicable model of social network structure. We consider the emergence of network structure as a result of social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output with data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that important observed properties of social networks, including heritability of network position or assortative associations, can be understood as consequences of social inheritance. PMID:27352101

  18. Social inheritance can explain the structure of animal social networks.

    Science.gov (United States)

    Ilany, Amiyaal; Akçay, Erol

    2016-06-28

    The social network structure of animal populations has major implications for survival, reproductive success, sexual selection and pathogen transmission of individuals. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose a simple and generally applicable model of social network structure. We consider the emergence of network structure as a result of social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output with data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that important observed properties of social networks, including heritability of network position or assortative associations, can be understood as consequences of social inheritance.

  19. PROSPECTS OF REGIONAL NETWORK STRUCTURES IN THE SOUTHERN FEDERAL DISTRICT

    Directory of Open Access Journals (Sweden)

    I. V. Morozov

    2014-01-01

    Full Text Available The article reveals the possibility of the Southern Federal District to form regional network structures. The prospects for the formation of networks in the region in relation to the Olympic Winter Games Sochi 2014.

  20. Novel Machine Learning-Based Techniques for Efficient Resource Allocation in Next Generation Wireless Networks

    KAUST Repository

    AlQuerm, Ismail A.

    2018-02-21

    There is a large demand for applications of high data rates in wireless networks. These networks are becoming more complex and challenging to manage due to the heterogeneity of users and applications specifically in sophisticated networks such as the upcoming 5G. Energy efficiency in the future 5G network is one of the essential problems that needs consideration due to the interference and heterogeneity of the network topology. Smart resource allocation, environmental adaptivity, user-awareness and energy efficiency are essential features in the future networks. It is important to support these features at different networks topologies with various applications. Cognitive radio has been found to be the paradigm that is able to satisfy the above requirements. It is a very interdisciplinary topic that incorporates flexible system architectures, machine learning, context awareness and cooperative networking. Mitola’s vision about cognitive radio intended to build context-sensitive smart radios that are able to adapt to the wireless environment conditions while maintaining quality of service support for different applications. Artificial intelligence techniques including heuristics algorithms and machine learning are the shining tools that are employed to serve the new vision of cognitive radio. In addition, these techniques show a potential to be utilized in an efficient resource allocation for the upcoming 5G networks’ structures such as heterogeneous multi-tier 5G networks and heterogeneous cloud radio access networks due to their capability to allocate resources according to real-time data analytics. In this thesis, we study cognitive radio from a system point of view focusing closely on architectures, artificial intelligence techniques that can enable intelligent radio resource allocation and efficient radio parameters reconfiguration. We propose a modular cognitive resource management architecture, which facilitates a development of flexible control for

  1. Few-shot learning in deep networks through global prototyping.

    Science.gov (United States)

    Blaes, Sebastian; Burwick, Thomas

    2017-10-01

    Training a deep convolution neural network (CNN) to succeed in visual object classification usually requires a great number of examples. Here, starting from such a pre-learned CNN, we study the task of extending the network to classify additional categories on the basis of only few examples ("few-shot learning"). We find that a simple and fast prototype-based learning procedure in the global feature layers ("Global Prototype Learning", GPL) leads to some remarkably good classification results for a large portion of the new classes. It requires only up to ten examples for the new classes to reach a plateau in performance. To understand this few-shot learning performance resulting from GPL as well as the performance of the original network, we use the t-SNE method (Maaten and Hinton, 2008) to visualize clusters of object category examples. This reveals the strong connection between classification performance and data distribution and explains why some new categories only need few examples for learning while others resist good classification results even when trained with many more examples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Community Structure in Time-Dependent, Multiscale, and Multiplex Networks

    OpenAIRE

    Mucha, Peter J; Richardson, Thomas; Macon, Kevin; Porter, Mason A.; Onnela, Jukka-Pekka

    2009-01-01

    Network science is an interdisciplinary endeavor, with methods and applications drawn from across the natural, social, and information sciences. A prominent problem in network science is the algorithmic detection of tightly-connected groups of nodes known as communities. We developed a generalized framework of network quality functions that allowed us to study the community structure of arbitrary multislice networks, which are combinations of individual networks coupled through links that con...

  3. Ensemble learning of genetic networks from time-series expression data.

    Science.gov (United States)

    Nam, Dougu; Yoon, Sung Ho; Kim, Jihyun F

    2007-12-01

    Inferring genetic networks from time-series expression data has been a great deal of interest. In most cases, however, the number of genes exceeds that of data points which, in principle, makes it impossible to recover the underlying networks. To address the dimensionality problem, we apply the subset selection method to a linear system of difference equations. Previous approaches assign the single most likely combination of regulators to each target gene, which often causes over-fitting of the small number of data. Here, we propose a new algorithm, named LEARNe, which merges the predictions from all the combinations of regulators that have a certain level of likelihood. LEARNe provides more accurate and robust predictions than previous methods for the structure of genetic networks under the linear system model. We tested LEARNe for reconstructing the SOS regulatory network of Escherichia coli and the cell cycle regulatory network of yeast from real experimental data, where LEARNe also exhibited better performances than previous methods. The MATLAB codes are available upon request from the authors.

  4. Learning Languages: The Journal of the National Network for Early Language Learning, 1997-1998.

    Science.gov (United States)

    Learning Languages: The Journal of the National Network for Early Language Learning, 1998

    1998-01-01

    This document consists of the three issues of the journal "Learning Languages" published during volume year 3. These issues contain the following major articles: "A National Network for Early Language Learning (NNELL): A Brief History, 1987-1997;""Juguetes Fantasticos" (Mari Haas); "A Perspective on the Cultural…

  5. Learning Networks for Lifelong Learning: An Exploratory Survey on Distance Learners’ preferences

    NARCIS (Netherlands)

    Berlanga, Adriana; Rusman, Ellen; Eshuis, Jannes; Hermans, Henry; Sloep, Peter

    2009-01-01

    Berlanga, A. J., Rusman, E., Eshuis, J., Hermans, H., & Sloep, P. B. (2010). Learning Networks for Lifelong Learning: An Exploratory Survey on Distance Learners’ preferences. In L. Dirckinck-Holmfeld, V. Hodgson, C. Jones, M. de Laat, D. McConnell, & T. Ryberg (Eds.), Proceedings of the 7th

  6. Engaging students in learning through social networking : users’ perspectives

    OpenAIRE

    Guha, Ishika

    2009-01-01

    The aim of this study is to show the impact of social networking sites (SNS) on students (including international students). Social networking sites are one of many technologies in a fast changing Web 2.0 world. They are very popular among the so-called ‘Google generation’ and are used for both social communication and learning purposes. Being an international student, I had benefited from using different social networking sites that helped me to connect with family and friends. The discovery...

  7. Phenology drives mutualistic network structure and diversity

    NARCIS (Netherlands)

    Encinas Viso, Francisco; Revilla, Tomas A; Etienne, Rampal S.

    Several network properties have been identified as determinants of the stability and complexity of mutualistic networks. However, it is unclear which mechanisms give rise to these network properties. Phenology seems important, because it shapes the topology of mutualistic networks, but its effects

  8. Learning by Knowledge Networking across Cultures

    DEFF Research Database (Denmark)

    Wangel, Arne; Stærdahl, Jens; Bransholm Pedersen, Kirsten

    2005-01-01

    some of the obstacles into resources for knowledge sharing. However, students have stressed their positive experience of cross-cultural communication. While a joint course of three week duration by itself may involve only limited cross-cultural learning, serving primarily as an introduction to a long......-term field study, the course efficiently initiates the involvement of the students into, and their interaction with, the socio-political and cultural context of the host country. Thus, learning across cultures requires a longer term process whereby mixed teams leave the classroom, collect data together...

  9. Analysis of Ego Network Structure in Online Social Networks

    OpenAIRE

    Arnaboldi, Valerio; Conti, Marco; Passarella, Andrea; Pezzoni, Fabio

    2012-01-01

    Results about offline social networks demonstrated that the social relationships that an individual (ego) maintains with other people (alters) can be organised into different groups according to the ego network model. In this model the ego can be seen as the centre of a series of layers of increasing size. Social relationships between ego and alters in layers close to ego are stronger than those belonging to more external layers. Online Social Networks are becoming a fundamental medium for hu...

  10. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    Science.gov (United States)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  11. Neurodynamics of learning and network performance

    Science.gov (United States)

    Wilson, Charles L.; Blue, James L.; Omidvar, Omid M.

    1997-07-01

    A simple dynamic model of a neural network is presented. Using the dynamic model of a neural network, we improve the performance of a three-layer multilayer perceptron (MLP). The dynamic model of a MLP is used to make fundamental changes in the network optimization strategy. These changes are: neuron activation functions are used, which reduces the probability of singular Jacobians; successive regularization is used to constrain the volume of the weight space being minimized; Boltzmann pruning is used to constrain the dimension of the weight space; and prior class probabilities are used to normalize all error calculations, so that statistically significant samples of rare but important classes can be included without distortion of the error surface. All four of these changes are made in the inner loop of a conjugate gradient optimization iteration and are intended to simplify the training dynamics of the optimization. On handprinted digits and fingerprint classification problems, these modifications improve error-reject performance by factors between 2 and 4 and reduce network size by 40 to 60%.

  12. Will Learning Social Inclusion Assist Rural Networks

    Science.gov (United States)

    Marchant, Jillian

    2013-01-01

    Current research on social networks in some rural communities reports continuing demise despite efforts to build resilient communities. Several factors are identified as contributing to social decline including globalisation and rural social characteristics. Particular rural social characteristics, such as strong social bonds among members of…

  13. Understanding Knowledge Network, Learning and Connectivism

    Science.gov (United States)

    AlDahdouh, Alaa A.; Osório, António J.; Caires, Susana

    2015-01-01

    Behaviorism, Cognitivism, Constructivism and other growing theories such as Actor-Network and Connectivism are circulating in the educational field. For each, there are allies who stand behind research evidence and consistency of observation. Meantime, those existing theories dominate the field until the background is changed or new concrete…

  14. Markov Chain Monte Carlo Bayesian Learning for Neural Networks

    Science.gov (United States)

    Goodrich, Michael S.

    2011-01-01

    Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.

  15. Predictive learning with structured (grouped) data.

    Science.gov (United States)

    Liang, Lichen; Cai, Feng; Cherkassky, Vladimir

    2009-01-01

    Many applications of machine learning involve sparse and heterogeneous data. For example, estimation of diagnostic models using patients' data from clinical studies requires effective integration of genetic, clinical and demographic data. Typically all heterogeneous inputs are properly encoded and mapped onto a single feature vector, used for estimating a classifier. This approach, known as standard inductive learning, is used in most application studies. Recently, several new learning methodologies have emerged. For instance, when training data can be naturally separated into several groups (or structured), we can view model estimation for each group as a separate task, leading to a Multi-Task Learning framework. Similarly, a setting where the training data are structured, but the objective is to estimate a single predictive model (for all groups), leads to the Learning with Structured Data and SVM+ methodology recently proposed by Vapnik [(2006). Empirical inference science afterword of 2006. Springer]. This paper describes a biomedical application of these new data modeling approaches for modeling heterogeneous data using several medical data sets. The characteristics of group variables are analyzed. Our comparisons demonstrate the advantages and limitations of these new approaches, relative to standard inductive SVM classifiers.

  16. Structural equation models from paths to networks

    CERN Document Server

    Westland, J Christopher

    2015-01-01

    This compact reference surveys the full range of available structural equation modeling (SEM) methodologies.  It reviews applications in a broad range of disciplines, particularly in the social sciences where many key concepts are not directly observable.  This is the first book to present SEM’s development in its proper historical context–essential to understanding the application, strengths and weaknesses of each particular method.  This book also surveys the emerging path and network approaches that complement and enhance SEM, and that will grow in importance in the near future.  SEM’s ability to accommodate unobservable theory constructs through latent variables is of significant importance to social scientists.  Latent variable theory and application are comprehensively explained, and methods are presented for extending their power, including guidelines for data preparation, sample size calculation, and the special treatment of Likert scale data.  Tables of software, methodologies and fit st...

  17. Virtual learning networks for sustainable development

    NARCIS (Netherlands)

    De Kraker, Joop; Cörvers, Ron

    2010-01-01

    Sustainable development is a participatory, multi-actor process. In this process, learning plays a major role as participants have to exchange and integrate a diversity of perspectives and types of knowledge and expertise in order to arrive at innovative, jointly supported solutions. Virtual

  18. Experiment in Collaborative Learning Network for Enhanced ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Since 1961, CUSO has sent approximately 11 000 Canadians abroad to work at the local level on various development issues. CUSO is now in the process of merging with Voluntary Services Overseas (VSO) Canada, and is seeking to validate the importance of knowledge sharing and collaborative learning in ...

  19. Transfer Learning to Accelerate Interface Structure Searches

    Science.gov (United States)

    Oda, Hiromi; Kiyohara, Shin; Tsuda, Koji; Mizoguchi, Teruyasu

    2017-12-01

    Interfaces have atomic structures that are significantly different from those in the bulk, and play crucial roles in material properties. The central structures at the interfaces that provide properties have been extensively investigated. However, determination of even one interface structure requires searching for the stable configuration among many thousands of candidates. Here, a powerful combination of machine learning techniques based on kriging and transfer learning (TL) is proposed as a method for unveiling the interface structures. Using the kriging+TL method, thirty-three grain boundaries were systematically determined from 1,650,660 candidates in only 462 calculations, representing an increase in efficiency over conventional all-candidate calculation methods, by a factor of approximately 3,600.

  20. Prespeech motor learning in a neural network using reinforcement☆

    Science.gov (United States)

    Warlaumont, Anne S.; Westermann, Gert; Buder, Eugene H.; Oller, D. Kimbrough

    2012-01-01

    Vocal motor development in infancy provides a crucial foundation for language development. Some significant early accomplishments include learning to control the process of phonation (the production of sound at the larynx) and learning to produce the sounds of one’s language. Previous work has shown that social reinforcement shapes the kinds of vocalizations infants produce. We present a neural network model that provides an account of how vocal learning may be guided by reinforcement. The model consists of a self-organizing map that outputs to muscles of a realistic vocalization synthesizer. Vocalizations are spontaneously produced by the network. If a vocalization meets certain acoustic criteria, it is reinforced, and the weights are updated to make similar muscle activations increasingly likely to recur. We ran simulations of the model under various reinforcement criteria and tested the types of vocalizations it produced after learning in the differ-ent conditions. When reinforcement was contingent on the production of phonated (i.e. voiced) sounds, the network’s post learning productions were almost always phonated, whereas when reinforcement was not contingent on phonation, the network’s post-learning productions were almost always not phonated. When reinforcement was contingent on both phonation and proximity to English vowels as opposed to Korean vowels, the model’s post-learning productions were more likely to resemble the English vowels and vice versa. PMID:23275137

  1. Learning curves for stochastic gradient descent in linear feedforward networks.

    Science.gov (United States)

    Werfel, Justin; Xie, Xiaohui; Seung, H Sebastian

    2005-12-01

    Gradient-following learning methods can encounter problems of implementation in many applications, and stochastic variants are sometimes used to overcome these difficulties. We analyze three online training methods used with a linear perceptron: direct gradient descent, node perturbation, and weight perturbation. Learning speed is defined as the rate of exponential decay in the learning curves. When the scalar parameter that controls the size of weight updates is chosen to maximize learning speed, node perturbation is slower than direct gradient descent by a factor equal to the number of output units; weight perturbation is slower still by an additional factor equal to the number of input units. Parallel perturbation allows faster learning than sequential perturbation, by a factor that does not depend on network size. We also characterize how uncertainty in quantities used in the stochastic updates affects the learning curves. This study suggests that in practice, weight perturbation may be slow for large networks, and node perturbation can have performance comparable to that of direct gradient descent when there are few output units. However, these statements depend on the specifics of the learning problem, such as the input distribution and the target function, and are not universally applicable.

  2. Dynamics of learning near singularities in radial basis function networks.

    Science.gov (United States)

    Wei, Haikun; Amari, Shun-Ichi

    2008-09-01

    The radial basis function (RBF) networks are one of the most widely used models for function approximation in the regression problem. In the learning paradigm, the best approximation is recursively or iteratively searched for based on observed data (teacher signals). One encounters difficulties in such a process when two component basis functions become identical, or when the magnitude of one component becomes null. In this case, the number of the components reduces by one, and then the reduced component recovers as the learning process proceeds further, provided such a component is necessary for the best approximation. Strange behaviors, especially the plateau phenomena, have been observed in dynamics of learning when such reduction occurs. There exist singularities in the space of parameters, and the above reduction takes place at the singular regions. This paper focuses on a detailed analysis of the dynamical behaviors of learning near the overlap and elimination singularities in RBF networks, based on the averaged learning equation that is applicable to both on-line and batch mode learning. We analyze the stability on the overlap singularity by solving the eigenvalues of the Hessian explicitly. Based on the stability analysis, we plot the analytical dynamic vector fields near the singularity, which are then compared to those real trajectories obtained by a numeric method. We also confirm the existence of the plateaus in both batch and on-line learning by simulation.

  3. ‘Living' theory: a pedagogical framework for process support in networked learning

    Directory of Open Access Journals (Sweden)

    Philipa Levy

    2006-12-01

    Full Text Available This paper focuses on the broad outcome of an action research project in which practical theory was developed in the field of networked learning through case-study analysis of learners' experiences and critical evaluation of educational practice. It begins by briefly discussing the pedagogical approach adopted for the case-study course and the action research methodology. It then identifies key dimensions of four interconnected developmental processes–orientation, communication, socialisation and organisation–that were associated with ‘learning to learn' in the course's networked environment, and offers a flavour of participants' experiences in relation to these processes. A number of key evaluation issues that arose are highlighted. Finally, the paper presents the broad conceptual framework for the design and facilitation of process support in networked learning that was derived from this research. The framework proposes a strong, explicit focus on support for process as well as domain learning, and progression from tighter to looser design and facilitation structures for process-focused (as well as domain-focused learning tasks.

  4. Epidemic spreading on complex networks with community structures

    CERN Document Server

    Stegehuis, Clara; van Leeuwaarden, Johan S H

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both \\textit{enforce} as well as \\textit{inhibit} diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities.

  5. Using Social Network and Dropbox in Blended Learning: an Application to University Education

    Directory of Open Access Journals (Sweden)

    Justo de Jorge Moreno

    2012-12-01

    Full Text Available The main objective of this study is to analyze the use of the Social Networking and dropbox in blended learning by University students. We try identifying this method, over the student’s performance. The results show that the implementation of blended learning has a positive effect on in learning outcomes. The use of the Knowledge Management process has enabled captures a three-factor structure that reflected the five types of knowledge. The segmentation of the student sample analyzed using cluster technique, has established a clear typology of four groups. Students with higher levels of learning are related to the increased use of resources used and more proactive in blended learning.

  6. Recommending Learning Activities in Social Network Using Data Mining Algorithms

    Science.gov (United States)

    Mahnane, Lamia

    In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). "NSN-AP-CF" processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the…

  7. Regularized negative correlation learning for neural network ensembles.

    Science.gov (United States)

    Chen, Huanhuan; Yao, Xin

    2009-12-01

    Negative correlation learning (NCL) is a neural network ensemble learning algorithm that introduces a correlation penalty term to the cost function of each individual network so that each neural network minimizes its mean square error (MSE) together with the correlation of the ensemble. This paper analyzes NCL and reveals that the training of NCL (when lambda = 1) corresponds to training the entire ensemble as a single learning machine that only minimizes the MSE without regularization. This analysis explains the reason why NCL is prone to overfitting the noise in the training set. This paper also demonstrates that tuning the correlation parameter lambda in NCL by cross validation cannot overcome the overfitting problem. The paper analyzes this problem and proposes the regularized negative correlation learning (RNCL) algorithm which incorporates an additional regularization term for the whole ensemble. RNCL decomposes the ensemble's training objectives, including MSE and regularization, into a set of sub-objectives, and each sub-objective is implemented by an individual neural network. In this paper, we also provide a Bayesian interpretation for RNCL and provide an automatic algorithm to optimize regularization parameters based on Bayesian inference. The RNCL formulation is applicable to any nonlinear estimator minimizing the MSE. The experiments on synthetic as well as real-world data sets demonstrate that RNCL achieves better performance than NCL, especially when the noise level is nontrivial in the data set.

  8. Neural Networks that Learn Temporal Sequences by Selection

    Science.gov (United States)

    Dehaene, Stanislas; Changeux, Jean-Pierre; Nadal, Jean-Pierre

    1987-05-01

    A model for formal neural networks that learn temporal sequences by selection is proposed on the basis of observations on the acquisition of song by birds, on sequence-detecting neurons, and on allosteric receptors. The model relies on hypothetical elementary devices made up of three neurons, the synaptic triads, which yield short-term modification of synaptic efficacy through heterosynaptic interactions, and on a local Hebbian learning rule. The functional units postulated are mutually inhibiting clusters of synergic neurons and bundles of synapses. Networks formalized on this basis display capacities for passive recognition and for production of temporal sequences that may include repetitions. Introduction of the learning rule leads to the differentiation of sequence-detecting neurons and to the stabilization of ongoing temporal sequences. A network architecture composed of three layers of neuronal clusters is shown to exhibit active recognition and learning of time sequences by selection: the network spontaneously produces prerepresentations that are selected according to their resonance with the input percepts. Predictions of the model are discussed.

  9. Competitive Learning Neural Network Ensemble Weighted by Predicted Performance

    Science.gov (United States)

    Ye, Qiang

    2010-01-01

    Ensemble approaches have been shown to enhance classification by combining the outputs from a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble performance. Multi-task learning is an important characteristic for Neural Network classifiers. Introducing a secondary output unit that receives different…

  10. Recommending Learning Activities in Social Network Using Data Mining Algorithms

    Science.gov (United States)

    Mahnane, Lamia

    2017-01-01

    In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). "NSN-AP-CF" processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the…

  11. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    , explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks. We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  12. Optimizing Knowledge Sharing in Learning Networks through Peer Tutoring

    NARCIS (Netherlands)

    Hsiao, Amy; Brouns, Francis; Kester, Liesbeth; Sloep, Peter

    2009-01-01

    Hsiao, Y. P., Brouns, F., Kester, L., & Sloep, P. (2009). Optimizing Knowledge Sharing in Learning Networks through Peer Tutoring. Presentation at the IADIS international conference on Cognition and Exploratory in Digital Age (CELDA 2009). November, 20-22, 2009, Rome, Italy.

  13. Learning Initiatives for Network Economies in Asia (LIRNEasia ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Learning Initiatives for Network Economies in Asia (LIRNEasia) : Building Capacity in ICT Policy. It is now generally accepted that affordable, effective telecommunication services play an integral role in development. Although there has been strong growth in connectivity in Asia, those who have benefited most are the urban ...

  14. Your Personal Learning Network: Professional Development on Demand

    Science.gov (United States)

    Bauer, William I.

    2010-01-01

    Web 2.0 tools and resources can enhance our efficiency and effectiveness as music educators, supporting personal learning networks for ongoing professional growth and development. This article includes (a) an explanation of Really Simple Syndication (RSS) and the use of an RSS reader/aggregator; (b) a discussion of blogs, podcasts, wikis,…

  15. Learning Networks and the Journey of "Becoming Doctor"

    Science.gov (United States)

    Barnacle, Robyn; Mewburn, Inger

    2010-01-01

    Scholars such as Kamler and Thompson argue that identity formation has a key role to play in doctoral learning, particularly the process of thesis writing. This article builds on these insights to address other sites in which scholarly identity is performed within doctoral candidature. Drawing on actor-network theory, the authors examine the role…

  16. Implementation of an Adaptive Learning System Using a Bayesian Network

    Science.gov (United States)

    Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki

    2015-01-01

    An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…

  17. Learning Neuroscience: An Interactive Case-Based Online Network (ICON).

    Science.gov (United States)

    Quattrochi, James J.; Pasquale, Susan; Cerva, Barbara; Lester, John E.

    2002-01-01

    Presents an interactive, case-based online network (ICON) that provides a learning environment that integrates student thinking across different concentration tracks and allows students to get away from interpreting vast amounts of available information, move toward selecting useful information, recognize discriminating findings, and build a…

  18. Social Capital Theory: Implications for Women's Networking and Learning

    Science.gov (United States)

    Alfred, Mary V.

    2009-01-01

    This chapter describes social capital theory as a framework for exploring women's networking and social capital resources. It presents the foundational assumptions of the theory, the benefits and risks of social capital engagement, a feminist critique of social capital, and the role of social capital in adult learning.

  19. Evaluating Action Learning: A Critical Realist Complex Network Theory Approach

    Science.gov (United States)

    Burgoyne, John G.

    2010-01-01

    This largely theoretical paper will argue the case for the usefulness of applying network and complex adaptive systems theory to an understanding of action learning and the challenge it is evaluating. This approach, it will be argued, is particularly helpful in the context of improving capability in dealing with wicked problems spread around…

  20. Narrative Structure in Inquiry-Based Learning

    Science.gov (United States)

    Kinsey, L. Christine; Moore, Teresa E.

    2015-01-01

    Our goal with this paper is three-fold. We want to increase awareness of inquiry-based learning by presenting the strategy we use to develop and implement lessons and activities. We describe our approach to structuring lessons in mathematics in a way that engages the students by using language and constructs with which they are familiar from other…

  1. A mathematical model for networks with structures in the mesoscale

    OpenAIRE

    Criado, Regino; Flores, Julio; Gacia Del Amo, Alejandro Jose; Gómez, Jesus; Romance, Miguel

    2011-01-01

    Abstract The new concept of multilevel network is introduced in order to embody some topological properties of complex systems with structures in the mesoscale which are not completely captured by the classical models. This new model, which generalizes the hyper-network and hyper-structure models, fits perfectly with several real-life complex systems, including social and public transportation networks. We present an analysis of the structural properties of the mu...

  2. Multilabel user classification using the community structure of online networks.

    Science.gov (United States)

    Rizos, Georgios; Papadopoulos, Symeon; Kompatsiaris, Yiannis

    2017-01-01

    We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE), an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user's graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score.

  3. Multilabel user classification using the community structure of online networks.

    Directory of Open Access Journals (Sweden)

    Georgios Rizos

    Full Text Available We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE, an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user's graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score.

  4. Distributed Jointly Sparse Multitask Learning Over Networks.

    Science.gov (United States)

    Li, Chunguang; Huang, Songyan; Liu, Ying; Zhang, Zhaoyang

    2018-01-01

    Distributed data processing over networks has received a lot of attention due to its wide applicability. In this paper, we consider the multitask problem of in-network distributed estimation. For the multitask problem, the unknown parameter vectors (tasks) for different nodes can be different. Moreover, considering some real application scenarios, it is also assumed that there are some similarities among the tasks. Thus, the intertask cooperation is helpful to enhance the estimation performance. In this paper, we exploit an additional special characteristic of the vectors of interest, namely, joint sparsity, aiming to further enhance the estimation performance. A distributed jointly sparse multitask algorithm for the collaborative sparse estimation problem is derived. In addition, an adaptive intertask cooperation strategy is adopted to improve the robustness against the degree of difference among the tasks. The performance of the proposed algorithm is analyzed theoretically, and its effectiveness is verified by some simulations.

  5. Evolving networks-Using past structure to predict the future

    Science.gov (United States)

    Shang, Ke-ke; Yan, Wei-sheng; Small, Michael

    2016-08-01

    Many previous studies on link prediction have focused on using common neighbors to predict the existence of links between pairs of nodes. More broadly, research into the structural properties of evolving temporal networks and temporal link prediction methods have recently attracted increasing attention. In this study, for the first time, we examine the use of links between a pair of nodes to predict their common neighbors and analyze the relationship between the weight and the structure in static networks, evolving networks, and in the corresponding randomized networks. We propose both new unweighted and weighted prediction methods and use six kinds of real networks to test our algorithms. In unweighted networks, we find that if a pair of nodes connect to each other in the current network, they will have a higher probability to connect common nodes both in the current and the future networks-and the probability will decrease with the increase of the number of neighbors. Furthermore, we find that the original networks have their particular structure and statistical characteristics which benefit link prediction. In weighted networks, the prediction algorithm performance of networks which are dominated by human factors decrease with the decrease of weight and are in general better in static networks. Furthermore, we find that geographical position and link weight both have significant influence on the transport network. Moreover, the evolving financial network has the lowest predictability. In addition, we find that the structure of non-social networks has more robustness than social networks. The structure of engineering networks has both best predictability and also robustness.

  6. Network nestedness as generalized core-periphery structures

    CERN Document Server

    Lee, Sang Hoon

    2016-01-01

    The concept of nestedness, in particular for ecological and economical networks, has been introduced as a structural characteristic of real interacting systems. We suggest that the nestedness is in fact another way to express a mesoscale network property called the core-periphery structure. With real ecological mutualistic networks and synthetic model networks, we reveal the strong correlation between the nestedness and core-peripheriness, by defining the network-level measures for nestedness and core-peripheriness in case of weighted and bipartite networks. However, at the same time, via more sophisticated null-model analysis, we also discover that the degree (the number of connected neighbors of a node) distribution poses quite severe restrictions on the possible nestedness and core-peripheriness parameter space. Therefore, there must exist structurally interwoven properties in more fundamental levels of network formation, behind this seemingly obvious relation between nestedness and core-periphery structur...

  7. The effects of cultural learning in populations of neural networks.

    Science.gov (United States)

    Curran, Dara; O'Riordan, Colm

    2007-01-01

    Population learning can be described as the iterative Darwinian process of fitness-based selection and genetic transfer of information leading to populations of higher fitness and is often simulated using genetic algorithms. Cultural learning describes the process of information transfer between individuals in a population through non-genetic means. Cultural learning has been simulated by combining genetic algorithms and neural networks using a teacher-pupil scenario where highly fit individuals are selected as teachers and instruct the next generation. By examining the innate fitness of a population (i.e., the fitness of the population measured before any cultural learning takes place), it is possible to examine the effects of cultural learning on the population's genetic makeup. Our model explores the effect of cultural learning on a population and employs three benchmark sequential decision tasks as the evolutionary task for the population: connect-four, tic-tac-toe, and blackjack. Experiments are conducted with populations employing population learning alone and populations combining population and cultural learning. The article presents results showing the gradual transfer of knowledge from genes to the cultural process, illustrated by the simultaneous decrease in the population's innate fitness and the increase of its acquired fitness measured after learning takes place.

  8. Learner Views about Cooperative Learning in Social Learning Networks

    Science.gov (United States)

    Cankaya, Serkan; Yunkul, Eyup

    2018-01-01

    The purpose of this study was to reveal the attitudes and views of university students about the use of Edmodo as a cooperative learning environment. In the research process, the students were divided into groups of 4 or 5 within the scope of a course given in the department of Computer Education and Instructional Technology. For each group,…

  9. On Learning Cluster Coefficient of Private Networks.

    Science.gov (United States)

    Wang, Yue; Wu, Xintao; Zhu, Jun; Xiang, Yang

    2012-01-01

    Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as clustering coefficient or modularity often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we treat a graph statistics as a function f and develop a divide and conquer approach to enforce differential privacy. The basic procedure of this approach is to first decompose the target computation f into several less complex unit computations f1, …, fm connected by basic mathematical operations (e.g., addition, subtraction, multiplication, division), then perturb the output of each fi with Laplace noise derived from its own sensitivity value and the distributed privacy threshold ε i , and finally combine those perturbed fi as the perturbed output of computation f. We examine how various operations affect the accuracy of complex computations. When unit computations have large global sensitivity values, we enforce the differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We illustrate our approach by using clustering coefficient, which is a popular statistics used in social network analysis. Empirical evaluations on five real social networks and various synthetic graphs generated from three random graph models show the developed divide and conquer approach outperforms the direct approach.

  10. How do general practice residents use social networking sites in asynchronous distance learning?

    Science.gov (United States)

    Maisonneuve, Hubert; Chambe, Juliette; Lorenzo, Mathieu; Pelaccia, Thierry

    2015-09-21

    Blended learning environments - involving both face-to-face and remote interactions - make it easier to adapt learning programs to constraints such as residents' location and low teacher-student ratio. Social networking sites (SNS) such as Facebook®, while not originally intended to be used as learning environments, may be adapted for the distance-learning part of training programs. The purpose of our study was to explore the use of SNS for asynchronous distance learning in a blended learning environment as well as its influence on learners' face-to-face interactions. We conducted a qualitative study and carried out semi-structured interviews. We performed purposeful sampling for maximal variation to include eight general practice residents in 2(nd) and 3(rd) year training. A thematic analysis was performed. The social integration of SNS facilitates the engagement of users in their learning tasks. This may also stimulate students' interactions and group cohesion when members meet up in person. Most of the general practice residents who work in the blended learning environment we studied had a positive appraisal on their use of SNS. In particular, we report a positive impact on their engagement in learning and their participation in discussions during face-to-face instruction. Further studies are needed in order to evaluate the effectiveness of SNS in blended learning environments and the appropriation of SNS by teachers.

  11. Network-level structural covariance in the developing brain.

    Science.gov (United States)

    Zielinski, Brandon A; Gennatas, Efstathios D; Zhou, Juan; Seeley, William W

    2010-10-19

    Intrinsic or resting state functional connectivity MRI and structural covariance MRI have begun to reveal the adult human brain's multiple network architectures. How and when these networks emerge during development remains unclear, but understanding ontogeny could shed light on network function and dysfunction. In this study, we applied structural covariance MRI techniques to 300 children in four age categories (early childhood, 5-8 y; late childhood, 8.5-11 y; early adolescence, 12-14 y; late adolescence, 16-18 y) to characterize gray matter structural relationships between cortical nodes that make up large-scale functional networks. Network nodes identified from eight widely replicated functional intrinsic connectivity networks served as seed regions to map whole-brain structural covariance patterns in each age group. In general, structural covariance in the youngest age group was limited to seed and contralateral homologous regions. Networks derived using primary sensory and motor cortex seeds were already well-developed in early childhood but expanded in early adolescence before pruning to a more restricted topology resembling adult intrinsic connectivity network patterns. In contrast, language, social-emotional, and other cognitive networks were relatively undeveloped in younger age groups and showed increasingly distributed topology in older children. The so-called default-mode network provided a notable exception, following a developmental trajectory more similar to the primary sensorimotor systems. Relationships between functional maturation and structural covariance networks topology warrant future exploration.

  12. Combining neural networks for protein secondary structure prediction

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1995-01-01

    In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designed...... by using a priori knowledge of the mapping between protein building blocks and the secondary structure and by using weight sharing. Since none of the individual networks have more than 600 adjustable weights over-fitting is avoided. When ensembles of specialized experts are combined the performance...

  13. Machine learning of network metrics in ATLAS Distributed Data Management

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00218873; The ATLAS collaboration; Toler, Wesley; Vamosi, Ralf; Bogado Garcia, Joaquin Ignacio

    2017-01-01

    The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our m...

  14. Technology Acceptance and Social Networking in Distance Learning

    Directory of Open Access Journals (Sweden)

    Barry Davidson

    2003-04-01

    Full Text Available This study examines the use of integrated communication and engineering design tools in a distributed learning environment. We examined students' attitudes toward the technology using two different approaches. First, we utilized the technology acceptance model to investigate the attitude formation process. Then, to investigate how attitudes changed over time, we applied social information processing model using social network analysis method. Using the technology acceptance model, we were able to demonstrate that students’ initial expectation affected the perceptions of, attitudes toward, and use of the system. With social network analysis, we found that one’s attitude change was significantly influenced by other students’ attitude changes. We discussed the uniqueness of distance learning environments in the context of social influence research and how studies of distance learning could contribute to the research on the social influence of technology use.

  15. Deep Belief Networks Learn Context Dependent Behavior

    Science.gov (United States)

    2014-03-26

    Artifical Intelligence 147: 163–223. 20. Chapman D, Kaelbling LP (1991) Input generalization in delayed reinforcement learning: an algorithm and performance...fraudies@bu.edu Introduction A hallmark of intelligent behavior is the controlled and flexible reuse of experience. A number of studies suggest the...comparisons. In Proceedings of the 12th international joint conference on artificial intelligence , pp. 726–731. 21. McCallum AK (1995) Reinforcement

  16. Structural SCOP superfamily level classification using unsupervised machine learning.

    Science.gov (United States)

    Angadi, Ulavappa B; Venkatesulu, M

    2012-01-01

    One of the major research directions in bioinformatics is that of assigning superfamily classification to a given set of proteins. The classification reflects the structural, evolutionary, and functional relatedness. These relationships are embodied in a hierarchical classification, such as the Structural Classification of Protein (SCOP), which is mostly manually curated. Such a classification is essential for the structural and functional analyses of proteins. Yet a large number of proteins remain unclassified. In this study, we have proposed an unsupervised machine learning approach to classify and assign a given set of proteins to SCOP superfamilies. In the method, we have constructed a database and similarity matrix using P-values obtained from an all-against-all BLAST run and trained the network with the ART2 unsupervised learning algorithm using the rows of the similarity matrix as input vectors, enabling the trained network to classify the proteins from 0.82 to 0.97 f-measure accuracy. The performance of ART2 has been compared with that of spectral clustering, Random forest, SVM, and HHpred. ART2 performs better than the others except HHpred. HHpred performs better than ART2 and the sum of errors is smaller than that of the other methods evaluated.

  17. Kinematic Structural Modelling in Bayesian Networks

    Science.gov (United States)

    Schaaf, Alexander; de la Varga, Miguel; Florian Wellmann, J.

    2017-04-01

    We commonly capture our knowledge about the spatial distribution of distinct geological lithologies in the form of 3-D geological models. Several methods exist to create these models, each with its own strengths and limitations. We present here an approach to combine the functionalities of two modeling approaches - implicit interpolation and kinematic modelling methods - into one framework, while explicitly considering parameter uncertainties and thus model uncertainty. In recent work, we proposed an approach to implement implicit modelling algorithms into Bayesian networks. This was done to address the issues of input data uncertainty and integration of geological information from varying sources in the form of geological likelihood functions. However, one general shortcoming of implicit methods is that they usually do not take any physical constraints into consideration, which can result in unrealistic model outcomes and artifacts. On the other hand, kinematic structural modelling intends to reconstruct the history of a geological system based on physically driven kinematic events. This type of modelling incorporates simplified, physical laws into the model, at the cost of a substantial increment of usable uncertain parameters. In the work presented here, we show an integration of these two different modelling methodologies, taking advantage of the strengths of both of them. First, we treat the two types of models separately, capturing the information contained in the kinematic models and their specific parameters in the form of likelihood functions, in order to use them in the implicit modelling scheme. We then go further and combine the two modelling approaches into one single Bayesian network. This enables the direct flow of information between the parameters of the kinematic modelling step and the implicit modelling step and links the exclusive input data and likelihoods of the two different modelling algorithms into one probabilistic inference framework. In

  18. Reverse Logistics Network Structures and Design

    NARCIS (Netherlands)

    M. Fleischmann (Moritz)

    2001-01-01

    textabstractLogistics network design is commonly recognized as a strategic supply chain issue of prime importance. The location of production facilities, storage concepts, and transportation strategies are major determinants of supply chain performance. This chapter considers logistics network

  19. Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect.

    Science.gov (United States)

    Folia, Vasiliki; Petersson, Karl Magnus

    2014-01-01

    In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.

  20. Implicit Structured Sequence Learning: An FMRI Study of the Structural Mere-Exposure Effect

    Directory of Open Access Journals (Sweden)

    Vasiliki eFolia

    2014-02-01

    Full Text Available In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45 and the medial prefrontal regions (centered on BA 8/32. Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax in unsupervised AGL paradigms with proper learning designs.

  1. The structure of replicating kinetoplast DNA networks

    OpenAIRE

    1993-01-01

    Kinetoplast DNA (kDNA), the mitochondrial DNA of Crithidia fasciculata and related trypanosomatids, is a network containing approximately 5,000 covalently closed minicircles which are topologically interlocked. kDNA synthesis involves release of covalently closed minicircles from the network, and, after replication of the free minicircles, reattachment of the nicked or gapped progeny minicircles to the network periphery. We have investigated this process by electron microscopy of networks at ...

  2. Structural Antecedents of Corporate Network Evolution

    NARCIS (Netherlands)

    F.H. Wijen (Frank); N. Noorderhaven (Niels); W. Vanhaverbeke (Wim)

    2011-01-01

    textabstractAbstract: While most network studies adopt a static view, we argue that corporate social networks are subject to endogenous dynamics of cognitive path dependence and self-reinforcing power relations. Over time, these dynamics drive corporate networks to become increasingly focused (i.e.,

  3. Statistical learning of parts and wholes: A neural network approach.

    Science.gov (United States)

    Plaut, David C; Vande Velde, Anna K

    2017-03-01

    Statistical learning is often considered to be a means of discovering the units of perception, such as words and objects, and representing them as explicit "chunks." However, entities are not undifferentiated wholes but often contain parts that contribute systematically to their meanings. Studies of incidental auditory or visual statistical learning suggest that, as participants learn about wholes they become insensitive to parts embedded within them, but this seems difficult to reconcile with a broad range of findings in which parts and wholes work together to contribute to behavior. Bayesian approaches provide a principled description of how parts and wholes can contribute simultaneously to performance, but are generally not intended to model the computations that actually give rise to this performance. In the current work, we develop an account based on learning in artificial neural networks in which the representation of parts and wholes is a matter of degree, and the extent to which they cooperate or compete arises naturally through incidental learning. We show that the approach accounts for a wide range of findings concerning the relationship between parts and wholes in auditory and visual statistical learning, including some findings previously thought to be problematic for neural network approaches. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Reusing IMS LD formalized best practices in collaborative learning structuring

    NARCIS (Netherlands)

    Hernández-Leo, Davinia; Asensio-Pérez, Juan; Dimitriadis, Yannis; Bote-Lorenzo, Miguel; Jorrín-Abellán, Iván; Villasclaras-Fernández, Eloy

    2006-01-01

    Designs of CSCL (Computer Supported Collaborative Learning) activities should be flexible, effective and customizable to particular learning situations. On the other hand, structured designs aim to create favourable conditions for learning. Thus, this paper proposes the collection of representative

  5. Health and the Structure of Adolescent Social Networks

    Science.gov (United States)

    Haas, Steven A.; Schaefer, David R.; Kornienko, Olga

    2010-01-01

    Much research has explored the role of social networks in promoting health through the provision of social support. However, little work has examined how social networks themselves may be structured by health. This article investigates the link between individuals' health and the characteristics of their social network positions.We first develop…

  6. Stable and emergent network topologies : A structural approach

    NARCIS (Netherlands)

    Herman Monsuur

    2007-01-01

    Economic, social and military networks have at least one thing in common: they change over time. For various reasons, nodes form and terminate links, thereby rearranging the network. In this paper, we present a structural network mechanism that formalizes a possible incentive that guides nodes in

  7. E-LEARNING TOOLS: STRUCTURE, CONTENT, CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Yuliya H. Loboda

    2012-05-01

    Full Text Available The article analyses the problems of organization of educational process with use of electronic means of education. Specifies the definition of "electronic learning", their structure and content. Didactic principles are considered, which are the basis of their creation and use. Given the detailed characteristics of e-learning tools for methodological purposes. On the basis of the allocated pedagogical problems of the use of electronic means of education presented and complemented by their classification, namely the means of theoretical and technological training, means of practical training, support tools, and comprehensive facilities.

  8. Max-margin weight learning for medical knowledge network.

    Science.gov (United States)

    Jiang, Jingchi; Xie, Jing; Zhao, Chao; Su, Jia; Guan, Yi; Yu, Qiubin

    2018-03-01

    The application of medical knowledge strongly affects the performance of intelligent diagnosis, and method of learning the weights of medical knowledge plays a substantial role in probabilistic graphical models (PGMs). The purpose of this study is to investigate a discriminative weight-learning method based on a medical knowledge network (MKN). We propose a training model called the maximum margin medical knowledge network (M 3 KN), which is strictly derived for calculating the weight of medical knowledge. Using the definition of a reasonable margin, the weight learning can be transformed into a margin optimization problem. To solve the optimization problem, we adopt a sequential minimal optimization (SMO) algorithm and the clique property of a Markov network. Ultimately, M 3 KN not only incorporates the inference ability of PGMs but also deals with high-dimensional logic knowledge. The experimental results indicate that M 3 KN obtains a higher F-measure score than the maximum likelihood learning algorithm of MKN for both Chinese Electronic Medical Records (CEMRs) and Blood Examination Records (BERs). Furthermore, the proposed approach is obviously superior to some classical machine learning algorithms for medical diagnosis. To adequately manifest the importance of domain knowledge, we numerically verify that the diagnostic accuracy of M 3 KN is gradually improved as the number of learned CEMRs increase, which contain important medical knowledge. Our experimental results show that the proposed method performs reliably for learning the weights of medical knowledge. M 3 KN outperforms other existing methods by achieving an F-measure of 0.731 for CEMRs and 0.4538 for BERs. This further illustrates that M 3 KN can facilitate the investigations of intelligent healthcare. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Structural Behavioral Study on the General Aviation Network Based on Complex Network

    Science.gov (United States)

    Zhang, Liang; Lu, Na

    2017-12-01

    The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.

  10. The National Biomedical Communications Network as a Developing Structure *

    Science.gov (United States)

    Davis, Ruth M.

    1971-01-01

    The National Biomedical Communications Network has evolved both from a set of conceptual recommendations over the last twelve years and an accumulation of needs manifesting themselves in the requests of members of the medical community. With a short history of three years this network and its developing structure have exhibited most of the stresses of technology interfacing with customer groups, and of a structure attempting to build itself upon many existing fragmentary unconnected segments of a potentially viable resourcesharing capability. In addition to addressing these topics, the paper treats a design appropriate to any network devoted to information transfer in a special interest user community. It discusses fundamentals of network design, highlighting that network structure most appropriate to a national information network. Examples are given of cost analyses of information services and certain conjectures are offered concerning the roles of national networks. PMID:5542912

  11. Random field Ising model and community structure in complex networks

    Science.gov (United States)

    Son, S.-W.; Jeong, H.; Noh, J. D.

    2006-04-01

    We propose a method to determine the community structure of a complex network. In this method the ground state problem of a ferromagnetic random field Ising model is considered on the network with the magnetic field Bs = +∞, Bt = -∞, and Bi≠s,t=0 for a node pair s and t. The ground state problem is equivalent to the so-called maximum flow problem, which can be solved exactly numerically with the help of a combinatorial optimization algorithm. The community structure is then identified from the ground state Ising spin domains for all pairs of s and t. Our method provides a criterion for the existence of the community structure, and is applicable equally well to unweighted and weighted networks. We demonstrate the performance of the method by applying it to the Barabási-Albert network, Zachary karate club network, the scientific collaboration network, and the stock price correlation network. (Ising, Potts, etc.)

  12. Structural factoring approach for analyzing stochastic networks

    Science.gov (United States)

    Hayhurst, Kelly J.; Shier, Douglas R.

    1991-01-01

    The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.

  13. Students' Personal Networks in Virtual and Personal Learning Environments: A Case Study in Higher Education Using Learning Analytics Approach

    Science.gov (United States)

    Casquero, Oskar; Ovelar, Ramón; Romo, Jesús; Benito, Manuel; Alberdi, Mikel

    2016-01-01

    The main objective of this paper is to analyse the effect of the affordances of a virtual learning environment and a personal learning environment (PLE) in the configuration of the students' personal networks in a higher education context. The results are discussed in light of the adaptation of the students to the learning network made up by two…

  14. Exploring community structure in biological networks with random graphs.

    Science.gov (United States)

    Sah, Pratha; Singh, Lisa O; Clauset, Aaron; Bansal, Shweta

    2014-06-25

    Community structure is ubiquitous in biological networks. There has been an increased interest in unraveling the community structure of biological systems as it may provide important insights into a system's functional components and the impact of local structures on dynamics at a global scale. Choosing an appropriate community detection algorithm to identify the community structure in an empirical network can be difficult, however, as the many algorithms available are based on a variety of cost functions and are difficult to validate. Even when community structure is identified in an empirical system, disentangling the effect of community structure from other network properties such as clustering coefficient and assortativity can be a challenge. Here, we develop a generative model to produce undirected, simple, connected graphs with a specified degrees and pattern of communities, while maintaining a graph structure that is as random as possible. Additionally, we demonstrate two important applications of our model: (a) to generate networks that can be used to benchmark existing and new algorithms for detecting communities in biological networks; and (b) to generate null models to serve as random controls when investigating the impact of complex network features beyond the byproduct of degree and modularity in empirical biological networks. Our model allows for the systematic study of the presence of community structure and its impact on network function and dynamics. This process is a crucial step in unraveling the functional consequences of the structural properties of biological systems and uncovering the mechanisms that drive these systems.

  15. Supervised dictionary learning for inferring concurrent brain networks.

    Science.gov (United States)

    Zhao, Shijie; Han, Junwei; Lv, Jinglei; Jiang, Xi; Hu, Xintao; Zhao, Yu; Ge, Bao; Guo, Lei; Liu, Tianming

    2015-10-01

    Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.

  16. Effective learning in recurrent max-min neural networks.

    Science.gov (United States)

    Loe, Kia Fock; Teow, Loo Nin

    1998-04-01

    Max and min operations have interesting properties that facilitate the exchange of information between the symbolic and real-valued domains. As such, neural networks that employ max-min activation functions have been a subject of interest in recent years. Since max-min functions are not strictly differentiable, we propose a mathematically sound learning method based on using Fourier convergence analysis of side-derivatives to derive a gradient descent technique for max-min error functions. We then propose a novel recurrent max-min neural network model that is trained to perform grammatical inference as an application example. Comparisons made between this model and recurrent sigmoidal neural networks show that our model not only performs better in terms of learning speed and generalization, but that its final weight configuration allows a deterministic finite automation (DFA) to be extracted in a straightforward manner. In essence, we are able to demonstrate that our proposed gradient descent technique does allow max-min neural networks to learn effectively.

  17. Learning anticipation via spiking networks: application to navigation control.

    Science.gov (United States)

    Arena, Paolo; Fortuna, Luigi; Frasca, Mattia; Patané, Luca

    2009-02-01

    In this paper, we introduce a network of spiking neurons devoted to navigation control. Three different examples, dealing with stimuli of increasing complexity, are investigated. In the first one, obstacle avoidance in a simulated robot is achieved through a network of spiking neurons. In the second example, a second layer is designed aiming to provide the robot with a target approaching system, making it able to move towards visual targets. Finally, a network of spiking neurons for navigation based on visual cues is introduced. In all cases, the robot was assumed to rely on some a priori known responses to low-level sensors (i.e., to contact sensors in the case of obstacles, to proximity target sensors in the case of visual targets, or to the visual target for navigation with visual cues). Based on their knowledge, the robot has to learn the response to high-level stimuli (i.e., range finder sensors or visual input). The biologically plausible paradigm of spike-timing-dependent plasticity (STDP) is included in the network to make the system able to learn high-level responses that guide navigation through a simple unstructured environment. The learning procedure is based on classical conditioning.

  18. Outsmarting neural networks: an alternative paradigm for machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Protopopescu, V.; Rao, N.S.V.

    1996-10-01

    We address three problems in machine learning, namely: (i) function learning, (ii) regression estimation, and (iii) sensor fusion, in the Probably and Approximately Correct (PAC) framework. We show that, under certain conditions, one can reduce the three problems above to the regression estimation. The latter is usually tackled with artificial neural networks (ANNs) that satisfy the PAC criteria, but have high computational complexity. We propose several computationally efficient PAC alternatives to ANNs to solve the regression estimation. Thereby we also provide efficient PAC solutions to the function learning and sensor fusion problems. The approach is based on cross-fertilizing concepts and methods from statistical estimation, nonlinear algorithms, and the theory of computational complexity, and is designed as part of a new, coherent paradigm for machine learning.

  19. Are deep neural networks really learning relevant features?

    DEFF Research Database (Denmark)

    Kereliuk, Corey; Sturm, Bob L.; Larsen, Jan

    In recent years deep neural networks (DNNs) have become a popular choice for audio content analysis. This may be attributed to various factors including advancements in training algorithms, computational power, and the potential for DNNs to implicitly learn a set of feature detectors. We have...... recently re-examined two works \\cite{sigtiaimproved}\\cite{hamel2010learning} that consider DNNs for the task of music genre recognition (MGR). These papers conclude that frame-level features learned by DNNs offer an improvement over traditional, hand-crafted features such as Mel-frequency cepstrum...... leads one to question the degree to which the learned frame-level features are actually useful for MGR. We make available a reproducible software package allowing other researchers to completely duplicate our figures and results....

  20. Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks

    Science.gov (United States)

    Hosseini, S. M. Hadi; Kesler, Shelli R.

    2013-01-01

    In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672

  1. Topological properties of four networks in protein structures

    Science.gov (United States)

    Min, Seungsik; Kim, Kyungsik; Chang, Ki-Ho; Ha, Deok-Ho; Lee, Jun-Ho

    2017-11-01

    In this paper, we investigate the complex networks of interacting amino acids in protein structures. The cellular networks and their random controls are treated for the four threshold distances between atoms. The numerical simulation and analysis are relevant to the topological properties of the complex networks in the structural classification of proteins, and we mainly estimate the network's metrics from the resultant network. The cellular network is shown to exhibit a small-world feature regardless of their structural class. The protein structure presents the positive assortative coefficients, when the topological property is described as a tendency for connectivity of high-degree nodes. We particularly show that both the modularity and the small-wordness are significantly followed the increasing function against nodes.

  2. Learning discriminative functional network features of schizophrenia

    Science.gov (United States)

    Gheiratmand, Mina; Rish, Irina; Cecchi, Guillermo; Brown, Matthew; Greiner, Russell; Bashivan, Pouya; Polosecki, Pablo; Dursun, Serdar

    2017-03-01

    Associating schizophrenia with disrupted functional connectivity is a central idea in schizophrenia research. However, identifying neuroimaging-based features that can serve as reliable "statistical biomarkers" of the disease remains a challenging open problem. We argue that generalization accuracy and stability of candidate features ("biomarkers") must be used as additional criteria on top of standard significance tests in order to discover more robust biomarkers. Generalization accuracy refers to the utility of biomarkers for making predictions about individuals, for example discriminating between patients and controls, in novel datasets. Feature stability refers to the reproducibility of the candidate features across different datasets. Here, we extracted functional connectivity network features from fMRI data at both high-resolution (voxel-level) and a spatially down-sampled lower-resolution ("supervoxel" level). At the supervoxel level, we used whole-brain network links, while at the voxel level, due to the intractably large number of features, we sampled a subset of them. We compared statistical significance, stability and discriminative utility of both feature types in a multi-site fMRI dataset, composed of schizophrenia patients and healthy controls. For both feature types, a considerable fraction of features showed significant differences between the two groups. Also, both feature types were similarly stable across multiple data subsets. However, the whole-brain supervoxel functional connectivity features showed a higher cross-validation classification accuracy of 78.7% vs. 72.4% for the voxel-level features. Cross-site variability and heterogeneity in the patient samples in the multi-site FBIRN dataset made the task more challenging compared to single-site studies. The use of the above methodology in combination with the fully data-driven approach using the whole brain information have the potential to shed light on "biomarker discovery" in schizophrenia.

  3. Measuring the robustness of network community structure using assortativity

    Science.gov (United States)

    Shizuka, Daizaburo; Farine, Damien R.

    2016-01-01

    The existence of discrete social clusters, or ‘communities’, is a common feature of social networks in human and nonhuman animals. The level of such community structure in networks is typically measured using an index of modularity, Q. While modularity quantifies the degree to which individuals associate within versus between social communities and provides a useful measure of structure in the social network, it assumes that the network has been well sampled. However, animal social network data is typically subject to sampling errors. In particular, the associations among individuals are often not sampled equally, and animal social network studies are often based on a relatively small set of observations. Here, we extend an existing framework for bootstrapping network metrics to provide a method for assessing the robustness of community assignment in social networks using a metric we call community assortativity (rcom). We use simulations to demonstrate that modularity can reliably detect the transition from random to structured associations in networks that differ in size and number of communities, while community assortativity accurately measures the level of confidence based on the detectability of associations. We then demonstrate the use of these metrics using three publicly available data sets of avian social networks. We suggest that by explicitly addressing the known limitations in sampling animal social network, this approach will facilitate more rigorous analyses of population-level structural patterns across social systems. PMID:26949266

  4. Exploring network structure, dynamics, and function using networkx

    Energy Technology Data Exchange (ETDEWEB)

    Hagberg, Aric [Los Alamos National Laboratory; Swart, Pieter [Los Alamos National Laboratory; S Chult, Daniel [COLGATE UNIV

    2008-01-01

    NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distribution and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.

  5. Social Networking Sites and Addiction: Ten Lessons Learned

    Science.gov (United States)

    Kuss, Daria J.; Griffiths, Mark D.

    2017-01-01

    Online social networking sites (SNSs) have gained increasing popularity in the last decade, with individuals engaging in SNSs to connect with others who share similar interests. The perceived need to be online may result in compulsive use of SNSs, which in extreme cases may result in symptoms and consequences traditionally associated with substance-related addictions. In order to present new insights into online social networking and addiction, in this paper, 10 lessons learned concerning online social networking sites and addiction based on the insights derived from recent empirical research will be presented. These are: (i) social networking and social media use are not the same; (ii) social networking is eclectic; (iii) social networking is a way of being; (iv) individuals can become addicted to using social networking sites; (v) Facebook addiction is only one example of SNS addiction; (vi) fear of missing out (FOMO) may be part of SNS addiction; (vii) smartphone addiction may be part of SNS addiction; (viii) nomophobia may be part of SNS addiction; (ix) there are sociodemographic differences in SNS addiction; and (x) there are methodological problems with research to date. These are discussed in turn. Recommendations for research and clinical applications are provided. PMID:28304359

  6. Social Networking Sites and Addiction: Ten Lessons Learned.

    Science.gov (United States)

    Kuss, Daria J; Griffiths, Mark D

    2017-03-17

    Online social networking sites (SNSs) have gained increasing popularity in the last decade, with individuals engaging in SNSs to connect with others who share similar interests. The perceived need to be online may result in compulsive use of SNSs, which in extreme cases may result in symptoms and consequences traditionally associated with substance-related addictions. In order to present new insights into online social networking and addiction, in this paper, 10 lessons learned concerning online social networking sites and addiction based on the insights derived from recent empirical research will be presented. These are: (i) social networking and social media use are not the same; (ii) social networking is eclectic; (iii) social networking is a way of being; (iv) individuals can become addicted to using social networking sites; (v) Facebook addiction is only one example of SNS addiction; (vi) fear of missing out (FOMO) may be part of SNS addiction; (vii) smartphone addiction may be part of SNS addiction; (viii) nomophobia may be part of SNS addiction; (ix) there are sociodemographic differences in SNS addiction; and (x) there are methodological problems with research to date. These are discussed in turn. Recommendations for research and clinical applications are provided.

  7. Social Networking Sites and Addiction: Ten Lessons Learned

    Directory of Open Access Journals (Sweden)

    Daria J. Kuss

    2017-03-01

    Full Text Available Online social networking sites (SNSs have gained increasing popularity in the last decade, with individuals engaging in SNSs to connect with others who share similar interests. The perceived need to be online may result in compulsive use of SNSs, which in extreme cases may result in symptoms and consequences traditionally associated with substance-related addictions. In order to present new insights into online social networking and addiction, in this paper, 10 lessons learned concerning online social networking sites and addiction based on the insights derived from recent empirical research will be presented. These are: (i social networking and social media use are not the same; (ii social networking is eclectic; (iii social networking is a way of being; (iv individuals can become addicted to using social networking sites; (v Facebook addiction is only one example of SNS addiction; (vi fear of missing out (FOMO may be part of SNS addiction; (vii smartphone addiction may be part of SNS addiction; (viii nomophobia may be part of SNS addiction; (ix there are sociodemographic differences in SNS addiction; and (x there are methodological problems with research to date. These are discussed in turn. Recommendations for research and clinical applications are provided.

  8. Comparing Community Structure to Characteristics in Online Collegiate Social Networks

    OpenAIRE

    Traud, Amanda L.; Kelsic, Eric D.; Mucha, Peter J; Porter, Mason A.

    2008-01-01

    We study the structure of social networks of students by examining the graphs of Facebook "friendships" at five American universities at a single point in time. We investigate each single-institution network's community structure and employ graphical and quantitative tools, including standardized pair-counting methods, to measure the correlations between the network communities and a set of self-identified user characteristics (residence, class year, major, and high school). We review the bas...

  9. Tensor Spectral Clustering for Partitioning Higher-order Network Structures.

    Science.gov (United States)

    Benson, Austin R; Gleich, David F; Leskovec, Jure

    2015-01-01

    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.

  10. Network versus portfolio structure in financial systems

    Science.gov (United States)

    Kobayashi, Teruyoshi

    2013-10-01

    The question of how to stabilize financial systems has attracted considerable attention since the global financial crisis of 2007-2009. Recently, Beale et al. [Proc. Natl. Acad. Sci. USA 108, 12647 (2011)] demonstrated that higher portfolio diversity among banks would reduce systemic risk by decreasing the risk of simultaneous defaults at the expense of a higher likelihood of individual defaults. In practice, however, a bank default has an externality in that it undermines other banks’ balance sheets. This paper explores how each of these different sources of risk, simultaneity risk and externality, contributes to systemic risk. The results show that the allocation of external assets that minimizes systemic risk varies with the topology of the financial network as long as asset returns have negative correlations. In the model, a well-known centrality measure, PageRank, reflects an appropriately defined “infectiveness” of a bank. An important result is that the most infective bank needs not always to be the safest bank. Under certain circumstances, the most infective node should act as a firewall to prevent large-scale collective defaults. The introduction of a counteractive portfolio structure will significantly reduce systemic risk.

  11. Wireless sensor networks for structural health monitoring

    CERN Document Server

    Cao, Jiannong

    2016-01-01

    This brief covers the emerging area of wireless sensor network (WSN)-based structural health monitoring (SHM) systems, and introduces the authors’ WSN-based platform called SenetSHM. It helps the reader differentiate specific requirements of SHM applications from other traditional WSN applications, and demonstrates how these requirements are addressed by using a series of systematic approaches. The brief serves as a practical guide, explaining both the state-of-the-art technologies in domain-specific applications of WSNs, as well as the methodologies used to address the specific requirements for a WSN application. In particular, the brief offers instruction for problem formulation and problem solving based on the authors’ own experiences implementing SenetSHM. Seven concise chapters cover the development of hardware and software design of SenetSHM, as well as in-field experiments conducted while testing the platform. The brief’s exploration of the SenetSHM platform is a valuable feature for civil engine...

  12. Social Networking as a Facilitator for Lifelong Learning in Multinational Employee’s Career

    Directory of Open Access Journals (Sweden)

    Andreea Nicoleta VISAN

    2017-01-01

    Full Text Available This paper discusses how multinational employees who are leaving in Bucharest, Romania use social networks as a tool for their everyday tasks and work, and how they want to satisfy their personal development needs by having access to information from these digital platforms. The case study described was conducted in Bucharest in 2017 and followed a results analysis with structured tables and graphs. In the study took part 24 participants who were selected among multinational IT employees in Bucharest. Social networks contribute to employee’s lifelong educational process: besides providing them positive gratification, they also contribute to their personal development and careers growth. Even though all individuals who participated in this study use social networks, more efforts should be done in order for companies in Bucharest to know the benefits of social networks and employee’s opinion about their contribution to lifelong learning.

  13. Validating module network learning algorithms using simulated data.

    Science.gov (United States)

    Michoel, Tom; Maere, Steven; Bonnet, Eric; Joshi, Anagha; Saeys, Yvan; Van den Bulcke, Tim; Van Leemput, Koenraad; van Remortel, Piet; Kuiper, Martin; Marchal, Kathleen; Van de Peer, Yves

    2007-05-03

    In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators. We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing and improving module network

  14. Online Social Networks: Essays on Membership, Privacy, and Structure

    NARCIS (Netherlands)

    Hofstra, B.

    2017-01-01

    The structure of social networks is crucial for obtaining social support, for meaningful connections to unknown social groups, and to overcome prejudice. Yet, we know little about the structure of social networks beyond those contacts that stand closest to us. This lack of knowledge results from a

  15. Self-structuring data learning approach

    Science.gov (United States)

    Ternovskiy, Igor; Graham, James; Carson, Daniel

    2016-05-01

    In this paper, we propose a hierarchical self-structuring learning algorithm based around the general principles of the Stanovich/Evans framework and "Quest" group definition of unexpected query. One of the main goals of our algorithm is for it to be capable of patterns learning and extrapolating more complex patterns from less complex ones. This pattern learning, influenced by goals, either learned or predetermined, should be able to detect and reconcile anomalous behaviors. One example of a proposed application of this algorithm would be traffic analysis. We choose this example, because it is conceptually easy to follow. Despite the fact that we are unlikely to develop superior traffic tracking techniques using our algorithm, a traffic based scenario remains a good starting point if only do to the easy availability of data and the number of other known techniques. In any case, in this scenario, the algorithm would observe and track all vehicular traffic in a particular area. After some initial time passes, it would begin detecting and learning the traffic's patters. Eventually the patterns would stabilize. At that point, "new" patterns could be considered anomalies, flagged, and handled accordingly. This is only one, particular application of our proposed algorithm. Ideally, we want to make it as general as possible, such that it can be applies to numerous different problems with varying types of sensory input and data types, such as IR, RF, visual, census data, meta data, etc.

  16. Learning to play Go using recursive neural networks.

    Science.gov (United States)

    Wu, Lin; Baldi, Pierre

    2008-11-01

    Go is an ancient board game that poses unique opportunities and challenges for artificial intelligence. Currently, there are no computer Go programs that can play at the level of a good human player. However, the emergence of large repositories of games is opening the door for new machine learning approaches to address this challenge. Here we develop a machine learning approach to Go, and related board games, focusing primarily on the problem of learning a good evaluation function in a scalable way. Scalability is essential at multiple levels, from the library of local tactical patterns, to the integration of patterns across the board, to the size of the board itself. The system we propose is capable of automatically learning the propensity of local patterns from a library of games. Propensity and other local tactical information are fed into recursive neural networks, derived from a probabilistic Bayesian network architecture. The recursive neural networks in turn integrate local information across the board in all four cardinal directions and produce local outputs that represent local territory ownership probabilities. The aggregation of these probabilities provides an effective strategic evaluation function that is an estimate of the expected area at the end, or at various other stages, of the game. Local area targets for training can be derived from datasets of games played by human players. In this approach, while requiring a learning time proportional to N(4), skills learned on a board of size N(2) can easily be transferred to boards of other sizes. A system trained using only 9 x 9 amateur game data performs surprisingly well on a test set derived from 19 x 19 professional game data. Possible directions for further improvements are briefly discussed.

  17. Analog memristive synapse in spiking networks implementing unsupervised learning

    Directory of Open Access Journals (Sweden)

    Erika Covi

    2016-10-01

    Full Text Available Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e. the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity. This implies a device able to change its resistance (synaptic strength, or weight upon proper electrical stimuli (synaptic activity and showing several stable resistive states throughout its dynamic range (analog behavior. Moreover, it should be able to perform spike timing dependent plasticity (STDP, an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO2-based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy characters are displayed and it is robust to a device-to-device variability of up to +/-30%.

  18. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    Science.gov (United States)

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  19. Rethinking learning networks collaborative possibilities for a Deleuzian century

    CERN Document Server

    Kamp, Annelies

    2013-01-01

    In the face of today's complex policy challenges, various forms of 'joining-up' - networking, collaborating, partnering - have become key responses. However, institutions often fail to take advantage of the full benefits that joining-up offers. In this book, the author draws on ethnographic research into learning networks in post compulsory education and training in the state of Victoria, Australia, to explore why this might be the case and presents an argument for rethinking how joining-up works in practice. Throughout the book, Deleuzian concepts are engaged to forge a 'little complicating m

  20. Analytical reasoning task reveals limits of social learning in networks.

    Science.gov (United States)

    Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François

    2014-04-06

    Social learning-by observing and copying others-is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an 'unreflective copying bias', which limits their social learning to the output, rather than the process, of their peers' reasoning-even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behaviour through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning.