WorldWideScience

Sample records for network approach called

  1. Mal-Netminer: Malware Classification Approach Based on Social Network Analysis of System Call Graph

    Directory of Open Access Journals (Sweden)

    Jae-wook Jang

    2015-01-01

    Full Text Available As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a system call graph that consists of system calls found in the execution of the individual malware families. To explore distinguishing features of various malware species, we study social network properties as applied to the call graph, including the degree distribution, degree centrality, average distance, clustering coefficient, network density, and component ratio. We utilize features driven from those properties to build a classifier for malware families. Our experimental results show that “influence-based” graph metrics such as the degree centrality are effective for classifying malware, whereas the general structural metrics of malware are less effective for classifying malware. Our experiments demonstrate that the proposed system performs well in detecting and classifying malware families within each malware class with accuracy greater than 96%.

  2. Mal-Netminer: Malware Classification Approach Based on Social Network Analysis of System Call Graph

    OpenAIRE

    Jae-wook Jang; Jiyoung Woo; Aziz Mohaisen; Jaesung Yun; Huy Kang Kim

    2015-01-01

    As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a ...

  3. Call Admission Control in Mobile Cellular Networks

    CERN Document Server

    Ghosh, Sanchita

    2013-01-01

    Call Admission Control (CAC) and Dynamic Channel Assignments (DCA) are important decision-making problems in mobile cellular communication systems. Current research in mobile communication considers them as two independent problems, although the former greatly depends on the resulting free channels obtained as the outcome of the latter. This book provides a solution to the CAC problem, considering DCA as an integral part of decision-making for call admission. Further, current technical resources ignore movement issues of mobile stations and fluctuation in network load (incoming calls) in the control strategy used for call admission. In addition, the present techniques on call admission offers solution globally for the entire network, instead of considering the cells independently.      CAC here has been formulated by two alternative approaches. The first approach aimed at handling the uncertainty in the CAC problem by employing fuzzy comparators.  The second approach is concerned with formulation of CAC ...

  4. Evidence That Calls-Based and Mobility Networks Are Isomorphic.

    Directory of Open Access Journals (Sweden)

    Michele Coscia

    Full Text Available Social relations involve both face-to-face interaction as well as telecommunications. We can observe the geography of phone calls and of the mobility of cell phones in space. These two phenomena can be described as networks of connections between different points in space. We use a dataset that includes billions of phone calls made in Colombia during a six-month period. We draw the two networks and find that the call-based network resembles a higher order aggregation of the mobility network and that both are isomorphic except for a higher spatial decay coefficient of the mobility network relative to the call-based network: when we discount distance effects on the call connections with the same decay observed for mobility connections, the two networks are virtually indistinguishable.

  5. Mitigating Handoff Call Dropping in Wireless Cellular Networks: A Call Admission Control Technique

    Science.gov (United States)

    Ekpenyong, Moses Effiong; Udoh, Victoria Idia; Bassey, Udoma James

    2016-06-01

    Handoff management has been an important but challenging issue in the field of wireless communication. It seeks to maintain seamless connectivity of mobile users changing their points of attachment from one base station to another. This paper derives a call admission control model and establishes an optimal step-size coefficient (k) that regulates the admission probability of handoff calls. An operational CDMA network carrier was investigated through the analysis of empirical data collected over a period of 1 month, to verify the performance of the network. Our findings revealed that approximately 23 % of calls in the existing system were lost, while 40 % of the calls (on the average) were successfully admitted. A simulation of the proposed model was then carried out under ideal network conditions to study the relationship between the various network parameters and validate our claim. Simulation results showed that increasing the step-size coefficient degrades the network performance. Even at optimum step-size (k), the network could still be compromised in the presence of severe network crises, but our model was able to recover from these problems and still functions normally.

  6. Adaptive control of call acceptance in WCDMA network

    Directory of Open Access Journals (Sweden)

    Milan Manojle Šunjevarić

    2013-10-01

    characteristic in networks with hard capacities. For systems with so-called "Soft" capacity, there is no direct relationship between the number of users and available capacity for incoming requests, and the number of served users depends on the SIR threshold. However, there is the algorithm that follows a very simple approach in which decisions about access are based only on the number of users already present in the system. The use of the algorithm represents a direct mapping of strategies from 2G systems in which the capacity is limited  with hard boundaries, and a decision is made on the basis of already admitted users in the system. The methods of resource management used in modern wireless networks In previous research of access control algorithms in wireless networks, in the broadest terms, two basic methods could be used: deterministic and stochastic methods. Deterministic algorithms imply that QoS parameters are one hundred percent guaranteed for the duration of the connection, which is not practical in real systems. In the stochastic CAC algorithms, QoS cannot be guaranteed one hundred percent, but instead, with a certain probability. Resource reservation Methods with reserved channels, or generally speaking the reserved resources, are known in the literature as Guard Channel or GC methods. Algorithms with static reservation often result in poor utilization of resources. Algorithms with dynamic thresholds have the threshold that adapts to real  needs (for example, if at the particular location many requests for handover connections appear, then the part of the resources saved for handover can dynamically be increased. Influence of the OVSF codes distribution method to the number of accepted requests in the WCDMA network The OVSF codes are used in WCDMA networks to support different transmission rates for multimedia services. They are variable in length, and using a smaller factor achieves higher transmission rates. In recent years, a significant number of papers have

  7. Farm broadcasters call for regional network.

    Science.gov (United States)

    1989-03-01

    The United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) laid the groundwork for a 5 day symposium on farm broadcasting in Bangkok in November 1988. ESCAP Executive Secretary S.A.M.S. Kibria discussed in his statement the idea of a regional rural broadcasting network for Asia and the Pacific. Several other pertinent points stated the following: Government funding was needed to support rural broadcasting; special funding and attention needs to be devoted to disadvantaged groups and marginal farmers; broadcasting should play a more significant role in South Pacific islands where it would not educate but also bring the people together. It was suggested that a proposed training manual for basic radio operation be printed in the local languages. Since 1980, there have 14 seminar-training programs held throughout Asia and the Pacific. Workshops open dialogue on ways to coordinate government support and rural interests in radio programming. As well, rural broadcasters learn how to sharpen their skills and keep audiences interested. Correctly implemented and adequately funded, agricultural broadcast programs could improve the lives of millions in the Pacific and Asia.

  8. "I'll See You on IM, Text, or Call You": A Social Network Approach of Adolescents' Use of Communication Media

    Science.gov (United States)

    Van Cleemput, Katrien

    2010-01-01

    This study explores some possibilities of social network analysis for studying adolescents' communication patterns. A full network analysis was conducted on third-grade high school students (15 year olds, 137 students) in Belgium. The results pointed out that face-to-face communication was still the most prominent way for information to flow…

  9. A self-learning call admission control scheme for CDMA cellular networks.

    Science.gov (United States)

    Liu, Derong; Zhang, Yi; Zhang, Huaguang

    2005-09-01

    In the present paper, a call admission control scheme that can learn from the network environment and user behavior is developed for code division multiple access (CDMA) cellular networks that handle both voice and data services. The idea is built upon a novel learning control architecture with only a single module instead of two or three modules in adaptive critic designs (ACDs). The use of adaptive critic approach for call admission control in wireless cellular networks is new. The call admission controller can perform learning in real-time as well as in offline environments and the controller improves its performance as it gains more experience. Another important contribution in the present work is the choice of utility function for the present self-learning control approach which makes the present learning process much more efficient than existing learning control methods. The performance of our algorithm will be shown through computer simulation and compared with existing algorithms.

  10. Legal Network report calls for decriminalization of prostitution in Canada.

    Science.gov (United States)

    Betteridge, Glenn

    2005-12-01

    In December 2005 the Canadian HIV/AIDS Legal Network released Sex, work, rights: reforming Canadian criminal laws on prostitution. The report examines the ways in which the prostitution-related provisions of the Criminal Code, and their enforcement, have criminalized many aspects of sex workers' lives and have promoted their social marginalization. Evidence indicates that the criminal law has contributed to health and safety risks, including the risk of HIV infection, faced by sex workers. The Legal Network calls for the decriminalization of prostitution in Canada, and for other legal and policy reforms that respect the human rights and promote the health of sex workers. Despite the report's Canadian focus, its human rights analysis is relevant to the situation of sex workers in other countries where prostitution is illegal and sex workers face rights abuses. In this article, Glenn Betteridge, the principal author of the report, briefly sets out the case for law reform.

  11. BBCAnalyzer: a visual approach to facilitate variant calling.

    Science.gov (United States)

    Sandmann, Sarah; de Graaf, Aniek O; Dugas, Martin

    2017-02-28

    Deriving valid variant calling results from raw next-generation sequencing data is a particularly challenging task, especially with respect to clinical diagnostics and personalized medicine. However, when using classic variant calling software, the user usually obtains nothing more than a list of variants that pass the corresponding caller's internal filters. Any expected mutations (e.g. hotspot mutations), that have not been called by the software, need to be investigated manually. BBCAnalyzer (Bases By CIGAR Analyzer) provides a novel visual approach to facilitate this step of time-consuming, manual inspection of common mutation sites. BBCAnalyzer is able to visualize base counts at predefined positions or regions in any sequence alignment data that are available as BAM files. Thereby, the tool provides a straightforward solution for evaluating any list of expected mutations like hotspot mutations, or even whole regions of interest. In addition to an ordinary textual report, BBCAnalyzer reports highly customizable plots. Information on the counted number of bases, the reference bases, known mutations or polymorphisms, called mutations and base qualities is summarized in a single plot. By uniting this information in a graphical way, the user may easily decide on a variant being present or not - completely independent of any internal filters or frequency thresholds. BBCAnalyzer provides a unique, novel approach to facilitate variant calling where classical tools frequently fail to call. The R package is freely available at http://bioconductor.org . The local web application is available at Additional file 2. A documentation of the R package (Additional file 1) as well as the web application (Additional file 2) with detailed descriptions, examples of all input- and output elements, exemplary code as well as exemplary data are included. A video demonstrates the exemplary usage of the local web application (Additional file 3). Additional file 3: Supplement_3. Video

  12. Server Level Analysis of Network Operation Utilizing System Call Data

    Science.gov (United States)

    2010-09-25

    information thus failing to perform reliable detection. Kruegel at al. [9] suggests using arguments of the file management system calls which represent... managed various windows components and performed other activity trivial for an advanced user. None of the monitored processes caused false positive...391-403, 2004. [9] C. Kruegel, D. Mutz, F. Valeur and G. Vigna. “On the Detection of Anomalous System Call Arguments”. ESORICS, Oct. 2003. [10] M

  13. Loss Performance Modeling for Hierarchical Heterogeneous Wireless Networks With Speed-Sensitive Call Admission Control

    DEFF Research Database (Denmark)

    Huang, Qian; Huang, Yue-Cai; Ko, King-Tim

    2011-01-01

    A hierarchical overlay structure is an alternative solution that integrates existing and future heterogeneous wireless networks to provide subscribers with better mobile broadband services. Traffic loss performance in such integrated heterogeneous networks is necessary for an operator's network...... dimensioning and planning. This paper investigates the computationally efficient loss performance modeling for multiservice in hierarchical heterogeneous wireless networks. A speed-sensitive call admission control (CAC) scheme is considered in our model to assign overflowed calls to appropriate tiers...

  14. Computer Networks A Systems Approach

    CERN Document Server

    Peterson, Larry L

    2011-01-01

    This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur

  15. BBCAnalyzer: a visual approach to facilitate variant calling

    OpenAIRE

    Sandmann, S.; Graaf, A.O. de; Dugas, M.

    2017-01-01

    Background Deriving valid variant calling results from raw next-generation sequencing data is a particularly challenging task, especially with respect to clinical diagnostics and personalized medicine. However, when using classic variant calling software, the user usually obtains nothing more than a list of variants that pass the corresponding caller?s internal filters. Any expected mutations (e.g. hotspot mutations), that have not been called by the software, need to be investigated manually...

  16. Who's calling? Social networks and mobile phone use among motorcyclists.

    Science.gov (United States)

    De Gruyter, Chris; Truong, Long T; Nguyen, Hang T T

    2017-06-01

    Mobile phone use while riding a motorcycle poses a key safety risk, particularly among younger people who have been found to be more susceptible to distracted driving. While previous research has examined the influence of social networks on mobile phone use while driving a car, no research has explored this association in the context of motorcycle use. Using a survey of university students in Vietnam, this research explores the association between social networks and mobile phone use among motorcyclists and the links this has to reported crashes/falls. Results show that the majority of students are most likely to use a mobile phone to communicate with a friend while riding, either through talking (56.5%) or text messaging (62.0%). However, respondents who frequently talk to a girlfriend/boyfriend or spouse while riding were more likely to experience a crash/fall than those who frequently talk with others while riding (e.g. parent, brother/sister). In addition, those who frequently text message a friend while riding were more likely to experience a crash/fall than those who frequently text message others while riding. The results highlight a clear association between social networks and mobile phone use while riding a motorcycle. Developing a culture of societal norms, where mobile phone use while riding a motorcycle is considered socially unacceptable, will help to reduce the prevalence and ultimate crash risk associated with mobile phone use while riding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Sustainability in CALL Learning Environments: A Systemic Functional Grammar Approach

    Science.gov (United States)

    McDonald, Peter

    2014-01-01

    This research aims to define a sustainable resource in Computer-Assisted Language Learning (CALL). In order for a CALL resource to be sustainable it must work within existing educational curricula. This feature is a necessary prerequisite of sustainability because, despite the potential for educational change that digitalization has offered since…

  18. High-accuracy Decision of Call-triage by Using Bayesian Network

    Science.gov (United States)

    Yunoki, Shota; Hamagami, Tomoki; Oshige, Kenji; Kawakami, Chihiro; Suzuki, Noriyuki

    A new call-triage system, a key part of emergency support system with stochastic network model is examined. The call-triage is an operation allowing the efficient decision of service grade and dispatching of suitable rescue team service from phone call information. Nowadays, the call-triage is being trialed on a few cities and is achieving an effect. However, there is the issue that if under-triage in which the condition of sick person is estimated more lightly is eliminated, the efficiency is degraded (over-triage). In this report, in order to overcome the issue, the Bayesian network scheme is examined to the call-triage system. The experiments with real call-triage data set results show the Bayesian network achieves precision enhancement.

  19. Implementing the Fussy Baby Network[R] Approach

    Science.gov (United States)

    Gilkerson, Linda; Hofherr, Jennifer; Heffron, Mary Claire; Sims, Jennifer Murphy; Jalowiec, Barbara; Bromberg, Stacey R.; Paul, Jennifer J.

    2012-01-01

    Erikson Institute Fussy Baby Network[R] (FBN) developed an approach to engaging parents around their urgent concerns about their baby's crying, sleeping, or feeding in a way which builds their longer-term capacities as parents. This approach, called the FAN, is now in place in new Fussy Baby Network programs around the country and is being infused…

  20. CNNdel: Calling Structural Variations on Low Coverage Data Based on Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2017-01-01

    Full Text Available Many structural variations (SVs detection methods have been proposed due to the popularization of next-generation sequencing (NGS. These SV calling methods use different SV-property-dependent features; however, they all suffer from poor accuracy when running on low coverage sequences. The union of results from these tools achieves fairly high sensitivity but still produces low accuracy on low coverage sequence data. That is, these methods contain many false positives. In this paper, we present CNNdel, an approach for calling deletions from paired-end reads. CNNdel gathers SV candidates reported by multiple tools and then extracts features from aligned BAM files at the positions of candidates. With labeled feature-expressed candidates as a training set, CNNdel trains convolutional neural networks (CNNs to distinguish true unlabeled candidates from false ones. Results show that CNNdel works well with NGS reads from 26 low coverage genomes of the 1000 Genomes Project. The paper demonstrates that convolutional neural networks can automatically assign the priority of SV features and reduce the false positives efficaciously.

  1. An Improved Call Admission Control Mechanism with Prioritized Handoff Queuing Scheme for BWA Networks

    Science.gov (United States)

    Chowdhury, Prasun; Saha Misra, Iti

    2014-10-01

    Nowadays, due to increased demand for using the Broadband Wireless Access (BWA) networks in a satisfactory manner a promised Quality of Service (QoS) is required to manage the seamless transmission of the heterogeneous handoff calls. To this end, this paper proposes an improved Call Admission Control (CAC) mechanism with prioritized handoff queuing scheme that aims to reduce dropping probability of handoff calls. Handoff calls are queued when no bandwidth is available even after the allowable bandwidth degradation of the ongoing calls and get admitted into the network when an ongoing call is terminated with a higher priority than the newly originated call. An analytical Markov model for the proposed CAC mechanism is developed to analyze various performance parameters. Analytical results show that our proposed CAC with handoff queuing scheme prioritizes the handoff calls effectively and reduces dropping probability of the system by 78.57% for real-time traffic without degrading the number of failed new call attempts. This results in the increased bandwidth utilization of the network.

  2. Network Routing Using the Network Tasking Order, a Chron Approach

    Science.gov (United States)

    2015-03-26

    iv BATMAN Better Approach to Mobile Ad-hoc Networks...routing in wireless mesh networks. MicroTik has created MME based on the Better Approach to Mobile Ad-hoc Network ( BATMAN ) routing protocol. MME

  3. Towards Agent-Oriented Approach to a Call Management System

    Science.gov (United States)

    Ashamalla, Amir Nabil; Beydoun, Ghassan; Low, Graham

    There is more chance of a completed sale if the end customers and relationship managers are suitably matched. This in turn can reduce the number of calls made by a call centre reducing operational costs such as working time and phone bills. This chapter is part of ongoing research aimed at helping a CMC to make better use of its personnel and equipment while maximizing the value of the service it offers to its client companies and end customers. This is accomplished by ensuring the optimal use of resources with appropriate real-time scheduling and load balancing and matching the end customers to appropriate relationship managers. In a globalized market, this may mean taking into account the cultural environment of the customer, as well as the appropriate profile and/or skill of the relationship manager to communicate effectively with the end customer. The chapter evaluates the suitability of a MAS to a call management system and illustrates the requirement analysis phase using i* models.

  4. Temporal Statistical Analysis of Degree Distributions in an Undirected Landline Phone Call Network Graph Series

    Directory of Open Access Journals (Sweden)

    Orgeta Gjermëni

    2017-10-01

    Full Text Available This article aims to provide new results about the intraday degree sequence distribution considering phone call network graph evolution in time. More specifically, it tackles the following problem. Given a large amount of landline phone call data records, what is the best way to summarize the distinct number of calling partners per client per day? In order to answer this question, a series of undirected phone call network graphs is constructed based on data from a local telecommunication source in Albania. All network graphs of the series are simplified. Further, a longitudinal temporal study is made on this network graphs series related to the degree distributions. Power law and log-normal distribution fittings on the degree sequence are compared on each of the network graphs of the series. The maximum likelihood method is used to estimate the parameters of the distributions, and a Kolmogorov–Smirnov test associated with a p-value is used to define the plausible models. A direct distribution comparison is made through a Vuong test in the case that both distributions are plausible. Another goal was to describe the parameters’ distributions’ shape. A Shapiro-Wilk test is used to test the normality of the data, and measures of shape are used to define the distributions’ shape. Study findings suggested that log-normal distribution models better the intraday degree sequence data of the network graphs. It is not possible to say that the distributions of log-normal parameters are normal.

  5. On the distribution of calls in a wireless network driven by fluid traffic

    NARCIS (Netherlands)

    Ule, Aljaz; Boucherie, Richardus J.

    2003-01-01

    This note develops a modelling approach for wireless networks driven by fluid traffic models. Introducing traffic sets that follow movement of subscribers, the wireless network with time-varying rates is transformed into a stationary network at these traffic sets, which yields that the distribution

  6. On the Distribution of CAlls in a Wireless Network driven by Fluid Traffic

    NARCIS (Netherlands)

    Ule, A.; Boucherie, R.J.

    2003-01-01

    This note develops a modelling approach for wireless networks driven by fluid traffic models. Introducing traffic sets that follow movement of subscribers, the wireless network with time-varying rates is transformed into a stationary network at these traffic sets, which yields that the distribution

  7. Falls prevention revisited: a call for a new approach.

    Science.gov (United States)

    Dempsey, Jennifer

    2004-05-01

    Patient falls constitute a major threat to health services' ability to provide care. Previous studies confirm that nurses can identify patients at risk and that a preventative programme can reduce the rate of falls but few studies have been evaluated over time. A study was undertaken to test a Falls Prevention Programme in an acute medical area that was re-evaluated 5 years later to determine if the effects were sustainable. The design included two groups of patients admitted before and after the programme. Variables such as staffing, equipment, environment and routines were controlled. However, because of ethical approval constraints, some variables such as age, mental status, mobility and gender were not. The programme included a risk assessment tool, a choice of interventions, a graphic that alerted others to 'at risk patients' and simple patient and staff education. Data were collected using incident forms and a formula was used to calculate a rate of falls. A non-paired t-test compared rates and anova examined the relationship of age, gender, mobility and mental status on the incidence of falls. Control graphs determined the stability of the process. The falls rate was significantly reduced. Control graphs demonstrate that the process achieved greater control with less variation. In the next 5 years the falls rate increased to preprogramme levels and control graphs demonstrated that the process was no longer controlled. Compliance with the programme had deteriorated. The practice review considered skill mix, patient activity and acuity but provided no definitive answers to explain non-compliance. The implications to nursing are discussed. Clinicians are called to conduct more rigorous research into falls prevention but it may be more useful to direct research towards examining nursing work and increasing nurse autonomy in falls prevention.

  8. Impact of Queuing on Call Completion Rate in GSM Networks | Nkop ...

    African Journals Online (AJOL)

    In this paper, we use the queuing approach to develop a model for call completion, making signal power considerations as well. A General User Interface (GUI) is designed for the developed model using MATLAB and the impact of queuing on call completion is analysed by carrying out an assessment of the performance of ...

  9. Hybrid Localization Approach for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Pei-Hsuan Tsai

    2017-01-01

    Full Text Available Underwater Wireless Sensor Networks (UWSNs are widely used to collect data in the marine environment. Location and time are essential aspects when sensors collect data, particularly in the case of location-aware data. Many studies on terrestrial sensor networks consider sensor locations as the locations where data is collected and focus on sensor positioning when sensors are fixed. However, underwater sensors are mobile networks and the sensor locations change continuously. Localization schemes designed for static sensor networks need to run periodically to update locations and consume considerable sensor power and increase the communication overhead; hence, they cannot be applied to UWSNs. This paper presents a hybrid localization approach with data-location correction, called Data Localization Correction Approach (DLCA, which positions data without additional communication overhead and power consumption on sensors. Without loss of generality, we simulate the ocean environment based on a kinematic model and meandering current mobility model and conduct extensive simulations. Our results show that DLCA can significantly reduce communication costs, while maintaining relatively high localization accuracy.

  10. Neural network approaches for noisy language modeling.

    Science.gov (United States)

    Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid

    2013-11-01

    Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.

  11. Adaptive call admission control and resource allocation in multi server wireless/cellular network

    Science.gov (United States)

    Jain, Madhu; Mittal, Ragini

    2016-11-01

    The ever increasing demand of the subscribers has put pressure on the capacity of wireless networks around the world. To utilize the scare resources, in the present paper we propose an optimal allocation scheme for an integrated wireless/cellular model with handoff priority and handoff guarantee services. The suggested algorithm optimally allocates the resources in each cell and dynamically adjust threshold to control the admission. To give the priority to handoff calls over the new calls, the provision of guard channels and subrating scheme is taken into consideration. The handoff voice call may balk and renege from the system while waiting in the buffer. An iterative algorithm is implemented to generate the arrival rate of the handoff calls in each cell. Various performance indices are established in term of steady state probabilities. The sensitivity analysis has also been carried out to examine the tractability of algorithms and to explore the effects of system descriptors on the performance indices.

  12. Users’ classification-based call admission control with adaptive resource reservation for LTE-A networks

    Directory of Open Access Journals (Sweden)

    Salman Ali AlQahtani

    2017-01-01

    In this paper, we introduce the user’s privileges and traffic maximum delay tolerance as additional dimensions in the call admission control processes to efficiently control the utilization of LTE-A network resources. Based on this idea, we propose an efficient call admission control scheme named “delay aware and user categorizing-based CAC with adaptive resource reservation (DA–UC-ARR”, where the user priority is adjusted dynamically based on the current network conditions and the users’ categorizations and traffic delay tolerances, to increase the network’s resource utilization and at the same time to maximize the operators’ revenue. In this proposed scheme, the users are classified into Golden users and Silver users, and the type of service per user is classified as real time (RT and non-real time (NRT services. We compare the performance of the proposed scheme with the corresponding results of previous schemes, referred to as the adaptive resource reservation-based call admission control (ARR-CAC (Andrews et al., 2010; AlQahtani, 2014, where user categorization and delay were not taken into consideration in the call admission control process. Simulation results indicate the superiority of the proposed scheme because it is able to achieve a better balance between system utilization, users’ privileges provided by network operators and QoS provisioning compared to the ARR-CAC scheme.

  13. Queueing networks a fundamental approach

    CERN Document Server

    Dijk, Nico

    2011-01-01

    This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner.  The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow subnetworks to be aggregated into single nodes to reduce computational burden. Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the proces generators, and comparison results and explicit error bounds based on an underlying Markov r...

  14. Effect of call-clubs to institute local network effects in mobile telecommunication and its′ implications on brand loyalty

    Directory of Open Access Journals (Sweden)

    Karunarathne E. A .C. P

    2017-03-01

    Full Text Available As a result of rapid technological advancements in the mobile telecommunication industry, many firms have set their strategies to target larger customer bases since it forecasts extensive future profit generation. Due to severe competition, while employing successful customer loyalty strategies, customer locked-in strategies are also commonly used in the telecommunication industry to retain their customers within the firm. Call-clubs benefits are one of the commonly used strategies used to create local network effects in the mobile telecommunication market place. Thus, this paper targets to provide insight on the implication of subscriber’s involvement in call-clubs on their loyalty towards service providers. A survey based quantitative approach was followed for this study and the data was gathered through a structured off-line questionnaire from randomly selected mobile users in Sri Lanka. Based on collected valid responses, analysis was carried out to answer the designed research hypotheses and structural equation modelling techniques were mainly used for statistical analysis. As per the analysis, research model shows a fairly high level of explanatory power with customer loyalty and perceived call-clubs benefits which indicate customers′ preference towards the service provider when most frequently contacting parties are using the same network. Further analysis was carried out to investigate the moderating effect on call-clubs benefits and customer loyalty relationships due to two main technological advancements; namely, Internet based voice calling facility and multiple connection access facility. Based on the analysis results recommendations were made to track the value of call-clubs strategies accordingly.

  15. The Role of Qualitative Approaches to Research in CALL Contexts: Closing in on the Learner's Experience

    Science.gov (United States)

    Levy, Mike

    2015-01-01

    The article considers the role of qualitative research methods in CALL through describing a series of examples. These examples are used to highlight the importance and value of qualitative data in relation to a specific research objective in CALL. The use of qualitative methods in conjunction with other approaches as in mixed method research…

  16. A Novel Approach to Detect Malware Based on API Call Sequence Analysis

    National Research Council Canada - National Science Library

    Ki, Youngjoon; Kim, Eunjin; Kim, Huy Kang

    2015-01-01

    .... In this paper, we propose a novel approach for dynamic analysis of malware. We adopt DNA sequence alignment algorithms and extract common API call sequence patterns of malicious function from malware in different categories...

  17. A network approach toward literature review

    NARCIS (Netherlands)

    van de Wijngaert, Lidwien; Bouwman, Harry; Contractor, Noshir

    2012-01-01

    This study introduces a method that uses a network approach towards literature review. To employ this approach, we use hypotheses proposed in scientific publications as building blocks. In network terms, a hypothesis is a directed tie between two concepts or nodes. The network emerges by aggregating

  18. SeqEM: an adaptive genotype-calling approach for next-generation sequencing studies

    Science.gov (United States)

    Martin, E. R.; Kinnamon, D. D.; Schmidt, M. A.; Powell, E. H.; Zuchner, S.; Morris, R. W.

    2010-01-01

    Motivation: Next-generation sequencing presents several statistical challenges, with one of the most fundamental being determining an individual's genotype from multiple aligned short read sequences at a position. Some simple approaches for genotype calling apply fixed filters, such as calling a heterozygote if more than a specified percentage of the reads have variant nucleotide calls. Other genotype-calling methods, such as MAQ and SOAPsnp, are implementations of Bayes classifiers in that they classify genotypes using posterior genotype probabilities. Results: Here, we propose a novel genotype-calling algorithm that, in contrast to the other methods, estimates parameters underlying the posterior probabilities in an adaptive way rather than arbitrarily specifying them a priori. The algorithm, which we call SeqEM, applies the well-known Expectation-Maximization algorithm to an appropriate likelihood for a sample of unrelated individuals with next-generation sequence data, leveraging information from the sample to estimate genotype probabilities and the nucleotide-read error rate. We demonstrate using analytic calculations and simulations that SeqEM results in genotype-call error rates as small as or smaller than filtering approaches and MAQ. We also apply SeqEM to exome sequence data in eight related individuals and compare the results to genotypes from an Illumina SNP array, showing that SeqEM behaves well in real data that deviates from idealized assumptions. Conclusion: SeqEM offers an improved, robust and flexible genotype-calling approach that can be widely applied in the next-generation sequencing studies. Availability and implementation: Software for SeqEM is freely available from our website: www.hihg.org under Software Download. Contact: emartin1@med.miami.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20861027

  19. Base Station Ordering for Emergency Call Localization in Ultra-dense Cellular Networks

    KAUST Repository

    Elsawy, Hesham

    2017-10-04

    This paper proposes the base station ordering localization technique (BoLT) for emergency call localization in cellular networks. Exploiting the foreseen ultra-densification of the next-generation (5G and beyond) cellular networks, we utilize higher-order Voronoi tessellations to provide ubiquitous localization services that are in compliance to the public safety standards in cellular networks. The proposed localization algorithm runs at the base stations (BSs) and requires minimal operation from agents (i.e., mobile users). Particularly, BoLT requires each agent to feedback a neighbor cell list (NCL) that contains the order of neighboring BSs based on the received signal power in the pilots sent from these BSs. Moreover, this paper utilizes stochastic geometry to develop a tractable mathematical model to assess the performance of BoLT in a general network setting. The goal of this paper is to answer the following two fundamental questions: i) how many BSs should be ordered and reported by the agent to achieve a desirable localization accuracy? and ii) what is the localization error probability given that the pilot signals are subject to shadowing? Assuming that the BSs are deployed according to a Poisson point process (PPP), we answer these two questions via characterizing the tradeoff between the area of location region (ALR) and the localization error probability in terms of the number of BSs ordered by the agent. The results show that reporting the order of six neighboring BSs is sufficient to localize the agent within 10% of the cell area. Increasing the number of reported BSs to ten confines the location region to 1% of the cell area. This would translate to the range of a few meters to decimeters in the foreseen ultra-dense 5G networks.

  20. Analisis Unjuk Kerja Aplikasi VoIP Call Android di Jaringan MANET [Performance Analysis of VoIP Call Application Android in MANET (Mobile Ad Hoc Network

    Directory of Open Access Journals (Sweden)

    Ryan Ari Setyawan

    2015-06-01

    Full Text Available Penelitian ini bertujuan menganalisis kinerja aplikasi  VoIP call android di jaringan MANET (mobile ad hoc network.  Hasil pengujian menunjukan bahwa aplikasi VoIP call android dapat digunakan di jaringan MANET. Delay yang dihasilkan paling besar di pengujian indoor dengan jarak 11-15 meter yakni sebesar 0,014624811 seconds. Packet loss yang dihasilkan pada range 1%-2% sedangkan standar packet loss yang ditetapkan oleh CISCO untuk layanan aplikasi VoIP adalah < 5%. Jitter yang dihasilkan yakni antara 0,01-0,06 seconds sedangkan standar yang ditetapkan oleh CISCO adalah ≤ 30 ms atau 0,03 seconds. Throughput yang dihasilkan pada proses pengujian yakni antar 161 kbps-481 kbps. *****This study aims to analyze the performance of VOIP call android application in the MANET (mobile ad hoc network. The results showed that VoIP applications could be implemented in MANET network. The highest  delay is produced in indoor testing  with distance of 11-15 meters,  which is equal to 0.014624811 seconds. Packet loss is generated in the range of 1% -2%, while packet loss standards set by Cisco for VoIP application services are <5%. The jitter is between 0.01 to 0.06 seconds, while the standard set by CISCO is ≤ 30 ms or 0.03 seconds. Throughput generated in the testing process is between 161 kbps-481 kbps.

  1. Network growth approach to macroevolution

    OpenAIRE

    Qin, Shao-Meng; Chen, Yong; Zhang, Pan

    2006-01-01

    We propose a novel network growth model coupled with the competition interaction to simulate macroevolution. Our work shows that the competition plays an important role in macroevolution and it is more rational to describe the interaction between species by network structures. Our model presents a complete picture of the development of phyla and the splitting process. It is found that periodic mass extinction occurred in our networks without any extraterrestrial factors and the lifetime distr...

  2. A network approach to leadership

    DEFF Research Database (Denmark)

    Lewis, Jenny; Ricard, Lykke Margot

    Leaders’ ego-networks within an organization are pivotal as focal points that point to other organizational factors such as innovation capacity and leadership effectiveness. The aim of the paper is to provide a framework for exploring leaders’ ego-networks within the boundary of an organization. We...... redundancy and effective size, and the potential for either divide and conquer or distributed leadership strategies. The empirical testing of this framework adds to our knowledge of the micro level role of individuals within networks. This will be used to examine the relationships between leadership, network...

  3. Network growth approach to macroevolution

    Energy Technology Data Exchange (ETDEWEB)

    Qin Shaomeng; Chen Yong; Zhang Pan [Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 (China)

    2007-07-15

    We propose a novel network growth model coupled with the competition interaction to simulate macroevolution. Our work shows that competition plays an important role in macroevolution and it is more rational to describe the interaction between species by network structures. Our model presents a complete picture of the development of phyla and the splitting process. It is found that periodic mass extinction occurred in our networks without any extraterrestrial factors and the lifetime distribution of species is very close to the fossil record. We also perturb networks with two scenarios of mass extinctions on different hierarchic levels in order to study their recovery.

  4. Network growth approach to macroevolution

    Science.gov (United States)

    Qin, Shao-Meng; Chen, Yong; Zhang, Pan

    2007-07-01

    We propose a novel network growth model coupled with the competition interaction to simulate macroevolution. Our work shows that competition plays an important role in macroevolution and it is more rational to describe the interaction between species by network structures. Our model presents a complete picture of the development of phyla and the splitting process. It is found that periodic mass extinction occurred in our networks without any extraterrestrial factors and the lifetime distribution of species is very close to the fossil record. We also perturb networks with two scenarios of mass extinctions on different hierarchic levels in order to study their recovery.

  5. Learning Based Approach for Optimal Clustering of Distributed Program's Call Flow Graph

    Science.gov (United States)

    Abofathi, Yousef; Zarei, Bager; Parsa, Saeed

    Optimal clustering of call flow graph for reaching maximum concurrency in execution of distributable components is one of the NP-Complete problems. Learning automatas (LAs) are search tools which are used for solving many NP-Complete problems. In this paper a learning based algorithm is proposed to optimal clustering of call flow graph and appropriate distributing of programs in network level. The algorithm uses learning feature of LAs to search in state space. It has been shown that the speed of reaching to solution increases remarkably using LA in search process, and it also prevents algorithm from being trapped in local minimums. Experimental results show the superiority of proposed algorithm over others.

  6. Tourism Destinations Network Analysis, Social Network Analysis Approach

    Directory of Open Access Journals (Sweden)

    2015-09-01

    Full Text Available The tourism industry is becoming one of the world's largest economical sources, and is expected to become the world's first industry by 2020. Previous studies have focused on several aspects of this industry including sociology, geography, tourism management and development, but have paid less attention to analytical and quantitative approaches. This study introduces some network analysis techniques and measures aiming at studying the structural characteristics of tourism networks. More specifically, it presents a methodology to analyze tourism destinations network. We apply the methodology to analyze mazandaran’s Tourism destination network, one of the most famous tourism areas of Iran.

  7. A Reinforcement Learning Approach to Call Admission Control in HAPS Communication System

    Directory of Open Access Journals (Sweden)

    Ni Shu Yan

    2017-01-01

    Full Text Available The large changing of link capacity and number of users caused by the movement of both platform and users in communication system based on high altitude platform station (HAPS will resulting in high dropping rate of handover and reduce resource utilization. In order to solve these problems, this paper proposes an adaptive call admission control strategy based on reinforcement learning approach. The goal of this strategy is to maximize long-term gains of system, with the introduction of cross-layer interaction and the service downgraded. In order to access different traffics adaptively, the access utility of handover traffics and new call traffics is designed in different state of communication system. Numerical simulation result shows that the proposed call admission control strategy can enhance bandwidth resource utilization and the performances of handover traffics.

  8. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications.

    Science.gov (United States)

    Rimmer, Andy; Phan, Hang; Mathieson, Iain; Iqbal, Zamin; Twigg, Stephen R F; Wilkie, Andrew O M; McVean, Gil; Lunter, Gerton

    2014-08-01

    High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software package called Platypus. Platypus achieves high sensitivity and specificity for SNPs, indels and complex polymorphisms by using local de novo assembly to generate candidate variants, followed by local realignment and probabilistic haplotype estimation. It is an order of magnitude faster than existing tools and generates calls from raw aligned read data without preprocessing. We demonstrate the performance of Platypus in clinically relevant experimental designs by comparing with SAMtools and GATK on whole-genome and exome-capture data, by identifying de novo variation in 15 parent-offspring trios with high sensitivity and specificity, and by estimating human leukocyte antigen genotypes directly from variant calls.

  9. Network Medicine: A Network-based Approach to Human Diseases

    Science.gov (United States)

    Ghiassian, Susan Dina

    With the availability of large-scale data, it is now possible to systematically study the underlying interaction maps of many complex systems in multiple disciplines. Statistical physics has a long and successful history in modeling and characterizing systems with a large number of interacting individuals. Indeed, numerous approaches that were first developed in the context of statistical physics, such as the notion of random walks and diffusion processes, have been applied successfully to study and characterize complex systems in the context of network science. Based on these tools, network science has made important contributions to our understanding of many real-world, self-organizing systems, for example in computer science, sociology and economics. Biological systems are no exception. Indeed, recent studies reflect the necessity of applying statistical and network-based approaches in order to understand complex biological systems, such as cells. In these approaches, a cell is viewed as a complex network consisting of interactions among cellular components, such as genes and proteins. Given the cellular network as a platform, machinery, functionality and failure of a cell can be studied with network-based approaches, a field known as systems biology. Here, we apply network-based approaches to explore human diseases and their associated genes within the cellular network. This dissertation is divided in three parts: (i) A systematic analysis of the connectivity patterns among disease proteins within the cellular network. The quantification of these patterns inspires the design of an algorithm which predicts a disease-specific subnetwork containing yet unknown disease associated proteins. (ii) We apply the introduced algorithm to explore the common underlying mechanism of many complex diseases. We detect a subnetwork from which inflammatory processes initiate and result in many autoimmune diseases. (iii) The last chapter of this dissertation describes the

  10. A Transdiagnostic Network Approach to Psychosis

    NARCIS (Netherlands)

    Wigman, Johanna T. W.; de Vos, Stijn; Wichers, Marieke; van Os, Jim; Bartels-Velthuis, Agna A.

    Our ability to accurately predict development and outcome of early expression of psychosis is limited. To elucidate the mechanisms underlying psychopathology, a broader, transdiagnostic approach that acknowledges the complexity of mental illness is required. The upcoming network paradigm may be

  11. A Bayesian Network Approach to Ontology Mapping

    National Research Council Canada - National Science Library

    Pan, Rong; Ding, Zhongli; Yu, Yang; Peng, Yun

    2005-01-01

    .... In this approach, the source and target ontologies are first translated into Bayesian networks (BN); the concept mapping between the two ontologies are treated as evidential reasoning between the two translated BNs...

  12. Computer networking a top-down approach

    CERN Document Server

    Kurose, James

    2017-01-01

    Unique among computer networking texts, the Seventh Edition of the popular Computer Networking: A Top Down Approach builds on the author’s long tradition of teaching this complex subject through a layered approach in a “top-down manner.” The text works its way from the application layer down toward the physical layer, motivating readers by exposing them to important concepts early in their study of networking. Focusing on the Internet and the fundamentally important issues of networking, this text provides an excellent foundation for readers interested in computer science and electrical engineering, without requiring extensive knowledge of programming or mathematics. The Seventh Edition has been updated to reflect the most important and exciting recent advances in networking.

  13. Approaching human language with complex networks.

    Science.gov (United States)

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. SOCIAL POLARIZATION AND CONFLICT: A NETWORK APPROACH

    Directory of Open Access Journals (Sweden)

    Ernesto Cárdenas

    2013-12-01

    Full Text Available Theoretically, polarization is associated with a higher probability of social conflict. This paper, in a microeconomic model based on the theory of social networks, analyses how changes in the network's structure affect the level of some basic parameters associated with the concept of polarization. This study shows that under upward monotonic preferences, longer sets of affiliations for each individual reduce polarization, whereas under downward monotonic preferences, longer sets of the so-called bad affiliations increase polarization. Finally, in the case of a non-monotonic system of preferences, an expansion of the affiliations set will alter the resulting polarization order in different ways depending on the preferences themselves

  15. Spiking modular neural networks: A neural network modeling approach for hydrological processes

    National Research Council Canada - National Science Library

    Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey

    2006-01-01

    .... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...

  16. Educational Syncretism: Call for a Hyper-modernist Educational Theory Through Proactionary Approach

    Directory of Open Access Journals (Sweden)

    M. Mahmoodi-Shahrebabaki

    2015-12-01

    Full Text Available Presently, the modernist theory of education is losing its momentum and is superseded by the so-called omnipotent postmodernist theories, which, speciously, claim that have proffered solutions to all educational enigmas. Although the postmodernist educational theory is in its ascendancy, especially in the Western world, the tenets of postmodern educational theories, with their over-permissive and desultory blueprints, are not without obvious pitfalls. I argue that, today, with the rapid circulation of information and sweeping transformations in the nature of education-job interactions, we have passed the postmodern era and stepped into a new era called hyper-modernism. Hence, I remind the necessity of formation of syncretism in our educational theorization and I explain that it has to be built upon a proactionary approach since we are, if not within already, one verge of Hyper-modernization.

  17. A Transfer Learning Approach for Network Modeling

    Science.gov (United States)

    Huang, Shuai; Li, Jing; Chen, Kewei; Wu, Teresa; Ye, Jieping; Wu, Xia; Yao, Li

    2012-01-01

    Networks models have been widely used in many domains to characterize the interacting relationship between physical entities. A typical problem faced is to identify the networks of multiple related tasks that share some similarities. In this case, a transfer learning approach that can leverage the knowledge gained during the modeling of one task to help better model another task is highly desirable. In this paper, we propose a transfer learning approach, which adopts a Bayesian hierarchical model framework to characterize task relatedness and additionally uses the L1-regularization to ensure robust learning of the networks with limited sample sizes. A method based on the Expectation-Maximization (EM) algorithm is further developed to learn the networks from data. Simulation studies are performed, which demonstrate the superiority of the proposed transfer learning approach over single task learning that learns the network of each task in isolation. The proposed approach is also applied to identification of brain connectivity networks of Alzheimer’s disease (AD) from functional magnetic resonance image (fMRI) data. The findings are consistent with the AD literature. PMID:24526804

  18. PCR Strategies for Complete Allele Calling in Multigene Families Using High-Throughput Sequencing Approaches.

    Directory of Open Access Journals (Sweden)

    Elena Marmesat

    Full Text Available The characterization of multigene families with high copy number variation is often approached through PCR amplification with highly degenerate primers to account for all expected variants flanking the region of interest. Such an approach often introduces PCR biases that result in an unbalanced representation of targets in high-throughput sequencing libraries that eventually results in incomplete detection of the targeted alleles. Here we confirm this result and propose two different amplification strategies to alleviate this problem. The first strategy (called pooled-PCRs targets different subsets of alleles in multiple independent PCRs using different moderately degenerate primer pairs, whereas the second approach (called pooled-primers uses a custom-made pool of non-degenerate primers in a single PCR. We compare their performance to the common use of a single PCR with highly degenerate primers using the MHC class I of the Iberian lynx as a model. We found both novel approaches to work similarly well and better than the conventional approach. They significantly scored more alleles per individual (11.33 ± 1.38 and 11.72 ± 0.89 vs 7.94 ± 1.95, yielded more complete allelic profiles (96.28 ± 8.46 and 99.50 ± 2.12 vs 63.76 ± 15.43, and revealed more alleles at a population level (13 vs 12. Finally, we could link each allele's amplification efficiency with the primer-mismatches in its flanking sequences and show that ultra-deep coverage offered by high-throughput technologies does not fully compensate for such biases, especially as real alleles may reach lower coverage than artefacts. Adopting either of the proposed amplification methods provides the opportunity to attain more complete allelic profiles at lower coverages, improving confidence over the downstream analyses and subsequent applications.

  19. Clustering: a neural network approach.

    Science.gov (United States)

    Du, K-L

    2010-01-01

    Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature extraction, vector quantization (VQ), image segmentation, function approximation, and data mining. As an unsupervised classification technique, clustering identifies some inherent structures present in a set of objects based on a similarity measure. Clustering methods can be based on statistical model identification (McLachlan & Basford, 1988) or competitive learning. In this paper, we give a comprehensive overview of competitive learning based clustering methods. Importance is attached to a number of competitive learning based clustering neural networks such as the self-organizing map (SOM), the learning vector quantization (LVQ), the neural gas, and the ART model, and clustering algorithms such as the C-means, mountain/subtractive clustering, and fuzzy C-means (FCM) algorithms. Associated topics such as the under-utilization problem, fuzzy clustering, robust clustering, clustering based on non-Euclidean distance measures, supervised clustering, hierarchical clustering as well as cluster validity are also described. Two examples are given to demonstrate the use of the clustering methods.

  20. Quantum Phase Transitions: A Network Approach

    Science.gov (United States)

    Vargas, David L.; Larue, David M.; Carr, Lincoln D.

    2014-03-01

    Understanding the network structure of complex systems has opened up new avenues of research in sociology, biology, technology, and physics. In this talk we present evidence that complex network measures are able to identify the phases in two well known models. We distinguish the ferromagnetic and paramagnetic phases of the transverse Ising Hamiltonian. We also identify the Mott-insulator to superfluid transition of the Bose-Hubbard Hamiltonian. The network approach to the analysis of quantum phase transitions provides us with a new set of tools to explore the many body physics of quantum phase transitions. Supported by NSF and AFOSR.

  1. Qualitative networks: a symbolic approach to analyze biological signaling networks

    Directory of Open Access Journals (Sweden)

    Henzinger Thomas A

    2007-01-01

    Full Text Available Abstract Background A central goal of Systems Biology is to model and analyze biological signaling pathways that interact with one another to form complex networks. Here we introduce Qualitative networks, an extension of Boolean networks. With this framework, we use formal verification methods to check whether a model is consistent with the laboratory experimental observations on which it is based. If the model does not conform to the data, we suggest a revised model and the new hypotheses are tested in-silico. Results We consider networks in which elements range over a small finite domain allowing more flexibility than Boolean values, and add target functions that allow to model a rich set of behaviors. We propose a symbolic algorithm for analyzing the steady state of these networks, allowing us to scale up to a system consisting of 144 elements and state spaces of approximately 1086 states. We illustrate the usefulness of this approach through a model of the interaction between the Notch and the Wnt signaling pathways in mammalian skin, and its extensive analysis. Conclusion We introduce an approach for constructing computational models of biological systems that extends the framework of Boolean networks and uses formal verification methods for the analysis of the model. This approach can scale to multicellular models of complex pathways, and is therefore a useful tool for the analysis of complex biological systems. The hypotheses formulated during in-silico testing suggest new avenues to explore experimentally. Hence, this approach has the potential to efficiently complement experimental studies in biology.

  2. The association of drinking water treatment and distribution network disturbances with Health Call Centre contacts for gastrointestinal illness symptoms.

    Science.gov (United States)

    Malm, Annika; Axelsson, Gösta; Barregard, Lars; Ljungqvist, Jakob; Forsberg, Bertil; Bergstedt, Olof; Pettersson, Thomas J R

    2013-09-01

    There are relatively few studies on the association between disturbances in drinking water services and symptoms of gastrointestinal (GI) illness. Health Call Centres data concerning GI illness may be a useful source of information. This study investigates if there is an increased frequency of contacts with the Health Call Centre (HCC) concerning gastrointestinal symptoms at times when there is a risk of impaired water quality due to disturbances at water works or the distribution network. The study was conducted in Gothenburg, a Swedish city with 0.5 million inhabitants with a surface water source of drinking water and two water works. All HCC contacts due to GI symptoms (diarrhoea, vomiting or abdominal pain) were recorded for a three-year period, including also sex, age, and geocoded location of residence. The number of contacts with the HCC in the affected geographical areas were recorded during eight periods of disturbances in the water works (e.g. short stops of chlorine dosing), six periods of large disturbances in the distribution network (e.g. pumping station failure or pipe breaks with major consequences), and 818 pipe break and leak repairs over a three-year period. For each period of disturbance the observed number of calls was compared with the number of calls during a control period without disturbances in the same geographical area. In total about 55, 000 calls to the HCC due to GI symptoms were recorded over the three-year period, 35 per 1000 inhabitants and year, but much higher (>200) for children distribution network. Our results indicate that GI symptoms due to disturbances in water works or the distribution network are rare. The number of serious failures was, however limited, and further studies are needed to be able to assess the risk of GI illness in such cases. The technique of using geocoded HCC data together with geocoded records of disturbances in the drinking water network was feasible. Copyright © 2013 Elsevier Ltd. All rights

  3. A novel function prediction approach using protein overlap networks.

    Science.gov (United States)

    Liang, Shide; Zheng, Dandan; Standley, Daron M; Guo, Huarong; Zhang, Chi

    2013-07-17

    Construction of a reliable network remains the bottleneck for network-based protein function prediction. We built an artificial network model called protein overlap network (PON) for the entire genome of yeast, fly, worm, and human, respectively. Each node of the network represents a protein, and two proteins are connected if they share a domain according to InterPro database. The function of a protein can be predicted by counting the occurrence frequency of GO (gene ontology) terms associated with domains of direct neighbors. The average success rate and coverage were 34.3% and 43.9%, respectively, for the test genomes, and were increased to 37.9% and 51.3% when a composite PON of the four species was used for the prediction. As a comparison, the success rate was 7.0% in the random control procedure. We also made predictions with GO term annotations of the second layer nodes using the composite network and obtained an impressive success rate (>30%) and coverage (>30%), even for small genomes. Further improvement was achieved by statistical analysis of manually annotated GO terms for each neighboring protein. The PONs are composed of dense modules accompanied by a few long distance connections. Based on the PONs, we developed multiple approaches effective for protein function prediction.

  4. Classification of Echolocation Calls from 14 Species of Bat by Support Vector Machines and Ensembles of Neural Networks

    Directory of Open Access Journals (Sweden)

    Stuart Parsons

    2009-07-01

    Full Text Available Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA, support vector machines (SVM and ensembles of neural networks (ENN. Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97% consistently outperformed SVMs (mean identification rate – 87%. Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.

  5. An Innovative Approach for Drainage Network Sizing

    Directory of Open Access Journals (Sweden)

    Luca Cozzolino

    2015-02-01

    Full Text Available In this paper, a procedure for the optimal design of rural drainage networks is presented and demonstrated. The suggested approach, exploring the potentialities offered by heuristic methods for the solution of complex optimization problems, is based on the use of a Genetic Algorithm (GA, coupled with a steady and uniform flow hydraulic module. In particular, this work has focused: on one hand, on the problems of a technical nature posed by the correct sizing of a drainage network; on the other hand, on the possibility to use a simple but nevertheless efficient GA to reach the minimal cost solution very quickly. The suitability of the approach is tested with reference to small and large scale drainage networks, already considered in the literature.

  6. Flowshop Scheduling Using a Network Approach | Oladeinde ...

    African Journals Online (AJOL)

    In this paper, a network based formulation of a permutation flow shop problem is presented. Two nuances of flow shop problems with different levels of complexity are solved using different approaches to the linear programming formulation. Key flow shop parameters inclosing makespan of the flow shop problems were ...

  7. From calls to communities: a model for time varying social networks

    CERN Document Server

    Laurent, Guillaume; Karsai, Márton

    2015-01-01

    Social interactions vary in time and appear to be driven by intrinsic mechanisms, which in turn shape the emerging structure of the social network. Large-scale empirical observations of social interaction structure have become possible only recently, and modelling their dynamics is an actual challenge. Here we propose a temporal network model which builds on the framework of activity-driven time-varying networks with memory. The model also integrates key mechanisms that drive the formation of social ties - social reinforcement, focal closure and cyclic closure, which have been shown to give rise to community structure and the global connectedness of the network. We compare the proposed model with a real-world time-varying network of mobile phone communication and show that they share several characteristics from heterogeneous degrees and weights to rich community structure. Further, the strong and weak ties that emerge from the model follow similar weight-topology correlations as real-world social networks, i...

  8. Stabilizing patterns in time: Neural network approach.

    Science.gov (United States)

    Ben-Shushan, Nadav; Tsodyks, Misha

    2017-12-01

    Recurrent and feedback networks are capable of holding dynamic memories. Nonetheless, training a network for that task is challenging. In order to do so, one should face non-linear propagation of errors in the system. Small deviations from the desired dynamics due to error or inherent noise might have a dramatic effect in the future. A method to cope with these difficulties is thus needed. In this work we focus on recurrent networks with linear activation functions and binary output unit. We characterize its ability to reproduce a temporal sequence of actions over its output unit. We suggest casting the temporal learning problem to a perceptron problem. In the discrete case a finite margin appears, providing the network, to some extent, robustness to noise, for which it performs perfectly (i.e. producing a desired sequence for an arbitrary number of cycles flawlessly). In the continuous case the margin approaches zero when the output unit changes its state, hence the network is only able to reproduce the sequence with slight jitters. Numerical simulation suggest that in the discrete time case, the longest sequence that can be learned scales, at best, as square root of the network size. A dramatic effect occurs when learning several short sequences in parallel, that is, their total length substantially exceeds the length of the longest single sequence the network can learn. This model easily generalizes to an arbitrary number of output units, which boost its performance. This effect is demonstrated by considering two practical examples for sequence learning. This work suggests a way to overcome stability problems for training recurrent networks and further quantifies the performance of a network under the specific learning scheme.

  9. MACD-Based Motion Detection Approach in Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Chen Yung-Mu

    2008-01-01

    Full Text Available Abstract Optimizing the balance between handoff quality and power consumption is a great challenge for seamless mobile communications in wireless networks. Traditional proactive schemes continuously monitor available access networks and exercise handoff. Although such schemes achieve good handoff quality, they consume much power because all interfaces must remain on all the time. To save power, the reactive schemes use fixed RSS thresholds to determine when to search for a new available access network. However, since they do not consider user motion, these approaches require that all interfaces be turned on even when a user is stationary, and they tend initiate excessive unnecessary handoffs. To address this problem, this research presents a novel motion-aware scheme called network discovery with motion detection (NDMD to improve handoff quality and minimize power consumption. The NDMD first applies a moving average convergence divergence (MACD scheme to analyze received signal strength (RSS samples of the current active interface. These results are then used to estimate user's motion. The proposed NDMD scheme adds very little computing overhead to a mobile terminal (MT and can be easily incorporated into existing schemes. The simulation results in this study showed that NDMD can quickly track user motion state without a positioning system and perform network discovery rapidly enough to achieve a much lower handoff-dropping rate with less power consumption.

  10. MACD-Based Motion Detection Approach in Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Chih-Hung Hsu

    2008-09-01

    Full Text Available Optimizing the balance between handoff quality and power consumption is a great challenge for seamless mobile communications in wireless networks. Traditional proactive schemes continuously monitor available access networks and exercise handoff. Although such schemes achieve good handoff quality, they consume much power because all interfaces must remain on all the time. To save power, the reactive schemes use fixed RSS thresholds to determine when to search for a new available access network. However, since they do not consider user motion, these approaches require that all interfaces be turned on even when a user is stationary, and they tend initiate excessive unnecessary handoffs. To address this problem, this research presents a novel motion-aware scheme called network discovery with motion detection (NDMD to improve handoff quality and minimize power consumption. The NDMD first applies a moving average convergence divergence (MACD scheme to analyze received signal strength (RSS samples of the current active interface. These results are then used to estimate user's motion. The proposed NDMD scheme adds very little computing overhead to a mobile terminal (MT and can be easily incorporated into existing schemes. The simulation results in this study showed that NDMD can quickly track user motion state without a positioning system and perform network discovery rapidly enough to achieve a much lower handoff-dropping rate with less power consumption.

  11. Ensemble approach to the analysis of weighted networks

    Science.gov (United States)

    Ahnert, S. E.; Garlaschelli, D.; Fink, T. M. A.; Caldarelli, G.

    2007-07-01

    We present an approach to the analysis of weighted networks, by providing a straightforward generalization of any network measure defined on unweighted networks, such as the average degree of the nearest neighbors, the clustering coefficient, the “betweenness,” the distance between two nodes, and the diameter of a network. All these measures are well established for unweighted networks but have hitherto proven difficult to define for weighted networks. Our approach is based on the translation of a weighted network into an ensemble of edges. Further introducing this approach we demonstrate its advantages by applying the clustering coefficient constructed in this way to two real-world weighted networks.

  12. Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach

    Science.gov (United States)

    2016-03-30

    Undergraduate Student Paper Postgraduate Student Paper Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach...monitoring, flight parameter, nonlinear modeling, Artificial Neural Network , typical loadcase. Introduction Aircraft load monitoring is an... Neural Networks (ANN), i.e. the BP network and Kohonen Clustering Network , are applied and revised by Kalman Filter and Genetic Algorithm to build

  13. Network Analysis: A Novel Approach to Understand Suicidal Behaviour

    Directory of Open Access Journals (Sweden)

    Derek de Beurs

    2017-02-01

    Full Text Available Although suicide is a major public health issue worldwide, we understand little of the onset and development of suicidal behaviour. Suicidal behaviour is argued to be the end result of the complex interaction between psychological, social and biological factors. Epidemiological studies resulted in a range of risk factors for suicidal behaviour, but we do not yet understand how their interaction increases the risk for suicidal behaviour. A new approach called network analysis can help us better understand this process as it allows us to visualize and quantify the complex association between many different symptoms or risk factors. A network analysis of data containing information on suicidal patients can help us understand how risk factors interact and how their interaction is related to suicidal thoughts and behaviour. A network perspective has been successfully applied to the field of depression and psychosis, but not yet to the field of suicidology. In this theoretical article, I will introduce the concept of network analysis to the field of suicide prevention, and offer directions for future applications and studies.

  14. Insomnia and Personality—A Network Approach

    Directory of Open Access Journals (Sweden)

    Kim Dekker

    2017-03-01

    Full Text Available Studies on personality traits and insomnia have remained inconclusive about which traits show the most direct associations with insomnia severity. It has moreover hardly been explored how traits relate to specific characteristics of insomnia. We here used network analysis in a large sample (N = 2089 to obtain an integrated view on the associations of personality traits with both overall insomnia severity and different insomnia characteristics, while distinguishing direct from indirect associations. We first estimated a network describing the associations among the five factor model personality traits and overall insomnia severity. Overall insomnia severity was associated with neuroticism, agreeableness, and openness. Subsequently, we estimated a separate network describing the associations among the personality traits and each of the seven individual items of the Insomnia Severity Index. This revealed relatively separate clusters of daytime and nocturnal insomnia complaints, that both contributed to dissatisfaction with sleep, and were both most directly associated with neuroticism and conscientiousness. The approach revealed the strongest direct associations between personality traits and the severity of different insomnia characteristics and overall insomnia severity. Differentiating them from indirect associations identified the targets for improving Cognitive Behavioral Therapy for insomnia with the highest probability of effectively changing the network of associated complaints.

  15. Flood estimation: a neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Swain, P.C.; Seshachalam, C.; Umamahesh, N.V. [Regional Engineering Coll., Warangal (India). Water and Environment Div.

    2000-07-01

    The artificial neural network (ANN) approach described in this study aims at predicting the flood flow into a reservoir. This differs from the traditional methods of flow prediction in the sense that it belongs to a class of data driven approaches, where as the traditional methods are model driven. Physical processes influencing the occurrences of streamflow in a river are highly complex, and are very difficult to be modelled by available statistical or deterministic models. ANNs provide model free solutions and hence can be expected to be appropriate in these conditions. Non-linearity, adaptivity, evidential response and fault tolerance are additional properties and capabilities of the neural networks. This paper highlights the applicability of neural networks for predicting daily flood flow taking the Hirakud reservoir on river Mahanadi in Orissa, India as the case study. The correlation between the observed and predicted flows and the relative error are considered to measure the performance of the model. The correlation between the observed and the modelled flows are computed to be 0.9467 in testing phase of the model. (orig.)

  16. PhredEM: a phred-score-informed genotype-calling approach for next-generation sequencing studies.

    Science.gov (United States)

    Liao, Peizhou; Satten, Glen A; Hu, Yi-Juan

    2017-07-01

    A fundamental challenge in analyzing next-generation sequencing (NGS) data is to determine an individual's genotype accurately, as the accuracy of the inferred genotype is essential to downstream analyses. Correctly estimating the base-calling error rate is critical to accurate genotype calls. Phred scores that accompany each call can be used to decide which calls are reliable. Some genotype callers, such as GATK and SAMtools, directly calculate the base-calling error rates from phred scores or recalibrated base quality scores. Others, such as SeqEM, estimate error rates from the read data without using any quality scores. It is also a common quality control procedure to filter out reads with low phred scores. However, choosing an appropriate phred score threshold is problematic as a too high threshold may lose data, while a too low threshold may introduce errors. We propose a new likelihood-based genotype-calling approach that exploits all reads and estimates the per-base error rates by incorporating phred scores through a logistic regression model. The approach, which we call PhredEM, uses the expectation-maximization (EM) algorithm to obtain consistent estimates of genotype frequencies and logistic regression parameters. It also includes a simple, computationally efficient screening algorithm to identify loci that are estimated to be monomorphic, so that only loci estimated to be nonmonomorphic require application of the EM algorithm. Like GATK, PhredEM can be used together with a linkage-disequilibrium-based method such as Beagle, which can further improve genotype calling as a refinement step. We evaluate the performance of PhredEM using both simulated data and real sequencing data from the UK10K project and the 1000 Genomes project. The results demonstrate that PhredEM performs better than either GATK or SeqEM, and that PhredEM is an improved, robust, and widely applicable genotype-calling approach for NGS studies. The relevant software is freely available.

  17. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.

  18. Behavioral analysis of malicious code through network traffic and system call monitoring

    Science.gov (United States)

    Grégio, André R. A.; Fernandes Filho, Dario S.; Afonso, Vitor M.; Santos, Rafael D. C.; Jino, Mario; de Geus, Paulo L.

    2011-06-01

    Malicious code (malware) that spreads through the Internet-such as viruses, worms and trojans-is a major threat to information security nowadays and a profitable business for criminals. There are several approaches to analyze malware by monitoring its actions while it is running in a controlled environment, which helps to identify malicious behaviors. In this article we propose a tool to analyze malware behavior in a non-intrusive and effective way, extending the analysis possibilities to cover malware samples that bypass current approaches and also fixes some issues with these approaches.

  19. A Network Traffic Control Enhancement Approach over Bluetooth Networks

    DEFF Research Database (Denmark)

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun

    2003-01-01

    This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated...... solution of the stated optimization problem that satisfies quality of service requirements and topologically induced constraints in Bluetooth networks, such as link capacity and node resource limitations. The proposed scheme is decentralized and complies with frequent changes of topology as well...... as capacity limitations and flow requirements in the network. Simulation shows that the performance of Bluetooth networks could be improved by applying the adaptive distributed network traffic control scheme...

  20. DPSNA-1: A simulation model for queueing networks with limited capacity and repetition of service demand calls

    Science.gov (United States)

    Curzi, L.; Grillo, D.; Tartaruga, G.

    1982-09-01

    A simulation program in which nodes are represented as having a limited queueing capacity, while channels between nodes are assumed to be unlimited is described. The data flow is controlled by differentiating the queue access in function of the call origin. External packets are admitted in the network only if the node occupation level is less than a given fraction. Incoming messages from other nodes are admitted without restrictions and in the case of saturation are repeated. The program structure, inlet data, outlet statistics and a set of term definitions are detailed.

  1. Survey of Network-Based Approaches to Research of Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Anida Sarajlić

    2014-01-01

    Full Text Available Cardiovascular diseases (CVDs are the leading health problem worldwide. Investigating causes and mechanisms of CVDs calls for an integrative approach that would take into account its complex etiology. Biological networks generated from available data on biomolecular interactions are an excellent platform for understanding interconnectedness of all processes within a living cell, including processes that underlie diseases. Consequently, topology of biological networks has successfully been used for identifying genes, pathways, and modules that govern molecular actions underlying various complex diseases. Here, we review approaches that explore and use relationships between topological properties of biological networks and mechanisms underlying CVDs.

  2. Cross-Layer Quality-of-Service Analysis and Call Admission Control in the Uplink of CDMA Cellular Networks

    Directory of Open Access Journals (Sweden)

    Nie Chun

    2006-01-01

    Full Text Available This paper addresses cross-layer quality-of-service (QoS provisioning in the uplink of CDMA cellular mobile networks. Each mobile can take up to four UMTS traffic classes in our model. At the data link layer and the network layer, the QoS performances are defined in terms of signal-to-interference-plus-noise ratio and outage probability, and packet loss rate and delay, respectively. A call admission control scheme which fulfills these QoS metrics is developed to maximize the system capacity. The novelty of this paper is that the effect of the lengthening of the on-periods of non-real-time traffic classes is investigated by using the Go-Back-N automatic retransmission request mechanism with finite buffer size and limited number of retransmissions in the event of transmission errors. Simulation results for a specific example demonstrate the reasonableness of the analytical formulation.

  3. Identifying Geographic Clusters: A Network Analytic Approach

    CERN Document Server

    Catini, Roberto; Penner, Orion; Riccaboni, Massimo

    2015-01-01

    In recent years there has been a growing interest in the role of networks and clusters in the global economy. Despite being a popular research topic in economics, sociology and urban studies, geographical clustering of human activity has often studied been by means of predetermined geographical units such as administrative divisions and metropolitan areas. This approach is intrinsically time invariant and it does not allow one to differentiate between different activities. Our goal in this paper is to present a new methodology for identifying clusters, that can be applied to different empirical settings. We use a graph approach based on k-shell decomposition to analyze world biomedical research clusters based on PubMed scientific publications. We identify research institutions and locate their activities in geographical clusters. Leading areas of scientific production and their top performing research institutions are consistently identified at different geographic scales.

  4. THE NETWORKS IN TOURISM: A THEORETICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Maria TĂTĂRUȘANU

    2016-12-01

    Full Text Available The economic world in which tourism companies act today is in a continuous changing process. The most important factor of these changes is the globalization of their environment, both in economic, social, natural and cultural aspects. The tourism companies can benefit from the opportunities brought by globalization, but also could be menaced by the new context. How could react the companies to these changes in order to create and maintain long term competitive advantage for their business? In the present paper we make a literature review of the new tourism companies´ business approach: the networks - a result and/or a reason for exploiting the opportunities or, on the contrary, for keeping their actual position on the market. It’s a qualitative approach and the research methods used are analyses, synthesis, abstraction, which are considered the most appropriate to achieve the objective of the paper.

  5. Maximum Entropy Approaches to Living Neural Networks

    Directory of Open Access Journals (Sweden)

    John M. Beggs

    2010-01-01

    Full Text Available Understanding how ensembles of neurons collectively interact will be a key step in developing a mechanistic theory of cognitive processes. Recent progress in multineuron recording and analysis techniques has generated tremendous excitement over the physiology of living neural networks. One of the key developments driving this interest is a new class of models based on the principle of maximum entropy. Maximum entropy models have been reported to account for spatial correlation structure in ensembles of neurons recorded from several different types of data. Importantly, these models require only information about the firing rates of individual neurons and their pairwise correlations. If this approach is generally applicable, it would drastically simplify the problem of understanding how neural networks behave. Given the interest in this method, several groups now have worked to extend maximum entropy models to account for temporal correlations. Here, we review how maximum entropy models have been applied to neuronal ensemble data to account for spatial and temporal correlations. We also discuss criticisms of the maximum entropy approach that argue that it is not generally applicable to larger ensembles of neurons. We conclude that future maximum entropy models will need to address three issues: temporal correlations, higher-order correlations, and larger ensemble sizes. Finally, we provide a brief list of topics for future research.

  6. The PAGES 2k Network, Phase 3: Introduction, Goals and Call for Participation

    Science.gov (United States)

    McGregor, Helen; Phipps, Steven; von Gunten, Lucien; Martrat, Belen; Linderholm, Lars; Abram, Nerilie; Bothe, Oliver; Neukom, Raphael; St. George, Scott; Evans, Michael; Kaufman, Darrell; Goosse, Hugues; Turney, Chris

    2017-04-01

    The past 2000 years (the "2k" interval) provides critical context for recent anthropogenic forcing of the climate, baseline information about Earth's natural climate variability, opportunities to improve the interpretation of proxy observations, and evaluation of climate models. The PAGES 2k Network (2008-2013 Phase 1; 2014-2016 Phase 2) built regional and global surface temperature reconstructions for terrestrial regions and the oceans, and used comparison with realistically forced simulations to identify mechanisms of climate variation on interannual to bicentennial time scales. The goals of Phase 3 (2017-2019), which launches in May 2017 at the PAGES Open Science Meeting, are to: 1) Further understand the mechanisms driving regional climate variability and change on interannual to centennial time scales (Theme: "Climate Variability, Modes and Mechanisms"); 2) Reduce uncertainties in the interpretation of observations imprinted in paleoclimatic archives by environmental sensors (Theme: "Methods and Uncertainties"); and 3) Identify and analyse the extent of agreement between reconstructions and climate model simulations (Theme: "Proxy and Model Understanding") Research will be organized as a linked network of well-defined projects and targeted manuscripts, identified and led by 2k members. The 2k projects will focus on specific scientific questions aligned with Phase 3 goals, rather than being defined along regional boundaries. An enduring element from earlier phases of PAGES 2k will be a culture of collegiality, transparency, and reciprocity. Phase 3 seeks to stimulate community based projects and facilitate collaboration of researchers from different regions and career stages, drawing on breadth and depth of the global PAGES 2k community; support end-to-end workflow transparency and open data and knowledge access; and develop collaborations with other research communities and engage with stakeholders. If you would like to participate in PAGES 2k Phase 3 or

  7. Investigating meta-approaches for reconstructing gene networks in a mammalian cellular context.

    Directory of Open Access Journals (Sweden)

    Azree Nazri

    Full Text Available The output of state-of-the-art reverse-engineering methods for biological networks is often based on the fitting of a mathematical model to the data. Typically, different datasets do not give single consistent network predictions but rather an ensemble of inconsistent networks inferred under the same reverse-engineering method that are only consistent with the specific experimentally measured data. Here, we focus on an alternative approach for combining the information contained within such an ensemble of inconsistent gene networks called meta-analysis, to make more accurate predictions and to estimate the reliability of these predictions. We review two existing meta-analysis approaches; the Fisher transformation combined coefficient test (FTCCT and Fisher's inverse combined probability test (FICPT; and compare their performance with five well-known methods, ARACNe, Context Likelihood or Relatedness network (CLR, Maximum Relevance Minimum Redundancy (MRNET, Relevance Network (RN and Bayesian Network (BN. We conducted in-depth numerical ensemble simulations and demonstrated for biological expression data that the meta-analysis approaches consistently outperformed the best gene regulatory network inference (GRNI methods in the literature. Furthermore, the meta-analysis approaches have a low computational complexity. We conclude that the meta-analysis approaches are a powerful tool for integrating different datasets to give more accurate and reliable predictions for biological networks.

  8. Anomaly Detection Approaches for Communication Networks

    Science.gov (United States)

    Thottan, Marina; Liu, Guanglei; Ji, Chuanyi

    In recent years, network anomaly detection has become an important area for both commercial interests as well as academic research. Applications of anomaly detection typically stem from the perspectives of network monitoring and network security. In network monitoring, a service provider is often interested in capturing such network characteristics as heavy flows, flow size distributions, and the number of distinct flows. In network security, the interest lies in characterizing known or unknown anomalous patterns of an attack or a virus.

  9. A Phase-Type Approach to Modelling Multi-Skill Call Centers

    DEFF Research Database (Denmark)

    Nielsen, Thomas Bang

    Routing schemes based on the waiting time of the customers in queue are common in call centers. These often take the form of thresholds at which overflow to other groups of agents is allowed. Using phase-type distributions an approximation for the waiting-time distribution in such systems...

  10. Socio-technical networks: how a technology studies approach may help to solve problems related to technical change

    NARCIS (Netherlands)

    Elzen, Boelem; Enserink, Bert; Enserink, B.; Smit, Willem A.

    1996-01-01

    This paper is motivated by a desire to deal with the problematic aspects of technical development. To achieve this, we need a new approach to the analysis of socio-technical change. In this paper we develop such an approach, called the `Socio-Technical Networks' (STN) approach. The basic concepts of

  11. An Efficient Approach in Analysis of DNA Base Calling Using Neural Fuzzy Model.

    Science.gov (United States)

    Hameed, Safa A; Hamed, Raed I

    2017-01-01

    This paper presented the issues of true representation and a reliable measure for analyzing the DNA base calling is provided. The method implemented dealt with the data set quality in analyzing DNA sequencing, it is investigating solution of the problem of using Neurofuzzy techniques for predicting the confidence value for each base in DNA base calling regarding collecting the data for each base in DNA, and the simulation model of designing the ANFIS contains three subsystems and main system; obtain the three features from the subsystems and in the main system and use the three features to predict the confidence value for each base. This is achieving effective results with high performance in employment.

  12. CARIAA Call - Call Document

    International Development Research Centre (IDRC) Digital Library (Canada)

    CARIAA

    2013-02-19

    Feb 19, 2013 ... Canada's International Development Research Centre (IDRC) is pleased to announce a call for concept notes as part of the Collaborative Adaptation Research Initiative in Africa and Asia (CARIAA) program. Funded by IDRC and the United Kingdom's Department for International Development (DFID), ...

  13. A network approach to analyzing highly recombinant malaria parasite genes.

    Directory of Open Access Journals (Sweden)

    Daniel B Larremore

    Full Text Available The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs, and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  14. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  15. Balancing of Network Energy using Observer Approach

    OpenAIRE

    Patharlapati, Sai Ram Charan

    2016-01-01

    Efficient energy use is primarily for any sensor networks to function for a longer time period. There have been many efficient schemes with various progress levels proposed by many researchers. Yet, there still more improvements are needed. This thesis is an attempt to make wireless sensor networks with further efficient on energy usage in the network with respect to rate of delivery of the messages. In sensor network architecture radio, sensing and actuators have influence over the power ...

  16. Open home networks: the TEAHA approach

    NARCIS (Netherlands)

    van Dijk, H.W.; Scholten, Johan; Tobalina, Alvaro; García Muñoz, Victor; Milanini, Stephane; Kung, Antonio

    2006-01-01

    The current trend for home appliances is networking. Although more and more of these appliances are networked, there is not a standard way of interaction, which restrains the development of services for in-home networks. The lack of standardisation is partly due to a legacy of business interests;

  17. Open Home Networks: the TEAHA Approach

    NARCIS (Netherlands)

    van Dijk, H.W.; Scholten, Johan; Tobalina, Alvaro; García Muñoz, Victor; Milanini, Stephane; Kung, Antonio; Dini, C.; Smekal, Z.; Lochin, E.; Verma, P.

    2007-01-01

    The current trend for home appliances is networking. Although more and more of these appliances are networked, there is not a standard way of interaction, which restrains the development of services for in-home networks. The lack of standardisation is partly due to a legacy of business interests;

  18. An artificial immune system algorithm approach for reconfiguring distribution network

    Science.gov (United States)

    Syahputra, Ramadoni; Soesanti, Indah

    2017-08-01

    This paper proposes an artificial immune system (AIS) algorithm approach for reconfiguring distribution network with the presence distributed generators (DG). The distribution network with high-performance is a network that has a low power loss, better voltage profile, and loading balance among feeders. The task for improving the performance of the distribution network is optimization of network configuration. The optimization has become a necessary study with the presence of DG in entire networks. In this work, optimization of network configuration is based on an AIS algorithm. The methodology has been tested in a model of 33 bus IEEE radial distribution networks with and without DG integration. The results have been showed that the optimal configuration of the distribution network is able to reduce power loss and to improve the voltage profile of the distribution network significantly.

  19. Computer networks ISE a systems approach

    CERN Document Server

    Peterson, Larry L

    2007-01-01

    Computer Networks, 4E is the only introductory computer networking book written by authors who have had first-hand experience with many of the protocols discussed in the book, who have actually designed some of them as well, and who are still actively designing the computer networks today. This newly revised edition continues to provide an enduring, practical understanding of networks and their building blocks through rich, example-based instruction. The authors' focus is on the why of network design, not just the specifications comprising today's systems but how key technologies and p

  20. Structural factoring approach for analyzing stochastic networks

    Science.gov (United States)

    Hayhurst, Kelly J.; Shier, Douglas R.

    1991-01-01

    The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.

  1. An Approach for Detecting Attacks in Mobile Adhoc Networks

    OpenAIRE

    V. M. Viswanatham; A. A. Chari

    2008-01-01

    The security of data becomes more important with the increased use of commercial applications over wireless network environments. We presented an approach to handle various attacks for wireless networks. There were several problems of security in wireless networks due to intruders and different type of attacks such as Node Isolation, Route Disruption and Resource Consumption. There were better methods and intruder handling procedures available for fixed networks but it was difficult to analyz...

  2. A Network Coding Approach to Loss Tomography

    DEFF Research Database (Denmark)

    Sattari, Pegah; Markopoulou, Athina; Fragouli, Christina

    2013-01-01

    multicast and/or unicast end-to-end probes. Independently, recent advances in network coding have shown that there are several advantages from allowing intermediate nodes to process and combine, in addition to just forward, packets. In this paper, we pose the problem of loss tomography in networks that have...... network coding capabilities. We design a framework for estimating link loss rates, which leverages network coding capabilities and we show that it improves several aspects of tomography, including the identifiability of links, the tradeoff between estimation accuracy and bandwidth efficiency...... and multiple paths between sources and receivers. This work was the first to make the connection between active network tomography and network coding, and thus opened a new research direction....

  3. Mobile social networking an innovative approach

    CERN Document Server

    Zhang, Daqing

    2014-01-01

    The use of contextually aware, pervasive, distributed computing, and sensor networks to bridge the gap between the physical and online worlds is the basis of mobile social networking. This book shows how applications can be built to provide mobile social networking, the research issues that need to be solved to enable this vision, and how mobile social networking can be used to provide computational intelligence that will improve daily life. With contributions from the fields of sociology, computer science, human-computer interaction and design, this book demonstrates how mobile social networks can be inferred from users' physical interactions both with the environment and with others, as well as how users behave around them and how their behavior differs on mobile vs. traditional online social networks.

  4. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    Science.gov (United States)

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  5. Software defined networks a comprehensive approach

    CERN Document Server

    Goransson, Paul

    2014-01-01

    Software Defined Networks discusses the historical networking environment that gave rise to SDN, as well as the latest advances in SDN technology. The book gives you the state of the art knowledge needed for successful deployment of an SDN, including: How to explain to the non-technical business decision makers in your organization the potential benefits, as well as the risks, in shifting parts of a network to the SDN modelHow to make intelligent decisions about when to integrate SDN technologies in a networkHow to decide if your organization should be developing its own SDN applications or

  6. Unification of theoretical approaches for epidemic spreading on complex networks.

    Science.gov (United States)

    Wang, Wei; Tang, Ming; Eugene Stanley, H; Braunstein, Lidia A

    2017-03-01

    Models of epidemic spreading on complex networks have attracted great attention among researchers in physics, mathematics, and epidemiology due to their success in predicting and controlling scenarios of epidemic spreading in real-world scenarios. To understand the interplay between epidemic spreading and the topology of a contact network, several outstanding theoretical approaches have been developed. An accurate theoretical approach describing the spreading dynamics must take both the network topology and dynamical correlations into consideration at the expense of increasing the complexity of the equations. In this short survey we unify the most widely used theoretical approaches for epidemic spreading on complex networks in terms of increasing complexity, including the mean-field, the heterogeneous mean-field, the quench mean-field, dynamical message-passing, link percolation, and pairwise approximation. We build connections among these approaches to provide new insights into developing an accurate theoretical approach to spreading dynamics on complex networks.

  7. A Novel Approach to Detect Malware Based on API Call Sequence Analysis

    OpenAIRE

    Youngjoon Ki; Eunjin Kim; Huy Kang Kim

    2015-01-01

    In the era of ubiquitous sensors and smart devices, detecting malware is becoming an endless battle between ever-evolving malware and antivirus programs that need to process ever-increasing security related data. For malware detection, various approaches have been proposed. Among them, dynamic analysis is known to be effective in terms of providing behavioral information. As malware authors increasingly use obfuscation techniques, it becomes more important to monitor how malware behaves for i...

  8. Enhanced Effective Filtering Approach (eEFA for Improving HSR Network Performance in Smart Grids

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan Tien

    2018-01-01

    Full Text Available The effective filtering approach (EFA is one of the most effective approaches for improving the network traffic performance of high-availability seamless redundancy (HSR networks. However, because EFA uses port locking (PL for detecting nondestination doubly-attached nodes with HSR protocol (DANH rings in HSR networks, it forwards the first sent frame to all DANH rings in the network. In addition, it uses a control message for discovering passive QuadBox rings in both unidirectional and bidirectional communications. In this study, we propose an enhanced version of EFA called enhanced-EFA (eEFA that does not forward unicast frames to nondestination DANH rings. eEFA does not use any control message to discover passive QuadBox rings in bidirectional communications. eEFA thus reduces the network traffic in HSR networks compared with EFA. Analytical and simulation results for a sample network show that the traffic reduction of eEFA was 4–26% and 2–20% for unidirectional and bidirectional communications, respectively, compared to EFA. eEFA, thus, clearly saves network bandwidth and improves the network performance.

  9. Considerations for Software Defined Networking (SDN): Approaches and use cases

    Science.gov (United States)

    Bakshi, K.

    Software Defined Networking (SDN) is an evolutionary approach to network design and functionality based on the ability to programmatically modify the behavior of network devices. SDN uses user-customizable and configurable software that's independent of hardware to enable networked systems to expand data flow control. SDN is in large part about understanding and managing a network as a unified abstraction. It will make networks more flexible, dynamic, and cost-efficient, while greatly simplifying operational complexity. And this advanced solution provides several benefits including network and service customizability, configurability, improved operations, and increased performance. There are several approaches to SDN and its practical implementation. Among them, two have risen to prominence with differences in pedigree and implementation. This paper's main focus will be to define, review, and evaluate salient approaches and use cases of the OpenFlow and Virtual Network Overlay approaches to SDN. OpenFlow is a communication protocol that gives access to the forwarding plane of a network's switches and routers. The Virtual Network Overlay relies on a completely virtualized network infrastructure and services to abstract the underlying physical network, which allows the overlay to be mobile to other physical networks. This is an important requirement for cloud computing, where applications and associated network services are migrated to cloud service providers and remote data centers on the fly as resource demands dictate. The paper will discuss how and where SDN can be applied and implemented, including research and academia, virtual multitenant data center, and cloud computing applications. Specific attention will be given to the cloud computing use case, where automated provisioning and programmable overlay for scalable multi-tenancy is leveraged via the SDN approach.

  10. Neural network approach to parton distributions fitting

    CERN Document Server

    Piccione, Andrea; Forte, Stefano; Latorre, Jose I.; Rojo, Joan; Piccione, Andrea; Rojo, Joan

    2006-01-01

    We will show an application of neural networks to extract information on the structure of hadrons. A Monte Carlo over experimental data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica via a genetic algorithm. Results on the proton and deuteron structure functions, and on the nonsinglet parton distribution will be shown.

  11. Social Networks and Mourning: A Comparative Approach.

    Science.gov (United States)

    Rubin, Nissan

    1990-01-01

    Suggests using social network theory to explain varieties of mourning behavior in different societies. Compares participation in funeral ceremonies of members of different social circles in American society and Israeli kibbutz. Concludes that results demonstrated validity of concepts deriving from social network analysis in study of bereavement,…

  12. A call for differentiated approaches to delivering HIV services to key populations

    Directory of Open Access Journals (Sweden)

    Virginia Macdonald

    2017-07-01

    Conclusions: The application of a differentiated service approach for KP could increase the number of people who know their status and receive effective and sustained prevention and treatment for HIV. However, while community-based and lay provider testing are effective and affordable, they are not implemented to scale. Furthermore regulatory barriers to legitimizing lay and peer providers as part of healthcare delivery systems need to be overcome in many settings. WHO recommendations on task shifting and decentralization of ART treatment and care are often not applied to KP settings.

  13. Discovering the Network Topology: An Efficient Approach for SDN

    Directory of Open Access Journals (Sweden)

    Leonardo OCHOA-ADAY

    2016-11-01

    Full Text Available Network topology is a physical description of the overall resources in the network. Collecting this information using efficient mechanisms becomes a critical task for important network functions such as routing, network management, quality of service (QoS, among many others. Recent technologies like Software-Defined Networks (SDN have emerged as promising approaches for managing the next generation networks. In order to ensure a proficient topology discovery service in SDN, we propose a simple agents-based mechanism. This mechanism improves the overall efficiency of the topology discovery process. In this paper, an algorithm for a novel Topology Discovery Protocol (SD-TDP is described. This protocol will be implemented in each switch through a software agent. Thus, this approach will provide a distributed solution to solve the problem of network topology discovery in a more simple and efficient way.

  14. [Health care innovation from a territorial perspective: a call for a new approach].

    Science.gov (United States)

    Costa, Laís Silveira; Gadelha, Carlos Augusto Grabois; Maldonado, José

    2012-12-01

    Innovation plays an increasingly important role in health care, partly because it is responsible for a significant share of national investment in research and development, and partly because of its industrial and service provision base, which provides a conduit to future technology. The relationship between health care and development is also strengthened as a result of the leading role of health care in generating innovation. Nevertheless, Brazil's health care production base is persistently weak, hindering both universal provision of health care services and international competitiveness. This article, based on the theoretical framework of Political Economy and innovation systems, has sought to identify variables in subnational contexts that influence the dynamic of innovation generation in health care. To this end, the theoretical approach used lies on the assumption that innovation is a contextualized social process and that the production base in healthcare will remain weak if new variables involved in the dynamic of innovation are not taken into account.

  15. Small "p" Publishing: A Networked Blogging Approach to Academic Discourse

    Science.gov (United States)

    Martin, Julia W.; Hughes, Brian

    2012-01-01

    This article highlights a middle ground for academic publishing between formal peer-reviewed journals and informal blogging that we call "Small "p" Publishing." Having implemented and tested a publishing network that illustrates this middle ground, we describe its unique contributions to scholars and learning communities. Three features that…

  16. Network modelling of physical systems: a geometric approach

    NARCIS (Netherlands)

    van der Schaft, Arjan; Maschke, B.M.; Ortega, Romeo; Banos, A.; Lamnabhi-lagarrigue, F; Montoya, F.J.

    2001-01-01

    It is discussed how network modeling of lumped-parameter physical systems naturally leads to a geometrically defined class of systems, called port-controlled Hamiltonian systems (with dissipation). The structural properties of these systems are investigated, in particular the existence of Casimir

  17. Network attacks and defenses a hands-on approach

    CERN Document Server

    Trabelsi, Zouheir; Al Braiki, Arwa; Mathew, Sujith Samuel

    2012-01-01

    The attacks on computers and business networks are growing daily, and the need for security professionals who understand how malfeasants perform attacks and compromise networks is a growing requirement to counter the threat. Network security education generally lacks appropriate textbooks with detailed, hands-on exercises that include both offensive and defensive techniques. Using step-by-step processes to build and generate attacks using offensive techniques, Network Attacks and Defenses: A Hands-on Approach enables students to implement appropriate network security solutions within a laborat

  18. Proposal for an extension to the procedure for the qualification and selection of network operators for the provision of outgoing fixed-line telephone calls

    CERN Document Server

    2004-01-01

    This document concerns a proposal for a three-year extension to the procedure for the qualification and selection of network operators for the provision of outgoing fixed-line telephone calls. The Finance Committee is invited to agree to the continuation of the procedure approved by the Finance Committee (CERN/FC/4407) for the selection of network operators for the provision of outgoing fixed-line telephone calls for a three-year period within an annual ceiling of 800 000 Swiss francs, bringing the total amount for the period to a maximum of 2 400 000 Swiss francs.

  19. Electrical spectrum & network analyzers a practical approach

    CERN Document Server

    Helfrick, Albert D

    1991-01-01

    This book presents fundamentals and the latest techniques of electrical spectrum analysis. It focuses on instruments and techniques used on spectrum and network analysis, rather than theory. The book covers the use of spectrum analyzers, tracking generators, and network analyzers. Filled with practical examples, the book presents techniques that are widely used in signal processing and communications applications, yet are difficult to find in most literature.Key Features* Presents numerous practical examples, including actual spectrum analyzer circuits* Instruction on how to us

  20. CONSTRUCCIÓN DE UNA RED INSTITUCIONAL DE APOYO PARA LA POBLACIÓN HABITANTE DE LA CALLE: TEJIENDO REDES Construction of an institutional network for homeless support: weaving networks

    Directory of Open Access Journals (Sweden)

    Zulma Giraldo Rátiva

    2007-06-01

    Full Text Available Antecedentes. La problemática de la habitancia en calle es un factor que se incrementa diariamente como efecto de situaciones de tipo socioeconómico, político e ideológico. Los antecedentes investigativos demuestran que el abordaje desde la terapia ocupacional y otras disciplinas en cuanto a la habitancia en calle, redes sociales e inclusión social a la luz de los derechos humanos no ha sido ampliamente desarrollados por lo que se hace necesario profundizar esta temática. Objetivos. Abordar la problemática de la habitancia en calle a la luz del modelo de los derechos humanos y la relevancia de las redes institucionales en el proceso de inclusión social de esta población. Fortalecer una red de apoyo institucional ofreciendo una opción de participación social para el habitante y ex-habitante de calle. Material y métodos. Esta investigación aborda a la población habitante y ex-habitante de calle en Bogotá. Las instituciones partícipes de este proceso de fortalecimiento de la red se encuentran ubicadas dentro de Bogotá. Resultados. De las 43 instituciones detectadas, 29 brindaron información, siendo 14 instituciones a las que no se pudo tener acceso, por motivos como: cambio de residencia, números telefónicos incorrectos y ausencia del personal encargado que suministrara información. Conclusión. Dentro de las instituciones detectadas existen diferentes niveles de atención para la población infantil y adulta habitante y ex-habitante de calle , (prevención, promoción, rehabilitación además de acompañamiento y seguimiento por dichas instituciones dentro del sector público y privado.Antecedents. The problematic of homeless a factor that is increased daily as effect of socioeconomic, political and ideological circumstances. The antecedents demonstrate that the boarding from occupational therapy and other social disciplines as far as the homeless, networks and social inclusion to the light of the human rights widely has not

  1. Network Medicine: A Network-based Approach to Human Disease

    Science.gov (United States)

    Barabási, Albert-László; Gulbahce, Natali; Loscalzo, Joseph

    2011-01-01

    Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction are essential to identify new diseases genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases. PMID:21164525

  2. Library Network Statistics and Performance Measures: Approaches and Issues

    Directory of Open Access Journals (Sweden)

    John Carlo Bertot

    2001-07-01

    Full Text Available Library networked statistics and performance measures are important indicators of the use, uses, and users of networked services that libraries offer their patrons. This article focuses on three efforts to develop and standardize library network statistics and performance measures. In particular, the article discusses, compares, and contrasts selected aspects of the International Standards Organization (ISO, U.S. public library network statistics, and Association of Research Library (ARL efforts. The three approaches attempt to capture, describe, and present library networked activities in similar ways through similar approaches – yet they differ in key areas. It is important to note that there are a number of national and international efforts underway that continue to research the library network statistics and performance measure environment.

  3. Sampling of Complex Networks: A Datamining Approach

    Science.gov (United States)

    Loecher, Markus; Dohrmann, Jakob; Bauer, Gernot

    2007-03-01

    Efficient and accurate sampling of big complex networks is still an unsolved problem. As the degree distribution is one of the most commonly used attributes to characterize a network, there have been many attempts in recent papers to derive the original degree distribution from the data obtained during a traceroute- like sampling process. This talk describes a strategy for predicting the original degree of a node using the data obtained from a network by traceroute-like sampling making use of datamining techniques. Only local quantities (the sampled degree k, the redundancy of node detection r, the time of the first discovery of a node t and the distance to the sampling source d) are used as input for the datamining models. Global properties like the betweenness centrality are ignored. These local quantities are examined theoretically and in simulations to increase their value for the predictions. The accuracy of the models is discussed as a function of the number of sources used in the sampling process and the underlying topology of the network. The purpose of this work is to introduce the techniques of the relatively young field of datamining to the discussion on network sampling.

  4. Network approach to patterns in stratocumulus clouds

    Science.gov (United States)

    Glassmeier, Franziska; Feingold, Graham

    2017-10-01

    Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth’s climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis’s Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav–Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes.

  5. Network approach to patterns in stratocumulus clouds.

    Science.gov (United States)

    Glassmeier, Franziska; Feingold, Graham

    2017-10-03

    Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth's climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis's Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav-Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes.

  6. An Online Convex Optimization Approach to Proactive Network Resource Allocation

    Science.gov (United States)

    Chen, Tianyi; Ling, Qing; Giannakis, Georgios B.

    2017-12-01

    Existing approaches to online convex optimization (OCO) make sequential one-slot-ahead decisions, which lead to (possibly adversarial) losses that drive subsequent decision iterates. Their performance is evaluated by the so-called regret that measures the difference of losses between the online solution and the best yet fixed overall solution in hindsight. The present paper deals with online convex optimization involving adversarial loss functions and adversarial constraints, where the constraints are revealed after making decisions, and can be tolerable to instantaneous violations but must be satisfied in the long term. Performance of an online algorithm in this setting is assessed by: i) the difference of its losses relative to the best dynamic solution with one-slot-ahead information of the loss function and the constraint (that is here termed dynamic regret); and, ii) the accumulated amount of constraint violations (that is here termed dynamic fit). In this context, a modified online saddle-point (MOSP) scheme is developed, and proved to simultaneously yield sub-linear dynamic regret and fit, provided that the accumulated variations of per-slot minimizers and constraints are sub-linearly growing with time. MOSP is also applied to the dynamic network resource allocation task, and it is compared with the well-known stochastic dual gradient method. Under various scenarios, numerical experiments demonstrate the performance gain of MOSP relative to the state-of-the-art.

  7. IPTV inter-destination synchronization: A network-based approach

    NARCIS (Netherlands)

    Stokking, H.M.; Deventer, M.O. van; Niamut, O.A.; Walraven, F.A.; Mekuria, R.N.

    2010-01-01

    This paper introduces a novel network-based approach to inter-destination media synchronization. The approach meets the need for synchronization in advanced TV concepts like social TV and offers high scalability, unlike conventional end-point based approaches. The solution for interdestination media

  8. Outline of a multilevel approach of the network society

    NARCIS (Netherlands)

    van Dijk, Johannes A.G.M.

    2005-01-01

    Social and media networks, the Internet in particular, increasingly link interpersonal, organizational and mass communication. It is argued that this gives a cause for an interdisciplinary and multilevel approach of the network society. This will have to link traditional micro- and meso-level

  9. A Gaussian graphical model approach to climate networks

    Energy Technology Data Exchange (ETDEWEB)

    Zerenner, Tanja, E-mail: tanjaz@uni-bonn.de [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Friederichs, Petra; Hense, Andreas [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany); Lehnertz, Klaus [Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany)

    2014-06-15

    Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.

  10. ALOHA networks : A game-theoretic approach

    NARCIS (Netherlands)

    Marban, S.; van de Ven, P.; Borm, P.E.M.; Hamers, H.J.M.

    2013-01-01

    In this paper we consider a wireless network consisting of various nodes, where transmissions are regulated by the slotted ALOHA protocol. Nodes using the protocol behave autonomously, and decide at random whether to transmit in a particular time slot. Simultaneous transmissions by multiple nodes

  11. ALOHA networks: A game-theoretic approach

    NARCIS (Netherlands)

    Marbán, S.; Ven, P. van de; Borm, P.; Hamers, H.

    2013-01-01

    In this paper we consider a wireless network consisting of various nodes, where transmissions are regulated by the slotted ALOHA protocol. Nodes using the protocol behave autonomously, and decide at random whether to transmit in a particular time slot. Simultaneous transmissions by multiple nodes

  12. Dobrushin's approach to queueing network theory

    Directory of Open Access Journals (Sweden)

    F. I. Karpelevich

    1996-01-01

    Full Text Available R.L. Dobrushin (1929-1995 made substantial contributions to Queueing Network Theory (QNT. A review of results from QNT which arose from his ideas or were connected to him in other ways is given. We also comment on various related open problems.

  13. Economic Institutions and Stability : A Network Approach

    NARCIS (Netherlands)

    Gilles, R.P.; Lazarova, E.A.; Ruys, P.H.M.

    2011-01-01

    We consider a network economy in which economic agents are connected within a structure of value-generating relationships. Agents are assumed to be able to participate in three types of economic activities: autarkic self-provision; binary matching interactions; and multi-person cooperative

  14. Insomnia and Personality-A Network Approach

    NARCIS (Netherlands)

    Dekker, Kim; Blanken, Tessa F; Van Someren, Eus J W

    2017-01-01

    Studies on personality traits and insomnia have remained inconclusive about which traits show the most direct associations with insomnia severity. It has moreover hardly been explored how traits relate to specific characteristics of insomnia. We here used network analysis in a large sample (N =

  15. Approach of Complex Networks for the Determination of Brain Death

    Science.gov (United States)

    Sun, Wei-Gang; Cao, Jian-Ting; Wang, Ru-Bin

    2011-06-01

    In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our findings might provide valuable insights on the determination of brain death.

  16. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Voice Call Analysis

    Science.gov (United States)

    2015-09-01

    SIP to Calls: RTP Parser 14 18. SIP to Calls: Complex Calls 15 19. Extracting Voice Audio from RTP 16 20. Recreating RTP Waveforms 17 21...messages to SIP sessions (calls) uses a parser design with a tree hierarchy. A SIP Manager (Fig. 7) contains one or more SIP Sessions. A SIP Session...SIP Session is then assigned either a PT-PT or COMPLEX parser , with INCOMPLETE receiving a PT-PT parser . A COMPLEX parser contains a PT-PT parser in

  17. A Dynamic Neural Network Approach to CBM

    Science.gov (United States)

    2011-03-15

    Therefore post-processing is needed to extract the time difference between corresponding events from which to calculate the crankshaft rotational speed...potentially already available from existing sensors (such as a crankshaft timing device) and a Neural Network processor to carry out the calculation . As...files are designated with the “_genmod” suffix. These files were the sources for the training and testing sets and made the extraction process easy

  18. Wireless Sensor Networks Formation: Approaches and Techniques

    Directory of Open Access Journals (Sweden)

    Miriam Carlos-Mancilla

    2016-01-01

    Full Text Available Nowadays, wireless sensor networks (WSNs emerge as an active research area in which challenging topics involve energy consumption, routing algorithms, selection of sensors location according to a given premise, robustness, efficiency, and so forth. Despite the open problems in WSNs, there are already a high number of applications available. In all cases for the design of any application, one of the main objectives is to keep the WSN alive and functional as long as possible. A key factor in this is the way the network is formed. This survey presents most recent formation techniques and mechanisms for the WSNs. In this paper, the reviewed works are classified into distributed and centralized techniques. The analysis is focused on whether a single or multiple sinks are employed, nodes are static or mobile, the formation is event detection based or not, and network backbone is formed or not. We focus on recent works and present a discussion of their advantages and drawbacks. Finally, the paper overviews a series of open issues which drive further research in the area.

  19. A Bayesian Networks approach to Operational Risk

    Science.gov (United States)

    Aquaro, V.; Bardoscia, M.; Bellotti, R.; Consiglio, A.; De Carlo, F.; Ferri, G.

    2010-04-01

    A system for Operational Risk management based on the computational paradigm of Bayesian Networks is presented. The algorithm allows the construction of a Bayesian Network targeted for each bank and takes into account in a simple and realistic way the correlations among different processes of the bank. The internal losses are averaged over a variable time horizon, so that the correlations at different times are removed, while the correlations at the same time are kept: the averaged losses are thus suitable to perform the learning of the network topology and parameters; since the main aim is to understand the role of the correlations among the losses, the assessments of domain experts are not used. The algorithm has been validated on synthetic time series. It should be stressed that the proposed algorithm has been thought for the practical implementation in a mid or small sized bank, since it has a small impact on the organizational structure of a bank and requires an investment in human resources which is limited to the computational area.

  20. An efficient neural network approach to dynamic robot motion planning.

    Science.gov (United States)

    Yang, S X; Meng, M

    2000-03-01

    In this paper, a biologically inspired neural network approach to real-time collision-free motion planning of mobile robots or robot manipulators in a nonstationary environment is proposed. Each neuron in the topologically organized neural network has only local connections, whose neural dynamics is characterized by a shunting equation. Thus the computational complexity linearly depends on the neural network size. The real-time robot motion is planned through the dynamic activity landscape of the neural network without any prior knowledge of the dynamic environment, without explicitly searching over the free workspace or the collision paths, and without any learning procedures. Therefore it is computationally efficient. The global stability of the neural network is guaranteed by qualitative analysis and the Lyapunov stability theory. The effectiveness and efficiency of the proposed approach are demonstrated through simulation studies.

  1. A full bayesian approach for boolean genetic network inference.

    Directory of Open Access Journals (Sweden)

    Shengtong Han

    Full Text Available Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.

  2. Approaches to modeling gene regulatory networks: a gentle introduction.

    Science.gov (United States)

    Schlitt, Thomas

    2013-01-01

    This chapter is split into two main sections; first, I will present an introduction to gene networks. Second, I will discuss various approaches to gene network modeling which will include some examples for using different data sources. Computational modeling has been used for many different biological systems and many approaches have been developed addressing the different needs posed by the different application fields. The modeling approaches presented here are not limited to gene regulatory networks and occasionally I will present other examples. The material covered here is an update based on several previous publications by Thomas Schlitt and Alvis Brazma (FEBS Lett 579(8),1859-1866, 2005; Philos Trans R Soc Lond B Biol Sci 361(1467), 483-494, 2006; BMC Bioinformatics 8(suppl 6), S9, 2007) that formed the foundation for a lecture on gene regulatory networks at the In Silico Systems Biology workshop series at the European Bioinformatics Institute in Hinxton.

  3. Gender, Friendship Networks, and Delinquency: A Dynamic Network Approach**

    Science.gov (United States)

    Haynie, Dana L.; Doogan, Nathan J.; Soller, Brian

    2014-01-01

    Researchers have examined selection and influence processes in shaping delinquency similarity among friends, but little is known about the role of gender in moderating these relationships. Our objective is to examine differences between adolescent boys and girls regarding delinquency-based selection and influence processes. Using longitudinal network data from adolescents attending two large schools in AddHealth (N = 1,857) and stochastic actor-oriented models, we evaluate whether girls are influenced to a greater degree by friends' violence or delinquency than boys (influence hypothesis) and whether girls are more likely to select friends based on violent or delinquent behavior than boys (selection hypothesis). The results indicate that girls are more likely than boys to be influenced by their friends' involvement in violence. Although a similar pattern emerges for nonviolent delinquency, the gender differences are not significant. Some evidence shows that boys are influenced toward increasing their violence or delinquency when exposed to more delinquent or violent friends but are immune to reducing their violence or delinquency when associating with less violent or delinquent friends. In terms of selection dynamics, although both boys and girls have a tendency to select friends based on friends' behavior, girls have a stronger tendency to do so, suggesting that among girls, friends' involvement in violence or delinquency is an especially decisive factor for determining friendship ties. PMID:26097241

  4. Gender, Friendship Networks, and Delinquency: A Dynamic Network Approach.

    Science.gov (United States)

    Haynie, Dana L; Doogan, Nathan J; Soller, Brian

    2014-11-01

    Researchers have examined selection and influence processes in shaping delinquency similarity among friends, but little is known about the role of gender in moderating these relationships. Our objective is to examine differences between adolescent boys and girls regarding delinquency-based selection and influence processes. Using longitudinal network data from adolescents attending two large schools in AddHealth (N = 1,857) and stochastic actor-oriented models, we evaluate whether girls are influenced to a greater degree by friends' violence or delinquency than boys (influence hypothesis) and whether girls are more likely to select friends based on violent or delinquent behavior than boys (selection hypothesis). The results indicate that girls are more likely than boys to be influenced by their friends' involvement in violence. Although a similar pattern emerges for nonviolent delinquency, the gender differences are not significant. Some evidence shows that boys are influenced toward increasing their violence or delinquency when exposed to more delinquent or violent friends but are immune to reducing their violence or delinquency when associating with less violent or delinquent friends. In terms of selection dynamics, although both boys and girls have a tendency to select friends based on friends' behavior, girls have a stronger tendency to do so, suggesting that among girls, friends' involvement in violence or delinquency is an especially decisive factor for determining friendship ties.

  5. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    Science.gov (United States)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  6. A Constructive Neural-Network Approach to Modeling Psychological Development

    Science.gov (United States)

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  7. The Islands Approach to Nearest Neighbor Querying in Spatial Networks

    DEFF Research Database (Denmark)

    Huang, Xuegang; Jensen, Christian Søndergaard; Saltenis, Simonas

    2005-01-01

    , and versatile approach to k nearest neighbor computation that obviates the need for using several k nearest neighbor approaches for supporting a single service scenario. The experimental comparison with the existing techniques uses real-world road network data and considers both I/O and CPU performance...

  8. A new approach for sizing stand alone photovoltaic systems based in neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hontoria, L.; Aguilera, J. [Universidad de Jaen, Dept. de Electronica, Jaen (Spain); Zufiria, P. [UPM Ciudad Universitaria, Dept. de Matematica Aplicada a las Tecnologias de la Informacion, Madrid (Spain)

    2005-02-01

    Several methods for sizing stand alone photovoltaic (pv) systems has been developed. The more simplistic are called intuitive methods. They are a useful tool for a first approach in sizing stand alone photovoltaic systems. Nevertheless they are very inaccurate. Analytical methods use equations to describe the pv system size as a function of reliability. These ones are more accurate than the previous ones but they are also not accurate enough for sizing of high reliability. In a third group there are methods which use system simulations. These ones are called numerical methods. Many of the analytical methods employ the concept of reliability of the system or the complementary term: loss of load probability (LOLP). In this paper an improvement for obtaining LOLP curves based on the neural network called Multilayer Perceptron (MLP) is presented. A unique MLP for many locations of Spain has been trained and after the training, the MLP is able to generate LOLP curves for any value and location. (Author)

  9. Automatic Distribution Network Reconfiguration: An Event-Driven Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fei; Jiang, Huaiguang; Tan, Jin

    2016-11-14

    This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observable and detectable.

  10. Heuristic approaches for energy-efficient shared restoration in WDM networks

    Science.gov (United States)

    Alilou, Shahab

    -path restoration is a network survivability method in which a link-disjoint backup path and wavelength is reserved at the time of call setup for a working path. However, in order to reduce spare capacity consumption, this reserved backup path and wavelength may be shared with other backup paths. Pool Sharing Scheme (PSS) is employed to implement shared-path restoration scheme [1]. In an optical network, the failure of a single link leads to the failure of all the lightpaths that pass through that particular link. PSS ensures that the amount of backup bandwidth required on a link to restore the failed connections will not be more than the total amount of reserved backup bandwidth on that link. Simulation results indicate that the proposed approaches lead to up to 35% power savings in WDM networks when traffic load is low. However, power saving decreases to 14% at high traffic load level. Furthermore, in terms of the total capacity consumption for working paths, PSS outperforms the two proposed approaches, as expected. In terms of total capacity consumption all the approaches behave similarly. In general, at low traffic load level, the two proposed approaches behave similar to PSS in terms of average link load, and the ratio of block demands. Nevertheless, at high traffic load, the proposed approaches result in higher ratio of blocked demands than PSS. They also lead to higher average link load than PSS for the equal number of generated demands.

  11. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2015-08-01

    Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.

  12. Assessing the Impact of Homophobic Name Calling on Early Adolescent Mental Health: A Longitudinal Social Network Analysis of Competing Peer Influence Effects.

    Science.gov (United States)

    DeLay, Dawn; Hanish, Laura D; Zhang, Linlin; Martin, Carol Lynn

    2017-05-01

    The goal of the current study was to improve our understanding of why adolescence is a critical period for the consideration of declining mental health. We did this by focusing on the impact of homophobic name calling on early adolescent mental health after the transition to middle school. Because we know that homophobic name calling emerges within a dynamic peer group structure, we used longitudinal social network analysis to assess the relation between homophobic name calling, depressive symptoms, and self-esteem while simultaneously limiting bias from alternative peer socialization mechanisms. A sample of adolescents who recently transitioned to a large public middle school (N = 299; 53 % girls; M age = 11.13 years, SD = 0.48) were assessed. Longitudinal assessments of peer relationship networks, depressive symptoms, and self-esteem were collected during the fall and spring of the academic year. The results suggest that, after accounting for the simultaneous effect of alternative peer socialization processes, adolescent experiences of homophobic name calling in the fall predict higher levels of depressive symptoms and lower levels of self-esteem over the course of the academic year. These findings provide evidence of a significant influence of homophobic name calling on adolescent mental health.

  13. A simple network agreement-based approach for combining evidences in a heterogeneous sensor network

    Directory of Open Access Journals (Sweden)

    Raúl Eusebio-Grande

    2015-12-01

    Full Text Available In this research we investigate how the evidences provided by both static and mobile nodes that are part of a heterogenous sensor network can be combined to have trustworthy results. A solution relying on a network agreement-based approach was implemented and tested.

  14. Network Reverse Engineering Approach in Synthetic Biology

    Science.gov (United States)

    Zhang, Haoqian; Liu, Ao; Lu, Yuheng; Sheng, Ying; Wu, Qianzhu; Yin, Zhenzhen; Chen, Yiwei; Liu, Zairan; Pan, Heng; Ouyang, Qi

    2013-12-01

    Synthetic biology is a new branch of interdisciplinary science that has been developed in recent years. The main purpose of synthetic biology is to apply successful principles that have been developed in electronic and chemical engineering to develop basic biological functional modules, and through rational design, develop man-made biological systems that have predicted useful functions. Here, we discuss an important principle in rational design of functional biological circuits: the reverse engineering design. We will use a research project that was conducted at Peking University for the International Genetic Engineering Machine Competition (iGEM) to illustrate the principle: synthesis a cell which has a semi-log dose-response to the environment. Through this work we try to demonstrate the potential application of network engineering in synthetic biology.

  15. An overview of data routing approaches for wireless sensor networks.

    Science.gov (United States)

    Anisi, Mohammad Hossein; Abdullah, Abdul Hanan; Razak, Shukor Abd; Ngadi, Md Asri

    2012-03-27

    Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals.

  16. The network analysis of urban streets: A dual approach

    Science.gov (United States)

    Porta, Sergio; Crucitti, Paolo; Latora, Vito

    2006-09-01

    The application of the network approach to the urban case poses several questions in terms of how to deal with metric distances, what kind of graph representation to use, what kind of measures to investigate, how to deepen the correlation between measures of the structure of the network and measures of the dynamics on the network, what are the possible contributions from the GIS community. In this paper, the author considers six cases of urban street networks characterized by different patterns and historical roots. The authors propose a representation of the street networks based firstly on a primal graph, where intersections are turned into nodes and streets into edges. In a second step, a dual graph, where streets are nodes and intersections are edges, is constructed by means of a generalization model named Intersection Continuity Negotiation, which allows to acknowledge the continuity of streets over a plurality of edges. Finally, the authors address a comparative study of some structural properties of the dual graphs, seeking significant similarities among clusters of cases. A wide set of network analysis techniques are implemented over the dual graph: in particular the authors show that the absence of any clue of assortativity differentiates urban street networks from other non-geographic systems and that most of the considered networks have a broad degree distribution typical of scale-free networks and exhibit small-world properties as well.

  17. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...... penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least...... squares has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training. Finally, a predictive closed-loop control strategy based on a so-called single-neuron self...

  18. Human Factors and Organizational Issues in 2015: The Increasing Complexity of the Healthcare Domain Calls for More Comprehensive Approaches.

    Science.gov (United States)

    Pelayo, S; Santos, R

    2016-11-10

    To summarize significant research contributions on human factors and organizational issues in medical informatics published in 2015. An extensive search using PubMed/Medline and Web of Science® was conducted to identify the scientific contributions published in 2015 that address human factors and organizational issues in medical informatics. The selection process comprised three steps: (i) 15 candidate best papers were first selected by the two section editors, (ii) external reviewers from internationally renowned research teams reviewed each candidate best paper, and (iii) the final selection of five best papers was conducted by the editorial board of the Yearbook. Noteworthy papers in 2015 emphasize the increasing complexity of the healthcare environment. They call for more comprehensive approaches and evaluation studies. All provide a real added-value in this direction. There is no more need to promote the contribution of human factors and ergonomics (HFE) approaches to health IT-related risks and patient safety. However, there is still a need for research on HFE methods to adapt health information technology tools to the complexity of the healthcare domain.

  19. t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks.

    Science.gov (United States)

    Zhu, Lin; You, Zhu-Hong; Huang, De-Shuang; Wang, Bing

    2013-01-01

    Protein-protein interaction (PPI) networks provide insights into understanding of biological processes, function and the underlying complex evolutionary mechanisms of the cell. Modeling PPI network is an important and fundamental problem in system biology, where it is still of major concern to find a better fitting model that requires less structural assumptions and is more robust against the large fraction of noisy PPIs. In this paper, we propose a new approach called t-logistic semantic embedding (t-LSE) to model PPI networks. t-LSE tries to adaptively learn a metric embedding under the simple geometric assumption of PPI networks, and a non-convex cost function was adopted to deal with the noise in PPI networks. The experimental results show the superiority of the fit of t-LSE over other network models to PPI data. Furthermore, the robust loss function adopted here leads to big improvements for dealing with the noise in PPI network. The proposed model could thus facilitate further graph-based studies of PPIs and may help infer the hidden underlying biological knowledge. The Matlab code implementing the proposed method is freely available from the web site: http://home.ustc.edu.cn/~yzh33108/PPIModel.htm.

  20. A network-based approach to prioritize results from genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Nirmala Akula

    Full Text Available Genome-wide association studies (GWAS are a valuable approach to understanding the genetic basis of complex traits. One of the challenges of GWAS is the translation of genetic association results into biological hypotheses suitable for further investigation in the laboratory. To address this challenge, we introduce Network Interface Miner for Multigenic Interactions (NIMMI, a network-based method that combines GWAS data with human protein-protein interaction data (PPI. NIMMI builds biological networks weighted by connectivity, which is estimated by use of a modification of the Google PageRank algorithm. These weights are then combined with genetic association p-values derived from GWAS, producing what we call 'trait prioritized sub-networks.' As a proof of principle, NIMMI was tested on three GWAS datasets previously analyzed for height, a classical polygenic trait. Despite differences in sample size and ancestry, NIMMI captured 95% of the known height associated genes within the top 20% of ranked sub-networks, far better than what could be achieved by a single-locus approach. The top 2% of NIMMI height-prioritized sub-networks were significantly enriched for genes involved in transcription, signal transduction, transport, and gene expression, as well as nucleic acid, phosphate, protein, and zinc metabolism. All of these sub-networks were ranked near the top across all three height GWAS datasets we tested. We also tested NIMMI on a categorical phenotype, Crohn's disease. NIMMI prioritized sub-networks involved in B- and T-cell receptor, chemokine, interleukin, and other pathways consistent with the known autoimmune nature of Crohn's disease. NIMMI is a simple, user-friendly, open-source software tool that efficiently combines genetic association data with biological networks, translating GWAS findings into biological hypotheses.

  1. A Network-Based Approach to Prioritize Results from Genome-Wide Association Studies

    Science.gov (United States)

    Akula, Nirmala; Baranova, Ancha; Seto, Donald; Solka, Jeffrey; Nalls, Michael A.; Singleton, Andrew; Ferrucci, Luigi; Tanaka, Toshiko; Bandinelli, Stefania; Cho, Yoon Shin; Kim, Young Jin; Lee, Jong-Young; Han, Bok-Ghee; McMahon, Francis J.

    2011-01-01

    Genome-wide association studies (GWAS) are a valuable approach to understanding the genetic basis of complex traits. One of the challenges of GWAS is the translation of genetic association results into biological hypotheses suitable for further investigation in the laboratory. To address this challenge, we introduce Network Interface Miner for Multigenic Interactions (NIMMI), a network-based method that combines GWAS data with human protein-protein interaction data (PPI). NIMMI builds biological networks weighted by connectivity, which is estimated by use of a modification of the Google PageRank algorithm. These weights are then combined with genetic association p-values derived from GWAS, producing what we call ‘trait prioritized sub-networks.’ As a proof of principle, NIMMI was tested on three GWAS datasets previously analyzed for height, a classical polygenic trait. Despite differences in sample size and ancestry, NIMMI captured 95% of the known height associated genes within the top 20% of ranked sub-networks, far better than what could be achieved by a single-locus approach. The top 2% of NIMMI height-prioritized sub-networks were significantly enriched for genes involved in transcription, signal transduction, transport, and gene expression, as well as nucleic acid, phosphate, protein, and zinc metabolism. All of these sub-networks were ranked near the top across all three height GWAS datasets we tested. We also tested NIMMI on a categorical phenotype, Crohn’s disease. NIMMI prioritized sub-networks involved in B- and T-cell receptor, chemokine, interleukin, and other pathways consistent with the known autoimmune nature of Crohn’s disease. NIMMI is a simple, user-friendly, open-source software tool that efficiently combines genetic association data with biological networks, translating GWAS findings into biological hypotheses. PMID:21915301

  2. NetworkAnalyst--integrative approaches for protein-protein interaction network analysis and visual exploration.

    Science.gov (United States)

    Xia, Jianguo; Benner, Maia J; Hancock, Robert E W

    2014-07-01

    Biological network analysis is a powerful approach to gain systems-level understanding of patterns of gene expression in different cell types, disease states and other biological/experimental conditions. Three consecutive steps are required--identification of genes or proteins of interest, network construction and network analysis and visualization. To date, researchers have to learn to use a combination of several tools to accomplish this task. In addition, interactive visualization of large networks has been primarily restricted to locally installed programs. To address these challenges, we have developed NetworkAnalyst, taking advantage of state-of-the-art web technologies, to enable high performance network analysis with rich user experience. NetworkAnalyst integrates all three steps and presents the results via a powerful online network visualization framework. Users can upload gene or protein lists, single or multiple gene expression datasets to perform comprehensive gene annotation and differential expression analysis. Significant genes are mapped to our manually curated protein-protein interaction database to construct relevant networks. The results are presented through standard web browsers for network analysis and interactive exploration. NetworkAnalyst supports common functions for network topology and module analyses. Users can easily search, zoom and highlight nodes or modules, as well as perform functional enrichment analysis on these selections. The networks can be customized with different layouts, colors or node sizes, and exported as PNG, PDF or GraphML files. Comprehensive FAQs, tutorials and context-based tips and instructions are provided. NetworkAnalyst currently supports protein-protein interaction network analysis for human and mouse and is freely available at http://www.networkanalyst.ca. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Developing intelligent sensor networks —a technological convergence approach

    OpenAIRE

    Vassev, Emil; Hinchey, Mike; Nixon, Paddy

    2010-01-01

    peer-reviewed We present a technological convergence approach to developing sensor networks capable of self-management. We use ASSL (Autonomic System Specification Language) to formally develop autonomous intelligent sensor nodes and DMF (Demand Migration Framework) to connect these nodes in a sensor network. ASSL provides constructs for modeling special self-management policies that drive the sensor nodes’ behavior and control the communication mechanism provided by DMF.

  4. A Novel Call Admission Control Policy Using Mobility Prediction and Throttle Mechanism for Supporting QoS in Wireless Cellular Networks

    Directory of Open Access Journals (Sweden)

    Chen-Feng Wu

    2011-01-01

    Full Text Available The decision of call admission becomes an important work owing to the scarce wireless spectrum for wireless cellular networks. If there exists adequate information for call admission control (CAC schemes, the terms of quality of service (QoS, such as call dropping probability (CDP, call blocking probability (CBP, and system utilization, will be kept in a certain acceptable level. Therefore, a prediction system which can predict most information, such as system utilization and CDP, in advance with a novel data mining technique and a distributed CAC scheme is presented in this paper. Based on the prediction results and the bandwidth consumption of adjacent cells, the proposed CAC scheme is able to decide to admit a new call. The throttle flag that can indicate the usage of current cell is proposed to prevent the newly admitted call request from being blocked in adjacent cells if handoff is needed. The simulation results show that the proposed CAC scheme can maintain the CDP below a predefined threshold, and the CBP is also lower than the cluster prediction and traditional guard channel policies.

  5. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  6. Non-coherent Network Coding: An Arbitrarily Varying Channel Approach

    OpenAIRE

    Jafari Siavoshani, Mahdi; Yang, Shenghao; Yeung, Raymond

    2012-01-01

    In this paper, we propose an “arbitrarily varying channel” (AVC) approach to study the capacity of non-coherent transmission in a network that employs randomized linear network coding. The network operation is modeled by a matrix channel over a finite field where the transfer matrix changes arbitrarily from time-slot to time-slot but up to a known distribution over its rank. By extending the AVC results to this setup, we characterize the capacity of such a non-coherent transmission scheme and s...

  7. Building a glaucoma interaction network using a text mining approach.

    Science.gov (United States)

    Soliman, Maha; Nasraoui, Olfa; Cooper, Nigel G F

    2016-01-01

    The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of

  8. Contingent approach to Internet-based supply network integration

    Science.gov (United States)

    Ho, Jessica; Boughton, Nick; Kehoe, Dennis; Michaelides, Zenon

    2001-10-01

    The Internet is playing an increasingly important role in enhancing the operations of supply networks as many organizations begin to recognize the benefits of Internet- enabled supply arrangements. However, the developments and applications to-date do not extend significantly beyond the dyadic model, whereas the real advantages are to be made with the external and network models to support a coordinated and collaborative based approach. The DOMAIN research group at the University of Liverpool is currently defining new Internet- enabled approaches to enable greater collaboration across supply chains. Different e-business models and tools are focusing on different applications. Using inappropriate e- business models, tools or techniques will bring negative results instead of benefits to all the tiers in the supply network. Thus there are a number of issues to be considered before addressing Internet based supply network integration, in particular an understanding of supply chain management, the emergent business models and evaluating the effects of deploying e-business to the supply network or a particular tier. It is important to utilize a contingent approach to selecting the right e-business model to meet the specific supply chain requirements. This paper addresses the issues and provides a case study on the indirect materials supply networks.

  9. Addressing the Call to Increase High School Students' STEM Awareness through a Collaborative Event Hosted by Science and Education Faculty: A How-to Approach

    Science.gov (United States)

    Angle, Julie M.; Colston, Nicole M.; French, Donald P.; Gustafson, John E.; O'Hara, Steven E.; Shaw, Edward I.

    2016-01-01

    With the economic competitiveness of the United States dependent on an adequate supply of high-quality workers in the STEM fields, President Obama outlined a broad agenda to reinvigorate our country's interest in STEM. Responding to this call, organizations such as the National Lab Network and the STEM Education Coalition began efforts to raise…

  10. A dynamical approach to identify vertices' centrality in complex networks

    Science.gov (United States)

    Guo, Long; Zhang, Wen-Yao; Luo, Zhong-Jie; Gao, Fu-Juan; Zhang, Yi-Cheng

    2017-12-01

    In this paper, we proposed a dynamical approach to assess vertices' centrality according to the synchronization process of the Kuramoto model. In our approach, the vertices' dynamical centrality is calculated based on the Difference of vertices' Synchronization Abilities (DSA), which are different from traditional centrality measurements that are related to the topological properties. Through applying our approach to complex networks with a clear community structure, we have calculated all vertices' dynamical centrality and found that vertices at the end of weak links have higher dynamical centrality. Meanwhile, we analyzed the robustness and efficiency of our dynamical approach through testing the probabilities that some known vital vertices were recognized. Finally, we applied our dynamical approach to identify community due to its satisfactory performance in assessing overlapping vertices. Our present work provides a new perspective and tools to understand the crucial role of heterogeneity in revealing the interplay between the dynamics and structure of complex networks.

  11. Social network approaches to leadership: an integrative conceptual review.

    Science.gov (United States)

    Carter, Dorothy R; DeChurch, Leslie A; Braun, Michael T; Contractor, Noshir S

    2015-05-01

    Contemporary definitions of leadership advance a view of the phenomenon as relational, situated in specific social contexts, involving patterned emergent processes, and encompassing both formal and informal influence. Paralleling these views is a growing interest in leveraging social network approaches to study leadership. Social network approaches provide a set of theories and methods with which to articulate and investigate, with greater precision and rigor, the wide variety of relational perspectives implied by contemporary leadership theories. Our goal is to advance this domain through an integrative conceptual review. We begin by answering the question of why-Why adopt a network approach to study leadership? Then, we offer a framework for organizing prior research. Our review reveals 3 areas of research, which we term: (a) leadership in networks, (b) leadership as networks, and (c) leadership in and as networks. By clarifying the conceptual underpinnings, key findings, and themes within each area, this review serves as a foundation for future inquiry that capitalizes on, and programmatically builds upon, the insights of prior work. Our final contribution is to advance an agenda for future research that harnesses the confluent ideas at the intersection of leadership in and as networks. Leadership in and as networks represents a paradigm shift in leadership research-from an emphasis on the static traits and behaviors of formal leaders whose actions are contingent upon situational constraints, toward an emphasis on the complex and patterned relational processes that interact with the embedding social context to jointly constitute leadership emergence and effectiveness. (c) 2015 APA, all rights reserved.

  12. Neural Network Approach To Sensory Fusion

    Science.gov (United States)

    Pearson, John C.; Gelfand, Jack J.; Sullivan, W. E.; Peterson, Richard M.; Spence, Clay D.

    1988-08-01

    We present a neural network model for sensory fusion based on the design of the visual/acoustic target localiza-tion system of the barn owl. This system adaptively fuses its separate visual and acoustic representations of object position into a single joint representation used for head orientation. The building block in this system, as in much of the brain, is the neuronal map. Neuronal maps are large arrays of locally interconnected neurons that represent information in a map-like form, that is, parameter values are systematically encoded by the position of neural activation in the array. The computational load is distributed to a hierarchy of maps, and the computation is performed in stages by transforming the representation from map to map via the geometry of the projections between the maps and the local interactions within the maps. For example, azimuthal position is computed from the frequency and binaural phase information encoded in the signals of the acoustic sensors, while elevation is computed in a separate stream using binaural intensity information. These separate streams are merged in their joint projection onto the external nucleus of the inferior colliculus, a two dimensional array of cells which contains a map of acoustic space. This acoustic map, and the visual map of the retina, jointly project onto the optic tectum, creating a fused visual/acoustic representation of position in space that is used for object localization. In this paper we describe our mathematical model of the stage of visual/acoustic fusion in the optic tectum. The model assumes that the acoustic projection from the external nucleus onto the tectum is roughly topographic and one-to-many, while the visual projection from the retina onto the tectum is topographic and one-to-one. A simple process of self-organization alters the strengths of the acoustic connections, effectively forming a focused beam of strong acoustic connections whose inputs are coincident with the visual inputs

  13. Hierarchical polynomial network approach to automated target recognition

    Science.gov (United States)

    Kim, Richard Y.; Drake, Keith C.; Kim, Tony Y.

    1994-02-01

    A hierarchical recognition methodology using abductive networks at several levels of object recognition is presented. Abductive networks--an innovative numeric modeling technology using networks of polynomial nodes--results from nearly three decades of application research and development in areas including statistical modeling, uncertainty management, genetic algorithms, and traditional neural networks. The systems uses pixel-registered multisensor target imagery provided by the Tri-Service Laser Radar sensor. Several levels of recognition are performed using detection, classification, and identification, each providing more detailed object information. Advanced feature extraction algorithms are applied at each recognition level for target characterization. Abductive polynomial networks process feature information and situational data at each recognition level, providing input for the next level of processing. An expert system coordinates the activities of individual recognition modules and enables employment of heuristic knowledge to overcome the limitations provided by a purely numeric processing approach. The approach can potentially overcome limitations of current systems such as catastrophic degradation during unanticipated operating conditions while meeting strict processing requirements. These benefits result from implementation of robust feature extraction algorithms that do not take explicit advantage of peculiar characteristics of the sensor imagery, and the compact, real-time processing capability provided by abductive polynomial networks.

  14. Social Network Analyses and Nutritional Behavior: An Integrated Modeling Approach

    Directory of Open Access Journals (Sweden)

    Alistair McNair Senior

    2016-01-01

    Full Text Available Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent advances in nutrition research, combining state-space models of nutritional geometry with agent-based models of systems biology, show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a tangible and practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit agent-based models that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition. Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interaction in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  15. Stochastic approach to observability analysis in water networks

    Directory of Open Access Journals (Sweden)

    S. Díaz

    2016-07-01

    Full Text Available This work presents an alternative technique to the existing methods for observability analysis (OA in water networks, which is a prior essential step for the implementation of state estimation (SE techniques within such systems. The methodology presented here starts from a known hydraulic state and assumes random gaussian distributions for the uncertainty of some hydraulic variables, which is then propagated to the rest of the system. This process is repeated again to analyze the change in the network uncertainty when metering devices considered as error-free are included, based on which the network observability can be evaluated. The method’s potential is presented in an illustrative example, which shows the additional information that this methodology provides with respect to traditional OA approaches. This proposal allows a better understanding of the network and constitutes a practical tool to prioritize the location of additional meters, thus enhancing the transformation of large urban areas into actual smart cities.

  16. A Novel Modulation Classification Approach Using Gabor Filter Network

    Science.gov (United States)

    Ghauri, Sajjad Ahmed; Qureshi, Ijaz Mansoor; Cheema, Tanveer Ahmed; Malik, Aqdas Naveed

    2014-01-01

    A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN). The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64. The Gabor filter network uses the network structure of two layers; the first layer which is input layer constitutes the adaptive feature extraction part and the second layer constitutes the signal classification part. The Gabor atom parameters are tuned using Delta rule and updating of weights of Gabor filter using least mean square (LMS) algorithm. The simulation results show that proposed novel modulation classification algorithm has high classification accuracy at low signal to noise ratio (SNR) on AWGN channel. PMID:25126603

  17. A Novel Modulation Classification Approach Using Gabor Filter Network

    Directory of Open Access Journals (Sweden)

    Sajjad Ahmed Ghauri

    2014-01-01

    Full Text Available A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN. The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64. The Gabor filter network uses the network structure of two layers; the first layer which is input layer constitutes the adaptive feature extraction part and the second layer constitutes the signal classification part. The Gabor atom parameters are tuned using Delta rule and updating of weights of Gabor filter using least mean square (LMS algorithm. The simulation results show that proposed novel modulation classification algorithm has high classification accuracy at low signal to noise ratio (SNR on AWGN channel.

  18. A New Approach for the Stability Analysis of Wave Networks

    Directory of Open Access Journals (Sweden)

    Ya Xuan Zhang

    2014-01-01

    Full Text Available We introduce a new approach to investigate the stability of controlled tree-shaped wave networks and subtrees of complex wave networks. It is motivated by regarding the network as branching out from a single edge. We present the recursive relations of the Laplacian transforms of adjacent edges of the system in its branching order, which form the characteristic equation. In the stability analysis, we estimate the infimums of the recursive expressions in the inverse order based on the spectral analysis. It is a feasible way to check whether the system is exponentially stable under any control strategy or parameter choice. As an application we design the control law and study the stability of a 12-edge tree-shaped wave network.

  19. Jamming in Mobile Networks: A Game-Theoretic Approach

    Science.gov (United States)

    2013-03-01

    general treatment of multiplayer differential games was presented by Starr and Ho [16], Leitmann [36], Vaisbord and Zhukovskiy [65], Zhukovskiy and...REPORT Jamming in mobile networks: A game -theoretic approach. 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: In this paper, we address the problem of...model the intrusion as a pursuit-evasion game between a mobile jammer and a team of agents. First, we consider a differential game -theoretic approach

  20. Innovation Networks New Approaches in Modelling and Analyzing

    CERN Document Server

    Pyka, Andreas

    2009-01-01

    The science of graphs and networks has become by now a well-established tool for modelling and analyzing a variety of systems with a large number of interacting components. Starting from the physical sciences, applications have spread rapidly to the natural and social sciences, as well as to economics, and are now further extended, in this volume, to the concept of innovations, viewed broadly. In an abstract, systems-theoretical approach, innovation can be understood as a critical event which destabilizes the current state of the system, and results in a new process of self-organization leading to a new stable state. The contributions to this anthology address different aspects of the relationship between innovation and networks. The various chapters incorporate approaches in evolutionary economics, agent-based modeling, social network analysis and econophysics and explore the epistemic tension between insights into economics and society-related processes, and the insights into new forms of complex dynamics.

  1. A Cognitive Approach to Network Monitoring in Heterogeneous Environments

    DEFF Research Database (Denmark)

    Mihovska, Albena D.

    2007-01-01

    of information (QoI). QoI means QoS while all the requirements for dependability, security, privacy and trust are satisfied at the highest possible level. This work proposes and describes an approach to network monitoring in a heterogeneous communication environment based on use of cognitive techniques...... for efficient resource allocation, provisioning of network resources or for detection of security violations into the traditional network monitoring approach. The paper describes the cognitive monitoring architecture, the required physical and logical entities, and their functionalities. Further, the paper......Abstract— Introducing intelligence by means of cognition for managing, protecting, processing, and delivering of information in mobile communication systems is the way towards ubiquitous, converged and secure communications. In this context, this paper introduces the concept of quality...

  2. Using artificial neural network approach for modelling rainfall–runoff ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 2. Using artificial neural network approach for ... In Taiwan, owing to the nonuniform temporal and spatial distribution of rainfall and high mountains all over the country, hydrologic systems are very complex. Therefore, preventing and controlling flood ...

  3. Stochastic approaches for product recovery network design: a case study

    NARCIS (Netherlands)

    O.L. Listes (Ovidiu); R. Dekker (Rommert)

    2001-01-01

    textabstractIncreased uncertainty is one of the characteristics of product recovery networks. In particular the strategic design of their logistic infrastructure has to take uncertain information into account. In this paper we present stochastic programming based approaches by which a deterministic

  4. Approaches in Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  5. Network analysis: an integrative approach to the structure of psychopathology

    NARCIS (Netherlands)

    Borsboom, D.; Cramer, A.O.J.

    2013-01-01

    In network approaches to psychopathology, disorders result from the causal interplay between symptoms (e.g., worry → insomnia → fatigue), possibly involving feedback loops (e.g., a person may engage in substance abuse to forget the problems that arose due to substance abuse). The present review

  6. Evaluating Action Learning: A Critical Realist Complex Network Theory Approach

    Science.gov (United States)

    Burgoyne, John G.

    2010-01-01

    This largely theoretical paper will argue the case for the usefulness of applying network and complex adaptive systems theory to an understanding of action learning and the challenge it is evaluating. This approach, it will be argued, is particularly helpful in the context of improving capability in dealing with wicked problems spread around…

  7. Event-driven approach of layered multicast to network adaptation in RED-based IP networks

    Science.gov (United States)

    Nahm, Kitae; Li, Qing; Kuo, C.-C. J.

    2003-11-01

    In this work, we investigate the congestion control problem for layered video multicast in IP networks of active queue management (AQM) using a simple random early detection (RED) queue model. AQM support from networks improves the visual quality of video streaming but makes network adaptation more di+/-cult for existing layered video multicast proticols that use the event-driven timer-based approach. We perform a simplified analysis on the response of the RED algorithm to burst traffic. The analysis shows that the primary problem lies in the weak correlation between the network feedback and the actual network congestion status when the RED queue is driven by burst traffic. Finally, a design guideline of the layered multicast protocol is proposed to overcome this problem.

  8. On a Registration-Based Approach to Sensor Network Localization

    Science.gov (United States)

    Sanyal, Rajat; Jaiswal, Monika; Chaudhury, Kunal Narayan

    2017-10-01

    We consider a registration-based approach for localizing sensor networks from range measurements. This is based on the assumption that one can find overlapping cliques spanning the network. That is, for each sensor, one can identify geometric neighbors for which all inter-sensor ranges are known. Such cliques can be efficiently localized using multidimensional scaling. However, since each clique is localized in some local coordinate system, we are required to register them in a global coordinate system. In other words, our approach is based on transforming the localization problem into a problem of registration. In this context, the main contributions are as follows. First, we describe an efficient method for partitioning the network into overlapping cliques. Second, we study the problem of registering the localized cliques, and formulate a necessary rigidity condition for uniquely recovering the global sensor coordinates. In particular, we present a method for efficiently testing rigidity, and a proposal for augmenting the partitioned network to enforce rigidity. A recently proposed semidefinite relaxation of global registration is used for registering the cliques. We present simulation results on random and structured sensor networks to demonstrate that the proposed method compares favourably with state-of-the-art methods in terms of run-time, accuracy, and scalability.

  9. Neural network approaches to dynamic collision-free trajectory generation.

    Science.gov (United States)

    Yang, S X; Meng, M

    2001-01-01

    In this paper, dynamic collision-free trajectory generation in a nonstationary environment is studied using biologically inspired neural network approaches. The proposed neural network is topologically organized, where the dynamics of each neuron is characterized by a shunting equation or an additive equation. The state space of the neural network can be either the Cartesian workspace or the joint space of multi-joint robot manipulators. There are only local lateral connections among neurons. The real-time optimal trajectory is generated through the dynamic activity landscape of the neural network without explicitly searching over the free space nor the collision paths, without explicitly optimizing any global cost functions, without any prior knowledge of the dynamic environment, and without any learning procedures. Therefore the model algorithm is computationally efficient. The stability of the neural network system is guaranteed by the existence of a Lyapunov function candidate. In addition, this model is not very sensitive to the model parameters. Several model variations are presented and the differences are discussed. As examples, the proposed models are applied to generate collision-free trajectories for a mobile robot to solve a maze-type of problem, to avoid concave U-shaped obstacles, to track a moving target and at the same to avoid varying obstacles, and to generate a trajectory for a two-link planar robot with two targets. The effectiveness and efficiency of the proposed approaches are demonstrated through simulation and comparison studies.

  10. Behavior-based network management: a unique model-based approach to implementing cyber superiority

    Science.gov (United States)

    Seng, Jocelyn M.

    2016-05-01

    Behavior-Based Network Management (BBNM) is a technological and strategic approach to mastering the identification and assessment of network behavior, whether human-driven or machine-generated. Recognizing that all five U.S. Air Force (USAF) mission areas rely on the cyber domain to support, enhance and execute their tasks, BBNM is designed to elevate awareness and improve the ability to better understand the degree of reliance placed upon a digital capability and the operational risk.2 Thus, the objective of BBNM is to provide a holistic view of the digital battle space to better assess the effects of security, monitoring, provisioning, utilization management, allocation to support mission sustainment and change control. Leveraging advances in conceptual modeling made possible by a novel advancement in software design and implementation known as Vector Relational Data Modeling (VRDM™), the BBNM approach entails creating a network simulation in which meaning can be inferred and used to manage network behavior according to policy, such as quickly detecting and countering malicious behavior. Initial research configurations have yielded executable BBNM models as combinations of conceptualized behavior within a network management simulation that includes only concepts of threats and definitions of "good" behavior. A proof of concept assessment called "Lab Rat," was designed to demonstrate the simplicity of network modeling and the ability to perform adaptation. The model was tested on real world threat data and demonstrated adaptive and inferential learning behavior. Preliminary results indicate this is a viable approach towards achieving cyber superiority in today's volatile, uncertain, complex and ambiguous (VUCA) environment.

  11. A Holistic Approach to Networked Information Systems Design and Analysis

    Science.gov (United States)

    2016-04-15

    approximate dynamic program- ming algorithm that we call one-step rollout algorithm (ORA) We show that ORA results in an optimal solution extremely close to...cient Data Centers,” IIE Transactions (to appear), 2015 J13 Jonathan Ponniah, Yih-Chun Hu and P. R. Kumar, “A System-Theoretic Clean Slate Approach to...Machinery (Kumar) • Research highlighted in Industrial Engineer magazine (for potentially impactful journal articles among those that appear in IIE

  12. Multiple neural network approaches to clinical expert systems

    Science.gov (United States)

    Stubbs, Derek F.

    1990-08-01

    We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results

  13. Behavioral modeling approach for optical communication network design

    Science.gov (United States)

    Vuorinen, Kimmo; Jacquemod, Gilles; Gaffiot, Frederic; Seassal, Christian

    1997-12-01

    An optical communication networks can be divided in two levels: communication level, which defines the protocols, the control and the management of the networks and physical level formed by photonic and electronic components in order to transmit and receive the data between different nodes of the network. Traditionally, these two levels are considered separately in the optical communication network design process. This can lead to an erroneous or non-ideal networks implementation, due to the fact that the communication and physical levels are not independent. For example, in WDM communication network the maximum achievable data rate is limited not only by the networks protocol, but depends also on the implementation of the physical level: tuning delay of the optical multiplexers. Also the lack of the possibilities for co-verification of the communication and the physical levels together could lead to misinterpretations between the designers of the different levels and thus induce design faults. Since the prototyping is extremely expensive and time consuming, an integrated simulation of both communication and physical levels is necessary, at least in some extend. In this paper, a behavioral modeling approach that allows a co- simulation of the communication and the physical levels is presented. It is based on the use of a VHDL-AMS-like hardware description language, dedicated to electronic system modeling, but also suitable for modeling and simulation of non- electronic and mixed-domain systems. The behavioral models for photonic and electronic components, as well as the software are integrated in a unique simulator in order to co-simulate the communication (control) and the physical level (data path) of a WDM optical communication network.

  14. Protein network analysis - A new approach for quantifying wheat dough microstructure.

    Science.gov (United States)

    Bernklau, Isabelle; Lucas, Lars; Jekle, Mario; Becker, Thomas

    2016-11-01

    Clarification of wheat dough functionalities by visualizing the protein microstructure demands a precise image analysis, which is still challenging. Thus, a novel method for quantifying dough microstructure called protein network analysis (PNA) was established in this study. Hereby, absolute morphological attributes such as junctions' density, branching rate, end-point rate, and lacunarity quantify and characterize the strength of a network. The method was validated in a large range of varying microstructural shapes by increasing the bulk water concentration. In addition, the effect of two different magnifications (objectives with various numerical apparatus) was studied. Resulting values of the branching rate showed a significant linear decrease (R 2 =0.97) by ~40% for both magnifications indicating a decrease in connectivity and cohesion within the network. Rheological measurements, used as reference methods confirmed the loss of a network structure with increasing water addition (e.g. G* decreased by 89%). Additionally, significant correlations between both methods validated the innovative image analysis PNA. With this new approach of image analysis, effects of additives, varying dough ingredients or changing process conditions on gluten network - the most structure-relevant component in wheat dough - can be quantitatively identified, and targeted functionalities can be controlled. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Signal propagation in cortical networks: a digital signal processing approach.

    Science.gov (United States)

    Rodrigues, Francisco Aparecido; da Fontoura Costa, Luciano

    2009-01-01

    This work reports a digital signal processing approach to representing and modeling transmission and combination of signals in cortical networks. The signal dynamics is modeled in terms of diffusion, which allows the information processing undergone between any pair of nodes to be fully characterized in terms of a finite impulse response (FIR) filter. Diffusion without and with time decay are investigated. All filters underlying the cat and macaque cortical organization are found to be of low-pass nature, allowing the cortical signal processing to be summarized in terms of the respective cutoff frequencies (a high cutoff frequency meaning little alteration of signals through their intermixing). Several findings are reported and discussed, including the fact that the incorporation of temporal activity decay tends to provide more diversified cutoff frequencies. Different filtering intensity is observed for each community in those networks. In addition, the brain regions involved in object recognition tend to present the highest cutoff frequencies for both the cat and macaque networks.

  16. Network Intrusion Detection System – A Novel Approach

    Directory of Open Access Journals (Sweden)

    Krish Pillai

    2013-08-01

    Full Text Available Network intrusion starts off with a series of unsuccessful breakin attempts and results eventually with the permanent or transient failure of an authentication or authorization system. Due to the current complexity of authentication systems, clandestine attempts at intrusion generally take considerable time before the system gets compromised or damaging change is affected to the system giving administrators a window of opportunity to proactively detect and prevent intrusion. Therefore maintaining a high level of sensitivity to abnormal access patterns is a very effective way of preventing possible break-ins. Under normal circumstances, gross errors on the part of the user can cause authentication and authorization failures on all systems. A normal distribution of failed attempts should be tolerated while abnormal attempts should be recognized as such and flagged. But one cannot manage what one cannot measure. This paper proposes a method that can efficiently quantify the behaviour of users on a network so that transient changes in usage can be detected, categorized based on severity, and closely investigated for possible intrusion. The author proposes the identification of patterns in protocol usage within a network to categorize it for surveillance. Statistical anomaly detection, under which category this approach falls, generally uses simple statistical tests such as mean and standard deviation to detect behavioural changes. The author proposes a novel approach using spectral density as opposed to using time domain data, allowing a clear separation or access patterns based on periodicity. Once a spectral profile has been identified for network, deviations from this profile can be used as an indication of a destabilized or compromised network. Spectral analysis of access patterns is done using the Fast Fourier Transform (FFT, which can be computed in Θ(N log N operations. The paper justifies the use of this approach and presents preliminary

  17. Coauthorship networks: A directed network approach considering the order and number of coauthors

    CERN Document Server

    Kim, Jinseok

    2015-01-01

    In many scientific fields, the order of coauthors on a paper conveys information about each individual's contribution to a piece of joint work. We argue that in prior network analyses of coauthorship networks, the information on ordering has been insufficiently considered because ties between authors are typically symmetrized. This is basically the same as assuming that each co-author has contributed equally to a paper. We introduce a solution to this problem by adopting a coauthorship credit allocation model proposed by Kim and Diesner (2014), which in its core conceptualizes co-authoring as a directed, weighted, and self-looped network. We test and validate our application of the adopted framework based on a sample data of 861 authors who have published in the journal Psychometrika. Results suggest that this novel sociometric approach can complement traditional measures based on undirected networks and expand insights into coauthoring patterns such as the hierarchy of collaboration among scholars. As anothe...

  18. Hybrid swarm intelligence optimization approach for optimal data storage position identification in wireless sensor networks.

    Science.gov (United States)

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.

  19. A Spatial Clustering Approach for Stochastic Fracture Network Modelling

    Science.gov (United States)

    Seifollahi, S.; Dowd, P. A.; Xu, C.; Fadakar, A. Y.

    2014-07-01

    Fracture network modelling plays an important role in many application areas in which the behaviour of a rock mass is of interest. These areas include mining, civil, petroleum, water and environmental engineering and geothermal systems modelling. The aim is to model the fractured rock to assess fluid flow or the stability of rock blocks. One important step in fracture network modelling is to estimate the number of fractures and the properties of individual fractures such as their size and orientation. Due to the lack of data and the complexity of the problem, there are significant uncertainties associated with fracture network modelling in practice. Our primary interest is the modelling of fracture networks in geothermal systems and, in this paper, we propose a general stochastic approach to fracture network modelling for this application. We focus on using the seismic point cloud detected during the fracture stimulation of a hot dry rock reservoir to create an enhanced geothermal system; these seismic points are the conditioning data in the modelling process. The seismic points can be used to estimate the geographical extent of the reservoir, the amount of fracturing and the detailed geometries of fractures within the reservoir. The objective is to determine a fracture model from the conditioning data by minimizing the sum of the distances of the points from the fitted fracture model. Fractures are represented as line segments connecting two points in two-dimensional applications or as ellipses in three-dimensional (3D) cases. The novelty of our model is twofold: (1) it comprises a comprehensive fracture modification scheme based on simulated annealing and (2) it introduces new spatial approaches, a goodness-of-fit measure for the fitted fracture model, a measure for fracture similarity and a clustering technique for proposing a locally optimal solution for fracture parameters. We use a simulated dataset to demonstrate the application of the proposed approach

  20. An SDN based approach for the ATLAS data acquisition network

    CERN Document Server

    Blikra, Espen; The ATLAS collaboration

    2016-01-01

    ATLAS is a high energy physics experiment in the Large Hadron Collider located at CERN. During the so called Long Shutdown 2 period scheduled for late 2019, ATLAS will undergo several modifications and upgrades on its data acquisition system in order to cope with the higher luminosity requirements. As part of these activities, a new read-out chain will be built for the New Small Wheel muon detector and the one of the Liquid Argon calorimeter will be upgraded. The subdetector specific electronic boards will be replaced with new commodity-server-based systems and instead of the custom serial-link-based communication, the new system will make use of a yet to be chosen commercial network technology. The new network will be used as a data acquisition network and at the same time it is intended to allow communication for the control, calibration and monitoring of the subdetectors. Therefore several types of traffic with different bandwidth requirements and different criticality will be competing for the same underl...

  1. Methodological Approaches to Locating Outlets of the Franchise Retail Network

    Directory of Open Access Journals (Sweden)

    Grygorenko Tetyana M.

    2016-08-01

    Full Text Available Methodical approaches to selecting strategic areas of managing the future location of franchise retail network outlets are presented. The main stages in the assessment of strategic areas of managing the future location of franchise retail network outlets have been determined and the evaluation criteria have been suggested. Since such selection requires consideration of a variety of indicators and directions of the assessment, the author proposes a scale of evaluation, which allows generalizing and organizing the research data and calculations of the previous stages of the analysis. The most important criteria and sequence of the selection of the potential franchisees for the franchise retail network have been identified, the technique for their evaluation has been proposed. The use of the suggested methodological approaches will allow the franchiser making sound decisions on the selection of potential target markets, minimizing expenditures of time and efforts on the selection of franchisees and hence optimizing the process of development of the franchise retail network, which will contribute to the formation of its structure.

  2. Toward a Behavioral Approach to Privacy for Online Social Networks

    Science.gov (United States)

    Banks, Lerone D.; Wu, S. Felix

    We examine the correlation between user interactions and self reported information revelation preferences for users of the popular Online Social Network (OSN), Facebook. Our primary goal is to explore the use of indicators of tie strength to inform localized, per-user privacy preferences for users and their ties within OSNs. We examine the limitations of such an approach and discuss future plans to incorporate this approach into the development of an automated system for helping users define privacy policy. As part of future work, we discuss how to define/expand policy to the entire social network. We also present additional collected data similar to other studies such as perceived tie strength and information revelation preferences for OSN users.

  3. An activities-based approach to network management : An explorative study

    NARCIS (Netherlands)

    Manser, Kristina; Hillebrand, Bas; Klein Woolthuis, R.J.A.; Ziggers, Gerrit Willem; Driessen, Paul H.; Bloemer, Josée

    2016-01-01

    Over the last few decades, the industrial marketing literature and the business network literature have promoted a holistic approach to marketing and provided a framework for understanding interorganizational networks. However, our understanding of how interorganizational networks govern themselves

  4. An activities-based approach to network management: An explorative study

    NARCIS (Netherlands)

    Manser, K.; Hillebrand, B.; Klein Woolthuis, R.J.A.; Ziggers, G.W.; Driessen, P.H.; Bloemer, J.M.M.; Klein Woolthuis, R.

    2016-01-01

    Over the last few decades, the industrial marketing literature and the business network literature have promoted a holistic approach to marketing and provided a framework for understanding interorganizational networks. However, our understanding of how interorganizational networks govern themselves

  5. From Microactions to Macrostructure and Back : A Structurational Approach to the Evolution of Organizational Networks

    NARCIS (Netherlands)

    Whitbred, Robert; Fonti, Fabio; Steglich, Christian; Contractor, Noshir

    Structuration theory (ST) and network analysis are promising approaches for studying the emergence of communication networks. We offer a model that integrates the conceptual richness of structuration with the precision of relevant concepts and mechanisms offered from communication network research.

  6. Shared Leadership In Work Teams: A Social Network Approach

    OpenAIRE

    JUAN CARLOS PASTOR; MARGARITA MAYO

    2002-01-01

    (WP10/02 Clave pdf) In the past few years, the concept of leadership has shifted from the solitary leader to the team as a potential source of leadership. This shift from a single person to a "shared leadership" model requires new concepts and methods to capture the nature and structure of leadership by teams (Yukl, 1998). In this chapter, we argue that a social network approach helps to provide the conceptual framework and methodological tools to support a shared leadership perspective.

  7. Evolutionary Trends of Developer Coordination: A Network Approach

    OpenAIRE

    Joblin, Mitchell; Apel, Sven; Mauerer, Wolfgang

    2015-01-01

    Software evolution is a fundamental process that transcends the realm of technical artifacts and permeates the entire organizational structure of a software project. By means of a longitudinal empirical study of 18 large open-source projects, we examine and discuss the evolutionary principles that govern the coordination of developers. By applying a network-analytic approach, we found that the implicit and self-organizing structure of developer coordination is ubiquitously described by non-ra...

  8. Artificial neural network based approach to EEG signal simulation.

    Science.gov (United States)

    Tomasevic, Nikola M; Neskovic, Aleksandar M; Neskovic, Natasa J

    2012-06-01

    In this paper a new approach to the electroencephalogram (EEG) signal simulation based on the artificial neural networks (ANN) is proposed. The aim was to simulate the spontaneous human EEG background activity based solely on the experimentally acquired EEG data. Therefore, an EEG measurement campaign was conducted on a healthy awake adult in order to obtain an adequate ANN training data set. As demonstration of the performance of the ANN based approach, comparisons were made against autoregressive moving average (ARMA) filtering based method. Comprehensive quantitative and qualitative statistical analysis showed clearly that the EEG process obtained by the proposed method was in satisfactory agreement with the one obtained by measurements.

  9. Hierarchical brain networks active in approach and avoidance goal pursuit

    Directory of Open Access Journals (Sweden)

    Jeffrey Martin Spielberg

    2013-06-01

    Full Text Available Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal pursuit processes (e.g., motivation has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity vital to goal pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures.

  10. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  11. A neural network approach to dynamic task assignment of multirobots.

    Science.gov (United States)

    Zhu, Anmin; Yang, Simon X

    2006-09-01

    In this paper, a neural network approach to task assignment, based on a self-organizing map (SOM), is proposed for a multirobot system in dynamic environments subject to uncertainties. It is capable of dynamically controlling a group of mobile robots to achieve multiple tasks at different locations, so that the desired number of robots will arrive at every target location from arbitrary initial locations. In the proposed approach, the robot motion planning is integrated with the task assignment, thus the robots start to move once the overall task is given. The robot navigation can be dynamically adjusted to guarantee that each target location has the desired number of robots, even under uncertainties such as when some robots break down. The proposed approach is capable of dealing with changing environments. The effectiveness and efficiency of the proposed approach are demonstrated by simulation studies.

  12. Assessment Innovation and Student Experience: A New Assessment Challenge and Call for a Multi-Perspective Approach to Assessment Research

    Science.gov (United States)

    Bevitt, Sheena

    2015-01-01

    The impact of innovative assessment on student experience in higher education is a neglected research topic. This represents an important gap in the literature-given debate around the marketisation of higher education, international focus on student satisfaction measurement tools and political calls to put students at the heart of higher education…

  13. Pecha Kucha Style Powerpoint Presentation: An Innovative Call Approach to Developing Oral Presentation Skills of Tertiary Students

    Science.gov (United States)

    Murugaiah, Puvaneswary

    2016-01-01

    In computer-assisted language learning (CALL), technological tools are often used both as an end and as a means to an end (Levy & Stockwell, 2006). Microsoft PowerPoint is an example of the latter as it is commonly used in oral presentations in classrooms. However, many student presentations are often boring as students generally read from…

  14. Direct comparison of performance of single nucleotide variant calling in human genome with alignment-based and assembly-based approaches.

    Science.gov (United States)

    Wu, Leihong; Yavas, Gokhan; Hong, Huixiao; Tong, Weida; Xiao, Wenming

    2017-09-08

    Complementary to reference-based variant detection, recent studies revealed that many novel variants could be detected with de novo assembled genomes. To evaluate the effect of reads coverage and the accuracy of assembly-based variant calling, we simulated short reads containing more than 3 million of single nucleotide variants (SNVs) from the whole human genome and compared the efficiency of SNV calling between the assembly-based and alignment-based calling approaches. We assessed the quality of the assembled contig and found that a minimum of 30X coverage of short reads was needed to ensure reliable SNV calling and to generate assembled contigs with a good coverage of genome and genes. In addition, we observed that the assembly-based approach had a much lower recall rate and precision comparing to the alignment-based approach that would recover 99% of imputed SNVs. We observed similar results with experimental reads for NA24385, an individual whose germline variants were well characterized. Although there are additional values for SNVs detection, the assembly-based approach would have great risk of false discovery of novel SNVs. Further improvement of de novo assembly algorithms are needed in order to warrant a good completeness of genome with haplotype resolved and high fidelity of assembled sequences.

  15. ADHD classification using bag of words approach on network features

    Science.gov (United States)

    Solmaz, Berkan; Dey, Soumyabrata; Rao, A. Ravishankar; Shah, Mubarak

    2012-02-01

    Attention Deficit Hyperactivity Disorder (ADHD) is receiving lots of attention nowadays mainly because it is one of the common brain disorders among children and not much information is known about the cause of this disorder. In this study, we propose to use a novel approach for automatic classification of ADHD conditioned subjects and control subjects using functional Magnetic Resonance Imaging (fMRI) data of resting state brains. For this purpose, we compute the correlation between every possible voxel pairs within a subject and over the time frame of the experimental protocol. A network of voxels is constructed by representing a high correlation value between any two voxels as an edge. A Bag-of-Words (BoW) approach is used to represent each subject as a histogram of network features; such as the number of degrees per voxel. The classification is done using a Support Vector Machine (SVM). We also investigate the use of raw intensity values in the time series for each voxel. Here, every subject is represented as a combined histogram of network and raw intensity features. Experimental results verified that the classification accuracy improves when the combined histogram is used. We tested our approach on a highly challenging dataset released by NITRC for ADHD-200 competition and obtained promising results. The dataset not only has a large size but also includes subjects from different demography and edge groups. To the best of our knowledge, this is the first paper to propose BoW approach in any functional brain disorder classification and we believe that this approach will be useful in analysis of many brain related conditions.

  16. A Passive Testing Approach for Protocols in Wireless Sensor Networks.

    Science.gov (United States)

    Che, Xiaoping; Maag, Stephane; Tan, Hwee-Xian; Tan, Hwee-Pink; Zhou, Zhangbing

    2015-11-19

    Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN). However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results.

  17. A Dynamic Resilience Approach for WDM Optical Networks

    Science.gov (United States)

    Garg, Amit Kumar

    2017-12-01

    Optical fibres have been developed as a transmission medium to carry traffic in order to provide various services in telecommunications platform. Failure of this fibre caused loss of data which can interrupt communication services. This paper has been focused only on survivable schemes in order to guarantee both protection and restoration in WDM optical networks. In this paper, a dynamic resilience approach has been proposed whose objective is to route the flows in a way which minimizes the total amount of bandwidth used for working and protection paths. In the proposed approach, path-based protection is utilized because it yields lower overhead and is also suitable for global optimization where, in case of a single link failure, all the flows utilizing the failed link are re-routed to a pre-computed set of paths. The simulation results demonstrate that proposed approach is much more efficient as it provides better quality of services (QoS) in terms of network resource utilization, blocking probability etc. as compared to conventional protection and restoration schemes. The proposed approach seems to offer an attractive combination of features, with both ring like speed and mesh-like efficiency.

  18. A Passive Testing Approach for Protocols in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaoping Che

    2015-11-01

    Full Text Available Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN. However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results.

  19. Analyzing energy consumption of wireless networks. A model-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Haidi

    2013-03-04

    During the last decades, wireless networking has been continuously a hot topic both in academy and in industry. Many different wireless networks have been introduced like wireless local area networks, wireless personal networks, wireless ad hoc networks, and wireless sensor networks. If these networks want to have a long term usability, the power consumed by the wireless devices in each of these networks needs to be managed efficiently. Hence, a lot of effort has been carried out for the analysis and improvement of energy efficiency, either for a specific network layer (protocol), or new cross-layer designs. In this thesis, we apply model-based approach for the analysis of energy consumption of different wireless protocols. The protocols under consideration are: one leader election protocol, one routing protocol, and two medium access control protocols. By model-based approach we mean that all these four protocols are formalized as some formal models, more precisely, as discrete-time Markov chains (DTMCs), Markov decision processes (MDPs), or stochastic timed automata (STA). For the first two models, DTMCs and MDPs, we model them in PRISM, a prominent model checker for probabilistic model checking, and apply model checking technique to analyze them. Model checking belongs to the family of formal methods. It discovers exhaustively all possible (reachable) states of the models, and checks whether these models meet a given specification. Specifications are system properties that we want to study, usually expressed by some logics, for instance, probabilistic computer tree logic (PCTL). However, while model checking relies on rigorous mathematical foundations and automatically explores the entire state space of a model, its applicability is also limited by the so-called state space explosion problem -- even systems of moderate size often yield models with an exponentially larger state space that thwart their analysis. Hence for the STA models in this thesis, since there

  20. Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Shahin [Purdue Univ., West Lafayette, IN (United States); Gleich, David F. [Purdue Univ., West Lafayette, IN (United States); Kolda, Tamara G. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Grama, Ananth [Purdue Univ., West Lafayette, IN (United States)

    2015-11-01

    Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.

  1. Chemical reaction network approaches to Biochemical Systems Theory.

    Science.gov (United States)

    Arceo, Carlene Perpetua P; Jose, Editha C; Marin-Sanguino, Alberto; Mendoza, Eduardo R

    2015-11-01

    This paper provides a framework to represent a Biochemical Systems Theory (BST) model (in either GMA or S-system form) as a chemical reaction network with power law kinetics. Using this representation, some basic properties and the application of recent results of Chemical Reaction Network Theory regarding steady states of such systems are shown. In particular, Injectivity Theory, including network concordance [36] and the Jacobian Determinant Criterion [43], a "Lifting Theorem" for steady states [26] and the comprehensive results of Müller and Regensburger [31] on complex balanced equilibria are discussed. A partial extension of a recent Emulation Theorem of Cardelli for mass action systems [3] is derived for a subclass of power law kinetic systems. However, it is also shown that the GMA and S-system models of human purine metabolism [10] do not display the reactant-determined kinetics assumed by Müller and Regensburger and hence only a subset of BST models can be handled with their approach. Moreover, since the reaction networks underlying many BST models are not weakly reversible, results for non-complex balanced equilibria are also needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A neural network approach to smarter sensor networks for water quality monitoring.

    Science.gov (United States)

    O'Connor, Edel; Smeaton, Alan F; O'Connor, Noel E; Regan, Fiona

    2012-01-01

    Environmental monitoring is evolving towards large-scale and low-cost sensor networks operating reliability and autonomously over extended periods of time. Sophisticated analytical instrumentation such as chemo-bio sensors present inherent limitations because of the number of samples that they can take. In order to maximize their deployment lifetime, we propose the coordination of multiple heterogeneous information sources. We use rainfall radar images and information from a water depth sensor as input to a neural network (NN) to dictate the sampling frequency of a phosphate analyzer at the River Lee in Cork, Ireland. This approach shows varied performance for different times of the year but overall produces output that is very satisfactory for the application context in question. Our study demonstrates that even with limited training data, a system for controlling the sampling rate of the nutrient sensor can be set up and can improve the efficiency of the more sophisticated nodes of the sensor network.

  3. A game-theoretic approach to optimize ad hoc networks inspired by small-world network topology

    Science.gov (United States)

    Tan, Mian; Yang, Tinghong; Chen, Xing; Yang, Gang; Zhu, Guoqing; Holme, Petter; Zhao, Jing

    2018-03-01

    Nodes in ad hoc networks are connected in a self-organized manner. Limited communication radius makes information transmit in multi-hop mode, and each forwarding needs to consume the energy of nodes. Insufficient communication radius or exhaustion of energy may cause the absence of some relay nodes and links, further breaking network connectivity. On the other hand, nodes in the network may refuse to cooperate due to objective faulty or personal selfish, hindering regular communication in the network. This paper proposes a model called Repeated Game in Small World Networks (RGSWN). In this model, we first construct ad hoc networks with small-world feature by forming "communication shortcuts" between multiple-radio nodes. Small characteristic path length reduces average forwarding times in networks; meanwhile high clustering coefficient enhances network robustness. Such networks still maintain relative low global power consumption, which is beneficial to extend the network survival time. Then we use MTTFT strategy (Mend-Tolerance Tit-for-Tat) for repeated game as a rule for the interactions between neighbors in the small-world networks. Compared with other five strategies of repeated game, this strategy not only punishes the nodes' selfishness more reasonably, but also has the best tolerance to the network failure. This work is insightful for designing an efficient and robust ad hoc network.

  4. Sport, how people choose it: A network analysis approach.

    Science.gov (United States)

    Ferreri, Luca; Ivaldi, Marco; Daolio, Fabio; Giacobini, Mario; Rainoldi, Alberto; Tomassini, Marco

    2015-01-01

    In order to investigate the behaviour of athletes in choosing sports, we analyse data from part of the We-Sport database, a vertical social network that links athletes through sports. In particular, we explore connections between people sharing common sports and the role of age and gender by applying "network science" approaches and methods. The results show a disassortative tendency of athletes in choosing sports, a negative correlation between age and number of chosen sports and a positive correlation between age of connected athletes. Some interesting patterns of connection between age classes are depicted. In addition, we propose a method to classify sports, based on the analyses of the behaviour of people practising them. Thanks to this brand new classifications, we highlight the links of class of sports and their unexpected features. We emphasise some gender dependency affinity in choosing sport classes.

  5. An Enhanced Probabilistic Neural Network Approach Applied to Text Classification

    Science.gov (United States)

    Marques Ciarelli, Patrick; Oliveira, Elias

    Text classification is still a quite difficult problem to be dealt with both by the academia and by the industrial areas. On the top of that, the importance of aggregating a set of related amount of text documents is steadily growing in importance these days. The presence of multi-labeled texts and great quantity of classes turn this problem even more challenging. In this article we present an enhanced version of Probabilistic Neural Network using centroids to tackle the multi-label classification problem. We carried out some experiments comparing our proposed classifier against the other well known classifiers in the literature which were specially designed to treat this type of problem. By the achieved results, we observed that our novel approach were superior to the other classifiers and faster than the Probabilistic Neural Network without the use of centroids.

  6. Structural Approaches to Sequence Evolution Molecules, Networks, Populations

    CERN Document Server

    Bastolla, Ugo; Roman, H. Eduardo; Vendruscolo, Michele

    2007-01-01

    Structural requirements constrain the evolution of biological entities at all levels, from macromolecules to their networks, right up to populations of biological organisms. Classical models of molecular evolution, however, are focused at the level of the symbols - the biological sequence - rather than that of their resulting structure. Now recent advances in understanding the thermodynamics of macromolecules, the topological properties of gene networks, the organization and mutation capabilities of genomes, and the structure of populations make it possible to incorporate these key elements into a broader and deeply interdisciplinary view of molecular evolution. This book gives an account of such a new approach, through clear tutorial contributions by leading scientists specializing in the different fields involved.

  7. Benchmarking and supplier networking--best practice approaches.

    Science.gov (United States)

    Waixel, B; Laidlaw, J

    1996-01-01

    This article examines the approach adopted by a health service to benchmark outside the health industry and to network with its own suppliers in its quest for best practice. The Maryborough District Health Service was selected for funding under the Commonwealth Government's Best Practice in the Health Sector Program. This rural health service is setting a fine example of how generic benchmarking can be used to increase efficiency and improve outcomes in an environment of change, increasing demands, and contracting resources. The organisation has networked with its suppliers with a view to ensuring that, as a customer, it has access to the best quality goods and services. The objective is to improve the services and quality of patient care provided by the health service and to minimise its cost structures.

  8. State network approach to characteristics of financial crises

    Science.gov (United States)

    Qiu, Lu; Gu, Changgui; Xiao, Qin; Yang, Huijie; Wu, Guolin

    2018-02-01

    Extensive works have reported that a financial crisis can induce significant changes to topological structure of a stock network constructed with cross-correlations between stocks. But there are still some problems to be answered, such as what is the relationship between different crises in history and how to classify them? In the present work, we propose a new network-based solution to extract and display the relationships between the crises. The Dow Jones stock market is investigated as a typical example. The cross-correlation matrix between stocks is used to measure the state of stock market, called state matrix. All the states cluster into six sub-categories. A state network is constructed further to display the relationships between all the states, which contains a total of nine communities. It is found that three crises C , D and E (refer to the Lehman's bankruptcy in 2008, the Euro-zone and International Monetary Fund decide the first bailout for Greece in 2010, and the European sovereign debt crisis in 2011, respectively) belong to a specific sub-category and cluster in a single community. The mid-stage of C is closely linked with E, while the other stages with D. The other two crises A and B (refer to the financial crisis in Asia in 1997, and the burst of "dot-com bubble" in 2002, respectively) belong to another sub-category and gather in a corner of another single community. A and B are linked directly with C and D by two edges. By this way, we give a clear picture of the relationships between the crises.

  9. Parametric motion control of robotic arms: A biologically based approach using neural networks

    Science.gov (United States)

    Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.

    1993-01-01

    A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.

  10. Statistical learning of parts and wholes: A neural network approach.

    Science.gov (United States)

    Plaut, David C; Vande Velde, Anna K

    2017-03-01

    Statistical learning is often considered to be a means of discovering the units of perception, such as words and objects, and representing them as explicit "chunks." However, entities are not undifferentiated wholes but often contain parts that contribute systematically to their meanings. Studies of incidental auditory or visual statistical learning suggest that, as participants learn about wholes they become insensitive to parts embedded within them, but this seems difficult to reconcile with a broad range of findings in which parts and wholes work together to contribute to behavior. Bayesian approaches provide a principled description of how parts and wholes can contribute simultaneously to performance, but are generally not intended to model the computations that actually give rise to this performance. In the current work, we develop an account based on learning in artificial neural networks in which the representation of parts and wholes is a matter of degree, and the extent to which they cooperate or compete arises naturally through incidental learning. We show that the approach accounts for a wide range of findings concerning the relationship between parts and wholes in auditory and visual statistical learning, including some findings previously thought to be problematic for neural network approaches. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Substrate independent approach for synthesis of graphene platelet networks

    Science.gov (United States)

    Shashurin, A.; Fang, X.; Zemlyanov, D.; Keidar, M.

    2017-06-01

    Graphene platelet networks (GPNs) comprised of randomly oriented graphene flakes two to three atomic layers thick are synthesized using a novel plasma-based approach. The approach uses a substrate capable of withstanding synthesis temperatures around 800 °C, but is fully independent of the substrate material. The synthesis occurs directly on the substrate surface without the necessity of any additional steps. GPNs were synthesized on various substrate materials including silicon (Si), thermally oxidized Si (SiO2), molybdenum (Mo), nickel (Ni) and copper (Cu), nickel-chromium (NiCr) alloy and alumina ceramics (Al2O3). The mismatch between the atomic structures of sp2 honeycomb carbon networks and the substrate material is fully eliminated shortly after the synthesis initiation, namely when about 100 nm thick deposits are formed on the substrate. GPN structures synthesized on a substrate at a temperature of about 800 °C are significantly more porous in comparison to the much denser packed amorphous carbon deposits synthesized at lower temperatures. The method proposed here can potentially revolutionize the area of electrochemical energy storage by offering a single-step direct approach for the manufacture of graphene-based electrodes for non-Faradaic supercapacitors. Mass production can be achieved using this method if a roll-to-roll system is utilized.

  12. Advanced Load Balancing Based on Network Flow Approach in LTE-A Heterogeneous Network

    Directory of Open Access Journals (Sweden)

    Shucong Jia

    2014-01-01

    Full Text Available Long-term evolution advanced (LTE-A systems will offer better service to users by applying advanced physical layer transmission techniques and utilizing wider bandwidth. To further improve service quality, low power nodes are overlaid within a macro network, creating what is referred to as a heterogeneous network. However, load imbalance among cells often decreases the network resource utilization ratio and consequently reduces the user experience level. Load balancing (LB is an indispensable function in LTE-A self-organized network (SON to efficiently accommodate the imbalance in traffic. In this paper, we firstly evaluate the negative impact of unbalanced load among cells through Markovian model. Secondly, we formulate LB as an optimization problem which is solved using network flow approach. Furthermore, a novel algorithm named optimal solution-based LB (OSLB is proposed. The proposed OSLB algorithm is shown to be effective in providing up to 20% gain in load distribution index (LDI by a system-level simulation.

  13. EMERGENCY CALLS

    CERN Document Server

    2001-01-01

    IN URGENT NEED OF A DOCTOR GENEVA EMERGENCY SERVICES GENEVA AND VAUD 144 FIRE BRIGADE 118 POLICE 117 CERN FIREMEN 767-44-44 ANTI-POISONS CENTRE Open 24h/24h 01-251-51-51 Patient not fit to be moved, call family doctor, or: GP AT HOME, open 24h/24h 748-49-50 Association Of Geneva Doctors Emergency Doctors at home 07h-23h 322 20 20 Patient fit to be moved: HOPITAL CANTONAL CENTRAL 24 Micheli-du-Crest 372-33-11 ou 382-33-11 EMERGENCIES 382-33-11 ou 372-33-11 CHILDREN'S HOSPITAL 6 rue Willy-Donzé 372-33-11 MATERNITY 32 bvd.de la Cluse 382-68-16 ou 382-33-11 OPHTHALMOLOGY 22 Alcide Jentzer 382-33-11 ou 372-33-11 MEDICAL CENTRE CORNAVIN 1-3 rue du Jura 345 45 50 HOPITAL DE LA TOUR Meyrin EMERGENCIES 719-61-11 URGENCES PEDIATRIQUES 719-61-00 LA TOUR MEDICAL CENTRE 719-74-00 European Emergency Call 112 FRANCE EMERGENCY SERVICES 15 FIRE BRIGADE 18 POLICE 17 CERN FIREMEN AT HOME 00-41-22-767-44-44 ANTI-POISONS CENTRE Open 24h/24h 04-72-11-69-11 All doctors ...

  14. Information Extraction from Wireless Sensor Networks: System and Approaches

    Directory of Open Access Journals (Sweden)

    Tariq ALSBOUI

    2012-03-01

    Full Text Available Recent advances in wireless communication have made it possible to develop low-cost, and low power Wireless Sensor Networks (WSN. The WSN can be used for several application areas (e.g., habitat monitoring, forest fire detection, and health care. WSN Information Extraction (IE techniques can be classified into four categories depending on the factors that drive data acquisition: event-driven, time-driven, query-based, and hybrid. This paper presents a survey of the state-of-the-art IE techniques in WSNs. The benefits and shortcomings of different IE approaches are presented as motivation for future work into automatic hybridization and adaptation of IE mechanisms.

  15. A HYBRID GENETIC ALGORITHM-NEURAL NETWORK APPROACH FOR PRICING CORES AND REMANUFACTURED CORES

    Directory of Open Access Journals (Sweden)

    M. Seidi

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT:Sustainability has become a major issue in most economies, causing many leading companies to focus on product recovery and reverse logistics. Remanufacturing is an industrial process that makes used products reusable. One of the important aspects in both reverse logistics and remanufacturing is the pricing of returned and remanufactured products (called cores. In this paper, we focus on pricing the cores and remanufactured cores. First we present a mathematical model for this purpose. Since this model does not satisfy our requirements, we propose a simulation optimisation approach. This approach consists of a hybrid genetic algorithm based on a neural network employed as the fitness function. We use automata learning theory to obtain the learning rate required for training the neural network. Numerical results demonstrate that the optimal value of the acquisition price of cores and price of remanufactured cores is obtained by this approach.

    AFRIKAANSE OPSOMMING: Volhoubaarheid het ‘n belangrike saak geword in die meeste ekonomieë, wat verskeie maatskappye genoop het om produkherwinning en omgekeerde logistiek te onder oë te neem. Hervervaardiging is ‘n industriële proses wat gebruikte produkte weer bruikbaar maak. Een van die belangrike aspekte in beide omgekeerde logistiek en hervervaardiging is die prysbepaling van herwinne en hervervaardigde produkte. Hierdie artikel fokus op die prysbepalingsaspekte by wyse van ‘n wiskundige model.

  16. Behavior based adaptive call predictor

    OpenAIRE

    Phithakkitnukoon, Santi; Dantu, Ram; Claxton, Rob; Eagle, Nathan

    2011-01-01

    Predicting future calls can be the next advanced feature of the next-generation telecommunication networks as the service providers are looking to offer new services to their customers. Call prediction can be useful to many applications such as planning daily schedules, avoiding unwanted communications (e.g. voice spam), and resource planning in call centers. Predicting calls is a very challenging task. We believe that this is an emerging area of research in ambient intelligence where the ele...

  17. Patterns of work attitudes: A neural network approach

    Science.gov (United States)

    Mengov, George D.; Zinovieva, Irina L.; Sotirov, George R.

    2000-05-01

    In this paper we introduce a neural networks based approach to analyzing empirical data and models from work and organizational psychology (WOP), and suggest possible implications for the practice of managers and business consultants. With this method it becomes possible to have quantitative answers to a bunch of questions like: What are the characteristics of an organization in terms of its employees' motivation? What distinct attitudes towards the work exist? Which pattern is most desirable from the standpoint of productivity and professional achievement? What will be the dynamics of behavior as quantified by our method, during an ongoing organizational change or consultancy intervention? Etc. Our investigation is founded on the theoretical achievements of Maslow (1954, 1970) in human motivation, and of Hackman & Oldham (1975, 1980) in job diagnostics, and applies the mathematical algorithm of the dARTMAP variation (Carpenter et al., 1998) of the Adaptive Resonance Theory (ART) neural networks introduced by Grossberg (1976). We exploit the ART capabilities to visualize the knowledge accumulated in the network's long-term memory in order to interpret the findings in organizational research.

  18. Methodological Approach for Optogenetic Manipulation of Neonatal Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Sebastian H. Bitzenhofer

    2017-08-01

    Full Text Available Coordinated patterns of electrical activity are critical for the functional maturation of neuronal networks, yet their interrogation has proven difficult in the developing brain. Optogenetic manipulations strongly contributed to the mechanistic understanding of network activation in the adult brain, but difficulties to specifically and reliably express opsins at neonatal age hampered similar interrogation of developing circuits. Here, we introduce a protocol that enables to control the activity of specific neuronal populations by light, starting from early postnatal development. We show that brain area-, layer- and cell type-specific expression of opsins by in utero electroporation (IUE, as exemplified for the medial prefrontal cortex (PFC and hippocampus (HP, permits the manipulation of neuronal activity in vitro and in vivo. Both individual and population responses to different patterns of light stimulation are monitored by extracellular multi-site recordings in the medial PFC of neonatal mice. The expression of opsins via IUE provides a flexible approach to disentangle the cellular mechanism underlying early rhythmic network activity, and to elucidate the role of early neuronal activity for brain maturation, as well as its contribution to neurodevelopmental disorders.

  19. Methodological Approach for Optogenetic Manipulation of Neonatal Neuronal Networks.

    Science.gov (United States)

    Bitzenhofer, Sebastian H; Ahlbeck, Joachim; Hanganu-Opatz, Ileana L

    2017-01-01

    Coordinated patterns of electrical activity are critical for the functional maturation of neuronal networks, yet their interrogation has proven difficult in the developing brain. Optogenetic manipulations strongly contributed to the mechanistic understanding of network activation in the adult brain, but difficulties to specifically and reliably express opsins at neonatal age hampered similar interrogation of developing circuits. Here, we introduce a protocol that enables to control the activity of specific neuronal populations by light, starting from early postnatal development. We show that brain area-, layer- and cell type-specific expression of opsins by in utero electroporation (IUE), as exemplified for the medial prefrontal cortex (PFC) and hippocampus (HP), permits the manipulation of neuronal activity in vitro and in vivo. Both individual and population responses to different patterns of light stimulation are monitored by extracellular multi-site recordings in the medial PFC of neonatal mice. The expression of opsins via IUE provides a flexible approach to disentangle the cellular mechanism underlying early rhythmic network activity, and to elucidate the role of early neuronal activity for brain maturation, as well as its contribution to neurodevelopmental disorders.

  20. Attention and Motivated Response to Simulated Male Advertisement Call Activates Forebrain Dopaminergic and Social Decision-Making Network Nuclei in Female Midshipman Fish.

    Science.gov (United States)

    Forlano, Paul M; Licorish, Roshney R; Ghahramani, Zachary N; Timothy, Miky; Ferrari, Melissa; Palmer, William C; Sisneros, Joseph A

    2017-10-01

    Little is known regarding the coordination of audition with decision-making and subsequent motor responses that initiate social behavior including mate localization during courtship. Using the midshipman fish model, we tested the hypothesis that the time spent by females attending and responding to the advertisement call is correlated with the activation of a specific subset of catecholaminergic (CA) and social decision-making network (SDM) nuclei underlying auditory- driven sexual motivation. In addition, we quantified the relationship of neural activation between CA and SDM nuclei in all responders with the goal of providing a map of functional connectivity of the circuitry underlying a motivated state responsive to acoustic cues during mate localization. In order to make a baseline qualitative comparison of this functional brain map to unmotivated females, we made a similar correlative comparison of brain activation in females who were unresponsive to the advertisement call playback. Our results support an important role for dopaminergic neurons in the periventricular posterior tuberculum and ventral thalamus, putative A11 and A13 tetrapod homologues, respectively, as well as the posterior parvocellular preoptic area and dorsomedial telencephalon, (laterobasal amygdala homologue) in auditory attention and appetitive sexual behavior in fishes. These findings may also offer insights into the function of these highly conserved nuclei in the context of auditory-driven reproductive social behavior across vertebrates. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Crystal Structure Representation for Neural Networks using Topological Approach.

    Science.gov (United States)

    Fedorov, Aleksandr V; Shamanaev, Ivan V

    2017-08-01

    In the present work we describe a new approach, which uses topology of crystals for physicochemical properties prediction using artificial neural networks (ANN). The topologies of 268 crystal structures were determined using ToposPro software. Quotient graphs were used to identify topological centers and their neighbors. The topological approach was illustrated by training ANN to predict molar heat capacity, standard molar entropy and lattice energy of 268 crystals with different compositions and structures (metals, inorganic salts, oxides, etc.). ANN was trained using Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Mean absolute percentage error of predicted properties was ≤8 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Evaluating the impact of interdisciplinary research: a multilayer network approach

    CERN Document Server

    Omodei, Elisa; Arenas, Alex

    2016-01-01

    Nowadays, scientific challenges usually require approaches that cross traditional boundaries between academic disciplines, driving many researchers towards interdisciplinarity. Despite its obvious importance, there is a lack of studies on how to quantify the influence of interdisciplinarity on the research impact, posing uncertainty in a proper evaluation for hiring and funding purposes. Here we propose a method based on the analysis of bipartite interconnected multilayer networks of citations and disciplines, to assess scholars, institutions and countries interdisciplinary importance. Using data about physics publications and US patents, we show that our method allows to reveal, using a quantitative approach, that being more interdisciplinary causes -- in the Granger sense -- benefits in scientific productivity and impact. The proposed method could be used by funding agencies, universities and scientific policy decision makers for hiring and funding purposes, and to complement existing methods to rank univer...

  3. Interactions of physical, chemical, and biological weather calling for an integrated approach to assessment, forecasting, and communication of air quality.

    Science.gov (United States)

    Klein, Thomas; Kukkonen, Jaakko; Dahl, Aslög; Bossioli, Elissavet; Baklanov, Alexander; Vik, Aasmund Fahre; Agnew, Paul; Karatzas, Kostas D; Sofiev, Mikhail

    2012-12-01

    This article reviews interactions and health impacts of physical, chemical, and biological weather. Interactions and synergistic effects between the three types of weather call for integrated assessment, forecasting, and communication of air quality. Today's air quality legislation falls short of addressing air quality degradation by biological weather, despite increasing evidence for the feasibility of both mitigation and adaptation policy options. In comparison with the existing capabilities for physical and chemical weather, the monitoring of biological weather is lacking stable operational agreements and resources. Furthermore, integrated effects of physical, chemical, and biological weather suggest a critical review of air quality management practices. Additional research is required to improve the coupled modeling of physical, chemical, and biological weather as well as the assessment and communication of integrated air quality. Findings from several recent COST Actions underline the importance of an increased dialog between scientists from the fields of meteorology, air quality, aerobiology, health, and policy makers.

  4. Deep convolutional neural network approach for forehead tissue thickness estimation

    Directory of Open Access Journals (Sweden)

    Manit Jirapong

    2017-09-01

    Full Text Available In this paper, we presented a deep convolutional neural network (CNN approach for forehead tissue thickness estimation. We use down sampled NIR laser backscattering images acquired from a novel marker-less near-infrared laser-based head tracking system, combined with the beam’s incident angle parameter. These two-channel augmented images were constructed for the CNN input, while a single node output layer represents the estimated value of the forehead tissue thickness. The models were – separately for each subject – trained and tested on datasets acquired from 30 subjects (high resolution MRI data is used as ground truth. To speed up training, we used a pre-trained network from the first subject to bootstrap training for each of the other subjects. We could show a clear improvement for the tissue thickness estimation (mean RMSE of 0.096 mm. This proposed CNN model outperformed previous support vector regression (mean RMSE of 0.155 mm or Gaussian processes learning approaches (mean RMSE of 0.114 mm and eliminated their restrictions for future research.

  5. A perturbation-theoretic approach to Lagrangian flow networks

    Science.gov (United States)

    Fujiwara, Naoya; Kirchen, Kathrin; Donges, Jonathan F.; Donner, Reik V.

    2017-03-01

    Complex network approaches have been successfully applied for studying transport processes in complex systems ranging from road, railway, or airline infrastructures over industrial manufacturing to fluid dynamics. Here, we utilize a generic framework for describing the dynamics of geophysical flows such as ocean currents or atmospheric wind fields in terms of Lagrangian flow networks. In this approach, information on the passive advection of particles is transformed into a Markov chain based on transition probabilities of particles between the volume elements of a given partition of space for a fixed time step. We employ perturbation-theoretic methods to investigate the effects of modifications of transport processes in the underlying flow for three different problem classes: efficient absorption (corresponding to particle trapping or leaking), constant input of particles (with additional source terms modeling, e.g., localized contamination), and shifts of the steady state under probability mass conservation (as arising if the background flow is perturbed itself). Our results demonstrate that in all three cases, changes to the steady state solution can be analytically expressed in terms of the eigensystem of the unperturbed flow and the perturbation itself. These results are potentially relevant for developing more efficient strategies for coping with contaminations of fluid or gaseous media such as ocean and atmosphere by oil spills, radioactive substances, non-reactive chemicals, or volcanic aerosols.

  6. Predicting Peer Nominations Among Medical Students: A Social Network Approach.

    Science.gov (United States)

    Michalec, Barret; Grbic, Douglas; Veloski, J Jon; Cuddy, Monica M; Hafferty, Frederic W

    2016-06-01

    Minimal attention has been paid to what factors may predict peer nomination or how peer nominations might exhibit a clustering effect. Focusing on the homophily principle that "birds of a feather flock together," and using a social network analysis approach, the authors investigated how certain student- and/or school-based factors might predict the likelihood of peer nomination, and the clusters, if any, that occur among those nominations. In 2013, the Jefferson Longitudinal Study of Medical Education included a special instrument to evaluate peer nominations. A total of 211 (81%) of 260 graduating medical students from the Sidney Kimmel Medical College responded to the peer nomination question. Data were analyzed using a relational contingency table and an ANOVA density model. Although peer nominations did not cluster around gender, age, or class rank, those students within an accelerated program, as well as those entering certain specialties, were more likely to nominate each other. The authors suggest that clerkships in certain specialties, as well as the accelerated program, may provide structured opportunities for students to connect and integrate, and that these opportunities may have an impact on peer nomination. The findings suggest that social network analysis is a useful approach to examine various aspects of peer nomination processes. The authors discuss implications regarding harnessing social cohesion within clinical clerkships, the possible development of siloed departmental identity and in-group favoritism, and future research possibilities.

  7. A Service-Oriented Approach for Dynamic Chaining of Virtual Network Functions over Multi-Provider Software-Defined Networks

    Directory of Open Access Journals (Sweden)

    Barbara Martini

    2016-06-01

    Full Text Available Emerging technologies such as Software-Defined Networks (SDN and Network Function Virtualization (NFV promise to address cost reduction and flexibility in network operation while enabling innovative network service delivery models. However, operational network service delivery solutions still need to be developed that actually exploit these technologies, especially at the multi-provider level. Indeed, the implementation of network functions as software running over a virtualized infrastructure and provisioned on a service basis let one envisage an ecosystem of network services that are dynamically and flexibly assembled by orchestrating Virtual Network Functions even across different provider domains, thereby coping with changeable user and service requirements and context conditions. In this paper we propose an approach that adopts Service-Oriented Architecture (SOA technology-agnostic architectural guidelines in the design of a solution for orchestrating and dynamically chaining Virtual Network Functions. We discuss how SOA, NFV, and SDN may complement each other in realizing dynamic network function chaining through service composition specification, service selection, service delivery, and placement tasks. Then, we describe the architecture of a SOA-inspired NFV orchestrator, which leverages SDN-based network control capabilities to address an effective delivery of elastic chains of Virtual Network Functions. Preliminary results of prototype implementation and testing activities are also presented. The benefits for Network Service Providers are also described that derive from the adaptive network service provisioning in a multi-provider environment through the orchestration of computing and networking services to provide end users with an enhanced service experience.

  8. Prevention and public health approaches to trauma and traumatic stress: a rationale and a call to action

    Directory of Open Access Journals (Sweden)

    Kathryn M. Magruder

    2016-03-01

    Full Text Available Background: The field of trauma and traumatic stress is dominated by studies on treatments for those who experience adversity from traumatic experiences. While this is important, we should not neglect the opportunity to consider trauma in a public health perspective. Such a perspective will help to develop prevention approaches as well as extend the reach of early interventions and treatments. The purpose of this paper is to provide an introduction to a public health approach to trauma and traumatic stress and identify key opportunities for trauma professionals and our professional societies (such as the International Society for Traumatic Stress Studies [ISTSS] and the European Society for Traumatic Stress Studies [ESTSS] to increase our societal impact by adopting such an approach. Method: This paper reviews and summarizes key findings related to the public health impact of trauma. The special case of children is explored, and a case example of the Norwegian terrorist attacks in 2011 illustrates the potential for improving our response to community level traumatic events. We also discuss how professional organizations such as ESTSS and ISTSS, as well as individual trauma professionals, can and should play an important role in promoting a public health approach. Results: Trauma is pervasive throughout the world and has negative impacts at the personal, family, community, and societal levels. A public health perspective may help to develop prevention approaches at all of these levels, as well as extend the reach of early interventions and treatments. Conclusions: Professional organizations such as ESTSS and ISTSS can and should play an important role in promoting a public health approach. They should promote the inclusion of trauma in the global public health agenda and include public health in their activities.

  9. A neural network based reputation bootstrapping approach for service selection

    Science.gov (United States)

    Wu, Quanwang; Zhu, Qingsheng; Li, Peng

    2015-10-01

    With the concept of service-oriented computing becoming widely accepted in enterprise application integration, more and more computing resources are encapsulated as services and published online. Reputation mechanism has been studied to establish trust on prior unknown services. One of the limitations of current reputation mechanisms is that they cannot assess the reputation of newly deployed services as no record of their previous behaviours exists. Most of the current bootstrapping approaches merely assign default reputation values to newcomers. However, by this kind of methods, either newcomers or existing services will be favoured. In this paper, we present a novel reputation bootstrapping approach, where correlations between features and performance of existing services are learned through an artificial neural network (ANN) and they are then generalised to establish a tentative reputation when evaluating new and unknown services. Reputations of services published previously by the same provider are also incorporated for reputation bootstrapping if available. The proposed reputation bootstrapping approach is seamlessly embedded into an existing reputation model and implemented in the extended service-oriented architecture. Empirical studies of the proposed approach are shown at last.

  10. Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease

    Directory of Open Access Journals (Sweden)

    John L. Hartman

    2015-02-01

    Full Text Available The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis. The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease.

  11. Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease.

    Science.gov (United States)

    Hartman, John L; Stisher, Chandler; Outlaw, Darryl A; Guo, Jingyu; Shah, Najaf A; Tian, Dehua; Santos, Sean M; Rodgers, John W; White, Richard A

    2015-02-06

    The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease.

  12. A Technical Approach on Large Data Distributed Over a Network

    Directory of Open Access Journals (Sweden)

    Suhasini G

    2011-12-01

    Full Text Available Data mining is nontrivial extraction of implicit, previously unknown and potential useful information from the data. For a database with number of records and for a set of classes such that each record belongs to one of the given classes, the problem of classification is to decide the class to which the given record belongs. The classification problem is also to generate a model for each class from given data set. We are going to make use of supervised classification in which we have training dataset of record, and for each record the class to which it belongs is known. There are many approaches to supervised classification. Decision tree is attractive in data mining environment as they represent rules. Rules can readily expressed in natural languages and they can be even mapped o database access languages. Now a days classification based on decision trees is one of the important problems in data mining   which has applications in many areas.  Now a days database system have become highly distributed, and we are using many paradigms. we consider the problem of inducing decision trees in a large distributed network of highly distributed databases. The classification based on decision tree can be done on the existence of distributed databases in healthcare and in bioinformatics, human computer interaction and by the view that these databases are soon to contain large amounts of data, characterized by its high dimensionality. Current decision tree algorithms would require high communication bandwidth, memory, and they are less efficient and scalability reduces when executed on such large volume of data. So there are some approaches being developed to improve the scalability and even approaches to analyse the data distributed over a network.[keywords: Data mining, Decision tree, decision tree induction, distributed data, classification

  13. A QCQP Approach for OPF in Multiphase Radial Networks with Wye and Delta Connections: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zamzam, Ahmed, S.; Zhaoy, Changhong; Dall' Anesey, Emiliano; Sidiropoulos, Nicholas D.

    2017-06-27

    This paper examines the AC Optimal Power Flow (OPF) problem for multiphase distribution networks featuring renewable energy resources (RESs). We start by outlining a power flow model for radial multiphase systems that accommodates wye-connected and delta-connected RESs and non-controllable energy assets. We then formalize an AC OPF problem that accounts for both types of connections. Similar to various AC OPF renditions, the resultant problem is a non convex quadratically-constrained quadratic program. However, the so-called Feasible Point Pursuit-Successive Convex Approximation algorithm is leveraged to obtain a feasible and yet locally-optimal solution. The merits of the proposed solution approach are demonstrated using two unbalanced multiphase distribution feeders with both wye and delta connections.

  14. Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Directory of Open Access Journals (Sweden)

    Gidrol Xavier

    2008-02-01

    Full Text Available Abstract Background Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge. Results We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC devoted to BN structure learning. Conclusion We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.

  15. Internet-Based Approaches to Building Stakeholder Networks for Conservation and Natural Resource Management.

    Science.gov (United States)

    Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing in...

  16. A Computational Approach to Extinction Events in Chemical Reaction Networks with Discrete State Spaces

    OpenAIRE

    Johnston, Matthew D.

    2017-01-01

    Recent work of M.D. Johnston et al. has produced sufficient conditions on the structure of a chemical reaction network which guarantee that the corresponding discrete state space system exhibits an extinction event. The conditions consist of a series of systems of equalities and inequalities on the edges of a modified reaction network called a domination-expanded reaction network. In this paper, we present a computational implementation of these conditions written in Python and apply the prog...

  17. Estimating plant root water uptake using a neural network approach

    DEFF Research Database (Denmark)

    Qiao, D M; Shi, H B; Pang, H B

    2010-01-01

    Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil...... and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root...... but has not yet been addressed. This paper presents and tests such an approach. The method is based on a neural network model, estimating the water uptake using different types of data that are easy to measure in the field. Sunflower grown in a sandy loam subjected to water stress and salinity was taken...

  18. A Social Marketing Approach for Developing a Neighborhood Network

    Directory of Open Access Journals (Sweden)

    Cláudia Sequeira

    2015-09-01

    Full Text Available This paper focuses on a social marketing project proposal for a community in a social housing neighborhood in Faro, in southern Portugal. The aim of the research is to discuss the possibility of the implementation of a neighborhood network, using a social marketing approach with the goal of strengthening the ties of cooperation, solidarity and friendship between the inhabitants of the neighborhood with a view to fostering social cohesion in the city. The paper offers a theoretical and empirical discussion about the characteristics of particular areas designated as social housing neighborhoods. Data collection was performed in loco by giving a questionnaire to the inhabitants of the neighborhood and by direct observation. The results facilitated a balance between the needs of the residents and their ability to help their neighbors. The results are followed by a discussion and a proposal for a social marketing project targeted to the neighborhood under study.

  19. Traffic networks as information systems a viability approach

    CERN Document Server

    Aubin, Jean-Pierre

    2017-01-01

    This authored monograph covers a viability to approach to traffic management by advising to vehicles circulated on the network the velocity they should follow for satisfying global traffic conditions;. It presents an investigation of three structural innovations: The objective is to broadcast at each instant and at each position the advised celerity to vehicles, which could be read by auxiliary speedometers or used by cruise control devices. Namely, 1. Construct regulation feedback providing at each time and position advised velocities (celerities) for minimizing congestion or other requirements. 2. Taking into account traffic constraints of different type, the first one being to remain on the roads, to stop at junctions, etc. 3. Use information provided by the probe vehicles equipped with GPS to the traffic regulator; 4. Use other global traffic measures of vehicles provided by different types of sensors; These results are based on convex analysis, intertemporal optimization and viability theory as mathemati...

  20. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches.

    Science.gov (United States)

    Salo, Tuula; Vered, Marilena; Bello, Ibrahim O; Nyberg, Pia; Bitu, Carolina Cavalcante; Zlotogorski Hurvitz, Ayelet; Dayan, Dan

    2014-07-15

    The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Maximizing lifetime of wireless sensor networks using genetic approach

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor...

  2. Linguistic complex networks: Rationale, application, interpretation, and directions. Reply to comments on "Approaching human language with complex networks"

    Science.gov (United States)

    Cong, Jin; Liu, Haitao

    2014-12-01

    Amid the enthusiasm for real-world networks of the new millennium, the enquiry into linguistic networks is flourishing not only as a productive branch of the new networks science but also as a promising approach to linguistic research. Although the complex network approach constitutes a potential opportunity to make linguistics a science, the world of linguistics seems unprepared to embrace it. For one thing, linguistics has been largely unaffected by quantitative methods. Those who are accustomed to qualitative linguistic methods may find it hard to appreciate the application of quantitative properties of language such as frequency and length, not to mention quantitative properties of language modeled as networks. With this in mind, in our review [1] we restrict ourselves to the basics of complex networks and the new insights into human language with the application of complex networks. For another, while breaking new grounds and posing new challenges for linguistics, the complex network approach to human language as a new tradition of linguistic research is faced with challenges and unsolved issues of its own. It is no surprise that the comments on our review, especially their skepticism and suggestions, focus on various different aspects of the complex network approach to human language. We are grateful to all the insightful and penetrating comments, which, together with our review, mark a significant impetus to linguistic research from the complex network approach. In this reply, we would like to address four major issues of the complex network approach to human language, namely, a) its theoretical rationale, b) its application in linguistic research, c) interpretation of the results, and d) directions of future research.

  3. A biplex approach to PageRank centrality: From classic to multiplex networks

    Science.gov (United States)

    Pedroche, Francisco; Romance, Miguel; Criado, Regino

    2016-06-01

    In this paper, we present a new view of the PageRank algorithm inspired by multiplex networks. This new approach allows to introduce a new centrality measure for classic complex networks and a new proposal to extend the usual PageRank algorithm to multiplex networks. We give some analytical relations between these new approaches and the classic PageRank centrality measure, and we illustrate the new parameters presented by computing them on real underground networks.

  4. A biplex approach to PageRank centrality: From classic to multiplex networks.

    Science.gov (United States)

    Pedroche, Francisco; Romance, Miguel; Criado, Regino

    2016-06-01

    In this paper, we present a new view of the PageRank algorithm inspired by multiplex networks. This new approach allows to introduce a new centrality measure for classic complex networks and a new proposal to extend the usual PageRank algorithm to multiplex networks. We give some analytical relations between these new approaches and the classic PageRank centrality measure, and we illustrate the new parameters presented by computing them on real underground networks.

  5. A Bayesian Network approach for flash flood risk assessment

    Science.gov (United States)

    Boutkhamouine, Brahim; Roux, Hélène; Pérès, François

    2017-04-01

    influencing variables. Each node of the graph corresponds to a variable and arcs represent the probabilistic dependencies between these variables. Both the quantification of the strength of these probabilistic dependencies and the computation of inferences are based on Bayes' theorem. In order to use BNs for the assessment of the flooding risks, the modelling work is divided into two parts. First, identifying all the factors controlling the flood generation. The qualitative explanation of this issue is then reached by establishing the cause and effect relationships between these factors. These underlying relationships are represented in what we call Conditional Probabilities Tables (CPTs). The next step is to estimate these CPTs using information coming from network of sensors, databases and expertise. By using this basic cognitive structure, we will be able to estimate the magnitude of flood risk in a small geographical area with a homogeneous hydrological system. The second part of our work will be dedicated to the estimation of this risk on the scale of a basin. To do so, we will create a spatio-temporal model able to take in consideration both spatial and temporal variability of all factors involved in the flood generation. Key words: Flash flood forecasting - Uncertainty modelling - flood risk management -Bayesian Networks.

  6. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Tuula, E-mail: Tuula.salo@oulu.fi [Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu (Finland); Oulu University Central Hospital, Oulu (Finland); Institute of Dentistry, University of Helsinki, Helsinki (Finland); Vered, Marilena [Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan (Israel); Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel); Bello, Ibrahim O. [Department of Oral Medicine and Diagnostic Sciences, King Saud University, Riyadh (Saudi Arabia); Nyberg, Pia [Oulu University Central Hospital, Oulu (Finland); Bitu, Carolina Cavalcante [Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu (Finland); Zlotogorski Hurvitz, Ayelet [Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Oral and Maxillofacial Surgery, Rabin Medical Center, Beilinson Campus, Petah Tikva (Israel); Dayan, Dan [Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-07-15

    The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed. - Highlights: • Tumor depth and budding, hypoxia and TME cells associate with worse prognosis. • Pro-tumoral CAFs and CAI cells aid proliferation, invasion and spread hypoxia. • Some ECM-bound factors exert pro-angiogenic or pro-tumor activities. • Tumor spread is greatly dependent on ECM proteolysis, mediated by TME cells. • Direct targeting of TME components for treatment is still experimental.

  7. Partition Decomposition for Roll Call Data

    CERN Document Server

    Leibon, Greg; Rockmore, Daniel N; Savell, Robert

    2011-01-01

    In this paper we bring to bear some new tools from statistical learning on the analysis of roll call data. We present a new data-driven model for roll call voting that is geometric in nature. We construct the model by adapting the "Partition Decoupling Method," an unsupervised learning technique originally developed for the analysis of families of time series, to produce a multiscale geometric description of a weighted network associated to a set of roll call votes. Central to this approach is the quantitative notion of a "motivation," a cluster-based and learned basis element that serves as a building block in the representation of roll call data. Motivations enable the formulation of a quantitative description of ideology and their data-dependent nature makes possible a quantitative analysis of the evolution of ideological factors. This approach is generally applicable to roll call data and we apply it in particular to the historical roll call voting of the U.S. House and Senate. This methodology provides a...

  8. A 'reverse network engineering' framework to develop tourism using a lifestyle approach

    NARCIS (Netherlands)

    Kamann, DJF; Strijker, D; Sijtsma, FJ

    1998-01-01

    This paper uses the network approach in the design of policies for regional development focusing on tourism in rural and peripheral areas. The methodology applied - 'reverse network engineering' - is a combination of a top-down and a bottom-up approach, The top-down approach starts with the demand

  9. Network analysis literacy a practical approach to the analysis of networks

    CERN Document Server

    Zweig, Katharina A

    2014-01-01

    Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.

  10. A variational approach to moment-closure approximations for the kinetics of biomolecular reaction networks.

    Science.gov (United States)

    Bronstein, Leo; Koeppl, Heinz

    2018-01-07

    Approximate solutions of the chemical master equation and the chemical Fokker-Planck equation are an important tool in the analysis of biomolecular reaction networks. Previous studies have highlighted a number of problems with the moment-closure approach used to obtain such approximations, calling it an ad hoc method. In this article, we give a new variational derivation of moment-closure equations which provides us with an intuitive understanding of their properties and failure modes and allows us to correct some of these problems. We use mixtures of product-Poisson distributions to obtain a flexible parametric family which solves the commonly observed problem of divergences at low system sizes. We also extend the recently introduced entropic matching approach to arbitrary ansatz distributions and Markov processes, demonstrating that it is a special case of variational moment closure. This provides us with a particularly principled approximation method. Finally, we extend the above approaches to cover the approximation of multi-time joint distributions, resulting in a viable alternative to process-level approximations which are often intractable.

  11. A variational approach to moment-closure approximations for the kinetics of biomolecular reaction networks

    Science.gov (United States)

    Bronstein, Leo; Koeppl, Heinz

    2018-01-01

    Approximate solutions of the chemical master equation and the chemical Fokker-Planck equation are an important tool in the analysis of biomolecular reaction networks. Previous studies have highlighted a number of problems with the moment-closure approach used to obtain such approximations, calling it an ad hoc method. In this article, we give a new variational derivation of moment-closure equations which provides us with an intuitive understanding of their properties and failure modes and allows us to correct some of these problems. We use mixtures of product-Poisson distributions to obtain a flexible parametric family which solves the commonly observed problem of divergences at low system sizes. We also extend the recently introduced entropic matching approach to arbitrary ansatz distributions and Markov processes, demonstrating that it is a special case of variational moment closure. This provides us with a particularly principled approximation method. Finally, we extend the above approaches to cover the approximation of multi-time joint distributions, resulting in a viable alternative to process-level approximations which are often intractable.

  12. Post-call delirium.

    Science.gov (United States)

    Rush, Raphael

    2016-12-01

    Although frequently diagnosed in hospital in-patients, delirium is often recognised but under-reported in the housestaff population. It is estimated that more than 90% of housestaff will experience regular episodes of post-call delirium. This paper identifies diagnostic criteria and discusses approaches to treatment. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  13. Anomaly detection in SCADA systems: a network based approach

    NARCIS (Netherlands)

    Barbosa, R.R.R.

    2014-01-01

    Supervisory Control and Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities, such as water treatment facilities. Historically, these networks were composed by special-purpose embedded devices communicating through proprietary protocols.

  14. The NOBEL2 approach to resilience in future transport networks

    OpenAIRE

    Chandrakhumar, V; González de Dios, Óscar; Fernández Palacios, Juan Pedro; Gruenzinger, R; Perelló Muntan, Jordi; Spadaro, Salvatore; Svinnset, I. E.; ZOUGANELI, E; Cholda, P; Jajszczyk, Andrzej; Wajda, Krzysztof; Verchere, Dominique

    2008-01-01

    IST project NOBEL2 results on resilience strategies for next-generation optical transport networks are presented, paving the way towards cost-effective, scalable and easy-to-maintain multi-service network architectures.

  15. Anomaly Detection in SCADA Systems - A Network Based Approach

    NARCIS (Netherlands)

    Barbosa, R.R.R.

    2014-01-01

    Supervisory Control and Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities, such as water treatment facilities. Historically, these networks were composed by special-purpose embedded devices communicating through proprietary protocols.

  16. An analytical approach to optical burst switched networks

    CERN Document Server

    Venkatesh, T

    2010-01-01

    This book presents the latest results on modeling and analysis of OBS networks. It classifies all the literature on the topic, and its scope extends to include discussion of high-speed communication networks with limited or no buffers.

  17. Proposing an Integrative Approach for Efficiency Evaluation of Network Structures Including Tour and Allocation Link

    Directory of Open Access Journals (Sweden)

    reza hejazi

    2012-02-01

    Full Text Available Data envelopment analysis (DEA is known as one of the most common approaches for efficiency evaluation. Network models are new subjects in which, a DMU with all its subunits and links is considered as a network structure. One of the most widely used DEA methods for network data is the suggested approach of Lewis and Sexton. In this approach, performance of each DMU is measured compared to a similar DMU by moving on the effective paths and then computing the final outputs and classic primary inputs . In reality, many cases can be found that an original input or an intermediate product allocates to several subunits or forms a tour in a network. In such networks, the approach of Lewis and Sexton is not able to calculate efficiency. Therefore, in this paper, an approach has been proposed for solving such problems and computing the efficiency of such networks.

  18. A Complex Network Approach to Distributional Semantic Models.

    Directory of Open Access Journals (Sweden)

    Akira Utsumi

    Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.

  19. HIGH: A Hexagon-based Intelligent Grouping Approach in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    FAN, C.-S.

    2016-02-01

    Full Text Available In a random deployment or uniform deployment strategy, sensor nodes are scattered randomly or uniformly in the sensing field, respectively. Hence, the coverage ratio cannot be guaranteed. The coverage ratio of uniform deployment, in general, is larger than that of the random deployment strategy. However, a random deployment or uniform deployment strategy may cause unbalanced traffic pattern in wireless sensor networks (WSNs. Therefore, cluster heads (CHs around the sink have larger loads than those farther away from the sink. That is, CHs close to the sink exhaust their energy earlier. In order to overcome the above problem, we propose a Hexagon-based Intelligent Grouping approacH in WSNs (called HIGH. The coverage, energy consumption and data routing issues are well investigated and taken into consideration in the proposed HIGH scheme. The simulation results validate our theoretical analysis and show that the proposed HIGH scheme achieves a satisfactory coverage ratio, balances the energy consumption among sensor nodes, and extends network lifetime significantly.

  20. The Embedded Self: A Social Networks Approach to Identity Theory

    Science.gov (United States)

    Walker, Mark H.; Lynn, Freda B.

    2013-01-01

    Despite the fact that key sociological theories of self and identity view the self as fundamentally rooted in networks of interpersonal relationships, empirical research investigating how personal network structure influences the self is conspicuously lacking. To address this gap, we examine links between network structure and role identity…

  1. Stable and emergent network topologies : A structural approach

    NARCIS (Netherlands)

    Herman Monsuur

    2007-01-01

    Economic, social and military networks have at least one thing in common: they change over time. For various reasons, nodes form and terminate links, thereby rearranging the network. In this paper, we present a structural network mechanism that formalizes a possible incentive that guides nodes in

  2. Heuristic urban transportation network design method, a multilayer coevolution approach

    Science.gov (United States)

    Ding, Rui; Ujang, Norsidah; Hamid, Hussain bin; Manan, Mohd Shahrudin Abd; Li, Rong; Wu, Jianjun

    2017-08-01

    The design of urban transportation networks plays a key role in the urban planning process, and the coevolution of urban networks has recently garnered significant attention in literature. However, most of these recent articles are based on networks that are essentially planar. In this research, we propose a heuristic multilayer urban network coevolution model with lower layer network and upper layer network that are associated with growth and stimulate one another. We first use the relative neighbourhood graph and the Gabriel graph to simulate the structure of rail and road networks, respectively. With simulation we find that when a specific number of nodes are added, the total travel cost ratio between an expanded network and the initial lower layer network has the lowest value. The cooperation strength Λ and the changeable parameter average operation speed ratio Θ show that transit users' route choices change dramatically through the coevolution process and that their decisions, in turn, affect the multilayer network structure. We also note that the simulated relation between the Gini coefficient of the betweenness centrality, Θ and Λ have an optimal point for network design. This research could inspire the analysis of urban network topology features and the assessment of urban growth trends.

  3. An approach to a transparent self-healing meshed network

    DEFF Research Database (Denmark)

    Larsen, Claus Popp; Limal, Emmanuel

    1997-01-01

    A method of implementing a transparent self-healing meshed network is described here. In case of a cable break or signal detoriation, this network will perform protection switching without needing direct correspondance with the overlaying management system. This causes simpler network management ...

  4. Identifying the Critical Links in Road Transportation Networks: Centrality-based approach utilizing structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Supriya [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) and the criticality index is found to be effective for one test network to identify the vulnerable nodes.

  5. From Microactions to Macrostructure and Back: A Structurational Approach to the Evolution of Organizational Networks

    Science.gov (United States)

    Whitbred, Robert; Fonti, Fabio; Steglich, Christian; Contractor, Noshir

    2011-01-01

    Structuration theory (ST) and network analysis are promising approaches for studying the emergence of communication networks. We offer a model that integrates the conceptual richness of structuration with the precision of relevant concepts and mechanisms offered from communication network research. We leverage methodological advancements (i.e.,…

  6. Semantic Parameters to Manage an Innovation Network Using Managing as Designing Approach: The Virtual Innovation Society Network Case

    Directory of Open Access Journals (Sweden)

    Cristiane Chaves Gattaz

    2014-06-01

    Full Text Available The most recent operations and management frameworks in innovation have not been complete to explicit required knowledge to manage the cooperation of its networked open innovation value chain in the knowledge economy and open enterprise. Strategic actors from the Virtual Innovation Society network were interviewed to identify critical semantic parameters that address this issue. As a result, this study suggests the characterization of inter-dependent added-values and its performance metrics, under the “managing as designing” approach, as input for managing the externalities, the integration of the articulation between business operations, strategy and information technology, and waste of innovation. In this context, the identification of the main managerial indicators for future command and control of existing innovation network operations under the “managing as designing” approach becomes a new challenge for future research.   Keywords: Managing as Designing; Innovation Management; Network Managament; Operations Management; Virtual Networks.

  7. A social network analysis of alcohol-impaired drivers in Maryland : an egocentric approach.

    Science.gov (United States)

    2011-04-01

    This study examined the personal, household, and social structural attributes of alcoholimpaired : drivers in Maryland. The study used an egocentric approach of social network : analysis. This approach concentrated on specific actors (alcohol-impaire...

  8. A novel quantitative approach to concept analysis: the internomological network.

    Science.gov (United States)

    Cook, Paul F; Larsen, Kai R; Sakraida, Teresa J; Pedro, Leli

    2012-01-01

    When a construct such as patients' "transition to self-management" of chronic illness is studied by researchers across multiple disciplines, the meaning of key terms can become confused. This results from inherent problems in language where a term can have multiple meanings (polysemy) and different words can mean the same thing (synonymy). The aim of this study was to test a novel quantitative method for clarifying the meaning of constructs by examining the similarity of published contexts in which they are used. Published terms related to the concept transition to self-management of chronic illness were analyzed using the internomological network (INN), a type of latent semantic analysis performed to calculate the mathematical relationships between constructs based on the contexts in which researchers use each term. This novel approach was tested by comparing results with those from concept analysis, a best-practice qualitative approach to clarifying meanings of terms. By comparing results of the 2 methods, the best synonyms of transition to self-management, as well as key antecedent, attribute, and consequence terms, were identified. Results from INN analysis were consistent with those from concept analysis. The potential synonyms self-management, transition, and adaptation had the greatest utility. Adaptation was the clearest overall synonym but had lower cross-disciplinary use. The terms coping and readiness had more circumscribed meanings. The INN analysis confirmed key features of transition to self-management and suggested related concepts not found by the previous review. The INN analysis is a promising novel methodology that allows researchers to quantify the semantic relationships between constructs. The method works across disciplinary boundaries and may help to integrate the diverse literature on self-management of chronic illness.

  9. Network-based approaches to climate knowledge discovery

    Science.gov (United States)

    Budich, Reinhard; Nyberg, Per; Weigel, Tobias

    2011-11-01

    Climate Knowledge Discovery Workshop; Hamburg, Germany, 30 March to 1 April 2011 Do complex networks combined with semantic Web technologies offer the next generation of solutions in climate science? To address this question, a first Climate Knowledge Discovery (CKD) Workshop, hosted by the German Climate Computing Center (Deutsches Klimarechenzentrum (DKRZ)), brought together climate and computer scientists from major American and European laboratories, data centers, and universities, as well as representatives from industry, the broader academic community, and the semantic Web communities. The participants, representing six countries, were concerned with large-scale Earth system modeling and computational data analysis. The motivation for the meeting was the growing problem that climate scientists generate data faster than it can be interpreted and the need to prepare for further exponential data increases. Current analysis approaches are focused primarily on traditional methods, which are best suited for large-scale phenomena and coarse-resolution data sets. The workshop focused on the open discussion of ideas and technologies to provide the next generation of solutions to cope with the increasing data volumes in climate science.

  10. Network-theoretic approach to model vortex interactions

    Science.gov (United States)

    Nair, Aditya; Taira, Kunihiko

    2014-11-01

    We present a network-theoretic approach to describe a system of point vortices in two-dimensional flow. By considering the point vortices as nodes, a complete graph is constructed with edges connecting each vortex to every other vortex. The interactions between the vortices are captured by the graph edge weights. We employ sparsification techniques on these graph representations based on spectral theory to construct sparsified models of the overall vortical interactions. The edge weights are redistributed through spectral sparsification of the graph such that the sum of the interactions associated with each vortex is maintained constant. In addition, sparse configurations maintain similar spectral properties as the original setup. Through the reduction in the number of interactions, key vortex interactions can be highlighted. Identification of vortex structures based on graph sparsification is demonstrated with an example of clusters of point vortices. We also evaluate the computational performance of sparsification for large collection of point vortices. Work supported by US Army Research Office (W911NF-14-1-0386) and US Air Force Office of Scientific Research (YIP: FA9550-13-1-0183).

  11. Artificial Neural Network Approach for Mapping Contrasting Tillage Practices

    Directory of Open Access Journals (Sweden)

    Terry Howell

    2010-02-01

    Full Text Available Tillage information is crucial for environmental modeling as it directly affects evapotranspiration, infiltration, runoff, carbon sequestration, and soil losses due to wind and water erosion from agricultural fields. However, collecting this information can be time consuming and costly. Remote sensing approaches are promising for rapid collection of tillage information on individual fields over large areas. Numerous regression-based models are available to derive tillage information from remote sensing data. However, these models require information about the complex nature of underlying watershed characteristics and processes. Unlike regression-based models, Artificial Neural Network (ANN provides an efficient alternative to map complex nonlinear relationships between an input and output datasets without requiring a detailed knowledge of underlying physical relationships. Limited or no information currently exist quantifying ability of ANN models to identify contrasting tillage practices from remote sensing data. In this study, a set of Landsat TM-based ANN models was developed to identify contrasting tillage practices in the Texas High Plains. Observed tillage data from Moore and Ochiltree Counties were used to develop and evaluate the models, respectively. The overall classification accuracy for the 15 models developed with the Moore County dataset varied from 74% to 91%. Statistical evaluation of these models against the Ochiltree County dataset produced results with an overall classification accuracy varied from 66% to 80%. The ANN models based on TM band 5 or indices of TM Band 5 may provide consistent and accurate tillage information when applied to the Texas High Plains.

  12. impact of queuing on call c queuing on call c queuing on call ...

    African Journals Online (AJOL)

    eobe

    work resource reduces the probability that a call arriving at the base sta formance evaluation plays an important role in modelling and network resource. network resource. This objective is achieved by an accurate traffic characte. This objective is achieved by an accurate traffic characte rformance metrics in terms of traffic ...

  13. Extending network approach to language dynamics and human cognition. Comment on "Approaching human language with complex networks" by Cong and Liu

    Science.gov (United States)

    Gong, Tao; Shuai, Lan; Wu, Yicheng

    2014-12-01

    By analyzing complex networks constructed from authentic language data, Cong and Liu [1] advance linguistics research into the big data era. The network approach has revealed many intrinsic generalities and crucial differences at both the macro and micro scales between human languages. The axiom behind this research is that language is a complex adaptive system [2]. Although many lexical, semantic, or syntactic features have been discovered by means of analyzing the static and dynamic linguistic networks of world languages, available network-based language studies have not explicitly addressed the evolutionary dynamics of language systems and the correlations between language and human cognition. This commentary aims to provide some insights on how to use the network approach to study these issues.

  14. Ranking Silent Nodes in Information Networks: A Quantitative Approach and Applications

    Science.gov (United States)

    Interdonato, Roberto; Tagarelli, Andrea

    This paper overviews recent research findings concerning a new challenging problem in information networks, namely identifying and ranking silent nodes. We present three case studies which show how silent nodes' behavior maps to different situations in computer networks, online social networks, and online collaboration networks, and we discuss major benefits in identifying and ranking silent nodes in such networks. We also provide an overview of our proposed approach, which relies on a new eigenvector- centrality graph-based ranking method built on a silent-oriented network model.

  15. Identification of important nodes in directed biological networks: a network motif approach.

    Directory of Open Access Journals (Sweden)

    Pei Wang

    Full Text Available Identification of important nodes in complex networks has attracted an increasing attention over the last decade. Various measures have been proposed to characterize the importance of nodes in complex networks, such as the degree, betweenness and PageRank. Different measures consider different aspects of complex networks. Although there are numerous results reported on undirected complex networks, few results have been reported on directed biological networks. Based on network motifs and principal component analysis (PCA, this paper aims at introducing a new measure to characterize node importance in directed biological networks. Investigations on five real-world biological networks indicate that the proposed method can robustly identify actually important nodes in different networks, such as finding command interneurons, global regulators and non-hub but evolutionary conserved actually important nodes in biological networks. Receiver Operating Characteristic (ROC curves for the five networks indicate remarkable prediction accuracy of the proposed measure. The proposed index provides an alternative complex network metric. Potential implications of the related investigations include identifying network control and regulation targets, biological networks modeling and analysis, as well as networked medicine.

  16. FUSE: a profit maximization approach for functional summarization of biological networks

    Directory of Open Access Journals (Sweden)

    Seah Boon-Siew

    2012-03-01

    Full Text Available Abstract Background The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL principle to maximize information gain of the summary graph while satisfying the level of detail constraint. Results We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. Conclusion By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.

  17. FUSE: a profit maximization approach for functional summarization of biological networks.

    Science.gov (United States)

    Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes; Yu, Hanry

    2012-03-21

    The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI) using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator) that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL) principle to maximize information gain of the summary graph while satisfying the level of detail constraint. We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.

  18. Interactive Naive Bayesian network: A new approach of constructing gene-gene interaction network for cancer classification.

    Science.gov (United States)

    Tian, Xue W; Lim, Joon S

    2015-01-01

    Naive Bayesian (NB) network classifier is a simple and well-known type of classifier, which can be easily induced from a DNA microarray data set. However, a strong conditional independence assumption of NB network sometimes can lead to weak classification performance. In this paper, we propose a new approach of interactive naive Bayesian (INB) network to weaken the conditional independence of NB network and classify cancers using DNA microarray data set. We selected the differently expressed genes (DEGs) to reduce the dimension of the microarray data set. Then, an interactive parent which has the biggest influence among all DEGs is searched for each DEG. And then we calculate a weight to represent the interactive relationship between a DEG and its parent. Finally, the gene-gene interaction network is constructed. We experimentally test the INB network in terms of classification accuracy using leukemia and colon DNA microarray data sets, then we compare it with the NB network. The INB network can get higher classification accuracies than NB network. And INB network can show the gene-gene interactions visually.

  19. Co-expression Network Approach Reveals Functional Similarities among Diseases Affecting Human Skeletal Muscle

    OpenAIRE

    Kavitha Mukund; Shankar Subramaniam

    2017-01-01

    Diseases affecting skeletal muscle exhibit considerable heterogeneity in intensity, etiology, phenotypic manifestation and gene expression. Systems biology approaches using network theory, allows for a holistic understanding of functional similarities amongst diseases. Here we propose a co-expression based, network theoretic approach to extract functional similarities from 20 heterogeneous diseases comprising of dystrophinopathies, inflammatory myopathies, neuromuscular, and muscle metabolic ...

  20. An Approach to Data Analysis in 5G Networks

    Directory of Open Access Journals (Sweden)

    Lorena Isabel Barona López

    2017-02-01

    Full Text Available 5G networks expect to provide significant advances in network management compared to traditional mobile infrastructures by leveraging intelligence capabilities such as data analysis, prediction, pattern recognition and artificial intelligence. The key idea behind these actions is to facilitate the decision-making process in order to solve or mitigate common network problems in a dynamic and proactive way. In this context, this paper presents the design of Self-Organized Network Management in Virtualized and Software Defined Networks (SELFNET Analyzer Module, which main objective is to identify suspicious or unexpected situations based on metrics provided by different network components and sensors. The SELFNET Analyzer Module provides a modular architecture driven by use cases where analytic functions can be easily extended. This paper also proposes the data specification to define the data inputs to be taking into account in diagnosis process. This data specification has been implemented with different use cases within SELFNET Project, proving its effectiveness.

  1. The Formation of the Eastern Africa Rabies Network: A Sub-Regional Approach to Rabies Elimination

    OpenAIRE

    Pieracci, Emily G.; Terence P. Scott; Andre Coetzer; Mwatondo Athman; Arithi Mutembei; Abraham Haile Kidane; Meseret Bekele; Girma Ayalew; Samson Ntegeyibizaza; Justine Assenga; Godson Markalio; Peninah Munyua; Louis H. Nel; Jesse Blanton

    2017-01-01

    Abstract: International rabies networks have been formed in many of the canine-rabies endemic regions around the world to create unified and directed regional approaches towards elimination. The aim of the first sub-regional Eastern Africa rabies network meeting, which included Kenya, Ethiopia, Tanzania, Rwanda, and Uganda, was to discuss how individual country strategies could be coordinated to address the unique challenges that are faced within the network. The Stepwise Approach towards Rab...

  2. USER PERCEPTION TOWARDS SOCIAL NETWORKING SITES - AN ANALYTICAL APPROACH

    OpenAIRE

    Dr. S. Shanmugapriya; A. Kokila

    2017-01-01

    A social networking site (SNS) or social media is an online platform that people use to build social networks or social relations with other people who share similar personal or career interests, activities, backgrounds or real-life connections. The advent of Social Networking sites and its resources have revolutionized the communication and social relation world. This paper aims to assess the user perception towards SNS like Facebook, Twitter and LinkedIn. In the study data was obtained thro...

  3. Design and control approaches for energy harvesting wireless sensor networks

    OpenAIRE

    Frezzetti, Antonio

    2016-01-01

    Wireless Networks are monitoring infrastructures composed of sensing (measuring), computing, and communication devices used to observe, supervise and monitor environmental phenomena. Energy Harvesting Wireless Sensor Networks (EH-WSN) have the additional feature to save energy from the environment in order to ensure long life autonomy of the entire network, without ideally the human intervention over long periods of time. The present work is aimed to address some of the most significant limit...

  4. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach

    Directory of Open Access Journals (Sweden)

    Morganella Sandro

    2010-03-01

    Full Text Available Abstract Background One of main aims of Molecular Biology is the gain of knowledge about how molecular components interact each other and to understand gene function regulations. Using microarray technology, it is possible to extract measurements of thousands of genes into a single analysis step having a picture of the cell gene expression. Several methods have been developed to infer gene networks from steady-state data, much less literature is produced about time-course data, so the development of algorithms to infer gene networks from time-series measurements is a current challenge into bioinformatics research area. In order to detect dependencies between genes at different time delays, we propose an approach to infer gene regulatory networks from time-series measurements starting from a well known algorithm based on information theory. Results In this paper we show how the ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks algorithm can be used for gene regulatory network inference in the case of time-course expression profiles. The resulting method is called TimeDelay-ARACNE. It just tries to extract dependencies between two genes at different time delays, providing a measure of these dependencies in terms of mutual information. The basic idea of the proposed algorithm is to detect time-delayed dependencies between the expression profiles by assuming as underlying probabilistic model a stationary Markov Random Field. Less informative dependencies are filtered out using an auto calculated threshold, retaining most reliable connections. TimeDelay-ARACNE can infer small local networks of time regulated gene-gene interactions detecting their versus and also discovering cyclic interactions also when only a medium-small number of measurements are available. We test the algorithm both on synthetic networks and on microarray expression profiles. Microarray measurements concern S. cerevisiae cell cycle, E. coli SOS pathways and a

  5. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach.

    Science.gov (United States)

    Zoppoli, Pietro; Morganella, Sandro; Ceccarelli, Michele

    2010-03-25

    One of main aims of Molecular Biology is the gain of knowledge about how molecular components interact each other and to understand gene function regulations. Using microarray technology, it is possible to extract measurements of thousands of genes into a single analysis step having a picture of the cell gene expression. Several methods have been developed to infer gene networks from steady-state data, much less literature is produced about time-course data, so the development of algorithms to infer gene networks from time-series measurements is a current challenge into bioinformatics research area. In order to detect dependencies between genes at different time delays, we propose an approach to infer gene regulatory networks from time-series measurements starting from a well known algorithm based on information theory. In this paper we show how the ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) algorithm can be used for gene regulatory network inference in the case of time-course expression profiles. The resulting method is called TimeDelay-ARACNE. It just tries to extract dependencies between two genes at different time delays, providing a measure of these dependencies in terms of mutual information. The basic idea of the proposed algorithm is to detect time-delayed dependencies between the expression profiles by assuming as underlying probabilistic model a stationary Markov Random Field. Less informative dependencies are filtered out using an auto calculated threshold, retaining most reliable connections. TimeDelay-ARACNE can infer small local networks of time regulated gene-gene interactions detecting their versus and also discovering cyclic interactions also when only a medium-small number of measurements are available. We test the algorithm both on synthetic networks and on microarray expression profiles. Microarray measurements concern S. cerevisiae cell cycle, E. coli SOS pathways and a recently developed network for in vivo

  6. Network analysis and synthesis a modern systems theory approach

    CERN Document Server

    Anderson, Brian D O

    2006-01-01

    Geared toward upper-level undergraduates and graduate students, this book offers a comprehensive look at linear network analysis and synthesis. It explores state-space synthesis as well as analysis, employing modern systems theory to unite the classical concepts of network theory. The authors stress passive networks but include material on active networks. They avoid topology in dealing with analysis problems and discuss computational techniques. The concepts of controllability, observability, and degree are emphasized in reviewing the state-variable description of linear systems. Explorations

  7. Handover management in dense cellular networks: A stochastic geometry approach

    KAUST Repository

    Arshad, Rabe

    2016-07-26

    Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations\\' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users\\' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios. © 2016 IEEE.

  8. An innovative approach to improve SRTM DEM using multispectral imagery and artificial neural network

    Science.gov (United States)

    Wendi, Dadiyorto; Liong, Shie-Yui; Sun, Yabin; doan, Chi Dung

    2016-06-01

    Although the Shuttle Radar Topography Mission [SRTM) data are a publicly accessible Digital Elevation Model [DEM) provided at no cost, its accuracy especially at forested area is known to be limited with root mean square error (RMSE) of approx. 14 m in Singapore's forested area. Such inaccuracy is attributed to the 5.6 cm wavelength used by SRTM that does not penetrate vegetation well. This paper considers forested areas of central catchment of Singapore as a proof of concept of an approach to improve the SRTM data set. The approach makes full use of (1) the introduction of multispectral imagery (Landsat 8), of 30 m resolution, into SRTM data; (2) the Artificial Neural Network (ANN) to flex its known strengths in pattern recognition and; (3) a reference DEM of high accuracy (1 m) derived through the integration of stereo imaging of worldview-1 and extensive ground survey points. The study shows a series of significant improvements of the SRTM when assessed with the reference DEM of 2 different areas, with RMSE reduction of ˜68% (from 13.9 m to 4.4 m) and ˜52% (from 14.2 m to 6.7 m). In addition, the assessment of the resulting DEM also includes comparisons with simple denoising methodology (Low Pass Filter) and commercially available product called NEXTMap® World 30™.

  9. SU-E-T-619: A Network-Flow Solution Approach to VMAT Treatment Plan Optimization.

    Science.gov (United States)

    Salari, E; Craft, D

    2012-06-01

    To add mathematical rigor to the merging phase of the recently published two-stage VMAT optimization method called VMERGE. Using an exact merging method, we are able to better characterize the tradeoff between delivery efficiency and dose quality. VMERGE begins with an IMRT plan that uses 180 equi-spaced beams and yields the "ideal" dose. Neighboring fluence maps are successively merged, meaning they are added together and delivered as one map. The merging process improves the delivery time at the expense of deviating from the initial high-quality dose distribution. We replace the original heuristic merging method by considering the merging problem as a bi-criteria optimization problem: maximize treatment efficiency and minimize the deviation from the ideal dose. We formulate this using a network-flow model where nodes represent the beam angles along with the starting MLC leaf position and arcs represent the possible merges. Since the problem is non-convex, we employ a customized box algorithm to obtain the Pareto approximation. We also evaluate the performance of several simple heuristics. We test our exact and heuristic solution approaches on a pancreas and a prostate case. For both cases, the shape of the Pareto frontier suggests that starting from a high quality plan, we can obtain efficient VMAT plans through merging neighboring arcs without substantially deviating from the initial dose distribution. The trade-off curves obtained by the various heuristics are contrasted and shown to all be equally capable of initial plan simplifications, but to deviate in quality for more drastic efficiency improvements. This work presents a bi-criteria network-flow solution approach to the merging problem. The obtained Pareto-frontier approximation is used as a benchmark to evaluate the performance of the proposed merging heuristics. The results validate that one of the heuristics in particular can achieve high-quality solutions. © 2012 American Association of Physicists in

  10. Collaborative Networked Organizations as System of Systems: A Model-Based Engineering Approach

    OpenAIRE

    Bilal, Mustapha; Daclin, Nicolas; Chapurlat, Vincent

    2014-01-01

    Part 6: Engineering and Implementation of Collaborative Networks; International audience; It is admitted that there is parallel between a System of Systems (SoS) and Collaborative Networked Organizations (CNOs). SoS Engineering (SoSE) carefully focuses on choosing, assembling and interfacing existing systems to build the so-called SoS. In this context, and as demonstrated by the literature and the System Engineering domain, interoperability takes on its full meaning and has to be fully consid...

  11. Assessing call centers’ success:

    Directory of Open Access Journals (Sweden)

    Hesham A. Baraka

    2013-07-01

    This paper introduces a model to evaluate the performance of call centers based on the Delone and McLean Information Systems success model. A number of indicators are identified to track the call center’s performance. Mapping of the proposed indicators to the six dimensions of the D&M model is presented. A Weighted Call Center Performance Index is proposed to assess the call center performance; the index is used to analyze the effect of the identified indicators. Policy-Weighted approach was used to assume the weights with an analysis of different weights for each dimension. The analysis of the different weights cases gave priority to the User satisfaction and net Benefits dimension as the two outcomes from the system. For the input dimensions, higher priority was given to the system quality and the service quality dimension. Call centers decision makers can use the tool to tune the different weights in order to reach the objectives set by the organization. Multiple linear regression analysis was used in order to provide a linear formula for the User Satisfaction dimension and the Net Benefits dimension in order to be able to forecast the values for these two dimensions as function of the other dimensions

  12. MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions.

    Directory of Open Access Journals (Sweden)

    Koon-Kiu Yan

    2017-07-01

    Full Text Available Genome-wide proximity ligation based assays such as Hi-C have revealed that eukaryotic genomes are organized into structural units called topologically associating domains (TADs. From a visual examination of the chromosomal contact map, however, it is clear that the organization of the domains is not simple or obvious. Instead, TADs exhibit various length scales and, in many cases, a nested arrangement. Here, by exploiting the resemblance between TADs in a chromosomal contact map and densely connected modules in a network, we formulate TAD identification as a network optimization problem and propose an algorithm, MrTADFinder, to identify TADs from intra-chromosomal contact maps. MrTADFinder is based on the network-science concept of modularity. A key component of it is deriving an appropriate background model for contacts in a random chain, by numerically solving a set of matrix equations. The background model preserves the observed coverage of each genomic bin as well as the distance dependence of the contact frequency for any pair of bins exhibited by the empirical map. Also, by introducing a tunable resolution parameter, MrTADFinder provides a self-consistent approach for identifying TADs at different length scales, hence the acronym "Mr" standing for Multiple Resolutions. We then apply MrTADFinder to various Hi-C datasets. The identified domain boundaries are marked by characteristic signatures in chromatin marks and transcription factors (TF that are consistent with earlier work. Moreover, by calling TADs at different length scales, we observe that boundary signatures change with resolution, with different chromatin features having different characteristic length scales. Furthermore, we report an enrichment of HOT (high-occupancy target regions near TAD boundaries and investigate the role of different TFs in determining boundaries at various resolutions. To further explore the interplay between TADs and epigenetic marks, as tumor mutational

  13. A quantitative approach to static sensor network design

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Burgess, Greg; Weng, Kevin C.

    2014-01-01

    . We illustrate the method with real topographic data from a rugose coral reef where network performance is highly influenced by detection shadowing. Network performance is visualized by a coverage map indicating the probability of detection at any location in the study area. The reported unique...

  14. An Empirical Approach Towards Zero Energy Networks (ZEN)

    NARCIS (Netherlands)

    Tamma, V.P.

    2012-01-01

    Information and Communication Technology (ICT) is changing the way we live and has become an essential part of our life. With the advent of Internet of Things (IoT), and Wireless Sensor Networks (WSN) in particular, the number of devices that are networked is increasing exponentially over the years.

  15. Reverse logistics network design: a holistic life cycle approach

    National Research Council Canada - National Science Library

    Daaboul, Joanna; Le Duigou, Julien; Penciuc, Diana; Eynard, Benoît

    2014-01-01

    .... This article addresses the issue of designing the reverse logistics network assuring the needed volume of recycled aluminum for the production of L-shaped front lower control arms for personal cars. It details the developed method and demonstrator for designing a reverse logistics network based on a life cycle assessment.

  16. artificial neural network (ann) approach to electrical load

    African Journals Online (AJOL)

    2004-08-18

    Aug 18, 2004 ... UNIVERSITY POWER HOUSE. A.A.AKINTOLA", G.A. ADEROUNMU and O.E. ... The model was tested using two of the seven feeders of the Obafemi. Awolowo University electric network. The results of .... The architecture of a neural network is the specific arrangement and connections of the neurons that.

  17. A Graph Oriented Approach for Network Forensic Analysis

    Science.gov (United States)

    Wang, Wei

    2010-01-01

    Network forensic analysis is a process that analyzes intrusion evidence captured from networked environment to identify suspicious entities and stepwise actions in an attack scenario. Unfortunately, the overwhelming amount and low quality of output from security sensors make it difficult for analysts to obtain a succinct high-level view of complex…

  18. The structure and dynamics of knowledge networks: a proximity approach

    NARCIS (Netherlands)

    ter Wal, L.J.|info:eu-repo/dai/nl/304841102

    2009-01-01

    Local knowledge networks are often held responsible for the competitiveness and innovativeness of geographical clusters. However, the literature on spatial clustering tends to assume that firms in clusters have equal access to the knowledge that circulates in those networks and that this knowledge

  19. Heuristic approach to the passive optical network with fibre duct ...

    African Journals Online (AJOL)

    Integer programming, network flow optimisation, passive optical network, ... algorithm before providing a greedy planning heuristic [11]. The multi- ... A wide range of meta-heuristics have also been employed to solve PONPP, with genetic ... In the case of PONPP, the objective is to find a subset of open facilities F, with every.

  20. New approaches to model and study social networks

    Science.gov (United States)

    Lind, P. G.; Herrmann, H. J.

    2007-07-01

    We describe and develop three recent novelties in network research which are particularly useful for studying social systems. The first one concerns the discovery of some basic dynamical laws that enable the emergence of the fundamental features observed in social networks, namely the nontrivial clustering properties, the existence of positive degree correlations and the subdivision into communities. To reproduce all these features, we describe a simple model of mobile colliding agents, whose collisions define the connections between the agents which are the nodes in the underlying network, and develop some analytical considerations. The second point addresses the particular feature of clustering and its relationship with global network measures, namely with the distribution of the size of cycles in the network. Since in social bipartite networks it is not possible to measure the clustering from standard procedures, we propose an alternative clustering coefficient that can be used to extract an improved normalized cycle distribution in any network. Finally, the third point addresses dynamical processes occurring on networks, namely when studying the propagation of information in them. In particular, we focus on the particular features of gossip propagation which impose some restrictions in the propagation rules. To this end we introduce a quantity, the spread factor, which measures the average maximal fraction of nearest neighbours which get in contact with the gossip, and find the striking result that there is an optimal non-trivial number of friends for which the spread factor is minimized, decreasing the danger of being gossiped about.

  1. A Bayesian Approach to Measurement Bias in Networking Studies

    NARCIS (Netherlands)

    Zhu, Ling; Robinson, Scott E.; Torenvlied, René

    2014-01-01

    The study of managerial networking has been growing in the field of public administration; a field that analyzes how managers in open system organizations interact with different external actors and organizations. Coincident with this interest in managerial networking is the use of self-reported

  2. Heuristic approach to the passive optical network with fibre duct ...

    African Journals Online (AJOL)

    PON) plan- ning problem ... This paper uses concepts from network flow optimisation to incorporate fibre duct shar- ing into a ...... 682–686. [31] Yen JY, 1971, Finding the k shortest loopless paths in a network, Management Science, 17(11), pp.

  3. Modeling pedestrian's conformity violation behavior: a complex network based approach.

    Science.gov (United States)

    Zhou, Zhuping; Hu, Qizhou; Wang, Wei

    2014-01-01

    Pedestrian injuries and fatalities present a problem all over the world. Pedestrian conformity violation behaviors, which lead to many pedestrian crashes, are common phenomena at the signalized intersections in China. The concepts and metrics of complex networks are applied to analyze the structural characteristics and evolution rules of pedestrian network about the conformity violation crossings. First, a network of pedestrians crossing the street is established, and the network's degree distributions are analyzed. Then, by using the basic idea of SI model, a spreading model of pedestrian illegal crossing behavior is proposed. Finally, through simulation analysis, pedestrian's illegal crossing behavior trends are obtained in different network structures and different spreading rates. Some conclusions are drawn: as the waiting time increases, more pedestrians will join in the violation crossing once a pedestrian crosses on red firstly. And pedestrian's conformity violation behavior will increase as the spreading rate increases.

  4. Regulatory component analysis: a semi-blind extraction approach to infer gene regulatory networks with imperfect biological knowledge.

    Science.gov (United States)

    Wang, Chen; Xuan, Jianhua; Shih, Ie-Ming; Clarke, Robert; Wang, Yue

    2012-08-01

    With the advent of high-throughput biotechnology capable of monitoring genomic signals, it becomes increasingly promising to understand molecular cellular mechanisms through systems biology approaches. One of the active research topics in systems biology is to infer gene transcriptional regulatory networks using various genomic data; this inference problem can be formulated as a linear model with latent signals associated with some regulatory proteins called transcription factors (TFs). As common statistical assumptions may not hold for genomic signals, typical latent variable algorithms such as independent component analysis (ICA) are incapable to reveal underlying true regulatory signals. Liao et al. [1] proposed to perform inference using an approach named network component analysis (NCA), the optimization of which is achieved by a least-squares fitting approach with biological knowledge constraints. However, the incompleteness of biological knowledge and its inconsistency with gene expression data are not considered in the original NCA solution, which could greatly affect the inference accuracy. To overcome these limitations, we propose a linear extraction scheme, namely regulatory component analysis (RCA), to infer underlying regulatory signals even with partial biological knowledge. Numerical simulations show a significant improvement of our proposed RCA over NCA, not only when signal-to-noise-ratio (SNR) is low, but also when the given biological knowledge is incomplete and inconsistent to gene expression data. Furthermore, real biological experiments on E. coli are performed for regulatory network inference in comparison with several typical linear latent variable methods, which again demonstrates the effectiveness and improved performance of the proposed algorithm.

  5. Drawing networks of rejection - a systems biological approach to the identification of candidate genes in heart transplantation.

    Science.gov (United States)

    Cadeiras, Martin; von Bayern, Manuel; Sinha, Anshu; Shahzad, Khurram; Latif, Farhana; Lim, Wei Keat; Grenett, Hernan; Tabak, Esteban; Klingler, Tod; Califano, Andrea; Deng, Mario C

    2011-04-01

    Technological development led to an increased interest in systems biological approaches to characterize disease mechanisms and candidate genes relevant to specific diseases. We suggested that the human peripheral blood mononuclear cells (PBMC) network can be delineated by cellular reconstruction to guide identification of candidate genes. Based on 285 microarrays (7370 genes) from 98 heart transplant patients enrolled in the Cardiac Allograft Rejection Gene Expression Observational study, we used an information-theoretic, reverse-engineering algorithm called ARACNe (algorithm for the reconstruction of accurate cellular networks) and chromatin immunoprecipitation assay to reconstruct and validate a putative gene PBMC interaction network. We focused our analysis on transcription factor (TF) genes and developed a priority score to incorporate aspects of network dynamics and information from published literature to supervise gene discovery. ARACNe generated a cellular network and predicted interactions for each TF during rejection and quiescence. Genes ranked highest by priority score included those related to apoptosis, humoural and cellular immune response such as GA binding protein transcription factor (GABP), nuclear factor of κ light polypeptide gene enhancer in B-cells (NFκB), Fas (TNFRSF6)-associated via death domain (FADD) and c-AMP response element binding protein. We used the TF CREB to validate our network. ARACNe predicted 29 putative first-neighbour genes of CREB. Eleven of these (37%) were previously reported. Out of the 18 unknown predicted interactions, 14 primers were identified and 11 could be immunoprecipitated (78.6%). Overall, 75% (n= 22) inferred CREB targets were validated, a significantly higher fraction than randomly expected (P biological approaches to identify possible molecular targets and biomarkers. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing

  6. Network pharmacology: a new approach for chinese herbal medicine research.

    Science.gov (United States)

    Zhang, Gui-Biao; Li, Qing-Ya; Chen, Qi-Long; Su, Shi-Bing

    2013-01-01

    The dominant paradigm of "one gene, one target, one disease" has influenced many aspects of drug discovery strategy. However, in recent years, it has been appreciated that many effective drugs act on multiple targets rather than a single one. As an integrated multidisciplinary concept, network pharmacology, which is based on system biology and polypharmacology, affords a novel network mode of "multiple targets, multiple effects, complex diseases" and replaces the "magic bullets" by "magic shotguns." Chinese herbal medicine (CHM) has been recognized as one of the most important strategies in complementary and alternative medicine. Though CHM has been practiced for a very long time, its effectiveness and beneficial contribution to public health has not been fully recognized. Also, the knowledge on the mechanisms of CHM formulas is scarce. In the present review, the concept and significance of network pharmacology is briefly introduced. The application and potential role of network pharmacology in the CHM fields is also discussed, such as data collection, target prediction, network visualization, multicomponent interaction, and network toxicology. Furthermore, the developing tendency of network pharmacology is also summarized, and its role in CHM research is discussed.

  7. Network Pharmacology: A New Approach for Chinese Herbal Medicine Research

    Directory of Open Access Journals (Sweden)

    Gui-biao Zhang

    2013-01-01

    Full Text Available The dominant paradigm of “one gene, one target, one disease” has influenced many aspects of drug discovery strategy. However, in recent years, it has been appreciated that many effective drugs act on multiple targets rather than a single one. As an integrated multidisciplinary concept, network pharmacology, which is based on system biology and polypharmacology, affords a novel network mode of “multiple targets, multiple effects, complex diseases” and replaces the “magic bullets” by “magic shotguns.” Chinese herbal medicine (CHM has been recognized as one of the most important strategies in complementary and alternative medicine. Though CHM has been practiced for a very long time, its effectiveness and beneficial contribution to public health has not been fully recognized. Also, the knowledge on the mechanisms of CHM formulas is scarce. In the present review, the concept and significance of network pharmacology is briefly introduced. The application and potential role of network pharmacology in the CHM fields is also discussed, such as data collection, target prediction, network visualization, multicomponent interaction, and network toxicology. Furthermore, the developing tendency of network pharmacology is also summarized, and its role in CHM research is discussed.

  8. EFFECTIVENESS OF OPINION INFLUENCE APPROACHES IN HIGHLY CLUSTERED ONLINE SOCIAL NETWORKS

    OpenAIRE

    MELISSA FALETRA; NATHAN PALMER; Marshall, Jeffrey S.

    2014-01-01

    A mathematical model was developed for opinion propagation on online social networks using a scale-free network with an adjustable clustering coefficient. Connected nodes influence each other when the difference between their opinion values is less than a threshold value. The model is used to examine effectiveness of three different approaches for influencing public opinion. The approaches examined include (1) a "Class", defined as an approach (such as a class or book) that greatly influences...

  9. Coordinate transformation and matrix measure approach for synchronization of complex networks.

    Science.gov (United States)

    Juang, Jonq; Liang, Yu-Hao

    2009-09-01

    Global synchronization in complex networks has attracted considerable interest in various fields. There are mainly two analytical approaches for studying such time-varying networks. The first approach is Lyapunov function-based methods. For such an approach, the connected-graph-stability (CGS) method arguably gives the best results. Nevertheless, CGS is limited to the networks with cooperative couplings. The matrix measure approach (MMA) proposed by Chen, although having a wider range of applications in the network topologies than that of CGS, works for smaller numbers of nodes in most network topologies. The approach also has a limitation with networks having partial-state coupling. Other than giving yet another MMA, we introduce a new and, in some cases, optimal coordinate transformation to study such networks. Our approach fixes all the drawbacks of CGS and MMA. In addition, by merely checking the structure of the vector field of the individual oscillator, we shall be able to determine if the system is globally synchronized. In summary, our results can be applied to rather general time-varying networks with a large number of nodes.

  10. Data Storage for Social Networks A Socially Aware Approach

    CERN Document Server

    Tran, Duc A

    2012-01-01

    Evidenced by the success of Facebook, Twitter, and LinkedIn, online social networks (OSNs) have become ubiquitous, offering novel ways for people to access information and communicate with each other. As the increasing popularity of social networking is undeniable, scalability is an important issue for any OSN that wants to serve a large number of users. Storing user data for the entire network on a single server can quickly lead to a bottleneck, and, consequently, more servers are needed to expand storage capacity and lower data request traffic per server. Adding more servers is just one step

  11. Sharing programming resources between Bio* projects through remote procedure call and native call stack strategies.

    Science.gov (United States)

    Prins, Pjotr; Goto, Naohisa; Yates, Andrew; Gautier, Laurent; Willis, Scooter; Fields, Christopher; Katayama, Toshiaki

    2012-01-01

    Open-source software (OSS) encourages computer programmers to reuse software components written by others. In evolutionary bioinformatics, OSS comes in a broad range of programming languages, including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times for different languages, it is possible to share components by bridging computer languages and Bio* projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor. In this chapter, we compare the two principal approaches for sharing software between different programming languages: either by remote procedure call (RPC) or by sharing a local call stack. RPC provides a language-independent protocol over a network interface; examples are RSOAP and Rserve. The local call stack provides a between-language mapping not over the network interface, but directly in computer memory; examples are R bindings, RPy, and languages sharing the Java Virtual Machine stack. This functionality provides strategies for sharing of software between Bio* projects, which can be exploited more often. Here, we present cross-language examples for sequence translation, and measure throughput of the different options. We compare calling into R through native R, RSOAP, Rserve, and RPy interfaces, with the performance of native BioPerl, Biopython, BioJava, and BioRuby implementations, and with call stack bindings to BioJava and the European Molecular Biology Open Software Suite. In general, call stack approaches outperform native Bio* implementations and these, in turn, outperform RPC-based approaches. To test and compare strategies, we provide a downloadable BioNode image with all examples, tools, and libraries included. The BioNode image can be run on VirtualBox-supported operating systems, including Windows, OSX, and Linux.

  12. A Collaborative Learning Network Approach to Improvement: The CUSP Learning Network.

    Science.gov (United States)

    Weaver, Sallie J; Lofthus, Jennifer; Sawyer, Melinda; Greer, Lee; Opett, Kristin; Reynolds, Catherine; Wyskiel, Rhonda; Peditto, Stephanie; Pronovost, Peter J

    2015-04-01

    Collaborative improvement networks draw on the science of collaborative organizational learning and communities of practice to facilitate peer-to-peer learning, coaching, and local adaption. Although significant improvements in patient safety and quality have been achieved through collaborative methods, insight regarding how collaborative networks are used by members is needed. Improvement Strategy: The Comprehensive Unit-based Safety Program (CUSP) Learning Network is a multi-institutional collaborative network that is designed to facilitate peer-to-peer learning and coaching specifically related to CUSP. Member organizations implement all or part of the CUSP methodology to improve organizational safety culture, patient safety, and care quality. Qualitative case studies developed by participating members examine the impact of network participation across three levels of analysis (unit, hospital, health system). In addition, results of a satisfaction survey designed to evaluate member experiences were collected to inform network development. Common themes across case studies suggest that members found value in collaborative learning and sharing strategies across organizational boundaries related to a specific improvement strategy. The CUSP Learning Network is an example of network-based collaborative learning in action. Although this learning network focuses on a particular improvement methodology-CUSP-there is clear potential for member-driven learning networks to grow around other methods or topic areas. Such collaborative learning networks may offer a way to develop an infrastructure for longer-term support of improvement efforts and to more quickly diffuse creative sustainment strategies.

  13. Trauma-Exposed Latina Immigrants' Networks: A Social Network Analysis Approach.

    Science.gov (United States)

    Hurtado-de-Mendoza, Alejandra; Serrano, Adriana; Gonzales, Felisa A; Fernandez, Nicole C; Cabling, Mark; Kaltman, Stacey

    2016-11-01

    Trauma exposure among Latina immigrants is common. Social support networks can buffer the impact of trauma on mental health. This study characterizes the social networks of trauma-exposed Latina immigrants using a social network analysis perspective. In 2011-2012 a convenience sample (n=28) of Latina immigrants with trauma exposure and presumptive depression or posttraumatic stress disorder was recruited from a community clinic in Washington DC. Participants completed a social network assessment and listed up to ten persons in their network (alters). E-Net was used to describe the aggregate structural, interactional, and functional characteristics of networks and Node-XL was used in a case study to diagram one network. Most participants listed children (93%), siblings (82%), and friends (71%) as alters, and most alters lived in the US (69%). Perceived emotional support and positive social interaction were higher compared to tangible, language, information, and financial support. A case study illustrates the use of network visualizations to assess the strengths and weaknesses of social networks. Targeted social network interventions to enhance supportive networks among trauma-exposed Latina immigrants are warranted.

  14. Heuristic approach to the passive optical network with fibre duct ...

    African Journals Online (AJOL)

    PON) planning problem necessitates the search for a subset of deployed facilities (splitters) and their allocated demand points (optical network units) to minimise the overall deployment cost. A mixed integer linear programming formulation ...

  15. Network topology analysis approach on China's QFII stock investment behavior

    Science.gov (United States)

    Zhang, Yongjie; Cao, Xing; He, Feng; Zhang, Wei

    2017-05-01

    In this paper, the investment behavior of QFII in China stock market from 2004 to 2015 is studied with the network topology method. Based on the nodes topological characteristics, stock holding fluctuations correlation is studied from the micro network level. We conclude that the QFII mutual stock holding network have both scale free and small world properties, which presented mainly small world characteristics from 2005 to 2011, and scale free characteristics from 2012 to 2015. Moreover, fluctuations correlation is different with different nodes topological characteristics. In different economic periods, QFII represented different connection patterns and they reacted to the market crash spontaneously. Thus, this paper provides the first evidence of complex network research on QFII' investment behavior in China as an emerging market.

  16. Creating networking adaptive interactive hybrid systems : A methodic approach

    NARCIS (Netherlands)

    Kester, L.J.

    2011-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. Some envisioned application domains for such systems are defense, crisis management, traffic management, public

  17. An efficient approach to enhance capacity allocation over Bluetooth network

    DEFF Research Database (Denmark)

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun

    2002-01-01

    With the current development of mobile devices, short range wireless communications have become more and more popular, and research on short range wireless communications, such as Bluetooth, has gained increasing in-terest, in industry as well as in academy. This paper analyzes capacity allocation...... issues in Bluetooth network as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. The hybrid distributed capacity allocation scheme HDICA is proposed as an approximated solution of the stated optimization problem that satisfies...... quality of service requirements and topologically induced constraints in the Bluetooth network, such as node and link capacity limitations. The proposed scheme is decentralized and complies with frequent changes of topology as well as capacity limitations and flow requirements in the network. Simulation...

  18. Using artificial neural network approach for modelling rainfall–runoff ...

    Indian Academy of Sciences (India)

    driven techniques, the artificial neural .... inputs from the environment), one or more inter- mediate layers and an output layer (producing the ... three-layer learning network consisting of an input layer, a hidden layer and an output layer as illus-.

  19. A Programming Language Approach to Safety in Home Networks

    DEFF Research Database (Denmark)

    Mortensen, Kjeld Høyer; Schougaard, Kari Rye; Schultz, Ulrik Pagh

    Home networks and the interconnection of home appliances is a classical theme in pervasive computing research. Security is usually addressed through the use of encryption and authentication, but there is a lack of awareness of safety: reventing the computerized house from harming the inhabitants......-based restrictions on operations. This model has been implemented in a middleware for home AV devices written in Java, using infrared communication and a FireWire network to implement location awareness....

  20. A Programming Language Approach to Safety in Home Networks

    DEFF Research Database (Denmark)

    Mortensen, Kjeld Høyer; Schougaard, Kari Sofie Fogh; Schultz, Ulrik Pagh

    2003-01-01

    Home networks and the interconnection of home appliances is a classical theme in pervasive computing research. Security is usually addressed through the use of encryption and authentication, but there is a lack of awareness of safety: preventing the computerized house from harming the inhabitants......-based restrictions on operations. This model has been implemented in a middleware for home AV devices written in Java, using infrared communication and a FireWire network to implement location awareness....

  1. Health Monitoring Using Wireless Sensor Network: "A Matlab Approach"

    OpenAIRE

    Okeke, David Chukwuemeka

    2016-01-01

    A wireless sensor network consists of locally distributed independent sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Wireless Body Area Network (WBANs) represents a promising trend in wearable health monitoring systems. WBANs promise to revolutionize health monitoring and offer continuous and omnipresent moving health monitoring at the least level of obtrusiveness, resulting in an increase in user’s...

  2. Network Pharmacology: A New Approach for Chinese Herbal Medicine Research

    OpenAIRE

    Gui-biao Zhang; Qing-ya Li; Qi-long Chen; Shi-bing Su

    2013-01-01

    The dominant paradigm of ?one gene, one target, one disease? has influenced many aspects of drug discovery strategy. However, in recent years, it has been appreciated that many effective drugs act on multiple targets rather than a single one. As an integrated multidisciplinary concept, network pharmacology, which is based on system biology and polypharmacology, affords a novel network mode of ?multiple targets, multiple effects, complex diseases? and replaces the ?magic bullets? by ?magic sho...

  3. Coordination between Subway and Urban Space: A Networked Approach

    Directory of Open Access Journals (Sweden)

    Lei Mao

    2014-05-01

    Full Text Available This paper selects Changsha as a case study and constructs the models of the subway network and the urban spatial network by using planning data. In the network models, the districts of Changsha are regarded as nodes and the connections between each pair of districts are regarded as edges. The method is based on quantitative analysis of the node weights and the edge weights, which are defined in the complex network theory. And the structures of subway and urban space are visualized in the form of networks. Then, through analyzing the discrepancy coefficients of the corresponding nodes and edges, the paper carries out a comparison between the two networks to evaluate the coordination. The results indicate that only 21.4% of districts and 13.2% of district connections have a rational coordination. Finally, the strategies are put forward for optimization, which suggest adjusting subway transit density, regulating land-use intensity and planning new mass transits for the uncoordinated parts.

  4. Directional MAC approach for wireless body area networks.

    Science.gov (United States)

    Hussain, Md Asdaque; Alam, Md Nasre; Kwak, Kyung Sup

    2011-01-01

    Wireless Body Area Networks (WBANs) designed for medical, sports, and entertainment applications, have drawn the attention of academia and industry alike. A WBAN is a special purpose network, designed to operate autonomously to connect various medical sensors and appliances, located inside and/or outside of a human body. This network enables physicians to remotely monitor vital signs of patients and provide real time feedback for medical diagnosis and consultations. The WBAN system can offer two significant advantages: patient mobility due to their use of portable monitoring devices and a location independent monitoring facility. With its appealing dimensions, it brings about a new set of challenges, which we do not normally consider in such small sensor networks. It requires a scalable network in terms of heterogeneous data traffic, low power consumption of sensor nodes, integration in and around the body networking and coexistence. This work presents a medium access control protocol for WBAN which tries to overcome the aforementioned challenges. We consider the use of multiple beam adaptive arrays (MBAA) at BAN Coordinator (BAN_C) node. When used as a BAN_C, an MBAA can successfully receive two or more overlapping packets at the same time. Each beam captures a different packet by automatically pointing its pattern toward one packet while annulling other contending packets. This paper describes how an MBAA can be integrated into a single hope star topology as a BAN_C. Simulation results show the performance of our proposed protocol.

  5. Directional MAC Approach for Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Md. Asdaque Hussain

    2011-01-01

    Full Text Available Wireless Body Area Networks (WBANs designed for medical, sports, and entertainment applications, have drawn the attention of academia and industry alike. A WBAN is a special purpose network, designed to operate autonomously to connect various medical sensors and appliances, located inside and/or outside of a human body. This network enables physicians to remotely monitor vital signs of patients and provide real time feedback for medical diagnosis and consultations. The WBAN system can offer two significant advantages: patient mobility due to their use of portable monitoring devices and a location independent monitoring facility. With its appealing dimensions, it brings about a new set of challenges, which we do not normally consider in such small sensor networks. It requires a scalable network in terms of heterogeneous data traffic, low power consumption of sensor nodes, integration in and around the body networking and coexistence. This work presents a medium access control protocol for WBAN which tries to overcome the aforementioned challenges. We consider the use of multiple beam adaptive arrays (MBAA at BAN Coordinator (BAN_C node. When used as a BAN_C, an MBAA can successfully receive two or more overlapping packets at the same time. Each beam captures a different packet by automatically pointing its pattern toward one packet while annulling other contending packets. This paper describes how an MBAA can be integrated into a single hope star topology as a BAN_C. Simulation results show the performance of our proposed protocol.

  6. Inferring signalling networks from longitudinal data using sampling based approaches in the R-package 'ddepn'

    Directory of Open Access Journals (Sweden)

    Korf Ulrike

    2011-07-01

    Full Text Available Abstract Background Network inference from high-throughput data has become an important means of current analysis of biological systems. For instance, in cancer research, the functional relationships of cancer related proteins, summarised into signalling networks are of central interest for the identification of pathways that influence tumour development. Cancer cell lines can be used as model systems to study the cellular response to drug treatments in a time-resolved way. Based on these kind of data, modelling approaches for the signalling relationships are needed, that allow to generate hypotheses on potential interference points in the networks. Results We present the R-package 'ddepn' that implements our recent approach on network reconstruction from longitudinal data generated after external perturbation of network components. We extend our approach by two novel methods: a Markov Chain Monte Carlo method for sampling network structures with two edge types (activation and inhibition and an extension of a prior model that penalises deviances from a given reference network while incorporating these two types of edges. Further, as alternative prior we include a model that learns signalling networks with the scale-free property. Conclusions The package 'ddepn' is freely available on R-Forge and CRAN http://ddepn.r-forge.r-project.org, http://cran.r-project.org. It allows to conveniently perform network inference from longitudinal high-throughput data using two different sampling based network structure search algorithms.

  7. An adaptive neural swarm approach for intrusion defense in ad hoc networks

    Science.gov (United States)

    Cannady, James

    2011-06-01

    Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.

  8. Call Forecasting for Inbound Call Center

    Directory of Open Access Journals (Sweden)

    Peter Vinje

    2009-01-01

    Full Text Available In a scenario of inbound call center customer service, the ability to forecast calls is a key element and advantage. By forecasting the correct number of calls a company can predict staffing needs, meet service level requirements, improve customer satisfaction, and benefit from many other optimizations. This project will show how elementary statistics can be used to predict calls for a specific company, forecast the rate at which calls are increasing/decreasing, and determine if the calls may stop at some point.

  9. A high performance k-NN approach using binary neural networks

    OpenAIRE

    Hodge, V J; Lees, K J; Austin, J L

    2004-01-01

    This paper evaluates a novel k-nearest neighbour (k-NN) classifier built from binary neural networks. The binary neural approach uses robust encoding to map standard ordinal, categorical and numeric data sets onto a binary neural network. The binary neural network uses high speed pattern matching to recall a candidate set of matching records, which are then processed by a conventional k-NN approach to determine the k-best matches. We compare various configurations of the binary approach to a ...

  10. CSI: a nonparametric Bayesian approach to network inference from multiple perturbed time series gene expression data.

    Science.gov (United States)

    Penfold, Christopher A; Shifaz, Ahmed; Brown, Paul E; Nicholson, Ann; Wild, David L

    2015-06-01

    Here we introduce the causal structure identification (CSI) package, a Gaussian process based approach to inferring gene regulatory networks (GRNs) from multiple time series data. The standard CSI approach infers a single GRN via joint learning from multiple time series datasets; the hierarchical approach (HCSI) infers a separate GRN for each dataset, albeit with the networks constrained to favor similar structures, allowing for the identification of context specific networks. The software is implemented in MATLAB and includes a graphical user interface (GUI) for user friendly inference. Finally the GUI can be connected to high performance computer clusters to facilitate analysis of large genomic datasets.

  11. Computational approach in estimating the need of ditch network maintenance

    Science.gov (United States)

    Lauren, Ari; Hökkä, Hannu; Launiainen, Samuli; Palviainen, Marjo; Repo, Tapani; Leena, Finer; Piirainen, Sirpa

    2015-04-01

    Ditch network maintenance (DNM), implemented annually in 70 000 ha area in Finland, is the most controversial of all forest management practices. Nationwide, it is estimated to increase the forest growth by 1…3 million m3 per year, but simultaneously to cause 65 000 tons export of suspended solids and 71 tons of phosphorus (P) to water courses. A systematic approach that allows simultaneous quantification of the positive and negative effects of DNM is required. Excess water in the rooting zone slows the gas exchange and decreases biological activity interfering with the forest growth in boreal forested peatlands. DNM is needed when: 1) the excess water in the rooting zone restricts the forest growth before the DNM, and 2) after the DNM the growth restriction ceases or decreases, and 3) the benefits of DNM are greater than the caused adverse effects. Aeration in the rooting zone can be used as a drainage criterion. Aeration is affected by several factors such as meteorological conditions, tree stand properties, hydraulic properties of peat, ditch depth, and ditch spacing. We developed a 2-dimensional DNM simulator that allows the user to adjust these factors and to evaluate their effect on the soil aeration at different distance from the drainage ditch. DNM simulator computes hydrological processes and soil aeration along a water flowpath between two ditches. Applying daily time step it calculates evapotranspiration, snow accumulation and melt, infiltration, soil water storage, ground water level, soil water content, air-filled porosity and runoff. The model performance in hydrology has been tested against independent high frequency field monitoring data. Soil aeration at different distance from the ditch is computed under steady-state assumption using an empirical oxygen consumption model, simulated air-filled porosity, and diffusion coefficient at different depths in soil. Aeration is adequate and forest growth rate is not limited by poor aeration if the

  12. GPM ground validation via commercial cellular networks: an exploratory approach

    Science.gov (United States)

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Brasjen, Noud; Uijlenhoet, Remko

    2016-04-01

    The suitability of commercial microwave link networks for ground validation of GPM (Global Precipitation Measurement) data is evaluated here. Two state-of-the-art rainfall products are compared over the land surface of the Netherlands for a period of 7 months, i.e., rainfall maps from commercial cellular communication networks and Integrated Multi-satellite Retrievals for GPM (IMERG). Commercial microwave link networks are nowadays the core component in telecommunications worldwide. Rainfall rates can be retrieved from measurements of attenuation between transmitting and receiving antennas. If adequately set up, these networks enable rainfall monitoring tens of meters above the ground at high spatiotemporal resolutions (temporal sampling of seconds to tens of minutes, and spatial sampling of hundreds of meters to tens of kilometers). The GPM mission is the successor of TRMM (Tropical Rainfall Measurement Mission). For two years now, IMERG offers rainfall estimates across the globe (180°W - 180°E and 60°N - 60°S) at spatiotemporal resolutions of 0.1° x 0.1° every 30 min. These two data sets are compared against a Dutch gauge-adjusted radar data set, considered to be the ground truth given its accuracy, spatiotemporal resolution and availability. The suitability of microwave link networks in satellite rainfall evaluation is of special interest, given the independent character of this technique, its high spatiotemporal resolutions and availability. These are valuable assets for water management and modeling of floods, landslides, and weather extremes; especially in places where rain gauge networks are scarce or poorly maintained, or where weather radar networks are too expensive to acquire and/or maintain.

  13. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    Science.gov (United States)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  14. Efficient Learning Strategy of Chinese Characters Based on Network Approach

    Science.gov (United States)

    Yan, Xiaoyong; Fan, Ying; Di, Zengru; Havlin, Shlomo; Wu, Jinshan

    2013-01-01

    We develop an efficient learning strategy of Chinese characters based on the network of the hierarchical structural relations between Chinese characters. A more efficient strategy is that of learning the same number of useful Chinese characters in less effort or time. We construct a node-weighted network of Chinese characters, where character usage frequencies are used as node weights. Using this hierarchical node-weighted network, we propose a new learning method, the distributed node weight (DNW) strategy, which is based on a new measure of nodes' importance that considers both the weight of the nodes and its location in the network hierarchical structure. Chinese character learning strategies, particularly their learning order, are analyzed as dynamical processes over the network. We compare the efficiency of three theoretical learning methods and two commonly used methods from mainstream Chinese textbooks, one for Chinese elementary school students and the other for students learning Chinese as a second language. We find that the DNW method significantly outperforms the others, implying that the efficiency of current learning methods of major textbooks can be greatly improved. PMID:23990887

  15. An Energy Conservative Wireless Sensor Networks Approach for Precision Agriculture

    Directory of Open Access Journals (Sweden)

    Jing Li

    2013-12-01

    Full Text Available Reducing energy consumption of sensor nodes to prolong the lifetime of finite-capacity batteries and how to enhance the fault-tolerant ability of networks are the major challenges in design of Wireless Sensor Networks (WSNs. In this paper, we present an energy-efficient system of WSNs for black pepper monitoring in tropical areas. At first, we optimized the base station antenna height in order to facilitate reliable communication, after which the Energy-efficient Sensor Protocol for Information via Negotiation (ESPIN routing protocol was utilized to solve the energy saving challenge. We conducted radio propagation experiments in actual black pepper fields. The practical test results illustrate that the ESPIN protocol reduces redundant data transmission and whole energy consumption of network, and enhances the success rate of data transmission compared with traditional Sensor Protocol for Information via Negotiation (SPIN protocol. To further optimize topology for improving the network lifetime, we designed a symmetrical double-chain (SDC topology which is suitable to be deployed in farmland and compared the lifetime with traditional tree topology. Experiment results indicate SDC topology has a longer network lifetime than traditional tree topology. The system we designed will greatly help farmers to make more informed decisions on the efficient use of resources and hence improve black pepper productivity.

  16. Efficient learning strategy of Chinese characters based on network approach.

    Science.gov (United States)

    Yan, Xiaoyong; Fan, Ying; Di, Zengru; Havlin, Shlomo; Wu, Jinshan

    2013-01-01

    We develop an efficient learning strategy of Chinese characters based on the network of the hierarchical structural relations between Chinese characters. A more efficient strategy is that of learning the same number of useful Chinese characters in less effort or time. We construct a node-weighted network of Chinese characters, where character usage frequencies are used as node weights. Using this hierarchical node-weighted network, we propose a new learning method, the distributed node weight (DNW) strategy, which is based on a new measure of nodes' importance that considers both the weight of the nodes and its location in the network hierarchical structure. Chinese character learning strategies, particularly their learning order, are analyzed as dynamical processes over the network. We compare the efficiency of three theoretical learning methods and two commonly used methods from mainstream Chinese textbooks, one for Chinese elementary school students and the other for students learning Chinese as a second language. We find that the DNW method significantly outperforms the others, implying that the efficiency of current learning methods of major textbooks can be greatly improved.

  17. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

    Directory of Open Access Journals (Sweden)

    Christian L Barrett

    2006-05-01

    Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

  18. A Fuzzy analytical hierarchy process approach in irrigation networks maintenance

    Science.gov (United States)

    Riza Permana, Angga; Rintis Hadiani, Rr.; Syafi’i

    2017-11-01

    Ponorogo Regency has 440 Irrigation Area with a total area of 17,950 Ha. Due to the limited budget and lack of maintenance cause decreased function on the irrigation. The aim of this study is to make an appropriate system to determine the indices weighted of the rank prioritization criteria for irrigation network maintenance using a fuzzy-based methodology. The criteria that are used such as the physical condition of irrigation networks, area of service, estimated maintenance cost, and efficiency of irrigation water distribution. 26 experts in the field of water resources in the Dinas Pekerjaan Umum were asked to fill out the questionnaire, and the result will be used as a benchmark to determine the rank of irrigation network maintenance priority. The results demonstrate that the physical condition of irrigation networks criterion (W1) = 0,279 has the greatest impact on the assessment process. The area of service (W2) = 0,270, efficiency of irrigation water distribution (W4) = 0,249, and estimated maintenance cost (W3) = 0,202 criteria rank next in effectiveness, respectively. The proposed methodology deals with uncertainty and vague data using triangular fuzzy numbers, and, moreover, it provides a comprehensive decision-making technique to assess maintenance priority on irrigation network.

  19. Efficient learning strategy of Chinese characters based on network approach.

    Directory of Open Access Journals (Sweden)

    Xiaoyong Yan

    Full Text Available We develop an efficient learning strategy of Chinese characters based on the network of the hierarchical structural relations between Chinese characters. A more efficient strategy is that of learning the same number of useful Chinese characters in less effort or time. We construct a node-weighted network of Chinese characters, where character usage frequencies are used as node weights. Using this hierarchical node-weighted network, we propose a new learning method, the distributed node weight (DNW strategy, which is based on a new measure of nodes' importance that considers both the weight of the nodes and its location in the network hierarchical structure. Chinese character learning strategies, particularly their learning order, are analyzed as dynamical processes over the network. We compare the efficiency of three theoretical learning methods and two commonly used methods from mainstream Chinese textbooks, one for Chinese elementary school students and the other for students learning Chinese as a second language. We find that the DNW method significantly outperforms the others, implying that the efficiency of current learning methods of major textbooks can be greatly improved.

  20. Feature Selection and Classification of Electroencephalographic Signals: An Artificial Neural Network and Genetic Algorithm Based Approach.

    Science.gov (United States)

    Erguzel, Turker Tekin; Ozekes, Serhat; Tan, Oguz; Gultekin, Selahattin

    2015-10-01

    Feature selection is an important step in many pattern recognition systems aiming to overcome the so-called curse of dimensionality. In this study, an optimized classification method was tested in 147 patients with major depressive disorder (MDD) treated with repetitive transcranial magnetic stimulation (rTMS). The performance of the combination of a genetic algorithm (GA) and a back-propagation (BP) neural network (BPNN) was evaluated using 6-channel pre-rTMS electroencephalographic (EEG) patterns of theta and delta frequency bands. The GA was first used to eliminate the redundant and less discriminant features to maximize classification performance. The BPNN was then applied to test the performance of the feature subset. Finally, classification performance using the subset was evaluated using 6-fold cross-validation. Although the slow bands of the frontal electrodes are widely used to collect EEG data for patients with MDD and provide quite satisfactory classification results, the outcomes of the proposed approach indicate noticeably increased overall accuracy of 89.12% and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.904 using the reduced feature set. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  1. Game Theoretical Approaches for Transport-Aware Channel Selection in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Chen Shih-Ho

    2010-01-01

    Full Text Available Effectively sharing channels among secondary users (SUs is one of the greatest challenges in cognitive radio network (CRN. In the past, many studies have proposed channel selection schemes at the physical or the MAC layer that allow SUs swiftly respond to the spectrum states. However, they may not lead to enhance performance due to slow response of the transport layer flow control mechanism. This paper presents a cross-layer design framework called Transport Aware Channel Selection (TACS scheme to optimize the transport throughput based on states, such as RTT and congestion window size, of TCP flow control mechanism. We formulate the TACS problem as two different game theoretic approaches: Selfish Spectrum Sharing Game (SSSG and Cooperative Spectrum Sharing Game (CSSG and present novel distributed heuristic algorithms to optimize TCP throughput. Computer simulations show that SSSG and CSSG could double the SUs throughput of current MAC-based scheme when primary users (PUs use their channel infrequently, and with up to 12% to 100% throughput increase when PUs are more active. The simulation results also illustrated that CSSG performs up to 20% better than SSSG in terms of the throughput.

  2. A simulated annealing approach for redesigning a warehouse network problem

    Science.gov (United States)

    Khairuddin, Rozieana; Marlizawati Zainuddin, Zaitul; Jiun, Gan Jia

    2017-09-01

    Now a day, several companies consider downsizing their distribution networks in ways that involve consolidation or phase-out of some of their current warehousing facilities due to the increasing competition, mounting cost pressure and taking advantage on the economies of scale. Consequently, the changes on economic situation after a certain period of time require an adjustment on the network model in order to get the optimal cost under the current economic conditions. This paper aimed to develop a mixed-integer linear programming model for a two-echelon warehouse network redesign problem with capacitated plant and uncapacitated warehouses. The main contribution of this study is considering capacity constraint for existing warehouses. A Simulated Annealing algorithm is proposed to tackle with the proposed model. The numerical solution showed the model and method of solution proposed was practical.

  3. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)

    OpenAIRE

    Ahmed R. J. Almusawi; L. Canan Dülger; Sadettin Kapucu

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional...

  4. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...... penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least...

  5. Virtual networks pluralistic approach for the next generation of Internet

    CERN Document Server

    Duarte, Otto Carlos M B

    2013-01-01

    The first chapter of this title concerns virtualization techniques that allow sharing computational resources basically, slicing a real computational environment into virtual computational environments that are isolated from one another.The Xen and OpenFlow virtualization platforms are then presented in Chapter 2 and a performance analysis of both is provided. This chapter also defines the primitives that the network virtualization infrastructure must provide for allowing the piloting plane to manage virtual network elements.Following this, interfaces for system management of the two platform

  6. Exploring trade-offs between VMAT dose quality and delivery efficiency using a network optimization approach

    Science.gov (United States)

    Salari, Ehsan; Wala, Jeremiah; Craft, David

    2012-09-01

    To formulate and solve the fluence-map merging procedure of the recently-published VMAT treatment-plan optimization method, called vmerge, as a bi-criteria optimization problem. Using an exact merging method rather than the previously-used heuristic, we are able to better characterize the trade-off between the delivery efficiency and dose quality. vmerge begins with a solution of the fluence-map optimization problem with 180 equi-spaced beams that yields the ‘ideal’ dose distribution. Neighboring fluence maps are then successively merged, meaning that they are added together and delivered as a single map. The merging process improves the delivery efficiency at the expense of deviating from the initial high-quality dose distribution. We replace the original merging heuristic by considering the merging problem as a discrete bi-criteria optimization problem with the objectives of maximizing the treatment efficiency and minimizing the deviation from the ideal dose. We formulate this using a network-flow model that represents the merging problem. Since the problem is discrete and thus non-convex, we employ a customized box algorithm to characterize the Pareto frontier. The Pareto frontier is then used as a benchmark to evaluate the performance of the standard vmerge algorithm as well as two other similar heuristics. We test the exact and heuristic merging approaches on a pancreas and a prostate cancer case. For both cases, the shape of the Pareto frontier suggests that starting from a high-quality plan, we can obtain efficient VMAT plans through merging neighboring fluence maps without substantially deviating from the initial dose distribution. The trade-off curves obtained by the various heuristics are contrasted and shown to all be equally capable of initial plan simplifications, but to deviate in quality for more drastic efficiency improvements. This work presents a network optimization approach to the merging problem. Contrasting the trade-off curves of the

  7. Exploring the Evolution of London's Street Network in the Information Space: a Dual Approach

    CERN Document Server

    Masucci, A Paolo; Batty, Michael

    2013-01-01

    We study the growth of London's street-network in its dual representation, as the city has evolved over the last 224 years. The dual representation of a planar graph is a content-based network, where each node is a set of edges of the planar graph, and represents a transportation unit in the so-called information space, i.e. the space where information is handled in order to navigate through the city. First, we discuss a novel hybrid technique to extract dual graphs from planar graphs, called the hierarchical intersection continuity negotiation principle. Then we show that the growth of the network can be analytically described by logistic laws and that the topological properties of the network are governed by robust lognormal distributions characterising the network's connectivity and small-world properties that are consistent over time. Moreover, we find that the double-Pareto-like distributions for the connectivity emerge for major roads and can be modelled via a stochastic content-based network model usin...

  8. Exploring the evolution of London's street network in the information space: A dual approach

    Science.gov (United States)

    Masucci, A. Paolo; Stanilov, Kiril; Batty, Michael

    2014-01-01

    We study the growth of London's street network in its dual representation, as the city has evolved over the past 224 years. The dual representation of a planar graph is a content-based network, where each node is a set of edges of the planar graph and represents a transportation unit in the so-called information space, i.e., the space where information is handled in order to navigate through the city. First, we discuss a novel hybrid technique to extract dual graphs from planar graphs, called the hierarchical intersection continuity negotiation principle. Then we show that the growth of the network can be analytically described by logistic laws and that the topological properties of the network are governed by robust log-normal distributions characterizing the network's connectivity and small-world properties that are consistent over time. Moreover, we find that the double-Pareto-like distributions for the connectivity emerge for major roads and can be modeled via a stochastic content-based network model using simple space-filling principles.

  9. Using a Multiobjective Approach to Balance Mission and Network Goals within a Delay Tolerant Network Topology

    Science.gov (United States)

    2009-03-01

    region possibilities and the probability defined using the MATLAB RAND function. The RAND function is based upon the Mersanne Twister pseudorandom...building in disruption-tolerant networks. Ad Hoc Networks, 2008. 6(4): p. 600-620. 45. Matsumoto, Makoto. Mersanne Twister Algorithm. 1997

  10. A Graph Theoretical Approach for Network Coding in Wireless Body Area Networks

    CERN Document Server

    Byrne, Eimear; Marinkovic, Stevan; Popovici, Emanuel

    2011-01-01

    Modern medical wireless systems, such as wireless body area networks (WBANs), are applications of wireless networks that can be used as a tool of data transmission between patients and doctors. Accuracy of data transmission is an important requirement for such systems. In this paper, we will propose a WBAN which is robust against erasures and describe its properties using graph theoretic techniques.

  11. Using a Network Approach to Transform from a Municipality to Municipal Community

    NARCIS (Netherlands)

    van de Wijngaert, Lidwien; Wimmer, Maria A.; Janssen, Marijn; Macintosh, Ann; Scholl, Hans Jochen; Tambouris, Efthimios

    2013-01-01

    This paper presents a social network approach to help the government in their transformation to a leaner organization. We will first explain how social network analysis can contribute to this transformation. After that we will present some results from a pilot study that was conducted in Enschede

  12. Meeting fronthaul challenges of future mobile network deployments — The HARP approach

    DEFF Research Database (Denmark)

    Dittmann, Lars; Christiansen, Henrik Lehrmann; Checko, Aleksandra

    2014-01-01

    In future mobile networks aggregation at different levels is necessary but at the same time imposes challenges that mandate looking into new architectures. This paper presents the design consideration approach for a C-RAN based mobile aggregation network used in the EU HARP project. With this arc...

  13. Centrality of regions in RD networks: a new measurement approach using the concept of bridging paths

    NARCIS (Netherlands)

    Bergé, Laurent R; Wanzenböck, Iris; Scherngell, Thomas

    2017-01-01

    Centrality of regions in R&D networks: a new measurement approach using the concept of bridging paths. Regional Studies. This paper introduces a novel measure of regional centrality in the context of research and development (R&D) networks. It first demonstrates some substantial problems of social

  14. Investigating cellular network heterogeneity and modularity in cancer: a network entropy and unbalanced motif approach.

    Science.gov (United States)

    Cheng, Feixiong; Liu, Chuang; Shen, Bairong; Zhao, Zhongming

    2016-08-26

    Cancer is increasingly recognized as a cellular system phenomenon that is attributed to the accumulation of genetic or epigenetic alterations leading to the perturbation of the molecular network architecture. Elucidation of network properties that can characterize tumor initiation and progression, or pinpoint the molecular targets related to the drug sensitivity or resistance, is therefore of critical importance for providing systems-level insights into tumorigenesis and clinical outcome in the molecularly targeted cancer therapy. In this study, we developed a network-based framework to quantitatively examine cellular network heterogeneity and modularity in cancer. Specifically, we constructed gene co-expressed protein interaction networks derived from large-scale RNA-Seq data across 8 cancer types generated in The Cancer Genome Atlas (TCGA) project. We performed gene network entropy and balanced versus unbalanced motif analysis to investigate cellular network heterogeneity and modularity in tumor versus normal tissues, different stages of progression, and drug resistant versus sensitive cancer cell lines. We found that tumorigenesis could be characterized by a significant increase of gene network entropy in all of the 8 cancer types. The ratio of the balanced motifs in normal tissues is higher than that of tumors, while the ratio of unbalanced motifs in tumors is higher than that of normal tissues in all of the 8 cancer types. Furthermore, we showed that network entropy could be used to characterize tumor progression and anticancer drug responses. For example, we found that kinase inhibitor resistant cancer cell lines had higher entropy compared to that of sensitive cell lines using the integrative analysis of microarray gene expression and drug pharmacological data collected from the Genomics of Drug Sensitivity in Cancer database. In addition, we provided potential network-level evidence that smoking might increase cancer cellular network heterogeneity and

  15. A Hamiltonian approach to model and analyse networks of ...

    Indian Academy of Sciences (India)

    2015-09-24

    Sep 24, 2015 ... Over the past twelve years, ideas and methods from nonlinear dynamics system theory, in particular, group theoretical methods in bifurcation theory, have ... Also, patterns of behaviour in networks of oscillators with certain symmetry groups have been extensively studied and the results have been applied to ...

  16. Approaches to a global quantum key distribution network

    Science.gov (United States)

    Islam, Tanvirul; Bedington, Robert; Ling, Alexander

    2017-10-01

    Progress in realising quantum computers threatens to weaken existing public key encryption infrastructure. A global quantum key distribution (QKD) network can play a role in computational attack-resistant encryption. Such a network could use a constellation of high altitude platforms such as airships and satellites as trusted nodes to facilitate QKD between any two points on the globe on demand. This requires both space-to-ground and inter-platform links. However, the prohibitive cost of traditional satellite based development limits the experimental work demonstrating relevant technologies. To accelerate progress towards a global network, we use an emerging class of shoe-box sized spacecraft known as CubeSats. We have designed a polarization entangled photon pair source that can operate on board CubeSats. The robustness and miniature form factor of our entanglement source makes it especially suitable for performing pathfinder missions that studies QKD between two high altitude platforms. The technological outcomes of such mission would be the essential building blocks for a global QKD network.

  17. A structured approach to heat exchanger network retrofit design

    NARCIS (Netherlands)

    Van Reisen, J.L.B.

    2008-01-01

    Process plants have high energy consumption. Much energy can be saved by a proper design of the heat exchanger network, which contains the main heat transferring equipment of the plant. Existing plants can often be made more energy-efficient by a retrofit: the (physical) modification of the

  18. Nursing Home Care Quality: Insights from a Bayesian Network Approach

    Science.gov (United States)

    Goodson, Justin; Jang, Wooseung; Rantz, Marilyn

    2008-01-01

    Purpose: The purpose of this research is twofold. The first purpose is to utilize a new methodology (Bayesian networks) for aggregating various quality indicators to measure the overall quality of care in nursing homes. The second is to provide new insight into the relationships that exist among various measures of quality and how such measures…

  19. Bayesian probabilistic network approach for managing earthquake risks of cities

    DEFF Research Database (Denmark)

    Bayraktarli, Yahya; Faber, Michael

    2011-01-01

    This paper considers the application of Bayesian probabilistic networks (BPNs) to large-scale risk based decision making in regard to earthquake risks. A recently developed risk management framework is outlined which utilises Bayesian probabilistic modelling, generic indicator based risk models...

  20. Credit Risk Evaluation System: An Artificial Neural Network Approach

    African Journals Online (AJOL)

    In this paper, we proposed an architecture which uses the theory of artificial neural networks and business rules to correctly determine whether a customer is good or bad. In the first step, by using clustering algorithm, clients are segmented into groups with similar features. In the second step, decision trees are built based ...

  1. Artificial neural network approach for estimation of surface specific ...

    Indian Academy of Sciences (India)

    Microwave sensor MSMR (Multifrequency Scanning Microwave Radiometer) data onboard Oceansat-1 was used for retrieval of monthly averages of near surface specific humidity (a) and air temperature (a) by means of Artificial Neural Network (ANN). The MSMR measures the microwave radiances in 8 channels at ...

  2. Neural Network Approach to Locating Cryptography in Object Code

    Energy Technology Data Exchange (ETDEWEB)

    Jason L. Wright; Milos Manic

    2009-09-01

    Finding and identifying cryptography is a growing concern in the malware analysis community. In this paper, artificial neural networks are used to classify functional blocks from a disassembled program as being either cryptography related or not. The resulting system, referred to as NNLC (Neural Net for Locating Cryptography) is presented and results of applying this system to various libraries are described.

  3. A neural network based approach to social touch classification

    NARCIS (Netherlands)

    van Wingerden, Siewart; Uebbing, Tobias J.; Jung, Merel Madeleine; Poel, Mannes

    2014-01-01

    Touch is an important interaction modality in social interaction, for instance touch can communicate emotions and can intensify emotions communicated by other modalities. In this paper we explore the use of Neural Networks for the classification of touch. The exploration and assessment of Neural

  4. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...

  5. Designing a dynamic network based approach for asset management activities

    NARCIS (Netherlands)

    Volker, L.; Scharpff, J.; De Weerdt, M.M.; Herder, P.M.

    2012-01-01

    Transportation networks are important public infrastructures because they enable economic and social activity. Trends in contracting the maintenance of such assets have caused a shift in governance from a public body to market-like arrangements and changed the roles and responsibilities among asset

  6. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    Science.gov (United States)

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  7. An optimization approach for district heating strategic network design

    NARCIS (Netherlands)

    Bordin, Chiara; Gordini, Angelo; Vigo, Daniele

    2016-01-01

    District heating systems provide the heat generated in a centralized location to a set of users for their residential and commercial heating requirements. Heat distribution is generally obtained by using hot water or steam flowing through a closed network of insulated pipes and heat exchange

  8. Detecting and disrupting criminal networks : A data driven approach

    NARCIS (Netherlands)

    Duijn, P.A.C.

    2016-01-01

    Criminals organized in networks generate an estimated €900 billion a year worldwide, which is obtained at the cost of numerous human lives, economic development, social stability and democratic peace. The root of this global problem is retraceable to local social settings (e.g. neighborhoods,

  9. A Hybrid Heuristic Optimization Approach for Leak Detection in Pipe Networks Using Ordinal Optimization Approach and the Symbiotic Organism Search

    Directory of Open Access Journals (Sweden)

    Chao-Chih Lin

    2017-10-01

    Full Text Available A new transient-based hybrid heuristic approach is developed to optimize a transient generation process and to detect leaks in pipe networks. The approach couples the ordinal optimization approach (OOA and the symbiotic organism search (SOS to solve the optimization problem by means of iterations. A pipe network analysis model (PNSOS is first used to determine steady-state head distribution and pipe flow rates. The best transient generation point and its relevant valve operation parameters are optimized by maximizing the objective function of transient energy. The transient event is created at the chosen point, and the method of characteristics (MOC is used to analyze the transient flow. The OOA is applied to sift through the candidate pipes and the initial organisms with leak information. The SOS is employed to determine the leaks by minimizing the sum of differences between simulated and computed head at the observation points. Two synthetic leaking scenarios, a simple pipe network and a water distribution network (WDN, are chosen to test the performance of leak detection ordinal symbiotic organism search (LDOSOS. Leak information can be accurately identified by the proposed approach for both of the scenarios. The presented technique makes a remarkable contribution to the success of leak detection in the pipe networks.

  10. A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection

    Directory of Open Access Journals (Sweden)

    Guiyi Wei

    2010-10-01

    Full Text Available The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.

  11. Networks in Argentine agriculture: a multiple-case study approach

    Directory of Open Access Journals (Sweden)

    Sebastián Senesi

    2013-06-01

    Full Text Available Argentina is among the four largest producers of soybeans, sunflower, corn, and wheat, among other agricultural products. Institutional and policy changes during the 1990s fostered the development of Argentine agriculture and the introduction of innovative process and product technologies (no-till, agrochemicals, GMO, GPS and new investments in modern, large-scale sunflower and soybean processing plants. In addition to technological changes, a "quiet revolution" occurred in the way agricultural production was carried out and organized: from self-production or ownership agriculture to a contract-based agriculture. The objective of this paper is to explore and describe the emergence of networks in the Argentine crop production sector. The paper presents and describes four cases that currently represent about 50% of total grain and oilseed production in Argentina: "informal hybrid form", "agricultural trust fund", "investor-oriented corporate structure", and "network of networks". In all cases, hybrid forms involve a group of actors linked by common objectives, mainly to gain scale, share resources, and improve the profitability of the business. Informal contracts seem to be the most common way of organizing the agriculture process, but using short-term contracts and sequential interfirm collaboration. Networks of networks involve long-term relationships and social development, and reciprocal interfirm collaboration. Agricultural trust fund and investor-oriented corporate structures have combined interfirm collaboration and medium-term relationships. These organizational forms are highly flexible and show a great capacity to adapt to challenges; they are competitive because they enjoy aligned incentives, flexibility, and adaptability.

  12. AC Transmission Network Expansion Planning: A Semidefinite Programming Branch-and-Cut Approach

    OpenAIRE

    Ghaddar, Bissan; Jabr, Rabih

    2017-01-01

    Transmission network expansion planning is a mixed-integer optimization problem, whose solution is used to guide future investment in transmission equipment. An approach is presented to find the global solution of the transmission planning problem using an AC network model. The approach builds on the semidefinite relaxation of the AC optimal power flow problem (ACOPF); its computational engine is a new specialized branch-and-cut algorithm for transmission expansion planning to deal with the u...

  13. Using a risk assessment approach to determine which factors influence whether partially bilingual physicians rely on their non-English language skills or call an interpreter.

    Science.gov (United States)

    Maul, Lauren; Regenstein, Marsha; Andres, Ellie; Wright, Richard; Wynia, Matthew K

    2012-07-01

    Partially bilingual physicians may weigh a number of factors in deciding whether to use their own limited non-English language skills or call an interpreter when caring for patients with limited English proficiency. Yet little is known about this decision process or how it might fail. In a patient safety approach to exploration of this complex, potentially high-stakes decision, key risk factors that may contribute to miscommunication during health care encounters in non-English languages were identified. The Healthcare Failure Mode and Effects Analysis (HFMEA) method was adapted to examine the decision process. An initial set of possible decision factors was presented to a national expert panel of eight physicians, who modified and expanded the list of factors and then rated each according to four scales: Frequency, Importance, Amenability to Intervention, and Detectability. A "5 Whys" approach was used to examine underlying causes of these failure modes and generate potential interventions. Nine factors were described that could lead physicians to use their own skills rather than an interpreter when that decision might pose unacceptable risk. The highest-priority factor was lack of knowledge regarding the value of using a trained interpreter and how to work with a trained interpreter effectively. For the top failure mode, a sample hypothetical 5 Whys exercise shows how to examine potential underlying causes and produce recommendations. A variety of discrete factors can have important effects on physicians' decisions to use their own non-English language skills or an interpreter. Because this decision can affect patient safety, organizations and policy makers should use these factors to guide local efforts to examine these issues and develop quality improvement and safety activities.

  14. A Supervised Approach to Windowing Detection on Dynamic Networks

    Science.gov (United States)

    2017-07-01

    windowing algorithms that leverages task -dependency. We also introduce windowing al- gorithms that takes a supervised-machine-learning approach . We...at hand. In other words, we treat the task algorithms as black boxes. However, as we show in Section 7, the supervised approaches are still able to...2This online algorithm is described explicitly for Katz, but it is worth nothing that the same approach may in principle be used for any online task . 6.3

  15. fraud detection in mobile communications networks using user

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    Keywords: Call data, fraud detection, neural networks, probabilistic models, user profiling ... Intrusion detection approach can be divided into two classes of .... Raw call data. Call data simulator. SOM Neural. Network. Probabilistic. System. Monitoring. Database. Database. Fig. 3: Mobile communication detection tools.

  16. A Formal Approach to the Verification of Networks on Chip

    Directory of Open Access Journals (Sweden)

    Schmaltz Julien

    2009-01-01

    Full Text Available Abstract The current technology allows the integration on a single die of complex systems-on-chip (SoCs that are composed of manufactured blocks (IPs, interconnected through specialized networks on chip (NoCs. IPs have usually been validated by diverse techniques (simulation, test, formal verification and the key problem remains the validation of the communication infrastructure. This paper addresses the formal verification of NoCs by means of a mechanized proof tool, the ACL2 theorem prover. A metamodel for NoCs has been developed and implemented in ACL2. This metamodel satisfies a generic correctness statement. Its verification for a particular NoC instance is reduced to discharging a set of proof obligations for each one of the NoC constituents. The methodology is demonstrated on a realistic and state-of-the-art design, the Spidergon network from STMicroelectronics.

  17. A network approach in analysis of the matching hypothesis

    Science.gov (United States)

    Jia, Tao; Spivey, Robert; Korniss, Gyorgy; Szymanski, Boleslaw

    2014-03-01

    The matching hypothesis in social psychology claimed that people are more likely to form a committed relationship with someone who is equally attractive. This phenomenon can be well interpreted by the principle of homophily that people are apt to get in touch with others similar to them. Yet, social experiments indicate that people in general tend to prefer more attractive individuals regardless of their own attractiveness. Here study the stochastic matching process for different underlying networks and different attractiveness distributions. We showed that the correlation of attractiveness within couples could purely due to the limited number of acquaintance each person has and such correlation decreases as the network becomes more sparse. We also analyzed the effect of the degree distribution and the attractiveness on the number of individuals that can not find their partners. This work is supported by ARL NS-CTA, ARO, and ONR.

  18. Architectural approach for quality and safety aware healthcare social networks.

    Science.gov (United States)

    López, Diego M; Blobel, Bernd; González, Carolina

    2012-01-01

    Quality of information and privacy and safety issues are frequently identified as main limitations to make most benefit from social media in healthcare. The objective of the paper is to contribute to the analysis of healthcare social networks (SN), and online healthcare social network services (SNS) by proposing a formal architectural analysis of healthcare SN and SNS, considering the complexity of both systems, but stressing on quality, safety and usability aspects. Quality policies are necessary to control the quality of content published by experts and consumers. Privacy and safety policies protect against inappropriate use of information and users responsibility for sharing information. After the policies are established and documented, a proof of concept online SNS supporting primary healthcare promotion is presented in the paper.

  19. Development of Computer Science Disciplines - A Social Network Analysis Approach

    CERN Document Server

    Pham, Manh Cuong; Jarke, Matthias

    2011-01-01

    In contrast to many other scientific disciplines, computer science considers conference publications. Conferences have the advantage of providing fast publication of papers and of bringing researchers together to present and discuss the paper with peers. Previous work on knowledge mapping focused on the map of all sciences or a particular domain based on ISI published JCR (Journal Citation Report). Although this data covers most of important journals, it lacks computer science conference and workshop proceedings. That results in an imprecise and incomplete analysis of the computer science knowledge. This paper presents an analysis on the computer science knowledge network constructed from all types of publications, aiming at providing a complete view of computer science research. Based on the combination of two important digital libraries (DBLP and CiteSeerX), we study the knowledge network created at journal/conference level using citation linkage, to identify the development of sub-disciplines. We investiga...

  20. Expertise finding in bibliographic network: topic dominance learning approach.

    Science.gov (United States)

    Neshati, Mahmood; Hashemi, Seyyed Hadi; Beigy, Hamid

    2014-12-01

    Expert finding problem in bibliographic networks has received increased interest in recent years. This problem concerns finding relevant researchers for a given topic. Motivated by the observation that rarely do all coauthors contribute to a paper equally, in this paper, we propose two discriminative methods for realizing leading authors contributing in a scientific publication. Specifically, we cast the problem of expert finding in a bibliographic network to find leading experts in a research group, which is easier to solve. We recognize three feature groups that can discriminate relevant experts from other authors of a document. Experimental results on a real dataset, and a synthetic one that is gathered from a Microsoft academic search engine, show that the proposed model significantly improves the performance of expert finding in terms of all common information retrieval evaluation metrics.

  1. Coevolutionary network approach to cultural dynamics controlled by intolerance

    Science.gov (United States)

    Gracia-Lázaro, Carlos; Quijandría, Fernando; Hernández, Laura; Floría, Luis Mario; Moreno, Yamir

    2011-12-01

    Starting from Axelrod's model of cultural dissemination, we introduce a rewiring probability, enabling agents to cut the links with their unfriendly neighbors if their cultural similarity is below a tolerance parameter. For low values of tolerance, rewiring promotes the convergence to a frozen monocultural state. However, intermediate tolerance values prevent rewiring once the network is fragmented, resulting in a multicultural society even for values of initial cultural diversity in which the original Axelrod model reaches globalization.

  2. Party Polarization in Congress: A Network Science Approach

    OpenAIRE

    Waugh, Andrew Scott; Pei, Liuyi; Fowler, James H.; Mucha, Peter J; Porter, Mason A.

    2009-01-01

    We measure polarization in the United States Congress using the network science concept of modularity. Modularity provides a conceptually-clear measure of polarization that reveals both the number of relevant groups and the strength of inter-group divisions without making restrictive assumptions about the structure of the party system or the shape of legislator utilities. We show that party influence on Congressional blocs varies widely throughout history, and that existing measures underesti...

  3. A statistical mechanics approach to autopoietic immune networks

    Science.gov (United States)

    Barra, Adriano; Agliari, Elena

    2010-07-01

    In this work we aim to bridge theoretical immunology and disordered statistical mechanics. We introduce a model for the behavior of B-cells which naturally merges the clonal selection theory and the autopoietic network theory as a whole. From the analysis of its features we recover several basic phenomena such as low-dose tolerance, dynamical memory of antigens and self/non-self discrimination.

  4. Modeling of methane emissions using artificial neural network approach

    Directory of Open Access Journals (Sweden)

    Stamenković Lidija J.

    2015-01-01

    Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007

  5. Robust CDMA multiuser detection using a neural-network approach.

    Science.gov (United States)

    Chuah, Teong Chee; Sharif, B S; Hinton, O R

    2002-01-01

    Abstract-Recently, a robust version of the linear decorrelating detector (LDD) based on the Huber's M-estimation technique has been proposed. In this paper, we first demonstrate the use of a three-layer recurrent neural network (RNN) to implement the LDD without requiring matrix inversion. The key idea is based on minimizing an appropriate computational energy function iteratively. Second, it will be shown that the M-decorrelating detector (MDD) can be implemented by simply incorporating sigmoidal neurons in the first layer of the RNN. A proof of the redundancy of the matrix inversion process is provided and the computational saving in realistic network is highlighted. Third, we illustrate how further performance gain could be achieved for the subspace-based blind MDD by using robust estimates of the signal subspace components in the initial stage. The impulsive noise is modeled using non-Gaussian alpha-stable distributions, which do not include a Gaussian component but facilitate the use of the recently proposed geometric signal-to-noise ratio (G-SNR). The characteristics and performance of the proposed neural-network detectors are investigated by computer simulation.

  6. A stochastic moment based approach of the biochemical reaction networks

    Science.gov (United States)

    Vlysidis, Michail; Kaznessis, Yiannis

    Biological systems are wonderfully complex. In order to gain a better understanding on how the complexity dictates the biological functions, it is important to investigate the underlying dynamic interactions of the biomolecular components. These interactions are governed by random events and thus stochastic models are needed to gain fundamental insight. However, stochastic models tend to be more difficult to fit to experimental data and are computationally demanding. We have developed a closure scheme method that calculates the stationary probability distribution of stochastic biochemical reaction networks. The method postulates that only a finite number of probability moments is necessary to capture all of the system's information, which can be achieved by maximizing the information entropy of the system. We attempt to provide useful information about the mesoscopic behavior of biochemical reaction networks with the help of the aforementioned closure scheme method. For our analysis, we study the Schlögl model reaction network, a simple single component system that can exhibit bistability. Finally, we wonder whether the maximization of entropy can be a general criterion for establishing non-equilibrium steady state of biochemical reacting systems.

  7. A network biology approach to denitrification in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Seda Arat

    Full Text Available Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO2, nitric oxide (NO and nitrous oxide (N2O. This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O2, nitrate (NO3, and phosphate (PO4 suggests that PO4 concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO4 on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N2O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA. Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.

  8. Predicting forest insect flight activity: A Bayesian network approach.

    Science.gov (United States)

    Pawson, Stephen M; Marcot, Bruce G; Woodberry, Owen G

    2017-01-01

    Daily flight activity patterns of forest insects are influenced by temporal and meteorological conditions. Temperature and time of day are frequently cited as key drivers of activity; however, complex interactions between multiple contributing factors have also been proposed. Here, we report individual Bayesian network models to assess the probability of flight activity of three exotic insects, Hylurgus ligniperda, Hylastes ater, and Arhopalus ferus in a managed plantation forest context. Models were built from 7,144 individual hours of insect sampling, temperature, wind speed, relative humidity, photon flux density, and temporal data. Discretized meteorological and temporal variables were used to build naïve Bayes tree augmented networks. Calibration results suggested that the H. ater and A. ferus Bayesian network models had the best fit for low Type I and overall errors, and H. ligniperda had the best fit for low Type II errors. Maximum hourly temperature and time since sunrise had the largest influence on H. ligniperda flight activity predictions, whereas time of day and year had the greatest influence on H. ater and A. ferus activity. Type II model errors for the prediction of no flight activity is improved by increasing the model's predictive threshold. Improvements in model performance can be made by further sampling, increasing the sensitivity of the flight intercept traps, and replicating sampling in other regions. Predicting insect flight informs an assessment of the potential phytosanitary risks of wood exports. Quantifying this risk allows mitigation treatments to be targeted to prevent the spread of invasive species via international trade pathways.

  9. Network-based stochastic competitive learning approach to disambiguation in collaborative networks.

    Science.gov (United States)

    Christiano Silva, Thiago; Raphael Amancio, Diego

    2013-03-01

    Many patterns have been uncovered in complex systems through the application of concepts and methodologies of complex networks. Unfortunately, the validity and accuracy of the unveiled patterns are strongly dependent on the amount of unavoidable noise pervading the data, such as the presence of homonymous individuals in social networks. In the current paper, we investigate the problem of name disambiguation in collaborative networks, a task that plays a fundamental role on a myriad of scientific contexts. In special, we use an unsupervised technique which relies on a particle competition mechanism in a networked environment to detect the clusters. It has been shown that, in this kind of environment, the learning process can be improved because the network representation of data can capture topological features of the input data set. Specifically, in the proposed disambiguating model, a set of particles is randomly spawned into the nodes constituting the network. As time progresses, the particles employ a movement strategy composed of a probabilistic convex mixture of random and preferential walking policies. In the former, the walking rule exclusively depends on the topology of the network and is responsible for the exploratory behavior of the particles. In the latter, the walking rule depends both on the topology and the domination levels that the particles impose on the neighboring nodes. This type of behavior compels the particles to perform a defensive strategy, because it will force them to revisit nodes that are already dominated by them, rather than exploring rival territories. Computer simulations conducted on the networks extracted from the arXiv repository of preprint papers and also from other databases reveal the effectiveness of the model, which turned out to be more accurate than traditional clustering methods.

  10. Network-based stochastic competitive learning approach to disambiguation in collaborative networks

    Science.gov (United States)

    Christiano Silva, Thiago; Raphael Amancio, Diego

    2013-03-01

    Many patterns have been uncovered in complex systems through the application of concepts and methodologies of complex networks. Unfortunately, the validity and accuracy of the unveiled patterns are strongly dependent on the amount of unavoidable noise pervading the data, such as the presence of homonymous individuals in social networks. In the current paper, we investigate the problem of name disambiguation in collaborative networks, a task that plays a fundamental role on a myriad of scientific contexts. In special, we use an unsupervised technique which relies on a particle competition mechanism in a networked environment to detect the clusters. It has been shown that, in this kind of environment, the learning process can be improved because the network representation of data can capture topological features of the input data set. Specifically, in the proposed disambiguating model, a set of particles is randomly spawned into the nodes constituting the network. As time progresses, the particles employ a movement strategy composed of a probabilistic convex mixture of random and preferential walking policies. In the former, the walking rule exclusively depends on the topology of the network and is responsible for the exploratory behavior of the particles. In the latter, the walking rule depends both on the topology and the domination levels that the particles impose on the neighboring nodes. This type of behavior compels the particles to perform a defensive strategy, because it will force them to revisit nodes that are already dominated by them, rather than exploring rival territories. Computer simulations conducted on the networks extracted from the arXiv repository of preprint papers and also from other databases reveal the effectiveness of the model, which turned out to be more accurate than traditional clustering methods.

  11. Inferring Gene Regulatory Networks in the Arabidopsis Root Using a Dynamic Bayesian Network Approach.

    Science.gov (United States)

    de Luis Balaguer, Maria Angels; Sozzani, Rosangela

    2017-01-01

    Gene regulatory network (GRN) models have been shown to predict and represent interactions among sets of genes. Here, we first show the basic steps to implement a simple but computationally efficient algorithm to infer GRNs based on dynamic Bayesian networks (DBNs), and we then explain how to approximate DBN-based GRN models with continuous models. In addition, we show a MATLAB implementation of the key steps of this method, which we use to infer an Arabidopsis root GRN.

  12. Comparing Models of Helper Behavior to Actual Practice in Telephone Crisis Intervention: A Silent Monitoring Study of Calls to the U.S. 1-800-SUICIDE Network

    Science.gov (United States)

    Mishara, Brian L.; Chagnon, Francois; Daigle, Marc; Balan, Bogdan; Raymond, Sylvaine; Marcoux, Isabelle; Bardon, Cecile; Campbell, Julie K.; Berman, Alan

    2007-01-01

    Models of telephone crisis intervention in suicide prevention and best practices were developed from a literature review and surveys of crisis centers. We monitored 2,611 calls to 14 centers using reliable behavioral ratings to compare actual interventions with the models. Active listening and collaborative problem-solving models describe help…

  13. Applying a social network analysis (SNA) approach to understanding radiologists' performance in reading mammograms

    Science.gov (United States)

    Tavakoli Taba, Seyedamir; Hossain, Liaquat; Heard, Robert; Brennan, Patrick; Lee, Warwick; Lewis, Sarah

    2017-03-01

    Rationale and objectives: Observer performance has been widely studied through examining the characteristics of individuals. Applying a systems perspective, while understanding of the system's output, requires a study of the interactions between observers. This research explains a mixed methods approach to applying a social network analysis (SNA), together with a more traditional approach of examining personal/ individual characteristics in understanding observer performance in mammography. Materials and Methods: Using social networks theories and measures in order to understand observer performance, we designed a social networks survey instrument for collecting personal and network data about observers involved in mammography performance studies. We present the results of a study by our group where 31 Australian breast radiologists originally reviewed 60 mammographic cases (comprising of 20 abnormal and 40 normal cases) and then completed an online questionnaire about their social networks and personal characteristics. A jackknife free response operating characteristic (JAFROC) method was used to measure performance of radiologists. JAFROC was tested against various personal and network measures to verify the theoretical model. Results: The results from this study suggest a strong association between social networks and observer performance for Australian radiologists. Network factors accounted for 48% of variance in observer performance, in comparison to 15.5% for the personal characteristics for this study group. Conclusion: This study suggest a strong new direction for research into improving observer performance. Future studies in observer performance should consider social networks' influence as part of their research paradigm, with equal or greater vigour than traditional constructs of personal characteristics.

  14. F-MAP: A Bayesian approach to infer the gene regulatory network using external hints.

    Science.gov (United States)

    Shahdoust, Maryam; Pezeshk, Hamid; Mahjub, Hossein; Sadeghi, Mehdi

    2017-01-01

    The Common topological features of related species gene regulatory networks suggest reconstruction of the network of one species by using the further information from gene expressions profile of related species. We present an algorithm to reconstruct the gene regulatory network named; F-MAP, which applies the knowledge about gene interactions from related species. Our algorithm sets a Bayesian framework to estimate the precision matrix of one species microarray gene expressions dataset to infer the Gaussian Graphical model of the network. The conjugate Wishart prior is used and the information from related species is applied to estimate the hyperparameters of the prior distribution by using the factor analysis. Applying the proposed algorithm on six related species of drosophila shows that the precision of reconstructed networks is improved considerably compared to the precision of networks constructed by other Bayesian approaches.

  15. Actor Network Theory Approach and its Application in Investigating Agricultural Climate Information System

    Directory of Open Access Journals (Sweden)

    Maryam Sharifzadeh

    2013-03-01

    Full Text Available Actor network theory as a qualitative approach to study complex social factors and process of socio-technical interaction provides new concepts and ideas to understand socio-technical nature of information systems. From the actor network theory viewpoint, agricultural climate information system is a network consisting of actors, actions and information related processes (production, transformation, storage, retrieval, integration, diffusion and utilization, control and management, and system mechanisms (interfaces and networks. Analysis of such systemsembody the identification of basic components and structure of the system (nodes –thedifferent sources of information production, extension, and users, and the understanding of how successfully the system works (interaction and links – in order to promote climate knowledge content and improve system performance to reach agricultural development. The present research attempted to introduce actor network theory as research framework based on network view of agricultural climate information system.

  16. Multiscale complex network analysis: An approach to study spatiotemporal rainfall pattern in south Germany

    Science.gov (United States)

    Agarwal, Ankit; Marwan, Norbert; Rathinasamy, Maheswaran; Oeztuerk, Ugur; Merz, Bruno; Kurths, Jürgen

    2017-04-01

    Understanding of the climate sytems has been of tremendous importance to different branches such as agriculture, flood, drought and water resources management etc. In this regard, complex networks analysis and time series analysis attracted considerable attention, owing to their potential role in understanding the climate system through characteristic properties. One of the basic requirements in studying climate network dynamics is to identify connections in space or time or space-time, depending upon the purpose. Although a wide variety of approaches have been developed and applied to identify and analyse spatio-temporal relationships by climate networks, there is still further need for improvements in particular when considering precipitation time series or interactions on different scales. In this regard, recent developments in the area of network theory, especially complex networks, offer new avenues, both for their generality about systems and for their holistic perspective about spatio-temporal relationships. The present study has made an attempt to apply the ideas developed in the field of complex networks to examine connections in regional climate networks with particular focus on multiscale spatiotemporal connections. This paper proposes a novel multiscale understanding of regional climate networks using wavelets. The proposed approach is applied to daily precipitation records observed at 543 selected stations from south Germany for a period of 110 years (1901-2010). Further, multiscale community mining is performed on the same study region to shed more light on the underlying processes at different time scales. Various network measure and tools so far employed provide micro-level (individual station) and macro-level (community structure) information of the network. It is interesting to investigate how the result of this study can be useful for future climate predictions and for evaluating climate models on their implementation regarding heavy

  17. Anomaly detection using clustering for ad hoc networks -behavioral approach-

    Directory of Open Access Journals (Sweden)

    Belacel Madani

    2012-06-01

    Full Text Available Mobile   ad   hoc   networks   (MANETs   are   multi-hop   wireless   networks   ofautonomous  mobile  nodes  without  any  fixed  infrastructure.  In  MANETs,  it  isdifficult to detect malicious nodes because the network topology constantly changesdue  to  node  mobility.  Intrusion  detection  is  the  means  to  identify  the  intrusivebehaviors and provide useful information to intruded systems to respond fast and toavoid  or  reduce  damages.  The  anomaly  detection  algorithms  have  the  advantagebecause  they  can  detect  new  types  of  attacks  (zero-day  attacks.In  this  paper,  wepresent  a  Intrusion  Detection  System  clustering-based  (ID-Cluster  that  fits  therequirement of MANET. This dissertation addresses both routing layer misbehaviorsissues,  with  main  focuses  on  thwarting  routing  disruption  attack  Dynamic  SourceRouting  (DSR.  To  validate  the  research,  a  case  study  is  presented  using  thesimulation with GloMoSum at different mobility levels. Simulation results show thatour  proposed  system  can  achieve  desirable  performance  and  meet  the  securityrequirement of MANET.

  18. Ontology based approach for video transmission over the network

    OpenAIRE

    Rachit Mohan Garg; Yamini Sood; Neha Tyagi

    2011-01-01

    With the increase in the bandwidth & the transmission speed over the internet, transmission of multimedia objects like video, audio, images has become an easier work. In this paper we provide an approach that can be useful for transmission of video objects over the internet without much fuzz. The approach provides a ontology based framework that is used to establish an automatic deployment of video transmission system. Further the video is compressed using the structural flow mechanism tha...

  19. Intelligent networks recent approaches and applications in medical systems

    CERN Document Server

    Ahamed, Syed V

    2013-01-01

    This textbook offers an insightful study of the intelligent Internet-driven revolutionary and fundamental forces at work in society. Readers will have access to tools and techniques to mentor and monitor these forces rather than be driven by changes in Internet technology and flow of money. These submerged social and human forces form a powerful synergistic foursome web of (a) processor technology, (b) evolving wireless networks of the next generation, (c) the intelligent Internet, and (d) the motivation that drives individuals and corporations. In unison, the technological forces can tear

  20. Neural Networks in Antennas and Microwaves: A Practical Approach

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2001-12-01

    Full Text Available Neural networks are electronic systems which can be trained toremember behavior of a modeled structure in given operational points,and which can be used to approximate behavior of the structure out ofthe training points. These approximation abilities of neural nets aredemonstrated on modeling a frequency-selective surface, a microstriptransmission line and a microstrip dipole. Attention is turned to theaccuracy and to the efficiency of neural models. The association ofneural models and genetic algorithms, which can provide a global designtool, is discussed.

  1. HIV/AIDS Communication Inequalities and Associated Cognitive and Affective Outcomes: A Call for a Socioecological Approach to AIDS Communication in Sub-Saharan Africa.

    Science.gov (United States)

    Bekalu, Mesfin Awoke; Eggermont, Steven; Viswanath, K Vish

    2017-06-01

    Three-and-a-half decades on, no cure or vaccine is yet on the horizon for HIV, making effective behavior change communication (BCC) the key preventive strategy. Despite considerable success, HIV/AIDS BCC efforts have long been criticized for their primary focus on the individual-level field of influence, drawing on the more reductionist view of causation at the individual level. In view of this, we conducted a series of studies that employed a household survey, field experiment, and textual content analysis, and explored the macro-social-level effects of HIV/AIDS-related media and messages on HIV/AIDS cognitive and affective outcomes in Ethiopia. Against a backdrop of epidemiological and socioecological differences, urban versus rural residence has emerged as an important community-level factor that impacts HIV/AIDS-related media and message consumption processes and associated outcomes. The central thread crossing through the six studies included in this paper demonstrates that urban and rural people in high HIV prevalence contexts differ in their concern about and information needs on HIV/AIDS, HIV/AIDS-related media use, and HIV/AIDS-related cognitive and affective outcomes, as well as in their reaction to differently designed/framed HIV prevention messages. This paper proposes that HIV prevention media and message effects in high epidemic situations should be considered from a larger community-level perspective and calls for a socioecological approach to AIDS communication in the hard-hit sub-Saharan Africa. With a number of concrete recommendations to current and future HIV/AIDS BCC efforts in the region, the study joins an emerging body of health communication literature and theorizing that suggests the need to consider media and message effects from a macro-social perspective.

  2. Link removal for the control of stochastically evolving epidemics over networks: A comparison of approaches

    Science.gov (United States)

    Brandeau, Margaret L.

    2015-01-01

    For many communicable diseases, knowledge of the underlying contact network through which the disease spreads is essential to determining appropriate control measures. When behavior change is the primary intervention for disease prevention, it is important to understand how to best modify network connectivity using the limited resources available to control disease spread. We describe and compare four algorithms for selecting a limited number of links to remove from a network: two “preventive” approaches (edge centrality, R0 minimization), where the decision of which links to remove is made prior to any disease outbreak and depends only on the network structure; and two “reactive” approaches (S-I edge centrality, optimal quarantining), where information about the initial disease states of the nodes is incorporated into the decision of which links to remove. We evaluate the performance of these algorithms in minimizing the total number of infections that occur over the course of an acute outbreak of disease. We consider different network structures, including both static and dynamic Erdős-Rényi random networks with varying levels of connectivity, a real-world network of residential hotels connected through injection drug use, and a network exhibiting community structure. We show that reactive approaches outperform preventive approaches in averting infections. Among reactive approaches, removing links in order of S-I edge centrality is favored when the link removal budget is small, while optimal quarantining performs best when the link removal budget is sufficiently large. The budget threshold above which optimal quarantining outperforms the S-I edge centrality algorithm is a function of both network structure (higher for unstructured Erdős-Rényi random networks compared to networks with community structure or the real-world network) and disease infectiousness (lower for highly infectious diseases). We conduct a value-of-information analysis of knowing

  3. Model-Driven Approach for Body Area Network Application Development

    Science.gov (United States)

    Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata

    2016-01-01

    This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application. PMID:27187394

  4. A neural network approach to lung nodule segmentation

    Science.gov (United States)

    Hu, Yaoxiu; Menon, Prahlad G.

    2016-03-01

    Computed tomography (CT) imaging is a sensitive and specific lung cancer screening tool for the high-risk population and shown to be promising for detection of lung cancer. This study proposes an automatic methodology for detecting and segmenting lung nodules from CT images. The proposed methods begin with thorax segmentation, lung extraction and reconstruction of the original shape of the parenchyma using morphology operations. Next, a multi-scale hessian-based vesselness filter is applied to extract lung vasculature in lung. The lung vasculature mask is subtracted from the lung region segmentation mask to extract 3D regions representing candidate pulmonary nodules. Finally, the remaining structures are classified as nodules through shape and intensity features which are together used to train an artificial neural network. Up to 75% sensitivity and 98% specificity was achieved for detection of lung nodules in our testing dataset, with an overall accuracy of 97.62%+/-0.72% using 11 selected features as input to the neural network classifier, based on 4-fold cross-validation studies. Receiver operator characteristics for identifying nodules revealed an area under curve of 0.9476.

  5. Model-Driven Approach for Body Area Network Application Development.

    Science.gov (United States)

    Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata

    2016-05-12

    This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application.

  6. Associative nature of event participation dynamics: A network theory approach

    Science.gov (United States)

    Smiljanić, Jelena; Mitrović Dankulov, Marija

    2017-01-01

    The affiliation with various social groups can be a critical factor when it comes to quality of life of each individual, making such groups an essential element of every society. The group dynamics, longevity and effectiveness strongly depend on group’s ability to attract new members and keep them engaged in group activities. It was shown that high heterogeneity of scientist’s engagement in conference activities of the specific scientific community depends on the balance between the numbers of previous attendances and non-attendances and is directly related to scientist’s association with that community. Here we show that the same holds for leisure groups of the Meetup website and further quantify individual members’ association with the group. We examine how structure of personal social networks is evolving with the event attendance. Our results show that member’s increasing engagement in the group activities is primarily associated with the strengthening of already existing ties and increase in the bonding social capital. We also show that Meetup social networks mostly grow trough big events, while small events contribute to the groups cohesiveness. PMID:28166305

  7. The propagation approach for computing biochemical reaction networks.

    Science.gov (United States)

    Henzinger, Thomas A; Mateescu, Maria

    2013-01-01

    We introduce propagation models (PMs), a formalism able to express several kinds of equations that describe the behavior of biochemical reaction networks. Furthermore, we introduce the propagation abstract data type (PADT), which separates concerns regarding different numerical algorithms for the transient analysis of biochemical reaction networks from concerns regarding their implementation, thus allowing for portable and efficient solutions. The state of a propagation abstract data type is given by a vector that assigns mass values to a set of nodes, and its next operator propagates mass values through this set of nodes. We propose an approximate implementation of the next operator, based on threshold abstraction, which propagates only "significant" mass values and thus achieves a compromise between efficiency and accuracy. Finally, we give three use cases for propagation models: the chemical master equation (CME), the reaction rate equation (RRE), and a hybrid method that combines these two equations. These three applications use propagation models in order to propagate probabilities and/or expected values and variances of the model's variables.

  8. Simple Electromagnetic Modeling of Small Airplanes: Neural Network Approach

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper deals with the development of simple electromagnetic models of small airplanes, which can contain composite materials in their construction. Electromagnetic waves can penetrate through the surface of the aircraft due to the specific electromagnetic properties of the composite materials, which can increase the intensity of fields inside the airplane and can negatively influence the functionality of the sensitive avionics. The airplane is simulated by two parallel dielectric layers (the left-hand side wall and the right-hand side wall of the airplane. The layers are put into a rectangular metallic waveguide terminated by the absorber in order to simulate the illumination of the airplane by the external wave (both of the harmonic nature and pulse one. Thanks to the simplicity of the model, the parametric analysis can be performed, and the results can be used in order to train an artificial neural network. The trained networks excel in further reduction of CPU-time demands of an airplane modeling.

  9. Model-Driven Approach for Body Area Network Application Development

    Directory of Open Access Journals (Sweden)

    Algimantas Venčkauskas

    2016-05-01

    Full Text Available This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS. We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application.

  10. Copercolating Networks: An Approach for Realizing High-Performance Transparent Conductors using Multicomponent Nanostructured Networks

    Directory of Open Access Journals (Sweden)

    Das Suprem R.

    2016-06-01

    Full Text Available Although transparent conductive oxides such as indium tin oxide (ITO are widely employed as transparent conducting electrodes (TCEs for applications such as touch screens and displays, new nanostructured TCEs are of interest for future applications, including emerging transparent and flexible electronics. A number of twodimensional networks of nanostructured elements have been reported, including metallic nanowire networks consisting of silver nanowires, metallic carbon nanotubes (m-CNTs, copper nanowires or gold nanowires, and metallic mesh structures. In these single-component systems, it has generally been difficult to achieve sheet resistances that are comparable to ITO at a given broadband optical transparency. A relatively new third category of TCEs consisting of networks of 1D-1D and 1D-2D nanocomposites (such as silver nanowires and CNTs, silver nanowires and polycrystalline graphene, silver nanowires and reduced graphene oxide have demonstrated TCE performance comparable to, or better than, ITO. In such hybrid networks, copercolation between the two components can lead to relatively low sheet resistances at nanowire densities corresponding to high optical transmittance. This review provides an overview of reported hybrid networks, including a comparison of the performance regimes achievable with those of ITO and single-component nanostructured networks. The performance is compared to that expected from bulk thin films and analyzed in terms of the copercolation model. In addition, performance characteristics relevant for flexible and transparent applications are discussed. The new TCEs are promising, but significant work must be done to ensure earth abundance, stability, and reliability so that they can eventually replace traditional ITO-based transparent conductors.

  11. Routing in Mobile Wireless Sensor Networks: A Leader-Based Approach.

    Science.gov (United States)

    Burgos, Unai; Amozarrain, Ugaitz; Gómez-Calzado, Carlos; Lafuente, Alberto

    2017-07-07

    This paper presents a leader-based approach to routing in Mobile Wireless Sensor Networks (MWSN). Using local information from neighbour nodes, a leader election mechanism maintains a spanning tree in order to provide the necessary adaptations for efficient routing upon the connectivity changes resulting from the mobility of sensors or sink nodes. We present two protocols following the leader election approach, which have been implemented using Castalia and OMNeT++. The protocols have been evaluated, besides other reference MWSN routing protocols, to analyse the impact of network size and node velocity on performance, which has demonstrated the validity of our approach.

  12. Disconnected by design: analytic approach in treatment networks having no common comparator.

    Science.gov (United States)

    Goring, S M; Gustafson, P; Liu, Y; Saab, S; Cline, S K; Platt, R W

    2016-12-01

    In a network meta-analysis, comparators of interest are ideally connected either directly or via one or more common comparators. However, in some therapeutic areas, the evidence base can produce networks that are disconnected, in which there is neither direct evidence nor an indirect route for comparing certain treatments within the network. Disconnected networks may occur when there is no accepted standard of care, when there has been a major paradigm shift in treatment, when use of a standard of care or placebo is debated, when a product receives orphan drug designation, or when there is a large number of available treatments and many accepted standards of care. These networks pose a challenge to decision makers and clinicians who want to estimate the relative efficacy and safety of newly available agents against alternatives. A currently recommended approach is to insert a distribution for the unknown treatment effect(s) into a network meta-analysis model of treatment effect. In this paper, we describe this approach along with two alternative Bayesian models that can accommodate disconnected networks. Additionally, we present a theoretical framework to guide the choice between modeling approaches. This paper presents researchers with the tools and framework for selecting appropriate models for indirect comparison of treatment efficacies when challenged with a disconnected framework. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Optimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach

    Science.gov (United States)

    Chiadamrong, N.; Piyathanavong, V.

    2017-04-01

    Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.

  14. Reconstructing Networks from Profit Sequences in Evolutionary Games via a Multiobjective Optimization Approach with Lasso Initialization

    Science.gov (United States)

    Wu, Kai; Liu, Jing; Wang, Shuai

    2016-11-01

    Evolutionary games (EG) model a common type of interactions in various complex, networked, natural and social systems. Given such a system with only profit sequences being available, reconstructing the interacting structure of EG networks is fundamental to understand and control its collective dynamics. Existing approaches used to handle this problem, such as the lasso, a convex optimization method, need a user-defined constant to control the tradeoff between the natural sparsity of networks and measurement error (the difference between observed data and simulated data). However, a shortcoming of these approaches is that it is not easy to determine these key parameters which can maximize the performance. In contrast to these approaches, we first model the EG network reconstruction problem as a multiobjective optimization problem (MOP), and then develop a framework which involves multiobjective evolutionary algorithm (MOEA), followed by solution selection based on knee regions, termed as MOEANet, to solve this MOP. We also design an effective initialization operator based on the lasso for MOEA. We apply the proposed method to reconstruct various types of synthetic and real-world networks, and the results show that our approach is effective to avoid the above parameter selecting problem and can reconstruct EG networks with high accuracy.

  15. A Monte Carlo EM approach for partially observable diffusion processes: theory and applications to neural networks.

    Science.gov (United States)

    Movellan, Javier R; Mineiro, Paul; Williams, R J

    2002-07-01

    We present a Monte Carlo approach for training partially observable diffusion processes. We apply the approach to diffusion networks, a stochastic version of continuous recurrent neural networks. The approach is aimed at learning probability distributions of continuous paths, not just expected values. Interestingly, the relevant activation statistics used by the learning rule presented here are inner products in the Hilbert space of square integrable functions. These inner products can be computed using Hebbian operations and do not require backpropagation of error signals. Moreover, standard kernel methods could potentially be applied to compute such inner products. We propose that the main reason that recurrent neural networks have not worked well in engineering applications (e.g., speech recognition) is that they implicitly rely on a very simplistic likelihood model. The diffusion network approach proposed here is much richer and may open new avenues for applications of recurrent neural networks. We present some analysis and simulations to support this view. Very encouraging results were obtained on a visual speech recognition task in which neural networks outperformed hidden Markov models.

  16. Neighborhoods and adolescent health-risk behavior: an ecological network approach.

    Science.gov (United States)

    Browning, Christopher R; Soller, Brian; Jackson, Aubrey L

    2015-01-01

    This study integrates insights from social network analysis, activity space perspectives, and theories of urban and spatial processes to present an novel approach to neighborhood effects on health-risk behavior among youth. We suggest spatial patterns of neighborhood residents' non-home routines may be conceptualized as ecological, or "eco"-networks, which are two-mode networks that indirectly link residents through socio-spatial overlap in routine activities. We further argue structural configurations of eco-networks are consequential for youth's behavioral health. In this study we focus on a key structural feature of eco-networks--the neighborhood-level extent to which household dyads share two or more activity locations, or eco-network reinforcement--and its association with two dimensions of health-risk behavior, substance use and delinquency/sexual activity. Using geographic data on non-home routine activity locations among respondents from the Los Angeles Family and Neighborhood Survey (L.A.FANS), we constructed neighborhood-specific eco-networks by connecting sampled households to "activity clusters," which are sets of spatially-proximate activity locations. We then measured eco-network reinforcement and examined its association with dimensions of adolescent health risk behavior employing a sample of 830 youth ages 12-17 nested in 65 census tracts. We also examined whether neighborhood-level social processes (collective efficacy and intergenerational closure) mediate the association between eco-network reinforcement and the outcomes considered. Results indicated eco-network reinforcement exhibits robust negative associations with both substance use and delinquency/sexual activity scales. Eco-network reinforcement effects were not explained by potential mediating variables. In addition to introducing a novel theoretical and empirical approach to neighborhood effects on youth, our findings highlight the importance of intersecting conventional routines for

  17. A game-theoretical approach to multimedia social networks security.

    Science.gov (United States)

    Liu, Enqiang; Liu, Zengliang; Shao, Fei; Zhang, Zhiyong

    2014-01-01

    The contents access and sharing in multimedia social networks (MSNs) mainly rely on access control models and mechanisms. Simple adoptions of security policies in the traditional access control model cannot effectively establish a trust relationship among parties. This paper proposed a novel two-party trust architecture (TPTA) to apply in a generic MSN scenario. According to the architecture, security policies are adopted through game-theoretic analyses and decisions. Based on formalized utilities of security policies and security rules, the choice of security policies in content access is described as a game between the content provider and the content requester. By the game method for the combination of security policies utility and its influences on each party's benefits, the Nash equilibrium is achieved, that is, an optimal and stable combination of security policies, to establish and enhance trust among stakeholders.

  18. A Poroelastic Approach for Quantifying Gel Network Properties

    Science.gov (United States)

    Chan, Edwin; Nadermann, Nichole; Feldman, Katie; Davis, Eric

    The unique chemical and structural properties of polymer gels has led to the application of these materials in various membrane-based technologies where selective transport is critical to device performance. Characterizing the chemical and structural properties of a gel is critical to understanding its transport behavior. yet quantifying these properties is nontrivial as it typically requires multiple measurement techniques. In this talk, we demonstrate poroelastic relaxation indentation (PRI) as a single measurement tool to characterize the swelling, mechanical and transport properties of model poly(ethylene glycol)-based hydrogel systems. By applying the appropriate thermodynamic polymer network model and the linear theory of poroelasticity, we are able to use the results from PRI to extract the thermodynamic parameters, elastic modulus, water permeability and mesh size of these gels. We validate these results with small angle neutron scattering to illustrate the applicability of the PRI measurement technique for studying these membrane-like materials.

  19. An artificial neural networks approach in managing healthcare.

    Science.gov (United States)

    Okoroh, Michael Iheoma; Ilozor, Benedict Dozie; Gombera, Peter

    2007-01-01

    Hospitals as learning organisations have evolved through complex phases of service failures and continuous service improvement to meet the business needs of a varied continuum of care customers. This paper explores the use of Artificial Neural Network (ANN) in the development of a decision support system to manage healthcare non-clinical services. The information (postal questionnaires and repertory grid interviews) used to develop the input to the National Healthcare Service Facilities Risk Exposure System (NHSFRES) was articulated from 60 experienced healthcare operators. The system provides a reasonable early warning signal to the healthcare managers, and can be used by decision makers to evaluate the severity of risks on healthcare non clinical business operations. The advantage of using NHSFRES is that healthcare managers can provide their own risk assessment values (point score system) based on their own healthcare management business knowledge/judgement and corporate objectives.

  20. Associative nature of event participation dynamics: a network theory approach

    CERN Document Server

    Smiljanić, Jelena

    2016-01-01

    Affiliation with various social groups can be a critical factor when it comes to quality of life of every individual, making these groups an essential element of every society. The group dynamics, longevity and effectiveness strongly depend on group's ability to attract new members and keep them engaged in group activities. It was shown that high heterogeneity of scientist's engagement in conference activities of the specific scientific community depends on the balance between the number of previous attendance and non-attendance and is directly related to scientist's association with that community. Here we show that the same holds for leisure groups of Meetup website and further quantify member's association with the group. We examine how structure of personal social networks is evolving with event attendance. Our results show that member's increasing engagement in group activities is primarily associated with the strengthening of already existing ties and increase of bonding social capital. We also show tha...

  1. A scenario planning approach for disasters on Swiss road network

    Science.gov (United States)

    Mendes, G. A.; Axhausen, K. W.; Andrade, J. S.; Herrmann, H. J.

    2014-05-01

    We study a vehicular traffic scenario on Swiss roads in an emergency situation, calculating how sequentially roads block due to excessive traffic load until global collapse (gridlock) occurs and in this way displays the fragilities of the system. We used a database from Bundesamt für Raumentwicklung which contains length and maximum allowed speed of all roads in Switzerland. The present work could be interesting for government agencies in planning and managing for emergency logistics for a country or a big city. The model used to generate the flux on the Swiss road network was proposed by Mendes et al. [Physica A 391, 362 (2012)]. It is based on the conservation of the number of vehicles and allows for an easy and fast way to follow the formation of traffic jams in large systems. We also analyze the difference between a nonlinear and a linear model and the distribution of fluxes on the Swiss road.

  2. Dropping Probability Reduction in OBS Networks: A Simple Approach

    KAUST Repository

    Elrasad, Amr

    2016-08-01

    In this paper, we propose and derive a slotted-time model for analyzing the burst blocking probability in Optical Burst Switched (OBS) networks. We evaluated the immediate and delayed signaling reservation schemes. The proposed model compares the performance of both just-in-time (JIT) and just-enough-time (JET) signaling protocols associated with of void/non-void filling link scheduling schemes. It also considers none and limited range wavelength conversions scenarios. Our model is distinguished by being adaptable to different offset-time and burst length distributions. We observed that applying a limited range of wavelength conversion, burst blocking probability is reduced by several orders of magnitudes and yields a better burst delivery ratio compared with full wavelength conversion.

  3. Transfer Error and Correction Approach in Mobile Network

    Science.gov (United States)

    Xiao-kai, Wu; Yong-jin, Shi; Da-jin, Chen; Bing-he, Ma; Qi-li, Zhou

    With the development of information technology and social progress, human demand for information has become increasingly diverse, wherever and whenever people want to be able to easily, quickly and flexibly via voice, data, images and video and other means to communicate. Visual information to the people direct and vivid image, image / video transmission also been widespread attention. Although the third generation mobile communication systems and the emergence and rapid development of IP networks, making video communications is becoming the main business of the wireless communications, however, the actual wireless and IP channel will lead to error generation, such as: wireless channel multi- fading channels generated error and blocking IP packet loss and so on. Due to channel bandwidth limitations, the video communication compression coding of data is often beyond the data, and compress data after the error is very sensitive to error conditions caused a serious decline in image quality.

  4. Mean-field approach to evolving spatial networks, with an application to osteocyte network formation

    Science.gov (United States)

    Taylor-King, Jake P.; Basanta, David; Chapman, S. Jonathan; Porter, Mason A.

    2017-07-01

    We consider evolving networks in which each node can have various associated properties (a state) in addition to those that arise from network structure. For example, each node can have a spatial location and a velocity, or it can have some more abstract internal property that describes something like a social trait. Edges between nodes are created and destroyed, and new nodes enter the system. We introduce a "local state degree distribution" (LSDD) as the degree distribution at a particular point in state space. We then make a mean-field assumption and thereby derive an integro-partial differential equation that is satisfied by the LSDD. We perform numerical experiments and find good agreement between solutions of the integro-differential equation and the LSDD from stochastic simulations of the full model. To illustrate our theory, we apply it to a simple model for osteocyte network formation within bones, with a view to understanding changes that may take place during cancer. Our results suggest that increased rates of differentiation lead to higher densities of osteocytes, but with a smaller number of dendrites. To help provide biological context, we also include an introduction to osteocytes, the formation of osteocyte networks, and the role of osteocytes in bone metastasis.

  5. Design of multimodal transport networks : A hierarchical approach

    NARCIS (Netherlands)

    Van Nes, R.

    2002-01-01

    Multimodal transport, that is using two or more transport modes for a trip between which a transfer is necessary, seems an interesting approach to solving today's transportation problems with respect to the deteriorating accessibility of city centres, recurrent congestion, and environmental impact.

  6. A bagging approach to network intrusion detection | Adetunmbi ...

    African Journals Online (AJOL)

    Experimental study was carried out on the International Knowledge Discovery and Data Mining Tools Competition (KDD) dataset for benchmarking intrusion detection systems. The results generated from the experiment revealed that ensemble approach performance on the attack types and normal is slightly better or equal ...

  7. Diffusion of innovation: a social network and organizational learning approach to governance of a districtwide leadership team

    Directory of Open Access Journals (Sweden)

    Yi-Hwa Liou

    2016-04-01

    Full Text Available District and school leaders play particularly important roles in leading districtwide improvement, as they are increasingly held accountable for bringing about change and improvement for educational innovation and excellence.  While conventional districtwide governance places much of its focus on technical and administrative matters such as policy development, supervision, and monitoring progress. This technical focus often overlooks the fundamental aspect that drives the progress of improvement—the social infrastructure shaped by interpersonal relationship. Responding to recent scholarships that calls for a networked approach to governance, this study examined the change effort of a districtwide leadership team over three points in time drawing on social network theory and analysis focused on district governance.  Specifically, we focused on the type of interpersonal relationship in which leaders engaged with each other in sharing and exchanging innovative ideas as these efforts may support better governance. Additionally, we explored organizational learning as a way to examine climate in support of districtwide innovative efforts during change process. Our findings from leaders indicated increased innovative behaviors and perceived climate on organizational learning over time. The findings suggested that leaders increased connections around risk taking, regardless of their work level over time. This increased connectedness around innovation was coupled with an increase in leaders’ perception of the district’s learning climate, suggesting a cohesive approach to governance and improvement.

  8. Overview of Data Routing Approaches for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Md. Asri Ngadi

    2012-03-01

    Full Text Available Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some specific goal(s depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals.

  9. Inverse Reliability Task: Artificial Neural Networks and Reliability-Based Optimization Approaches

    OpenAIRE

    Lehký, David; Slowik, Ondřej; Novák, Drahomír

    2014-01-01

    Part 7: Genetic Algorithms; International audience; The paper presents two alternative approaches to solve inverse reliability task – to determine the design parameters to achieve desired target reliabilities. The first approach is based on utilization of artificial neural networks and small-sample simulation Latin hypercube sampling. The second approach considers inverse reliability task as reliability-based optimization task using double-loop method and also small-sample simulation. Efficie...

  10. A computational approach to extinction events in chemical reaction networks with discrete state spaces.

    Science.gov (United States)

    Johnston, Matthew D

    2017-12-01

    Recent work of Johnston et al. has produced sufficient conditions on the structure of a chemical reaction network which guarantee that the corresponding discrete state space system exhibits an extinction event. The conditions consist of a series of systems of equalities and inequalities on the edges of a modified reaction network called a domination-expanded reaction network. In this paper, we present a computational implementation of these conditions written in Python and apply the program on examples drawn from the biochemical literature. We also run the program on 458 models from the European Bioinformatics Institute's BioModels Database and report our results. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Path selection and bandwidth allocation in MPLS networks: a nonlinear programming approach

    Science.gov (United States)

    Burns, J. E.; Ott, Teunis J.; de Kock, Johan M.; Krzesinski, Anthony E.

    2001-07-01

    Multi-protocol Label Switching extends the IPv4 destination-based routing protocols to provide new and scalable routing capabilities in connectionless networks using relatively simple packet forwarding mechanisms. MPLS networks carry traffic on virtual connections called label switched paths. This paper considers path selection and bandwidth allocation in MPLS networks in order to optimize the network quality of service. The optimization is based upon the minimization of a non-linear objective function which under light load simplifies to OSPF routing with link metrics equal to the link propagation delays. The behavior under heavy load depends on the choice of certain parameters: It can essentially be made to minimize maximal expected utilization, or to maximize minimal expected weighted slacks (both over all links). Under certain circumstances it can be made to minimize the probability that a link has an instantaneous offered load larger than its transmission capacity. We present a model of an MPLS network and an algorithm to find and capacitate optimal LSPs. The algorithm is an improvement of the well-known flow deviation non-linear programming method. The algorithm is applied to compute optimal LSPs for several test networks carrying a single traffic class.

  12. Prediction Approach of Critical Node Based on Multiple Attribute Decision Making for Opportunistic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qifan Chen

    2016-01-01

    Full Text Available Predicting critical nodes of Opportunistic Sensor Network (OSN can help us not only to improve network performance but also to decrease the cost in network maintenance. However, existing ways of predicting critical nodes in static network are not suitable for OSN. In this paper, the conceptions of critical nodes, region contribution, and cut-vertex in multiregion OSN are defined. We propose an approach to predict critical node for OSN, which is based on multiple attribute decision making (MADM. It takes RC to present the dependence of regions on Ferry nodes. TOPSIS algorithm is employed to find out Ferry node with maximum comprehensive contribution, which is a critical node. The experimental results show that, in different scenarios, this approach can predict the critical nodes of OSN better.

  13. A review of active learning approaches to experimental design for uncovering biological networks.

    Directory of Open Access Journals (Sweden)

    Yuriy Sverchkov

    2017-06-01

    Full Text Available Various types of biological knowledge describe networks of interactions among elementary entities. For example, transcriptional regulatory networks consist of interactions among proteins and genes. Current knowledge about the exact structure of such networks is highly incomplete, and laboratory experiments that manipulate the entities involved are conducted to test hypotheses about these networks. In recent years, various automated approaches to experiment selection have been proposed. Many of these approaches can be characterized as active machine learning algorithms. Active learning is an iterative process in which a model is learned from data, hypotheses are generated from the model to propose informative experiments, and the experiments yield new data that is used to update the model. This review describes the various models, experiment selection strategies, validation techniques, and successful applications described in the literature; highlights common themes and notable distinctions among methods; and identifies likely directions of future research and open problems in the area.

  14. An Iterative Approach for the Optimization of Pavement Maintenance Management at the Network Level

    Science.gov (United States)

    Torres-Machí, Cristina; Chamorro, Alondra; Videla, Carlos; Yepes, Víctor

    2014-01-01

    Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic) and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods) have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach. PMID:24741352

  15. An Iterative Approach for the Optimization of Pavement Maintenance Management at the Network Level

    Directory of Open Access Journals (Sweden)

    Cristina Torres-Machí

    2014-01-01

    Full Text Available Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach.

  16. Evolutionary Game Analysis of Competitive Information Dissemination on Social Networks: An Agent-Based Computational Approach

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2015-01-01

    Full Text Available Social networks are formed by individuals, in which personalities, utility functions, and interaction rules are made as close to reality as possible. Taking the competitive product-related information as a case, we proposed a game-theoretic model for competitive information dissemination in social networks. The model is presented to explain how human factors impact competitive information dissemination which is described as the dynamic of a coordination game and players’ payoff is defined by a utility function. Then we design a computational system that integrates the agent, the evolutionary game, and the social network. The approach can help to visualize the evolution of % of competitive information adoption and diffusion, grasp the dynamic evolution features in information adoption game over time, and explore microlevel interactions among users in different network structure under various scenarios. We discuss several scenarios to analyze the influence of several factors on the dissemination of competitive information, ranging from personality of individuals to structure of networks.

  17. Integrating - VPN and IDS - An approach to Networks Security

    OpenAIRE

    Prabha Rani; Yogesh Chaba; Yudhvir Singh

    2007-01-01

    The Internet and recent global cyber terrorism have fundamentally changed the way organizations approach security. Recent worm and virus incidents such as Code Red, Nimda, and the Slammer worm have heightened security awareness. Also, numerous other threats have emerged recently that are particularly troublesome. Hence some solution must be provided to encounter the new generation of complex threats. Building up this solution requires the Integration of different security devices. Also system...

  18. ON THE APPROACH TO SCIENTIFIC PUBLICATIONS VISIBILITY MAXIMIZATION BY THE SCIENTIFIC SOCIAL NETWORKS USAGE

    Directory of Open Access Journals (Sweden)

    A. V. Semenets

    2015-12-01

    3 Research results. Data integration of the user profiles of the scientific social networksThe maximization of visibility and bibliometrics citation increasing of the scientific papers initiated by the given above approach is discussed. The detailed strategy of the user profiles bibliometrics data integration through the scientific social networks is proposed. The role and ways to receiving of the Altmetric rating indices are mentioned.

  19. A quantitative approach to measure road network information based on edge diversity

    Science.gov (United States)

    Wu, Xun; Zhang, Hong; Lan, Tian; Cao, Weiwei; He, Jing

    2015-12-01

    The measure of map information has been one of the key issues in assessing cartographic quality and map generalization algorithms. It is also important for developing efficient approaches to transfer geospatial information. Road network is the most common linear object in real world. Approximately describe road network information will benefit road map generalization, navigation map production and urban planning. Most of current approaches focused on node diversities and supposed that all the edges are the same, which is inconsistent to real-life condition, and thus show limitations in measuring network information. As real-life traffic flow are directed and of different quantities, the original undirected vector road map was first converted to a directed topographic connectivity map. Then in consideration of preferential attachment in complex network study and rich-club phenomenon in social network, the from and to weights of each edge are assigned. The from weight of a given edge is defined as the connectivity of its end node to the sum of the connectivities of all the neighbors of the from nodes of the edge. After getting the from and to weights of each edge, edge information, node information and the whole network structure information entropies could be obtained based on information theory. The approach has been applied to several 1 square mile road network samples. Results show that information entropies based on edge diversities could successfully describe the structural differences of road networks. This approach is a complementarity to current map information measurements, and can be extended to measure other kinds of geographical objects.

  20. Applying Artificial Neural Networks to Evaluate Export Performance: A Relational Approach

    OpenAIRE

    Antonio CORREIA de BARROS; Hortensia BARANDAS; Paulo Alexandre PIRES

    2009-01-01

    The paper applies artificial neural networks to investigate the effect of the exporter’s relationship orientation on the export performance, mediated by the relationship quality, taking into account the supplier’s strategic orientation and the foreign customer’s approach to purchasing. The proposed model is supported mainly by the Second Networking Marketing Paradox, the Commitment-Trust Theory, the Relationship Marketing Paradigm and International Marketing fundamentals. The model developed,...

  1. Stabilization of a Wireless Networked Control System with Packet Loss and Time Delay: An ADS Approach

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2012-01-01

    Full Text Available The stabilization problem of a wireless networked control system is considered in this paper. Both time delay and packet loss exist simultaneously in the wireless network. The system is modeled as an asynchronous dynamic system (ADS with unstable subsystems. A sufficient condition for the system to be stable is presented. A numerical example is given to demonstrate the effectiveness of the proposed approach.

  2. New approach using Bayesian Network to improve content based image classification systems

    OpenAIRE

    jayech, Khlifia; mahjoub, mohamed ali

    2012-01-01

    This paper proposes a new approach based on augmented naive Bayes for image classification. Initially, each image is cutting in a whole of blocks. For each block, we compute a vector of descriptors. Then, we propose to carry out a classification of the vectors of descriptors to build a vector of labels for each image. Finally, we propose three variants of Bayesian Networks such as Naive Bayesian Network (NB), Tree Augmented Naive Bayes (TAN) and Forest Augmented Naive Bayes (FAN) to classify ...

  3. An Island Called Cuba

    Directory of Open Access Journals (Sweden)

    Jean Stubbs

    2011-06-01

    Full Text Available Review of: An Island Called Home: Returning to Jewish Cuba. Ruth Behar, photographs by Humberto Mayol. New Brunswick NJ: Rutgers University Press, 2007. xiii + 297 pp. (Cloth US$ 29.95 Fidel Castro: My Life: A Spoken Autobiography. Fidel Castro & Ignacio Ramonet. New York: Scribner/Simon & Schuster, 2008. vii + 724 pp. (Paper US$ 22.00, e-book US$ 14.99 Cuba: What Everyone Needs to Know. Julia E. Sweig. New York: Oxford University Press, 2009. xiv + 279 pp. (Paper US$ 16.95 [First paragraph] These three ostensibly very different books tell a compelling story of each author’s approach, as much as the subject matter itself. Fidel Castro: My Life: A Spoken Autobiography is based on a series of long interviews granted by the then-president of Cuba, Fidel Castro, to Spanish-Franco journalist Ignacio Ramonet. Cuba: What Everyone Needs to Know, by U.S. political analyst Julia Sweig, is one of a set country series, and, like Ramonet’s, presented in question/answer format. An Island Called Home: Returning to Jewish Cuba, with a narrative by Cuban-American anthropologist Ruth Behar and photographs by Cuban photographer Humberto Mayol, is a retrospective/introspective account of the Jewish presence in Cuba. While from Ramonet and Sweig we learn much about the revolutionary project, Behar and Mayol convey the lived experience of the small Jewish community against that backdrop.

  4. Validation of protein models by a neural network approach

    Directory of Open Access Journals (Sweden)

    Fantucci Piercarlo

    2008-01-01

    Full Text Available Abstract Background The development and improvement of reliable computational methods designed to evaluate the quality of protein models is relevant in the context of protein structure refinement, which has been recently identified as one of the bottlenecks limiting the quality and usefulness of protein structure prediction. Results In this contribution, we present a computational method (Artificial Intelligence Decoys Evaluator: AIDE which is able to consistently discriminate between correct and incorrect protein models. In particular, the method is based on neural networks that use as input 15 structural parameters, which include energy, solvent accessible surface, hydrophobic contacts and secondary structure content. The results obtained with AIDE on a set of decoy structures were evaluated using statistical indicators such as Pearson correlation coefficients, Znat, fraction enrichment, as well as ROC plots. It turned out that AIDE performances are comparable and often complementary to available state-of-the-art learning-based methods. Conclusion In light of the results obtained with AIDE, as well as its comparison with available learning-based methods, it can be concluded that AIDE can be successfully used to evaluate the quality of protein structures. The use of AIDE in combination with other evaluation tools is expected to further enhance protein refinement efforts.

  5. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A [Sanford-Burnham Medical Research Institute; Novichkov, Pavel S [Lawrence Berkeley National Laboratory

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated in RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.

  6. Multicast in Femtocell Networks: A Successive Interference Cancellation Approach

    Directory of Open Access Journals (Sweden)

    Donglin Hu

    2014-09-01

    Full Text Available A femtocell is a small cellular base station (BS, typically used for serving approved users within a small coverage. In this paper, we investigate the problem of data multicast in femtocell networks that incorporates superposition coding (SC and successive interference cancellation (SIC. The problem is to decide the transmission schedule for each BS, as well as the power allocation for the SC layers, to achieve a sufficiently large SNR for each layer to be decodable with SIC at each user. Minimizing the total BS power consumption achieves the goal of “green” communications. We formulate a Mixed Integer Nonlinear Programming (MINLP problem, and then reformulate the problem into a simpler form. Upper and lower performance bounds on the total BS power consumption are derived. Finally, we consider three typical connection scenarios, and develop optimal and nearoptimal algorithms for the three scenarios. The proposed algorithms have low computational complexity, and outperform a heuristic scheme with considerable gains in our simulation study.

  7. A complex network theory approach for optimizing contamination warning sensor location in water distribution networks

    OpenAIRE

    Nazempour, Rezvan; Monfared, Mohammad Ali Saniee; Zio, Enrico

    2016-01-01

    Drinking water for human health and well-being is crucial. Accidental and intentional water contamination can pose great danger to consumers. Optimal design of a system that can quickly detect the presence of contamination in a water distribution network is very challenging for technical and operational reasons. However, on the one hand improvement in chemical and biological sensor technology has created the possibility of designing efficient contamination detection systems. On the other hand...

  8. Stochastic Neural Network Approach for Learning High-Dimensional Free Energy Surfaces

    Science.gov (United States)

    Schneider, Elia; Dai, Luke; Topper, Robert Q.; Drechsel-Grau, Christof; Tuckerman, Mark E.

    2017-10-01

    The generation of free energy landscapes corresponding to conformational equilibria in complex molecular systems remains a significant computational challenge. Adding to this challenge is the need to represent, store, and manipulate the often high-dimensional surfaces that result from rare-event sampling approaches employed to compute them. In this Letter, we propose the use of artificial neural networks as a solution to these issues. Using specific examples, we discuss network training using enhanced-sampling methods and the use of the networks in the calculation of ensemble averages.

  9. Analysis and models of bilateral investment treaties using a social networks approach

    Science.gov (United States)

    Saban, Daniela; Bonomo, Flavia; Stier-Moses, Nicolás E.

    2010-09-01

    Bilateral investment treaties (BITs) are agreements between two countries for the reciprocal encouragement, promotion and protection of investments in each other’s territories by companies based in either country. Germany and Pakistan signed the first BIT in 1959 and since then, BITs are one of the most popular and widespread form of international agreement. In this work we study the proliferation of BITs using a social networks approach. We propose a network growth model that dynamically replicates the empirical topological characteristics of the BIT network.

  10. A study of brain networks associated with swallowing using graph-theoretical approaches.

    Directory of Open Access Journals (Sweden)

    Bo Luan

    Full Text Available Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, [Formula: see text] years of age. To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia.

  11. Designing optimal transportation networks: a knowledge-based computer-aided multicriteria approach

    Energy Technology Data Exchange (ETDEWEB)

    Tung, S.I.

    1986-01-01

    The dissertation investigates the applicability of using knowledge-based expert systems (KBES) approach to solve the single-mode (automobile), fixed-demand, discrete, multicriteria, equilibrium transportation-network-design problem. Previous works on this problem has found that mathematical programming method perform well on small networks with only one objective. Needed is a solution technique that can be used on large networks having multiple, conflicting criteria with different relative importance weights. The KBES approach developed in this dissertation represents a new way to solve network design problems. The development of an expert system involves three major tasks: knowledge acquisition, knowledge representation, and testing. For knowledge acquisition, a computer aided network design/evaluation model (UFOS) was developed to explore the design space. This study is limited to the problem of designing an optimal transportation network by adding and deleting capacity increments to/from any link in the network. Three weighted criteria were adopted for use in evaluating each design alternative: cost, average V/C ratio, and average travel time.

  12. A PSO based Artificial Neural Network approach for short term unit commitment problem

    Directory of Open Access Journals (Sweden)

    AFTAB AHMAD

    2010-10-01

    Full Text Available Unit commitment (UC is a non-linear, large scale, complex, mixed-integer combinatorial constrained optimization problem. This paper proposes, a new hybrid approach for generating unit commitment schedules using swarm intelligence learning rule based neural network. The training data has been generated using dynamic programming for machines without valve point effects and using genetic algorithm for machines with valve point effects. A set of load patterns as inputs and the corresponding unit generation schedules as outputs are used to train the network. The neural network fine tunes the best results to the desired targets. The proposed approach has been validated for three thermal machines with valve point effects and without valve point effects. The results are compared with the approaches available in the literature. The PSO-ANN trained model gives better results which show the promise of the proposed methodology.

  13. Informal networks and resilience to climate change impacts: A collective approach to index insurance

    DEFF Research Database (Denmark)

    Trærup, Sara Lærke Meltofte

    2012-01-01

    This article contributes to the understanding of how to proceed with the development of index-insurance in order to reach extended population coverage with the insurance. The approach is applied to an example from a region in Tanzania. One of the main coping strategies that resource-poor households...... networks become insufficient since the majority of risk-sharers will be affected by the shock at the same time. This paper proposes a collective approach to index-insurance in which the members of an informal network will be insured as one insurance taker. The paper raises a conceptual argument...... that targeting households through existing informal networks will remove a number of prevailing barriers to the takeup of insurance and consequently the approach has the potential to increase households’ resilience to climate change impacts. The policy implications of the conclusions are significant since...

  14. Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach

    Science.gov (United States)

    Lin, Guo-Qiang; Ao, Bin; Chen, Jia-Wei; Wang, Wen-Xu; Di, Zeng-Ru

    2014-12-01

    Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers insights into understanding and controlling the p53 network, which is of paramount importance for medical treatment and genetic engineering.

  15. Prediction of Protein Thermostability by an Efficient Neural Network Approach

    Directory of Open Access Journals (Sweden)

    Jalal Rezaeenour

    2016-10-01

    Full Text Available Introduction: Manipulation of protein stability is important for understanding the principles that govern protein thermostability, both in basic research and industrial applications. Various data mining techniques exist for prediction of thermostable proteins. Furthermore, ANN methods have attracted significant attention for prediction of thermostability, because they constitute an appropriate approach to mapping the non-linear input-output relationships and massive parallel computing. Method: An Extreme Learning Machine (ELM was applied to estimate thermal behavior of 1289 proteins. In the proposed algorithm, the parameters of ELM were optimized using a Genetic Algorithm (GA, which tuned a set of input variables, hidden layer biases, and input weights, to and enhance the prediction performance. The method was executed on a set of amino acids, yielding a total of 613 protein features. A number of feature selection algorithms were used to build subsets of the features. A total of 1289 protein samples and 613 protein features were calculated from UniProt database to understand features contributing to the enzymes’ thermostability and find out the main features that influence this valuable characteristic. Results:At the primary structure level, Gln, Glu and polar were the features that mostly contributed to protein thermostability. At the secondary structure level, Helix_S, Coil, and charged_Coil were the most important features affecting protein thermostability. These results suggest that the thermostability of proteins is mainly associated with primary structural features of the protein. According to the results, the influence of primary structure on the thermostabilty of a protein was more important than that of the secondary structure. It is shown that prediction accuracy of ELM (mean square error can improve dramatically using GA with error rates RMSE=0.004 and MAPE=0.1003. Conclusion: The proposed approach for forecasting problem

  16. Usage labels network: an approach to lexical variation

    Directory of Open Access Journals (Sweden)

    Danko Šipka

    1994-12-01

    Full Text Available The Problem of lexical variation is frequently addressed within the linguistic community. Its complexity and the broad implications of any possible solution have considerable appeal among theoretical linguists. Lexicographers, in their turn, have been forced to address it in order to provide dictionary usage information, which is normally done by means of dictionary labels such as: American English, obsolete, slang , etc. An insightful overview of the relevant lexicological approaches, as well as some lexicographis projects is provided in Lipka (1990. The most exhaustive sociolinguistic classification, however, can be found in Preston (1986. Lexicographis treatments of lexical variation have been addressed in numerous papers listed in Zgusta (1988.

  17. Synthesis of biorefinery networks using a superstructure optimization based approach

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Anaya-Reza, Omar; Lopez-Arenas, Maria Teresa

    Petroleum is currently the primary raw material for the production of fuels and chemicals. Consequently, our society is highly dependent on fossil non-renewable resources. However, renewable raw materials are recently receiving increasing interest for the production of chemicals and fuels, so a n...... of the proposed approach is shown through a practical case study for the production of valuable products (i.e. lysine and lactic acid) from sugarcane molasses; these alternatives are considered with respect to availability and demands in Mexico [4]....

  18. PROACTIVE APPROACH TO THE INCIDENT AND PROBLEM MANAGEMENT IN COMMUNICATION NETWORKS

    Directory of Open Access Journals (Sweden)

    Vjeran Strahonja

    2007-06-01

    Full Text Available Proactive approach to communication network maintenance has the capability of enhancing the integrity and reliability of communication networks, as well as of reducing maintenance costs and overall number of incidents. This paper presents approaches to problem and incident prevention with the help of root-cause analysis, aligning that with the goal to foresee software performance. Implementation of proactive approach requires recognition of enterprise's current level of maintenance better insights into available approaches and tools, as well as their comparison, interoperability, integration and further development. The approach we are proposing and elaborating in this paper lies on the construction of a metamodel of the problem management of information technology, particularly the proactive problem management. The metamodel is derived from the original ITIL specification and presented in an object-oriented fashion by using structure (class diagrams conform to UML notation. Based on current research, appropriate metrics based on the concept of Key Performance Indicators is suggested.

  19. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  20. Costal vulnerability systems-network using Fuzzy and Bayesian approaches

    Science.gov (United States)

    Taramelli, A.; Valentini, E.; Filipponi, F.; Nguyen Xuan, A.; Arosio, M.

    2016-12-01

    Marine drivers such as surge in the context of SLR, are threatening low-lying coastal plains. In order to deal with disturbances a deeper understanding of benefits deriving from ecosystem services assesment, management and planning (e.g. the role of dune ridges in surge mitigation and climate adaptation) can enhance the resilience of coastal systems. In this frame assessing the vulnerability is a key concern of many SOS (social, ecological, institutional) that deals with several challenges like the definition of Essential Variables (EVs) able to synthesize the required information, the assignment of different weight to be attributed to each considered variable, the selection of method for combining the relevant variables, etc.. To this end it is unclear how SLR, subsidence and erosion might affect coastal subsistence resources because of highly complex interactions and because of the subjective system of weighting many variables and their interaction within the systems. In this contribution, making the best use of many EO products, in situ data and modelling, we propose a multidimensional surge vulnerability assessment that aims at combining together geophysical and socioeconomic variable on the base of different approaches: 1) Fuzzy Logic; 2) Bayesian approach. The final goal is providing insight in understanding how to quantify regulating ecosystem services.

  1. A comparative performance evaluation of neural network based approach for sentiment classification of online reviews

    Directory of Open Access Journals (Sweden)

    G. Vinodhini

    2016-01-01

    Full Text Available The aim of sentiment classification is to efficiently identify the emotions expressed in the form of text messages. Machine learning methods for sentiment classification have been extensively studied, due to their predominant classification performance. Recent studies suggest that ensemble based machine learning methods provide better performance in classification. Artificial neural networks (ANNs are rarely being investigated in the literature of sentiment classification. This paper compares neural network based sentiment classification methods (back propagation neural network (BPN, probabilistic neural network (PNN & homogeneous ensemble of PNN (HEN using varying levels of word granularity as features for feature level sentiment classification. They are validated using a dataset of product reviews collected from the Amazon reviews website. An empirical analysis is done to compare results of ANN based methods with two statistical individual methods. The methods are evaluated using five different quality measures and results show that the homogeneous ensemble of the neural network method provides better performance. Among the two neural network approaches used, probabilistic neural networks (PNNs outperform in classifying the sentiment of the product reviews. The integration of neural network based sentiment classification methods with principal component analysis (PCA as a feature reduction technique provides superior performance in terms of training time also.

  2. An Approach for Reduction of False Predictions in Reverse Engineering of Gene Regulatory Networks.

    Science.gov (United States)

    Khan, Abhinandan; Saha, Goutam; Pal, Rajat Kumar

    2018-02-17

    A gene regulatory network discloses the regulatory interactions amongst genes, at a particular condition of the human body. The accurate reconstruction of such networks from time-series genetic expression data using computational tools offers a stiff challenge for contemporary computer scientists. This is crucial to facilitate the understanding of the proper functioning of a living organism. Unfortunately, the computational methods produce many false predictions along with the correct predictions, which is unwanted. Investigations in the domain focus on the identification of as many correct regulations as possible in the reverse engineering of gene regulatory networks to make it more reliable and biologically relevant. One way to achieve this is to reduce the number of incorrect predictions in the reconstructed networks. In the present investigation, we have proposed a novel scheme to decrease the number of false predictions by suitably combining several metaheuristic techniques. We have implemented the same using a dataset ensemble approach (i.e. combining multiple datasets) also. We have employed the proposed methodology on real-world experimental datasets of the SOS DNA Repair network of Escherichia coli and the IMRA network of Saccharomyces cerevisiae. Subsequently, we have experimented upon somewhat larger, in silico networks, namely, DREAM3 and DREAM4 Challenge networks, and 15-gene and 20-gene networks extracted from the GeneNetWeaver database. To study the effect of multiple datasets on the quality of the inferred networks, we have used four datasets in each experiment. The obtained results are encouraging enough as the proposed methodology can reduce the number of false predictions significantly, without using any supplementary prior biological information for larger gene regulatory networks. It is also observed that if a small amount of prior biological information is incorporated here, the results improve further w.r.t. the prediction of true positives

  3. Back to the core: A network approach to bolster harm reduction among persons who inject drugs.

    Science.gov (United States)

    Bouchard, Martin; Hashimi, Sadaf; Tsai, Kristen; Lampkin, Hugh; Jozaghi, Ehsan

    2017-12-08

    Injecting drugs safely almost always includes the presence of one's social network, especially for the prevention of overdose. Yet, the systematic analysis of users' social networks has yet to be established as a focal method in harm reduction research, and interventions. This study draws from 200 interviews with persons who inject drugs recruited from North America's first sanctioned supervised injection facility and a drug user's advocacy group. Respondents were asked about the individuals they personally considered as facilitators of harm reduction, and the relations between them. Collectively, these 200 respondents provided over 900 individuals whom they considered as members of their harm reduction network. The aim was to locate individuals that would potentially make the network denser (harm reduction champions) and users that were situated in the "periphery" of the network, and in practice, further away from the harm reduction core. Of the 1135 network members, 63 individuals formed the "core" of the harm reduction network, collectively reaching approximately 70% of individuals in the network. We also uncovered 31 individuals that acted as "articulation points"- these individuals were not as connected, but were more effective at reaching peripheral individuals. Former or current injecting drug users that were sampled were surrounded by a relatively rich harm reduction network, but the network approach showed that only a minority of individuals were true harm reduction "champions". Recruitment of a combination of well-connected harm reduction champions, and strategically connected articulation points, would be most effective in planning network interventions that encourage harm reduction behaviors among this population. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Towards a model-based development approach for wireless sensor-actuator network protocols

    DEFF Research Database (Denmark)

    Kumar S., A. Ajith; Simonsen, Kent Inge

    2014-01-01

    Model-Driven Software Engineering (MDSE) is a promising approach for the development of applications, and has been well adopted in the embedded applications domain in recent years. Wireless Sensor Actuator Networks consisting of resource constrained hardware and platformspecific operating system...... induced due to manual translations. With the use of formal semantics in the modeling approach, we can further ensure the correctness of the source model by means of verification. Also, with the use of network simulators and formal modeling tools, we obtain a verified and validated model to be used...

  5. Investigation of tt in the full hadronic final state at CDF with a neural network approach

    CERN Document Server

    Sidoti, A; Busetto, G; Castro, A; Dusini, S; Lazzizzera, I; Wyss, J

    2001-01-01

    In this work we present the results of a neural network (NN) approach to the measurement of the tt production cross-section and top mass in the all-hadronic channel, analyzing data collected at the Collider Detector at Fermilab (CDF) experiment. We have used a hardware implementation of a feedforward neural network, TOTEM, the product of a collaboration of INFN (Istituto Nazionale Fisica Nucleare)-IRST (Istituto per la Ricerca Scientifica e Tecnologica)-University of Trento, Italy. Particular attention has been paid to the evaluation of the systematics specifically related to the NN approach. The results are consistent with those obtained at CDF by conventional data selection techniques. (38 refs).

  6. Adaptive Critic Neural Network-Based Terminal Area Energy Management and Approach and Landing Guidance

    Science.gov (United States)

    Grantham, Katie

    2003-01-01

    Reusable Launch Vehicles (RLVs) have different mission requirements than the Space Shuttle, which is used for benchmark guidance design. Therefore, alternative Terminal Area Energy Management (TAEM) and Approach and Landing (A/L) Guidance schemes can be examined in the interest of cost reduction. A neural network based solution for a finite horizon trajectory optimization problem is presented in this paper. In this approach the optimal trajectory of the vehicle is produced by adaptive critic based neural networks, which were trained off-line to maintain a gradual glideslope.

  7. Nonlinear identification and control a neural network approach

    CERN Document Server

    Liu, G P

    2001-01-01

    The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies . . . , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series otTers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. The time for nonlinear control to enter routine application seems to be approaching. Nonlinear control has had a long gestation period but much ofthe past has been concerned with methods that involve formal nonlinear functional model representations. It seems more likely that the breakthough will come through the use of other more flexible and ame...

  8. An Effective Approach for Mobile ad hoc Network via I-Watchdog Protocol

    Directory of Open Access Journals (Sweden)

    Nidhi Lal

    2014-12-01

    Full Text Available Mobile ad hoc network (MANET is now days become very famous due to their fixed infrastructure-less quality and dynamic nature. They contain a large number of nodes which are connected and communicated to each other in wireless nature. Mobile ad hoc network is a wireless technology that contains high mobility of nodes and does not depend on the background administrator for central authority, because they do not contain any infrastructure. Nodes of the MANET use radio wave for communication and having limited resources and limited computational power. The Topology of this network is changing very frequently because they are distributed in nature and self-configurable. Due to its wireless nature and lack of any central authority in the background, Mobile ad hoc networks are always vulnerable to some security issues and performance issues. The security imposes a huge impact on the performance of any network. Some of the security issues are black hole attack, flooding, wormhole attack etc. In this paper, we will discuss issues regarding low performance of Watchdog protocol used in the MANET and proposed an improved Watchdog mechanism, which is called by I-Watchdog protocol that overcomes the limitations of Watchdog protocol and gives high performance in terms of throughput, delay.

  9. Exciton-phonon dynamics on complex networks: Comparison between a perturbative approach and exact calculations

    Science.gov (United States)

    Yalouz, Saad; Pouthier, Vincent; Falvo, Cyril

    2017-08-01

    A method combining perturbation theory with a simplifying ansatz is used to describe the exciton-phonon dynamics in complex networks. This method, called PT*, is compared to exact calculations based on the numerical diagonalization of the exciton-phonon Hamiltonian for eight small-sized networks. It is shown that the accuracy of PT* depends on the nature of the network, and three different situations were identified. For most graphs, PT* yields a very accurate description of the dynamics. By contrast, for the Wheel graph and the Apollonian network, PT* reproduces the dynamics only when the exciton occupies a specific initial state. Finally, for the complete graph, PT* breaks down. These different behaviors originate in the interplay between the degenerate nature of the excitonic energy spectrum and the strength of the exciton-phonon interaction so that a criterion is established to determine whether or not PT* is relevant. When it succeeds, our study shows the undeniable advantage of PT* in that it allows us to perform very fast simulations when compared to exact calculations that are restricted to small-sized networks.

  10. Advocates Call for a New Approach after the Era of "Abstinence-Only" Sex Education. Guttmacher Policy Review. Volume 12, Number 1, Winter 2009

    Science.gov (United States)

    Boonstra, Heather D.

    2009-01-01

    In 1981, the first grants for what later came to be called "abstinence-only" programs were authorized under the Adolescent Family Life Act (AFLA). Sponsored by congressional family planning opponents, AFLA was promoted as a "family-centered" alternative to contraceptive counseling and services to teenagers; instead, this…

  11. A Decentralized Heuristic Approach towards Resource Allocation in Femtocell Networks

    Directory of Open Access Journals (Sweden)

    Kyung-Geun Lee

    2013-06-01

    Full Text Available Femtocells represent a novel configuration for existing cellular communication, contributing towards the improvement of coverage and throughput. The dense deployment of these femtocells causes significant femto-macro and femto-femto interference, consequently deteriorating the throughput of femtocells. In this study, we compare two heuristic approaches, i.e., particle swarm optimization (PSO and genetic algorithm (GA, for joint power assignment and resource allocation, within the context of the femtocell environment. The supposition made in this joint optimization is that the discrete power levels are available for the assignment. Furthermore, we have employed two variants of each PSO and GA: inertia weight and constriction factor model for PSO, and twopoint and uniform crossover for GA. The two proposed algorithms are in a decentralized manner, with no involvement of any centralized entity. The comparison is carried out between the two proposed algorithms for the aforementioned joint optimization problem. The contrast includes the performance metrics: including average objective function, min–max throughput of the femtocells, average throughput of the femto users, outage rate and time complexity. The results demonstrate that the decentralized PSO constriction factor outperforms the others in terms of the aforementioned performance metrics.

  12. Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks.

    Science.gov (United States)

    Rahat, Alma A M; Everson, Richard M; Fieldsend, Jonathan E

    2015-01-01

    Mesh network topologies are becoming increasingly popular in battery-powered wireless sensor networks, primarily because of the extension of network range. However, multihop mesh networks suffer from higher energy costs, and the routing strategy employed directly affects the lifetime of nodes with limited energy resources. Hence when planning routes there are trade-offs to be considered between individual and system-wide battery lifetimes. We present a multiobjective routing optimisation approach using hybrid evolutionary algorithms to approximate the optimal trade-off between the minimum lifetime and the average lifetime of nodes in the network. In order to accomplish this combinatorial optimisation rapidly, our approach prunes the search space using k-shortest path pruning and a graph reduction method that finds candidate routes promoting long minimum lifetimes. When arbitrarily many routes from a node to the base station are permitted, optimal routes may be found as the solution to a well-known linear program. We present an evolutionary algorithm that finds good routes when each node is allowed only a small number of paths to the base station. On a real network deployed in the Victoria & Albert Museum, London, these solutions, using only three paths per node, are able to achieve minimum lifetimes of over 99% of the optimum linear program solution's time to first sensor battery failure.

  13. Dynamics of Foreign Exchange Networks: A Time-Varying Copula Approach

    Directory of Open Access Journals (Sweden)

    Gang-Jin Wang

    2014-01-01

    Full Text Available Based on a time-varying copula approach and the minimum spanning tree (MST method, we propose a time-varying correlation network-based approach to investigate dynamics of foreign exchange (FX networks. In piratical terms, we choose the daily FX rates of 42 major currencies in the international FX market during the period of 2005–2012 as the empirical data. The empirical results show that (i the distributions of cross-correlation coefficients (distances in the international FX market (network are fat-tailed and negatively skewed; (ii financial crises during the analyzed period have a great effect on the FX network’s topology structure and lead to the US dollar becoming more centered in the MST; (iii the topological measures of the FX network show a large fluctuation and display long-range correlations; (iv the FX network has a long-term memory effect and presents a scale-free behavior in the most of time; and (v a great majority of links between currencies in the international FX market survive from one time to the next, and multistep survive rates of FX networks drop sharply as the time increases.

  14. Brain networks, structural realism, and local approaches to the scientific realism debate.

    Science.gov (United States)

    Yan, Karen; Hricko, Jonathon

    2017-08-01

    We examine recent work in cognitive neuroscience that investigates brain networks. Brain networks are characterized by the ways in which brain regions are functionally and anatomically connected to one another. Cognitive neuroscientists use various noninvasive techniques (e.g., fMRI) to investigate these networks. They represent them formally as graphs. And they use various graph theoretic techniques to analyze them further. We distinguish between knowledge of the graph theoretic structure of such networks (structural knowledge) and knowledge of what instantiates that structure (nonstructural knowledge). And we argue that this work provides structural knowledge of brain networks. We explore the significance of this conclusion for the scientific realism debate. We argue that our conclusion should not be understood as an instance of a global structural realist claim regarding the structure of the unobservable part of the world, but instead, as a local structural realist attitude towards brain networks in particular. And we argue that various local approaches to the realism debate, i.e., approaches that restrict realist commitments to particular theories and/or entities, are problematic insofar as they don't allow for the possibility of such a local structural realist attitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Call-for-tender documentation in the area of servers, personal computers and networks; Ausschreibungsunterlagen im Server-, PC- und Netzwerk-Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Grieder, T.; Huser, A.

    2003-07-01

    As a result of this work, sample texts, so-called performance sheets, have been drawn up for the invitation to tender for IT devices. As a supplement to the standard technical requirements, such as computer performance, memory capacity, etc., these texts cover the aspects of energy efficiency. The performance sheets can be enclosed with the invitations to tender as an appendix, or be used directly as text modules. They are supplemented by explanatory texts, which give information regarding technical terms, labels and possible technical realizations. Performance sheets and explanatory texts are included in the appendix to this report. The goal of these activities is to exert pressure on the market, which should ultimately lead to more efficient units. In addition, however, these texts should serve to make the offices placing the invitations to tender more aware of the energy efficiency aspect. Energy saving functions are fairly common for PCs and monitors nowadays. Reference to proved technical realisations can be made in the performance sheets. The situation is more difficult for servers. Although some technical solutions have been initiated, very little is known about practical applications. Further activities are necessary here. (author)

  16. Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks.

    Science.gov (United States)

    Samaga, Regina; Klamt, Steffen

    2013-06-26

    A central goal of systems biology is the construction of predictive models of bio-molecular networks. Cellular networks of moderate size have been modeled successfully in a quantitative way based on differential equations. However, in large-scale networks, knowledge of mechanistic details and kinetic parameters is often too limited to allow for the set-up of predictive quantitative models.Here, we review methodologies for qualitative and semi-quantitative modeling of cellular signal transduction networks. In particular, we focus on three different but related formalisms facilitating modeling of signaling processes with different levels of detail: interaction graphs, logical/Boolean networks, and logic-based ordinary differential equations (ODEs). Albeit the simplest models possible, interaction graphs allow the identification of important network properties such as signaling paths, feedback loops, or global interdependencies. Logical or Boolean models can be derived from interaction graphs by constraining the logical combination of edges. Logical models can be used to study the basic input-output behavior of the system under investigation and to analyze its qualitative dynamic properties by discrete simulations. They also provide a suitable framework to identify proper intervention strategies enforcing or repressing certain behaviors. Finally, as a third formalism, Boolean networks can be transformed into logic-based ODEs enabling studies on essential quantitative and dynamic features of a signaling network, where time and states are continuous.We describe and illustrate key methods and applications of the different modeling formalisms and discuss their relationships. In particular, as one important aspect for model reuse, we will show how these three modeling approaches can be combined to a modeling pipeline (or model hierarchy) allowing one to start with the simplest representation of a signaling network (interaction graph), which can later be refined to logical

  17. Gray matter alterations in chronic pain: A network-oriented meta-analytic approach

    Directory of Open Access Journals (Sweden)

    Franco Cauda

    2014-01-01

    Full Text Available Several studies have attempted to characterize morphological brain changes due to chronic pain. Although it has repeatedly been suggested that longstanding pain induces gray matter modifications, there is still some controversy surrounding the direction of the change (increase or decrease in gray matter and the role of psychological and psychiatric comorbidities. In this study, we propose a novel, network-oriented, meta-analytic approach to characterize morphological changes in chronic pain. We used network decomposition to investigate whether different kinds of chronic pain are associated with a common or specific set of altered networks. Representational similarity techniques, network decomposition and model-based clustering were employed: i to verify the presence of a core set of brain areas commonly modified by chronic pain; ii to investigate the involvement of these areas in a large-scale network perspective; iii to study the relationship between altered networks and; iv to find out whether chronic pain targets clusters of areas. Our results showed that chronic pain causes both core and pathology-specific gray matter alterations in large-scale networks. Common alterations were observed in the prefrontal regions, in the anterior insula, cingulate cortex, basal ganglia, thalamus, periaqueductal gray, post- and pre-central gyri and inferior parietal lobule. We observed that the salience and attentional networks were targeted in a very similar way by different chronic pain pathologies. Conversely, alterations in the sensorimotor and attention circuits were differentially targeted by chronic pain pathologies. Moreover, model-based clustering revealed that chronic pain, in line with some neurodegenerative diseases, selectively targets some large-scale brain networks. Altogether these findings indicate that chronic pain can be better conceived and studied in a network perspective.

  18. A Collaborative Approach for Monitoring Nodes Behavior during Spectrum Sensing to Mitigate Multiple Attacks in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Mahmoud Khasawneh

    2017-01-01

    Full Text Available Spectrum sensing is the first step to overcome the spectrum scarcity problem in Cognitive Radio Networks (CRNs wherein all unutilized subbands in the radio environment are explored for better spectrum utilization. Adversary nodes can threaten these spectrum sensing results by launching passive and active attacks that prevent legitimate nodes from using the spectrum efficiently. Securing the spectrum sensing process has become an important issue in CRNs in order to ensure reliable and secure spectrum sensing and fair management of resources. In this paper, a novel collaborative approach during spectrum sensing process is proposed. It monitors the behavior of sensing nodes and identifies the malicious and misbehaving sensing nodes. The proposed approach measures the node’s sensing reliability using a value called belief level. All the sensing nodes are grouped into a specific number of clusters. In each cluster, a sensing node is selected as a cluster head that is responsible for collecting sensing-reputation reports from different cognitive nodes about each node in the same cluster. The cluster head analyzes information to monitor and judge the nodes’ behavior. By simulating the proposed approach, we showed its importance and its efficiency for achieving better spectrum security by mitigating multiple passive and active attacks.

  19. Parallel Approach for Time Series Analysis with General Regression Neural Networks

    Directory of Open Access Journals (Sweden)

    J.C. Cuevas-Tello

    2012-04-01

    Full Text Available The accuracy on time delay estimation given pairs of irregularly sampled time series is of great relevance in astrophysics. However the computational time is also important because the study of large data sets is needed. Besides introducing a new approach for time delay estimation, this paper presents a parallel approach to obtain a fast algorithm for time delay estimation. The neural network architecture that we use is general Regression Neural Network (GRNN. For the parallel approach, we use Message Passing Interface (MPI on a beowulf-type cluster and on a Cray supercomputer and we also use the Compute Unified Device Architecture (CUDA™ language on Graphics Processing Units (GPUs. We demonstrate that, with our approach, fast algorithms can be obtained for time delay estimation on large data sets with the same accuracy as state-of-the-art methods.

  20. A Novel Text Clustering Approach Using Deep-Learning Vocabulary Network

    Directory of Open Access Journals (Sweden)

    Junkai Yi

    2017-01-01

    Full Text Available Text clustering is an effective approach to collect and organize text documents into meaningful groups for mining valuable information on the Internet. However, there exist some issues to tackle such as feature extraction and data dimension reduction. To overcome these problems, we present a novel approach named deep-learning vocabulary network. The vocabulary network is constructed based on related-word set, which contains the “cooccurrence” relations of words or terms. We replace term frequency in feature vectors with the “importance” of words in terms of vocabulary network and PageRank, which can generate more precise feature vectors to represent the meaning of text clustering. Furthermore, sparse-group deep belief network is proposed to reduce the dimensionality of feature vectors, and we introduce coverage rate for similarity measure in Single-Pass clustering. To verify the effectiveness of our work, we compare the approach to the representative algorithms, and experimental results show that feature vectors in terms of deep-learning vocabulary network have better clustering performance.