Models of network reliability analysis, combinatorics, and Monte Carlo
Gertsbakh, Ilya B
2009-01-01
Unique in its approach, Models of Network Reliability: Analysis, Combinatorics, and Monte Carlo provides a brief introduction to Monte Carlo methods along with a concise exposition of reliability theory ideas. From there, the text investigates a collection of principal network reliability models, such as terminal connectivity for networks with unreliable edges and/or nodes, network lifetime distribution in the process of its destruction, network stationary behavior for renewable components, importance measures of network elements, reliability gradient, and network optimal reliability synthesis
Models as Tools of Analysis of a Network Organisation
Directory of Open Access Journals (Sweden)
Wojciech Pająk
2013-06-01
Full Text Available The paper presents models which may be applied as tools of analysis of a network organisation. The starting point of the discussion is defining the following terms: supply chain and network organisation. Further parts of the paper present basic assumptions analysis of a network organisation. Then the study characterises the best known models utilised in analysis of a network organisation. The purpose of the article is to define the notion and the essence of network organizations and to present the models used for their analysis.
Stochastic modeling and analysis of telecoms networks
Decreusefond, Laurent
2012-01-01
This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an
PROJECT ACTIVITY ANALYSIS WITHOUT THE NETWORK MODEL
Directory of Open Access Journals (Sweden)
S. Munapo
2012-01-01
Full Text Available
ENGLISH ABSTRACT: This paper presents a new procedure for analysing and managing activity sequences in projects. The new procedure determines critical activities, critical path, start times, free floats, crash limits, and other useful information without the use of the network model. Even though network models have been successfully used in project management so far, there are weaknesses associated with the use. A network is not easy to generate, and dummies that are usually associated with it make the network diagram complex – and dummy activities have no meaning in the original project management problem. The network model for projects can be avoided while still obtaining all the useful information that is required for project management. What are required are the activities, their accurate durations, and their predecessors.
AFRIKAANSE OPSOMMING: Die navorsing beskryf ’n nuwerwetse metode vir die ontleding en bestuur van die sekwensiële aktiwiteite van projekte. Die voorgestelde metode bepaal kritiese aktiwiteite, die kritieke pad, aanvangstye, speling, verhasing, en ander groothede sonder die gebruik van ’n netwerkmodel. Die metode funksioneer bevredigend in die praktyk, en omseil die administratiewe rompslomp van die tradisionele netwerkmodelle.
Network Analysis and Modeling in Systems Biology
Bosque Chacón, Gabriel
2017-01-01
This thesis is dedicated to the study and comprehension of biological networks at the molecular level. The objectives were to analyse their topology, integrate it in a genotype-phenotype analysis, develop richer mathematical descriptions for them, study their community structure and compare different methodologies for estimating their internal fluxes. The work presented in this document moves around three main axes. The first one is the biological. Which organisms were studied in this ...
Compartmentalization analysis using discrete fracture network models
Energy Technology Data Exchange (ETDEWEB)
La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)
1997-08-01
This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.
Spectral Modelling for Spatial Network Analysis
Nourian, P.; Rezvani, S.; Sariyildiz, I.S.; van der Hoeven, F.D.; Attar, Ramtin; Chronis, Angelos; Hanna, Sean; Turrin, Michela
2016-01-01
Spatial Networks represent the connectivity structure between units of space as a weighted graph whose links are weighted as to the strength of connections. In case of urban spatial networks, the units of space correspond closely to streets and in architectural spatial networks the units correspond
Analysis and Comparison of Typical Models within Distribution Network Design
DEFF Research Database (Denmark)
Jørgensen, Hans Jacob; Larsen, Allan; Madsen, Oli B.G.
This paper investigates the characteristics of typical optimisation models within Distribution Network Design. During the paper fourteen models known from the literature will be thoroughly analysed. Through this analysis a schematic approach to categorisation of distribution network design models...... for educational purposes. Furthermore, the paper can be seen as a practical introduction to network design modelling as well as a being an art manual or recipe when constructing such a model....... are covered in the categorisation include fixed vs. general networks, specialised vs. general nodes, linear vs. nonlinear costs, single vs. multi commodity, uncapacitated vs. capacitated activities, single vs. multi modal and static vs. dynamic. The models examined address both strategic and tactical planning...
Hybrid modeling and empirical analysis of automobile supply chain network
Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying
2017-05-01
Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.
Modeling and Analysis of New Products Diffusion on Heterogeneous Networks
Directory of Open Access Journals (Sweden)
Shuping Li
2014-01-01
Full Text Available We present a heterogeneous networks model with the awareness stage and the decision-making stage to explain the process of new products diffusion. If mass media is neglected in the decision-making stage, there is a threshold whether the innovation diffusion is successful or not, or else it is proved that the network model has at least one positive equilibrium. For networks with the power-law degree distribution, numerical simulations confirm analytical results, and also at the same time, by numerical analysis of the influence of the network structure and persuasive advertisements on the density of adopters, we give two different products propagation strategies for two classes of nodes in scale-free networks.
Network and adaptive system of systems modeling and analysis.
Energy Technology Data Exchange (ETDEWEB)
Lawton, Craig R.; Campbell, James E. Dr. (.; .); Anderson, Dennis James; Eddy, John P.
2007-05-01
This report documents the results of an LDRD program entitled ''Network and Adaptive System of Systems Modeling and Analysis'' that was conducted during FY 2005 and FY 2006. The purpose of this study was to determine and implement ways to incorporate network communications modeling into existing System of Systems (SoS) modeling capabilities. Current SoS modeling, particularly for the Future Combat Systems (FCS) program, is conducted under the assumption that communication between the various systems is always possible and occurs instantaneously. A more realistic representation of these communications allows for better, more accurate simulation results. The current approach to meeting this objective has been to use existing capabilities to model network hardware reliability and adding capabilities to use that information to model the impact on the sustainment supply chain and operational availability.
Castet, Jean-Francois; Saleh, Joseph H
2013-01-01
This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the
Directory of Open Access Journals (Sweden)
Jean-Francois Castet
Full Text Available This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also
Logical Modeling and Dynamical Analysis of Cellular Networks.
Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, Claudine
2016-01-01
The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle.
Using structural equation modeling for network meta-analysis.
Tu, Yu-Kang; Wu, Yun-Chun
2017-07-14
Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison
DEFF Research Database (Denmark)
Sindbæk, Søren Michael
2015-01-01
Long-distance communication has emerged as a particular focus for archaeologicalexploration using network theory, analysis, and modelling. The promise is apparentlyobvious: communication in the past doubtlessly had properties of complex, dynamicnetworks, and archaeological datasets almost certainly...... preserve patterns of thisinteraction. Formal network analysis and modelling holds the potential to identify anddemonstrate such patterns, where traditional methods often prove inadequate. Thearchaeological study of communication networks in the past, however, calls for radically different analytical......,and use patterns. This point is demonstrated with reference to a study of Viking-period communication in the North Sea region...
Landslide susceptibility analysis using an artificial neural network model
Mansor, Shattri; Pradhan, Biswajeet; Daud, Mohamed; Jamaludin, Normalina; Khuzaimah, Zailani
2007-10-01
This paper deals with landslide susceptibility analysis using an artificial neural network model for Cameron Highland, Malaysia. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys. Topographical/geological data and satellite images were collected and processed using GIS and image processing tools. There are ten landslide inducing parameters which are considered for the landslide hazards. These parameters are topographic slope, aspect, curvature and distance from drainage, all derived from the topographic database; geology and distance from lineament, derived from the geologic database; landuse from Landsat satellite images; soil from the soil database; precipitation amount, derived from the rainfall database; and the vegetation index value from SPOT satellite images. Landslide hazard was analyzed using landslide occurrence factors employing the logistic regression model. The results of the analysis were verified using the landslide location data and compared with logistic regression model. The accuracy of hazard map observed was 85.73%. The qualitative landslide susceptibility analysis was carried out using an artificial neural network model by doing map overlay analysis in GIS environment. This information could be used to estimate the risk to population, property and existing infrastructure like transportation network.
Dynamical modeling and analysis of large cellular regulatory networks
Bérenguier, D.; Chaouiya, C.; Monteiro, P. T.; Naldi, A.; Remy, E.; Thieffry, D.; Tichit, L.
2013-06-01
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Dynamical modeling and analysis of large cellular regulatory networks.
Bérenguier, D; Chaouiya, C; Monteiro, P T; Naldi, A; Remy, E; Thieffry, D; Tichit, L
2013-06-01
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Mathematical analysis techniques for modeling the space network activities
Foster, Lisa M.
1992-01-01
The objective of the present work was to explore and identify mathematical analysis techniques, and in particular, the use of linear programming. This topic was then applied to the Tracking and Data Relay Satellite System (TDRSS) in order to understand the space network better. Finally, a small scale version of the system was modeled, variables were identified, data was gathered, and comparisons were made between actual and theoretical data.
Analysis of deterministic cyclic gene regulatory network models with delays
Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian
2015-01-01
This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.
An effective convolutional neural network model for Chinese sentiment analysis
Zhang, Yu; Chen, Mengdong; Liu, Lianzhong; Wang, Yadong
2017-06-01
Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo's sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.
Zhang, Yan; Zheng, Hongmei; Chen, Bin; Yang, Naijin
2013-06-01
An important and practical pattern of industrial symbiosis is rapidly developing: eco-industrial parks. In this study, we used social network analysis to study the network connectedness (i.e., the proportion of the theoretical number of connections that had been achieved) and related attributes of these hybrid ecological and industrial symbiotic systems. This approach provided insights into details of the network's interior and analyzed the overall degree of connectedness and the relationships among the nodes within the network. We then characterized the structural attributes of the network and subnetwork nodes at two levels (core and periphery), thereby providing insights into the operational problems within each eco-industrial park. We chose ten typical ecoindustrial parks in China and around the world and compared the degree of network connectedness of these systems that resulted from exchanges of products, byproducts, and wastes. By analyzing the density and nodal degree, we determined the relative power and status of the nodes in these networks, as well as other structural attributes such as the core-periphery structure and the degree of sub-network connectedness. The results reveal the operational problems created by the structure of the industrial networks and provide a basis for improving the degree of completeness, thereby increasing their potential for sustainable development and enriching the methods available for the study of industrial symbiosis.
A network landscape model: stability analysis and numerical tests
Bonacini, E.; Groppi, M.; Monaco, R.; Soares, A. J.; Soresina, C.
2017-07-01
A Network Landscape Model (NLM) for the evaluation of the ecological trend of an environmental system is here presented and investigated. The model consists in a network of dynamical systems, where each node represents a single Landscape Unit (LU), endowed by a system of ODEs for two variables relevant to the production of bio-energy and to the percentage of green areas, respectively. The main goal of the paper consists in testing the relevance of connectivity between the LUs. For this purpose we consider first the Single LU Model (SLM) and investigate its equilibria and their stability, in terms of two bifurcation parameters. Then the network dynamics is theoretically investigated by means of a bifurcation analysis of a proper simplified differential system, that allows to understand how the coupling between different LUs modifies the asymptotic scenarios for the single LU model. Numerical simulations of NLM are performed, with reference to an environmental system in Northern Italy, and results are discussed in connection with SLM.
Analysis and Comparison of Typical Models within Distribution Network Design
DEFF Research Database (Denmark)
Jørgensen, Hans Jacob; Larsen, Allan; Madsen, Oli B.G.
Efficient and cost effective transportation and logistics plays a vital role in the supply chains of the modern world’s manufacturers. Global distribution of goods is a very complicated matter as it involves many different distinct planning problems. The focus of this presentation is to demonstrate...... a number of important issues which have been identified when addressing the Distribution Network Design problem from a modelling angle. More specifically, we present an analysis of the research which has been performed in utilizing operational research in developing and optimising distribution systems....
Reliability Analysis of Wireless Sensor Networks Using Markovian Model
Directory of Open Access Journals (Sweden)
Jin Zhu
2012-01-01
Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.
Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard
2014-06-26
A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for
A Network Analysis Model for Selecting Sustainable Technology
Directory of Open Access Journals (Sweden)
Sangsung Park
2015-09-01
Full Text Available Most companies develop technologies to improve their competitiveness in the marketplace. Typically, they then patent these technologies around the world in order to protect their intellectual property. Other companies may use patented technologies to develop new products, but must pay royalties to the patent holders or owners. Should they fail to do so, this can result in legal disputes in the form of patent infringement actions between companies. To avoid such situations, companies attempt to research and develop necessary technologies before their competitors do so. An important part of this process is analyzing existing patent documents in order to identify emerging technologies. In such analyses, extracting sustainable technology from patent data is important, because sustainable technology drives technological competition among companies and, thus, the development of new technologies. In addition, selecting sustainable technologies makes it possible to plan their R&D (research and development efficiently. In this study, we propose a network model that can be used to select the sustainable technology from patent documents, based on the centrality and degree of a social network analysis. To verify the performance of the proposed model, we carry out a case study using actual patent data from patent databases.
Numerical analysis of modeling based on improved Elman neural network.
Jie, Shao; Li, Wang; WeiSong, Zhao; YaQin, Zhong; Malekian, Reza
2014-01-01
A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA) with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL) model, Chebyshev neural network (CNN) model, and basic Elman neural network (BENN) model, the proposed model has better performance.
Numerical Analysis of Modeling Based on Improved Elman Neural Network
Directory of Open Access Journals (Sweden)
Shao Jie
2014-01-01
Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.
A modal analysis of carbon nanotube using elastic network model
Energy Technology Data Exchange (ETDEWEB)
Kim, Min Hyeok; Seo, Sang Jae; Lim, Byeong Soo; Choi, Jae Boong; Kim, Moon Ki [Sungkyunkwan Univ., Suwon (Korea, Republic of); Liu, Wing Kam [Northwestern Univ., Evanston (United States)
2012-11-15
Although it is widely known that both size and chirality play significant roles in vibration behaviors of single walled carbon nanotubes (SWCNTs), there haven't been yet enough studies specifying the relationship between structure and vibration mode shape of SWCNTs. We have analyzed the chirality and length dependence of SWCNT by using normal mode analysis based elastic network model in which all interatomic interactions of the given SWCNTs structure are represented by a network of linear spring connections. As this method requires relatively short computation time compared to molecular dynamics simulation, we can efficiently analyze vibration behavior of SWCNTs. To ensure the relationship between SWCNT structure and its vibration mode shapes, we simulated more than one hundred SWCNTs having different types of chirality and length. Results indicated that the first two major mode shapes are bending and breathing. The minimum length of nanotube for maintaining the bending mode does not depend on chirality but on its diameter. Our simulations pointed out that there is a critical aspect ratio between diameter and length to determine vibration mode shapes, and it can be empirically formulated as a function of nanotube length and diameter. Therefore, uniformity control is the most important premise in order to utilize vibration features of SWCNTs. It is also expected that the obtained vibration aspect will play an important role in designing nanotube based devices such as resonators and sensors more accurately.
Yang, Yang; Lichtenwalter, Ryan N; Dong, Yuxiao
2016-01-01
What drives the propensity for the social network dynamics? Social influence is believed to drive both off-line and on-line human behavior, however it has not been considered as a driver of social network evolution. Our analysis suggest that, while the network structure affects the spread of influence in social networks, the network is in turn shaped by social influence activity (i.e., the process of social influence wherein one person's attitudes and behaviors affect another's). To that end, we develop a novel model of network evolution where the dynamics of network follow the mechanism of influence propagation, which are not captured by the existing network evolution models. Our experiments confirm the predictions of our model and demonstrate the important role that social influence can play in the process of network evolution. As well exploring the reason of social network evolution, different genres of social influence have been spotted having different effects on the network dynamics. These findings and ...
A Fluid Model for Performance Analysis in Cellular Networks
Directory of Open Access Journals (Sweden)
Coupechoux Marceau
2010-01-01
Full Text Available We propose a new framework to study the performance of cellular networks using a fluid model and we derive from this model analytical formulas for interference, outage probability, and spatial outage probability. The key idea of the fluid model is to consider the discrete base station (BS entities as a continuum of transmitters that are spatially distributed in the network. This model allows us to obtain simple analytical expressions to reveal main characteristics of the network. In this paper, we focus on the downlink other-cell interference factor (OCIF, which is defined for a given user as the ratio of its outer cell received power to its inner cell received power. A closed-form formula of the OCIF is provided in this paper. From this formula, we are able to obtain the global outage probability as well as the spatial outage probability, which depends on the location of a mobile station (MS initiating a new call. Our analytical results are compared to Monte Carlo simulations performed in a traditional hexagonal network. Furthermore, we demonstrate an application of the outage probability related to cell breathing and densification of cellular networks.
Analysis and Simulation of Hybrid Models for Reaction Networks
Kreim, Michael
2014-01-01
The dynamics of biochemical reaction networks can be described by a variety of models, like the Reaction Rate equation (RRE), the Chemical Master equation (CME) or the Fokker-Planck equation (FPE). In this thesis, the behaviour of these different models is analysed. It is shown that the FPE can be motivated as an approximation of the CME and convergence is proven. Furthermore, two hybrid models are constructed by combining different approaches and convergence properties are proven and discussed.
A Network of SCOP Hidden Markov Models and Its Analysis
Directory of Open Access Journals (Sweden)
Watson Layne T
2011-05-01
Full Text Available Abstract Background The Structural Classification of Proteins (SCOP database uses a large number of hidden Markov models (HMMs to represent families and superfamilies composed of proteins that presumably share the same evolutionary origin. However, how the HMMs are related to one another has not been examined before. Results In this work, taking into account the processes used to build the HMMs, we propose a working hypothesis to examine the relationships between HMMs and the families and superfamilies that they represent. Specifically, we perform an all-against-all HMM comparison using the HHsearch program (similar to BLAST and construct a network where the nodes are HMMs and the edges connect similar HMMs. We hypothesize that the HMMs in a connected component belong to the same family or superfamily more often than expected under a random network connection model. Results show a pattern consistent with this working hypothesis. Moreover, the HMM network possesses features distinctly different from the previously documented biological networks, exemplified by the exceptionally high clustering coefficient and the large number of connected components. Conclusions The current finding may provide guidance in devising computational methods to reduce the degree of overlaps between the HMMs representing the same superfamilies, which may in turn enable more efficient large-scale sequence searches against the database of HMMs.
Modeling and Analysis of Mobility Management in Mobile Communication Networks
Directory of Open Access Journals (Sweden)
Woon Min Baek
2014-01-01
Full Text Available Many strategies have been proposed to reduce the mobility management cost in mobile communication networks. This paper studies the zone-based registration methods that have been adopted by most mobile communication networks. We focus on two special zone-based registration methods, called two-zone registration (2Z and two-zone registration with implicit registration by outgoing calls (2Zi. We provide a new mathematical model to analyze the exact performance of 2Z and 2Zi. We also present various numerical results, to compare the performance of 2Zi with those of 2Z and one-zone registration (1Z, and show that 2Zi is superior to 2Z as well as 1Z in most cases.
A Pruning Neural Network Model in Credit Classification Analysis
Directory of Open Access Journals (Sweden)
Yajiao Tang
2018-01-01
Full Text Available Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency.
A Simplified Network Model for Travel Time Reliability Analysis in a Road Network
Directory of Open Access Journals (Sweden)
Kenetsu Uchida
2017-01-01
Full Text Available This paper proposes a simplified network model which analyzes travel time reliability in a road network. A risk-averse driver is assumed in the simplified model. The risk-averse driver chooses a path by taking into account both a path travel time variance and a mean path travel time. The uncertainty addressed in this model is that of traffic flows (i.e., stochastic demand flows. In the simplified network model, the path travel time variance is not calculated by considering all travel time covariance between two links in the network. The path travel time variance is calculated by considering all travel time covariance between two adjacent links in the network. Numerical experiments are carried out to illustrate the applicability and validity of the proposed model. The experiments introduce the path choice behavior of a risk-neutral driver and several types of risk-averse drivers. It is shown that the mean link flows calculated by introducing the risk-neutral driver differ as a whole from those calculated by introducing several types of risk-averse drivers. It is also shown that the mean link flows calculated by the simplified network model are almost the same as the flows calculated by using the exact path travel time variance.
Carrillo, Miguel; Góngora, Pedro A; Rosenblueth, David A
2012-01-01
Model checking is a well-established technique for automatically verifying complex systems. Recently, model checkers have appeared in computer tools for the analysis of biochemical (and gene regulatory) networks. We survey several such tools to assess the potential of model checking in computational biology. Next, our overview focuses on direct applications of existing model checkers, as well as on algorithms for biochemical network analysis influenced by model checking, such as those using binary decision diagrams (BDDs) or Boolean-satisfiability solvers. We conclude with advantages and drawbacks of model checking for the analysis of biochemical networks.
Verification of temporal-causal network models by mathematical analysis
Directory of Open Access Journals (Sweden)
Jan Treur
2016-04-01
Full Text Available Abstract Usually dynamic properties of models can be analysed by conducting simulation experiments. But sometimes, as a kind of prediction properties can also be found by calculations in a mathematical manner, without performing simulations. Examples of properties that can be explored in such a manner are: whether some values for the variables exist for which no change occurs (stationary points or equilibria, and how such values may depend on the values of the parameters of the model and/or the initial values for the variables whether certain variables in the model converge to some limit value (equilibria and how this may depend on the values of the parameters of the model and/or the initial values for the variables whether or not certain variables will show monotonically increasing or decreasing values over time (monotonicity how fast a convergence to a limit value takes place (convergence speed whether situations occur in which no convergence takes place but in the end a specific sequence of values is repeated all the time (limit cycle Such properties found in an analytic mathematical manner can be used for verification of the model by checking them for the values observed in simulation experiments. If one of these properties is not fulfilled, then there will be some error in the implementation of the model. In this paper some methods to analyse such properties of dynamical models will be described and illustrated for the Hebbian learning model, and for dynamic connection strengths in social networks. The properties analysed by the methods discussed cover equilibria, increasing or decreasing trends, recurring patterns (limit cycles, and speed of convergence to equilibria.
Statistical modeling and analysis of interference in wireless networks
Wildemeersch, Matthias; Wildemeersch, Matthias
2013-01-01
In current wireless networks, interference is the main performance-limiting factor. The quality of a wireless link depends on the signal and interference power, which is strongly related to the spatial distribution of the concurrently transmitting network nodes, shortly denominated as the network
Modelling the Steady State of Sewage Networks as a Support Tool for Their Planning and Analysis
Directory of Open Access Journals (Sweden)
Grażyna Petriczek
2015-01-01
Full Text Available Fundamental questions connected with the modelling of communal sewage networks have been considered and formulas used to model the functioning of the basic network have been analyzed. The problem described concerns gravitational sewage networks divided by nodes into branches and sectors. Simulation of the steady state functioning of sewage networks is commonly carried out on the basis of nomograms in the form of charts, in which the relations between network parameters like channel diameters, flow rates, hydraulic slopes and flow velocities are described. In traditional design, the values of such parameters are simply read from such nomogram chart tables. Another way of simulating the functioning of a network is the use of professional software, like SWMM, that models sewage flows along the channels by means of differential equations de-scribing the movement of fluids. In both approaches, the user is a mechanical operator of a "black box" procedure. In this paper, another way of simulating the functioning of sewage net-works has been presented. Numerical solutions of nonlinear equations describing the physical phenomena of sewage flows are applied and explained. The presented algorithms were developed to model the steady state of a sewage network enabling a quick analysis of the network parameters and the possibility of fast, simple and comprehensible network modeling and design. (original abstract
Unified Tractable Model for Large-Scale Networks Using Stochastic Geometry: Analysis and Design
Afify, Laila H.
2016-12-01
The ever-growing demands for wireless technologies necessitate the evolution of next generation wireless networks that fulfill the diverse wireless users requirements. However, upscaling existing wireless networks implies upscaling an intrinsic component in the wireless domain; the aggregate network interference. Being the main performance limiting factor, it becomes crucial to develop a rigorous analytical framework to accurately characterize the out-of-cell interference, to reap the benefits of emerging networks. Due to the different network setups and key performance indicators, it is essential to conduct a comprehensive study that unifies the various network configurations together with the different tangible performance metrics. In that regard, the focus of this thesis is to present a unified mathematical paradigm, based on Stochastic Geometry, for large-scale networks with different antenna/network configurations. By exploiting such a unified study, we propose an efficient automated network design strategy to satisfy the desired network objectives. First, this thesis studies the exact aggregate network interference characterization, by accounting for each of the interferers signals in the large-scale network. Second, we show that the information about the interferers symbols can be approximated via the Gaussian signaling approach. The developed mathematical model presents twofold analysis unification for uplink and downlink cellular networks literature. It aligns the tangible decoding error probability analysis with the abstract outage probability and ergodic rate analysis. Furthermore, it unifies the analysis for different antenna configurations, i.e., various multiple-input multiple-output (MIMO) systems. Accordingly, we propose a novel reliable network design strategy that is capable of appropriately adjusting the network parameters to meet desired design criteria. In addition, we discuss the diversity-multiplexing tradeoffs imposed by differently favored
Dynamic analysis of a sexually transmitted disease model on complex networks
Yuan, Xin-Peng; Xue, Ya-Kui; Liu, Mao-Xing
2013-03-01
In this paper, a sexually transmitted disease model is proposed on complex networks, where contacts between humans are treated as a scale-free social network. There are three groups in our model, which are dangerous male, non-dangerous male, and female. By mathematical analysis, we obtain the basic reproduction number for the existence of endemic equilibrium and study the effects of various immunization schemes about different groups. Furthermore, numerical simulations are undertaken to verify more conclusions.
Steady-State Analysis of Genetic Regulatory Networks Modelled by Probabilistic Boolean Networks
Directory of Open Access Journals (Sweden)
Wei Zhang
2006-04-01
Full Text Available Probabilistic Boolean networks (PBNs have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steady-state (long-run behaviour of a PBN by analysing the corresponding Markov chain. This allows one to compute the long-term influence of a gene on another gene or determine the long-term joint probabilistic behaviour of a few selected genes. Because matrix-based methods quickly become prohibitive for large sizes of networks, we propose the use of Monte Carlo methods. However, the rate of convergence to the stationary distribution becomes a central issue. We discuss several approaches for determining the number of iterations necessary to achieve convergence of the Markov chain corresponding to a PBN. Using a recently introduced method based on the theory of two-state Markov chains, we illustrate the approach on a sub-network designed from human glioma gene expression data and determine the joint steadystate probabilities for several groups of genes.
Institute of Scientific and Technical Information of China (English)
Qinle Ba; Ge Yang
2017-01-01
BACKGROUND:Membrane-bound intracellular organelles are biochemically distinct compartments used by eukaryotic cells for serving specialized physiological functions and organizing their internal environment.Recent studies revealed surprisingly extensive communication between these organelles and highlighted the network nature of their organization and communication.Since organization and communication of the organelles are carried out at the systems level through their networks,systems-level studies are essential for understanding the underlying mechanisms.METHODS:We reviewed recent studies that used systems-level quantitative modeling and analysis to understand organization and communication of intracellular organelle networks.RESULTS:We first review modeling and analysis studies on how fusion/fission and degradation/biogenesis,two essential and closely related classes of activities of individual organelles,collectively mediate the dynamic organization of their networks.We then tum to another important aspect of the dynamic organization of the organelle networks,namely how organelles are physically connected within their networks,a property referred to as the topology of the networks in mathematics,and summarize some of their distinct properties.Lastly,we briefly review modeling and analysis studies that aim to understand communication between different organelle networks,focusing on cellular calcium homeostasis as an example.We conclude with a brief discussion of future directions for research in this area.CONCLUSIONS:Together,the reviewed studies provide critical insights into how diverse activities of individual organelles collectively mediate the organization and communication of their networks.They demonstrate the essential role of systemslevel modeling and analysis in understanding complex behavior of such networks.
Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc
2017-01-01
Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes.
Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming
2015-11-17
This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.
Directory of Open Access Journals (Sweden)
Wei Zhang
2015-11-01
Full Text Available This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.
Directory of Open Access Journals (Sweden)
Dakai Li
2014-10-01
Full Text Available As the slower rate of convergence and lower study ability in the late period of network-oriented consumption prediction model based on neural network algorithm, this paper proposed a network analysis neural model based on chaotic disturbance optimized particle swarm. Firstly, improve the initialization of particle swarm with chaotic disturbance optimization strategy in order to limit the initial position and the initial speed of limited particle. Then have an optimal operation on each individual in particle swarm with chaotic disturbance variables, so that the particles which do not enter into iteration will jump out of the local optima area. And next, optimize the PSO algorithm inertia weight by adopting adaptive adjustment strategy based on individual particle adaptive value. At last, combine the improved PSO algorithm based on chaotic disturbance with neural network algorithm, thus we will construct the network-oriented consumption analysis model. Simulation results show that the proposed network-oriented consumption analysis neural network model based on chaotic disturbance optimized particle swarm has greatly improved in prediction accuracy and computational speed.
Disease Modeling via Large-Scale Network Analysis
2015-05-20
plant (Arabidopsis thaliana), worm (Caenorhabditis elegans), fruit fly (Drosophila melanogaster), mouse (Mus musculus), yeast ( Saccharomyces ... cerevisiae ), Escherichia coli, zebrafish (Danio rerio), and chicken (Gallus gallus). We use two kinds of human gene interactions: (a) Human Net, a large... characteristics of the heterogeneous network suggest that the kernel can be computed more efficiently than what the state-of- the-art methods imply
Tutorials on Agent-based Modelling with NetLogo and Network Analysis with Pajek
Berryman, Matthew J.; Angus, Simon D.
Complex adaptive systems typically contain multiple, heterogeneous agents, with non-trivial interactions. They tend to produce emergent (larger-scale) phenomena. Agent-based modelling allows one to readily capture the behaviour of a group of heterogeneous agents (such as people, animals, et cetera), with diverse behaviour and important interactions, so it is a natural fit to modelling complex systems. Many complex systems (and agent-based models thereof) can be thought of as containing networks, either explicitly or implicitly. Therefore for complex systems research it is important to have a good understanding of network analysis techniques. This chapter is aimed at beginners to complex systems modelling and network analysis, using NetLogo (Section 10.1) and Pajek (Section 10.2) respectively. It is also aimed at more advanced complex systems modellers who want an introduction to these platforms.
Directory of Open Access Journals (Sweden)
Shrirang Ambaji KULKARNI
2017-04-01
Full Text Available Routing data packets in a dynamic network is a difficult and important problem in computer networks. As the network is dynamic, it is subject to frequent topology changes and is subject to variable link costs due to congestion and bandwidth. Existing shortest path algorithms fail to converge to better solutions under dynamic network conditions. Reinforcement learning algorithms posses better adaptation techniques in dynamic environments. In this paper we apply model based Q-Routing technique for routing in dynamic network. To analyze the correctness of Q-Routing algorithms mathematically, we provide a proof and also implement a SPIN based verification model. We also perform simulation based analysis of Q-Routing for given metrics.
A model of choice a public transit network by data envelopment analysis
Directory of Open Access Journals (Sweden)
Nikolić Miloš Lj.
2015-01-01
Full Text Available The problem of public transit network design belongs to the class of NP hard combinatorial optimization problem. Since optimal solution of this problem is difficult to discover, many heuristic algorithms have been proposed in the literature. By applying various heuristic algorithms to one problem instance, various solutions could be generated. We assume, in this paper, that decisions related to public transit network choice should be made in the presence of trade-offs between two or more conflicting objectives (usually, the passengers' and operator's interests are in conflict. In this paper, we propose the model for public transit network choice. The proposed model is based on the Data Envelopment Analysis (DEA. The proposed model is tested on the one of the best known benchmark examples for the transit network design problem.
Communicating systems with UML 2 modeling and analysis of network protocols
Barrera, David Garduno
2013-01-01
This book gives a practical approach to modeling and analyzing communication protocols using UML 2. Network protocols are always presented with a point of view focusing on partial mechanisms and starting models. This book aims at giving the basis needed for anybody to model and validate their own protocols. It follows a practical approach and gives many examples for the description and analysis of well known basic network mechanisms for protocols.The book firstly shows how to describe and validate the main protocol issues (such as synchronization problems, client-server interactions, layer
Zhang, Xiao-Fei; Ou-Yang, Le; Yan, Hong
2017-08-15
Understanding how gene regulatory networks change under different cellular states is important for revealing insights into network dynamics. Gaussian graphical models, which assume that the data follow a joint normal distribution, have been used recently to infer differential networks. However, the distributions of the omics data are non-normal in general. Furthermore, although much biological knowledge (or prior information) has been accumulated, most existing methods ignore the valuable prior information. Therefore, new statistical methods are needed to relax the normality assumption and make full use of prior information. We propose a new differential network analysis method to address the above challenges. Instead of using Gaussian graphical models, we employ a non-paranormal graphical model that can relax the normality assumption. We develop a principled model to take into account the following prior information: (i) a differential edge less likely exists between two genes that do not participate together in the same pathway; (ii) changes in the networks are driven by certain regulator genes that are perturbed across different cellular states and (iii) the differential networks estimated from multi-view gene expression data likely share common structures. Simulation studies demonstrate that our method outperforms other graphical model-based algorithms. We apply our method to identify the differential networks between platinum-sensitive and platinum-resistant ovarian tumors, and the differential networks between the proneural and mesenchymal subtypes of glioblastoma. Hub nodes in the estimated differential networks rediscover known cancer-related regulator genes and contain interesting predictions. The source code is at https://github.com/Zhangxf-ccnu/pDNA. szuouyl@gmail.com. Supplementary data are available at Bioinformatics online.
Friendship Dissolution Within Social Networks Modeled Through Multilevel Event History Analysis.
Dean, Danielle O; Bauer, Daniel J; Prinstein, Mitchell J
2017-01-01
A social network perspective can bring important insight into the processes that shape human behavior. Longitudinal social network data, measuring relations between individuals over time, has become increasingly common-as have the methods available to analyze such data. A friendship duration model utilizing discrete-time multilevel survival analysis with a multiple membership random effect structure is developed and applied here to study the processes leading to undirected friendship dissolution within a larger social network. While the modeling framework is introduced in terms of understanding friendship dissolution, it can be used to understand microlevel dynamics of a social network more generally. These models can be fit with standard generalized linear mixed-model software, after transforming the data to a pair-period data set. An empirical example highlights how the model can be applied to understand the processes leading to friendship dissolution between high school students, and a simulation study is used to test the use of the modeling framework under representative conditions that would be found in social network data. Advantages of the modeling framework are highlighted, and potential limitations and future directions are discussed.
Collaborative networks: Reference modeling
Camarinha-Matos, L.M.; Afsarmanesh, H.
2008-01-01
Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of
A continuous-time Bayesian network reliability modeling and analysis framework
Boudali, H.; Dugan, J.B.
We present a continuous-time Bayesian network (CTBN) framework for dynamic systems reliability modeling and analysis. Dynamic systems exhibit complex behaviors and interactions between their components; where not only the combination of failure events matters, but so does the sequence ordering of
Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network
Xiu, Dongbin; Sherwin, Spencer J.
2007-10-01
Reduced models of human arterial networks are an efficient approach to analyze quantitative macroscopic features of human arterial flows. The justification for such models typically arise due to the significantly long wavelength associated with the system in comparison to the lengths of arteries in the networks. Although these types of models have been employed extensively and many issues associated with their implementations have been widely researched, the issue of data uncertainty has received comparatively little attention. Similar to many biological systems, a large amount of uncertainty exists in the value of the parameters associated with the models. Clearly reliable assessment of the system behaviour cannot be made unless the effect of such data uncertainty is quantified. In this paper we present a study of parametric data uncertainty in reduced modelling of human arterial networks which is governed by a hyperbolic system. The uncertain parameters are modelled as random variables and the governing equations for the arterial network therefore become stochastic. This type stochastic hyperbolic systems have not been previously systematically studied due to the difficulties introduced by the uncertainty such as a potential change in the mathematical character of the system and imposing boundary conditions. We demonstrate how the application of a high-order stochastic collocation method based on the generalized polynomial chaos expansion, combined with a discontinuous Galerkin spectral/hp element discretization in physical space, can successfully simulate this type of hyperbolic system subject to uncertain inputs with bounds. Building upon a numerical study of propagation of uncertainty and sensitivity in a simplified model with a single bifurcation, a systematical parameter sensitivity analysis is conducted on the wave dynamics in a multiple bifurcating human arterial network. Using the physical understanding of the dynamics of pulse waves in these types of
Analysis and modelling of non-steady flow in pipe and channel networks
Jovic, Vinko
2013-01-01
Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks deals with flows in pipes and channel networks from the standpoints of hydraulics and modelling techniques and methods. These engineering problems occur in the course of the design and construction of hydroenergy plants, water-supply and other systems. In this book, the author presents his experience in solving these problems from the early 1970s to the present day. During this period new methods of solving hydraulic problems have evolved, due to the development of computers and numerical methods. This book
Directory of Open Access Journals (Sweden)
Wang Dongyang
2015-01-01
Full Text Available Modeling the forwarding feature and analyzing the performance theoretically for opportunistic routing in wireless multihop network are of great challenge. To address this issue, a generalized geometric distribution (GGD is firstly proposed. Based on the GGD, the forwarding probability between any two forwarding candidates could be calculated and it can be proved that the successful delivery rate after several transmissions of forwarding candidates is irrelevant to the priority rule. Then, a discrete-time queuing model is proposed to analyze mean end-to-end delay (MED of a regular opportunistic routing with the knowledge of the forwarding probability. By deriving the steady-state joint generating function of the queue length distribution, MED for directly connected networks and some special cases of nondirectly connected networks could be ultimately determined. Besides, an approximation approach is proposed to assess MED for the general cases in the nondirectly connected networks. By comparing with a large number of simulation results, the rationality of the analysis is validated. Both the analysis and simulation results show that MED varies with the number of forwarding candidates, especially when it comes to connected networks; MED increases more rapidly than that in nondirectly connected networks with the increase of the number of forwarding candidates.
Analysis regarding the transport network models. Case study on finding the optimal transport route
Stîngă, V.-G.
2017-08-01
Transport networks are studied most of the time from a graph theory perspective, mostly studied in a static way, in order to emphasize their characteristics like: topology, morphology, costs, traffic flows etc. There are many methods used to describe these characteristics at local and global level. Usually when analysing the transport network models, the aim is to achieve minimum capacity transit or minimum cost of operating or investment. Throughout this paper we will get an insight into the many models of the transport network that were presented over the years and we will try to make a short analysis regarding the most important ones. We will make a case study on finding the optimal route by using one of the models presented within this paper.
Directory of Open Access Journals (Sweden)
Marijana Zekić-Sušac
2013-02-01
Full Text Available Despite increased interest in the entrepreneurial intentions and career choices of young adults, reliable prediction models are yet to be developed. Two nonparametric methods were used in this paper to model entrepreneurial intentions: principal component analysis (PCA and artificial neural networks (ANNs. PCA was used to perform feature extraction in the first stage of modelling, while artificial neural networks were used to classify students according to their entrepreneurial intentions in the second stage. Four modelling strategies were tested in order to find the most efficient model. Dataset was collected in an international survey on entrepreneurship self-efficacy and identity. Variables describe students’ demographics, education, attitudes, social and cultural norms, self-efficacy and other characteristics. The research reveals benefits from the combination of the PCA and ANNs in modeling entrepreneurial intentions, and provides some ideas for further research.
Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling
Directory of Open Access Journals (Sweden)
Mahadevan Radhakrishnan
2010-05-01
Full Text Available Abstract Background Geobacter sulfurreducens is a member of the Geobacter species, which are capable of oxidation of organic waste coupled to the reduction of heavy metals and electrode with applications in bioremediation and bioenergy generation. While the metabolism of this organism has been studied through the development of a stoichiometry based genome-scale metabolic model, the associated regulatory network has not yet been well studied. In this manuscript, we report on the implementation of a thermodynamics based metabolic flux model for Geobacter sulfurreducens. We use this updated model to identify reactions that are subject to regulatory control in the metabolic network of G. sulfurreducens using thermodynamic variability analysis. Findings As a first step, we have validated the regulatory sites and bottleneck reactions predicted by the thermodynamic flux analysis in E. coli by evaluating the expression ranges of the corresponding genes. We then identified ten reactions in the metabolic network of G. sulfurreducens that are predicted to be candidates for regulation. We then compared the free energy ranges for these reactions with the corresponding gene expression fold changes under conditions of different environmental and genetic perturbations and show that the model predictions of regulation are consistent with data. In addition, we also identify reactions that operate close to equilibrium and show that the experimentally determined exchange coefficient (a measure of reversibility is significant for these reactions. Conclusions Application of the thermodynamic constraints resulted in identification of potential bottleneck reactions not only from the central metabolism but also from the nucleotide and amino acid subsystems, thereby showing the highly coupled nature of the thermodynamic constraints. In addition, thermodynamic variability analysis serves as a valuable tool in estimating the ranges of ΔrG' of every reaction in the model
FAST TCP over optical burst switched networks: Modeling and stability analysis
Shihada, Basem
2013-04-01
FAST TCP is important for promoting data-intensive applications since it can cleverly react to both packet loss and delay for detecting network congestion. This paper provides a continuous time model and extensive stability analysis of FAST TCP congestion-control mechanism in bufferless Optical Burst Switched Networks (OBS). The paper first shows that random burst contentions are essential to stabilize the network, but cause throughput degradation in FAST TCP flows when a burst with all the packets from a single round is dropped. Second, it shows that FAST TCP is vulnerable to burst delay and fails to detect network congestion due to the little variation of round-trip time, thus unstable. Finally it shows that introducing extra delays by implementing burst retransmission stabilizes FAST TCP over OBS. The paper proves that FAST TCP is not stable over barebone OBS. However, it is locally, exponentially, and asymptotically stable over OBS with burst retransmission.
Functional data analysis for identifying nonlinear models of gene regulatory networks.
Summer, Georg; Perkins, Theodore J
2010-12-02
A key problem in systems biology is estimating dynamical models of gene regulatory networks. Traditionally, this has been done using regression or other ad-hoc methods when the model is linear. More detailed, realistic modeling studies usually employ nonlinear dynamical models, which lead to computationally difficult parameter estimation problems. Functional data analysis methods, however, offer a means to simplify fitting by transforming the problem from one of matching modeled and observed dynamics to one of matching modeled and observed time derivatives-a regression problem, albeit a nonlinear one. We formulate a functional data analysis approach for estimating the parameters of nonlinear dynamical models and evaluate this approach on data from two real systems, the gap gene system of Drosophila melanogaster and the synthetic IRMA network, which was created expressly as a test case for genetic network inference. We also evaluate the approach on simulated data sets generated by the GeneNetWeaver program, the basis for the annual DREAM reverse engineering challenge. We assess the accuracy with which the correct regulatory relationships within the networks are extracted, and consider alternative methods of regularization for the purpose of overfitting avoidance. We also show that the computational efficiency of the functional data analysis approach, and the decomposability of the resulting regression problem, allow us to explicitly enumerate and evaluate all possible regulator combinations for every gene. This gives deeper insight into the the relevance of different regulators or regulator combinations, and lets one check for alternative regulatory explanations. Functional data analysis is a powerful approach for estimating detailed nonlinear models of gene expression dynamics, allowing efficient and accurate estimation of regulatory architecture.
Risk analysis of urban gas pipeline network based on improved bow-tie model
Hao, M. J.; You, Q. J.; Yue, Z.
2017-11-01
Gas pipeline network is a major hazard source in urban areas. In the event of an accident, there could be grave consequences. In order to understand more clearly the causes and consequences of gas pipeline network accidents, and to develop prevention and mitigation measures, the author puts forward the application of improved bow-tie model to analyze risks of urban gas pipeline network. The improved bow-tie model analyzes accident causes from four aspects: human, materials, environment and management; it also analyzes the consequences from four aspects: casualty, property loss, environment and society. Then it quantifies the causes and consequences. Risk identification, risk analysis, risk assessment, risk control, and risk management will be clearly shown in the model figures. Then it can suggest prevention and mitigation measures accordingly to help reduce accident rate of gas pipeline network. The results show that the whole process of an accident can be visually investigated using the bow-tie model. It can also provide reasons for and predict consequences of an unfortunate event. It is of great significance in order to analyze leakage failure of gas pipeline network.
Modeling and Analysis of Cellular Networks using Stochastic Geometry: A Tutorial
Elsawy, Hesham
2016-11-03
This paper presents a tutorial on stochastic geometry (SG) based analysis for cellular networks. This tutorial is distinguished by its depth with respect to wireless communication details and its focus on cellular networks. The paper starts by modeling and analyzing the baseband interference in a baseline single-tier downlink cellular network with single antenna base stations and universal frequency reuse. Then, it characterizes signal-to-interference-plus-noise-ratio (SINR) and its related performance metrics. In particular, a unified approach to conduct error probability, outage probability, and transmission rate analysis is presented. Although the main focus of the paper is on cellular networks, the presented unified approach applies for other types of wireless networks that impose interference protection around receivers. The paper then extends the unified approach to capture cellular network characteristics (e.g., frequency reuse, multiple antenna, power control, etc.). It also presents numerical examples associated with demonstrations and discussions. To this end, the paper highlights the state-of-the- art research and points out future research directions.
A General Model for Representing Arbitrary Unsymmetries in Various Types of Network Analysis
DEFF Research Database (Denmark)
Rønne-Hansen, Jan
1997-01-01
When dealing with unsymmetric faults various proposals have been put forward. In general they have been characterized by specific treatment of the single fault in accordance with the structure and impedances involved. The model presented is based on node equations and was originally developed...... for transient stability studies in order to allow for an arbitrary fault representation as seen from the positive sequence network. The method results in impedances -or admittances-combining the negative sequence and zero sequence representation for the symmetrical network with the structure and electrical...... constants of the unsymmetry involving one or more buses. These impedances are introduced in the positive sequence network in the nodes involved in the unsymmetrical conditions. In addition the model can be used for static fault current analysis and presents also in this connection a general method...
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks
Directory of Open Access Journals (Sweden)
Luciano Pivoto Specht
2007-03-01
Full Text Available It is of a great importance to know binders' viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation.
Gharbieh, Mohammad
2017-05-02
The Internet of Things (IoT) is large-scale by nature, which is manifested by the massive number of connected devices as well as their vast spatial existence. Cellular networks, which provide ubiquitous, reliable, and efficient wireless access, will play fundamental rule in delivering the first-mile access for the data tsunami to be generated by the IoT. However, cellular networks may have scalability problems to provide uplink connectivity to massive numbers of connected things. To characterize the scalability of cellular uplink in the context of IoT networks, this paper develops a traffic-aware spatiotemporal mathematical model for IoT devices supported by cellular uplink connectivity. The developed model is based on stochastic geometry and queueing theory to account for the traffic requirement per IoT device, the different transmission strategies, and the mutual interference between the IoT devices. To this end, the developed model is utilized to characterize the extent to which cellular networks can accommodate IoT traffic as well as to assess and compare three different transmission strategies that incorporate a combination of transmission persistency, backoff, and power-ramping. The analysis and the results clearly illustrate the scalability problem imposed by IoT on cellular network and offer insights into effective scenarios for each transmission strategy.
Bayesian hierarchical models for network meta-analysis incorporating nonignorable missingness.
Zhang, Jing; Chu, Haitao; Hong, Hwanhee; Virnig, Beth A; Carlin, Bradley P
2017-10-01
Network meta-analysis expands the scope of a conventional pairwise meta-analysis to simultaneously compare multiple treatments, synthesizing both direct and indirect information and thus strengthening inference. Since most of trials only compare two treatments, a typical data set in a network meta-analysis managed as a trial-by-treatment matrix is extremely sparse, like an incomplete block structure with significant missing data. Zhang et al. proposed an arm-based method accounting for correlations among different treatments within the same trial and assuming that absent arms are missing at random. However, in randomized controlled trials, nonignorable missingness or missingness not at random may occur due to deliberate choices of treatments at the design stage. In addition, those undertaking a network meta-analysis may selectively choose treatments to include in the analysis, which may also lead to missingness not at random. In this paper, we extend our previous work to incorporate missingness not at random using selection models. The proposed method is then applied to two network meta-analyses and evaluated through extensive simulation studies. We also provide comprehensive comparisons of a commonly used contrast-based method and the arm-based method via simulations in a technical appendix under missing completely at random and missing at random.
Pradhan, B.; Buchroithner, M. F.; Mansor, S.
2009-04-01
This paper presents the assessment results of spatially based probabilistic three models using Geoinformation Techniques (GIT) for landslide susceptibility analysis at Penang Island in Malaysia. Landslide locations within the study areas were identified by interpreting aerial photographs, satellite images and supported with field surveys. Maps of the topography, soil type, lineaments and land cover were constructed from the spatial data sets. There are nine landslide related factors were extracted from the spatial database and the neural network, frequency ratio and logistic regression coefficients of each factor was computed. Landslide susceptibility maps were drawn for study area using neural network, frequency ratios and logistic regression models. For verification, the results of the analyses were compared with actual landslide locations in study area. The verification results show that frequency ratio model provides higher prediction accuracy than the ANN and regression models.
Christensen, Claire Petra
's own publications have contributed network inference, simulation, modeling, and analysis methods to the much larger body of work in systems biology, and indeed, in network science. The aim of this thesis is therefore twofold: to present this original work in the historical context of network science, but also to provide sufficient review and reference regarding complex systems (with an emphasis on complex networks in systems biology) and tools and techniques for their inference, simulation, analysis, and modeling, such that the reader will be comfortable in seeking out further information on the subject. The review-like Chapters 1, 2, and 4 are intended to convey the co-evolution of network science and the slow but noticeable breakdown of boundaries between disciplines in academia as research and comparison of diverse systems has brought to light the shared properties of these systems. It is the author's hope that theses chapters impart some sense of the remarkable and rapid progress in complex systems research that has led to this unprecedented academic synergy. Chapters 3 and 5 detail the author's original work in the context of complex systems research. Chapter 3 presents the methods and results of a two-stage modeling process that generates candidate gene-regulatory networks of the bacterium B.subtilis from experimentally obtained, yet mathematically underdetermined microchip array data. These networks are then analyzed from a graph theoretical perspective, and their biological viability is critiqued by comparing the networks' graph theoretical properties to those of other biological systems. The results of topological perturbation analyses revealing commonalities in behavior at multiple levels of complexity are also presented, and are shown to be an invaluable means by which to ascertain the level of complexity to which the network inference process is robust to noise. Chapter 5 outlines a learning algorithm for the development of a realistic, evolving social
Evaluation of Supply Chain Efficiency Based on a Novel Network of Data Envelopment Analysis Model
Fu, Li Fang; Meng, Jun; Liu, Ying
2015-12-01
Performance evaluation of supply chain (SC) is a vital topic in SC management and inherently complex problems with multilayered internal linkages and activities of multiple entities. Recently, various Network Data Envelopment Analysis (NDEA) models, which opened the “black box” of conventional DEA, were developed and applied to evaluate the complex SC with a multilayer network structure. However, most of them are input or output oriented models which cannot take into consideration the nonproportional changes of inputs and outputs simultaneously. This paper extends the Slack-based measure (SBM) model to a nonradial, nonoriented network model named as U-NSBM with the presence of undesirable outputs in the SC. A numerical example is presented to demonstrate the applicability of the model in quantifying the efficiency and ranking the supply chain performance. By comparing with the CCR and U-SBM models, it is shown that the proposed model has higher distinguishing ability and gives feasible solution in the presence of undesirable outputs. Meanwhile, it provides more insights for decision makers about the source of inefficiency as well as the guidance to improve the SC performance.
Inoue, Kentaro; Maeda, Kazuhiro; Miyabe, Takaaki; Matsuoka, Yu; Kurata, Hiroyuki
2014-09-01
Mathematical modeling has become a standard technique to understand the dynamics of complex biochemical systems. To promote the modeling, we had developed the CADLIVE dynamic simulator that automatically converted a biochemical map into its associated mathematical model, simulated its dynamic behaviors and analyzed its robustness. To enhance the feasibility by CADLIVE and extend its functions, we propose the CADLIVE toolbox available for MATLAB, which implements not only the existing functions of the CADLIVE dynamic simulator, but also the latest tools including global parameter search methods with robustness analysis. The seamless, bottom-up processes consisting of biochemical network construction, automatic construction of its dynamic model, simulation, optimization, and S-system analysis greatly facilitate dynamic modeling, contributing to the research of systems biology and synthetic biology. This application can be freely downloaded from http://www.cadlive.jp/CADLIVE_MATLAB/ together with an instruction.
Gebali, Fayez
2015-01-01
This textbook presents the mathematical theory and techniques necessary for analyzing and modeling high-performance global networks, such as the Internet. The three main building blocks of high-performance networks are links, switching equipment connecting the links together, and software employed at the end nodes and intermediate switches. This book provides the basic techniques for modeling and analyzing these last two components. Topics covered include, but are not limited to: Markov chains and queuing analysis, traffic modeling, interconnection networks and switch architectures and buffering strategies. · Provides techniques for modeling and analysis of network software and switching equipment; · Discusses design options used to build efficient switching equipment; · Includes many worked examples of the application of discrete-time Markov chains to communication systems; · Covers the mathematical theory and techniques necessary for ana...
Data envelopment analysis a handbook of modeling internal structure and network
Cook, Wade D
2014-01-01
This comprehensive handbook on state-of-the-art topics in DEA modeling of internal structures and networks presents work by leading researchers who share their results on subjects including additive efficiency decomposition and slacks-based network DEA.
Validation and quantification of uncertainty in coupled climate models using network analysis
Energy Technology Data Exchange (ETDEWEB)
Bracco, Annalisa [Georgia Inst. of Technology, Atlanta, GA (United States)
2015-08-10
We developed a fast, robust and scalable methodology to examine, quantify, and visualize climate patterns and their relationships. It is based on a set of notions, algorithms and metrics used in the study of graphs, referred to as complex network analysis. This approach can be applied to explain known climate phenomena in terms of an underlying network structure and to uncover regional and global linkages in the climate system, while comparing general circulation models outputs with observations. The proposed method is based on a two-layer network representation, and is substantially new within the available network methodologies developed for climate studies. At the first layer, gridded climate data are used to identify ‘‘areas’’, i.e., geographical regions that are highly homogeneous in terms of the given climate variable. At the second layer, the identified areas are interconnected with links of varying strength, forming a global climate network. The robustness of the method (i.e. the ability to separate between topological distinct fields, while identifying correctly similarities) has been extensively tested. It has been proved that it provides a reliable, fast framework for comparing and ranking the ability of climate models of reproducing observed climate patterns and their connectivity. We further developed the methodology to account for lags in the connectivity between climate patterns and refined our area identification algorithm to account for autocorrelation in the data. The new methodology based on complex network analysis has been applied to state-of-the-art climate model simulations that participated to the last IPCC (International Panel for Climate Change) assessment to verify their performances, quantify uncertainties, and uncover changes in global linkages between past and future projections. Network properties of modeled sea surface temperature and rainfall over 1956–2005 have been constrained towards observations or reanalysis data sets
Electrical equivalent thermal network for direct contact membrane distillation modeling and analysis
Karam, Ayman M.
2016-09-19
Membrane distillation (MD) is an emerging water desalination technology that offers several advantages compared to conventional desalination methods. Although progress has been made to model the physics of the process, there are two common limitations of existing models. Firstly, many of the models are based on the steady-state analysis of the process and secondly, some of the models are based on partial differential equations, which when discretized introduce many states which are not accessible in practice. This paper presents the derivation of a novel dynamic model, based on the analogy between electrical and thermal systems, for direct contact membrane distillation (DCMD). An analogous electrical thermal network is constructed and its elements are parameterized such that the response of the network models the DCMD process. The proposed model captures the spatial and temporal responses of the temperature distribution along the flow direction and is able to accurately predict the distilled water flux output. To demonstrate the adequacy of the proposed model, validation with time varying and steady-state experimental data is presented. (C) 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Zehui Wu
2017-01-01
Full Text Available SDN-based controller, which is responsible for the configuration and management of the network, is the core of Software-Defined Networks. Current methods, which focus on the secure mechanism, use qualitative analysis to estimate the security of controllers, leading to inaccurate results frequently. In this paper, we employ a quantitative approach to overcome the above shortage. Under the analysis of the controller threat model we give the formal model results of the APIs, the protocol interfaces, and the data items of controller and further provide our Threat/Effort quantitative calculation model. With the help of Threat/Effort model, we are able to compare not only the security of different versions of the same kind controller but also different kinds of controllers and provide a basis for controller selection and secure development. We evaluated our approach in four widely used SDN-based controllers which are POX, OpenDaylight, Floodlight, and Ryu. The test, which shows the similarity outcomes with the traditional qualitative analysis, demonstrates that with our approach we are able to get the specific security values of different controllers and presents more accurate results.
Band, Leah R.; Fozard, John A.; Godin, Christophe; Jensen, Oliver E.; Pridmore, Tony; Bennett, Malcolm J.; King, John R.
2012-01-01
Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties. PMID:23110897
Isami, Shuhei; Nishimori, Hiraku; Awazu, Akinori
2015-01-01
Simple elastic network models of DNA were developed to reveal the structure-dynamics relationships for several nucleotide sequences. First, we propose a simple all-atom elastic network model of DNA that can explain the profiles of temperature factors for several crystal structures of DNA. Second, we propose a coarse-grained elastic network model of DNA, where each nucleotide is described only by one node. This model could effectively reproduce the detailed dynamics obtained with the all-atom elastic network model according to the sequence-dependent geometry. Through normal-mode analysis for the coarse-grained elastic network model, we exhaustively analyzed the dynamic features of a large number of long DNA sequences, approximately $\\sim 150$ bp in length. These analyses revealed positive correlations between the nucleosome-forming abilities and the inter-strand fluctuation strength of double-stranded DNA for several DNA sequences.
Directory of Open Access Journals (Sweden)
Shuhei Isami
Full Text Available Simple elastic network models of DNA were developed to reveal the structure-dynamics relationships for several nucleotide sequences. First, we propose a simple all-atom elastic network model of DNA that can explain the profiles of temperature factors for several crystal structures of DNA. Second, we propose a coarse-grained elastic network model of DNA, where each nucleotide is described only by one node. This model could effectively reproduce the detailed dynamics obtained with the all-atom elastic network model according to the sequence-dependent geometry. Through normal-mode analysis for the coarse-grained elastic network model, we exhaustively analyzed the dynamic features of a large number of long DNA sequences, approximately ∼150 bp in length. These analyses revealed positive correlations between the nucleosome-forming abilities and the inter-strand fluctuation strength of double-stranded DNA for several DNA sequences.
A Network-Based Data Envelope Analysis Model in a Dynamic Balanced Score Card
Directory of Open Access Journals (Sweden)
Mojtaba Akbarian
2015-01-01
Full Text Available Performance assessment during the time and along with strategies is the most important requirements of top managers. To assess the performance, a balanced score card (BSC along with strategic goals and a data envelopment analysis (DEA are used as powerful qualitative and quantitative tools, respectively. By integrating these two models, their strengths are used and their weaknesses are removed. In this paper, an integrated framework of the BSC and DEA models is proposed for measuring the efficiency during the time and along with strategies based on the time delay of the lag key performance indicators (KPIs of the BSC model. The causal relationships during the time among perspectives of the BSC model are drawn as dynamic BSC at first. Then, after identifying the network-DEA structure, a new objective function for measuring the efficiency of nine subsidiary refineries of the National Iranian Oil Refining and Distribution Company (NIORDC during the time and along with strategies is developed.
Shrirang Ambaji KULKARNI; Raghavendra G . RAO
2017-01-01
Routing data packets in a dynamic network is a difficult and important problem in computer networks. As the network is dynamic, it is subject to frequent topology changes and is subject to variable link costs due to congestion and bandwidth. Existing shortest path algorithms fail to converge to better solutions under dynamic network conditions. Reinforcement learning algorithms posses better adaptation techniques in dynamic environments. In this paper we apply model based Q-Routing technique ...
Introducing Synchronisation in Deterministic Network Models
DEFF Research Database (Denmark)
Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.
2006-01-01
The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading...
DEFF Research Database (Denmark)
Han, Xue; Sandels, Claes; Zhu, Kun
2013-01-01
, comprising distributed generation, active demand and electric vehicles. Subsequently, quantitative analysis was made on the basis of the current and envisioned DER deployment scenarios proposed for Sweden. Simulations are performed in two typical distribution network models for four seasons. The simulation......There has been a large body of statements claiming that the large-scale deployment of Distributed Energy Resources (DERs) could eventually reshape the future distribution grid operation in numerous ways. Thus, it is necessary to introduce a framework to measure to what extent the power system...
Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network.
Kühn, Clemens; Wierling, Christoph; Kühn, Alexander; Klipp, Edda; Panopoulou, Georgia; Lehrach, Hans; Poustka, Albert J
2009-08-23
Gene Regulatory Networks (GRNs) control the differentiation, specification and function of cells at the genomic level. The levels of interactions within large GRNs are of enormous depth and complexity. Details about many GRNs are emerging, but in most cases it is unknown to what extent they control a given process, i.e. the grade of completeness is uncertain. This uncertainty stems from limited experimental data, which is the main bottleneck for creating detailed dynamical models of cellular processes. Parameter estimation for each node is often infeasible for very large GRNs. We propose a method, based on random parameter estimations through Monte-Carlo simulations to measure completeness grades of GRNs. We developed a heuristic to assess the completeness of large GRNs, using ODE simulations under different conditions and randomly sampled parameter sets to detect parameter-invariant effects of perturbations. To test this heuristic, we constructed the first ODE model of the whole sea urchin endomesoderm GRN, one of the best studied large GRNs. We find that nearly 48% of the parameter-invariant effects correspond with experimental data, which is 65% of the expected optimal agreement obtained from a submodel for which kinetic parameters were estimated and used for simulations. Randomized versions of the model reproduce only 23.5% of the experimental data. The method described in this paper enables an evaluation of network topologies of GRNs without requiring any parameter values. The benefit of this method is exemplified in the first mathematical analysis of the complete Endomesoderm Network Model. The predictions we provide deliver candidate nodes in the network that are likely to be erroneous or miss unknown connections, which may need additional experiments to improve the network topology. This mathematical model can serve as a scaffold for detailed and more realistic models. We propose that our method can be used to assess a completeness grade of any GRN. This
Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network
Directory of Open Access Journals (Sweden)
Klipp Edda
2009-08-01
Full Text Available Abstract Background Gene Regulatory Networks (GRNs control the differentiation, specification and function of cells at the genomic level. The levels of interactions within large GRNs are of enormous depth and complexity. Details about many GRNs are emerging, but in most cases it is unknown to what extent they control a given process, i.e. the grade of completeness is uncertain. This uncertainty stems from limited experimental data, which is the main bottleneck for creating detailed dynamical models of cellular processes. Parameter estimation for each node is often infeasible for very large GRNs. We propose a method, based on random parameter estimations through Monte-Carlo simulations to measure completeness grades of GRNs. Results We developed a heuristic to assess the completeness of large GRNs, using ODE simulations under different conditions and randomly sampled parameter sets to detect parameter-invariant effects of perturbations. To test this heuristic, we constructed the first ODE model of the whole sea urchin endomesoderm GRN, one of the best studied large GRNs. We find that nearly 48% of the parameter-invariant effects correspond with experimental data, which is 65% of the expected optimal agreement obtained from a submodel for which kinetic parameters were estimated and used for simulations. Randomized versions of the model reproduce only 23.5% of the experimental data. Conclusion The method described in this paper enables an evaluation of network topologies of GRNs without requiring any parameter values. The benefit of this method is exemplified in the first mathematical analysis of the complete Endomesoderm Network Model. The predictions we provide deliver candidate nodes in the network that are likely to be erroneous or miss unknown connections, which may need additional experiments to improve the network topology. This mathematical model can serve as a scaffold for detailed and more realistic models. We propose that our method can
Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks.
Samaga, Regina; Klamt, Steffen
2013-06-26
A central goal of systems biology is the construction of predictive models of bio-molecular networks. Cellular networks of moderate size have been modeled successfully in a quantitative way based on differential equations. However, in large-scale networks, knowledge of mechanistic details and kinetic parameters is often too limited to allow for the set-up of predictive quantitative models.Here, we review methodologies for qualitative and semi-quantitative modeling of cellular signal transduction networks. In particular, we focus on three different but related formalisms facilitating modeling of signaling processes with different levels of detail: interaction graphs, logical/Boolean networks, and logic-based ordinary differential equations (ODEs). Albeit the simplest models possible, interaction graphs allow the identification of important network properties such as signaling paths, feedback loops, or global interdependencies. Logical or Boolean models can be derived from interaction graphs by constraining the logical combination of edges. Logical models can be used to study the basic input-output behavior of the system under investigation and to analyze its qualitative dynamic properties by discrete simulations. They also provide a suitable framework to identify proper intervention strategies enforcing or repressing certain behaviors. Finally, as a third formalism, Boolean networks can be transformed into logic-based ODEs enabling studies on essential quantitative and dynamic features of a signaling network, where time and states are continuous.We describe and illustrate key methods and applications of the different modeling formalisms and discuss their relationships. In particular, as one important aspect for model reuse, we will show how these three modeling approaches can be combined to a modeling pipeline (or model hierarchy) allowing one to start with the simplest representation of a signaling network (interaction graph), which can later be refined to logical
Directory of Open Access Journals (Sweden)
Hongliang Zhu
2017-01-01
Full Text Available In big data era, the single detection techniques have already not met the demand of complex network attacks and advanced persistent threats, but there is no uniform standard to make different correlation analysis detection be performed efficiently and accurately. In this paper, we put forward a universal correlation analysis detection model and algorithm by introducing state transition diagram. Based on analyzing and comparing the current correlation detection modes, we formalize the correlation patterns and propose a framework according to data packet timing and behavior qualities and then design a new universal algorithm to implement the method. Finally, experiment, which sets up a lightweight intrusion detection system using KDD1999 dataset, shows that the correlation detection model and algorithm can improve the performance and guarantee high detection rates.
Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper
2013-09-01
The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement
Error Analysis of Some Demand Simplifications in Hydraulic Models of Water Supply Networks
Directory of Open Access Journals (Sweden)
Joaquín Izquierdo
2013-01-01
Full Text Available Mathematical modeling of water distribution networks makes use of simplifications aimed to optimize the development and use of the mathematical models involved. Simplified models are used systematically by water utilities, frequently with no awareness of the implications of the assumptions used. Some simplifications are derived from the various levels of granularity at which a network can be considered. This is the case of some demand simplifications, specifically, when consumptions associated with a line are equally allocated to the ends of the line. In this paper, we present examples of situations where this kind of simplification produces models that are very unrealistic. We also identify the main variables responsible for the errors. By performing some error analysis, we assess to what extent such a simplification is valid. Using this information, guidelines are provided that enable the user to establish if a given simplification is acceptable or, on the contrary, supplies information that differs substantially from reality. We also develop easy to implement formulae that enable the allocation of inner line demand to the line ends with minimal error; finally, we assess the errors associated with the simplification and locate the points of a line where maximum discrepancies occur.
A Multilayer Model of Computer Networks
Shchurov, Andrey A.
2015-01-01
The fundamental concept of applying the system methodology to network analysis declares that network architecture should take into account services and applications which this network provides and supports. This work introduces a formal model of computer networks on the basis of the hierarchical multilayer networks. In turn, individual layers are represented as multiplex networks. The concept of layered networks provides conditions of top-down consistency of the model. Next, we determined the...
Energy Technology Data Exchange (ETDEWEB)
Moler, Edward J.; Mian, I.S.
2000-03-01
How can molecular expression experiments be interpreted with greater than ten to the fourth measurements per chip? How can one get the most quantitative information possible from the experimental data with good confidence? These are important questions whose solutions require an interdisciplinary combination of molecular and cellular biology, computer science, statistics, and complex systems analysis. The explosion of data from microarray techniques present the problem of interpreting the experiments. The availability of large-scale knowledge bases provide the opportunity to maximize the information extracted from these experiments. We have developed new methods of discovering biological function, metabolic pathways, and regulatory networks from these data and knowledge bases. These techniques are applicable to analyses for biomedical engineering, clinical, and fundamental cell and molecular biology studies. Our approach uses probabilistic, computational methods that give quantitative interpretations of data in a biological context. We have selected Bayesian statistical models with graphical network representations as a framework for our methods. As a first step, we use a nave Bayesian classifier to identify statistically significant patterns in gene expression data. We have developed methods which allow us to (a) characterize which genes or experiments distinguish each class from the others, (b) cross-index the resulting classes with other databases to assess biological meaning of the classes, and (c) display a gross overview of cellular dynamics. We have developed a number of visualization tools to convey the results. We report here our methods of classification and our first attempts at integrating the data and other knowledge bases together with new visualization tools. We demonstrate the utility of these methods and tools by analysis of a series of yeast cDNA microarray data and to a set of cancerous/normal sample data from colon cancer patients. We discuss
Role Analysis in Networks using Mixtures of Exponential Random Graph Models.
Salter-Townshend, Michael; Murphy, Thomas Brendan
2015-06-01
A novel and flexible framework for investigating the roles of actors within a network is introduced. Particular interest is in roles as defined by local network connectivity patterns, identified using the ego-networks extracted from the network. A mixture of Exponential-family Random Graph Models is developed for these ego-networks in order to cluster the nodes into roles. We refer to this model as the ego-ERGM. An Expectation-Maximization algorithm is developed to infer the unobserved cluster assignments and to estimate the mixture model parameters using a maximum pseudo-likelihood approximation. The flexibility and utility of the method are demonstrated on examples of simulated and real networks.
Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis
Directory of Open Access Journals (Sweden)
Chao Zhang
2017-09-01
Full Text Available A wireless-powered sensor network (WPSN consisting of one hybrid access point (HAP, a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.
Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis.
Zhang, Chao; Zhang, Pengcheng; Zhang, Weizhan
2017-09-27
A wireless-powered sensor network (WPSN) consisting of one hybrid access point (HAP), a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF) manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.
Electromagnetic game modeling through Tensor Analysis of Networks and Game Theory
Maurice, Olivier; Reineix, Alain; Lalléchère, Sébastien
2014-10-01
A complex system involves events coming from natural behaviors. Whatever is the complicated face of machines, they are still far from the complexity of natural systems. Currently, economy is one of the rare science trying to find out some ways to model human behavior. These attempts involve game theory and psychology. Our purpose is to develop a formalism able to take in charge both game and hardware modeling. We first present the Tensorial Analysis of Networks, used for the material part of the system. Then, we detail the mathematical objects defined in order to describe the evolution of the system and its gaming side. To illustrate the discussion we consider the case of a drone whose electronic can be disturbed by a radar field, but this drone must fly as near as possible close to this radar.
Nilkantha Chakraborty
2013-01-01
Radio resource management (RRM) is the system level control of co-channel interference and other radio transmission characteristics in wireless communication systems. In this paper we first analyze a utility function based access selection (UFAS) method. Thenwe investigate a radio resource management and network selection scheme in heterogeneous wireless network. We propose an economic model to allocate radio resources for Code Division Multiple Access (CDMA) Networks and Wireless local Area ...
Firdausiah Mansur, Andi Besse; Yusof, Norazah
2013-01-01
Clustering on Social Learning Network still not explored widely, especially when the network focuses on e-learning system. Any conventional methods are not really suitable for the e-learning data. SNA requires content analysis, which involves human intervention and need to be carried out manually. Some of the previous clustering techniques need…
A neural network construction method for surrogate modeling of physics-based analysis
Sung, Woong Je
connection as a zero-weight connection, the potential contribution to training error reduction of any present or absent connection can readily be evaluated using the BP algorithm. Instead of being broken, the connections that contribute less remain frozen with constant weight values optimized to that point but they are excluded from further weight optimization until reselected. In this way, a selective weight optimization is executed only for the dynamically maintained pool of high gradient connections. By searching the rapidly changing weights and concentrating optimization resources on them, the learning process is accelerated without either a significant increase in computational cost or a need for re-training. This results in a more task-adapted network connection structure. Combined with another important criterion for the division of a neuron which adds a new computational unit to a network, a highly fitted network can be grown out of the minimal random structure. This particular learning strategy can belong to a more broad class of the variable connectivity learning scheme and the devised algorithm has been named Optimal Brain Growth (OBG). The OBG algorithm has been tested on two canonical problems; a regression analysis using the Complicated Interaction Regression Function and a classification of the Two-Spiral Problem. A comparative study with conventional Multilayer Perceptrons (MLPs) consisting of single- and double-hidden layers shows that OBG is less sensitive to random initial conditions and generalizes better with only a minimal increase in computational time. This partially proves that a variable connectivity learning scheme has great potential to enhance computational efficiency and reduce efforts to select proper network architecture. To investigate the applicability of the OBG to more practical surrogate modeling tasks, the geometry-to-pressure mapping of a particular class of airfoils in the transonic flow regime has been sought using both the
Analysis on the performance dependency of channel models in a wireless peer-to-peer network
Wang, Yupeng; Liu, Tianlong; Yu, Zelong; Li, Yufeng
2017-08-01
In order to reduce the simulation complexity and time of peer-to-peer network such as Ad Hoc network, most simulations only use the simplified Free Space Model or Two Ray Ground model to approximate the attenuation due to the wireless transmission without considering the dependency between system performance and channel models. In this paper, the effects of channel models on the wireless peer-to-peer network performance is analyzed in more details by using the conventional routing and medium access control algorithm to find the system performance sensitivity to different channel models. Through the computer simulation using network simulator 2, we found that some aspects of the system performance is only sensitive to the large scale fading effects, while others are not.
The Semantic Network Model of Creativity: Analysis of Online Social Media Data
Yu, Feng; Peng, Theodore; Peng, Kaiping; Zheng, Sam Xianjun; Liu, Zhiyuan
2016-01-01
The central hypothesis of Semantic Network Model of Creativity is that creative people, who are exposed to more information that are both novel and useful, will have more interconnections between event schemas in their associations. The networks of event schemas in creative people's minds were expected to be wider and denser than those in less…
Cao, Hui; Li, Da-Hang; Liu, Ling; Zhou, Yan
2014-10-01
This paper proposes an near infrared spectroscopy quantitative analysis model based on incremental neural network with partial least squares. The proposed model adopts the typical three-layer back-propagation neural network (BPNN), and the absorbance of different wavelengths and the component concentration are the inputs and the outputs, respectively. Partial least square (PLS) regression is performed on the history training samples firstly, and the obtained history loading matrices of the in- dependent variables and the dependent variables are used for determining the initial weights of the input layer and the output lay- er, respectively. The number of the hidden layer nodes is set as the number of the principal components of the independent varia- bles. After a set of new training samples is collected, PLS regression is performed on the combination dataset consisting of the new samples and the history loading matrices to calculate the new loading matrices. The history loading matrices and the new loading matrices are fused to obtain the new initial weights of the input layer and the output layer of the proposed model. Then the new samples are used for training the proposed mode to realize the incremental update. The proposed model is compared with PLS, BPNN, the BPNN based on PLS (PLS-BPNN) and the recursive PLS (RPLS) by using the spectra data of flue gas of nat- ural gas combustion. For the concentration prediction of the carbon dioxide in the flue gas, the root mean square error of predic- tion (RMSEP) of the proposed model are reduced by 27.27%, 58.12%, 19.24% and 14.26% than those of PLS, BPNN, PLS- BPNN and RPLS, respectively. For the concentration prediction of the carbon monoxide in the flue gas, the RMSEP of the pro- posed model are reduced by 20.65%, 24.69%, 18.54% and 19.42% than those of PLS, BPNN, PLS-BPNN and RPLS, re- spectively. For the concentration prediction of the methane in the flue gas, the RMSEP of the proposed model are reduced by 27
Directory of Open Access Journals (Sweden)
Lun Zhang
2015-01-01
Full Text Available This paper presents the modelling and analysis of the capacity expansion of urban road traffic network (ICURTN. Thebilevel programming model is first employed to model the ICURTN, in which the utility of the entire network is maximized with the optimal utility of travelers’ route choice. Then, an improved hybrid genetic algorithm integrated with golden ratio (HGAGR is developed to enhance the local search of simple genetic algorithms, and the proposed capacity expansion model is solved by the combination of the HGAGR and the Frank-Wolfe algorithm. Taking the traditional one-way network and bidirectional network as the study case, three numerical calculations are conducted to validate the presented model and algorithm, and the primary influencing factors on extended capacity model are analyzed. The calculation results indicate that capacity expansion of road network is an effective measure to enlarge the capacity of urban road network, especially on the condition of limited construction budget; the average computation time of the HGAGR is 122 seconds, which meets the real-time demand in the evaluation of the road network capacity.
Lehmann, Rüdiger; Lösler, Michael
2017-12-01
Geodetic deformation analysis can be interpreted as a model selection problem. The null model indicates that no deformation has occurred. It is opposed to a number of alternative models, which stipulate different deformation patterns. A common way to select the right model is the usage of a statistical hypothesis test. However, since we have to test a series of deformation patterns, this must be a multiple test. As an alternative solution for the test problem, we propose the p-value approach. Another approach arises from information theory. Here, the Akaike information criterion (AIC) or some alternative is used to select an appropriate model for a given set of observations. Both approaches are discussed and applied to two test scenarios: A synthetic levelling network and the Delft test data set. It is demonstrated that they work but behave differently, sometimes even producing different results. Hypothesis tests are well-established in geodesy, but may suffer from an unfavourable choice of the decision error rates. The multiple test also suffers from statistical dependencies between the test statistics, which are neglected. Both problems are overcome by applying information criterions like AIC.
Modeling the citation network by network cosmology.
Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing
2015-01-01
Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.
Modeling the citation network by network cosmology.
Directory of Open Access Journals (Sweden)
Zheng Xie
Full Text Available Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.
Ge, Zhiqun; Wang, Ying; Zhang, Xiaolu; Zheng, Yu; Zhao, Xinqun; Sun, Xiaohan
2017-01-01
We propose a time-division hybrid-user data flow model scheme based on semi-Markov state-transition algorithm for multiclass business and service in Integrated Sensing Network (ISN). Two typical flow models, visual sense and auditory sense service models, are set up due to the real situation of service stratum traffic, respectively. The experimental system based on the Asynchronous Optical Packet Switching (AOPS) network simulation platform is established for the feasibility of the proposed data flow model. The results show that the proposed models achieve reasonable packet loss rate and delay time in the case of different business and service levels.
Han, Xue; Sandels, Claes; Zhu, Kun; Nordström, Lars
2013-08-01
There has been a large body of statements claiming that the large-scale deployment of Distributed Energy Resources (DERs) could eventually reshape the future distribution grid operation in numerous ways. Thus, it is necessary to introduce a framework to measure to what extent the power system operation will be changed by various parameters of DERs. This article proposed a modelling framework for an overview analysis on the correlation between DERs. Furthermore, to validate the framework, the authors described the reference models of different categories of DERs with their unique characteristics, comprising distributed generation, active demand and electric vehicles. Subsequently, quantitative analysis was made on the basis of the current and envisioned DER deployment scenarios proposed for Sweden. Simulations are performed in two typical distribution network models for four seasons. The simulation results show that in general the DER deployment brings in the possibilities to reduce the power losses and voltage drops by compensating power from the local generation and optimizing the local load profiles.
DEFF Research Database (Denmark)
Andersen, Kasper Winther
Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...
Díaz Córdova, Diego
2016-01-01
The aim of this article is to introduce two methodological strategies that have not often been utilized in the anthropology of food: agent-based models and social networks analysis. In order to illustrate these methods in action, two cases based in materials typical of the anthropology of food are presented. For the first strategy, fieldwork carried out in Quebrada de Humahuaca (province of Jujuy, Argentina) regarding meal recall was used, and for the second, elements of the concept of "domestic consumption strategies" applied by Aguirre were employed. The underlying idea is that, given that eating is recognized as a "total social fact" and, therefore, as a complex phenomenon, the methodological approach must also be characterized by complexity. The greater the number of methods utilized (with the appropriate rigor), the better able we will be to understand the dynamics of feeding in the social environment.
Modeling, analysis and optimization of network-on-chip communication architectures
Ogras, Umit Y
2013-01-01
Traditionally, design space exploration for Systems-on-Chip (SoCs) has focused on the computational aspects of the problem at hand. However, as the number of components on a single chip and their performance continue to increase, the communication architecture plays a major role in the area, performance and energy consumption of the overall system. As a result, a shift from computation-based to communication-based design becomes mandatory. Towards this end, network-on-chip (NoC) communication architectures have emerged recently as a promising alternative to classical bus and point-to-point communication architectures. This book explores outstanding research problems related to modeling, analysis and optimization of NoC communication architectures. More precisely, we present novel design methodologies, software tools and FPGA prototypes to aid the design of application-specific NoCs.
A neural network model for estimating soil phosphorus using terrain analysis
Directory of Open Access Journals (Sweden)
Ali Keshavarzi
2015-12-01
Full Text Available Artificial neural network (ANN model was developed and tested for estimating soil phosphorus (P in Kouhin watershed area (1000 ha, Qazvin province, Iran using terrain analysis. Based on the soil distribution correlation, vegetation growth pattern across the topographically heterogeneous landscape, the topographic and vegetation attributes were used in addition to pedologic information for the development of ANN model in area for estimating of soil phosphorus. Totally, 85 samples were collected and tested for phosphorus contents and corresponding attributes were estimated by the digital elevation model (DEM. In order to develop the pedo-transfer functions, data linearity was checked, correlated and 80% was used for modeling and ANN was tested using 20% of collected data. Results indicate that 68% of the variation in soil phosphorus could be explained by elevation and Band 1 data and significant correlation was observed between input variables and phosphorus contents. There was a significant correlation between soil P and terrain attributes which can be used to derive the pedo-transfer function for soil P estimation to manage nutrient deficiency. Results showed that P values can be calculated more accurately with the ANN-based pedo-transfer function with the input topographic variables along with the Band 1.
Wada, Daichi; Sugimoto, Yohei
2017-04-01
Aerodynamic loads on aircraft wings are one of the key parameters to be monitored for reliable and effective aircraft operations and management. Flight data of the aerodynamic loads would be used onboard to control the aircraft and accumulated data would be used for the condition-based maintenance and the feedback for the fatigue and critical load modeling. The effective sensing techniques such as fiber optic distributed sensing have been developed and demonstrated promising capability of monitoring structural responses, i.e., strains on the surface of the aircraft wings. By using the developed techniques, load identification methods for structural health monitoring are expected to be established. The typical inverse analysis for load identification using strains calculates the loads in a discrete form of concentrated forces, however, the distributed form of the loads is essential for the accurate and reliable estimation of the critical stress at structural parts. In this study, we demonstrate an inverse analysis to identify the distributed loads from measured strain information. The introduced inverse analysis technique calculates aerodynamic loads not in a discrete but in a distributed manner based on a finite element model. In order to verify the technique through numerical simulations, we apply static aerodynamic loads on a flat panel model, and conduct the inverse identification of the load distributions. We take two approaches to build the inverse system between loads and strains. The first one uses structural models and the second one uses neural networks. We compare the performance of the two approaches, and discuss the effect of the amount of the strain sensing information.
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
[Robustness analysis of adaptive neural network model based on spike timing-dependent plasticity].
Chen, Yunzhi; Xu, Guizhi; Zhou, Qian; Guo, Miaomiao; Guo, Lei; Wan, Xiaowei
2015-02-01
To explore the self-organization robustness of the biological neural network, and thus to provide new ideas and methods for the electromagnetic bionic protection, we studied both the information transmission mechanism of neural network and spike timing-dependent plasticity (STDP) mechanism, and then investigated the relationship between synaptic plastic and adaptive characteristic of biology. Then a feedforward neural network with the Izhikevich model and the STDP mechanism was constructed, and the adaptive robust capacity of the network was analyzed. Simulation results showed that the neural network based on STDP mechanism had good rubustness capacity, and this characteristics is closely related to the STDP mechanisms. Based on this simulation work, the cell circuit with neurons and synaptic circuit which can simulate the information processing mechanisms of biological nervous system will be further built, then the electronic circuits with adaptive robustness will be designed based on the cell circuit.
Tian, Miao; Chen, Xiulan; Xiong, Qian; Xiong, Jie; Xiao, Chuanle; Ge, Feng; Yang, Fuquan; Miao, Wei
2014-02-01
Tetrahymena thermophila is a widely used unicellular eukaryotic model organism in biological research and contains more than 1000 protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues. However, only a few dozen phosphorylation sites in T. thermophila are known, presenting a major obstacle to further understanding of the regulatory roles of reversible phosphorylation in this organism. In this study, we used high-accuracy mass-spectrometry-based proteomics to conduct global and site-specific phosphoproteome profiling of T. thermophila. In total, 1384 phosphopeptides and 2238 phosphorylation sites from 1008 T. thermophila proteins were identified through the combined use of peptide prefractionation, TiO2 enrichment, and two-dimensional LC-MS/MS analysis. The identified phosphoproteins are implicated in the regulation of various biological processes such as transport, gene expression, and mRNA metabolic process. Moreover, integrated analysis of the T. thermophila phosphoproteome and gene network revealed the potential biological functions of many previously unannotated proteins and predicted some putative kinase-substrate pairs. Our data provide the first global survey of phosphorylation in T. thermophila using a phosphoproteomic approach and suggest a wide-ranging regulatory scope of this modification. The provided dataset is a valuable resource for the future understanding of signaling pathways in this important model organism.
Marković, V. M.; Čupić, Ž.; Ivanović, A.; Kolar-Anić, Lj.
2011-12-01
Stoichiometric network analysis (SNA) represents a powerful mathematical tool for stability analysis of complex stoichiometric networks. Recently, the important improvement of the method has been made, according to which instability relations can be entirely expressed via reaction rates, instead of thus far used, in general case undefined, current rates. Such an improved SNA methodology was applied to the determination of exact instability conditions of the extended model of the hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrinological system, whose hormone concentrations exert complex oscillatory evolution. For emergence of oscillations, the Hopf bifurcation condition was utilized. Instability relations predicted by SNA showed good correlation with numerical simulation data of the HPA axis model.
Artificial neural networks and decision tree model analysis of liver cancer proteomes.
Luk, John M; Lam, Brian Y; Lee, Nikki P Y; Ho, David W; Sham, Pak C; Chen, Lei; Peng, Jirun; Leng, Xisheng; Day, Philip J; Fan, Sheung-Tat
2007-09-14
Hepatocellular carcinoma (HCC) is a heterogeneous cancer and usually diagnosed at late advanced tumor stages of high lethality. The present study attempted to obtain a proteome-wide analysis of HCC in comparison with adjacent non-tumor liver tissues, in order to facilitate biomarkers' discovery and to investigate the mechanisms of HCC development. A cohort of 66 Chinese patients with HCC was included for proteomic profiling study by two-dimensional gel electrophoresis (2-DE) analysis. Artificial neural network (ANN) and decision tree (CART) data-mining methods were employed to analyze the profiling data and to delineate significant patterns and trends for discriminating HCC from non-malignant liver tissues. Protein markers were identified by tandem MS/MS. A total of 132 proteome datasets were generated by 2-DE expression profiling analysis, and each with 230 consolidated protein expression intensities. Both the data-mining algorithms successfully distinguished the HCC phenotype from other non-malignant liver samples. The detection sensitivity and specificity of ANN were 96.97% and 87.88%, while those of CART were 81.82% and 78.79%, respectively. The three biological classifiers in the CART model were identified as cytochrome b5, heat shock 70 kDa protein 8 isoform 2, and cathepsin B. The 2-DE-based proteomic profiling approach combined with the ANN or CART algorithm yielded satisfactory performance on identifying HCC and revealed potential candidate cancer biomarkers.
Statistical analysis of network data with R
Kolaczyk, Eric D
2014-01-01
Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).
Hou, Rui; Wu, Jiawen; Du, Helen S.
2017-03-01
To explain the competition phenomenon and results between QQ and MSN (China) in the Chinese instant messaging software market, this paper developed a new population competition model based on customer social network. The simulation results show that the firm whose product with greater network externality effect will gain more market share than its rival when the same marketing strategy is used. The firm with the advantage of time, derived from the initial scale effect will become more competitive than its rival when facing a group of common penguin customers within a social network, verifying the winner-take-all phenomenon in this case.
Analysis and models of bilateral investment treaties using a social networks approach
Saban, Daniela; Bonomo, Flavia; Stier-Moses, Nicolás E.
2010-09-01
Bilateral investment treaties (BITs) are agreements between two countries for the reciprocal encouragement, promotion and protection of investments in each other’s territories by companies based in either country. Germany and Pakistan signed the first BIT in 1959 and since then, BITs are one of the most popular and widespread form of international agreement. In this work we study the proliferation of BITs using a social networks approach. We propose a network growth model that dynamically replicates the empirical topological characteristics of the BIT network.
Modeling network technology deployment rates with different network models
Chung, Yoo
2011-01-01
To understand the factors that encourage the deployment of a new networking technology, we must be able to model how such technology gets deployed. We investigate how network structure influences deployment with a simple deployment model and different network models through computer simulations. The results indicate that a realistic model of networking technology deployment should take network structure into account.
Standard representation and unified stability analysis for dynamic artificial neural network models.
Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D
2017-12-02
An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.
Heavner, Benjamin D.; Price, Nathan D.
2015-01-01
We have compared 12 genome-scale models of the Saccharomyces cerevisiae metabolic network published since 2003 to evaluate progress in reconstruction of the yeast metabolic network. We compared the genomic coverage, overlap of annotated metabolites, predictive ability for single gene essentiality with a selection of model parameters, and biomass production predictions in simulated nutrient-limited conditions. We have also compared pairwise gene knockout essentiality predictions for 10 of these models. We found that varying approaches to model scope and annotation reflected the involvement of multiple research groups in model development; that single-gene essentiality predictions were affected by simulated medium, objective function, and the reference list of essential genes; and that predictive ability for single-gene essentiality did not correlate well with predictive ability for our reference list of synthetic lethal gene interactions (R = 0.159). We conclude that the reconstruction of the yeast metabolic network is indeed gradually improving through the iterative process of model development, and there remains great opportunity for advancing our understanding of biology through continued efforts to reconstruct the full biochemical reaction network that constitutes yeast metabolism. Additionally, we suggest that there is opportunity for refining the process of deriving a metabolic model from a metabolic network reconstruction to facilitate mechanistic investigation and discovery. This comparative study lays the groundwork for developing improved tools and formalized methods to quantitatively assess metabolic network reconstructions independently of any particular model application, which will facilitate ongoing efforts to advance our understanding of the relationship between genotype and cellular phenotype. PMID:26566239
Directory of Open Access Journals (Sweden)
Benjamin D Heavner
2015-11-01
Full Text Available We have compared 12 genome-scale models of the Saccharomyces cerevisiae metabolic network published since 2003 to evaluate progress in reconstruction of the yeast metabolic network. We compared the genomic coverage, overlap of annotated metabolites, predictive ability for single gene essentiality with a selection of model parameters, and biomass production predictions in simulated nutrient-limited conditions. We have also compared pairwise gene knockout essentiality predictions for 10 of these models. We found that varying approaches to model scope and annotation reflected the involvement of multiple research groups in model development; that single-gene essentiality predictions were affected by simulated medium, objective function, and the reference list of essential genes; and that predictive ability for single-gene essentiality did not correlate well with predictive ability for our reference list of synthetic lethal gene interactions (R = 0.159. We conclude that the reconstruction of the yeast metabolic network is indeed gradually improving through the iterative process of model development, and there remains great opportunity for advancing our understanding of biology through continued efforts to reconstruct the full biochemical reaction network that constitutes yeast metabolism. Additionally, we suggest that there is opportunity for refining the process of deriving a metabolic model from a metabolic network reconstruction to facilitate mechanistic investigation and discovery. This comparative study lays the groundwork for developing improved tools and formalized methods to quantitatively assess metabolic network reconstructions independently of any particular model application, which will facilitate ongoing efforts to advance our understanding of the relationship between genotype and cellular phenotype.
Statistical network analysis for analyzing policy networks
DEFF Research Database (Denmark)
Robins, Garry; Lewis, Jenny; Wang, Peng
2012-01-01
To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social...... and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs...
CNEM: Cluster Based Network Evolution Model
Directory of Open Access Journals (Sweden)
Sarwat Nizamani
2015-01-01
Full Text Available This paper presents a network evolution model, which is based on the clustering approach. The proposed approach depicts the network evolution, which demonstrates the network formation from individual nodes to fully evolved network. An agglomerative hierarchical clustering method is applied for the evolution of network. In the paper, we present three case studies which show the evolution of the networks from the scratch. These case studies include: terrorist network of 9/11 incidents, terrorist network of WMD (Weapons Mass Destruction plot against France and a network of tweets discussing a topic. The network of 9/11 is also used for evaluation, using other social network analysis methods which show that the clusters created using the proposed model of network evolution are of good quality, thus the proposed method can be used by law enforcement agencies in order to further investigate the criminal networks
Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model
Directory of Open Access Journals (Sweden)
Guang Hu
2017-01-01
Full Text Available DNA is a fundamental component of living systems where it plays a crucial role at both functional and structural level. The programmable properties of DNA make it an interesting building block for the construction of nanostructures. However, molecular mechanisms for the arrangement of these well-defined DNA assemblies are not fully understood. In this paper, the intrinsic dynamics of a DNA octahedron has been investigated by using two types of Elastic Network Models (ENMs. The application of ENMs to DNA nanocages include the analysis of the intrinsic flexibilities of DNA double-helices and hinge sites through the calculation of the square fluctuations, as well as the intrinsic collective dynamics in terms of cross-collective map calculation coupled with global motions analysis. The dynamics profiles derived from ENMs have then been evaluated and compared with previous classical molecular dynamics simulation trajectories. The results presented here revealed that ENMs can provide useful insights into the intrinsic dynamics of large DNA nanocages and represent a useful tool in the field of structural DNA nanotechnology.
Sustainable Technology Analysis of Artificial Intelligence Using Bayesian and Social Network Models
Directory of Open Access Journals (Sweden)
Juhwan Kim
2018-01-01
Full Text Available Recent developments in artificial intelligence (AI have led to a significant increase in the use of AI technologies. Many experts are researching and developing AI technologies in their respective fields, often submitting papers and patent applications as a result. In particular, owing to the characteristics of the patent system that is used to protect the exclusive rights to registered technology, patent documents contain detailed information on the developed technology. Therefore, in this study, we propose a statistical method for analyzing patent data on AI technology to improve our understanding of sustainable technology in the field of AI. We collect patent documents that are related to AI technology, and then analyze the patent data to identify sustainable AI technology. In our analysis, we develop a statistical method that combines social network analysis and Bayesian modeling. Based on the results of the proposed method, we provide a technological structure that can be applied to understand the sustainability of AI technology. To show how the proposed method can be applied to a practical problem, we apply the technological structure to a case study in order to analyze sustainable AI technology.
Network analysis applications in hydrology
Price, Katie
2017-04-01
Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain underexplored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five longterm USGS streamflow and water quality gages, allowing network application of longterm flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long term and eventbased hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwatersurface water interactions.
A Group Vehicular Mobility Model for Routing Protocol Analysis in Mobile Ad Hoc Network
Kulkarni, Shrirang Ambaji; Rao, G Raghavendra
2010-01-01
Performance of routing protocols in mobile ad-hoc networks is greatly affected by the dynamic nature of nodes, route failures, wireless channels with variable bandwidth and scalability issues. A mobility model imitates the real world movement of mobile nodes and is central component to simulation based studies. In this paper we consider mobility nodes which mimic the vehicular motion of nodes like Manhattan mobility model and City Section mobility model. We also propose a new Group Vehicular ...
On the Modeling and Analysis of Heterogeneous Radio Access Networks using a Poisson Cluster Process
DEFF Research Database (Denmark)
Suryaprakash, Vinay; Møller, Jesper; Fettweis, Gerhard P.
processes, some of which are alluded to (later) in this paper. We model a heterogeneous network consisting of two types of base stations by using a particular Poisson cluster process model. The main contributions are two-fold. First, a complete description of the interference in heterogeneous networks...... is derived in the form of its Laplace functional. Second, using an asymptotic convergence result which was shown in our previous work, we derive the expressions for the mean and variance of the distribution to which the interference converges. The utility of this framework is discussed for both...
Directory of Open Access Journals (Sweden)
Liang Tang
2010-01-01
Full Text Available A mathematical model for M/G/1-type queueing networks with multiple user applications and limited resources is established. The goal is to develop a dynamic distributed algorithm for this model, which supports all data traffic as efficiently as possible and makes optimally fair decisions about how to minimize the network performance cost. An online policy gradient optimization algorithm based on a single sample path is provided to avoid suffering from a “curse of dimensionality”. The asymptotic convergence properties of this algorithm are proved. Numerical examples provide valuable insights for bridging mathematical theory with engineering practice.
Analysis of Artificial Neural Network in Erosion Modeling: A Case Study of Serang Watershed
Arif, N.; Danoedoro, P.; Hartono
2017-12-01
Erosion modeling is an important measuring tool for both land users and decision makers to evaluate land cultivation and thus it is necessary to have a model to represent the actual reality. Erosion models are a complex model because of uncertainty data with different sources and processing procedures. Artificial neural networks can be relied on for complex and non-linear data processing such as erosion data. The main difficulty in artificial neural network training is the determination of the value of each network input parameters, i.e. hidden layer, momentum, learning rate, momentum, and RMS. This study tested the capability of artificial neural network application in the prediction of erosion risk with some input parameters through multiple simulations to get good classification results. The model was implemented in Serang Watershed, Kulonprogo, Yogyakarta which is one of the critical potential watersheds in Indonesia. The simulation results showed the number of iterations that gave a significant effect on the accuracy compared to other parameters. A small number of iterations can produce good accuracy if the combination of other parameters was right. In this case, one hidden layer was sufficient to produce good accuracy. The highest training accuracy achieved in this study was 99.32%, occurred in ANN 14 simulation with combination of network input parameters of 1 HL; LR 0.01; M 0.5; RMS 0.0001, and the number of iterations of 15000. The ANN training accuracy was not influenced by the number of channels, namely input dataset (erosion factors) as well as data dimensions, rather it was determined by changes in network parameters.
The College Football Student-Athlete's Academic Experience: Network Analysis and Model Development
Young, Kyle McLendon
2010-01-01
A grounded theory research study employing network analysis as a means of facilitating the latter stages of the coding process was conducted at a selective university that competes at the highest level of college football. The purpose of the study was to develop a better understanding of how interactive dynamics and controlling mechanisms, such as…
Modeling Epidemic Network Failures
DEFF Research Database (Denmark)
Ruepp, Sarah Renée; Fagertun, Anna Manolova
2013-01-01
This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...
Network model of security system
Directory of Open Access Journals (Sweden)
Adamczyk Piotr
2016-01-01
Full Text Available The article presents the concept of building a network security model and its application in the process of risk analysis. It indicates the possibility of a new definition of the role of the network models in the safety analysis. Special attention was paid to the development of the use of an algorithm describing the process of identifying the assets, vulnerability and threats in a given context. The aim of the article is to present how this algorithm reduced the complexity of the problem by eliminating from the base model these components that have no links with others component and as a result and it was possible to build a real network model corresponding to reality.
Formal modeling and analysis of ER-α associated Biological Regulatory Network in breast cancer
Directory of Open Access Journals (Sweden)
Samra Khalid
2016-10-01
Full Text Available Background Breast cancer (BC is one of the leading cause of death among females worldwide. The increasing incidence of BC is due to various genetic and environmental changes which lead to the disruption of cellular signaling network(s. It is a complex disease in which several interlinking signaling cascades play a crucial role in establishing a complex regulatory network. The logical modeling approach of René Thomas has been applied to analyze the behavior of estrogen receptor-alpha (ER-α associated Biological Regulatory Network (BRN for a small part of complex events that leads to BC metastasis. Methods A discrete model was constructed using the kinetic logic formalism and its set of logical parameters were obtained using the model checking technique implemented in the SMBioNet software which is consistent with biological observations. The discrete model was further enriched with continuous dynamics by converting it into an equivalent Petri Net (PN to analyze the logical parameters of the involved entities. Results In-silico based discrete and continuous modeling of ER-α associated signaling network involved in BC provides information about behaviors and gene-gene interaction in detail. The dynamics of discrete model revealed, imperative behaviors represented as cyclic paths and trajectories leading to pathogenic states such as metastasis. Results suggest that the increased expressions of receptors ER-α, IGF-1R and EGFR slow down the activity of tumor suppressor genes (TSGs such as BRCA1, p53 and Mdm2 which can lead to metastasis. Therefore, IGF-1R and EGFR are considered as important inhibitory targets to control the metastasis in BC. Conclusion The in-silico approaches allow us to increase our understanding of the functional properties of living organisms. It opens new avenues of investigations of multiple inhibitory targets (ER-α, IGF-1R and EGFR for wet lab experiments as well as provided valuable insights in the treatment of cancers
Stochastic Geometric Coverage Analysis in mmWave Cellular Networks with a Realistic Channel Model
DEFF Research Database (Denmark)
Rebato, Mattia; Park, Jihong; Popovski, Petar
2017-01-01
Wave interference and SIR coverage under large-scale deployments. For this purpose, we apply an accurate mmWave channel model, derived from experiments, into an analytical framework based on stochastic geometry. In this way we obtain a closed-form SIR coverage probability in large-scale mmWave cellular networks....
Model Building and Optimization Analysis of MDF Continuous Hot-Pressing Process by Neural Network
Directory of Open Access Journals (Sweden)
Qingfa Li
2016-01-01
Full Text Available We propose a one-layer neural network for solving a class of constrained optimization problems, which is brought forward from the MDF continuous hot-pressing process. The objective function of the optimization problem is the sum of a nonsmooth convex function and a smooth nonconvex pseudoconvex function, and the feasible set consists of two parts, one is a closed convex subset of Rn, and the other is defined by a class of smooth convex functions. By the theories of smoothing techniques, projection, penalty function, and regularization term, the proposed network is modeled by a differential equation, which can be implemented easily. Without any other condition, we prove the global existence of the solutions of the proposed neural network with any initial point in the closed convex subset. We show that any accumulation point of the solutions of the proposed neural network is not only a feasible point, but also an optimal solution of the considered optimization problem though the objective function is not convex. Numerical experiments on the MDF hot-pressing process including the model building and parameter optimization are tested based on the real data set, which indicate the good performance of the proposed neural network in applications.
Jeong, Sang Kyu; Ban, Yong Un
2016-05-01
The effects of the axial map as the key representation of the original space syntax have been questioned by some researchers because of the map's discontinuity. To address this concern, angular segment analysis (ASA) was introduced. ASA calculates spatial depths by considering the turning angles of path segments in a street network. However, ASA cannot calculate the attributes of nodes connected to path segments in the network because it analyzes spaces by linear representation, as in the original space syntax. Because the attributes of the two ends (nodes) of a given path segment (link) are not equal to each other, and because they can affect pedestrian and vehicle movement and land use in a street network, the identification of the attributes at nodes (points) would be helpful in the detailed analysis of spaces in the network consisting of nodes and the segments connecting them. Accordingly, this study aims to develop an extended analysis model that can calculate the attributes of spaces at the nodes, including terminuses, bends, and junctions, in the network. To achieve this end, in this study we developed algorithms for a point-based angular analysis (PAA) to find the attributes of spaces at nodes (points), in contrast to ASA, which analyzes spaces using linear representations. As a result, this methodology can obtain distinct values for the attributes of two nodes at the ends of a path segment, through the calculation of spatial depths weighted by considering the turning angles and distances (lengths) along consecutive nodes for a route in the network. Through our methodology, it was identified that spatial configurations of street network affect the social and symbolic centralities of nodes in the network.
RMBNToolbox: random models for biochemical networks
Directory of Open Access Journals (Sweden)
Niemi Jari
2007-05-01
Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.
Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall
2016-01-01
Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.
Modeling, analysis, and simulation of the co-development of road networks and vehicle ownership
Xu, Mingtao; Ye, Zhirui; Shan, Xiaofeng
2016-01-01
A two-dimensional logistic model is proposed to describe the co-development of road networks and vehicle ownership. The endogenous interaction between road networks and vehicle ownership and how natural market forces and policies transformed into their co-development are considered jointly in this model. If the involved parameters satisfy a certain condition, the proposed model can arrive at a steady equilibrium level and the final development scale will be within the maximum capacity of an urban traffic system; otherwise, the co-development process will be unstable and even manifest chaotic behavior. Then sensitivity tests are developed to determine the proper values for a series of parameters in this model. Finally, a case study, using Beijing City as an example, is conducted to explore the applicability of the proposed model to the real condition. Results demonstrate that the proposed model can effectively simulate the co-development of road network and vehicle ownership for Beijing City. Furthermore, we can obtain that their development process will arrive at a stable equilibrium level in the years 2040 and 2045 respectively, and the equilibrium values are within the maximum capacity.
Stochastic Geometric Coverage Analysis in mmWave Cellular Networks with a Realistic Channel Model
DEFF Research Database (Denmark)
Rebato, Mattia; Park, Jihong; Popovski, Petar
2017-01-01
Millimeter-wave (mmWave) bands have been attracting growing attention as a possible candidate for next-generation cellular networks, since the available spectrum is orders of magnitude larger than in current cellular allocations. To precisely design mmWave systems, it is important to examine mmWave...... interference and SIR coverage under large-scale deployments. For this purpose, we apply an accurate mmWave channel model, derived from experiments, into an analytical framework based on stochastic geometry. In this way we obtain a closed-form SIR coverage probability in large-scale mmWave cellular networks....
Noise and Synchronization Analysis of the Cold-Receptor Neuronal Network Model
Directory of Open Access Journals (Sweden)
Ying Du
2014-01-01
Full Text Available This paper analyzes the dynamics of the cold receptor neural network model. First, it examines noise effects on neuronal stimulus in the model. From ISI plots, it is shown that there are considerable differences between purely deterministic simulations and noisy ones. The ISI-distance is used to measure the noise effects on spike trains quantitatively. It is found that spike trains observed in neural models can be more strongly affected by noise for different temperatures in some aspects; meanwhile, spike train has greater variability with the noise intensity increasing. The synchronization of neuronal network with different connectivity patterns is also studied. It is shown that chaotic and high period patterns are more difficult to get complete synchronization than the situation in single spike and low period patterns. The neuronal network will exhibit various patterns of firing synchronization by varying some key parameters such as the coupling strength. Different types of firing synchronization are diagnosed by a correlation coefficient and the ISI-distance method. The simulations show that the synchronization status of neurons is related to the network connectivity patterns.
Model Analysis of Energy Network System in Zero Emission Industrial Park
Shimazaki, Yoichi
The aim of this study was to evaluate energy saving in cases of introducing both a cogeneration system and an energy network in Kokubo Industrial Park. The industrial park has implemented zero emission activities since 1992. The energy data of 22 factories were classified into steam, hot water, heating, cooling and electric power on the basis of interviews. The author developed an energy network model based on linear programming, so as to minimize the total system cost. The industrial park was divided into a 10,000 square meter mesh in order to take steam transport into consideration. Three cases were investigated. The ratio of energy saving to demand reached 22% compared with the reference system. It was found that the energy network system could correspond to the energy demand seasonally. This is useful for the stable supply of energy, prevention of air pollution, and improvement of urban design.
Han, Seunghee; Kim, Ki Joon; Kim, Jang Hyun
2017-07-01
This study explicates nomophobia by developing a research model that identifies several determinants of smartphone separation anxiety and by conducting semantic network analyses on smartphone users' verbal descriptions of the meaning of their smartphones. Structural equation modeling of the proposed model indicates that personal memories evoked by smartphones encourage users to extend their identity onto their devices. When users perceive smartphones as their extended selves, they are more likely to get attached to the devices, which, in turn, leads to nomophobia by heightening the phone proximity-seeking tendency. This finding is also supplemented by the results of the semantic network analyses revealing that the words related to memory, self, and proximity-seeking are indeed more frequently used in the high, compared with low, nomophobia group.
Modelling and analysis of influenza A (H1N1) on networks.
Jin, Zhen; Zhang, Juping; Song, Li-Peng; Sun, Gui-Quan; Kan, Jianli; Zhu, Huaiping
2011-02-25
In April 2009, a new strain of H1N1 influenza virus, referred to as pandemic influenza A (H1N1) was first detected in humans in the United States, followed by an outbreak in the state of Veracruz, Mexico. Soon afterwards, this new virus kept spreading worldwide resulting in a global outbreak. In China, the second Circular of the Ministry of Health pointed out that as of December 31, 2009, the country's 31 provinces had reported 120,000 confirmed cases of H1N1. We formulate an epidemic model of influenza A based on networks. We calculate the basic reproduction number and study the effects of various immunization schemes. The final size relation is derived for the network epidemic model. The model parameters are estimated via least-squares fitting of the model solution to the observed data in China. For the network model, we prove that the disease-free equilibrium is globally asymptotically stable when the basic reproduction is less than one. The final size will depend on the vaccination starting time, T, the number of infective cases at time T and immunization schemes to follow. Our theoretical results are confirmed by numerical simulations. Using the parameter estimates based on the observation data of the cumulative number of hospital notifications, we estimate the basic reproduction number R0 to be 1.6809 in China. Network modelling supplies a useful tool for studying the transmission of H1N1 in China, capturing the main features of the spread of H1N1. While a uniform, mass-immunization strategy helps control the prevalence, a targeted immunization strategy focusing on specific groups with given connectivity may better control the endemic.
Longlong Liu; Jieqiong Qu; Xilong Zhou; Xuefeng Liu; Zhaobao Zhang; Xumin Wang; Tao Liu; Guiming Liu
2014-01-01
Coral reefs occupy a relatively small portion of sea area, yet serve as a crucial source of biodiversity by establishing harmonious ecosystems with marine plants and animals. Previous researches mainly focused on screening several key genes induced by stress. Here we proposed a novel method--correlation analysis after wavelet transform of complex network model, to explore the effect of light on gene expression in the coral Acropora millepora based on microarray data. In this method, wavelet t...
Directory of Open Access Journals (Sweden)
Wang Ting
2014-01-01
Full Text Available Motivated by the importance of the clock synchronization in wireless sensor networks (WSNs, this paper proposes a new research approach and model approach, which quantitatively analyzes clock synchronization from the perspective of modern control theory. Two kinds of control strategies are used as examples to analyze the effect of the control strategy on clock synchronization from different perspectives, namely, the single-step optimal control and the LQG global optimal control. The proposed method establishes a state space model for clock relationship, thus making dimension extension and parameter identification easier, and is robust to changes under the condition of node failures and new nodes. And through the design of different control strategies and performance index functions, the method can satisfy various requirements of the synchronization precision, convergence speed, energy consumption and the computational complexity, and so on. Finally, the simulations show that the synchronization accuracy of the proposed method is higher than that of the existing protocol, and the former convergence speed of the synchronization error is faster.
Ye, Jianxiong; Feng, Enmin; Wang, Lei; Xiu, Zhilong; Sun, Yaqin
Glycerol bioconversion to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by an intricate network of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulatory. To date, there still exist some uncertain factors in this complex network because of the limitation in bio-techniques, especially in measuring techniques for intracellular substances. In this paper, among these uncertain factors, we aim to infer the transport mechanisms of glycerol and 1,3-PD across the cell membrane, which have received intensive interest in recent years. On the basis of different inferences of the transport mechanisms, we reconstruct various metabolic networks correspondingly and subsequently develop their dynamical systems (S-systems). To determine the most reasonable metabolic network from all possible ones, we establish a quantitative definition of biological robustness and undertake parameter identification and robustness analysis for each system. Numerical results show that it is most possible that both glycerol and 1,3-PD pass the cell membrane by active transport and passive diffusion.
Huang, Ailing; Zang, Guangzhi; He, Zhengbing; Guan, Wei
2017-05-01
Urban public transit system is a typical mixed complex network with dynamic flow, and its evolution should be a process coupling topological structure with flow dynamics, which has received little attention. This paper presents the R-space to make a comparative empirical analysis on Beijing’s flow-weighted transit route network (TRN) and we found that both the Beijing’s TRNs in the year of 2011 and 2015 exhibit the scale-free properties. As such, we propose an evolution model driven by flow to simulate the development of TRNs with consideration of the passengers’ dynamical behaviors triggered by topological change. The model simulates that the evolution of TRN is an iterative process. At each time step, a certain number of new routes are generated driven by travel demands, which leads to dynamical evolution of new routes’ flow and triggers perturbation in nearby routes that will further impact the next round of opening new routes. We present the theoretical analysis based on the mean-field theory, as well as the numerical simulation for this model. The results obtained agree well with our empirical analysis results, which indicate that our model can simulate the TRN evolution with scale-free properties for distributions of node’s strength and degree. The purpose of this paper is to illustrate the global evolutional mechanism of transit network that will be used to exploit planning and design strategies for real TRNs.
de Nooy, W.; Crothers, C.
2009-01-01
Social network analysis (SNA) focuses on the structure of ties within a set of social actors, e.g., persons, groups, organizations, and nations, or the products of human activity or cognition such as web sites, semantic concepts, and so on. It is linked to structuralism in sociology stressing the
Pedicini, Marco; Barrenäs, Fredrik; Clancy, Trevor; Castiglione, Filippo; Hovig, Eivind; Kanduri, Kartiek; Santoni, Daniele; Benson, Mikael
2010-12-16
Two T helper (Th) cell subsets, namely Th1 and Th2 cells, play an important role in inflammatory diseases. The two subsets are thought to counter-regulate each other, and alterations in their balance result in different diseases. This paradigm has been challenged by recent clinical and experimental data. Because of the large number of genes involved in regulating Th1 and Th2 cells, assessment of this paradigm by modeling or experiments is difficult. Novel algorithms based on formal methods now permit the analysis of large gene regulatory networks. By combining these algorithms with in silico knockouts and gene expression microarray data from human T cells, we examined if the results were compatible with a counter-regulatory role of Th1 and Th2 cells. We constructed a directed network model of genes regulating Th1 and Th2 cells through text mining and manual curation. We identified four attractors in the network, three of which included genes that corresponded to Th0, Th1 and Th2 cells. The fourth attractor contained a mixture of Th1 and Th2 genes. We found that neither in silico knockouts of the Th1 and Th2 attractor genes nor gene expression microarray data from patients with immunological disorders and healthy subjects supported a counter-regulatory role of Th1 and Th2 cells. By combining network modeling with transcriptomic data analysis and in silico knockouts, we have devised a practical way to help unravel complex regulatory network topology and to increase our understanding of how network actions may differ in health and disease.
Zahedi, Javad; Rounaghi, Mohammad Mahdi
2015-11-01
Stock price changes are receiving the increasing attention of investors, especially those who have long-term aims. The present study intends to assess the predictability of prices on Tehran Stock Exchange through the application of artificial neural network models and principal component analysis method and using 20 accounting variables. Finally, goodness of fit for principal component analysis has been determined through real values, and the effective factors in Tehran Stock Exchange prices have been accurately predicted and modeled in the form of a new pattern consisting of all variables.
Top-down network analysis to drive bottom-up modeling of physiological processes.
Poirel, Christopher L; Rodrigues, Richard R; Chen, Katherine C; Tyson, John J; Murali, T M
2013-05-01
Top-down analyses in systems biology can automatically find correlations among genes and proteins in large-scale datasets. However, it is often difficult to design experiments from these results. In contrast, bottom-up approaches painstakingly craft detailed models that can be simulated computationally to suggest wet lab experiments. However, developing the models is a manual process that can take many years. These approaches have largely been developed independently. We present LINKER, an efficient and automated data-driven method that can analyze molecular interactomes to propose extensions to models that can be simulated. LINKER combines teleporting random walks and k-shortest path computations to discover connections from a source protein to a set of proteins collectively involved in a particular cellular process. We evaluate the efficacy of LINKER by applying it to a well-known dynamic model of the cell division cycle in Saccharomyces cerevisiae. Compared to other state-of-the-art methods, subnetworks computed by LINKER are heavily enriched in Gene Ontology (GO) terms relevant to the cell cycle. Finally, we highlight how networks computed by LINKER elucidate the role of a protein kinase (Cdc5) in the mitotic exit network of a dynamic model of the cell cycle.
Sensitivity Analysis of Wavelet Neural Network Model for Short-Term Traffic Volume Prediction
Directory of Open Access Journals (Sweden)
Jinxing Shen
2013-01-01
Full Text Available In order to achieve a more accurate and robust traffic volume prediction model, the sensitivity of wavelet neural network model (WNNM is analyzed in this study. Based on real loop detector data which is provided by traffic police detachment of Maanshan, WNNM is discussed with different numbers of input neurons, different number of hidden neurons, and traffic volume for different time intervals. The test results show that the performance of WNNM depends heavily on network parameters and time interval of traffic volume. In addition, the WNNM with 4 input neurons and 6 hidden neurons is the optimal predictor with more accuracy, stability, and adaptability. At the same time, a much better prediction record will be achieved with the time interval of traffic volume are 15 minutes. In addition, the optimized WNNM is compared with the widely used back-propagation neural network (BPNN. The comparison results indicated that WNNM produce much lower values of MAE, MAPE, and VAPE than BPNN, which proves that WNNM performs better on short-term traffic volume prediction.
Directory of Open Access Journals (Sweden)
Suk Ho Jin
2017-07-01
Full Text Available Korea’s national carbon capture and storage (CCS master plan aims to commercialize CCS projects by 2030. Furthermore, the Korean government is forced to reduce emissions from various sectors, including industries and power generation, by 219 million tons by 2030. This study analyzes a few scenarios of Korean CCS projects with a CO2 pipeline transportation network optimization model for minimizing the total facility cost and pipeline cost. Our scenarios are based on the “2030 asic roadmap for reducing greenhouse gases” established by the government. The results for each scenario demonstrate that the effective design and implementation of CO2 pipeline network enables the lowering of CO2 units cost. These suggest that CO2 transportation networks, which connect the capture and sequestration parts, will be more important in the future and can be used to substitute and supplement the emission reduction target in case the execution of other reduction options faces uncertainty. Our mathematical model and scenario designs will be helpful for various countries which plan to introduce CCS technology.
Probabilistic logic modeling of network reliability for hybrid network architectures
Energy Technology Data Exchange (ETDEWEB)
Wyss, G.D.; Schriner, H.K.; Gaylor, T.R.
1996-10-01
Sandia National Laboratories has found that the reliability and failure modes of current-generation network technologies can be effectively modeled using fault tree-based probabilistic logic modeling (PLM) techniques. We have developed fault tree models that include various hierarchical networking technologies and classes of components interconnected in a wide variety of typical and atypical configurations. In this paper we discuss the types of results that can be obtained from PLMs and why these results are of great practical value to network designers and analysts. After providing some mathematical background, we describe the `plug-and-play` fault tree analysis methodology that we have developed for modeling connectivity and the provision of network services in several current- generation network architectures. Finally, we demonstrate the flexibility of the method by modeling the reliability of a hybrid example network that contains several interconnected ethernet, FDDI, and token ring segments. 11 refs., 3 figs., 1 tab.
Entropy Characterization of Random Network Models
Directory of Open Access Journals (Sweden)
Pedro J. Zufiria
2017-06-01
Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.
Bonald, Thomas
2013-01-01
The book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples i
Models of educational institutions' networking
Shilova Olga Nikolaevna
2015-01-01
The importance of educational institutions' networking in modern sociocultural conditions and a definition of networking in education are presented in the article. The results of research levels, methods and models of educational institutions' networking are presented and substantially disclosed.
The dynamical modeling and simulation analysis of the recommendation on the user-movie network
Zhang, Shujuan; Jin, Zhen; Zhang, Juan
2016-12-01
At present, most research about the recommender system is based on graph theory and algebraic methods, but these methods cannot predict the evolution of the system with time under the recommendation method, and cannot dynamically analyze the long-term utility of the recommendation method. However, these two aspects can be studied by the dynamical method, which essentially investigates the intrinsic evolution mechanism of things, and is widely used to study a variety of actual problems. So, in this paper, network dynamics is used to study the recommendation on the user-movie network, which consists of users and movies, and the movies are watched either by the personal search or through the recommendation. Firstly, dynamical models are established to characterize the personal search and the system recommendation mechanism: the personal search model, the random recommendation model, the preference recommendation model, the degree recommendation model and the hybrid recommendation model. The rationality of the models established is verified by comparing the stochastic simulation with the numerical simulation. Moreover, the validity of the recommendation methods is evaluated by studying the movie degree, which is defined as the number of the movie that has been watched. Finally, we combine the personal search and the recommendation to establish a more general model. The change of the average degree of all the movies is given with the strength of the recommendation. Results show that for each recommendation method, the change of the movie degree is different, and is related to the initial degree of movies, the adjacency matrix A representing the relation between users and movies, the time t. Additionally, we find that in a long time, the degree recommendation is not as good as that in a short time, which fully demonstrates the advantage of the dynamical method. For the whole user-movie system, the preference recommendation is the best.
Directory of Open Access Journals (Sweden)
Ruban Nikolay Yu.
2015-01-01
Full Text Available The problem of relay protection misoperations in networks with FACTS devices is considered in the paper. It is offered a solution to this problem for a phase comparison protection of transmission power line through the use of its detailed model for the analysis of the functioning for a case of various normal, emergency and post-emergency modes of electric power systems. The research results of this approach are given in the paper.
Comparative Analysis on Nonlinear Models for Ron Gasoline Blending Using Neural Networks
Aguilera, R. Carreño; Yu, Wen; Rodríguez, J. C. Tovar; Mosqueda, M. Elena Acevedo; Ortiz, M. Patiño; Juarez, J. J. Medel; Bautista, D. Pacheco
The blending process always being a nonlinear process is difficult to modeling, since it may change significantly depending on the components and the process variables of each refinery. Different components can be blended depending on the existing stock, and the chemical characteristics of each component are changing dynamically, they all are blended until getting the expected specification in different properties required by the customer. One of the most relevant properties is the Octane, which is difficult to control in line (without the component storage). Since each refinery process is quite different, a generic gasoline blending model is not useful when a blending in line wants to be done in a specific process. A mathematical gasoline blending model is presented in this paper for a given process described in state space as a basic gasoline blending process description. The objective is to adjust the parameters allowing the blending gasoline model to describe a signal in its trajectory, representing in neural networks extreme learning machine method and also for nonlinear autoregressive-moving average (NARMA) in neural networks method, such that a comparative work be developed.
Network systems security analysis
Yilmaz, Ä.°smail
2015-05-01
Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.
Analysis of Infectious-Recovery Epidemic Models for Membership Dynamics of Online Social Networks
Cooney, Daniel; Bar-Yam, Yaneer
2016-01-01
The recent rapid growth of social media and online social networks (OSNs) has raised interesting questions about the spread of ideas and fads within our society. In the past year, several papers have drawn analogies between the rise and fall in popularity of OSNs and mathematical models used to study infectious disease. One such model, the irSIR model, made use of the idea of "infectious recovery" to outperform the traditional SIR model in replicating the rise and fall of MySpace and to predict a rapid drop in the popularity of Facebook. Here we explore the irSIR model and two of its logical extensions and we mathematically characterize the initial and long-run behavior of these dynamical systems. In particular, while the original irSIR model always predicts extinction of a social epidemic, we construct an extension of the model that matches the exponential growth phase of the irSIR model while allowing for the possibility of an arbitrary proportion of infections in the long run.
An advance in infinite graph models for the analysis of transportation networks
Directory of Open Access Journals (Sweden)
Cera Martín
2016-12-01
Full Text Available This paper extends to infinite graphs the most general extremal issues, which are problems of determining the maximum number of edges of a graph not containing a given subgraph. It also relates the new results with the corresponding situations for the finite case. In particular, concepts from ‘finite’ graph theory, like the average degree and the extremal number, are generalized and computed for some specific cases. Finally, some applications of infinite graphs to the transportation of dangerous goods are presented; they involve the analysis of networks and percolation thresholds.
International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.
Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen
2015-01-01
This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.
Laosiritaworn, Yongjua; Laosiritaworn, Yongyut; Laosiritaworn, Wimalin S.
2017-09-01
In this work, the disease spreading under SIR framework (susceptible-infected-recovered) agent-based model was investigated via magnetic spin model, stochastic Monte Carlo simulation, and Neural Network analysis. The defined systems were two-dimensional lattice-like, where the spins (representing susceptible, infected, and recovered agents) were allocated on lattice cells. The lattice size, spin density, and infectious period were varied to observe its influence on disease spreading period. In the simulation, each spin was randomly allocated on the lattice and interacted with its first neighbouring spins for disease spreading. The subgroup magnetization profiles were recorded. From the results, numbers of agents in each subgroup as a function of time was found to depend on all considered parameters. Specifically, the disease spreading period slightly increases with increasing system size, decreases with increasing spin density, and exponentially decays with increasing infectious period. Due to many degrees of freedom associated, Neural Network was used to establish complex relationship among parameters. Multi-layer perceptron was considered, where optimized network architecture of 3-19-15-1 was found. Good agreement between predicted and actual outputs was evident. This confirms the validity of using Neural Network as supplements in modelling SIR disease spreading and provides profound database for future deployment.
Transmission analysis in WDM networks
DEFF Research Database (Denmark)
Rasmussen, Christian Jørgen
1999-01-01
This thesis describes the development of a computer-based simulator for transmission analysis in optical wavelength division multiplexing networks. A great part of the work concerns fundamental optical network simulator issues. Among these issues are identification of the versatility and user......-friendliness demands which such a simulator must meet, development of the "spectral window representation" for representation of the optical signals and finding an effective way of handling the optical signals in the computer memory. One important issue more is the rules for the determination of the order in which...... the different component models are invoked during the simulation of a system. A simple set of rules which makes it possible to simulate any network architectures is laid down. The modelling of the nonlinear fibre and the optical receiver is also treated. The work on the fibre concerns the numerical solution...
Social network analysis community detection and evolution
Missaoui, Rokia
2015-01-01
This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit
Techniques for Modelling Network Security
Lech Gulbinovič
2012-01-01
The article compares modelling techniques for network security, including the theory of probability, Markov processes, Petri networks and application of stochastic activity networks. The paper introduces the advantages and disadvantages of the above proposed methods and accepts the method of modelling the network of stochastic activity as one of the most relevant. The stochastic activity network allows modelling the behaviour of the dynamic system where the theory of probability is inappropri...
A novel approach to parameter uncertainty analysis of hydrological models using neural networks
Directory of Open Access Journals (Sweden)
D. P. Solomatine
2009-07-01
Full Text Available In this study, a methodology has been developed to emulate a time consuming Monte Carlo (MC simulation by using an Artificial Neural Network (ANN for the assessment of model parametric uncertainty. First, MC simulation of a given process model is run. Then an ANN is trained to approximate the functional relationships between the input variables of the process model and the synthetic uncertainty descriptors estimated from the MC realizations. The trained ANN model encapsulates the underlying characteristics of the parameter uncertainty and can be used to predict uncertainty descriptors for the new data vectors. This approach was validated by comparing the uncertainty descriptors in the verification data set with those obtained by the MC simulation. The method is applied to estimate the parameter uncertainty of a lumped conceptual hydrological model, HBV, for the Brue catchment in the United Kingdom. The results are quite promising as the prediction intervals estimated by the ANN are reasonably accurate. The proposed techniques could be useful in real time applications when it is not practicable to run a large number of simulations for complex hydrological models and when the forecast lead time is very short.
Enabling model checking for collaborative process analysis: from BPMN to `Network of Timed Automata'
Mallek, Sihem; Daclin, Nicolas; Chapurlat, Vincent; Vallespir, Bruno
2015-04-01
Interoperability is a prerequisite for partners involved in performing collaboration. As a consequence, the lack of interoperability is now considered a major obstacle. The research work presented in this paper aims to develop an approach that allows specifying and verifying a set of interoperability requirements to be satisfied by each partner in the collaborative process prior to process implementation. To enable the verification of these interoperability requirements, it is necessary first and foremost to generate a model of the targeted collaborative process; for this research effort, the standardised language BPMN 2.0 is used. Afterwards, a verification technique must be introduced, and model checking is the preferred option herein. This paper focuses on application of the model checker UPPAAL in order to verify interoperability requirements for the given collaborative process model. At first, this step entails translating the collaborative process model from BPMN into a UPPAAL modelling language called 'Network of Timed Automata'. Second, it becomes necessary to formalise interoperability requirements into properties with the dedicated UPPAAL language, i.e. the temporal logic TCTL.
Credit Risk Assessment Model Based Using Principal component Analysis And Artificial Neural Network
Directory of Open Access Journals (Sweden)
Hamdy Abeer
2016-01-01
Full Text Available Credit risk assessment for bank customers has gained increasing attention in recent years. Several models for credit scoring have been proposed in the literature for this purpose. The accuracy of the model is crucial for any financial institution’s profitability. This paper provided a high accuracy credit scoring model that could be utilized with small and large datasets utilizing a principal component analysis (PCA based breakdown to the significance of the attributes commonly used in the credit scoring models. The proposed credit scoring model applied PCA to acquire the main attributes of the credit scoring data then an ANN classifier to determine the credit worthiness of an individual applicant. The performance of the proposed model was compared to other models in terms of accuracy and training time. Results, based on German dataset showed that the proposed model is superior to others and computationally cheaper. Thus it can be a potential candidate for future credit scoring systems.
Target-Centric Network Modeling
DEFF Research Database (Denmark)
Mitchell, Dr. William L.; Clark, Dr. Robert M.
In Target-Centric Network Modeling: Case Studies in Analyzing Complex Intelligence Issues, authors Robert Clark and William Mitchell take an entirely new approach to teaching intelligence analysis. Unlike any other book on the market, it offers case study scenarios using actual intelligence......, and collaborative sharing in the process of creating a high-quality, actionable intelligence product. The case studies reflect the complexity of twenty-first century intelligence issues by dealing with multi-layered target networks that cut across political, economic, social, technological, and military issues....... Working through these cases, students will learn to manage and evaluate realistic intelligence accounts....
Hussain, Syed Imtiaz
2012-09-01
Selective cooperation is a well investigated technique in non-cognitive networks for efficient spectrum utilization and performance improvement. However, it is still a nascent topic for underlay cognitive networks. Recently, it was investigated for underlay networks where the secondary nodes were able to adapt their transmit power to always satisfy the interference threshold to the primary users. This is a valid assumption for cellular networks but many non-cellular devices have fixed transmit powers. In this situation, selective cooperation poses a more challenging problem and performs entirely differently. In this paper, we extend our previous work of selective cooperation based on either hop\\'s signal to noise ratio (SNR) with fixed gain and fixed transmit power relays in an underlay cognitive network. This work lacked in considering the primary interference over the cognitive network and presented a rather idealistic analysis. This paper deals with a more realistic system model and includes the effects of primary interference on the secondary transmission. We first derive end-to-end signal to interference and noise ratio (SINR) expression and the related statistics for a dual-hop relay link using asymptotic and approximate approaches. We then derive the statistics of the selected relay link based on maximum end-to-end SINR among the relays satisfying the interference threshold to the primary user. Using this statistics, we derive closed form asymptotic and approximate expressions for the outage probability of the system. Analytical results are verified through simulations. It is concluded that selective cooperation in underlay cognitive networks performs better only in low to medium SNR regions. © 2012 IEEE.
Statistical Analysis of Bus Networks in India
Chatterjee, Atanu; Ramadurai, Gitakrishnan
2015-01-01
Through the past decade the field of network science has established itself as a common ground for the cross-fertilization of exciting inter-disciplinary studies which has motivated researchers to model almost every physical system as an interacting network consisting of nodes and links. Although public transport networks such as airline and railway networks have been extensively studied, the status of bus networks still remains in obscurity. In developing countries like India, where bus networks play an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer some of the basic questions on its evolution, growth, robustness and resiliency. In this paper, we model the bus networks of major Indian cities as graphs in \\textit{L}-space, and evaluate their various statistical properties using concepts from network science. Our analysis reveals a wide spectrum of network topology with the common underlying feature of small-world property. We observe tha...
Bayesian one-step IPD network meta-analysis of time-to-event data using Royston-Parmar models.
Freeman, Suzanne C; Carpenter, James R
2017-12-01
Network meta-analysis (NMA) combines direct and indirect evidence from trials to calculate and rank treatment estimates. While modelling approaches for continuous and binary outcomes are relatively well developed, less work has been done with time-to-event outcomes. Such outcomes are usually analysed using Cox proportional hazard (PH) models. However, in oncology with longer follow-up time, and time-dependent effects of targeted treatments, this may no longer be appropriate. Network meta-analysis conducted in the Bayesian setting has been increasing in popularity. However, fitting the Cox model is computationally intensive, making it unsuitable for many datasets. Royston-Parmar models are a flexible alternative that can accommodate time-dependent effects. Motivated by individual participant data (IPD) from 37 cervical cancer trials (5922 women) comparing surgery, radiotherapy, and chemotherapy, this paper develops an IPD Royston-Parmar Bayesian NMA model for overall survival. We give WinBUGS code for the model. We show how including a treatment-ln(time) interaction can be used to conduct a global test for PH, illustrate how to test for consistency of direct and indirect evidence, and assess within-design heterogeneity. Our approach provides a computationally practical, flexible Bayesian approach to NMA of IPD survival data, which readily extends to include additional complexities, such as non-PH, increasingly found in oncology trials. © 2017 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd.
Network models in economics and finance
Pardalos, Panos; Rassias, Themistocles
2014-01-01
Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.
Zhang, Victor Y; Dubus, Bertrand; Lefebvre, Jean Etienne; Gryba, Tadeusz
2008-03-01
The fundamental electro-acoustic properties of a solid layer are deduced in terms of its impedance matrix (Z) and represented by a network for modeling the bulk acoustic wave devices built on piezoelectric stacked structures. A piezoelectric layer is described by a three-port equivalent network, a nonpiezoelectric layer, and a short- or open-circuit piezoelectric layer by a two-port one. Electrical input impedance of the resonator is derived in terms of the Z-matrix of both the piezoelectric layer and an external load, the unique expression applies whether the resonator is a mono- or electroded-layer or a solidly mounted resonator (SMR). The loading effects of Al-electrodes on the resonating frequencies of the piezoelectric ZnO-layer are analyzed. Transmission and reflection properties of Bragg mirrors are investigated along with the bulk radiation in SMR. As a synthesizing example, a coupled resonator filter (CRF) is analyzed using the associated two-port equivalent network and by calculating the power transmission to a 50Omega-load. The stacked crystal filter is naturally included in the model as a special case of CRF. Combining a comprehensive matrix analysis and an instructive network representation and setting the problem with a full vectorial formalism are peculiar features of the presented approach.
Network Models of Mechanical Assemblies
Whitney, Daniel E.
Recent network research has sought to characterize complex systems with a number of statistical metrics, such as power law exponent (if any), clustering coefficient, community behavior, and degree correlation. Use of such metrics represents a choice of level of abstraction, a balance of generality and detailed accuracy. It has been noted that "social networks" consistently display clustering coefficients that are higher than those of random or generalized random networks, that they have small world properties such as short path lengths, and that they have positive degree correlations (assortative mixing). "Technological" or "non-social" networks display many of these characteristics except that they generally have negative degree correlations (disassortative mixing). [Newman 2003i] In this paper we examine network models of mechanical assemblies. Such systems are well understood functionally. We show that there is a cap on their average nodal degree and that they have negative degree correlations (disassortative mixing). We identify specific constraints arising from first principles, their structural patterns, and engineering practice that suggest why they have these properties. In addition, we note that their main "motif" is closed loops (as it is for electric and electronic circuits), a pattern that conventional network analysis does not detect but which is used by software intended to aid in the design of such systems.
Estrada, Ernesto
2016-01-01
We propose a new model to account for the main structural characteristics of rock fracture networks (RFNs). The model is based on a generalization of the random neighborhood graphs to consider fractures embedded into rectangular spaces. We study a series of 29 real-world RFNs and find the best fit with the random rectangular neighborhood graphs (RRNGs) proposed here. We show that this model captures most of the structural characteristics of the RFNs and allows a distinction between small and more spherical rocks and large and more elongated ones. We use a diffusion equation on the graphs in order to model diffusive processes taking place through the channels of the RFNs. We find a small set of structural parameters that highly correlates with the average diffusion time in the RFNs. In particular, the second smallest eigenvalue of the Laplacian matrix is a good predictor of the average diffusion time on RFNs, showing a Pearson correlation coefficient larger than $0.99$ with the average diffusion time on RFNs. ...
Wireless Underground Sensor Networks: Channel Modeling and Operation Analysis in the Terahertz Band
Directory of Open Access Journals (Sweden)
Mustafa Alper Akkaş
2015-01-01
Full Text Available Wireless underground sensor networks (WUSNs are networks of sensor nodes operating below the ground surface, which are envisioned to provide real-time monitoring capabilities in the complex underground environments consisting of soil, water, oil, and other components. In this paper, we investigate the possibilities and limitations of using WUSNs for increasing the efficiency of oil recovery processes. To realize this, millimeter scale sensor nodes with antennas at the same scale should be deployed in the confined oil reservoir fractures. This necessitates the sensor nodes to be operating in the terahertz (THz range and the main challenge is establishing reliable underground communication despite the hostile environment which does not allow the direct use of most existing wireless solutions. The major problems are extremely high path loss, small communication range, and high dynamics of the electromagnetic (EM waves when penetrating through soil, sand, and water and through the very specific crude oil medium. The objective of the paper is to address these issues in order to propose a novel communication channel model considering the propagation properties of terahertz EM waves in the complex underground environment of the oil reservoirs and to investigate the feasible transmission distances between nodes for different water-crude-oil-soil-CO2 compositions.
Guarnaccia, Claudio; Quartieri, Joseph; Tepedino, Carmine
2017-06-01
The dangerous effect of noise on human health is well known. Both the auditory and non-auditory effects are largely documented in literature, and represent an important hazard in human activities. Particular care is devoted to road traffic noise, since it is growing according to the growth of residential, industrial and commercial areas. For these reasons, it is important to develop effective models able to predict the noise in a certain area. In this paper, a hybrid predictive model is presented. The model is based on the mixing of two different approach: the Time Series Analysis (TSA) and the Artificial Neural Network (ANN). The TSA model is based on the evaluation of trend and seasonality in the data, while the ANN model is based on the capacity of the network to "learn" the behavior of the data. The mixed approach will consist in the evaluation of noise levels by means of TSA and, once the differences (residuals) between TSA estimations and observed data have been calculated, in the training of a ANN on the residuals. This hybrid model will exploit interesting features and results, with a significant variation related to the number of steps forward in the prediction. It will be shown that the best results, in terms of prediction, are achieved predicting one step ahead in the future. Anyway, a 7 days prediction can be performed, with a slightly greater error, but offering a larger range of prediction, with respect to the single day ahead predictive model.
Nemzek, Jean A; Hodges, Andrew P; He, Yongqun
2015-09-30
Inflammatory disease processes involve complex and interrelated systems of mediators. Determining the causal relationships among these mediators becomes more complicated when two, concurrent inflammatory conditions occur. In those cases, the outcome may also be dependent upon the timing, severity and compartmentalization of the insults. Unfortunately, standard methods of experimentation and analysis of data sets may investigate a single scenario without uncovering many potential associations among mediators. However, Bayesian network analysis is able to model linear, nonlinear, combinatorial, and stochastic relationships among variables to explore complex inflammatory disease systems. In these studies, we modeled the development of acute lung injury from an indirect insult (sepsis induced by cecal ligation and puncture) complicated by a direct lung insult (aspiration). To replicate multiple clinical situations, the aspiration injury was delivered at different severities and at different time intervals relative to the septic insult. For each scenario, we measured numerous inflammatory cell types and cytokines in samples from the local compartments (peritoneal and bronchoalveolar lavage fluids) and the systemic compartment (plasma). We then analyzed these data by Bayesian networks and standard methods. Standard data analysis demonstrated that the lung injury was actually reduced when two insults were involved as compared to one lung injury alone. Bayesian network analysis determined that both the severity of lung insult and presence of sepsis influenced neutrophil recruitment and the amount of injury to the lung. However, the levels of chemoattractant cytokines responsible for neutrophil recruitment were more strongly linked to the timing and severity of the lung insult compared to the presence of sepsis. This suggests that something other than sepsis-driven exacerbation of chemokine levels was influencing the lung injury, contrary to previous theories. To our
Modeling Network Interdiction Tasks
2015-09-17
allow professionals and families to stay in touch through voice or video calls. Power grids provide electricity to homes , offices, and recreational...instances using IBMr ILOGr CPLEXr Optimization Studio V12.6. For each instance, two solutions are deter- mined. First, the MNDP-a model is solved with no...three values: 0.25, 0.50, or 0.75. The DMP-a model is solved for the various random network instances using IBMr ILOGr CPLEXr Optimization Studio V12.6
Experimental and computational methods for the analysis and modeling of signaling networks.
Gherardini, Pier Federico; Helmer-Citterich, Manuela
2013-03-25
External cues are processed and integrated by signal transduction networks that drive appropriate cellular responses. Characterizing these programs, as well as how their deregulation leads to disease, is crucial for our understanding of cell biology. The past ten years have witnessed a gradual increase in the number of molecular parameters that can be simultaneously measured in a sample. Moreover our capacity to handle multiple samples in parallel has expanded, thus allowing a deeper profiling of cellular states under diverse experimental conditions. These technological advances have been complemented by the development of computational methods aimed at mining, analyzing and modeling these data. In this review we give a general overview of the most important experimental and computational techniques used in the field and describe several interesting application of these methodologies. We conclude by highlighting the issues that we think will keep researchers in the field busy in the next few years. Copyright © 2012 Elsevier B.V. All rights reserved.
Using Granular-Evidence-Based Adaptive Networks for Sensitivity Analysis
Vališevskis, A.
2002-01-01
This paper considers the possibility of using adaptive networks for sensitivity analysis. Adaptive network that processes fuzzy granules is described. The adaptive network training algorithm can be used for sensitivity analysis of decision making models. Furthermore, a case study concerning sensitivity analysis is described, which shows in what way the adaptive network can be used for sensitivity analysis.
Baird, Bill
1986-08-01
A neural network model describing pattern recognition in the rabbit olfactory bulb is analysed to explain the changes in neural activity observed experimentally during classical Pavlovian conditioning. EEG activity recorded from an 8×8 arry of 64 electrodes directly on the surface on the bulb shows distinct spatial patterns of oscillation that correspond to the animal's recognition of different conditioned odors and change with conditioning to new odors. The model may be considered a variant of Hopfield's model of continuous analog neural dynamics. Excitatory and inhibitory cell types in the bulb and the anatomical architecture of their connection requires a nonsymmetric coupling matrix. As the mean input level rises during each breath of the animal, the system bifurcates from homogenous equilibrium to a spatially patterned oscillation. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of these unstable oscillatory modes independent of frequency. This allows a view of stored periodic attractors as fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.
Coevolutionary modeling in network formation
Al-Shyoukh, Ibrahim
2014-12-03
Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.
Directory of Open Access Journals (Sweden)
Longlong Liu
Full Text Available Coral reefs occupy a relatively small portion of sea area, yet serve as a crucial source of biodiversity by establishing harmonious ecosystems with marine plants and animals. Previous researches mainly focused on screening several key genes induced by stress. Here we proposed a novel method--correlation analysis after wavelet transform of complex network model, to explore the effect of light on gene expression in the coral Acropora millepora based on microarray data. In this method, wavelet transform and the conception of complex network were adopted, and 50 key genes with large differences were finally captured, including both annotated genes and novel genes without accurate annotation. These results shed light on our understanding of coral's response toward light changes and the genome-wide interaction among genes under the control of biorhythm, and hence help us to better protect the coral reef ecosystems. Further studies are needed to explore how functional connections are related to structural connections, and how connectivity arises from the interactions within and between different systems. The method introduced in this study for analyzing microarray data will allow researchers to explore genome-wide interaction network with their own dataset and understand the relevant biological processes.
Liu, Longlong; Qu, Jieqiong; Zhou, Xilong; Liu, Xuefeng; Zhang, Zhaobao; Wang, Xumin; Liu, Tao; Liu, Guiming
2014-01-01
Coral reefs occupy a relatively small portion of sea area, yet serve as a crucial source of biodiversity by establishing harmonious ecosystems with marine plants and animals. Previous researches mainly focused on screening several key genes induced by stress. Here we proposed a novel method--correlation analysis after wavelet transform of complex network model, to explore the effect of light on gene expression in the coral Acropora millepora based on microarray data. In this method, wavelet transform and the conception of complex network were adopted, and 50 key genes with large differences were finally captured, including both annotated genes and novel genes without accurate annotation. These results shed light on our understanding of coral's response toward light changes and the genome-wide interaction among genes under the control of biorhythm, and hence help us to better protect the coral reef ecosystems. Further studies are needed to explore how functional connections are related to structural connections, and how connectivity arises from the interactions within and between different systems. The method introduced in this study for analyzing microarray data will allow researchers to explore genome-wide interaction network with their own dataset and understand the relevant biological processes.
Do Network Models Just Model Networks? On The Applicability of Network-Oriented Modeling
Treur, J.; Shmueli, Erez
2017-01-01
In this paper for a Network-Oriented Modelling perspective based on temporal-causal networks it is analysed how generic and applicable it is as a general modelling approach and as a computational paradigm. This results in an answer to the question in the title different from: network models just
Measuring Road Network Vulnerability with Sensitivity Analysis
Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin
2017-01-01
This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706
Directory of Open Access Journals (Sweden)
Xian Shan
2017-01-01
Full Text Available Pipeline is the major mode of natural gas transportation. Leakage of natural gas pipelines may cause explosions and fires, resulting in casualties, environmental damage, and material loss. Efficient risk analysis is of great significance for preventing and mitigating such potential accidents. The objective of this study is to present a practical risk assessment method based on Bow-tie model and Bayesian network for risk analysis of natural gas pipeline leakage. Firstly, identify the potential risk factors and consequences of the failure. Then construct the Bow-tie model, use the quantitative analysis of Bayesian network to find the weak links in the system, and make a prediction of the control measures to reduce the rate of the accident. In order to deal with the uncertainty existing in the determination of the probability of basic events, fuzzy logic method is used. Results of a case study show that the most likely causes of natural gas pipeline leakage occurrence are parties ignore signage, implicit signage, overload, and design defect of auxiliaries. Once the leakage occurs, it is most likely to result in fire and explosion. Corresponding measures taken on time will reduce the disaster degree of accidents to the least extent.
Network meta-analysis, electrical networks and graph theory.
Rücker, Gerta
2012-12-01
Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.
Schmitz, Guy; Kolar-Anić, Ljiljana Z; Anić, Slobodan R; Cupić, Zeljko D
2008-12-25
The stoichiometric network analysis (SNA) introduced by B. L. Clarke is applied to a simplified model of the complex oscillating Bray-Liebhafsky reaction under batch conditions, which was not examined by this method earlier. This powerful method for the analysis of steady-states stability is also used to transform the classical differential equations into dimensionless equations. This transformation is easy and leads to a form of the equations combining the advantages of classical dimensionless equations with the advantages of the SNA. The used dimensionless parameters have orders of magnitude given by the experimental information about concentrations and currents. This simplifies greatly the study of the slow manifold and shows which parameters are essential for controlling its shape and consequently have an important influence on the trajectories. The effectiveness of these equations is illustrated on two examples: the study of the bifurcations points and a simple sensitivity analysis, different from the classical one, more based on the chemistry of the studied system.
Multidimensional Analysis of Linguistic Networks
Araújo, Tanya; Banisch, Sven
Network-based approaches play an increasingly important role in the analysis of data even in systems in which a network representation is not immediately apparent. This is particularly true for linguistic networks, which use to be induced from a linguistic data set for which a network perspective is only one out of several options for representation. Here we introduce a multidimensional framework for network construction and analysis with special focus on linguistic networks. Such a framework is used to show that the higher is the abstraction level of network induction, the harder is the interpretation of the topological indicators used in network analysis. Several examples are provided allowing for the comparison of different linguistic networks as well as to networks in other fields of application of network theory. The computation and the intelligibility of some statistical indicators frequently used in linguistic networks are discussed. It suggests that the field of linguistic networks, by applying statistical tools inspired by network studies in other domains, may, in its current state, have only a limited contribution to the development of linguistic theory.
Satellite image analysis using neural networks
Sheldon, Roger A.
1990-01-01
The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.
A Tandem Queueing Model for Delay Analysis in Disconnected Ad Hoc Networks
Al Hanbali, Ahmad; de Haan, Roland; Boucherie, Richardus J.; van Ommeren, Jan C.W.
Ad hoc network routing protocols may fail to operate in the absence of an end-to-end connection from source to destination. This deficiency can be resolved by so-called delay-tolerant networking which exploits the mobility of the nodes by letting them operate as relays according to the
Mathematical Modelling Plant Signalling Networks
Muraro, D.
2013-01-01
During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.
Directory of Open Access Journals (Sweden)
Zhongshan Yang
2016-01-01
Full Text Available Wind speed high-accuracy forecasting, an important part of the electrical system monitoring and control, is of the essence to protect the safety of wind power utilization. However, the wind speed signals are always intermittent and intrinsic complexity; therefore, it is difficult to forecast them accurately. Many traditional wind speed forecasting studies have focused on single models, which leads to poor prediction accuracy. In this paper, a new hybrid model is proposed to overcome the shortcoming of single models by combining singular spectrum analysis, modified intelligent optimization, and the rolling Elman neural network. In this model, except for the multiple seasonal patterns used to reduce interferences from the original data, the rolling model is utilized to forecast the multistep wind speed. To verify the forecasting ability of the proposed hybrid model, 10 min and 60 min wind speed data from the province of Shandong, China, were proposed in this paper as the case study. Compared to the other models, the proposed hybrid model forecasts the wind speed with higher accuracy.
Modeling and analysis of voice and data in cognitive radio networks
Gunawardena, Subodha
2014-01-01
This Springer Brief investigates the voice and elastic/interactive data service support over cognitive radio networks (CRNs), in terms of their delay requirements. The increased demand for wireless communication conflicts with the scarcity of the radio spectrum, but CRNS allow for more efficient use of the networks. The authors review packet level delay requirements of the voice service and session level delay requirements of the elastic/interactive data services, particularly constant-rate and on-o? voice tra?c capacities in CRNs with centralized and distributed network coordination. Some gen
Antanasijević, Davor; Pocajt, Viktor; Perić-Grujić, Aleksandra; Ristić, Mirjana
2014-11-01
This paper describes the training, validation, testing and uncertainty analysis of general regression neural network (GRNN) models for the forecasting of dissolved oxygen (DO) in the Danube River. The main objectives of this work were to determine the optimum data normalization and input selection techniques, the determination of the relative importance of uncertainty in different input variables, as well as the uncertainty analysis of model results using the Monte Carlo Simulation (MCS) technique. Min-max, median, z-score, sigmoid and tanh were validated as normalization techniques, whilst the variance inflation factor, correlation analysis and genetic algorithm were tested as input selection techniques. As inputs, the GRNN models used 19 water quality variables, measured in the river water each month at 17 different sites over a period of 9 years. The best results were obtained using min-max normalized data and the input selection based on the correlation between DO and dependent variables, which provided the most accurate GRNN model, and in combination the smallest number of inputs: Temperature, pH, HCO3-, SO42-, NO3-N, Hardness, Na, Cl-, Conductivity and Alkalinity. The results show that the correlation coefficient between measured and predicted DO values is 0.85. The inputs with the greatest effect on the GRNN model (arranged in descending order) were T, pH, HCO3-, SO42- and NO3-N. Of all inputs, variability of temperature had the greatest influence on the variability of DO content in river body, with the DO decreasing at a rate similar to the theoretical DO decreasing rate relating to temperature. The uncertainty analysis of the model results demonstrate that the GRNN can effectively forecast the DO content, since the distribution of model results are very similar to the corresponding distribution of real data.
Energy Technology Data Exchange (ETDEWEB)
Brown, D L
2009-05-01
Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex
Network Analysis, Architecture, and Design
McCabe, James D
2007-01-01
Traditionally, networking has had little or no basis in analysis or architectural development, with designers relying on technologies they are most familiar with or being influenced by vendors or consultants. However, the landscape of networking has changed so that network services have now become one of the most important factors to the success of many third generation networks. It has become an important feature of the designer's job to define the problems that exist in his network, choose and analyze several optimization parameters during the analysis process, and then prioritize and evalua
A network model of the interbank market
Li, Shouwei; He, Jianmin; Zhuang, Yaming
2010-12-01
This work introduces a network model of an interbank market based on interbank credit lending relationships. It generates some network features identified through empirical analysis. The critical issue to construct an interbank network is to decide the edges among banks, which is realized in this paper based on the interbank’s degree of trust. Through simulation analysis of the interbank network model, some typical structural features are identified in our interbank network, which are also proved to exist in real interbank networks. They are namely, a low clustering coefficient and a relatively short average path length, community structures, and a two-power-law distribution of out-degree and in-degree.
Wang, Fei; Wang, Xuan; Chen, Bin; Zhao, Ying; Yang, Zhifeng
2013-05-01
Accurate and reliable forecasting is important for the sustainable management of ecosystems. Chlorophyll a (Chl a) simulation and forecasting can provide early warning information and enable managers to make appropriate decisions for protecting lake ecosystems. In this study, we proposed a method for Chl a simulation in a lake that coupled the wavelet analysis and the artificial neural networks (WA-ANN). The proposed method had the advantage of data preprocessing, which reduced noise and managed nonstationary data. Fourteen variables were included in the developed and validated model, relating to hydrologic, ecological and meteorologic time series data from January 2000 to December 2009 at the Lake Baiyangdian study area, North China. The performance of the proposed WA-ANN model for monthly Chl a simulation in the lake ecosystem was compared with a multiple stepwise linear regression (MSLR) model, an autoregressive integrated moving average (ARIMA) model and a regular ANN model. The results showed that the WA-ANN model was suitable for Chl a simulation providing a more accurate performance than the MSLR, ARIMA, and ANN models. We recommend that the proposed method be widely applied to further facilitate the development and implementation of lake ecosystem management.
Wang, Fei; Wang, Xuan; Chen, Bin; Zhao, Ying; Yang, Zhifeng
2013-05-01
Accurate and reliable forecasting is important for the sustainable management of ecosystems. Chlorophyll a (Chl a) simulation and forecasting can provide early warning information and enable managers to make appropriate decisions for protecting lake ecosystems. In this study, we proposed a method for Chl a simulation in a lake that coupled the wavelet analysis and the artificial neural networks (WA-ANN). The proposed method had the advantage of data preprocessing, which reduced noise and managed nonstationary data. Fourteen variables were included in the developed and validated model, relating to hydrologic, ecological and meteorologic time series data from January 2000 to December 2009 at the Lake Baiyangdian study area, North China. The performance of the proposed WA-ANN model for monthly Chl a simulation in the lake ecosystem was compared with a multiple stepwise linear regression (MSLR) model, an autoregressive integrated moving average (ARIMA) model and a regular ANN model. The results showed that the WA-ANN model was suitable for Chl a simulation providing a more accurate performance than the MSLR, ARIMA, and ANN models. We recommend that the proposed method be widely applied to further facilitate the development and implementation of lake ecosystem management.
National Research Council Canada - National Science Library
Johnson, Joseph E; Gudkov, Vladimir
2005-01-01
... as continuous group theory and Markov processes. Based upon this research he has proposed that entropy metrics, and the associated cluster analysis of the network so measured by these metrics, can be useful indicators of aberrant processes and behavior. Other team members have obtained important connections using higher order Renyi entropy metrics, and complexity theory to both monitor real networks and to study networks by simulation.
Queueing Models for Mobile Ad Hoc Networks
de Haan, Roland
2009-01-01
This thesis presents models for the performance analysis of a recent communication paradigm: \\emph{mobile ad hoc networking}. The objective of mobile ad hoc networking is to provide wireless connectivity between stations in a highly dynamic environment. These dynamics are driven by the mobility of
Modelling traffic congestion using queuing networks
Indian Academy of Sciences (India)
Traffic Flow-Density diagrams are obtained using simple Jackson queuing network analysis. Such simple analytical models can be used to capture the effect of non- homogenous traffic. Keywords. Flow-density curves; uninterrupted traffic; Jackson networks. 1. Introduction. Traffic management has become very essential in ...
Directory of Open Access Journals (Sweden)
Z. Xu
2018-01-01
Full Text Available Long-distance seawater intrusion has been widely observed through the subsurface conduit system in coastal karst aquifers as a source of groundwater contaminant. In this study, seawater intrusion in a dual-permeability karst aquifer with conduit networks is studied by the two-dimensional density-dependent flow and transport SEAWAT model. Local and global sensitivity analyses are used to evaluate the impacts of boundary conditions and hydrological characteristics on modeling seawater intrusion in a karst aquifer, including hydraulic conductivity, effective porosity, specific storage, and dispersivity of the conduit network and of the porous medium. The local sensitivity analysis evaluates the parameters' sensitivities for modeling seawater intrusion, specifically in the Woodville Karst Plain (WKP. A more comprehensive interpretation of parameter sensitivities, including the nonlinear relationship between simulations and parameters, and/or parameter interactions, is addressed in the global sensitivity analysis. The conduit parameters and boundary conditions are important to the simulations in the porous medium because of the dynamical exchanges between the two systems. The sensitivity study indicates that salinity and head simulations in the karst features, such as the conduit system and submarine springs, are critical for understanding seawater intrusion in a coastal karst aquifer. The evaluation of hydraulic conductivity sensitivity in the continuum SEAWAT model may be biased since the conduit flow velocity is not accurately calculated by Darcy's equation as a function of head difference and hydraulic conductivity. In addition, dispersivity is no longer an important parameter in an advection-dominated karst aquifer with a conduit system, compared to the sensitivity results in a porous medium aquifer. In the end, the extents of seawater intrusion are quantitatively evaluated and measured under different scenarios with the variabilities of
Xu, Zexuan; Hu, Bill X.; Ye, Ming
2018-01-01
Long-distance seawater intrusion has been widely observed through the subsurface conduit system in coastal karst aquifers as a source of groundwater contaminant. In this study, seawater intrusion in a dual-permeability karst aquifer with conduit networks is studied by the two-dimensional density-dependent flow and transport SEAWAT model. Local and global sensitivity analyses are used to evaluate the impacts of boundary conditions and hydrological characteristics on modeling seawater intrusion in a karst aquifer, including hydraulic conductivity, effective porosity, specific storage, and dispersivity of the conduit network and of the porous medium. The local sensitivity analysis evaluates the parameters' sensitivities for modeling seawater intrusion, specifically in the Woodville Karst Plain (WKP). A more comprehensive interpretation of parameter sensitivities, including the nonlinear relationship between simulations and parameters, and/or parameter interactions, is addressed in the global sensitivity analysis. The conduit parameters and boundary conditions are important to the simulations in the porous medium because of the dynamical exchanges between the two systems. The sensitivity study indicates that salinity and head simulations in the karst features, such as the conduit system and submarine springs, are critical for understanding seawater intrusion in a coastal karst aquifer. The evaluation of hydraulic conductivity sensitivity in the continuum SEAWAT model may be biased since the conduit flow velocity is not accurately calculated by Darcy's equation as a function of head difference and hydraulic conductivity. In addition, dispersivity is no longer an important parameter in an advection-dominated karst aquifer with a conduit system, compared to the sensitivity results in a porous medium aquifer. In the end, the extents of seawater intrusion are quantitatively evaluated and measured under different scenarios with the variabilities of important parameters
Energy Technology Data Exchange (ETDEWEB)
Kalb, Jeffrey L.; Lee, David S.
2008-01-01
Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.
Characterization and Modeling of Network Traffic
DEFF Research Database (Denmark)
Shawky, Ahmed; Bergheim, Hans; Ragnarsson, Olafur
2011-01-01
This paper attempts to characterize and model backbone network traffic, using a small number of statistics. In order to reduce cost and processing power associated with traffic analysis. The parameters affecting the behaviour of network traffic are investigated and the choice is that inter......-arrival time, IP addresses, port numbers and transport protocol are the only necessary parameters to model network traffic behaviour. In order to recreate this behaviour, a complex model is needed which is able to recreate traffic behaviour based on a set of statistics calculated from the parameters values....... The model investigates the traffic generation mechanisms, and grouping traffic into flows and applications....
Irrigation network design and reconstruction and its analysis by simulation model
Directory of Open Access Journals (Sweden)
Čistý Milan
2014-06-01
Full Text Available There are many problems related to pipe network rehabilitation, the main one being how to provide an increase in the hydraulic capacity of a system. Because of its complexity the conventional optimizations techniques are poorly suited for solving this task. In recent years some successful attempts to apply modern heuristic methods to this problem have been published. The main part of the paper deals with applying such technique, namely the harmony search methodology, to network rehabilitation optimization considering both technical and economic aspects of the problem. A case study of the sprinkler irrigation system is presented in detail. Two alternatives of the rehabilitation design are compared. The modified linear programming method is used first with new diameters proposed in the existing network so it could satisfy the increased demand conditions with the unchanged topology. This solution is contrasted to the looped one obtained using a harmony search algorithm
Modelling and structural characteristics analysis of gene networks for prostate cancer.
Zhang, Yulin; Wang, Shudong; Meng, Dazhi
2015-01-01
Analysing structure of gene networks is an important way to understand regulatory mechanisms of organism at the molecular level. In this work, gene mutual information networks are constructed based on gene expression profiles in prostate tissues with and without cancer. In order to contrast structural difference of normal and diseased networks, curves of four structural parameters are given with the change of thresholds. Then threshold discrimination intervals and discrimination weights are defined. A method of finding structural key genes with significant degree-difference is proposed. The finding of key genes will help the biomedical scientists to further research the pathogenesis of prostate cancer. Finally randomisation test is performed to prove that these structural parameters can distinguish normal and prostate cancer in their structures compared with these results in real data.
Ibrahim, Hazem
2016-09-19
The unrelenting increase in the population of mobile users and their traffic demands drive cellular network operators to densify their network infrastructure. Network densification shrinks the footprint of base stations (BSs) and reduces the number of users associated with each BS, leading to an improved spatial frequency reuse and spectral efficiency, and thus, higher network capacity. However, the densification gain comes at the expense of higher handover rates and network control overhead. Hence, user’s mobility can diminish or even nullifies the foreseen densification gain. In this context, splitting the control plane ( C -plane) and user plane ( U -plane) is proposed as a potential solution to harvest densification gain with reduced cost in terms of handover rate and network control overhead. In this paper, we use stochastic geometry to develop a tractable mobility-aware model for a two-tier downlink cellular network with ultra-dense small cells and C -plane/ U -plane split architecture. The developed model is then used to quantify the effect of mobility on the foreseen densification gain with and without C -plane/ U -plane split. To this end, we shed light on the handover problem in dense cellular environments, show scenarios where the network fails to support certain mobility profiles, and obtain network design insights.
National Research Council Canada - National Science Library
Sarah E Morgan; Daniel J Cole; Alex W Chin
2016-01-01
.... The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue...
Modeling semiflexible polymer networks
Broedersz, Chase P.; MacKintosh, Fred C.
2014-01-01
Here, we provide an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have been motivated by their importance in biology. Indeed, crosslinked networks of semiflexible polymers form a major structural component of tissue and living cells. Reconstituted networks o...
Combining morphological analysis and Bayesian networks for ...
African Journals Online (AJOL)
Morphological analysis (MA) and Bayesian networks (BN) are two closely related modelling methods, each of which has its advantages and disadvantages for strategic decision support modelling. MA is a method for defining, linking and evaluating problem spaces. BNs are graphical models which consist of a qualitative ...
Modeling and Analysis of Networked Control Systems Using Stochastic Hybrid Systems
2014-09-03
Dec. 2010. (cited in p. 20) [2] D. Antunes, J. P. Hespanha, and C. Silvestre. Volterra integral approach to impulsive renewal systems: Application to...stochasticity introduced explicitly by the network protocols (e.g., random backoffs in response to packet collisions). The integration of continuous dynamics...distinct components: one that evolves continuously, typ- ically according to a differential equation ; and another one that is discrete and changes through
Complex Networks in Psychological Models
Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.
We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.
Directory of Open Access Journals (Sweden)
Jia Guo
2017-01-01
Full Text Available Conventional power systems are developing into cyber-physical power systems (CPPS with wide applications of communication, computer and control technologies. However, multiple practical cases show that the failure of cyber layers is a major factor leading to blackouts. Therefore, it is necessary to discuss the cascading failure process considering cyber layer failures and analyze the vulnerability of CPPS. In this paper, a CPPS model, which consists of cyber layer, physical layer and cyber-physical interface, is presented using complex network theory. Considering power flow properties, the impacts of cyber node failures on the cascading failure propagation process are studied. Moreover, two vulnerability indices are established from the perspective of both network structure and power flow properties. A vulnerability analysis method is proposed, and the CPPS performance before and after cascading failures is analyzed by the proposed method to calculate vulnerability indices. In the case study, three typical scenarios are analyzed to illustrate the method, and vulnerabilities under different interface strategies and attack strategies are compared. Two thresholds are proposed to value the CPPS vulnerability roughly. The results show that CPPS is more vulnerable under malicious attacks and cyber nodes with high indices are vulnerable points which should be reinforced.
Tourism Destinations Network Analysis, Social Network Analysis Approach
Directory of Open Access Journals (Sweden)
2015-09-01
Full Text Available The tourism industry is becoming one of the world's largest economical sources, and is expected to become the world's first industry by 2020. Previous studies have focused on several aspects of this industry including sociology, geography, tourism management and development, but have paid less attention to analytical and quantitative approaches. This study introduces some network analysis techniques and measures aiming at studying the structural characteristics of tourism networks. More specifically, it presents a methodology to analyze tourism destinations network. We apply the methodology to analyze mazandaran’s Tourism destination network, one of the most famous tourism areas of Iran.
Introduction to Social Network Analysis
Zaphiris, Panayiotis; Ang, Chee Siang
Social Network analysis focuses on patterns of relations between and among people, organizations, states, etc. It aims to describe networks of relations as fully as possible, identify prominent patterns in such networks, trace the flow of information through them, and discover what effects these relations and networks have on people and organizations. Social network analysis offers a very promising potential for analyzing human-human interactions in online communities (discussion boards, newsgroups, virtual organizations). This Tutorial provides an overview of this analytic technique and demonstrates how it can be used in Human Computer Interaction (HCI) research and practice, focusing especially on Computer Mediated Communication (CMC). This topic acquires particular importance these days, with the increasing popularity of social networking websites (e.g., youtube, myspace, MMORPGs etc.) and the research interest in studying them.
Developing Personal Network Business Models
DEFF Research Database (Denmark)
Saugstrup, Dan; Henten, Anders
2006-01-01
on the 'state of the art' in the field of business modeling. Furthermore, the paper suggests three generic business models for PNs: a service oriented model, a self-organized model, and a combination model. Finally, examples of relevant services and applications in relation to three different cases......The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports...... are presented and analyzed in light of business modeling of PN....
A model of coauthorship networks
Zhou, Guochang; Li, Jianping; Xie, Zonglin
2017-10-01
A natural way of representing the coauthorship of authors is to use a generalization of graphs known as hypergraphs. A random geometric hypergraph model is proposed here to model coauthorship networks, which is generated by placing nodes on a region of Euclidean space randomly and uniformly, and connecting some nodes if the nodes satisfy particular geometric conditions. Two kinds of geometric conditions are designed to model the collaboration patterns of academic authorities and basic researches respectively. The conditions give geometric expressions of two causes of coauthorship: the authority and similarity of authors. By simulation and calculus, we show that the forepart of the degree distribution of the network generated by the model is mixture Poissonian, and the tail is power-law, which are similar to these of some coauthorship networks. Further, we show more similarities between the generated network and real coauthorship networks: the distribution of cardinalities of hyperedges, high clustering coefficient, assortativity, and small-world property
Günhan, Burak Kürsad; Friede, Tim; Held, Leonhard
2017-11-29
Network meta-analysis (NMA) is gaining popularity for comparing multiple treatments in a single analysis. Generalized linear mixed models (GLMMs) provide a unifying framework for NMA, allow us to analyze datasets with dichotomous, continuous or count endpoints, and take into account multi-arm trials, potential heterogeneity between trials and network inconsistency. To perform inference within such NMA models, the use of Bayesian methods is often advocated. The standard inference tool is Markov chainMonte Carlo (MCMC), which is computationally expensive and requires convergence diagnostics. A deterministic approach to do fully Bayesian inference for latent Gaussian models (LGMs) can be achieved by integrated nested Laplace approximations (INLA), which is a fast and accurate alternative to MCMC. We show how NMA models fit in the class of LGMs, how NMA models are implemented using INLA and demonstrate that the estimates obtained by INLA are in close agreement with the ones obtained by MCMC. Specifically, we emphasize the design-by-treatment interaction model with random inconsistency parameters (also known as the Jackson model). Also, we have proposed a network meta-regression model which is constructed by incorporating trial-level covariates to the Jackson model in order to explain possible sources of heterogeneity and/or inconsistency in the network. A publicly available R package, nmaINLA, is developed to automate the INLA implementation of NMA models which are considered in this paper. Three applications illustrate the use of INLA for a NMA. This article is protected by copyright. All rights reserved.
Predictive structural dynamic network analysis.
Chen, Rong; Herskovits, Edward H
2015-04-30
Classifying individuals based on magnetic resonance data is an important task in neuroscience. Existing brain network-based methods to classify subjects analyze data from a cross-sectional study and these methods cannot classify subjects based on longitudinal data. We propose a network-based predictive modeling method to classify subjects based on longitudinal magnetic resonance data. Our method generates a dynamic Bayesian network model for each group which represents complex spatiotemporal interactions among brain regions, and then calculates a score representing that subject's deviation from expected network patterns. This network-derived score, along with other candidate predictors, are used to construct predictive models. We validated the proposed method based on simulated data and the Alzheimer's Disease Neuroimaging Initiative study. For the Alzheimer's Disease Neuroimaging Initiative study, we built a predictive model based on the baseline biomarker characterizing the baseline state and the network-based score which was constructed based on the state transition probability matrix. We found that this combined model achieved 0.86 accuracy, 0.85 sensitivity, and 0.87 specificity. For the Alzheimer's Disease Neuroimaging Initiative study, the model based on the baseline biomarkers achieved 0.77 accuracy. The accuracy of our model is significantly better than the model based on the baseline biomarkers (p-value=0.002). We have presented a method to classify subjects based on structural dynamic network model based scores. This method is of great importance to distinguish subjects based on structural network dynamics and the understanding of the network architecture of brain processes and disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
Industrial entrepreneurial network: Structural and functional analysis
Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.
2016-12-01
Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.
Random graph models for dynamic networks
Zhang, Xiao; Moore, Cristopher; Newman, Mark E. J.
2017-10-01
Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.
2016-11-09
standpoint remains more of an art than a science . Even when well executed, the ongoing evolution of the network may violate initial, security-critical design...from a security standpoint remains more of an art than a science . Even when well executed, the ongoing evolution of the network may violate initial...is outside the scope of this paper. As such, we focus on event probabilities. The output of the network porosity model is a stream of timestamped
Randhawa, Vinay; Acharya, Vishal
2015-07-16
Oral squamous cell carcinoma (OSCC) is associated with substantial mortality and morbidity but, OSCC can be difficult to detect at its earliest stage due to its molecular complexity and clinical behavior. Therefore, identification of key gene signatures at an early stage will be highly helpful. The aim of this study was to identify key genes associated with progression of OSCC stages. Gene expression profiles were classified into cancer stage-related modules, i.e., groups of genes that are significantly related to a clinical stage. For prioritizing the candidate genes, analysis was further restricted to genes with high connectivity and a significant association with a stage. To assess predictive power of these genes, a classification model was also developed and tested by 5-fold cross validation and on an independent dataset. The identified genes were enriched for significant processes and functional pathways, and various genes were found to be directly implicated in OSCC. Forward and stepwise, multivariate logistic regression analyses identified 13 key genes whose expression discriminated early- and late-stage OSCC with predictive accuracy (area under curve; AUC) of ~0.81 in a 5-fold cross-validation strategy. The proposed network-driven integrative analytical approach can identify multiple genes significantly related to an OSCC stage; the classification model that is developed with these genes may help to distinguish cancer stages. The proposed genes and model hold promise for monitoring of OSCC stage progression, and our findings may facilitate cancer detection at an earlier stage, resulting in improved treatment outcomes.
Telecommunications network modelling, planning and design
Evans, Sharon
2003-01-01
Telecommunication Network Modelling, Planning and Design addresses sophisticated modelling techniques from the perspective of the communications industry and covers some of the major issues facing telecommunications network engineers and managers today. Topics covered include network planning for transmission systems, modelling of SDH transport network structures and telecommunications network design and performance modelling, as well as network costs and ROI modelling and QoS in 3G networks.
Modeling and performance analysis of cooperative communications in cognitive radio networks
Khabazian, Mehdi
2011-09-01
In this paper, we study the performance of a network comprised of a primary user and a secondary user with the latter having cognitive radio capabilities. The secondary node uses the empty slots of the primary user to transmit its own traffic as well as to relay the primary\\'s traffic in a cooperative fashion. Taking a queuing theory approach, we find the probability generating functions of the numbers of packets in the queues of the primary and secondary users. Subsequently, we determine a number of performance measures such as the average queues\\' lengths, average packet transmission delays and secondary user\\'s queue surcharge due to cooperation. The numerical results along with the simulations show the importance of controlling the number of primary user packets admitted by the secondary user for cooperation and its impacts on the other performance measures. © 2011 IEEE.
Electrical Thermal Network for Direct Contact Membrane Distillation Modeling and Analysis
Karam, Ayman M.
2015-02-04
Membrane distillation is an emerging water distillation technology that offers several advantages compared to conventional water desalination processes. Although progress has been made to model and understand the physics of the process, many studies are based on steady-state assumptions or are computationally not appropriate for real time control. This paper presents the derivation of a novel dynamical model, based on analogy between electrical and thermal systems, for direct contact membrane distillation (DCMD). The proposed model captures the dynamics of temperature distribution and distilled water flux. To demonstrate the adequacy of the proposed model, validation with transient and steady-state experimental data is presented.
Directory of Open Access Journals (Sweden)
Alexander Vladimirovich Kirillov
2015-12-01
Full Text Available The international integration of the Russian economy is connected to the need of the realization of the competitive advantages of the geopolitical position of Russia, the industrial potential of regions, the logistic infrastructure of transport corridors. This article discusses the design model of the supply chain (distribution network based on the multivariate analysis and the methodology of the substantiation of its configuration based on the cost factors and the level of the logistics infrastructure development. For solving the problem of placing one or more logistics centers in the service area, a two-stage algorithm is used. At the first stage, the decisions on the reasonability of the choice of one or another version of the development are made with А. В. Кириллов, В. Е. Целин 345 ЭКОНОМИКА РЕГИОНА №4 (2015 the use of the “Make or Buy” standard model. The criterion of decision making is the guaranteed overcoming of the threshold of “indifference” taking into account the statistical characteristics of costs for options of “buy” and “make” depending on the volume of consumption of goods or services. At the second stage, the Ardalan’s heuristic method is used for the evaluation of the choice of placing one or more logistics centers in the service area. The model parameters are based on the assessment of the development prospects of the region and its investment potential (existence and composition of employment, production, natural resources, financial and consumer opportunities, institutional, innovation, infrastructure capacity. Furthermore, such criteria as a regional financial appeal, professionally trained specialists, the competitive advantages of the promoted company and others are analyzed. An additional criterion is the development of the priority matrix, which considers such factors as difficulties of customs registration and certification, a level of regional transport
Owen, Rhiannon K; Tincello, Douglas G; Keith, R Abrams
2015-01-01
Network meta-analysis (NMA) is commonly used in evidence synthesis; however, in situations in which there are a large number of treatment options, which may be subdivided into classes, and relatively few trials, NMAs produce considerable uncertainty in the estimated treatment effects, and consequently, identification of the most beneficial intervention remains inconclusive. To develop and demonstrate the use of evidence synthesis methods to evaluate extensive treatment networks with a limited number of trials, making use of classes. Using Bayesian Markov chain Monte Carlo methods, we build on the existing work of a random effects NMA to develop a three-level hierarchical NMA model that accounts for the exchangeability between treatments within the same class as well as for the residual between-study heterogeneity. We demonstrate the application of these methods to a continuous and binary outcome, using a motivating example of overactive bladder. We illustrate methods for incorporating ordering constraints in increasing doses, model selection, and assessing inconsistency between the direct and indirect evidence. The methods were applied to a data set obtained from a systematic literature review of trials for overactive bladder, evaluating the mean reduction in incontinence episodes from baseline and the number of patients reporting one or more adverse events. The data set involved 72 trials comparing 34 interventions that were categorized into nine classes of interventions, including placebo. Bayesian three-level hierarchical NMAs have the potential to increase the precision in the effect estimates while maintaining the interpretability of the individual interventions for decision making. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Analysis of complex networks using aggressive abstraction.
Energy Technology Data Exchange (ETDEWEB)
Colbaugh, Richard; Glass, Kristin.; Willard, Gerald
2008-10-01
This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.
Tensor Fusion Network for Multimodal Sentiment Analysis
Zadeh, Amir; Chen, Minghai; Poria, Soujanya; Cambria, Erik; Morency, Louis-Philippe
2017-01-01
Multimodal sentiment analysis is an increasingly popular research area, which extends the conventional language-based definition of sentiment analysis to a multimodal setup where other relevant modalities accompany language. In this paper, we pose the problem of multimodal sentiment analysis as modeling intra-modality and inter-modality dynamics. We introduce a novel model, termed Tensor Fusion Network, which learns both such dynamics end-to-end. The proposed approach is tailored for the vola...
Campus network security model study
Zhang, Yong-ku; Song, Li-ren
2011-12-01
Campus network security is growing importance, Design a very effective defense hacker attacks, viruses, data theft, and internal defense system, is the focus of the study in this paper. This paper compared the firewall; IDS based on the integrated, then design of a campus network security model, and detail the specific implementation principle.
Model-based control of networked systems
Garcia, Eloy; Montestruque, Luis A
2014-01-01
This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled. The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates . It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control. Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and ...
Social network analysis for program implementation.
Valente, Thomas W; Palinkas, Lawrence A; Czaja, Sara; Chu, Kar-Hai; Brown, C Hendricks
2015-01-01
This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach.
Statistical analysis of fracture data, adapted for modelling Discrete Fracture Networks-Version 2
Energy Technology Data Exchange (ETDEWEB)
Munier, Raymond
2004-04-01
The report describes the parameters which are necessary for DFN modelling, the way in which they can be extracted from the data base acquired during site investigations, and their assignment to geometrical objects in the geological model. The purpose here is to present a methodology for use in SKB modelling projects. Though the methodology is deliberately tuned to facilitate subsequent DFN modelling with other tools, some of the recommendations presented here are applicable to other aspects of geo-modelling as well. For instance, we here recommend a nomenclature to be used within SKB modelling projects, which are truly multidisciplinary, to ease communications between scientific disciplines and avoid misunderstanding of common concepts. This report originally occurred as an appendix to a strategy report for geological modelling (SKB-R--03-07). Strategy reports were intended to be successively updated to include experience gained during site investigations and site modelling. Rather than updating the entire strategy report, we choose to present the update of the appendix as a stand-alone document. This document thus replaces Appendix A2 in SKB-R--03-07. In short, the update consists of the following: The target audience has been broadened and as a consequence thereof, the purpose of the document. Correction of errors found in various formulae. All expressions have been rewritten. Inclusion of more worked examples in each section. A new section describing area normalisation. A new section on spatial correlation. A new section describing anisotropy. A new chapter describing the expected output from DFN modelling, within SKB projects.
From Agent-based models to network analysis (and return): the policy-making perspective.
Fontana, Magda; Terna, Pietro
2015-01-01
An important perspective use of Agent-based models (ABMs) is that of being employed as tools to support decision systems in policy-making, in the complex systems framework. Such models can be usefully employed at two different levels: to help in deciding (policy-maker level) and to empower the capabilities of people in evaluating the effectiveness of policies (citizen level). Consequently, the class of ABMs for policymaking needs to be both quite simple in its structure and highly sophisticat...
Social Network Analysis with sna
Directory of Open Access Journals (Sweden)
Carter T. Butts
2007-12-01
Full Text Available Modern social network analysis---the analysis of relational data arising from social systems---is a computationally intensive area of research. Here, we provide an overview of a software package which provides support for a range of network analytic functionality within the R statistical computing environment. General categories of currently supported functionality are described, and brief examples of package syntax and usage are shown.
Modeling social influence through network autocorrelation : constructing the weight matrix
Leenders, Roger Th. A. J.
Many physical and social phenomena are embedded within networks of interdependencies, the so-called 'context' of these phenomena. In network analysis, this type of process is typically modeled as a network autocorrelation model. Parameter estimates and inferences based on autocorrelation models,
Computational Social Network Analysis
Hassanien, Aboul-Ella
2010-01-01
Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks
Ganguly, Bhaskar; Ambwani, Tanuj Kumar; Rastogi, Sunil Kumar
2017-01-01
Milk fat is one of the most important economic traits in dairy animals. Yet, the biological machinery involved in milk fat synthesis remains poorly understood. In the present study, expression profiling of 45 genes involved in lipid biosynthesis and secretion was performed using a computational approach to identify those genes that are differentially expressed in mammary tissue. Transcript abundance was observed for genes associated with nine bioprocesses, namely, fatty acid import into cells, xenobiotic and cholesterol transport, acetate and fatty acid activation and intracellular transport, fatty acid synthesis and desaturation, triacylglycerol synthesis, sphingolipid synthesis, lipid droplet formation, ketone body utilization, and regulation of transcription in mammary, skin, and muscle tissue. Relative expression coefficient of the genes was derived based on the transcript abundance across the three tissue types to determine the genes that were preferentially expressed during lactation. 13 genes (ACSS1, ACSS2, ADFP, CD36, FABP3, FASN, GPAM, INSIG1, LPL, SCD5, SPTLC1, SREBF1, and XDH) showed higher expression in the mammary tissue of which 6 (ADFP, FASN, GPAM, LPL, SREBF1, and XDH) showed higher expression during adulthood. Further, interaction networks were mapped for these genes to determine the nature of interactions and to identify the major genes in the milk fat biosynthesis and secretion pathways.
Directory of Open Access Journals (Sweden)
Bhaskar Ganguly
2017-01-01
Full Text Available Milk fat is one of the most important economic traits in dairy animals. Yet, the biological machinery involved in milk fat synthesis remains poorly understood. In the present study, expression profiling of 45 genes involved in lipid biosynthesis and secretion was performed using a computational approach to identify those genes that are differentially expressed in mammary tissue. Transcript abundance was observed for genes associated with nine bioprocesses, namely, fatty acid import into cells, xenobiotic and cholesterol transport, acetate and fatty acid activation and intracellular transport, fatty acid synthesis and desaturation, triacylglycerol synthesis, sphingolipid synthesis, lipid droplet formation, ketone body utilization, and regulation of transcription in mammary, skin, and muscle tissue. Relative expression coefficient of the genes was derived based on the transcript abundance across the three tissue types to determine the genes that were preferentially expressed during lactation. 13 genes (ACSS1, ACSS2, ADFP, CD36, FABP3, FASN, GPAM, INSIG1, LPL, SCD5, SPTLC1, SREBF1, and XDH showed higher expression in the mammary tissue of which 6 (ADFP, FASN, GPAM, LPL, SREBF1, and XDH showed higher expression during adulthood. Further, interaction networks were mapped for these genes to determine the nature of interactions and to identify the major genes in the milk fat biosynthesis and secretion pathways.
Modeling Network Traffic in Wavelet Domain
Directory of Open Access Journals (Sweden)
Sheng Ma
2004-12-01
Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.
Neural network modeling of emotion
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
Statistical Analysis of Bus Networks in India.
Chatterjee, Atanu; Manohar, Manju; Ramadurai, Gitakrishnan
2016-01-01
In this paper, we model the bus networks of six major Indian cities as graphs in L-space, and evaluate their various statistical properties. While airline and railway networks have been extensively studied, a comprehensive study on the structure and growth of bus networks is lacking. In India, where bus transport plays an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer basic questions on its evolution, growth, robustness and resiliency. Although the common feature of small-world property is observed, our analysis reveals a wide spectrum of network topologies arising due to significant variation in the degree-distribution patterns in the networks. We also observe that these networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, such as Internet, WWW and airline, that are virtual, bus networks are physically constrained. Our findings therefore, throw light on the evolution of such geographically and constrained networks that will help us in designing more efficient bus networks in the future.
Directory of Open Access Journals (Sweden)
Carter T. Butts
2016-01-01
Full Text Available Carnivorous plants represent a so far underexploited reservoir of novel proteases with potentially useful activities. Here we investigate 44 cysteine proteases from the Cape sundew, Drosera capensis, predicted from genomic DNA sequences. D. capensis has a large number of cysteine protease genes; analysis of their sequences reveals homologs of known plant proteases, some of which are predicted to have novel properties. Many functionally significant sequence and structural features are observed, including targeting signals and occluding loops. Several of the proteases contain a new type of granulin domain. Although active site residues are conserved, the sequence identity of these proteases to known proteins is moderate to low; therefore, comparative modeling with all-atom refinement and subsequent atomistic MD-simulation is used to predict their 3D structures. The structure prediction data, as well as analysis of protein structure networks, suggest multifarious variations on the papain-like cysteine protease structural theme. This in silico methodology provides a general framework for investigating a large pool of sequences that are potentially useful for biotechnology applications, enabling informed choices about which proteins to investigate in the laboratory.
Social network analysis applied to team sports analysis
Clemente, Filipe Manuel; Mendes, Rui Sousa
2016-01-01
Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.
Elkhoudary, Mahmoud M.; Abdel Salam, Randa A.; Hadad, Ghada M.
2014-09-01
Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components’ mixtures using easy and widely used UV spectrophotometer.
Modeling semiflexible polymer networks
Broedersz, C.P.; MacKintosh, F.C.
2014-01-01
This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have
DC Analysis of an Ideal Diode Network Using Its Decomposed Piecevise-Linear Model
Directory of Open Access Journals (Sweden)
Z. Kolka
1994-09-01
Full Text Available A new method of finding the operating points in circuits containing ideal diodes which utilizes the decomposed form of the state model of an one-dimensional piecewise-linear (PWL system is developed. The universal procedure shown gives all the existing solutions quite automatically.
Business model risk analysis: predicting the probability of business network profitability
Johnson, Pontus; Iacob, Maria Eugenia; Valja, Margus; Magnusson, Christer; Ladhe, Tobias; van Sinderen, Marten J.; Oude Luttighuis, P.H.W.M.; Folmer, Erwin Johan Albert; Bosems, S.
In the design phase of business collaboration, it is desirable to be able to predict the profitability of the business-to-be. Therefore, techniques to assess qualities such as costs, revenues, risks, and profitability have been previously proposed. However, they do not allow the modeler to properly
A 3D Lumped Thermal Network Model for Long-term Load Profiles Analysis in High Power IGBT Modules
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Ghimire, Pramod
2016-01-01
three-dimensional RC lumped thermal network for the high power IGBT modules. The thermal-coupling effects among the chips and among the critical layers are modelled, and boundary conditions including the cooling conditions are also taken into account. It is concluded that, the proposed thermal model......The conventional RC lumped thermal networks are widely used to estimate the temperature of power devices, but they are lack of accuracy in addressing detailed thermal behaviors/couplings in different locations and layers of the high power IGBT modules. On the other hand, Finite Element (FE...
Performance modeling, stochastic networks, and statistical multiplexing
Mazumdar, Ravi R
2013-01-01
This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan
Informing Genetic Models of Autism via Transcriptional Network Analysis in Brain and Blood
Luo, Rui
2014-01-01
Autism Spectrum Disorders (ASDs) are a group of heritable neruodevlopmental disorders. Both common and rare genetic variants are known to play a role in ASDs. However the functional impact of genetic variants remains largely unexplored. In this study, we conducted transcriptome profiling analysis to uncover the expression alterations that are associated with autism. The transcriptome profiling also aids us exploring the regulatory patterns of genetic variants, and better understanding the gen...
Topological analysis of telecommunications networks
Directory of Open Access Journals (Sweden)
Milojko V. Jevtović
2011-01-01
Full Text Available A topological analysis of the structure of telecommunications networks is a very interesting topic in the network research, but also a key issue in their design and planning. Satisfying multiple criteria in terms of locations of switching nodes as well as their connectivity with respect to the requests for capacity, transmission speed, reliability, availability and cost are the main research objectives. There are three ways of presenting the topology of telecommunications networks: table, matrix or graph method. The table method is suitable for a network of a relatively small number of nodes in relation to the number of links. The matrix method involves the formation of a connection matrix in which its columns present source traffic nodes and its rows are the switching systems that belong to the destination. The method of the topology graph means that the network nodes are connected via directional or unidirectional links. We can thus easily analyze the structural parameters of telecommunications networks. This paper presents the mathematical analysis of the star-, ring-, fully connected loop- and grid (matrix-shaped topology as well as the topology based on the shortest path tree. For each of these topologies, the expressions for determining the number of branches, the middle level of reliability, the medium length and the average length of the link are given in tables. For the fully connected loop network with five nodes the values of all topological parameters are calculated. Based on the topological parameters, the relationships that represent integral and distributed indicators of reliability are given in this work as well as the values of the particular network. The main objectives of the topology optimization of telecommunications networks are: achieving the minimum complexity, maximum capacity, the shortest path message transfer, the maximum speed of communication and maximum economy. The performance of telecommunications networks is
Database Entity Persistence with Hibernate for the Network Connectivity Analysis Model
2014-04-01
DAOFactory class will have a single static invocable method that will return an instantiated instance of the DAOFactory ( McKenzie et al., 2008, p 399). The...significantly higher due to a paradigm mismatch between how data is represented in objects versus relational databases. Hibernate can significantly...static method , “Hibernate.recreateDatabase,” for recreating the database schema when the entity domain model changes. A simple program was written to
Liu, Gang; Neelamegham, Sriram
2008-04-15
We present In silico Biochemical Reaction Network Analysis (IBRENA), a software package which facilitates multiple functions including cellular reaction network simulation and sensitivity analysis (both forward and adjoint methods), coupled with principal component analysis, singular-value decomposition and model reduction. The software features a graphical user interface that aids simulation and plotting of in silico results. While the primary focus is to aid formulation, testing and reduction of theoretical biochemical reaction networks, the program can also be used for analysis of high-throughput genomic and proteomic data. The software package, manual and examples are available at http://www.eng.buffalo.edu/~neel/ibrena
High-Speed Network Traffic Management Analysis and Optimization Models and Methods
Zaborovski, V; Podgurski, Y; Shemanin, Y
1997-01-01
The main steps of automatic control methodology include the hierarchical representation of management system and the formal definitions of input variables, object and goal of control of each management level. A Petri net model of individual traffic source is presented. It is noted that the current set of traffic parameters recommended by ATM-forum is not enough to synthesize optimal traffic control system. The feature of traffic self-similarity can be used to effectively solve optimal control task. An example of an optimal control scheme for cell discarding algorithm is presented.
Directory of Open Access Journals (Sweden)
Vít Maca
2017-06-01
Full Text Available Aim of the paper is to describe methodology for calculating significance of environmental factors in landslide susceptibility modeling and present result of selected one. As a study area part of a Jemma basin in Ethiopian Highland is used. This locality is highly affected by mass movement processes. In the first part all major factors and their influence are described briefly. Majority of the work focuses on research of other methodologies used in susceptibility models and design of own methodology. This method is unlike most of the methods used completely objective, therefore it is not possible to intervene in the results. In article all inputs and outputs of the method are described as well as all stages of calculations. Results are illustrated on specific examples. In study area most important factor for landslide susceptibility is slope, on the other hand least important is land cover. At the end of article landslide susceptibility map is created. Part of the article is discussion of results and possible improvements of the methodology.
Analysis of sulfate resistance in concrete based on artificial neural networks and USBR4908-modeling
Directory of Open Access Journals (Sweden)
Osama Hodhod
2013-12-01
Full Text Available One of the available tests that can be used to evaluate concrete sulfate resistance is USBR4908. However, there are deficiencies in this test method. This study focuses on the ANN as an alternative approach to evaluate the sulfate expansion. Three types of cement combined with FA or SF, along with variable W/B were study by USBR4908. ANN model were developed by five input parameters, W/B, cement content, FA or SF, C3A, and exposure duration; output parameter is determined as expansion. Back propagation algorithm was employed for the ANN training; a Tansig function was used as the nonlinear transfer function. It was clear that the ANN models give high prediction accuracy. In addition, The engineer can avoid the use of the borderline 2.5–5% C3A content in severe sulfate environments and borderline 6–8% C3A content in moderate sulfate environments, specially with W/B ratio greater than 0.45.
Neural network approaches for noisy language modeling.
Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid
2013-11-01
Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.
Dynamic modeling and analysis of sexually transmitted diseases on heterogeneous networks
Li, Shuping; Jin, Zhen
2015-06-01
Considering homosexual contacts and heterosexual contacts in the course of sexual contacts, double degrees which describe the numbers of homosexual contacts and heterosexual contacts are introduced, correlation coefficients about degrees based on the joint probability distribution are given, and an SIS mean-field model about sexually transmitted diseases is presented when degrees are uncorrelated. The basic reproduction number of diseases is studied by the method of next generation matrix. Results show that, when homosexual contacts and heterosexual contacts all exist, once the disease is epidemic in the interior of male (female) population which is caused by male (female) homosexual transmissions, or the disease is epidemic between the two species which is caused by heterosexual transmissions, the disease must be epidemic in the whole population. Numerical simulations confirm the theoretical results.
Intentional risk management through complex networks analysis
Chapela, Victor; Moral, Santiago; Romance, Miguel
2015-01-01
This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution, the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies a...
A user’s guide to network analysis in R
Luke, Douglas
2015-01-01
Presenting a comprehensive resource for the mastery of network analysis in R, the goal of Network Analysis with R is to introduce modern network analysis techniques in R to social, physical, and health scientists. The mathematical foundations of network analysis are emphasized in an accessible way and readers are guided through the basic steps of network studies: network conceptualization, data collection and management, network description, visualization, and building and testing statistical models of networks. As with all of the books in the Use R! series, each chapter contains extensive R code and detailed visualizations of datasets. Appendices will describe the R network packages and the datasets used in the book. An R package developed specifically for the book, available to readers on GitHub, contains relevant code and real-world network datasets as well.
Lu, Hongzhong; Cao, Weiqiang; Ouyang, Liming; Xia, Jianye; Huang, Mingzhi; Chu, Ju; Zhuang, Yingping; Zhang, Siliang; Noorman, Henk
2017-03-01
Aspergillus niger is one of the most important cell factories for industrial enzymes and organic acids production. A comprehensive genome-scale metabolic network model (GSMM) with high quality is crucial for efficient strain improvement and process optimization. The lack of accurate reaction equations and gene-protein-reaction associations (GPRs) in the current best model of A. niger named GSMM iMA871, however, limits its application scope. To overcome these limitations, we updated the A. niger GSMM by combining the latest genome annotation and literature mining technology. Compared with iMA871, the number of reactions in iHL1210 was increased from 1,380 to 1,764, and the number of unique ORFs from 871 to 1,210. With the aid of our transcriptomics analysis, the existence of 63% ORFs and 68% reactions in iHL1210 can be verified when glucose was used as the only carbon source. Physiological data from chemostat cultivations, 13 C-labeled and molecular experiments from the published literature were further used to check the performance of iHL1210. The average correlation coefficients between the predicted fluxes and estimated fluxes from 13 C-labeling data were sufficiently high (above 0.89) and the prediction of cell growth on most of the reported carbon and nitrogen sources was consistent. Using the updated genome-scale model, we evaluated gene essentiality on synthetic and yeast extract medium, as well as the effects of NADPH supply on glucoamylase production in A. niger. In summary, the new A. niger GSMM iHL1210 contains significant improvements with respect to the metabolic coverage and prediction performance, which paves the way for systematic metabolic engineering of A. niger. Biotechnol. Bioeng. 2017;114: 685-695. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mobility Model for Tactical Networks
Rollo, Milan; Komenda, Antonín
In this paper a synthetic mobility model which represents behavior and movement pattern of heterogeneous units in disaster relief and battlefield scenarios is proposed. These operations usually take place in environment without preexisting communication infrastructure and units thus have to be connected by wireless communication network. Units cooperate to fulfill common tasks and communication network has to serve high amount of communication requests, especially data, voice and video stream transmissions. To verify features of topology control, routing and interaction protocols software simulations are usually used, because of their scalability, repeatability and speed. Behavior of all these protocols relies on the mobility model of the network nodes, which has to resemble real-life movement pattern. Proposed mobility model is goal-driven and provides support for various types of units, group mobility and realistic environment model with obstacles. Basic characteristics of the mobility model like node spatial distribution and average node degree were analyzed.
Network Anomaly Detection Based on Wavelet Analysis
Directory of Open Access Journals (Sweden)
Ali A. Ghorbani
2008-11-01
Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
Topographic factor analysis: a Bayesian model for inferring brain networks from neural data.
Manning, Jeremy R; Ranganath, Rajesh; Norman, Kenneth A; Blei, David M
2014-01-01
The neural patterns recorded during a neuroscientific experiment reflect complex interactions between many brain regions, each comprising millions of neurons. However, the measurements themselves are typically abstracted from that underlying structure. For example, functional magnetic resonance imaging (fMRI) datasets comprise a time series of three-dimensional images, where each voxel in an image (roughly) reflects the activity of the brain structure(s)-located at the corresponding point in space-at the time the image was collected. FMRI data often exhibit strong spatial correlations, whereby nearby voxels behave similarly over time as the underlying brain structure modulates its activity. Here we develop topographic factor analysis (TFA), a technique that exploits spatial correlations in fMRI data to recover the underlying structure that the images reflect. Specifically, TFA casts each brain image as a weighted sum of spatial functions. The parameters of those spatial functions, which may be learned by applying TFA to an fMRI dataset, reveal the locations and sizes of the brain structures activated while the data were collected, as well as the interactions between those structures.
Topographic factor analysis: a Bayesian model for inferring brain networks from neural data.
Directory of Open Access Journals (Sweden)
Jeremy R Manning
Full Text Available The neural patterns recorded during a neuroscientific experiment reflect complex interactions between many brain regions, each comprising millions of neurons. However, the measurements themselves are typically abstracted from that underlying structure. For example, functional magnetic resonance imaging (fMRI datasets comprise a time series of three-dimensional images, where each voxel in an image (roughly reflects the activity of the brain structure(s-located at the corresponding point in space-at the time the image was collected. FMRI data often exhibit strong spatial correlations, whereby nearby voxels behave similarly over time as the underlying brain structure modulates its activity. Here we develop topographic factor analysis (TFA, a technique that exploits spatial correlations in fMRI data to recover the underlying structure that the images reflect. Specifically, TFA casts each brain image as a weighted sum of spatial functions. The parameters of those spatial functions, which may be learned by applying TFA to an fMRI dataset, reveal the locations and sizes of the brain structures activated while the data were collected, as well as the interactions between those structures.
Heiden, Uwe
1980-01-01
The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica ted throughout the text. However, they are not explored in de tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be havior of neurons or neuron pools. In this respect the essay is writt...
Directory of Open Access Journals (Sweden)
Jianxiong Ye
2015-01-01
Full Text Available Glycerol can be biologically converted to 1,3-propanediol (1,3-PD by Klebsiella pneumoniae. In the synthesis pathway of 1,3-PD, the accumulation of an intermediary metabolite 3-hydroxypropionaldehyde (3-HPA would cause an irreversible cessation of the dynamic system. Genetic manipulation on the key enzymes which control the formation rate and consumption rate of 3-HPA would decrease the accumulation of 3-HPA, resulting in nonlinear regulation on the dynamic system. The interest of this work is to focus on analyzing the influence of 3-HPA inhibition on the stability of the dynamic system. Due to the lack of intracellular knowledge, structural kinetic modelling is applied. On the basis of statistical account of the dynamical capabilities of the system in the parameter space, we conclude that, under weak or no inhibition to the reaction of 3-HPA consumption, the system is much easier to obtain a stable state, whereas strong inhibition to its formation is in favor of stabilizing the system. In addition, the existence of Hopf bifurcation in this system is also verified. The obtained results are helpful for deeply understanding the metabolic and genetic regulations of glycerol fermentation by Klebsiella pneumoniae.
Social network models predict movement and connectivity in ecological landscapes
Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.
2011-01-01
Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.
Modelling freeway networks by hybrid stochastic models
Boel, R.; Mihaylova, L.
2004-01-01
Traffic flow on freeways is a nonlinear, many-particle phenomenon, with complex interactions between the vehicles. This paper presents a stochastic hybrid model of freeway traffic at a time scale and at a level of detail suitable for on-line flow estimation, for routing and ramp metering control. The model describes the evolution of continuous and discrete state variables. The freeway is considered as a network of components, each component representing a different section of the network. The...
Directory of Open Access Journals (Sweden)
George J. A. Jiang
2015-01-01
Full Text Available Electroencephalogram (EEG signals, as it can express the human brain’s activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA. Bispectral (BIS index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD method and analyzed using sample entropy (SampEn analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN model through using expert assessment of consciousness level (EACL which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.
Dorjee, S; Revie, C W; Poljak, Z; McNab, W B; Sanchez, J
2013-10-01
Understanding contact networks are important for modelling and managing the spread and control of communicable diseases in populations. This study characterizes the swine shipment network of a multi-site production system in southwestern Ontario, Canada. Data were extracted from a company's database listing swine shipments among 251 swine farms, including 20 sow, 69 nursery and 162 finishing farms, for the 2-year period of 2006 to 2007. Several network metrics were generated. The number of shipments per week between pairs of farms ranged from 1 to 6. The medians (and ranges) of out-degree were: sow 6 (1-21), nursery 8 (0-25), and finishing 0 (0-4), over the entire 2-year study period. Corresponding estimates for in-degree of nursery and finishing farms were 3 (0-9) and 3 (0-12) respectively. Outgoing and incoming infection chains (OIC and IIC), were also measured. The medians (ranges) of the monthly OIC and IIC were 0 (0-8) and 0 (0-6), respectively, with very similar measures observed for 2-week intervals. Nursery farms exhibited high measures of centrality. This indicates that they pose greater risks of disease spread in the network. Therefore, they should be given a high priority for disease prevention and control measures affecting all age groups alike. The network demonstrated scale-free and small-world topologies as observed in other livestock shipment studies. This heterogeneity in contacts among farm types and network topologies should be incorporated in simulation models to improve their validity. In conclusion, this study provided useful epidemiological information and parameters for the control and modelling of disease spread among swine farms, for the first time from Ontario, Canada. Copyright © 2013 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
N. Naharudin
2017-10-01
Full Text Available Every transit trip begins and ends with pedestrian travel. People need to walk to access the transit services. However, their choice to walk depends on many factors including the connectivity, level of comfort and safety. These factors can influence the pleasantness of riding the transit itself, especially during the first/last mile (FLM journey. This had triggered few studies attempting to measure the pedestrian-friendliness a walking environment can offer. There were studies that implement the pedestrian experience on walking to assess the pedestrian-friendliness of a walking environment. There were also studies that use spatial analysis to measure it based on the path connectivity and accessibility to public facilities and amenities. Though both are good, but the perception-based studies and spatial analysis can be combined to derive more holistic results. This paper proposes a framework for selecting a pedestrian-friendly path for the FLM transit journey by using the two techniques (perception-based and spatial analysis. First, the degree of importance for the factors influencing a good walking environment will be aggregated by using Analytical Network Process (ANP decision rules based on people’s preferences on those factors. The weight will then be used as attributes in the GIS network analysis. Next, the network analysis will be performed to find a pedestrian-friendly walking route based on the priorities aggregated by ANP. It will choose routes passing through the preferred attributes accordingly. The final output is a map showing pedestrian-friendly walking path for the FLM transit journey.
Naharudin, N.; Ahamad, M. S. S.; Sadullah, A. F. M.
2017-10-01
Every transit trip begins and ends with pedestrian travel. People need to walk to access the transit services. However, their choice to walk depends on many factors including the connectivity, level of comfort and safety. These factors can influence the pleasantness of riding the transit itself, especially during the first/last mile (FLM) journey. This had triggered few studies attempting to measure the pedestrian-friendliness a walking environment can offer. There were studies that implement the pedestrian experience on walking to assess the pedestrian-friendliness of a walking environment. There were also studies that use spatial analysis to measure it based on the path connectivity and accessibility to public facilities and amenities. Though both are good, but the perception-based studies and spatial analysis can be combined to derive more holistic results. This paper proposes a framework for selecting a pedestrian-friendly path for the FLM transit journey by using the two techniques (perception-based and spatial analysis). First, the degree of importance for the factors influencing a good walking environment will be aggregated by using Analytical Network Process (ANP) decision rules based on people's preferences on those factors. The weight will then be used as attributes in the GIS network analysis. Next, the network analysis will be performed to find a pedestrian-friendly walking route based on the priorities aggregated by ANP. It will choose routes passing through the preferred attributes accordingly. The final output is a map showing pedestrian-friendly walking path for the FLM transit journey.
Synchronization analysis of coloured delayed networks under ...
Indian Academy of Sciences (India)
Up to now, many network models on synchronization have been put forward, such as, the small-world network, directed network, neural network etc. Previous efforts were mainly to study the outer relationship between the nodes. But, the inner interaction is always overlooked. Afterwards, the coloured network model has ...
Delay and Disruption Tolerant Networking MACHETE Model
Segui, John S.; Jennings, Esther H.; Gao, Jay L.
2011-01-01
To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity
Continuum Modeling of Biological Network Formation
Albi, Giacomo
2017-04-10
We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes the pressure field using a Darcy type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. We first introduce micro- and mesoscopic models and show how they are connected to the macroscopic PDE system. Then, we provide an overview of analytical results for the PDE model, focusing mainly on the existence of weak and mild solutions and analysis of the steady states. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on finite elements and study the qualitative properties of network structures for various parameter values.
A Risk Factor Analysis of West Nile Virus: Extraction of Relationships from a Neural-Network Model
Ghosh, Debarchana; Guha, Rajarshi
The West Nile Virus (WNV) is an infectious disease spreading rapidly throughout the United States, causing illness among thousands of birds, animals, and humans. The broad categories of risk factors underlying WNV incidences are: environmental, socioeconomic, built-environment, and existing mosquito abatement policies. Computational neural network (CNN) model was developed to understand the occurrence of WNV infected dead birds because of their ability to capture complex relationships with higher accuracy than linear models. In this paper, we describe a method to interpret a CNN model by considering the final optimized weights. The research was conducted in the Metropolitan area of Minnesota, which had experienced significant outbreaks from 2002 till present.
Data modeling of network dynamics
Jaenisch, Holger M.; Handley, James W.; Faucheux, Jeffery P.; Harris, Brad
2004-01-01
This paper highlights Data Modeling theory and its use for text data mining as a graphical network search engine. Data Modeling is then used to create a real-time filter capable of monitoring network traffic down to the port level for unusual dynamics and changes in business as usual. This is accomplished in an unsupervised fashion without a priori knowledge of abnormal characteristics. Two novel methods for converting streaming binary data into a form amenable to graphics based search and change detection are introduced. These techniques are then successfully applied to 1999 KDD Cup network attack data log-on sessions to demonstrate that Data Modeling can detect attacks without prior training on any form of attack behavior. Finally, two new methods for data encryption using these ideas are proposed.
Directory of Open Access Journals (Sweden)
Alan E Bilsland
2014-02-01
Full Text Available Cancer cells depend on transcription of telomerase reverse transcriptase (TERT. Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3'-oxime (BIO predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several
Bilsland, Alan E; Stevenson, Katrina; Liu, Yu; Hoare, Stacey; Cairney, Claire J; Roffey, Jon; Keith, W Nicol
2014-02-01
Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3'-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT
Fundamentals of complex networks models, structures and dynamics
Chen, Guanrong; Li, Xiang
2014-01-01
Complex networks such as the Internet, WWW, transportationnetworks, power grids, biological neural networks, and scientificcooperation networks of all kinds provide challenges for futuretechnological development. In particular, advanced societies havebecome dependent on large infrastructural networks to an extentbeyond our capability to plan (modeling) and to operate (control).The recent spate of collapses in power grids and ongoing virusattacks on the Internet illustrate the need for knowledge aboutmodeling, analysis of behaviors, optimized planning and performancecontrol in such networks. F
NEAT : an efficient network enrichment analysis test
Signorelli, Mirko; Vinciotti, Veronica; Wit, Ernst C
2016-01-01
BACKGROUND: Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be
Riley, Richard D; Ensor, Joie; Jackson, Dan; Burke, Danielle L
2017-01-01
Many meta-analysis models contain multiple parameters, for example due to multiple outcomes, multiple treatments or multiple regression coefficients. In particular, meta-regression models may contain multiple study-level covariates, and one-stage individual participant data meta-analysis models may contain multiple patient-level covariates and interactions. Here, we propose how to derive percentage study weights for such situations, in order to reveal the (otherwise hidden) contribution of each study toward the parameter estimates of interest. We assume that studies are independent, and utilise a decomposition of Fisher's information matrix to decompose the total variance matrix of parameter estimates into study-specific contributions, from which percentage weights are derived. This approach generalises how percentage weights are calculated in a traditional, single parameter meta-analysis model. Application is made to one- and two-stage individual participant data meta-analyses, meta-regression and network (multivariate) meta-analysis of multiple treatments. These reveal percentage study weights toward clinically important estimates, such as summary treatment effects and treatment-covariate interactions, and are especially useful when some studies are potential outliers or at high risk of bias. We also derive percentage study weights toward methodologically interesting measures, such as the magnitude of ecological bias (difference between within-study and across-study associations) and the amount of inconsistency (difference between direct and indirect evidence in a network meta-analysis).
Propagation models for computing biochemical reaction networks
Henzinger, Thomas A; Mateescu, Maria
2011-01-01
We introduce propagation models, a formalism designed to support general and efficient data structures for the transient analysis of biochemical reaction networks. We give two use cases for propagation abstract data types: the uniformization method and numerical integration. We also sketch an implementation of a propagation abstract data type, which uses abstraction to approximate states.
Dondeynaz, C.; López Puga, J.; Carmona Moreno, C.
2013-09-01
Despite the efforts made towards the Millennium Development Goals targets during the last decade, improved access to water supply or basic sanitation still remains unavailable for millions of people across the world. This paper proposes a set of models that use 25 key variables and country profiles from the WatSan4Dev data set involving water supply and sanitation (Dondeynaz et al., 2012). This paper suggests the use of Bayesian network modelling methods because they are more easily adapted to deal with non-normal distributions, and integrate a qualitative approach for data analysis. They also offer the advantage of integrating preliminary knowledge into the probabilistic models. The statistical performance of the proposed models ranges between 20 and 5% error rates, which are very satisfactory taking into account the strong heterogeneity of variables. Probabilistic scenarios run from the models allow an assessment of the relationships between human development, external support, governance aspects, economic activities and water supply and sanitation (WSS) access. According to models proposed in this paper, gaining a strong poverty reduction will require the WSS access to reach 75-76% through: (1) the management of ongoing urbanisation processes to avoid slums development; and (2) the improvement of health care, for instance for children. Improving governance, such as institutional efficiency, capacities to make and apply rules, or control of corruption is positively associated with WSS sustainable development. The first condition for an increment of the HDP (human development and poverty) remains of course an improvement of the economic conditions with higher household incomes. Moreover, a significant country commitment to the environment, associated with civil society freedom of expression constitutes a favourable setting for sustainable WSS services delivery. Intensive agriculture using irrigation practises also appears as a mean for sustainable WSS thanks to
Dondeynaz, C.; López Puga, J.; Carmona Moreno, C.
2013-02-01
Despite the efforts made towards the millennium goals targets during the last decade, access to improved water supply or basic sanitation remains still not accessible for millions of people across the world. This paper proposes a set of models that use 25 key variables from the WatSan4Dev dataset and country profiles involving Water Supply and Sanitation (Dondeynaz et al., 2012). This paper proposes the use of Bayesian Network modelling methods because adapted to the management of non-normal distribution, and integrate a qualitative approach for data analysis. They also offer the advantage to integrate preliminary knowledge into the probabilistic models. The statistical performance of the proposed models ranges between 80 and 95% which is very satisfactory taking into account the strong heterogeneity of variables. Probabilistic scenarios run from the models allow a quantification of the relationships between human development, external support, governance aspects, economic activities and Water Supply and Sanitation (WSS) access. According to models proposed in this paper, a strong poverty reduction will induce an increment of the WSS access equal to 75-76% through: (1) the organisation of on-going urbanisation process to avoid slums development; and, (2) the improvement of health care for instance for children. On one side, improving governance, such as institutional efficiency, capacities to make and apply rules or control of corruption will also have a positive impact on WSS sustainable development. The first condition for an increment of the WSS access remains of course an improvement of the economic development with an increment of household income. Moreover, a significant country environmental commitment associated with civil society freedom of expression constitutes a favourable environment for sustainable WSS services delivery. Intensive agriculture through irrigation practises also appears as a mean for sustainable WSS thanks to multi-uses and
Directory of Open Access Journals (Sweden)
C. Dondeynaz
2013-09-01
Full Text Available Despite the efforts made towards the Millennium Development Goals targets during the last decade, improved access to water supply or basic sanitation still remains unavailable for millions of people across the world. This paper proposes a set of models that use 25 key variables and country profiles from the WatSan4Dev data set involving water supply and sanitation (Dondeynaz et al., 2012. This paper suggests the use of Bayesian network modelling methods because they are more easily adapted to deal with non-normal distributions, and integrate a qualitative approach for data analysis. They also offer the advantage of integrating preliminary knowledge into the probabilistic models. The statistical performance of the proposed models ranges between 20 and 5% error rates, which are very satisfactory taking into account the strong heterogeneity of variables. Probabilistic scenarios run from the models allow an assessment of the relationships between human development, external support, governance aspects, economic activities and water supply and sanitation (WSS access. According to models proposed in this paper, gaining a strong poverty reduction will require the WSS access to reach 75–76% through: (1 the management of ongoing urbanisation processes to avoid slums development; and (2 the improvement of health care, for instance for children. Improving governance, such as institutional efficiency, capacities to make and apply rules, or control of corruption is positively associated with WSS sustainable development. The first condition for an increment of the HDP (human development and poverty remains of course an improvement of the economic conditions with higher household incomes. Moreover, a significant country commitment to the environment, associated with civil society freedom of expression constitutes a favourable setting for sustainable WSS services delivery. Intensive agriculture using irrigation practises also appears as a mean for sustainable
Zhang, Yan; Zheng, Hongmei; Fath, Brian D; Liu, Hong; Yang, Zhifeng; Liu, Gengyuan; Su, Meirong
2014-01-15
If cities are considered as "superorganisms", then disorders of their metabolic processes cause something analogous to an "urban disease". It is therefore helpful to identify the causes of such disorders by analyzing the inner mechanisms that control urban metabolic processes. Combining input-output analysis with ecological network analysis lets researchers study the functional relationships and hierarchy of the urban metabolic processes, thereby providing direct support for the analysis of urban disease. In this paper, using Beijing as an example, we develop a model of an urban metabolic system that accounts for the intensity of the embodied ecological elements using monetary input-output tables from 1997, 2000, 2002, 2005, and 2007, and use this data to compile the corresponding physical input-output tables. This approach described the various flows of ecological elements through urban metabolic processes and let us build an ecological network model with 32 components. Then, using two methods from ecological network analysis (flow analysis and utility analysis), we quantitatively analyzed the physical input-output relationships among urban components, determined the ecological hierarchy of the components of the metabolic system, and determined the distribution of advantage-dominated and disadvantage-dominated relationships, thereby providing scientific support to guide restructuring of the urban metabolic system in an effort to prevent or cure urban "diseases". © 2013.
Thermal Network Modelling Handbook
1972-01-01
Thermal mathematical modelling is discussed in detail. A three-fold purpose was established: (1) to acquaint the new user with the terminology and concepts used in thermal mathematical modelling, (2) to present the more experienced and occasional user with quick formulas and methods for solving everyday problems, coupled with study cases which lend insight into the relationships that exist among the various solution techniques and parameters, and (3) to begin to catalog in an orderly fashion the common formulas which may be applied to automated conversational language techniques.
Analysis of Layered Social Networks
2006-09-01
xiii List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv I. Introduction ...Islamiya JP Joint Publication JTC Joint Targeting Cycle KPP Key Player Problem MCDM Multi-Criteria Decision Making MP Mathematical Programming MST...ANALYSIS OF LAYERED SOCIAL NETWORKS I. Introduction “To know them means to eliminate them” - Colonel Mathieu in the movie, Battle of Algiers
Developing an intelligence analysis process through social network analysis
Waskiewicz, Todd; LaMonica, Peter
2008-04-01
Intelligence analysts are tasked with making sense of enormous amounts of data and gaining an awareness of a situation that can be acted upon. This process can be extremely difficult and time consuming. Trying to differentiate between important pieces of information and extraneous data only complicates the problem. When dealing with data containing entities and relationships, social network analysis (SNA) techniques can be employed to make this job easier. Applying network measures to social network graphs can identify the most significant nodes (entities) and edges (relationships) and help the analyst further focus on key areas of concern. Strange developed a model that identifies high value targets such as centers of gravity and critical vulnerabilities. SNA lends itself to the discovery of these high value targets and the Air Force Research Laboratory (AFRL) has investigated several network measures such as centrality, betweenness, and grouping to identify centers of gravity and critical vulnerabilities. Using these network measures, a process for the intelligence analyst has been developed to aid analysts in identifying points of tactical emphasis. Organizational Risk Analyzer (ORA) and Terrorist Modus Operandi Discovery System (TMODS) are the two applications used to compute the network measures and identify the points to be acted upon. Therefore, the result of leveraging social network analysis techniques and applications will provide the analyst and the intelligence community with more focused and concentrated analysis results allowing them to more easily exploit key attributes of a network, thus saving time, money, and manpower.
Data Farming Process and Initial Network Analysis Capabilities
Directory of Open Access Journals (Sweden)
Gary Horne
2016-01-01
Full Text Available Data Farming, network applications and approaches to integrate network analysis and processes to the data farming paradigm are presented as approaches to address complex system questions. Data Farming is a quantified approach that examines questions in large possibility spaces using modeling and simulation. It evaluates whole landscapes of outcomes to draw insights from outcome distributions and outliers. Social network analysis and graph theory are widely used techniques for the evaluation of social systems. Incorporation of these techniques into the data farming process provides analysts examining complex systems with a powerful new suite of tools for more fully exploring and understanding the effect of interactions in complex systems. The integration of network analysis with data farming techniques provides modelers with the capability to gain insight into the effect of network attributes, whether the network is explicitly defined or emergent, on the breadth of the model outcome space and the effect of model inputs on the resultant network statistics.
Analysis Cost 231 MultiWall Model on 4G LTE FDD 1800 and 900 Mhz Femtocell Network Planning
Directory of Open Access Journals (Sweden)
Alfin Hikmaturokhman
2016-10-01
Full Text Available Indoor cellular network system is one solution to overcome weak signals transmited by eNodeB. Building with high cellular communication traffic levels , requiring indoor network system to maintain continuity of communication by all users. Therefore, it is necessary to plan an indoor network using Femtocell Access Point (FAP. This research is based on network design indoor propagation COST 231-Multiwall Model using the software Radiowave Propagation Simulator (RPS and conducted at Telkom Office. The collection of data obtained is used to perform calculations on research variables include the calculation of capacity and coverage. The research showed the number of FAP for capacity and coverage is 3 FAP. The Coverage Results for scenario 2 is the best result compared with the other scenarios, with the following results, the frequency of 1800 MHz at Building 1 of -19.86 dBm, Building 2 at -21.34 dBm, and Building 3 at -28, 07 dBm. While the scenario 2 for the 900 MHz frequency in Building 1 at -13.38 dBm, Building 2 at -14.52 dBm, and building 3 of -20.39 dBm.
A Complex Network Approach to Distributional Semantic Models.
Directory of Open Access Journals (Sweden)
Akira Utsumi
Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.
Modelling Users` Trust in Online Social Networks
Directory of Open Access Journals (Sweden)
Iacob Cătoiu
2014-02-01
Full Text Available Previous studies (McKnight, Lankton and Tripp, 2011; Liao, Lui and Chen, 2011 have shown the crucial role of trust when choosing to disclose sensitive information online. This is the case of online social networks users, who must disclose a certain amount of personal data in order to gain access to these online services. Taking into account privacy calculus model and the risk/benefit ratio, we propose a model of users’ trust in online social networks with four variables. We have adapted metrics for the purpose of our study and we have assessed their reliability and validity. We use a Partial Least Squares (PLS based structural equation modelling analysis, which validated all our initial assumptions, indicating that our three predictors (privacy concerns, perceived benefits and perceived risks explain 48% of the variation of users’ trust in online social networks, the resulting variable of our study. We also discuss the implications and further research opportunities of our study.
Elangasinghe, M. A.; Singhal, N.; Dirks, K. N.; Salmond, J. A.; Samarasinghe, S.
2014-09-01
This paper uses artificial neural networks (ANN), combined with k-means clustering, to understand the complex time series of PM10 and PM2.5 concentrations at a coastal location of New Zealand based on data from a single site. Out of available meteorological parameters from the network (wind speed, wind direction, solar radiation, temperature, relative humidity), key factors governing the pattern of the time series concentrations were identified through input sensitivity analysis performed on the trained neural network model. The transport pathways of particulate matter under these key meteorological parameters were further analysed through bivariate concentration polar plots and k-means clustering techniques. The analysis shows that the external sources such as marine aerosols and local sources such as traffic and biomass burning contribute equally to the particulate matter concentrations at the study site. These results are in agreement with the results of receptor modelling by the Auckland Council based on Positive Matrix Factorization (PMF). Our findings also show that contrasting concentration-wind speed relationships exist between marine aerosols and local traffic sources resulting in very noisy and seemingly large random PM10 concentrations. The inclusion of cluster rankings as an input parameter to the ANN model showed a statistically significant (p transport characteristics prior to the implementation of costly chemical analysis techniques or advanced air dispersion models.
Functional stoichiometric analysis of metabolic networks.
Urbanczik, R; Wagner, C
2005-11-15
An important tool in Systems Biology is the stoichiometric modeling of metabolic networks, where the stationary states of the network are described by a high-dimensional polyhedral cone, the so-called flux cone. Exhaustive descriptions of the metabolism can be obtained by computing the elementary vectors of this cone but, owing to a combinatorial explosion of the number of elementary vectors, this approach becomes computationally intractable for genome scale networks. Hence, we propose to instead focus on the conversion cone, a projection of the flux cone, which describes the interaction of the metabolism with its external chemical environment. We present a direct method for calculating the elementary vectors of this cone and, by studying the metabolism of Saccharomyces cerevisiae, we demonstrate that such an analysis is computationally feasible even for genome scale networks.
Modelling dendritic ecological networks in space: anintegrated network perspective
Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.
2013-01-01
Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of ecological networks, or in 2-D space, may be inadequate for studying the influence of structure and connectivity on ecological processes within DENs. We propose a conceptual taxonomy of network analysis methods that account for DEN characteristics to varying degrees and provide a synthesis of the different approaches within
Directory of Open Access Journals (Sweden)
R. Soundararajan
2015-01-01
Full Text Available Artificial Neural Network (ANN approach was used for predicting and analyzing the mechanical properties of A413 aluminum alloy produced by squeeze casting route. The experiments are carried out with different controlled input variables such as squeeze pressure, die preheating temperature, and melt temperature as per Full Factorial Design (FFD. The accounted absolute process variables produce a casting with pore-free and ideal fine grain dendritic structure resulting in good mechanical properties such as hardness, ultimate tensile strength, and yield strength. As a primary objective, a feed forward back propagation ANN model has been developed with different architectures for ensuring the definiteness of the values. The developed model along with its predicted data was in good agreement with the experimental data, inferring the valuable performance of the optimal model. From the work it was ascertained that, for castings produced by squeeze casting route, the ANN is an alternative method for predicting the mechanical properties and appropriate results can be estimated rather than measured, thereby reducing the testing time and cost. As a secondary objective, quantitative and statistical analysis was performed in order to evaluate the effect of process parameters on the mechanical properties of the castings.
Service entity network virtualization architecture and model
Jin, Xue-Guang; Shou, Guo-Chu; Hu, Yi-Hong; Guo, Zhi-Gang
2017-07-01
Communication network can be treated as a complex network carrying a variety of services and service can be treated as a network composed of functional entities. There are growing interests in multiplex service entities where individual entity and link can be used for different services simultaneously. Entities and their relationships constitute a service entity network. In this paper, we introduced a service entity network virtualization architecture including service entity network hierarchical model, service entity network model, service implementation and deployment of service entity networks. Service entity network oriented multiplex planning model were also studied and many of these multiplex models were characterized by a significant multiplex of the links or entities in different service entity network. Service entity networks were mapped onto shared physical resources by dynamic resource allocation controller. The efficiency of the proposed architecture was illustrated in a simulation environment that allows for comparative performance evaluation. The results show that, compared to traditional networking architecture, this architecture has a better performance.
Polymer networks: Modeling and applications
Masoud, Hassan
Polymer networks are an important class of materials that are ubiquitously found in natural, biological, and man-made systems. The complex mesoscale structure of these soft materials has made it difficult for researchers to fully explore their properties. In this dissertation, we introduce a coarse-grained computational model for permanently cross-linked polymer networks than can properly capture common properties of these materials. We use this model to study several practical problems involving dry and solvated networks. Specifically, we analyze the permeability and diffusivity of polymer networks under mechanical deformations, we examine the release of encapsulated solutes from microgel capsules during volume transitions, and we explore the complex tribological behavior of elastomers. Our simulations reveal that the network transport properties are defined by the network porosity and by the degree of network anisotropy due to mechanical deformations. In particular, the permeability of mechanically deformed networks can be predicted based on the alignment of network filaments that is characterized by a second order orientation tensor. Moreover, our numerical calculations demonstrate that responsive microcapsules can be effectively utilized for steady and pulsatile release of encapsulated solutes. We show that swollen gel capsules allow steady, diffusive release of nanoparticles and polymer chains, whereas gel deswelling causes burst-like discharge of solutes driven by an outward flow of the solvent initially enclosed within a shrinking capsule. We further demonstrate that this hydrodynamic release can be regulated by introducing rigid microscopic rods in the capsule interior. We also probe the effects of velocity, temperature, and normal load on the sliding of elastomers on smooth and corrugated substrates. Our friction simulations predict a bell-shaped curve for the dependence of the friction coefficient on the sliding velocity. Our simulations also illustrate
Uzun, Harun; Yıldız, Zeynep; Goldfarb, Jillian L; Ceylan, Selim
2017-06-01
As biomass becomes more integrated into our energy feedstocks, the ability to predict its combustion enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent sigmoid architecture to predict biomasses' higher heating values from only their proximate analyses, requiring minimal specificity as compared to models based on elemental composition. The model presented has a considerably higher correlation coefficient (0.963) and lower root mean square (0.375), mean absolute (0.328), and mean bias errors (0.010) than other models presented in the literature which, at least when applied to the present data set, tend to under-predict the combustion enthalpy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Chen Ping
2011-01-01
Full Text Available Abstract In wireless sensor networks (WSNs, location information plays an important role in many fundamental services which includes geographic routing, target tracking, location-based coverage, topology control, and others. One promising approach in sensor network localization is the determination of location based on hop counts. A critical priori of this approach that directly influences the accuracy of location estimation is the hop-distance relationship. However, most of the related works on the hop-distance relationship assume the unit-disk graph (UDG model that is unrealistic in a practical scenario. In this paper, we formulate the hop-distance relationship for quasi-UDG model in WSNs where sensor nodes are randomly and independently deployed in a circular region based on a Poisson point process. Different from the UDG model, quasi-UDG model has the non-uniformity property for connectivity. We derive an approximated recursive expression for the probability of the hop count with a given geographic distance. The border effect and dependence problem are also taken into consideration. Furthermore, we give the expressions describing the distribution of distance with known hop counts for inner nodes and those suffered from the border effect where we discover the insignificance of the border effect. The analytical results are validated by simulations showing the accuracy of the employed approximation. Besides, we demonstrate the localization application of the formulated relationship and show the accuracy improvement in the WSN localization.
Diversity Performance Analysis on Multiple HAP Networks
Directory of Open Access Journals (Sweden)
Feihong Dong
2015-06-01
Full Text Available One of the main design challenges in wireless sensor networks (WSNs is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV. In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF and cumulative distribution function (CDF of the received signal-to-noise ratio (SNR are derived. In addition, the average symbol error rate (ASER with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.
Classification and Analysis of Computer Network Traffic
DEFF Research Database (Denmark)
Bujlow, Tomasz
2014-01-01
for traffic classification, which can be used for nearly real-time processing of big amounts of data using affordable CPU and memory resources. Other questions are related to methods for real-time estimation of the application Quality of Service (QoS) level based on the results obtained by the traffic......Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models...... classifier. This thesis is focused on topics connected with traffic classification and analysis, while the work on methods for QoS assessment is limited to defining the connections with the traffic classification and proposing a general algorithm. We introduced the already known methods for traffic...
Bandwidth Analysis of Smart Meter Network Infrastructure
DEFF Research Database (Denmark)
Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup
2014-01-01
Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... to utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...... of the bandwidth requirements are analysed. For this analysis the assumptions and limitations are defined. The results obtained by the analysis show, that the amount of data collected and transferred by a smart meter is very low compared to the available bandwidth of most internet connections. The results show...
Multiple Social Networks, Data Models and Measures for
DEFF Research Database (Denmark)
Magnani, Matteo; Rossi, Luca
2017-01-01
Multiple Social Network Analysis is a discipline defining models, measures, methodologies, and algorithms to study multiple social networks together as a single social system. It is particularly valuable when the networks are interconnected, e.g., the same actors are present in more than one...
Biological transportation networks: Modeling and simulation
Albi, Giacomo
2015-09-15
We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.
Dias, Sofia; Sutton, Alex J; Ades, A E; Welton, Nicky J
2013-07-01
We set out a generalized linear model framework for the synthesis of data from randomized controlled trials. A common model is described, taking the form of a linear regression for both fixed and random effects synthesis, which can be implemented with normal, binomial, Poisson, and multinomial data. The familiar logistic model for meta-analysis with binomial data is a generalized linear model with a logit link function, which is appropriate for probability outcomes. The same linear regression framework can be applied to continuous outcomes, rate models, competing risks, or ordered category outcomes by using other link functions, such as identity, log, complementary log-log, and probit link functions. The common core model for the linear predictor can be applied to pairwise meta-analysis, indirect comparisons, synthesis of multiarm trials, and mixed treatment comparisons, also known as network meta-analysis, without distinction. We take a Bayesian approach to estimation and provide WinBUGS program code for a Bayesian analysis using Markov chain Monte Carlo simulation. An advantage of this approach is that it is straightforward to extend to shared parameter models where different randomized controlled trials report outcomes in different formats but from a common underlying model. Use of the generalized linear model framework allows us to present a unified account of how models can be compared using the deviance information criterion and how goodness of fit can be assessed using the residual deviance. The approach is illustrated through a range of worked examples for commonly encountered evidence formats.
Banks, Victoria A; Stanton, Neville A
2016-11-01
To the average driver, the concept of automation in driving infers that they can become completely 'hands and feet free'. This is a common misconception, however, one that has been shown through the application of Network Analysis to new Cruise Assist technologies that may feature on our roads by 2020. Through the adoption of a Systems Theoretic approach, this paper introduces the concept of driver-initiated automation which reflects the role of the driver in highly automated driving systems. Using a combination of traditional task analysis and the application of quantitative network metrics, this agent-based modelling paper shows how the role of the driver remains an integral part of the driving system implicating the need for designers to ensure they are provided with the tools necessary to remain actively in-the-loop despite giving increasing opportunities to delegate their control to the automated subsystems. Practitioner Summary: This paper describes and analyses a driver-initiated command and control system of automation using representations afforded by task and social networks to understand how drivers remain actively involved in the task. A network analysis of different driver commands suggests that such a strategy does maintain the driver in the control loop.
Mjahed, M
2003-01-01
We present an attempt to separate between Higgs boson events (e/sup + /e/sup -/ to ZH to qqbb) and other physics processes in the 4-jet channel (e/sup +/e/sup -/ to Z/ gamma , W/sup +/W, ZZ to 4jets), using the discriminant analysis and neural networks methods. Events were produced at LEP2 energies, using the Lund Monte Carlo generator and the Aleph package. The most discriminant variables as the reconstructed jet mass, the jet properties (b-tag, rapidity weighted moments) and other variables are used. (8 refs).
Spectral Analysis of Rich Network Topology in Social Networks
Wu, Leting
2013-01-01
Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…
Directory of Open Access Journals (Sweden)
Gabrielle Stetz
2017-01-01
Full Text Available Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of
Stetz, Gabrielle; Verkhivker, Gennady M
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we
Capacity analysis of vehicular communication networks
Lu, Ning
2013-01-01
This SpringerBrief focuses on the network capacity analysis of VANETs, a key topic as fundamental guidance on design and deployment of VANETs is very limited. Moreover, unique characteristics of VANETs impose distinguished challenges on such an investigation. This SpringerBrief first introduces capacity scaling laws for wireless networks and briefly reviews the prior arts in deriving the capacity of VANETs. It then studies the unicast capacity considering the socialized mobility model of VANETs. With vehicles communicating based on a two-hop relaying scheme, the unicast capacity bound is deriv
Comparison of all-atom and coarse-grained normal mode analysis in the elastic network model
Energy Technology Data Exchange (ETDEWEB)
Hu, Ming Wen; O' Riordan, Brian; Kim, Byung [University of Massachusetts Amherst, Amherst (United States); Kim, Moon Ki [Sungkyunkwan University, Suwon (Korea, Republic of)
2013-11-15
Elastic network-based normal mode analyses (EN-NMA) of four pairs of open-closed proteins (Lactoferrin, Maltodextrin-binding protein, LAO-binding protein, and Adenylate kinase) were conducted using both all-atom and coarse-grained models. The results indicated that the performance of the all-atom model was similar to that of the coarse-grained model in terms of predicting the conformational changes of backbones. Moreover, dynamic behavior was examined by studying relative atomic displacements and shapes of the dominant mode. For instance, for Maltodextrin-binding protein, the results from the all-atom model differed from those of the coarse-grained model, especially for residues that are biologically relevant. The coarse-grained model has better computational efficiency than the allatom model. However, the former may misrepresent the key dynamics of a protein related to biological functions as a consequence of excessive coarse approximation. Considering that the current power even in a high-end personal computer is sufficient to handle most of protein structures with up to 1,000 residues in a reasonable manner, which can only be used with supercomputers a few decades ago, an all-atom-based EN-NMA may deserve more attention as a reliable and powerful computational tool for protein dynamics study over the conventional coarse-graining approach.
On traffic modelling in GPRS networks
DEFF Research Database (Denmark)
Madsen, Tatiana Kozlova; Schwefel, Hans-Peter; Prasad, Ramjee
2005-01-01
Optimal design and dimensioning of wireless data networks, such as GPRS, requires the knowledge of traffic characteristics of different data services. This paper presents an in-detail analysis of an IP-level traffic measurements taken in an operational GPRS network. The data measurements reported...... here are done at the Gi interface. The aim of this paper is to reveal some key statistics of GPRS data applications and to validate if the existing traffic models can adequately describe traffic volume and inter-arrival time distribution for different services. Additionally, we present a method of user...
Analysis of Semantic Networks using Complex Networks Concepts
DEFF Research Database (Denmark)
Ortiz-Arroyo, Daniel
2013-01-01
In this paper we perform a preliminary analysis of semantic networks to determine the most important terms that could be used to optimize a summarization task. In our experiments, we measure how the properties of a semantic network change, when the terms in the network are removed. Our preliminar...... results indicate that this approach provides good results on the semantic network analyzed in this paper....
Time series analysis of temporal networks
Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh
2016-01-01
A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue
Sie, Rory
2012-01-01
Sie, R. L. L. (2012). COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks (Unpublished doctoral dissertation). September, 28, 2012, Open Universiteit in the Netherlands (CELSTEC), Heerlen, The Netherlands.
Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.
2014-03-01
Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.
A mathematical model for networks with structures in the mesoscale
Criado, Regino; Flores, Julio; Gacia Del Amo, Alejandro Jose; Gómez, Jesus; Romance, Miguel
2011-01-01
Abstract The new concept of multilevel network is introduced in order to embody some topological properties of complex systems with structures in the mesoscale which are not completely captured by the classical models. This new model, which generalizes the hyper-network and hyper-structure models, fits perfectly with several real-life complex systems, including social and public transportation networks. We present an analysis of the structural properties of the mu...
Agent Based Modeling on Organizational Dynamics of Terrorist Network
Bo Li; Duoyong Sun; Renqi Zhu; Ze Li
2015-01-01
Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model ...
Energy modelling in sensor networks
Directory of Open Access Journals (Sweden)
D. Schmidt
2007-06-01
Full Text Available Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.
Gallagher, H. Colin; Robins, Garry
2015-01-01
As part of the shift within second language acquisition (SLA) research toward complex systems thinking, researchers have called for investigations of social network structure. One strand of social network analysis yet to receive attention in SLA is network statistical models, whereby networks are explained in terms of smaller substructures of…
Vázquez-Gallego, Francisco; Alonso, Luis; Alonso-Zarate, Jesus
2015-02-09
Reservation frame slotted-ALOHA (RFSA) was proposed in the past to manage the access to the wireless channel when devices generate long messages fragmented into small packets. In this paper, we consider an M2M area network composed of end-devices that periodically respond to the requests from a gateway with the transmission of fragmented messages. The idle network is suddenly set into saturation, having all end-devices attempting to get access to the channel simultaneously. This has been referred to as delta traffic. While previous works analyze the throughput of RFSA in steady-state conditions, assuming that traffic is generated following random distributions, the performance of RFSA under delta traffic has never received attention. In this paper, we propose a theoretical model to calculate the average delay and energy consumption required to resolve the contention under delta traffic using RFSA.We have carried out computer-based simulations to validate the accuracy of the theoretical model and to compare the performance for RFSA and FSA. Results show that there is an optimal frame length that minimizes delay and energy consumption and which depends on the number of end-devices. In addition, it is shown that RFSA reduces the energy consumed per end-device by more than 50% with respect to FSA under delta traffic.
Directory of Open Access Journals (Sweden)
Francisco Vázquez-Gallego
2015-02-01
Full Text Available Reservation frame slotted-ALOHA (RFSA was proposed in the past to manage the access to the wireless channel when devices generate long messages fragmented into small packets. In this paper, we consider an M2M area network composed of end-devices that periodically respond to the requests from a gateway with the transmission of fragmented messages. The idle network is suddenly set into saturation, having all end-devices attempting to get access to the channel simultaneously. This has been referred to as delta traffic. While previous works analyze the throughput of RFSA in steady-state conditions, assuming that traffic is generated following random distributions, the performance of RFSA under delta traffic has never received attention. In this paper, we propose a theoretical model to calculate the average delay and energy consumption required to resolve the contention under delta traffic using RFSA.We have carried out computer-based simulations to validate the accuracy of the theoretical model and to compare the performance for RFSA and FSA. Results show that there is an optimal frame length that minimizes delay and energy consumption and which depends on the number of end-devices. In addition, it is shown that RFSA reduces the energy consumed per end-device by more than 50% with respect to FSA under delta traffic.
A Cascade-Based Emergency Model for Water Distribution Network
Directory of Open Access Journals (Sweden)
Qing Shuang
2015-01-01
Full Text Available Water distribution network is important in the critical physical infrastructure systems. The paper studies the emergency resource strategies on water distribution network with the approach of complex network and cascading failures. The model of cascade-based emergency for water distribution network is built. The cascade-based model considers the network topology analysis and hydraulic analysis to provide a more realistic result. A load redistribution function with emergency recovery mechanisms is established. From the aspects of uniform distribution, node betweenness, and node pressure, six recovery strategies are given to reflect the network topology and the failure information, respectively. The recovery strategies are evaluated with the complex network indicators to describe the failure scale and failure velocity. The proposed method is applied by an illustrative example. The results showed that the recovery strategy considering the node pressure can enhance the network robustness effectively. Besides, this strategy can reduce the failure nodes and generate the least failure nodes per time.
Generalization performance of regularized neural network models
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai
1994-01-01
Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...
Plant Growth Models Using Artificial Neural Networks
Bubenheim, David
1997-01-01
In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.
Networks and network analysis for defence and security
Masys, Anthony J
2014-01-01
Networks and Network Analysis for Defence and Security discusses relevant theoretical frameworks and applications of network analysis in support of the defence and security domains. This book details real world applications of network analysis to support defence and security. Shocks to regional, national and global systems stemming from natural hazards, acts of armed violence, terrorism and serious and organized crime have significant defence and security implications. Today, nations face an uncertain and complex security landscape in which threats impact/target the physical, social, economic
A comprehensive Network Security Risk Model for process control networks.
Henry, Matthew H; Haimes, Yacov Y
2009-02-01
The risk of cyber attacks on process control networks (PCN) is receiving significant attention due to the potentially catastrophic extent to which PCN failures can damage the infrastructures and commodity flows that they support. Risk management addresses the coupled problems of (1) reducing the likelihood that cyber attacks would succeed in disrupting PCN operation and (2) reducing the severity of consequences in the event of PCN failure or manipulation. The Network Security Risk Model (NSRM) developed in this article provides a means of evaluating the efficacy of candidate risk management policies by modeling the baseline risk and assessing expectations of risk after the implementation of candidate measures. Where existing risk models fall short of providing adequate insight into the efficacy of candidate risk management policies due to shortcomings in their structure or formulation, the NSRM provides model structure and an associated modeling methodology that captures the relevant dynamics of cyber attacks on PCN for risk analysis. This article develops the NSRM in detail in the context of an illustrative example.
Unraveling protein networks with power graph analysis.
Royer, Loïc; Reimann, Matthias; Andreopoulos, Bill; Schroeder, Michael
2008-07-11
Networks play a crucial role in computational biology, yet their analysis and representation is still an open problem. Power Graph Analysis is a lossless transformation of biological networks into a compact, less redundant representation, exploiting the abundance of cliques and bicliques as elementary topological motifs. We demonstrate with five examples the advantages of Power Graph Analysis. Investigating protein-protein interaction networks, we show how the catalytic subunits of the casein kinase II complex are distinguishable from the regulatory subunits, how interaction profiles and sequence phylogeny of SH3 domains correlate, and how false positive interactions among high-throughput interactions are spotted. Additionally, we demonstrate the generality of Power Graph Analysis by applying it to two other types of networks. We show how power graphs induce a clustering of both transcription factors and target genes in bipartite transcription networks, and how the erosion of a phosphatase domain in type 22 non-receptor tyrosine phosphatases is detected. We apply Power Graph Analysis to high-throughput protein interaction networks and show that up to 85% (56% on average) of the information is redundant. Experimental networks are more compressible than rewired ones of same degree distribution, indicating that experimental networks are rich in cliques and bicliques. Power Graphs are a novel representation of networks, which reduces network complexity by explicitly representing re-occurring network motifs. Power Graphs compress up to 85% of the edges in protein interaction networks and are applicable to all types of networks such as protein interactions, regulatory networks, or homology networks.
Analysis of Ego Network Structure in Online Social Networks
Arnaboldi, Valerio; Conti, Marco; Passarella, Andrea; Pezzoni, Fabio
2012-01-01
Results about offline social networks demonstrated that the social relationships that an individual (ego) maintains with other people (alters) can be organised into different groups according to the ego network model. In this model the ego can be seen as the centre of a series of layers of increasing size. Social relationships between ego and alters in layers close to ego are stronger than those belonging to more external layers. Online Social Networks are becoming a fundamental medium for hu...
Networks model of the East Turkistan terrorism
Li, Ben-xian; Zhu, Jun-fang; Wang, Shun-guo
2015-02-01
The presence of the East Turkistan terrorist network in China can be traced back to the rebellions on the BAREN region in Xinjiang in April 1990. This article intends to research the East Turkistan networks in China and offer a panoramic view. The events, terrorists and their relationship are described using matrices. Then social network analysis is adopted to reveal the network type and the network structure characteristics. We also find the crucial terrorist leader. Ultimately, some results show that the East Turkistan network has big hub nodes and small shortest path, and that the network follows a pattern of small world network with hierarchical structure.
Energy Technology Data Exchange (ETDEWEB)
Barros, Paulo Sergio de Souza; Silva, Jorge Wagner Esteves da; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: wagner@lmp.ufrj.br; schirru@lmp.ufrj.br
2000-07-01
From the several available diagnostic techniques, the non-invasive ones are the less aggressive to the human body. The use of radionuclides for renal function evaluation seems to be more secure than the other diagnostic procedures. However, the use of radioactive materials, makes it necessary to maximize the beneficial effects of this technique, conducing inevitably to the development of support tools for the analysis of their results. The objective of this work is to improve a system model for image analysis of scintillation. The detection and identification of renal anomalies is done by means of analysis of parts of the image, taking in account the spatial distribution of those anomalies. Geometric operations in conjunction with the segmentation technique enable the improvement of image analysis information processing. In this work, we look for the best artificial neural network architectures to introduce the knowledge of the medical expert into the diagnostic system. The search of the best neural network architectures, the geometric techniques and the image segmentation technique permitted a significant improvement of diagnostic analysis model by using scintillation. (author)
Modeling the Dynamics of Compromised Networks
Energy Technology Data Exchange (ETDEWEB)
Soper, B; Merl, D M
2011-09-12
Accurate predictive models of compromised networks would contribute greatly to improving the effectiveness and efficiency of the detection and control of network attacks. Compartmental epidemiological models have been applied to modeling attack vectors such as viruses and worms. We extend the application of these models to capture a wider class of dynamics applicable to cyber security. By making basic assumptions regarding network topology we use multi-group epidemiological models and reaction rate kinetics to model the stochastic evolution of a compromised network. The Gillespie Algorithm is used to run simulations under a worst case scenario in which the intruder follows the basic connection rates of network traffic as a method of obfuscation.
Energy Technology Data Exchange (ETDEWEB)
Chelgani, S. Chehreh; Jorjani, E.; Mesroghli, Sh.; Bagherieh, A.H. [Department of Mining Engineering, Research and Science Campus, Islamic Azad University, Poonak, Hesarak Tehran (Iran); Hower, James C. [Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511 (United States)
2008-01-15
The effects of proximate and ultimate analysis, maceral content, and coal rank (R{sub max}) for a wide range of Kentucky coal samples from calorific value of 4320 to 14960 (BTU/lb) (10.05 to 34.80 MJ/kg) on Hardgrove Grindability Index (HGI) have been investigated by multivariable regression and artificial neural network methods (ANN). The stepwise least square mathematical method shows that the relationship between (a) Moisture, ash, volatile matter, and total sulfur; (b) ln (total sulfur), hydrogen, ash, ln ((oxygen + nitrogen)/carbon) and moisture; (c) ln (exinite), semifusinite, micrinite, macrinite, resinite, and R{sub max} input sets with HGI in linear condition can achieve the correlation coefficients (R{sup 2}) of 0.77, 0.75, and 0.81, respectively. The ANN, which adequately recognized the characteristics of the coal samples, can predict HGI with correlation coefficients of 0.89, 0.89 and 0.95 respectively in testing process. It was determined that ln (exinite), semifusinite, micrinite, macrinite, resinite, and R{sub max} can be used as the best predictor for the estimation of HGI on multivariable regression (R{sup 2} = 0.81) and also artificial neural network methods (R{sup 2} = 0.95). The ANN based prediction method, as used in this paper, can be further employed as a reliable and accurate method, in the hardgrove grindability index prediction. (author)
Signed Link Analysis in Social Media Networks
Beigi, Ghazaleh; Tang, Jiliang; Liu, Huan
2016-01-01
Numerous real-world relations can be represented by signed networks with positive links (e.g., trust) and negative links (e.g., distrust). Link analysis plays a crucial role in understanding the link formation and can advance various tasks in social network analysis such as link prediction. The majority of existing works on link analysis have focused on unsigned social networks. The existence of negative links determines that properties and principles of signed networks are substantially dist...
Social network analysis in medical education
Isba, Rachel; Woolf, Katherine; Hanneman, Robert
2016-01-01
Content\\ud Humans are fundamentally social beings. The social systems within which we live our lives (families, schools, workplaces, professions, friendship groups) have a significant influence on our health, success and well-being. These groups can be characterised as networks and analysed using social network analysis.\\ud \\ud Social Network Analysis\\ud Social network analysis is a mainly quantitative method for analysing how relationships between individuals form and affect those individual...
Multiplicative Attribute Graph Model of Real-World Networks
Energy Technology Data Exchange (ETDEWEB)
Kim, Myunghwan [Stanford Univ., CA (United States); Leskovec, Jure [Stanford Univ., CA (United States)
2010-10-20
Large scale real-world network data, such as social networks, Internet andWeb graphs, is ubiquitous in a variety of scientific domains. The study of such social and information networks commonly finds patterns and explain their emergence through tractable models. In most networks, especially in social networks, nodes also have a rich set of attributes (e.g., age, gender) associatedwith them. However, most of the existing network models focus only on modeling the network structure while ignoring the features of nodes in the network. Here we present a class of network models that we refer to as the Multiplicative Attribute Graphs (MAG), which naturally captures the interactions between the network structure and node attributes. We consider a model where each node has a vector of categorical features associated with it. The probability of an edge between a pair of nodes then depends on the product of individual attributeattribute similarities. The model yields itself to mathematical analysis as well as fit to real data. We derive thresholds for the connectivity, the emergence of the giant connected component, and show that the model gives rise to graphs with a constant diameter. Moreover, we analyze the degree distribution to show that the model can produce networks with either lognormal or power-law degree distribution depending on certain conditions.
Efficient health care service delivery using network analysis: a case ...
African Journals Online (AJOL)
Efficient health care service delivery using network analysis: a case study of Kwara State, Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... This paper addresses challenges with prompt health care delivery using Network Analysis of Critical Path Model (CPM) to plan the hospital capacity with a ...
Transient stability analysis of a distribution network with distributed generators
Xyngi, I.; Ishchenko, A.; Popov, M.; Van der Sluis, L.
2009-01-01
This letter describes the transient stability analysis of a 10-kV distribution network with wind generators, microturbines, and CHP plants. The network being modeled in Matlab/Simulink takes into account detailed dynamic models of the generators. Fault simulations at various locations are
Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J
2015-01-01
In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.
Directory of Open Access Journals (Sweden)
Zhiqiang Guo
Full Text Available In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D2PCA and a Radial Basis Function Neural Network (RBFNN to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA and independent component analysis (ICA. The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.
Infinite Multiple Membership Relational Modeling for Complex Networks
DEFF Research Database (Denmark)
Mørup, Morten; Schmidt, Mikkel Nørgaard; Hansen, Lars Kai
Learning latent structure in complex networks has become an important problem fueled by many types of networked data originating from practically all fields of science. In this paper, we propose a new non-parametric Bayesian multiplemembership latent feature model for networks. Contrary to existing...... multiplemembership models that scale quadratically in the number of vertices the proposedmodel scales linearly in the number of links admittingmultiple-membership analysis in large scale networks. We demonstrate a connection between the single membership relational model and multiple membership models and show...
Zhao, Kai; Wang, ChengYan; Hu, Juan; Yang, XueDong; Wang, He; Li, FeiYu; Zhang, XiaoDong; Zhang, Jue; Wang, XiaoYing
2015-07-01
Computer-aided diagnosis (CAD) systems have been proposed to assist radiologists in making diagnostic decisions by providing helpful information. As one of the most important sequences in prostate magnetic resonance imaging (MRI), image features from T2-weighted images (T2WI) were extracted and evaluated for the diagnostic performances by using CAD. We extracted 12 quantitative image features from prostate T2-weighted MR images. The importance of each feature in cancer identification was compared in the peripheral zone (PZ) and central gland (CG), respectively. The performance of the computer-aided diagnosis system supported by an artificial neural network was tested. With computer-aided analysis of T2-weighted images, many characteristic features with different diagnostic capabilities can be extracted. We discovered most of the features (10/12) had significant difference (Pimages can reach high accuracy and specificity while maintaining acceptable sensitivity. The outcome is convictive and helpful in medical diagnosis.
Directory of Open Access Journals (Sweden)
Amin Moori Roozali
2014-08-01
Full Text Available Correct estimation of water inflow into underground excavations can decrease safety risks and associated costs. Researchers have proposed different methods to asses this value. It has been proved that water transmissivity of a rock joint is a function of factors, such as normal stress, joint roughness and its size and water pressure therefore, a laboratory setup was proposed to quantitatively measure the flow as a function of mentioned parameters. Among these, normal stress has proved to be the most influential parameter. With increasing joint roughness and rock sample size, water flow has decreased while increasing water pressure has a direct increasing effect on the flow. To simulate the complex interaction of these parameters, neural networks and Fuzzy method together with regression analysis have been utilized. Correlation factors between laboratory results and obtained numerical ones show good agreement which proves usefulness of these methods for assessment of water inflow.
Metrics for evaluating performance and uncertainty of Bayesian network models
Bruce G. Marcot
2012-01-01
This paper presents a selected set of existing and new metrics for gauging Bayesian network model performance and uncertainty. Selected existing and new metrics are discussed for conducting model sensitivity analysis (variance reduction, entropy reduction, case file simulation); evaluating scenarios (influence analysis); depicting model complexity (numbers of model...
Water distribution network modelling of a small community using ...
African Journals Online (AJOL)
In this study a network model was constructed for the hydraulic analysis and design of a small community (Sakwa) water distribution network in North Eastern geopolitical region of Nigeria using WaterCAD simulator. The analysis included a review of pressures, velocities and head loss gradients under steady state average ...
Introduction to stream network habitat analysis
Bartholow, John M.; Waddle, Terry J.
1986-01-01
Increasing demands on stream resources by a variety of users have resulted in an increased emphasis on studies that evaluate the cumulative effects of basinwide water management programs. Network habitat analysis refers to the evaluation of an entire river basin (or network) by predicting its habitat response to alternative management regimes. The analysis principally focuses on the biological and hydrological components of the riv er basin, which include both micro- and macrohabitat. (The terms micro- and macrohabitat are further defined and discussed later in this document.) Both conceptual and analytic models are frequently used for simplifying and integrating the various components of the basin. The model predictions can be used in developing management recommendations to preserve, restore, or enhance instream fish habitat. A network habitat analysis should begin with a clear and concise statement of the study objectives and a thorough understanding of the institutional setting in which the study results will be applied. This includes the legal, social, and political considerations inherent in any water management setting. The institutional environment may dictate the focus and level of detail required of the study to a far greater extent than the technical considerations. After the study objectives, including species on interest, and institutional setting are collectively defined, the technical aspects should be scoped to determine the spatial and temporal requirements of the analysis. A macro level approach should be taken first to identify critical biological elements and requirements. Next, habitat availability is quantified much as in a "standard" river segment analysis, with the likely incorporation of some macrohabitat components, such as stream temperature. Individual river segments may be aggregated to represent the networkwide habitat response of alternative water management schemes. Things learned about problems caused or opportunities generated may
Pamuk, Serdal
2004-05-01
This paper extends the work done in [S. Pamuk, Ph.D. Thesis, Iowa State University, 2000; Bull. Math. Biol. 63 (5) (2001) 801] in that we investigate the condition that is needed for the degradation of basement membrane in a mathematical model for capillary network formation. To do this, the steady-state behavior of tumor angiogenesis factor is studied under restricted assumptions, and the tumor angiogenesis factor threshold that activates the transport equations in the capillary is estimated using this steady state. Therefore, once the concentration of the tumor angiogenesis factor in the inner vessel wall reaches this threshold value, endothelial cells begin to move into the extracellular matrix for the start of angiogenesis. Furthermore, we do believe that the result we obtain in this paper provides an underlying insight into mechanisms of cell migration which are crucial for tumor angiogenesis.
Structural Analysis of Complex Networks
Dehmer, Matthias
2011-01-01
Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,
Advanced functional network analysis in the geosciences: The pyunicorn package
Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen
2013-04-01
Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.
Network Bandwidth Utilization Forecast Model on High Bandwidth Network
Energy Technology Data Exchange (ETDEWEB)
Yoo, Wucherl; Sim, Alex
2014-07-07
With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.
Network bandwidth utilization forecast model on high bandwidth networks
Energy Technology Data Exchange (ETDEWEB)
Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-03-30
With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.
Neural Network Model of memory retrieval
Directory of Open Access Journals (Sweden)
Stefano eRecanatesi
2015-12-01
Full Text Available Human memory can store large amount of information. Nevertheless, recalling is often achallenging task. In a classical free recall paradigm, where participants are asked to repeat abriefly presented list of words, people make mistakes for lists as short as 5 words. We present amodel for memory retrieval based on a Hopfield neural network where transition between itemsare determined by similarities in their long-term memory representations. Meanfield analysis ofthe model reveals stable states of the network corresponding (1 to single memory representationsand (2 intersection between memory representations. We show that oscillating feedback inhibitionin the presence of noise induces transitions between these states triggering the retrieval ofdifferent memories. The network dynamics qualitatively predicts the distribution of time intervalsrequired to recall new memory items observed in experiments. It shows that items having largernumber of neurons in their representation are statistically easier to recall and reveals possiblebottlenecks in our ability of retrieving memories. Overall, we propose a neural network model ofinformation retrieval broadly compatible with experimental observations and is consistent with ourrecent graphical model (Romani et al., 2013.
Directory of Open Access Journals (Sweden)
Wensheng Zhang
Full Text Available Single-nucleotide polymorphisms (SNPs contribute to the between-individual expression variation of many genes. A regulatory (trait-associated SNP is usually located near or within a (host gene, possibly influencing the gene's transcription or/and post-transcriptional modification. But its targets may also include genes that are physically farther away from it. A heuristic explanation of such multiple-target interferences is that the host gene transfers the SNP genotypic effects to the distant gene(s by a transcriptional or signaling cascade. These connections between the host genes (regulators and the distant genes (targets make the genetic analysis of gene expression traits a promising approach for identifying unknown regulatory relationships. In this study, through a mixed model analysis of multi-source digital expression profiling for 140 human lymphocyte cell lines (LCLs and the genotypes distributed by the international HapMap project, we identified 45 thousands of potential SNP-induced regulatory relationships among genes (the significance level for the underlying associations between expression traits and SNP genotypes was set at FDR < 0.01. We grouped the identified relationships into four classes (paradigms according to the two different mechanisms by which the regulatory SNPs affect their cis- and trans- regulated genes, modifying mRNA level or altering transcript splicing patterns. We further organized the relationships in each class into a set of network modules with the cis- regulated genes as hubs. We found that the target genes in a network module were often characterized by significant functional similarity, and the distributions of the target genes in three out of the four networks roughly resemble a power-law, a typical pattern of gene networks obtained from mutation experiments. By two case studies, we also demonstrated that significant biological insights can be inferred from the identified network modules.
Analysis of cascading failure in gene networks
Directory of Open Access Journals (Sweden)
Shudong eWang
2012-12-01
Full Text Available It is an important subject to research the functional mechanism of cancer-related genes make in formation and development of cancers. The modern methodology of data analysis plays a very important role for deducing the relationship between cancers and cancer-related genes and analyzing functional mechanism of genome. In this research, we construct mutual information networks using gene expression profiles of glioblast and renal in normal condition and cancer conditions. We investigate the relationship between structure and robustness in gene networks of the two tissues using a cascading failure model based on betweenness centrality. Define some important parameters such as the percentage of failure nodes of the network, the average size-ratio of cascading failure and the cumulative probability of size-ratio of cascading failure to measure the robustness of the networks. By comparing control group and experiment groups, we find that the networks of experiment groups are more robust than that of control group. The gene that can cause large scale failure is called structural key gene (SKG. Some of them have been confirmed to be closely related to the formation and development of glioma and renal cancer respectively. Most of them are predicted to play important roles during the formation of glioma and renal cancer, maybe the oncogenes, suppressor genes, and other cancer candidate genes in the glioma and renal cancer cells. However, these studies provide little information about the detailed roles of identified cancer genes.
Directory of Open Access Journals (Sweden)
Mark S. Handcock
2007-12-01
Full Text Available statnet is a suite of software packages for statistical network analysis. The packages implement recent advances in network modeling based on exponential-family random graph models (ERGM. The components of the package provide a comprehensive framework for ERGM-based network modeling, including tools for model estimation, model evaluation, model-based network simulation, and network visualization. This broad functionality is powered by a central Markov chain Monte Carlo (MCMC algorithm. The coding is optimized for speed and robustness.
An acoustical model based monitoring network
Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der
2010-01-01
In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the
Topological Analysis of Wireless Networks (TAWN)
2016-05-31
19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...mathematical literature on sheaves that describes how to draw global ( network -wide) inferences from them. Wireless network , local homology, sheaf...topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael
Performance Modeling for Heterogeneous Wireless Networks with Multiservice Overflow Traffic
DEFF Research Database (Denmark)
Huang, Qian; Ko, King-Tim; Iversen, Villy Bæk
2009-01-01
Performance modeling is important for the purpose of developing efficient dimensioning tools for large complicated networks. But it is difficult to achieve in heterogeneous wireless networks, where different networks have different statistical characteristics in service and traffic models....... Multiservice loss analysis based on multi-dimensional Markov chain becomes intractable in these networks due to intensive computations required. This paper focuses on performance modeling for heterogeneous wireless networks based on a hierarchical overlay infrastructure. A method based on decomposition...... of the correlated traffic is used to achieve an approximate performance modeling for multiservice in hierarchical heterogeneous wireless networks with overflow traffic. The accuracy of the approximate performance obtained by our proposed modeling is verified by simulations....
Piecewise linear and Boolean models of chemical reaction networks.
Veliz-Cuba, Alan; Kumar, Ajit; Josić, Krešimir
2014-12-01
Models of biochemical networks are frequently complex and high-dimensional. Reduction methods that preserve important dynamical properties are therefore essential for their study. Interactions in biochemical networks are frequently modeled using Hill functions ([Formula: see text]). Reduced ODEs and Boolean approximations of such model networks have been studied extensively when the exponent [Formula: see text] is large. However, while the case of small constant [Formula: see text] appears in practice, it is not well understood. We provide a mathematical analysis of this limit and show that a reduction to a set of piecewise linear ODEs and Boolean networks can be mathematically justified. The piecewise linear systems have closed-form solutions that closely track those of the fully nonlinear model. The simpler, Boolean network can be used to study the qualitative behavior of the original system. We justify the reduction using geometric singular perturbation theory and compact convergence, and illustrate the results in network models of a toggle switch and an oscillator.
Micro-macro analysis of complex networks.
Marchiori, Massimo; Possamai, Lino
2015-01-01
Complex systems have attracted considerable interest because of their wide range of applications, and are often studied via a "classic" approach: study a specific system, find a complex network behind it, and analyze the corresponding properties. This simple methodology has produced a great deal of interesting results, but relies on an often implicit underlying assumption: the level of detail on which the system is observed. However, in many situations, physical or abstract, the level of detail can be one out of many, and might also depend on intrinsic limitations in viewing the data with a different level of abstraction or precision. So, a fundamental question arises: do properties of a network depend on its level of observability, or are they invariant? If there is a dependence, then an apparently correct network modeling could in fact just be a bad approximation of the true behavior of a complex system. In order to answer this question, we propose a novel micro-macro analysis of complex systems that quantitatively describes how the structure of complex networks varies as a function of the detail level. To this extent, we have developed a new telescopic algorithm that abstracts from the local properties of a system and reconstructs the original structure according to a fuzziness level. This way we can study what happens when passing from a fine level of detail ("micro") to a different scale level ("macro"), and analyze the corresponding behavior in this transition, obtaining a deeper spectrum analysis. The obtained results show that many important properties are not universally invariant with respect to the level of detail, but instead strongly depend on the specific level on which a network is observed. Therefore, caution should be taken in every situation where a complex network is considered, if its context allows for different levels of observability.
An adaptive complex network model for brain functional networks.
Directory of Open Access Journals (Sweden)
Ignacio J Gomez Portillo
Full Text Available Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution.
Destabilization of Terrorist Networks through Argument Driven Hypothesis Model
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar
2007-01-01
Social network analysis has been used for quite some time to analyze and understand the behavior of nodes in the network. Theses nodes could be individuals or group of persons, events or organizations etc. Infact these nodes could be any thing importantly, these nodes propagate and obviously ha......) to predict a path for its destabilization. This network is selected to benchmark our proposed model framework. The results obtained with various network analysis shows that it works better than other analysis measures for example based on degree, betweeness and closeness etc. ...
Review Essay: Does Qualitative Network Analysis Exist?
Directory of Open Access Journals (Sweden)
Rainer Diaz-Bone
2007-01-01
Full Text Available Social network analysis was formed and established in the 1970s as a way of analyzing systems of social relations. In this review the theoretical-methodological standpoint of social network analysis ("structural analysis" is introduced and the different forms of social network analysis are presented. Structural analysis argues that social actors and social relations are embedded in social networks, meaning that action and perception of actors as well as the performance of social relations are influenced by the network structure. Since the 1990s structural analysis has integrated concepts such as agency, discourse and symbolic orientation and in this way structural analysis has opened itself. Since then there has been increasing use of qualitative methods in network analysis. They are used to include the perspective of the analyzed actors, to explore networks, and to understand network dynamics. In the reviewed book, edited by Betina HOLLSTEIN and Florian STRAUS, the twenty predominantly empirically orientated contributions demonstrate the possibilities of combining quantitative and qualitative methods in network analyses in different research fields. In this review we examine how the contributions succeed in applying and developing the structural analysis perspective, and the self-positioning of "qualitative network analysis" is evaluated. URN: urn:nbn:de:0114-fqs0701287
Modeling gene regulatory networks: A network simplification algorithm
Ferreira, Luiz Henrique O.; de Castro, Maria Clicia S.; da Silva, Fabricio A. B.
2016-12-01
Boolean networks have been used for some time to model Gene Regulatory Networks (GRNs), which describe cell functions. Those models can help biologists to make predictions, prognosis and even specialized treatment when some disturb on the GRN lead to a sick condition. However, the amount of information related to a GRN can be huge, making the task of inferring its boolean network representation quite a challenge. The method shown here takes into account information about the interactome to build a network, where each node represents a protein, and uses the entropy of each node as a key to reduce the size of the network, allowing the further inferring process to focus only on the main protein hubs, the ones with most potential to interfere in overall network behavior.
Google matrix analysis of directed networks
Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.
2015-10-01
In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.
The model of social crypto-network
Directory of Open Access Journals (Sweden)
Марк Миколайович Орел
2015-06-01
Full Text Available The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks
The model of social crypto-network
Марк Миколайович Орел
2015-01-01
The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks
Network analysis literacy a practical approach to the analysis of networks
Zweig, Katharina A
2014-01-01
Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.
Social network analysis and dual rover communications
Litaker, Harry L.; Howard, Robert L.
2013-10-01
Social network analysis (SNA) refers to the collection of techniques, tools, and methods used in sociometry aiming at the analysis of social networks to investigate decision making, group communication, and the distribution of information. Human factors engineers at the National Aeronautics and Space Administration (NASA) conducted a social network analysis on communication data collected during a 14-day field study operating a dual rover exploration mission to better understand the relationships between certain network groups such as ground control, flight teams, and planetary science. The analysis identified two communication network structures for the continuous communication and Twice-a-Day Communication scenarios as a split network and negotiated network respectfully. The major nodes or groups for the networks' architecture, transmittal status, and information were identified using graphical network mapping, quantitative analysis of subjective impressions, and quantified statistical analysis using Sociometric Statue and Centrality. Post-questionnaire analysis along with interviews revealed advantages and disadvantages of each network structure with team members identifying the need for a more stable continuous communication network, improved robustness of voice loops, and better systems training/capabilities for scientific imagery data and operational data during Twice-a-Day Communications.
Modeling Diagnostic Assessments with Bayesian Networks
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego
2007-01-01
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
Directory of Open Access Journals (Sweden)
Lan Liu
2017-01-01
Full Text Available As the adoption of Software Defined Networks (SDNs grows, the security of SDN still has several unaddressed limitations. A key network security research area is in the study of malware propagation across the SDN-enabled networks. To analyze the spreading processes of network malware (e.g., viruses in SDN, we propose a dynamic model with a time-varying community network, inspired by research models on the spread of epidemics in complex networks across communities. We assume subnets of the network as communities and links that are dense in subnets but sparse between subnets. Using numerical simulation and theoretical analysis, we find that the efficiency of network malware propagation in this model depends on the mobility rate q of the nodes between subnets. We also find that there exists a mobility rate threshold qc. The network malware will spread in the SDN when the mobility rate q>qc. The malware will survive when q>qc and perish when q
Applications of Social Network Analysis
Thilagam, P. Santhi
A social network [2] is a description of the social structure between actors, mostly persons, groups or organizations. It indicates the ways in which they are connected with each other by some relationship such as friendship, kinship, finance exchange etc. In a nutshell, when the person uses already known/unknown people to create new contacts, it forms social networking. The social network is not a new concept rather it can be formed when similar people interact with each other directly or indirectly to perform particular task. Examples of social networks include a friendship networks, collaboration networks, co-authorship networks, and co-employees networks which depict the direct interaction among the people. There are also other forms of social networks, such as entertainment networks, business Networks, citation networks, and hyperlink networks, in which interaction among the people is indirect. Generally, social networks operate on many levels, from families up to the level of nations and assists in improving interactive knowledge sharing, interoperability and collaboration.
Error performance analysis in downlink cellular networks with interference management
Afify, Laila H.
2015-05-01
Modeling aggregate network interference in cellular networks has recently gained immense attention both in academia and industry. While stochastic geometry based models have succeeded to account for the cellular network geometry, they mostly abstract many important wireless communication system aspects (e.g., modulation techniques, signal recovery techniques). Recently, a novel stochastic geometry model, based on the Equivalent-in-Distribution (EiD) approach, succeeded to capture the aforementioned communication system aspects and extend the analysis to averaged error performance, however, on the expense of increasing the modeling complexity. Inspired by the EiD approach, the analysis developed in [1] takes into consideration the key system parameters, while providing a simple tractable analysis. In this paper, we extend this framework to study the effect of different interference management techniques in downlink cellular network. The accuracy of the proposed analysis is verified via Monte Carlo simulations.
Directory of Open Access Journals (Sweden)
Roberto F Galán
2010-09-01
Full Text Available We have combined neurophysiologic recording, statistical analysis, and computational modeling to investigate the dynamics of the respiratory network in the brainstem. Using a multielectrode array, we recorded ensembles of respiratory neurons in perfused in situ rat preparations that produce spontaneous breathing patterns, focusing on inspiratory pre-motor neurons. We compared firing rates and neuronal synchronization among these neurons before and after a brief hypoxic stimulus. We observed a significant decrease in the number of spikes after stimulation, in part due to a transient slowing of the respiratory pattern. However, the median interspike interval did not change, suggesting that the firing threshold of the neurons was not affected but rather the synaptic input was. A bootstrap analysis of synchrony between spike trains revealed that, both before and after brief hypoxia, up to 45 % (but typically less than 5 % of coincident spikes across neuronal pairs was not explained by chance. Most likely, this synchrony resulted from common synaptic input to the pre-motor population, an example of stochastic synchronization. After brief hypoxia most pairs were less synchronized, although some were more, suggesting that the respiratory network was “rewired” transiently after the stimulus. To investigate this hypothesis, we created a simple computational model with feed-forward divergent connections along the inspiratory pathway. Assuming that 1 the number of divergent projections was not the same for all presynaptic cells, but rather spanned a wide range and 2 that the stimulus increased inhibition at the top of the network; this model reproduced the reduction in firing rate and bootstrap-corrected synchrony subsequent to hypoxic stimulation observed in our experimental data.
Understanding complex interactions using social network analysis.
Pow, Janette; Gayen, Kaberi; Elliott, Lawrie; Raeside, Robert
2012-10-01
The aim of this paper is to raise the awareness of social network analysis as a method to facilitate research in nursing research. The application of social network analysis in assessing network properties has allowed greater insight to be gained in many areas including sociology, politics, business organisation and health care. However, the use of social networks in nursing has not received sufficient attention. Review of literature and illustration of the application of the method of social network analysis using research examples. First, the value of social networks will be discussed. Then by using illustrative examples, the value of social network analysis to nursing will be demonstrated. The method of social network analysis is found to give greater insights into social situations involving interactions between individuals and has particular application to the study of interactions between nurses and between nurses and patients and other actors. Social networks are systems in which people interact. Two quantitative techniques help our understanding of these networks. The first is visualisation of the network. The second is centrality. Individuals with high centrality are key communicators in a network. Applying social network analysis to nursing provides a simple method that helps gain an understanding of human interaction and how this might influence various health outcomes. It allows influential individuals (actors) to be identified. Their influence on the formation of social norms and communication can determine the extent to which new interventions or ways of thinking are accepted by a group. Thus, working with key individuals in a network could be critical to the success and sustainability of an intervention. Social network analysis can also help to assess the effectiveness of such interventions for the recipient and the service provider. © 2012 Blackwell Publishing Ltd.
Bayesian Network Webserver: a comprehensive tool for biological network modeling.
Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan
2013-11-01
The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.
Directory of Open Access Journals (Sweden)
Daniel J. Garcia
2015-07-01
Full Text Available The water footprint of energy systems must be considered, as future water scarcity has been identified as a major concern. This work presents a general life cycle network modeling and optimization framework for energy-based products and processes using a functional unit of liters of water consumed in the processing pathway. We analyze and optimize the water-energy nexus over the objectives of water footprint minimization, maximization of economic output per liter of water consumed (economic efficiency of water, and maximization of energy output per liter of water consumed (energy efficiency of water. A mixed integer, multiobjective nonlinear fractional programming (MINLFP model is formulated. A mixed integer linear programing (MILP-based branch and refine algorithm that incorporates both the parametric algorithm and nonlinear programming (NLP subproblems is developed to boost solving efficiency. A case study in bioenergy is presented, and the water footprint is considered from biomass cultivation to biofuel production, providing a novel perspective into the consumption of water throughout the value chain. The case study, optimized successively over the three aforementioned objectives, utilizes a variety of candidate biomass feedstocks to meet primary fuel products demand (ethanol, diesel, and gasoline. A minimum water footprint of 55.1 ML/year was found, economic efficiencies of water range from −$1.31/L to $0.76/L, and energy efficiencies of water ranged from 15.32 MJ/L to 27.98 MJ/L. These results show optimization provides avenues for process improvement, as reported values for the energy efficiency of bioethanol range from 0.62 MJ/L to 3.18 MJ/L. Furthermore, the proposed solution approach was shown to be an order of magnitude more efficient than directly solving the original MINLFP problem with general purpose solvers.
Kim, Jin-Baek
2015-01-01
Part 3: Knowledge Based Production Management; International audience; In this paper, we analyzed the structure of the South Korean automotive industry using social network analysis (SNA) metrics. Based on the data collected from 275 companies, a social network model of the supply network was constructed. Centrality measures in the SNA field were used to interpret the result and identify key companies. The results show that SNA metrics can be useful to understand the structure of a supply net...
2015-03-01
Translational Neuroscience Branch at the US Army Research Laboratory. Research was sponsored by the US Army Research Laboratory, and Urban was supported under...10.1152/jn.00844.2013 Sun Y, Zhang H, Feng T, Qiu Y, Zhu Y, Tong S. Early cortical connective network relating to audiovisual stimulation by partial
Service network analysis for agricultural mental health
Directory of Open Access Journals (Sweden)
Fuller Jeffrey D
2009-05-01
Full Text Available Abstract Background Farmers represent a subgroup of rural and remote communities at higher risk of suicide attributed to insecure economic futures, self-reliant cultures and poor access to health services. Early intervention models are required that tap into existing farming networks. This study describes service networks in rural shires that relate to the mental health needs of farming families. This serves as a baseline to inform service network improvements. Methods A network survey of mental health related links between agricultural support, health and other human services in four drought declared shires in comparable districts in rural New South Wales, Australia. Mental health links covered information exchange, referral recommendations and program development. Results 87 agencies from 111 (78% completed a survey. 79% indicated that two thirds of their clients needed assistance for mental health related problems. The highest mean number of interagency links concerned information exchange and the frequency of these links between sectors was monthly to three monthly. The effectiveness of agricultural support and health sector links were rated as less effective by the agricultural support sector than by the health sector (p Conclusion Aligning with agricultural agencies is important to build effective mental health service pathways to address the needs of farming populations. Work is required to ensure that these agricultural support agencies have operational and effective links to primary mental health care services. Network analysis provides a baseline to inform this work. With interventions such as local mental health training and joint service planning to promote network development we would expect to see over time an increase in the mean number of links, the frequency in which these links are used and the rated effectiveness of these links.
Network Inoculation: Heteroclinics and phase transitions in an epidemic model
Yang, Hui; Gross, Thilo
2016-01-01
In epidemiological modelling, dynamics on networks, and in particular adaptive and heterogeneous networks have recently received much interest. Here we present a detailed analysis of a previously proposed model that combines heterogeneity in the individuals with adaptive rewiring of the network structure in response to a disease. We show that in this model qualitative changes in the dynamics occur in two phase transitions. In a macroscopic description one of these corresponds to a local bifurcation whereas the other one corresponds to a non-local heteroclinic bifurcation. This model thus provides a rare example of a system where a phase transition is caused by a non-local bifurcation, while both micro- and macro-level dynamics are accessible to mathematical analysis. The bifurcation points mark the onset of a behaviour that we call network inoculation. In the respective parameter region exposure of the system to a pathogen will lead to an outbreak that collapses, but leaves the network in a configuration wher...
Network Reconstruction and Systems Analysis of Cardiac Myocyte Hypertrophy Signaling*
Ryall, Karen A.; Holland, David O.; Delaney, Kyle A.; Kraeutler, Matthew J.; Parker, Audrey J.; Saucerman, Jeffrey J.
2012-01-01
Cardiac hypertrophy is managed by a dense web of signaling pathways with many pathways influencing myocyte growth. A quantitative understanding of the contributions of individual pathways and their interactions is needed to better understand hypertrophy signaling and to develop more effective therapies for heart failure. We developed a computational model of the cardiac myocyte hypertrophy signaling network to determine how the components and network topology lead to differential regulation of transcription factors, gene expression, and myocyte size. Our computational model of the hypertrophy signaling network contains 106 species and 193 reactions, integrating 14 established pathways regulating cardiac myocyte growth. 109 of 114 model predictions were validated using published experimental data testing the effects of receptor activation on transcription factors and myocyte phenotypic outputs. Network motif analysis revealed an enrichment of bifan and biparallel cross-talk motifs. Sensitivity analysis was used to inform clustering of the network into modules and to identify species with the greatest effects on cell growth. Many species influenced hypertrophy, but only a few nodes had large positive or negative influences. Ras, a network hub, had the greatest effect on cell area and influenced more species than any other protein in the network. We validated this model prediction in cultured cardiac myocytes. With this integrative computational model, we identified the most influential species in the cardiac hypertrophy signaling network and demonstrate how different levels of network organization affect myocyte size, transcription factors, and gene expression. PMID:23091058
6th International Conference on Network Analysis
Nikolaev, Alexey; Pardalos, Panos; Prokopyev, Oleg
2017-01-01
This valuable source for graduate students and researchers provides a comprehensive introduction to current theories and applications in optimization methods and network models. Contributions to this book are focused on new efficient algorithms and rigorous mathematical theories, which can be used to optimize and analyze mathematical graph structures with massive size and high density induced by natural or artificial complex networks. Applications to social networks, power transmission grids, telecommunication networks, stock market networks, and human brain networks are presented. Chapters in this book cover the following topics: Linear max min fairness Heuristic approaches for high-quality solutions Efficient approaches for complex multi-criteria optimization problems Comparison of heuristic algorithms New heuristic iterative local search Power in network structures Clustering nodes in random graphs Power transmission grid structure Network decomposition problems Homogeneity hypothesis testing Network analy...
Šiljić Tomić, Aleksandra; Antanasijević, Davor; Ristić, Mirjana; Perić-Grujić, Aleksandra; Pocajt, Viktor
2018-01-01
Accurate prediction of water quality parameters (WQPs) is an important task in the management of water resources. Artificial neural networks (ANNs) are frequently applied for dissolved oxygen (DO) prediction, but often only their interpolation performance is checked. The aims of this research, beside interpolation, were the determination of extrapolation performance of ANN model, which was developed for the prediction of DO content in the Danube River, and the assessment of relationship between the significance of inputs and prediction error in the presence of values which were of out of the range of training. The applied ANN is a polynomial neural network (PNN) which performs embedded selection of most important inputs during learning, and provides a model in the form of linear and non-linear polynomial functions, which can then be used for a detailed analysis of the significance of inputs. Available dataset that contained 1912 monitoring records for 17 water quality parameters was split into a "regular" subset that contains normally distributed and low variability data, and an "extreme" subset that contains monitoring records with outlier values. The results revealed that the non-linear PNN model has good interpolation performance (R 2 =0.82), but it was not robust in extrapolation (R 2 =0.63). The analysis of extrapolation results has shown that the prediction errors are correlated with the significance of inputs. Namely, the out-of-training range values of the inputs with low importance do not affect significantly the PNN model performance, but their influence can be biased by the presence of multi-outlier monitoring records. Subsequently, linear PNN models were successfully applied to study the effect of water quality parameters on DO content. It was observed that DO level is mostly affected by temperature, pH, biological oxygen demand (BOD) and phosphorus concentration, while in extreme conditions the importance of alkalinity and bicarbonates rises over p
An, Yang; Sun, Mei; Gao, Cuixia; Han, Dun; Li, Xiuming
2018-02-01
This paper studies the influence of Brent oil price fluctuations on the stock prices of China's two distinct blocks, namely, the petrochemical block and the electric equipment and new energy block, applying the Shannon entropy of information theory. The co-movement trend of crude oil price and stock prices is divided into different fluctuation patterns with the coarse-graining method. Then, the bivariate time series network model is established for the two blocks stock in five different periods. By joint analysis of the network-oriented metrics, the key modes and underlying evolutionary mechanisms were identified. The results show that the both networks have different fluctuation characteristics in different periods. Their co-movement patterns are clustered in some key modes and conversion intermediaries. The study not only reveals the lag effect of crude oil price fluctuations on the stock in Chinese industry blocks but also verifies the necessity of research on special periods, and suggests that the government should use different energy policies to stabilize market volatility in different periods. A new way is provided to study the unidirectional influence between multiple variables or complex time series.
National Research Council Canada - National Science Library
Johnson, Joseph E; Gudkov, Vladimir
2005-01-01
.... The PI, under the funding of this grant, has discovered a strong connection between the topological specification of a network in the form of a connection matrix and the branches of mathematics known...
Egocentric social network analysis of pathological gambling.
Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S
2013-03-01
To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.
Object Oriented Modeling Of Social Networks
Zeggelink, Evelien P.H.; Oosten, Reinier van; Stokman, Frans N.
1996-01-01
The aim of this paper is to explain principles of object oriented modeling in the scope of modeling dynamic social networks. As such, the approach of object oriented modeling is advocated within the field of organizational research that focuses on networks. We provide a brief introduction into the
Bayesian estimation of the network autocorrelation model
Dittrich, D.; Leenders, R.T.A.J.; Mulder, J.
2017-01-01
The network autocorrelation model has been extensively used by researchers interested modeling social influence effects in social networks. The most common inferential method in the model is classical maximum likelihood estimation. This approach, however, has known problems such as negative bias of
Agent-based modeling and network dynamics
Namatame, Akira
2016-01-01
The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...
Neural Network Program Package for Prosody Modeling
Directory of Open Access Journals (Sweden)
J. Santarius
2004-04-01
Full Text Available This contribution describes the programme for one part of theautomatic Text-to-Speech (TTS synthesis. Some experiments (for example[14] documented the considerable improvement of the naturalness ofsynthetic speech, but this approach requires completing the inputfeature values by hand. This completing takes a lot of time for bigfiles. We need to improve the prosody by other approaches which useonly automatically classified features (input parameters. Theartificial neural network (ANN approach is used for the modeling ofprosody parameters. The program package contains all modules necessaryfor the text and speech signal pre-processing, neural network training,sensitivity analysis, result processing and a module for the creationof the input data protocol for Czech speech synthesizer ARTIC [1].
Mental health network governance: comparative analysis across Canadian regions
Wiktorowicz, Mary E; Fleury, Marie-Josée; Adair, Carol E; Lesage, Alain; Goldner, Elliot; Peters, Suzanne
2010-01-01
Objective Modes of governance were compared in ten local mental health networks in diverse contexts (rural/urban and regionalized/non-regionalized) to clarify the governance processes that foster inter-organizational collaboration and the conditions that support them. Methods Case studies of ten local mental health networks were developed using qualitative methods of document review, semi-structured interviews and focus groups that incorporated provincial policy, network and organizational levels of analysis. Results Mental health networks adopted either a corporate structure, mutual adjustment or an alliance governance model. A corporate structure supported by regionalization offered the most direct means for local governance to attain inter-organizational collaboration. The likelihood that networks with an alliance model developed coordination processes depended on the presence of the following conditions: a moderate number of organizations, goal consensus and trust among the organizations, and network-level competencies. In the small and mid-sized urban networks where these conditions were met their alliance realized the inter-organizational collaboration sought. In the large urban and rural networks where these conditions were not met, externally brokered forms of network governance were required to support alliance based models. Discussion In metropolitan and rural networks with such shared forms of network governance as an alliance or voluntary mutual adjustment, external mediation by a regional or provincial authority was an important lever to foster inter-organizational collaboration. PMID:21289999
A Mathematical Model to Improve the Performance of Logistics Network
Directory of Open Access Journals (Sweden)
Muhammad Izman Herdiansyah
2012-01-01
Full Text Available The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimization
Modeling of Bandwidth Aggregation over Heterogeneous Wireless Access Networks
DEFF Research Database (Denmark)
Popovska Avramova, Andrijana; Dittmann, Lars
2012-01-01
Motivated by the multihomming capability of the mobile devices and the fact that the heterogeneous wireless access networks overlap in coverage, mobile operators are looking for solutions that will benefit by simultaneous use of the available multiple access interfaces. Multipath or multilink...... applications. The analysis is performed on a multipath model developed with OPNET Modeler, which is an advanced research tool that supports modeling and integration of various kinds of built-in networks....
Modeling data throughput on communication networks
Energy Technology Data Exchange (ETDEWEB)
Eldridge, J.M.
1993-11-01
New challenges in high performance computing and communications are driving the need for fast, geographically distributed networks. Applications such as modeling physical phenomena, interactive visualization, large data set transfers, and distributed supercomputing require high performance networking [St89][Ra92][Ca92]. One measure of a communication network`s performance is the time it takes to complete a task -- such as transferring a data file or displaying a graphics image on a remote monitor. Throughput, defined as the ratio of the number of useful data bits transmitted per the time required to transmit those bits, is a useful gauge of how well a communication system meets this performance measure. This paper develops and describes an analytical model of throughput. The model is a tool network designers can use to predict network throughput. It also provides insight into those parts of the network that act as a performance bottleneck.
Social Network Analysis and informal trade
DEFF Research Database (Denmark)
Walther, Olivier
networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...
Social network analysis and supply chain management
Directory of Open Access Journals (Sweden)
Raúl Rodríguez Rodríguez
2016-01-01
Full Text Available This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes.
Directory of Open Access Journals (Sweden)
Jugoslava eAcimovic
2015-06-01
Full Text Available We developed a two-level statistical model that addresses the question of how properties of neurite morphology shape the large-scale network connectivity. We adopted a low-dimensional statistical description of neurites. From the neurite model description we derived the expected number of synapses, node degree, and the effective radius, the maximal distance between two neurons expected to form at least one synapse. We related these quantities to the network connectivity described using standard measures from graph theory, such as motif counts, clustering coefficient, minimal path length, and small-world coefficient. These measures are used in a neuroscience context to study phenomena from synaptic connectivity in the small neuronal networks to large scale functional connectivity in the cortex. For these measures we provide analytical solutions that clearly relate different model properties. Neurites that sparsely cover space lead to a small effective radius. If the effective radius is small compared to the overall neuron size the obtained networks share similarities with the uniform random networks as each neuron connects to a small number of distant neurons. Large neurites with densely packed branches lead to a large effective radius. If this effective radius is large compared to the neuron size, the obtained networks have many local connections. In between these extremes, the networks maximize the variability of connection repertoires. The presented approach connects the properties of neuron morphology with large scale network properties without requiring heavy simulations with many model parameters. The two-steps procedure provides an easier interpretation of the role of each modeled parameter. The model is flexible and each of its components can be further expanded. We identified a range of model parameters that maximizes variability in network connectivity, the property that might affect network capacity to exhibit different dynamical
Naguib, Ibrahim A.; Darwish, Hany W.
2012-02-01
A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.
Naguib, Ibrahim A; Darwish, Hany W
2012-02-01
A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer. Copyright © 2011 Elsevier B.V. All rights reserved.
4th International Conference in Network Analysis
Koldanov, Petr; Pardalos, Panos
2016-01-01
The contributions in this volume cover a broad range of topics including maximum cliques, graph coloring, data mining, brain networks, Steiner forest, logistic and supply chain networks. Network algorithms and their applications to market graphs, manufacturing problems, internet networks and social networks are highlighted. The "Fourth International Conference in Network Analysis," held at the Higher School of Economics, Nizhny Novgorod in May 2014, initiated joint research between scientists, engineers and researchers from academia, industry and government; the major results of conference participants have been reviewed and collected in this Work. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis.
Artificial Neural Network Analysis of Xinhui Pericarpium Citri ...
African Journals Online (AJOL)
Artificial Neural Network Analysis of Xinhui Pericarpium ... Results: The Root Mean Square (RMS) error of GRNN was 0.22, less than the error MLFN at different .... Statistical analysis. To quantify the results of the model, the judgments generated by ANN model were presented as "1" or "0". "1" represents the characteristics of ...
METHODOLOGY OF MATHEMATICAL ANALYSIS IN POWER NETWORK
Jerzy Szkutnik; Mariusz Kawecki
2008-01-01
Power distribution network analysis is taken into account. Based on correlation coefficient authors establish methodology of mathematical analysis useful in finding substations bear responsibility for power stoppage. Also methodology of risk assessment will be carried out.
Gutiérrez, Jose Manuel; San Martín, Daniel; Herrera, Sixto; Santiago Cofiño, Antonio
2016-04-01
The growing availability of spatial datasets (observations, reanalysis, and regional and global climate models) demands efficient multivariate spatial modeling techniques for many problems of interest (e.g. teleconnection analysis, multi-site downscaling, etc.). Complex networks have been recently applied in this context using graphs built from pairwise correlations between the different stations (or grid boxes) forming the dataset. However, this analysis does not take into account the full dependence structure underlying the data, gien by all possible marginal and conditional dependencies among the stations, and does not allow a probabilistic analysis of the dataset. In this talk we introduce Bayesian networks as an alternative multivariate analysis and modeling data-driven technique which allows building a joint probability distribution of the stations including all relevant dependencies in the dataset. Bayesian networks is a sound machine learning technique using a graph to 1) encode the main dependencies among the variables and 2) to obtain a factorization of the joint probability distribution of the stations given by a reduced number of parameters. For a particular problem, the resulting graph provides a qualitative analysis of the spatial relationships in the dataset (alternative to complex network analysis), and the resulting model allows for a probabilistic analysis of the dataset. Bayesian networks have been widely applied in many fields, but their use in climate problems is hampered by the large number of variables (stations) involved in this field, since the complexity of the existing algorithms to learn from data the graphical structure grows nonlinearly with the number of variables. In this contribution we present a modified local learning algorithm for Bayesian networks adapted to this problem, which allows inferring the graphical structure for thousands of stations (from observations) and/or gridboxes (from model simulations) thus providing new
Constructing an Intelligent Patent Network Analysis Method
Chao-Chan Wu; Ching-Bang Yao
2012-01-01
Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks...
Hybrid network defense model based on fuzzy evaluation.
Cho, Ying-Chiang; Pan, Jen-Yi
2014-01-01
With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.
Settings in Social Networks : a Measurement Model
Schweinberger, Michael; Snijders, Tom A.B.
2003-01-01
A class of statistical models is proposed that aims to recover latent settings structures in social networks. Settings may be regarded as clusters of vertices. The measurement model is based on two assumptions. (1) The observed network is generated by hierarchically nested latent transitive
Settings in social networks : A measurement model
Schweinberger, M; Snijders, TAB
2003-01-01
A class of statistical models is proposed that aims to recover latent settings structures in social networks. Settings may be regarded as clusters of vertices. The measurement model is based on two assumptions. (1) The observed network is generated by hierarchically nested latent transitive
Spinal Cord Injury Model System Information Network
... the UAB-SCIMS Contact the UAB-SCIMS UAB Spinal Cord Injury Model System Newly Injured Health Daily Living Consumer ... Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network ...
Radio Channel Modeling in Body Area Networks
An, L.; Bentum, Marinus Jan; Meijerink, Arjan; Scanlon, W.G.
2009-01-01
A body area network (BAN) is a network of bodyworn or implanted electronic devices, including wireless sensors which can monitor body parameters or to de- tect movements. One of the big challenges in BANs is the propagation channel modeling. Channel models can be used to understand wave propagation
Radio channel modeling in body area networks
An, L.; Bentum, Marinus Jan; Meijerink, Arjan; Scanlon, W.G.
2010-01-01
A body area network (BAN) is a network of bodyworn or implanted electronic devices, including wireless sensors which can monitor body parameters or to detect movements. One of the big challenges in BANs is the propagation channel modeling. Channel models can be used to understand wave propagation in
Network interconnections: an architectural reference model
Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.
1985-01-01
One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for
Rumor spreading model with noise interference in complex social networks
Zhu, Liang; Wang, Youguo
2017-03-01
In this paper, a modified susceptible-infected-removed (SIR) model has been proposed to explore rumor diffusion on complex social networks. We take variation of connectivity into consideration and assume the variation as noise. On the basis of related literature on virus networks, the noise is described as standard Brownian motion while stochastic differential equations (SDE) have been derived to characterize dynamics of rumor diffusion both on homogeneous networks and heterogeneous networks. Then, theoretical analysis on homogeneous networks has been demonstrated to investigate the solution of SDE model and the steady state of rumor diffusion. Simulations both on Barabási-Albert (BA) network and Watts-Strogatz (WS) network display that the addition of noise accelerates rumor diffusion and expands diffusion size, meanwhile, the spreading speed on BA network is much faster than on WS network under the same noise intensity. In addition, there exists a rumor diffusion threshold in statistical average meaning on homogeneous network which is absent on heterogeneous network. Finally, we find a positive correlation between peak value of infected individuals and noise intensity while a negative correlation between rumor lifecycle and noise intensity overall.
Performance modeling of network data services
Energy Technology Data Exchange (ETDEWEB)
Haynes, R.A.; Pierson, L.G.
1997-01-01
Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.
Learning Bayesian Network Model Structure from Data
National Research Council Canada - National Science Library
Margaritis, Dimitris
2003-01-01
In this thesis I address the important problem of the determination of the structure of directed statistical models, with the widely used class of Bayesian network models as a concrete vehicle of my ideas...
NC truck network model development research.
2008-09-01
This research develops a validated prototype truck traffic network model for North Carolina. The model : includes all counties and metropolitan areas of North Carolina and major economic areas throughout the : U.S. Geographic boundaries, population a...
A computational model of hemodynamic parameters in cortical capillary networks.
Safaeian, Navid; Sellier, Mathieu; David, Tim
2011-02-21
The analysis of hemodynamic parameters and functional reactivity of cerebral capillaries is still controversial. To assess the hemodynamic parameters in the cortical capillary network, a generic model was created using 2D voronoi tessellation in which each edge represents a capillary segment. This method is capable of creating an appropriate generic model of cerebral capillary network relating to each part of the brain cortex because the geometric model is able to vary the capillary density. The modeling presented here is based on morphometric parameters extracted from physiological data of the human cortex. The pertinent hemodynamic parameters were obtained by numerical simulation based on effective blood viscosity as a function of hematocrit and microvessel diameter, phase separation and plasma skimming effects. The hemodynamic parameters of capillary networks with two different densities (consistent with the variation of the morphometric data in the human cortical capillary network) were analyzed. The results show pertinent hemodynamic parameters for each model. The heterogeneity (coefficient variation) and the mean value of hematocrits, flow rates and velocities of the both network models were specified. The distributions of blood flow throughout the both models seem to confirm the hypothesis in which all capillaries in a cortical network are recruited at rest (normal condition). The results also demonstrate a discrepancy of the network resistance between two models, which are derived from the difference in the number density of capillary segments between the models. Copyright Â© 2010 Elsevier Ltd. All rights reserved.
Modelling the structure of complex networks
DEFF Research Database (Denmark)
Herlau, Tue
networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex......A complex network is a systems in which a discrete set of units interact in a quantifiable manner. Representing systems as complex networks have become increasingly popular in a variety of scientific fields including biology, social sciences and economics. Parallel to this development complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...
A Network Formation Model Based on Subgraphs
Chandrasekhar, Arun
2016-01-01
We develop a new class of random-graph models for the statistical estimation of network formation that allow for substantial correlation in links. Various subgraphs (e.g., links, triangles, cliques, stars) are generated and their union results in a network. We provide estimation techniques for recovering the rates at which the underlying subgraphs were formed. We illustrate the models via a series of applications including testing for incentives to form cross-caste relationships in rural India, testing to see whether network structure is used to enforce risk-sharing, testing as to whether networks change in response to a community's exposure to microcredit, and show that these models significantly outperform stochastic block models in matching observed network characteristics. We also establish asymptotic properties of the models and various estimators, which requires proving a new Central Limit Theorem for correlated random variables.
Computational modeling of signal transduction networks: a pedagogical exposition.
Prasad, Ashok
2012-01-01
We give a pedagogical introduction to computational modeling of signal transduction networks, starting from explaining the representations of chemical reactions by differential equations via the law of mass action. We discuss elementary biochemical reactions such as Michaelis-Menten enzyme kinetics and cooperative binding, and show how these allow the representation of large networks as systems of differential equations. We discuss the importance of looking for simpler or reduced models, such as network motifs or dynamical motifs within the larger network, and describe methods to obtain qualitative behavior by bifurcation analysis, using freely available continuation software. We then discuss stochastic kinetics and show how to implement easy-to-use methods of rule-based modeling for stochastic simulations. We finally suggest some methods for comprehensive parameter sensitivity analysis, and discuss the insights that it could yield. Examples, including code to try out, are provided based on a paper that modeled Ras kinetics in thymocytes.
Gossip spread in social network Models
Johansson, Tobias
2017-04-01
Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.
Synergistic effects in threshold models on networks
Juul, Jonas S.; Porter, Mason A.
2018-01-01
Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.
Optimized null model for protein structure networks.
Milenković, Tijana; Filippis, Ioannis; Lappe, Michael; Przulj, Natasa
2009-06-26
Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs) as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model for RIGs, by
Optimized null model for protein structure networks.
Directory of Open Access Journals (Sweden)
Tijana Milenković
Full Text Available Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model
Weighted Complex Network Analysis of Pakistan Highways
Directory of Open Access Journals (Sweden)
Yasir Tariq Mohmand
2013-01-01
Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.
Social Insects: A Model System for Network Dynamics
Charbonneau, Daniel; Blonder, Benjamin; Dornhaus, Anna
Social insect colonies (ants, bees, wasps, and termites) show sophisticated collective problem-solving in the face of variable constraints. Individuals exchange information and materials such as food. The resulting network structure and dynamics can inform us about the mechanisms by which the insects achieve particular collective behaviors and these can be transposed to man-made and social networks. We discuss how network analysis can answer important questions about social insects, such as how effective task allocation or information flow is realized. We put forward the idea that network analysis methods are under-utilized in social insect research, and that they can provide novel ways to view the complexity of collective behavior, particularly if network dynamics are taken into account. To illustrate this, we present an example of network tasks performed by ant workers, linked by instances of workers switching from one task to another. We show how temporal network analysis can propose and test new hypotheses on mechanisms of task allocation, and how adding temporal elements to static networks can drastically change results. We discuss the benefits of using social insects as models for complex systems in general. There are multiple opportunities emergent technologies and analysis methods in facilitating research on social insect network. The potential for interdisciplinary work could significantly advance diverse fields such as behavioral ecology, computer sciences, and engineering.
Directory of Open Access Journals (Sweden)
Ozren Bukovac
2016-01-01
Full Text Available Compared to the other marine engines for ship propulsion, turbocharged two-stroke low speed diesel engines have advantages due to their high efficiency and reliability. Modern low speed ”intelligent” marine diesel engines have a flexibility in its operation due to the variable fuel injection strategy and management of the exhaust valve drive. This paper carried out verified zerodimensional numerical simulations which have been used for MLP (Multilayer Perceptron neural network predictions of marine two-stroke low speed diesel engine steady state performances. The developed MLP neural network was used for marine engine optimized operation control. The paper presents an example of achieving lowest specific fuel consumption and for minimization of the cylinder process highest temperature for reducing NOx emission. Also, the developed neural network was used to achieve optimal exhaust gases heat flow for utilization. The obtained data maps give insight into the optimal working areas of simulated marine diesel engine, depending on the selected start of the fuel injection (SOI and the time of the exhaust valve opening (EVO.
Towards Reproducible Descriptions of Neuronal Network Models
Nordlie, Eilen; Gewaltig, Marc-Oliver; Plesser, Hans Ekkehard
2009-01-01
Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing—and thinking about—complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain. PMID:19662159
Towards reproducible descriptions of neuronal network models.
Directory of Open Access Journals (Sweden)
Eilen Nordlie
2009-08-01
Full Text Available Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing--and thinking about--complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain.
Modeling of regional warehouse network generation
Directory of Open Access Journals (Sweden)
Popov Pavel Vladimirovich
2016-08-01
Full Text Available One of the factors that has a significant impact on the socio-economic development of the Russian Federation’s regions is the logistics infrastructure. It provides integrated transportation and distribution service of material flows. One of the main elements of logistics infrastructure is a storage infrastructure, which includes distribution center, distribution-and-sortout and sortout warehouses. It is the most expedient to place distribution center in the vicinity of the regional center. One of the tasks of the distribution network creation within the regions of the Russian Federation is to determine the location, capacity and number of stores. When determining regional network location of general purpose warehouses methodological approaches to solving the problems of location of production and non-production can be used which depend on various economic factors. The mathematical models for solving relevant problems are the deployment models. However, the existing models focus on the dimensionless power storage. The purpose of the given work is to develop a model to determine the optimal location of general-purpose warehouses on the Russian Federation area. At the first stage of the work, the authors assess the main economic indicators influencing the choice of the location of general purpose warehouses. An algorithm for solving the first stage, based on ABC, discriminant and cluster analysis were proposed by the authors in earlier papers. At the second stage the specific locations of general purpose warehouses and their power is chosen to provide the cost minimization for the construction and subsequent maintenance of warehouses and transportation heterogeneous products. In order to solve this problem the authors developed a mathematical model that takes into account the possibility of delivery in heterogeneous goods from suppliers and manufacturers in the distribution and storage sorting with specified set of capacities. The model allows
NEAT: an efficient network enrichment analysis test.
Signorelli, Mirko; Vinciotti, Veronica; Wit, Ernst C
2016-09-05
Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be computationally slow and are based on normality assumptions. We propose NEAT, a test for network enrichment analysis. The test is based on the hypergeometric distribution, which naturally arises as the null distribution in this context. NEAT can be applied not only to undirected, but to directed and partially directed networks as well. Our simulations indicate that NEAT is considerably faster than alternative resampling-based methods, and that its capacity to detect enrichments is at least as good as the one of alternative tests. We discuss applications of NEAT to network analyses in yeast by testing for enrichment of the Environmental Stress Response target gene set with GO Slim and KEGG functional gene sets, and also by inspecting associations between functional sets themselves. NEAT is a flexible and efficient test for network enrichment analysis that aims to overcome some limitations of existing resampling-based tests. The method is implemented in the R package neat, which can be freely downloaded from CRAN ( https://cran.r-project.org/package=neat ).
Reaction network analysis in biochemical signaling pathways
Martinez-Forero, I. (Iván); Pelaez, A. (Antonio); Villoslada, P. (Pablo)
2010-01-01
The aim of this thesis is to improve the understanding of signaling pathways through a theoretical study of chemical reaction networks. The equilibirum solution to the equations derived from chemical networks will be analytically resolved using tools from algebraic geometry. The chapters are organized as follows: 1. An introduction to chemical dynamics in biological systems with a special emphasis on steady state analysis 2. Complete description of the chemical reaction network theor...
Modeling, Optimization & Control of Hydraulic Networks
DEFF Research Database (Denmark)
Tahavori, Maryamsadat
2014-01-01
in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply....... The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used...... to solve nonlinear optimal control problems. In the water supply system model, the hydraulic resistance of the valve is estimated by real data and it is considered to be a disturbance. The disturbance in our system is updated every 24 hours based on the amount of water usage by consumers every day. Model...
Cohesion network analysis of CSCL participation.
Dascalu, Mihai; McNamara, Danielle S; Trausan-Matu, Stefan; Allen, Laura K
2017-04-13
The broad use of computer-supported collaborative-learning (CSCL) environments (e.g., instant messenger-chats, forums, blogs in online communities, and massive open online courses) calls for automated tools to support tutors in the time-consuming process of analyzing collaborative conversations. In this article, the authors propose and validate the cohesion network analysis (CNA) model, housed within the ReaderBench platform. CNA, grounded in theories of cohesion, dialogism, and polyphony, is similar to social network analysis (SNA), but it also considers text content and discourse structure and, uniquely, uses automated cohesion indices to generate the underlying discourse representation. Thus, CNA enhances the power of SNA by explicitly considering semantic cohesion while modeling interactions between participants. The primary purpose of this article is to describe CNA analysis and to provide a proof of concept, by using ten chat conversations in which multiple participants debated the advantages of CSCL technologies. Each participant's contributions were human-scored on the basis of their relevance in terms of covering the central concepts of the conversation. SNA metrics, applied to the CNA sociogram, were then used to assess the quality of each member's degree of participation. The results revealed that the CNA indices were strongly correlated to the human evaluations of the conversations. Furthermore, a stepwise regression analysis indicated that the CNA indices collectively predicted 54% of the variance in the human ratings of participation. The results provide promising support for the use of automated computational assessments of collaborative participation and of individuals' degrees of active involvement in CSCL environments.
Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics
Directory of Open Access Journals (Sweden)
Aaron M. Prescott
2016-08-01
Full Text Available Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. However, the dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB. In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB. Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms
A Social Network Analysis of Occupational Segregation
Buhai, Sebastian; van der Leij, Marco
2006-01-01
We develop a social network model of occupational segregation between different social groups, generated by the existence of positive inbreeding bias among individuals from the same group. If network referrals are important in getting a job, then expected inbreeding bias in the contact network structure induces different career choices for individuals from different social groups. This further translates into stable occupational segregation equilibria in the labour market. We derive the condi...
Model for Microcirculation Transportation Network Design
Directory of Open Access Journals (Sweden)
Qun Chen
2012-01-01
Full Text Available The idea of microcirculation transportation was proposed to shunt heavy traffic on arterial roads through branch roads. The optimization model for designing micro-circulation transportation network was developed to pick out branch roads as traffic-shunting channels and determine their required capacity, trying to minimize the total reconstruction expense and land occupancy subject to saturation and reconstruction space constraints, while accounting for the route choice behaviour of network users. Since micro-circulation transportation network design problem includes both discrete and continuous variables, a discretization method was developed to convert two groups of variables (discrete variables and continuous variables into one group of new discrete variables, transforming the mixed network design problem into a new kind of discrete network design problem with multiple values. The genetic algorithm was proposed to solve the new discrete network design problem. Finally a numerical example demonstrated the efficiency of the model and algorithm.
3rd International Conference on Network Analysis
Kalyagin, Valery; Pardalos, Panos
2014-01-01
This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications. Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale...
Modeling stochasticity in biochemical reaction networks
Constantino, P. H.; Vlysidis, M.; Smadbeck, P.; Kaznessis, Y. N.
2016-03-01
Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts.
Agent Based Modeling on Organizational Dynamics of Terrorist Network
Directory of Open Access Journals (Sweden)
Bo Li
2015-01-01
Full Text Available Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model are developed for modeling the hybrid relational structure and complex operational processes, respectively. To intuitively elucidate this method, the agent based modeling is used to simulate the terrorist network and test the performance in diverse scenarios. Based on the experimental results, we show how the changes of operational environments affect the development of terrorist organization in terms of its recovery and capacity to perform future tasks. The potential strategies are also discussed, which can be used to restrain the activities of terrorists.
Modelling of virtual production networks
Directory of Open Access Journals (Sweden)
2011-03-01
Full Text Available Nowadays many companies, especially small and medium-sized enterprises (SMEs, specialize in a limited field of production. It requires forming virtual production networks of cooperating enterprises to manufacture better, faster and cheaper. Apart from that, some production orders cannot be realized, because there is not a company of sufficient production potential. In this case the virtual production networks of cooperating companies can realize these production orders. These networks have larger production capacity and many different resources. Therefore it can realize many more production orders together than each of them separately. Such organization allows for executing high quality product. The maintenance costs of production capacity and used resources are not so high. In this paper a methodology of rapid prototyping of virtual production networks is proposed. It allows to execute production orders on time considered existing logistic constraints.
Modeling Epidemics Spreading on Social Contact Networks.
Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua
2015-09-01
Social contact networks and the way people interact with each other are the key factors that impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR) model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact networks. The results from both simulations and real data set conclude that the epidemics are more likely to outbreak on social contact networks with higher average degree. We also present some potential immunization strategies, such as random set immunization, dominating set immunization, and high degree set immunization to further prove the conclusion.
Social network analysis in medical education.
Isba, Rachel; Woolf, Katherine; Hanneman, Robert
2017-01-01
Humans are fundamentally social beings. The social systems within which we live our lives (families, schools, workplaces, professions, friendship groups) have a significant influence on our health, success and well-being. These groups can be characterised as networks and analysed using social network analysis. Social network analysis is a mainly quantitative method for analysing how relationships between individuals form and affect those individuals, but also how individual relationships build up into wider social structures that influence outcomes at a group level. Recent increases in computational power have increased the accessibility of social network analysis methods for application to medical education research. Social network analysis has been used to explore team-working, social influences on attitudes and behaviours, the influence of social position on individual success, and the relationship between social cohesion and power. This makes social network analysis theories and methods relevant to understanding the social processes underlying academic performance, workplace learning and policy-making and implementation in medical education contexts. Social network analysis is underused in medical education, yet it is a method that could yield significant insights that would improve experiences and outcomes for medical trainees and educators, and ultimately for patients. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Social Network Analysis and Critical Realism
DEFF Research Database (Denmark)
Buch-Hansen, Hubert
2014-01-01
Social network analysis ( SNA) is an increasingly popular approach that provides researchers with highly developed tools to map and analyze complexes of social relations. Although a number of network scholars have explicated the assumptions that underpin SNA, the approach has yet to be discussed ...
Modeling the interdependent network based on two-mode networks
An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian
2017-10-01
Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.
Harun, R.
2013-05-01
This research provides an opportunity of collaboration between urban planners and modellers by providing a clear theoretical foundations on the two most widely used urban land use models, and assessing the effectiveness of applying the models in urban planning context. Understanding urban land cover change is an essential element for sustainable urban development as it affects ecological functioning in urban ecosystem. Rapid urbanization due to growing inclination of people to settle in urban areas has increased the complexities in predicting that at what shape and size cities will grow. The dynamic changes in the spatial pattern of urban landscapes has exposed the policy makers and environmental scientists to great challenge. But geographic science has grown in symmetry to the advancements in computer science. Models and tools are developed to support urban planning by analyzing the causes and consequences of land use changes and project the future. Of all the different types of land use models available in recent days, it has been found by researchers that the most frequently used models are Cellular Automaton (CA) and Artificial Neural Networks (ANN) models. But studies have demonstrated that the existing land use models have not been able to meet the needs of planners and policy makers. There are two primary causes identified behind this prologue. First, there is inadequate understanding of the fundamental theories and application of the models in urban planning context i.e., there is a gap in communication between modellers and urban planners. Second, the existing models exclude many key drivers in the process of simplification of the complex urban system that guide urban spatial pattern. Thus the models end up being effective in assessing the impacts of certain land use policies, but cannot contribute in new policy formulation. This paper is an attempt to increase the knowledge base of planners on the most frequently used land use model and also assess the
A Social Network Analysis of Occupational Segregation
I.S. Buhai (Sebastian); M.J. van der Leij (Marco)
2006-01-01
textabstractThis paper proposes a simple social network model of occupational segregation, generated by the existence of inbreeding bias among individuals of the same social group. If network referrals are important in getting a job, then expected inbreeding bias in the social structure results in
A Model for Telestrok Network Evaluation
DEFF Research Database (Denmark)
Storm, Anna; Günzel, Franziska; Theiss, Stephan
2011-01-01
Different telestroke network concepts have been implemented worldwide to enable fast and efficient treatment of stroke patients in underserved rural areas. Networks could demonstrate the improvement in clinical outcome, but have so far excluded a cost-effectiveness analysis. With health economic ...
Spectrum-Based and Collaborative Network Topology Analysis and Visualization
Hu, Xianlin
2013-01-01
Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…
An endogenous model of the credit network
He, Jianmin; Sui, Xin; Li, Shouwei
2016-01-01
In this paper, an endogenous credit network model of firm-bank agents is constructed. The model describes the endogenous formation of firm-firm, firm-bank and bank-bank credit relationships. By means of simulations, the model is capable of showing some obvious similarities with empirical evidence found by other scholars: the upper-tail of firm size distribution can be well fitted with a power-law; the bank size distribution can be lognormally distributed with a power-law tail; the bank in-degrees of the interbank credit network as well as the firm-bank credit network fall into two-power-law distributions.
Tensor network models of multiboundary wormholes
Peach, Alex; Ross, Simon F.
2017-05-01
We study the entanglement structure of states dual to multiboundary wormhole geometries using tensor network models. Perfect and random tensor networks tiling the hyperbolic plane have been shown to provide good models of the entanglement structure in holography. We extend this by quotienting the plane by discrete isometries to obtain models of the multiboundary states. We show that there are networks where the entanglement structure is purely bipartite, extending results obtained in the large temperature limit. We analyse the entanglement structure in a range of examples.
Modeling Verdict Outcomes Using Social Network Measures: The Watergate and Caviar Network Cases
2016-01-01
Modelling criminal trial verdict outcomes using social network measures is an emerging research area in quantitative criminology. Few studies have yet analyzed which of these measures are the most important for verdict modelling or which data classification techniques perform best for this application. To compare the performance of different techniques in classifying members of a criminal network, this article applies three different machine learning classifiers–Logistic Regression, Naïve Bayes and Random Forest–with a range of social network measures and the necessary databases to model the verdicts in two real–world cases: the U.S. Watergate Conspiracy of the 1970’s and the now–defunct Canada–based international drug trafficking ring known as the Caviar Network. In both cases it was found that the Random Forest classifier did better than either Logistic Regression or Naïve Bayes, and its superior performance was statistically significant. This being so, Random Forest was used not only for classification but also to assess the importance of the measures. For the Watergate case, the most important one proved to be betweenness centrality while for the Caviar Network, it was the effective size of the network. These results are significant because they show that an approach combining machine learning with social network analysis not only can generate accurate classification models but also helps quantify the importance social network variables in modelling verdict outcomes. We conclude our analysis with a discussion and some suggestions for future work in verdict modelling using social network measures. PMID:26824351
Stochastic discrete model of karstic networks
Jaquet, O.; Siegel, P.; Klubertanz, G.; Benabderrhamane, H.
Karst aquifers are characterised by an extreme spatial heterogeneity that strongly influences their hydraulic behaviour and the transport of pollutants. These aquifers are particularly vulnerable to contamination because of their highly permeable networks of conduits. A stochastic model is proposed for the simulation of the geometry of karstic networks at a regional scale. The model integrates the relevant physical processes governing the formation of karstic networks. The discrete simulation of karstic networks is performed with a modified lattice-gas cellular automaton for a representative description of the karstic aquifer geometry. Consequently, more reliable modelling results can be obtained for the management and the protection of karst aquifers. The stochastic model was applied jointly with groundwater modelling techniques to a regional karst aquifer in France for the purpose of resolving surface pollution issues.
Designing Network-based Business Model Ontology
DEFF Research Database (Denmark)
Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz
2015-01-01
Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....
Complex Network Analysis of Guangzhou Metro
Directory of Open Access Journals (Sweden)
Yasir Tariq Mohmand
2015-11-01
Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.
Extending Stochastic Network Calculus to Loss Analysis
Directory of Open Access Journals (Sweden)
Chao Luo
2013-01-01
Full Text Available Loss is an important parameter of Quality of Service (QoS. Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor.
Modelling of word usage frequency dynamics using artificial neural network
Maslennikova, Yu S.; Bochkarev, V. V.; Voloskov, D. S.
2014-03-01
In this paper the method for modelling of word usage frequency time series is proposed. An artificial feedforward neural network was used to predict word usage frequencies. The neural network was trained using the maximum likelihood criterion. The Google Books Ngram corpus was used for the analysis. This database provides a large amount of data on frequency of specific word forms for 7 languages. Statistical modelling of word usage frequency time series allows finding optimal fitting and filtering algorithm for subsequent lexicographic analysis and verification of frequency trend models.
Constructing an Intelligent Patent Network Analysis Method
Directory of Open Access Journals (Sweden)
Chao-Chan Wu
2012-11-01
Full Text Available Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks of the current method, this study proposes a novel patent analysis method, called the intelligent patent network analysis method, to make a visual network with great precision. Based on artificial intelligence techniques, the proposed method provides an automated procedure for searching patent documents, extracting patent keywords, and determining the weight of each patent keyword in order to generate a sophisticated visualization of the patent network. This study proposes a detailed procedure for generating an intelligent patent network that is helpful for improving the efficiency and quality of patent analysis. Furthermore, patents in the field of Carbon Nanotube Backlight Unit (CNT-BLU were analyzed to verify the utility of the proposed method.
A graph model for opportunistic network coding
Sorour, Sameh
2015-08-12
© 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.
Constraints and entropy in a model of network evolution
Tee, Philip; Wakeman, Ian; Parisis, George; Dawes, Jonathan; Kiss, István Z.
2017-11-01
Barabási-Albert's "Scale Free" model is the starting point for much of the accepted theory of the evolution of real world communication networks. Careful comparison of the theory with a wide range of real world networks, however, indicates that the model is in some cases, only a rough approximation to the dynamical evolution of real networks. In particular, the exponent γ of the power law distribution of degree is predicted by the model to be exactly 3, whereas in a number of real world networks it has values between 1.2 and 2.9. In addition, the degree distributions of real networks exhibit cut offs at high node degree, which indicates the existence of maximal node degrees for these networks. In this paper we propose a simple extension to the "Scale Free" model, which offers better agreement with the experimental data. This improvement is satisfying, but the model still does not explain why the attachment probabilities should favor high degree nodes, or indeed how constraints arrive in non-physical networks. Using recent advances in the analysis of the entropy of graphs at the node level we propose a first principles derivation for the "Scale Free" and "constraints" model from thermodynamic principles, and demonstrate that both preferential attachment and constraints could arise as a natural consequence of the second law of thermodynamics.
Chieu, Vu Minh; Luengo, Vanda; Vadcard, Lucile; Tonetti, Jerome
2010-01-01
Cognitive approaches have been used for student modeling in intelligent tutoring systems (ITSs). Many of those systems have tackled fundamental subjects such as mathematics, physics, and computer programming. The change of the student's cognitive behavior over time, however, has not been considered and modeled systematically. Furthermore, the…
The specification of weight structures in network autocorrelation models of social influence
Leenders, Roger Th.A.J.
2002-01-01
Many physical and social phenomena are embedded within networks of interdependencies, the so-called 'context' of these phenomena. In network analysis, this type of process is typically modeled as a network autocorrelation model. Parameter estimates and inferences based on autocorrelation models,
Modeling and simulation of the USAVRE network and radiology operations
Martinez, Ralph; Bradford, Daniel Q.; Hatch, Jay; Sochan, John; Chimiak, William J.
1998-07-01
The U.S. Army Medical Command, lead by the Brooke Army Medical Center, has embarked on a visionary project. The U.S. Army Virtual Radiology Environment (USAVRE) is a CONUS-based network that connects all the Army's major medical centers and Regional Medical Commands (RMC). The purpose of the USAVRE is to improve the quality, access, and cost of radiology services in the Army via the use of state-of-the-art medical imaging, computer, and networking technologies. The USAVRE contains multimedia viewing workstations; database archive systems are based on a distributed computing environment using Common Object Request Broker Architecture (CORBA) middleware protocols. The underlying telecommunications network is an ATM-based backbone network that connects the RMC regional networks and PACS networks at medical centers and RMC clinics. This project is a collaborative effort between Army, university, and industry centers with expertise in teleradiology and Global PACS applications. This paper describes a model and simulation of the USAVRE for performance evaluation purposes. As a first step the results of a Technology Assessment and Requirements Analysis (TARA) -- an analysis of the workload in Army radiology departments, their equipment and their staffing. Using the TARA data and other workload information, we have developed a very detailed analysis of the workload and workflow patterns of our Medical Treatment Facilities. We are embarking on modeling and simulation strategies, which will form the foundation for the VRE network. The workload analysis is performed for each radiology modality in a RMC site. The workload consists of the number of examinations per modality, type of images per exam, number of images per exam, and size of images. The frequency for store and forward cases, second readings, and interactive consultation cases are also determined. These parameters are translated into the model described below. The model for the USAVRE is hierarchical in nature
Modelling and predicting biogeographical patterns in river networks
Directory of Open Access Journals (Sweden)
Sabela Lois
2016-04-01
Full Text Available Statistical analysis and interpretation of biogeographical phenomena in rivers is now possible using a spatially explicit modelling framework, which has seen significant developments in the past decade. I used this approach to identify a spatial extent (geostatistical range in which the abundance of the parasitic freshwater pearl mussel (Margaritifera margaritifera L. is spatially autocorrelated in river networks. I show that biomass and abundance of host fish are a likely explanation for the autocorrelation in mussel abundance within a 15-km spatial extent. The application of universal kriging with the empirical model enabled precise prediction of mussel abundance within segments of river networks, something that has the potential to inform conservation biogeography. Although I used a variety of modelling approaches in my thesis, I focus here on the details of this relatively new spatial stream network model, thus advancing the study of biogeographical patterns in river networks.
Mathematical model of highways network optimization
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.
Modeling trust context in networks
Adali, Sibel
2013-01-01
We make complex decisions every day, requiring trust in many different entities for different reasons. These decisions are not made by combining many isolated trust evaluations. Many interlocking factors play a role, each dynamically impacting the others.? In this brief, 'trust context' is defined as the system level description of how the trust evaluation process unfolds.Networks today are part of almost all human activity, supporting and shaping it. Applications increasingly incorporate new interdependencies and new trust contexts. Social networks connect people and organizations throughout
Multilayer motif analysis of brain networks
Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito
2017-04-01
In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.
Modeling pedestrian's conformity violation behavior: a complex network based approach.
Zhou, Zhuping; Hu, Qizhou; Wang, Wei
2014-01-01
Pedestrian injuries and fatalities present a problem all over the world. Pedestrian conformity violation behaviors, which lead to many pedestrian crashes, are common phenomena at the signalized intersections in China. The concepts and metrics of complex networks are applied to analyze the structural characteristics and evolution rules of pedestrian network about the conformity violation crossings. First, a network of pedestrians crossing the street is established, and the network's degree distributions are analyzed. Then, by using the basic idea of SI model, a spreading model of pedestrian illegal crossing behavior is proposed. Finally, through simulation analysis, pedestrian's illegal crossing behavior trends are obtained in different network structures and different spreading rates. Some conclusions are drawn: as the waiting time increases, more pedestrians will join in the violation crossing once a pedestrian crosses on red firstly. And pedestrian's conformity violation behavior will increase as the spreading rate increases.
Directory of Open Access Journals (Sweden)
Carlos E. Galván-Tejada
2016-01-01
Full Text Available This work presents a human activity recognition (HAR model based on audio features. The use of sound as an information source for HAR models represents a challenge because sound wave analyses generate very large amounts of data. However, feature selection techniques may reduce the amount of data required to represent an audio signal sample. Some of the audio features that were analyzed include Mel-frequency cepstral coefficients (MFCC. Although MFCC are commonly used in voice and instrument recognition, their utility within HAR models is yet to be confirmed, and this work validates their usefulness. Additionally, statistical features were extracted from the audio samples to generate the proposed HAR model. The size of the information is necessary to conform a HAR model impact directly on the accuracy of the model. This problem also was tackled in the present work; our results indicate that we are capable of recognizing a human activity with an accuracy of 85% using the HAR model proposed. This means that minimum computational costs are needed, thus allowing portable devices to identify human activities using audio as an information source.
Complex networks repair strategies: Dynamic models
Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang
2017-09-01
Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree 〈 k 〉 and enhances network invulnerability.
Dynamic analysis of biochemical network using complex network method
Directory of Open Access Journals (Sweden)
Wang Shuqiang
2015-01-01
Full Text Available In this study, the stochastic biochemical reaction model is proposed based on the law of mass action and complex network theory. The dynamics of biochemical reaction system is presented as a set of non-linear differential equations and analyzed at the molecular-scale. Given the initial state and the evolution rules of the biochemical reaction system, the system can achieve homeostasis. Compared with random graph, the biochemical reaction network has larger information capacity and is more efficient in information transmission. This is consistent with theory of evolution.
Fracture Network Modeling and GoldSim Simulation Support
杉田 健一郎; Dershowiz, W.
2003-01-01
During Heisei-14, Golder Associates provided support for JNC Tokai through data analysis and simulation of the MIU Underground Rock Laboratory, participation in Task 6 of the Aspo Task Force on Modelling of Groundwater Flow and Transport, and analysis of repository safety assessment technologies including cell networks for evaluation of the disturbed rock zone (DRZ) and total systems performance assessment (TSPA).
Complex networks and agent-based models of HIV epidemic
Zarrabi, N.
2013-01-01
In this thesis, we explore the limits of multi-scale models by looking into the HIV data present at different scales (from molecular and cellular to epidemiological scales). We build data-driven models and perform network analysis in order to understand the dynamics of HIV epidemic at different