WorldWideScience

Sample records for network analysis model

  1. The International Trade Network: weighted network analysis and modelling

    International Nuclear Information System (INIS)

    Bhattacharya, K; Mukherjee, G; Manna, S S; Saramäki, J; Kaski, K

    2008-01-01

    Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the 'rich-club' coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the world's trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN

  2. Models as Tools of Analysis of a Network Organisation

    Directory of Open Access Journals (Sweden)

    Wojciech Pająk

    2013-06-01

    Full Text Available The paper presents models which may be applied as tools of analysis of a network organisation. The starting point of the discussion is defining the following terms: supply chain and network organisation. Further parts of the paper present basic assumptions analysis of a network organisation. Then the study characterises the best known models utilised in analysis of a network organisation. The purpose of the article is to define the notion and the essence of network organizations and to present the models used for their analysis.

  3. Stochastic modeling and analysis of telecoms networks

    CERN Document Server

    Decreusefond, Laurent

    2012-01-01

    This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an

  4. PROJECT ACTIVITY ANALYSIS WITHOUT THE NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    S. Munapo

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper presents a new procedure for analysing and managing activity sequences in projects. The new procedure determines critical activities, critical path, start times, free floats, crash limits, and other useful information without the use of the network model. Even though network models have been successfully used in project management so far, there are weaknesses associated with the use. A network is not easy to generate, and dummies that are usually associated with it make the network diagram complex – and dummy activities have no meaning in the original project management problem. The network model for projects can be avoided while still obtaining all the useful information that is required for project management. What are required are the activities, their accurate durations, and their predecessors.

    AFRIKAANSE OPSOMMING: Die navorsing beskryf ’n nuwerwetse metode vir die ontleding en bestuur van die sekwensiële aktiwiteite van projekte. Die voorgestelde metode bepaal kritiese aktiwiteite, die kritieke pad, aanvangstye, speling, verhasing, en ander groothede sonder die gebruik van ’n netwerkmodel. Die metode funksioneer bevredigend in die praktyk, en omseil die administratiewe rompslomp van die tradisionele netwerkmodelle.

  5. Analysis and Comparison of Typical Models within Distribution Network Design

    DEFF Research Database (Denmark)

    Jørgensen, Hans Jacob; Larsen, Allan; Madsen, Oli B.G.

    This paper investigates the characteristics of typical optimisation models within Distribution Network Design. During the paper fourteen models known from the literature will be thoroughly analysed. Through this analysis a schematic approach to categorisation of distribution network design models...... for educational purposes. Furthermore, the paper can be seen as a practical introduction to network design modelling as well as a being an art manual or recipe when constructing such a model....

  6. Northern emporia and maritime networks. Modelling past communication using archaeological network analysis

    DEFF Research Database (Denmark)

    Sindbæk, Søren Michael

    2015-01-01

    preserve patterns of thisinteraction. Formal network analysis and modelling holds the potential to identify anddemonstrate such patterns, where traditional methods often prove inadequate. Thearchaeological study of communication networks in the past, however, calls for radically different analytical...... this is not a problem of network analysis, but network synthesis: theclassic problem of cracking codes or reconstructing black-box circuits. It is proposedthat archaeological approaches to network synthesis must involve a contextualreading of network data: observations arising from individual contexts, morphologies...

  7. Compartmentalization analysis using discrete fracture network models

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  8. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    Science.gov (United States)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  9. Trojan detection model based on network behavior analysis

    International Nuclear Information System (INIS)

    Liu Junrong; Liu Baoxu; Wang Wenjin

    2012-01-01

    Based on the analysis of existing Trojan detection technology, this paper presents a Trojan detection model based on network behavior analysis. First of all, we abstract description of the Trojan network behavior, then according to certain rules to establish the characteristic behavior library, and then use the support vector machine algorithm to determine whether a Trojan invasion. Finally, through the intrusion detection experiments, shows that this model can effectively detect Trojans. (authors)

  10. Analysis of organizational culture with social network models

    OpenAIRE

    Titov, S.

    2015-01-01

    Organizational culture is nowadays an object of numerous scientific papers. However, only marginal part of existing research attempts to use the formal models of organizational cultures. The lack of organizational culture models significantly limits the further research in this area and restricts the application of the theory to practice of organizational culture change projects. The article consists of general views on potential application of network models and social network analysis to th...

  11. Growth of cortical neuronal network in vitro: Modeling and analysis

    International Nuclear Information System (INIS)

    Lai, P.-Y.; Jia, L. C.; Chan, C. K.

    2006-01-01

    We present a detailed analysis and theoretical growth models to account for recent experimental data on the growth of cortical neuronal networks in vitro [Phys. Rev. Lett. 93, 088101 (2004)]. The experimentally observed synchronized firing frequency of a well-connected neuronal network is shown to be proportional to the mean network connectivity. The growth of the network is consistent with the model of an early enhanced growth of connection, but followed by a retarded growth once the synchronized cluster is formed. Microscopic models with dominant excluded volume interactions are consistent with the observed exponential decay of the mean connection probability as a function of the mean network connectivity. The biological implications of the growth model are also discussed

  12. Analysis and logical modeling of biological signaling transduction networks

    Science.gov (United States)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  13. Hybrid modeling and empirical analysis of automobile supply chain network

    Science.gov (United States)

    Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying

    2017-05-01

    Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.

  14. Modelling, synthesis and analysis of biorefinery networks

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona

    for the conversion of biomass into chemicals, fuels and energy, because they have the potential to maximize biomass value while reducing emissions. The design of biorefinery networks is a complex decisionmaking problem that involves the selection of feedstocks, processing technologies, products, geographical...... locations, and operating conditions, among others. Unlike petroleumbased processing networks, biorefineries rely on feedstocks that are nonhomogeneous across geographical areas in terms of their availability, type and properties. For this reason, the performance of biorefinery networks depends...... of reactions to convert available biomassbased feedstocks into desired products, the selection of processing routes and technologies from a large set of alternatives, or the generation of hybrid technologies through process intensification. Systematic process synthesis and design methods have been developed...

  15. Modeling and Analysis of New Products Diffusion on Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Shuping Li

    2014-01-01

    Full Text Available We present a heterogeneous networks model with the awareness stage and the decision-making stage to explain the process of new products diffusion. If mass media is neglected in the decision-making stage, there is a threshold whether the innovation diffusion is successful or not, or else it is proved that the network model has at least one positive equilibrium. For networks with the power-law degree distribution, numerical simulations confirm analytical results, and also at the same time, by numerical analysis of the influence of the network structure and persuasive advertisements on the density of adopters, we give two different products propagation strategies for two classes of nodes in scale-free networks.

  16. Using structural equation modeling for network meta-analysis.

    Science.gov (United States)

    Tu, Yu-Kang; Wu, Yun-Chun

    2017-07-14

    Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison

  17. An effective convolutional neural network model for Chinese sentiment analysis

    Science.gov (United States)

    Zhang, Yu; Chen, Mengdong; Liu, Lianzhong; Wang, Yadong

    2017-06-01

    Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo's sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.

  18. Analysis of deterministic cyclic gene regulatory network models with delays

    CERN Document Server

    Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian

    2015-01-01

    This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.

  19. Analysis and Comparison of Typical Models within Distribution Network Design

    DEFF Research Database (Denmark)

    Jørgensen, Hans Jacob; Larsen, Allan; Madsen, Oli B.G.

    Efficient and cost effective transportation and logistics plays a vital role in the supply chains of the modern world’s manufacturers. Global distribution of goods is a very complicated matter as it involves many different distinct planning problems. The focus of this presentation is to demonstrate...... a number of important issues which have been identified when addressing the Distribution Network Design problem from a modelling angle. More specifically, we present an analysis of the research which has been performed in utilizing operational research in developing and optimising distribution systems....

  20. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  1. Multilayer modeling and analysis of human brain networks

    Science.gov (United States)

    2017-01-01

    Abstract Understanding how the human brain is structured, and how its architecture is related to function, is of paramount importance for a variety of applications, including but not limited to new ways to prevent, deal with, and cure brain diseases, such as Alzheimer’s or Parkinson’s, and psychiatric disorders, such as schizophrenia. The recent advances in structural and functional neuroimaging, together with the increasing attitude toward interdisciplinary approaches involving computer science, mathematics, and physics, are fostering interesting results from computational neuroscience that are quite often based on the analysis of complex network representation of the human brain. In recent years, this representation experienced a theoretical and computational revolution that is breaching neuroscience, allowing us to cope with the increasing complexity of the human brain across multiple scales and in multiple dimensions and to model structural and functional connectivity from new perspectives, often combined with each other. In this work, we will review the main achievements obtained from interdisciplinary research based on magnetic resonance imaging and establish de facto, the birth of multilayer network analysis and modeling of the human brain. PMID:28327916

  2. Steady state analysis of Boolean molecular network models via model reduction and computational algebra.

    Science.gov (United States)

    Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard

    2014-06-26

    A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for

  3. A Network Analysis Model for Selecting Sustainable Technology

    Directory of Open Access Journals (Sweden)

    Sangsung Park

    2015-09-01

    Full Text Available Most companies develop technologies to improve their competitiveness in the marketplace. Typically, they then patent these technologies around the world in order to protect their intellectual property. Other companies may use patented technologies to develop new products, but must pay royalties to the patent holders or owners. Should they fail to do so, this can result in legal disputes in the form of patent infringement actions between companies. To avoid such situations, companies attempt to research and develop necessary technologies before their competitors do so. An important part of this process is analyzing existing patent documents in order to identify emerging technologies. In such analyses, extracting sustainable technology from patent data is important, because sustainable technology drives technological competition among companies and, thus, the development of new technologies. In addition, selecting sustainable technologies makes it possible to plan their R&D (research and development efficiently. In this study, we propose a network model that can be used to select the sustainable technology from patent documents, based on the centrality and degree of a social network analysis. To verify the performance of the proposed model, we carry out a case study using actual patent data from patent databases.

  4. Numerical Analysis of Modeling Based on Improved Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Shao Jie

    2014-01-01

    Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.

  5. A modal analysis of carbon nanotube using elastic network model

    International Nuclear Information System (INIS)

    Kim, Min Hyeok; Seo, Sang Jae; Lim, Byeong Soo; Choi, Jae Boong; Kim, Moon Ki; Liu, Wing Kam

    2012-01-01

    Although it is widely known that both size and chirality play significant roles in vibration behaviors of single walled carbon nanotubes (SWCNTs), there haven't been yet enough studies specifying the relationship between structure and vibration mode shape of SWCNTs. We have analyzed the chirality and length dependence of SWCNT by using normal mode analysis based elastic network model in which all interatomic interactions of the given SWCNTs structure are represented by a network of linear spring connections. As this method requires relatively short computation time compared to molecular dynamics simulation, we can efficiently analyze vibration behavior of SWCNTs. To ensure the relationship between SWCNT structure and its vibration mode shapes, we simulated more than one hundred SWCNTs having different types of chirality and length. Results indicated that the first two major mode shapes are bending and breathing. The minimum length of nanotube for maintaining the bending mode does not depend on chirality but on its diameter. Our simulations pointed out that there is a critical aspect ratio between diameter and length to determine vibration mode shapes, and it can be empirically formulated as a function of nanotube length and diameter. Therefore, uniformity control is the most important premise in order to utilize vibration features of SWCNTs. It is also expected that the obtained vibration aspect will play an important role in designing nanotube based devices such as resonators and sensors more accurately

  6. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach.

    Science.gov (United States)

    Senior, Alistair M; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  7. A Fluid Model for Performance Analysis in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Coupechoux Marceau

    2010-01-01

    Full Text Available We propose a new framework to study the performance of cellular networks using a fluid model and we derive from this model analytical formulas for interference, outage probability, and spatial outage probability. The key idea of the fluid model is to consider the discrete base station (BS entities as a continuum of transmitters that are spatially distributed in the network. This model allows us to obtain simple analytical expressions to reveal main characteristics of the network. In this paper, we focus on the downlink other-cell interference factor (OCIF, which is defined for a given user as the ratio of its outer cell received power to its inner cell received power. A closed-form formula of the OCIF is provided in this paper. From this formula, we are able to obtain the global outage probability as well as the spatial outage probability, which depends on the location of a mobile station (MS initiating a new call. Our analytical results are compared to Monte Carlo simulations performed in a traditional hexagonal network. Furthermore, we demonstrate an application of the outage probability related to cell breathing and densification of cellular networks.

  8. Modeling and analysis of mobility management in mobile communication networks.

    Science.gov (United States)

    Baek, Woon Min; Yoon, Ji Hyun; Kim, Chesoong

    2014-01-01

    Many strategies have been proposed to reduce the mobility management cost in mobile communication networks. This paper studies the zone-based registration methods that have been adopted by most mobile communication networks. We focus on two special zone-based registration methods, called two-zone registration (2Z) and two-zone registration with implicit registration by outgoing calls (2Zi). We provide a new mathematical model to analyze the exact performance of 2Z and 2Zi. We also present various numerical results, to compare the performance of 2Zi with those of 2Z and one-zone registration (1Z), and show that 2Zi is superior to 2Z as well as 1Z in most cases.

  9. A Pruning Neural Network Model in Credit Classification Analysis

    Directory of Open Access Journals (Sweden)

    Yajiao Tang

    2018-01-01

    Full Text Available Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency.

  10. A Simplified Network Model for Travel Time Reliability Analysis in a Road Network

    Directory of Open Access Journals (Sweden)

    Kenetsu Uchida

    2017-01-01

    Full Text Available This paper proposes a simplified network model which analyzes travel time reliability in a road network. A risk-averse driver is assumed in the simplified model. The risk-averse driver chooses a path by taking into account both a path travel time variance and a mean path travel time. The uncertainty addressed in this model is that of traffic flows (i.e., stochastic demand flows. In the simplified network model, the path travel time variance is not calculated by considering all travel time covariance between two links in the network. The path travel time variance is calculated by considering all travel time covariance between two adjacent links in the network. Numerical experiments are carried out to illustrate the applicability and validity of the proposed model. The experiments introduce the path choice behavior of a risk-neutral driver and several types of risk-averse drivers. It is shown that the mean link flows calculated by introducing the risk-neutral driver differ as a whole from those calculated by introducing several types of risk-averse drivers. It is also shown that the mean link flows calculated by the simplified network model are almost the same as the flows calculated by using the exact path travel time variance.

  11. Modeling, Analysis, Simulation, and Synthesis of Biomolecular Networks

    National Research Council Canada - National Science Library

    Ruben, Harvey; Kumar, Vijay; Sokolsky, Oleg

    2006-01-01

    ...) a first example of reachability analysis applied to a biomolecular system (lactose induction), 4) a model of tetracycline resistance that discriminates between two possible mechanisms for tetracycline diffusion through the cell membrane, and 5...

  12. Verification of temporal-causal network models by mathematical analysis

    Directory of Open Access Journals (Sweden)

    Jan Treur

    2016-04-01

    Full Text Available Abstract Usually dynamic properties of models can be analysed by conducting simulation experiments. But sometimes, as a kind of prediction properties can also be found by calculations in a mathematical manner, without performing simulations. Examples of properties that can be explored in such a manner are: whether some values for the variables exist for which no change occurs (stationary points or equilibria, and how such values may depend on the values of the parameters of the model and/or the initial values for the variables whether certain variables in the model converge to some limit value (equilibria and how this may depend on the values of the parameters of the model and/or the initial values for the variables whether or not certain variables will show monotonically increasing or decreasing values over time (monotonicity how fast a convergence to a limit value takes place (convergence speed whether situations occur in which no convergence takes place but in the end a specific sequence of values is repeated all the time (limit cycle Such properties found in an analytic mathematical manner can be used for verification of the model by checking them for the values observed in simulation experiments. If one of these properties is not fulfilled, then there will be some error in the implementation of the model. In this paper some methods to analyse such properties of dynamical models will be described and illustrated for the Hebbian learning model, and for dynamic connection strengths in social networks. The properties analysed by the methods discussed cover equilibria, increasing or decreasing trends, recurring patterns (limit cycles, and speed of convergence to equilibria.

  13. Unified Tractable Model for Large-Scale Networks Using Stochastic Geometry: Analysis and Design

    KAUST Repository

    Afify, Laila H.

    2016-01-01

    about the interferers symbols can be approximated via the Gaussian signaling approach. The developed mathematical model presents twofold analysis unification for uplink and downlink cellular networks literature. It aligns the tangible decoding error

  14. Multivariate Analysis and Modeling of Sediment Pollution Using Neural Network Models and Geostatistics

    Science.gov (United States)

    Golay, Jean; Kanevski, Mikhaïl

    2013-04-01

    The present research deals with the exploration and modeling of a complex dataset of 200 measurement points of sediment pollution by heavy metals in Lake Geneva. The fundamental idea was to use multivariate Artificial Neural Networks (ANN) along with geostatistical models and tools in order to improve the accuracy and the interpretability of data modeling. The results obtained with ANN were compared to those of traditional geostatistical algorithms like ordinary (co)kriging and (co)kriging with an external drift. Exploratory data analysis highlighted a great variety of relationships (i.e. linear, non-linear, independence) between the 11 variables of the dataset (i.e. Cadmium, Mercury, Zinc, Copper, Titanium, Chromium, Vanadium and Nickel as well as the spatial coordinates of the measurement points and their depth). Then, exploratory spatial data analysis (i.e. anisotropic variography, local spatial correlations and moving window statistics) was carried out. It was shown that the different phenomena to be modeled were characterized by high spatial anisotropies, complex spatial correlation structures and heteroscedasticity. A feature selection procedure based on General Regression Neural Networks (GRNN) was also applied to create subsets of variables enabling to improve the predictions during the modeling phase. The basic modeling was conducted using a Multilayer Perceptron (MLP) which is a workhorse of ANN. MLP models are robust and highly flexible tools which can incorporate in a nonlinear manner different kind of high-dimensional information. In the present research, the input layer was made of either two (spatial coordinates) or three neurons (when depth as auxiliary information could possibly capture an underlying trend) and the output layer was composed of one (univariate MLP) to eight neurons corresponding to the heavy metals of the dataset (multivariate MLP). MLP models with three input neurons can be referred to as Artificial Neural Networks with EXternal

  15. Unified Tractable Model for Large-Scale Networks Using Stochastic Geometry: Analysis and Design

    KAUST Repository

    Afify, Laila H.

    2016-12-01

    The ever-growing demands for wireless technologies necessitate the evolution of next generation wireless networks that fulfill the diverse wireless users requirements. However, upscaling existing wireless networks implies upscaling an intrinsic component in the wireless domain; the aggregate network interference. Being the main performance limiting factor, it becomes crucial to develop a rigorous analytical framework to accurately characterize the out-of-cell interference, to reap the benefits of emerging networks. Due to the different network setups and key performance indicators, it is essential to conduct a comprehensive study that unifies the various network configurations together with the different tangible performance metrics. In that regard, the focus of this thesis is to present a unified mathematical paradigm, based on Stochastic Geometry, for large-scale networks with different antenna/network configurations. By exploiting such a unified study, we propose an efficient automated network design strategy to satisfy the desired network objectives. First, this thesis studies the exact aggregate network interference characterization, by accounting for each of the interferers signals in the large-scale network. Second, we show that the information about the interferers symbols can be approximated via the Gaussian signaling approach. The developed mathematical model presents twofold analysis unification for uplink and downlink cellular networks literature. It aligns the tangible decoding error probability analysis with the abstract outage probability and ergodic rate analysis. Furthermore, it unifies the analysis for different antenna configurations, i.e., various multiple-input multiple-output (MIMO) systems. Accordingly, we propose a novel reliable network design strategy that is capable of appropriately adjusting the network parameters to meet desired design criteria. In addition, we discuss the diversity-multiplexing tradeoffs imposed by differently favored

  16. Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    OpenAIRE

    Goel, Shivali; Abawajy, Jemal H.; Kim, Tai-hoon

    2010-01-01

    Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied rece...

  17. Modeling Psychological Attributes in Psychology – An Epistemological Discussion: Network Analysis vs. Latent Variables

    Science.gov (United States)

    Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc

    2017-01-01

    Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes. PMID:28572780

  18. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios

    Science.gov (United States)

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-01-01

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN. PMID:26593919

  19. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios.

    Science.gov (United States)

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-11-17

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.

  20. Analysis for Ad Hoc Network Attack-Defense Based on Stochastic Game Model

    Directory of Open Access Journals (Sweden)

    Yuanjie LI

    2014-06-01

    Full Text Available The attack actions analysis for Ad Hoc networks can provide a reference for the design security mechanisms. This paper presents an analysis method of security of Ad Hoc networks based on Stochastic Game Nets (SGN. This method can establish a SGN model of Ad Hoc networks and calculate to get the Nash equilibrium strategy. After transforming the SGN model into a continuous-time Markov Chain (CTMC, the security of Ad Hoc networks can be evaluated and analyzed quantitatively by calculating the stationary probability of CTMC. Finally, the Matlab simulation results show that the probability of successful attack is related to the attack intensity and expected payoffs, but not attack rate.

  1. Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models

    Science.gov (United States)

    Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.

    2013-12-01

    Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.

  2. Modeling and Analysis of Modal Switching in Networked Transport Systems

    International Nuclear Information System (INIS)

    Hante, Falk M.; Leugering, Guenter; Seidman, Thomas I.

    2009-01-01

    We consider networked transport systems defined on directed graphs: the dynamics on the edges correspond to solutions of transport equations with space dimension one. In addition to the graph setting, a major consideration is the introduction and propagation of discontinuities in the solutions when the system may discontinuously switch modes, naturally or as a hybrid control. This kind of switching has been extensively studied for ordinary differential equations, but not much so far for systems governed by partial differential equations. In particular, we give well-posedness results for switching as a control, both in finite horizon open loop operation and as feedback based on sensor measurements in the system

  3. Space Surveillance Network and Analysis Model (SSNAM) Performance Improvements

    National Research Council Canada - National Science Library

    Butkus, Albert; Roe, Kevin; Mitchell, Barbara L; Payne, Timothy

    2007-01-01

    ... capacity by sensor, models for sensors yet to be created, user defined weather conditions, National Aeronautical and Space Administration catalog growth model including space debris, and solar flux just to name a few...

  4. Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity

    International Nuclear Information System (INIS)

    Stern, R.E.; Song, J.; Work, D.B.

    2017-01-01

    The two-terminal reliability problem in system reliability analysis is known to be computationally intractable for large infrastructure graphs. Monte Carlo techniques can estimate the probability of a disconnection between two points in a network by selecting a representative sample of network component failure realizations and determining the source-terminal connectivity of each realization. To reduce the runtime required for the Monte Carlo approximation, this article proposes an approximate framework in which the connectivity check of each sample is estimated using a machine-learning-based classifier. The framework is implemented using both a support vector machine (SVM) and a logistic regression based surrogate model. Numerical experiments are performed on the California gas distribution network using the epicenter and magnitude of the 1989 Loma Prieta earthquake as well as randomly-generated earthquakes. It is shown that the SVM and logistic regression surrogate models are able to predict network connectivity with accuracies of 99% for both methods, and are 1–2 orders of magnitude faster than using a Monte Carlo method with an exact connectivity check. - Highlights: • Surrogate models of network connectivity are developed by machine-learning algorithms. • Developed surrogate models can reduce the runtime required for Monte Carlo simulations. • Support vector machine and logistic regressions are employed to develop surrogate models. • Numerical example of California gas distribution network demonstrate the proposed approach. • The developed models have accuracies 99%, and are 1–2 orders of magnitude faster than MCS.

  5. Application of Thermal Network Model to Transient Thermal Analysis of Power Electronic Package Substrate

    Directory of Open Access Journals (Sweden)

    Masaru Ishizuka

    2011-01-01

    Full Text Available In recent years, there is a growing demand to have smaller and lighter electronic circuits which have greater complexity, multifunctionality, and reliability. High-density multichip packaging technology has been used in order to meet these requirements. The higher the density scale is, the larger the power dissipation per unit area becomes. Therefore, in the designing process, it has become very important to carry out the thermal analysis. However, the heat transport model in multichip modules is very complex, and its treatment is tedious and time consuming. This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.

  6. Communicating systems with UML 2 modeling and analysis of network protocols

    CERN Document Server

    Barrera, David Garduno

    2013-01-01

    This book gives a practical approach to modeling and analyzing communication protocols using UML 2. Network protocols are always presented with a point of view focusing on partial mechanisms and starting models. This book aims at giving the basis needed for anybody to model and validate their own protocols. It follows a practical approach and gives many examples for the description and analysis of well known basic network mechanisms for protocols.The book firstly shows how to describe and validate the main protocol issues (such as synchronization problems, client-server interactions, layer

  7. Incorporating prior information into differential network analysis using non-paranormal graphical models.

    Science.gov (United States)

    Zhang, Xiao-Fei; Ou-Yang, Le; Yan, Hong

    2017-08-15

    Understanding how gene regulatory networks change under different cellular states is important for revealing insights into network dynamics. Gaussian graphical models, which assume that the data follow a joint normal distribution, have been used recently to infer differential networks. However, the distributions of the omics data are non-normal in general. Furthermore, although much biological knowledge (or prior information) has been accumulated, most existing methods ignore the valuable prior information. Therefore, new statistical methods are needed to relax the normality assumption and make full use of prior information. We propose a new differential network analysis method to address the above challenges. Instead of using Gaussian graphical models, we employ a non-paranormal graphical model that can relax the normality assumption. We develop a principled model to take into account the following prior information: (i) a differential edge less likely exists between two genes that do not participate together in the same pathway; (ii) changes in the networks are driven by certain regulator genes that are perturbed across different cellular states and (iii) the differential networks estimated from multi-view gene expression data likely share common structures. Simulation studies demonstrate that our method outperforms other graphical model-based algorithms. We apply our method to identify the differential networks between platinum-sensitive and platinum-resistant ovarian tumors, and the differential networks between the proneural and mesenchymal subtypes of glioblastoma. Hub nodes in the estimated differential networks rediscover known cancer-related regulator genes and contain interesting predictions. The source code is at https://github.com/Zhangxf-ccnu/pDNA. szuouyl@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Friendship Dissolution Within Social Networks Modeled Through Multilevel Event History Analysis

    Science.gov (United States)

    Dean, Danielle O.; Bauer, Daniel J.; Prinstein, Mitchell J.

    2018-01-01

    A social network perspective can bring important insight into the processes that shape human behavior. Longitudinal social network data, measuring relations between individuals over time, has become increasingly common—as have the methods available to analyze such data. A friendship duration model utilizing discrete-time multilevel survival analysis with a multiple membership random effect structure is developed and applied here to study the processes leading to undirected friendship dissolution within a larger social network. While the modeling framework is introduced in terms of understanding friendship dissolution, it can be used to understand microlevel dynamics of a social network more generally. These models can be fit with standard generalized linear mixed-model software, after transforming the data to a pair-period data set. An empirical example highlights how the model can be applied to understand the processes leading to friendship dissolution between high school students, and a simulation study is used to test the use of the modeling framework under representative conditions that would be found in social network data. Advantages of the modeling framework are highlighted, and potential limitations and future directions are discussed. PMID:28463022

  9. Modeling and Analysis of Information Attack in Computer Networks

    National Research Council Canada - National Science Library

    Pepyne, David

    2003-01-01

    .... Such attacks are particularly problematic because they take place in a "virtual cyber world" that lacks the social, economic, legal, and physical barriers and protections that control and limit crime in the material world. Research outcomes include basic theory, a modeling framework for Internet worms and email viruses, a sensor for user profiling, and a simple protocol for enhancing wireless security.

  10. Neutral space analysis for a Boolean network model of the fission yeast cell cycle network

    Directory of Open Access Journals (Sweden)

    Gonzalo A Ruz

    2014-01-01

    Full Text Available BACKGROUND: Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle. RESULTS: Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G1 fixed point was found for deterministic updating schemes. CONCLUSIONS: In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the

  11. Application of the load flow and random flow models for the analysis of power transmission networks

    International Nuclear Information System (INIS)

    Zio, Enrico; Piccinelli, Roberta; Delfanti, Maurizio; Olivieri, Valeria; Pozzi, Mauro

    2012-01-01

    In this paper, the classical load flow model and the random flow model are considered for analyzing the performance of power transmission networks. The analysis concerns both the system performance and the importance of the different system elements; this latter is computed by power flow and random walk betweenness centrality measures. A network system from the literature is analyzed, representing a simple electrical power transmission network. The results obtained highlight the differences between the LF “global approach” to flow dispatch and the RF local approach of randomized node-to-node load transfer. Furthermore, computationally the LF model is less consuming than the RF model but problems of convergence may arise in the LF calculation.

  12. Bayesian error analysis model for reconstructing transcriptional regulatory networks

    OpenAIRE

    Sun, Ning; Carroll, Raymond J.; Zhao, Hongyu

    2006-01-01

    Transcription regulation is a fundamental biological process, and extensive efforts have been made to dissect its mechanisms through direct biological experiments and regulation modeling based on physical–chemical principles and mathematical formulations. Despite these efforts, transcription regulation is yet not well understood because of its complexity and limitations in biological experiments. Recent advances in high throughput technologies have provided substantial amounts and diverse typ...

  13. Collaborative networks: Reference modeling

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of

  14. Individuals' spatial social network choice: model-based analysis of leisure-contact selection

    NARCIS (Netherlands)

    Kowald, M.; Arentze, Theo A.; Axhausen, K.W.

    2015-01-01

    Leisure travel holds an important share of the overall amount of travel. However, efforts in transport planning to model and explain leisure travel have been rather limited for a long time. Only recently, a subcommunity of researchers began to use the methods of social network analysis. Existing

  15. Mathematical Modeling and Analysis Methodology for Opportunistic Routing in Wireless Multihop Networks

    Directory of Open Access Journals (Sweden)

    Wang Dongyang

    2015-01-01

    Full Text Available Modeling the forwarding feature and analyzing the performance theoretically for opportunistic routing in wireless multihop network are of great challenge. To address this issue, a generalized geometric distribution (GGD is firstly proposed. Based on the GGD, the forwarding probability between any two forwarding candidates could be calculated and it can be proved that the successful delivery rate after several transmissions of forwarding candidates is irrelevant to the priority rule. Then, a discrete-time queuing model is proposed to analyze mean end-to-end delay (MED of a regular opportunistic routing with the knowledge of the forwarding probability. By deriving the steady-state joint generating function of the queue length distribution, MED for directly connected networks and some special cases of nondirectly connected networks could be ultimately determined. Besides, an approximation approach is proposed to assess MED for the general cases in the nondirectly connected networks. By comparing with a large number of simulation results, the rationality of the analysis is validated. Both the analysis and simulation results show that MED varies with the number of forwarding candidates, especially when it comes to connected networks; MED increases more rapidly than that in nondirectly connected networks with the increase of the number of forwarding candidates.

  16. COMBINING PCA ANALYSIS AND ARTIFICIAL NEURAL NETWORKS IN MODELLING ENTREPRENEURIAL INTENTIONS OF STUDENTS

    Directory of Open Access Journals (Sweden)

    Marijana Zekić-Sušac

    2013-02-01

    Full Text Available Despite increased interest in the entrepreneurial intentions and career choices of young adults, reliable prediction models are yet to be developed. Two nonparametric methods were used in this paper to model entrepreneurial intentions: principal component analysis (PCA and artificial neural networks (ANNs. PCA was used to perform feature extraction in the first stage of modelling, while artificial neural networks were used to classify students according to their entrepreneurial intentions in the second stage. Four modelling strategies were tested in order to find the most efficient model. Dataset was collected in an international survey on entrepreneurship self-efficacy and identity. Variables describe students’ demographics, education, attitudes, social and cultural norms, self-efficacy and other characteristics. The research reveals benefits from the combination of the PCA and ANNs in modeling entrepreneurial intentions, and provides some ideas for further research.

  17. Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Mahadevan Radhakrishnan

    2010-05-01

    Full Text Available Abstract Background Geobacter sulfurreducens is a member of the Geobacter species, which are capable of oxidation of organic waste coupled to the reduction of heavy metals and electrode with applications in bioremediation and bioenergy generation. While the metabolism of this organism has been studied through the development of a stoichiometry based genome-scale metabolic model, the associated regulatory network has not yet been well studied. In this manuscript, we report on the implementation of a thermodynamics based metabolic flux model for Geobacter sulfurreducens. We use this updated model to identify reactions that are subject to regulatory control in the metabolic network of G. sulfurreducens using thermodynamic variability analysis. Findings As a first step, we have validated the regulatory sites and bottleneck reactions predicted by the thermodynamic flux analysis in E. coli by evaluating the expression ranges of the corresponding genes. We then identified ten reactions in the metabolic network of G. sulfurreducens that are predicted to be candidates for regulation. We then compared the free energy ranges for these reactions with the corresponding gene expression fold changes under conditions of different environmental and genetic perturbations and show that the model predictions of regulation are consistent with data. In addition, we also identify reactions that operate close to equilibrium and show that the experimentally determined exchange coefficient (a measure of reversibility is significant for these reactions. Conclusions Application of the thermodynamic constraints resulted in identification of potential bottleneck reactions not only from the central metabolism but also from the nucleotide and amino acid subsystems, thereby showing the highly coupled nature of the thermodynamic constraints. In addition, thermodynamic variability analysis serves as a valuable tool in estimating the ranges of ΔrG' of every reaction in the model

  18. FAST TCP over optical burst switched networks: Modeling and stability analysis

    KAUST Repository

    Shihada, Basem

    2013-04-01

    FAST TCP is important for promoting data-intensive applications since it can cleverly react to both packet loss and delay for detecting network congestion. This paper provides a continuous time model and extensive stability analysis of FAST TCP congestion-control mechanism in bufferless Optical Burst Switched Networks (OBS). The paper first shows that random burst contentions are essential to stabilize the network, but cause throughput degradation in FAST TCP flows when a burst with all the packets from a single round is dropped. Second, it shows that FAST TCP is vulnerable to burst delay and fails to detect network congestion due to the little variation of round-trip time, thus unstable. Finally it shows that introducing extra delays by implementing burst retransmission stabilizes FAST TCP over OBS. The paper proves that FAST TCP is not stable over barebone OBS. However, it is locally, exponentially, and asymptotically stable over OBS with burst retransmission.

  19. DESIGN AND ANALYSIS OF THE SNS CCL HOT MODEL WATER COOLING SYSTEM USING THE SINDA/FLUINT NETWORK MODELING TOOL

    Energy Technology Data Exchange (ETDEWEB)

    C. AMMERMAN; J. BERNARDIN

    1999-11-01

    This report presents results for design and analysis of the hot model water cooling system for the Spallation Neutron Source (SNS) coupled-cavity linac (CCL). The hot model, when completed, will include segments for both the CCL and coupled-cavity drift-tube linac (CCDTL). The scope of this report encompasses the modeling effort for the CCL portion of the hot model. This modeling effort employed the SINDA/FLUINT network modeling tool. This report begins with an introduction of the SNS hot model and network modeling using SINDA/FLUINT. Next, the development and operation of the SINDA/FLUINT model are discussed. Finally, the results of the SINDA/FLUINT modeling effort are presented and discussed.

  20. Network modeling and analysis technique for the evaluation of nuclear safeguards systems effectiveness

    International Nuclear Information System (INIS)

    Grant, F.H. III; Miner, R.J.; Engi, D.

    1978-01-01

    Nuclear safeguards systems are concerned with the physical protection and control of nuclear materials. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of safeguards system effectiveness. This is achieved through a standard set of symbols which characterize the various elements of safeguards systems and an analysis program to execute simulation models built using the SNAP symbology. The reports provided by the SNAP simulation program enable analysts to evaluate existing sites as well as alternative design possibilities. This paper describes the SNAP modeling technique and provides an example illustrating its use

  1. Network modeling and analysis technique for the evaluation of nuclear safeguards systems effectiveness

    International Nuclear Information System (INIS)

    Grant, F.H. III; Miner, R.J.; Engi, D.

    1979-02-01

    Nuclear safeguards systems are concerned with the physical protection and control of nuclear materials. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of safeguards system effectiveness. This is achieved through a standard set of symbols which characterize the various elements of safeguards systems and an analysis program to execute simulation models built using the SNAP symbology. The reports provided by the SNAP simulation program enable analysts to evaluate existing sites as well as alternative design possibilities. This paper describes the SNAP modeling technique and provides an example illustrating its use

  2. Risk analysis of urban gas pipeline network based on improved bow-tie model

    Science.gov (United States)

    Hao, M. J.; You, Q. J.; Yue, Z.

    2017-11-01

    Gas pipeline network is a major hazard source in urban areas. In the event of an accident, there could be grave consequences. In order to understand more clearly the causes and consequences of gas pipeline network accidents, and to develop prevention and mitigation measures, the author puts forward the application of improved bow-tie model to analyze risks of urban gas pipeline network. The improved bow-tie model analyzes accident causes from four aspects: human, materials, environment and management; it also analyzes the consequences from four aspects: casualty, property loss, environment and society. Then it quantifies the causes and consequences. Risk identification, risk analysis, risk assessment, risk control, and risk management will be clearly shown in the model figures. Then it can suggest prevention and mitigation measures accordingly to help reduce accident rate of gas pipeline network. The results show that the whole process of an accident can be visually investigated using the bow-tie model. It can also provide reasons for and predict consequences of an unfortunate event. It is of great significance in order to analyze leakage failure of gas pipeline network.

  3. Information-Theoretic Performance Analysis of Sensor Networks via Markov Modeling of Time Series Data.

    Science.gov (United States)

    Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K

    2018-06-01

    This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.

  4. Modeling and Analysis of Cellular Networks using Stochastic Geometry: A Tutorial

    KAUST Repository

    Elsawy, Hesham; Salem, Ahmed Sultan; Alouini, Mohamed-Slim; Win, Moe Z.

    2016-01-01

    This paper presents a tutorial on stochastic geometry (SG) based analysis for cellular networks. This tutorial is distinguished by its depth with respect to wireless communication details and its focus on cellular networks. The paper starts by modeling and analyzing the baseband interference in a baseline single-tier downlink cellular network with single antenna base stations and universal frequency reuse. Then, it characterizes signal-to-interference-plus-noise-ratio (SINR) and its related performance metrics. In particular, a unified approach to conduct error probability, outage probability, and transmission rate analysis is presented. Although the main focus of the paper is on cellular networks, the presented unified approach applies for other types of wireless networks that impose interference protection around receivers. The paper then extends the unified approach to capture cellular network characteristics (e.g., frequency reuse, multiple antenna, power control, etc.). It also presents numerical examples associated with demonstrations and discussions. To this end, the paper highlights the state-of-the- art research and points out future research directions.

  5. Modeling and Analysis of Cellular Networks using Stochastic Geometry: A Tutorial

    KAUST Repository

    Elsawy, Hesham

    2016-11-03

    This paper presents a tutorial on stochastic geometry (SG) based analysis for cellular networks. This tutorial is distinguished by its depth with respect to wireless communication details and its focus on cellular networks. The paper starts by modeling and analyzing the baseband interference in a baseline single-tier downlink cellular network with single antenna base stations and universal frequency reuse. Then, it characterizes signal-to-interference-plus-noise-ratio (SINR) and its related performance metrics. In particular, a unified approach to conduct error probability, outage probability, and transmission rate analysis is presented. Although the main focus of the paper is on cellular networks, the presented unified approach applies for other types of wireless networks that impose interference protection around receivers. The paper then extends the unified approach to capture cellular network characteristics (e.g., frequency reuse, multiple antenna, power control, etc.). It also presents numerical examples associated with demonstrations and discussions. To this end, the paper highlights the state-of-the- art research and points out future research directions.

  6. Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    Directory of Open Access Journals (Sweden)

    Tai-hoon Kim

    2010-12-01

    Full Text Available Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained.

  7. Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    Science.gov (United States)

    Goel, Shivali; Abawajy, Jemal H.; Kim, Tai-hoon

    2010-01-01

    Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained. PMID:22163510

  8. Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks

    Directory of Open Access Journals (Sweden)

    Luciano Pivoto Specht

    2007-03-01

    Full Text Available It is of a great importance to know binders' viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation.

  9. Dynamics of global supply chain and electric power networks: Models, pricing analysis, and computations

    Science.gov (United States)

    Matsypura, Dmytro

    In this dissertation, I develop a new theoretical framework for the modeling, pricing analysis, and computation of solutions to electric power supply chains with power generators, suppliers, transmission service providers, and the inclusion of consumer demands. In particular, I advocate the application of finite-dimensional variational inequality theory, projected dynamical systems theory, game theory, network theory, and other tools that have been recently proposed for the modeling and analysis of supply chain networks (cf. Nagurney (2006)) to electric power markets. This dissertation contributes to the extant literature on the modeling, analysis, and solution of supply chain networks, including global supply chains, in general, and electric power supply chains, in particular, in the following ways. It develops a theoretical framework for modeling, pricing analysis, and computation of electric power flows/transactions in electric power systems using the rationale for supply chain analysis. The models developed include both static and dynamic ones. The dissertation also adds a new dimension to the methodology of the theory of projected dynamical systems by proving that, irrespective of the speeds of adjustment, the equilibrium of the system remains the same. Finally, I include alternative fuel suppliers, along with their behavior into the supply chain modeling and analysis framework. This dissertation has strong practical implications. In an era in which technology and globalization, coupled with increasing risk and uncertainty, complicate electricity demand and supply within and between nations, the successful management of electric power systems and pricing become increasingly pressing topics with relevance not only for economic prosperity but also national security. This dissertation addresses such related topics by providing models, pricing tools, and algorithms for decentralized electric power supply chains. This dissertation is based heavily on the following

  10. Spatiotemporal Stochastic Modeling of IoT Enabled Cellular Networks: Scalability and Stability Analysis

    KAUST Repository

    Gharbieh, Mohammad; Elsawy, Hesham; Bader, Ahmed; Alouini, Mohamed-Slim

    2017-01-01

    The Internet of Things (IoT) is large-scale by nature, which is manifested by the massive number of connected devices as well as their vast spatial existence. Cellular networks, which provide ubiquitous, reliable, and efficient wireless access, will play fundamental rule in delivering the first-mile access for the data tsunami to be generated by the IoT. However, cellular networks may have scalability problems to provide uplink connectivity to massive numbers of connected things. To characterize the scalability of cellular uplink in the context of IoT networks, this paper develops a traffic-aware spatiotemporal mathematical model for IoT devices supported by cellular uplink connectivity. The developed model is based on stochastic geometry and queueing theory to account for the traffic requirement per IoT device, the different transmission strategies, and the mutual interference between the IoT devices. To this end, the developed model is utilized to characterize the extent to which cellular networks can accommodate IoT traffic as well as to assess and compare three different transmission strategies that incorporate a combination of transmission persistency, backoff, and power-ramping. The analysis and the results clearly illustrate the scalability problem imposed by IoT on cellular network and offer insights into effective scenarios for each transmission strategy.

  11. Spatiotemporal Stochastic Modeling of IoT Enabled Cellular Networks: Scalability and Stability Analysis

    KAUST Repository

    Gharbieh, Mohammad

    2017-05-02

    The Internet of Things (IoT) is large-scale by nature, which is manifested by the massive number of connected devices as well as their vast spatial existence. Cellular networks, which provide ubiquitous, reliable, and efficient wireless access, will play fundamental rule in delivering the first-mile access for the data tsunami to be generated by the IoT. However, cellular networks may have scalability problems to provide uplink connectivity to massive numbers of connected things. To characterize the scalability of cellular uplink in the context of IoT networks, this paper develops a traffic-aware spatiotemporal mathematical model for IoT devices supported by cellular uplink connectivity. The developed model is based on stochastic geometry and queueing theory to account for the traffic requirement per IoT device, the different transmission strategies, and the mutual interference between the IoT devices. To this end, the developed model is utilized to characterize the extent to which cellular networks can accommodate IoT traffic as well as to assess and compare three different transmission strategies that incorporate a combination of transmission persistency, backoff, and power-ramping. The analysis and the results clearly illustrate the scalability problem imposed by IoT on cellular network and offer insights into effective scenarios for each transmission strategy.

  12. On the analysis of human mobility model for content broadcasting in 5G networks

    KAUST Repository

    Lau, Chun Pong

    2018-02-15

    Today\\'s mobile service providers aim at ensuring end-to-end performance guarantees. Hence, ensuring an efficient content delivery to end users is highly required. Currently, transmitting popular contents in modern mobile networks rely on unicast transmission. This result into a huge underutilization of the wireless bandwidth. The urban scale mobility of users is beneficial for mobile networks to allocate radio resources spatially and temporally for broadcasting contents. In this paper, we conduct a comprehensive analysis on a human activity/mobility model and the content broadcasting system in 5G mobile networks. The objective of this work is to describe how human daily activities could improve the content broadcasting efficiency. We achieve the objective by analyzing the transition probabilities of a user traveling over several places according to the change of states of daily human activities. Using a reallife simulation, we demonstrate the relationship between the human mobility and the optimization objective of the content broadcasting system.

  13. Ecological network analysis: network construction

    NARCIS (Netherlands)

    Fath, B.D.; Scharler, U.M.; Ulanowicz, R.E.; Hannon, B.

    2007-01-01

    Ecological network analysis (ENA) is a systems-oriented methodology to analyze within system interactions used to identify holistic properties that are otherwise not evident from the direct observations. Like any analysis technique, the accuracy of the results is as good as the data available, but

  14. Integrating Entropy and Closed Frequent Pattern Mining for Social Network Modelling and Analysis

    Science.gov (United States)

    Adnan, Muhaimenul; Alhajj, Reda; Rokne, Jon

    The recent increase in the explicitly available social networks has attracted the attention of the research community to investigate how it would be possible to benefit from such a powerful model in producing effective solutions for problems in other domains where the social network is implicit; we argue that social networks do exist around us but the key issue is how to realize and analyze them. This chapter presents a novel approach for constructing a social network model by an integrated framework that first preparing the data to be analyzed and then applies entropy and frequent closed patterns mining for network construction. For a given problem, we first prepare the data by identifying items and transactions, which arc the basic ingredients for frequent closed patterns mining. Items arc main objects in the problem and a transaction is a set of items that could exist together at one time (e.g., items purchased in one visit to the supermarket). Transactions could be analyzed to discover frequent closed patterns using any of the well-known techniques. Frequent closed patterns have the advantage that they successfully grab the inherent information content of the dataset and is applicable to a broader set of domains. Entropies of the frequent closed patterns arc used to keep the dimensionality of the feature vectors to a reasonable size; it is a kind of feature reduction process. Finally, we analyze the dynamic behavior of the constructed social network. Experiments were conducted on a synthetic dataset and on the Enron corpus email dataset. The results presented in the chapter show that social networks extracted from a feature set as frequent closed patterns successfully carry the community structure information. Moreover, for the Enron email dataset, we present an analysis to dynamically indicate the deviations from each user's individual and community profile. These indications of deviations can be very useful to identify unusual events.

  15. Node-Splitting Generalized Linear Mixed Models for Evaluation of Inconsistency in Network Meta-Analysis.

    Science.gov (United States)

    Yu-Kang, Tu

    2016-12-01

    Network meta-analysis for multiple treatment comparisons has been a major development in evidence synthesis methodology. The validity of a network meta-analysis, however, can be threatened by inconsistency in evidence within the network. One particular issue of inconsistency is how to directly evaluate the inconsistency between direct and indirect evidence with regard to the effects difference between two treatments. A Bayesian node-splitting model was first proposed and a similar frequentist side-splitting model has been put forward recently. Yet, assigning the inconsistency parameter to one or the other of the two treatments or splitting the parameter symmetrically between the two treatments can yield different results when multi-arm trials are involved in the evaluation. We aimed to show that a side-splitting model can be viewed as a special case of design-by-treatment interaction model, and different parameterizations correspond to different design-by-treatment interactions. We demonstrated how to evaluate the side-splitting model using the arm-based generalized linear mixed model, and an example data set was used to compare results from the arm-based models with those from the contrast-based models. The three parameterizations of side-splitting make slightly different assumptions: the symmetrical method assumes that both treatments in a treatment contrast contribute to inconsistency between direct and indirect evidence, whereas the other two parameterizations assume that only one of the two treatments contributes to this inconsistency. With this understanding in mind, meta-analysts can then make a choice about how to implement the side-splitting method for their analysis. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  16. CADLIVE toolbox for MATLAB: automatic dynamic modeling of biochemical networks with comprehensive system analysis.

    Science.gov (United States)

    Inoue, Kentaro; Maeda, Kazuhiro; Miyabe, Takaaki; Matsuoka, Yu; Kurata, Hiroyuki

    2014-09-01

    Mathematical modeling has become a standard technique to understand the dynamics of complex biochemical systems. To promote the modeling, we had developed the CADLIVE dynamic simulator that automatically converted a biochemical map into its associated mathematical model, simulated its dynamic behaviors and analyzed its robustness. To enhance the feasibility by CADLIVE and extend its functions, we propose the CADLIVE toolbox available for MATLAB, which implements not only the existing functions of the CADLIVE dynamic simulator, but also the latest tools including global parameter search methods with robustness analysis. The seamless, bottom-up processes consisting of biochemical network construction, automatic construction of its dynamic model, simulation, optimization, and S-system analysis greatly facilitate dynamic modeling, contributing to the research of systems biology and synthetic biology. This application can be freely downloaded from http://www.cadlive.jp/CADLIVE_MATLAB/ together with an instruction.

  17. Automated generation of node-splitting models for assessment of inconsistency in network meta-analysis.

    Science.gov (United States)

    van Valkenhoef, Gert; Dias, Sofia; Ades, A E; Welton, Nicky J

    2016-03-01

    Network meta-analysis enables the simultaneous synthesis of a network of clinical trials comparing any number of treatments. Potential inconsistencies between estimates of relative treatment effects are an important concern, and several methods to detect inconsistency have been proposed. This paper is concerned with the node-splitting approach, which is particularly attractive because of its straightforward interpretation, contrasting estimates from both direct and indirect evidence. However, node-splitting analyses are labour-intensive because each comparison of interest requires a separate model. It would be advantageous if node-splitting models could be estimated automatically for all comparisons of interest. We present an unambiguous decision rule to choose which comparisons to split, and prove that it selects only comparisons in potentially inconsistent loops in the network, and that all potentially inconsistent loops in the network are investigated. Moreover, the decision rule circumvents problems with the parameterisation of multi-arm trials, ensuring that model generation is trivial in all cases. Thus, our methods eliminate most of the manual work involved in using the node-splitting approach, enabling the analyst to focus on interpreting the results. © 2015 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd.

  18. Analysis of computer networks

    CERN Document Server

    Gebali, Fayez

    2015-01-01

    This textbook presents the mathematical theory and techniques necessary for analyzing and modeling high-performance global networks, such as the Internet. The three main building blocks of high-performance networks are links, switching equipment connecting the links together, and software employed at the end nodes and intermediate switches. This book provides the basic techniques for modeling and analyzing these last two components. Topics covered include, but are not limited to: Markov chains and queuing analysis, traffic modeling, interconnection networks and switch architectures and buffering strategies.   ·         Provides techniques for modeling and analysis of network software and switching equipment; ·         Discusses design options used to build efficient switching equipment; ·         Includes many worked examples of the application of discrete-time Markov chains to communication systems; ·         Covers the mathematical theory and techniques necessary for ana...

  19. Spatial-temporal data model and fractal analysis of transportation network in GIS environment

    Science.gov (United States)

    Feng, Yongjiu; Tong, Xiaohua; Li, Yangdong

    2008-10-01

    How to organize transportation data characterized by multi-time, multi-scale, multi-resolution and multi-source is one of the fundamental problems of GIS-T development. A spatial-temporal data model for GIS-T is proposed based on Spatial-temporal- Object Model. Transportation network data is systemically managed using dynamic segmentation technologies. And then a spatial-temporal database is built to integrally store geographical data of multi-time for transportation. Based on the spatial-temporal database, functions of spatial analysis of GIS-T are substantively extended. Fractal module is developed to improve the analyzing in intensity, density, structure and connectivity of transportation network based on the validation and evaluation of topologic relation. Integrated fractal with GIS-T strengthens the functions of spatial analysis and enriches the approaches of data mining and knowledge discovery of transportation network. Finally, the feasibility of the model and methods are tested thorough Guangdong Geographical Information Platform for Highway Project.

  20. Data envelopment analysis a handbook of modeling internal structure and network

    CERN Document Server

    Cook, Wade D

    2014-01-01

    This comprehensive handbook on state-of-the-art topics in DEA modeling of internal structures and networks presents work by leading researchers who share their results on subjects including additive efficiency decomposition and slacks-based network DEA.

  1. A discrete-time Bayesian network reliability modeling and analysis framework

    International Nuclear Information System (INIS)

    Boudali, H.; Dugan, J.B.

    2005-01-01

    Dependability tools are becoming an indispensable tool for modeling and analyzing (critical) systems. However the growing complexity of such systems calls for increasing sophistication of these tools. Dependability tools need to not only capture the complex dynamic behavior of the system components, but they must be also easy to use, intuitive, and computationally efficient. In general, current tools have a number of shortcomings including lack of modeling power, incapacity to efficiently handle general component failure distributions, and ineffectiveness in solving large models that exhibit complex dependencies between their components. We propose a novel reliability modeling and analysis framework based on the Bayesian network (BN) formalism. The overall approach is to investigate timed Bayesian networks and to find a suitable reliability framework for dynamic systems. We have applied our methodology to two example systems and preliminary results are promising. We have defined a discrete-time BN reliability formalism and demonstrated its capabilities from a modeling and analysis point of view. This research shows that a BN based reliability formalism is a powerful potential solution to modeling and analyzing various kinds of system components behaviors and interactions. Moreover, being based on the BN formalism, the framework is easy to use and intuitive for non-experts, and provides a basis for more advanced and useful analyses such as system diagnosis

  2. Validation and quantification of uncertainty in coupled climate models using network analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, Annalisa [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-08-10

    We developed a fast, robust and scalable methodology to examine, quantify, and visualize climate patterns and their relationships. It is based on a set of notions, algorithms and metrics used in the study of graphs, referred to as complex network analysis. This approach can be applied to explain known climate phenomena in terms of an underlying network structure and to uncover regional and global linkages in the climate system, while comparing general circulation models outputs with observations. The proposed method is based on a two-layer network representation, and is substantially new within the available network methodologies developed for climate studies. At the first layer, gridded climate data are used to identify ‘‘areas’’, i.e., geographical regions that are highly homogeneous in terms of the given climate variable. At the second layer, the identified areas are interconnected with links of varying strength, forming a global climate network. The robustness of the method (i.e. the ability to separate between topological distinct fields, while identifying correctly similarities) has been extensively tested. It has been proved that it provides a reliable, fast framework for comparing and ranking the ability of climate models of reproducing observed climate patterns and their connectivity. We further developed the methodology to account for lags in the connectivity between climate patterns and refined our area identification algorithm to account for autocorrelation in the data. The new methodology based on complex network analysis has been applied to state-of-the-art climate model simulations that participated to the last IPCC (International Panel for Climate Change) assessment to verify their performances, quantify uncertainties, and uncover changes in global linkages between past and future projections. Network properties of modeled sea surface temperature and rainfall over 1956–2005 have been constrained towards observations or reanalysis data sets

  3. Electrical equivalent thermal network for direct contact membrane distillation modeling and analysis

    KAUST Repository

    Karam, Ayman M.

    2016-09-19

    Membrane distillation (MD) is an emerging water desalination technology that offers several advantages compared to conventional desalination methods. Although progress has been made to model the physics of the process, there are two common limitations of existing models. Firstly, many of the models are based on the steady-state analysis of the process and secondly, some of the models are based on partial differential equations, which when discretized introduce many states which are not accessible in practice. This paper presents the derivation of a novel dynamic model, based on the analogy between electrical and thermal systems, for direct contact membrane distillation (DCMD). An analogous electrical thermal network is constructed and its elements are parameterized such that the response of the network models the DCMD process. The proposed model captures the spatial and temporal responses of the temperature distribution along the flow direction and is able to accurately predict the distilled water flux output. To demonstrate the adequacy of the proposed model, validation with time varying and steady-state experimental data is presented. (C) 2016 Elsevier Ltd. All rights reserved.

  4. Sensitivity analysis of a discrete fracture network model for performance assessment of Aberg

    International Nuclear Information System (INIS)

    Outters, N.; Shuttle, D.

    2000-12-01

    This report presents a sensitivity analysis of pathway simulations in a DFN model. The DFN model consists of two sets of stochastic fractures at different scales and the canister locations of a hypothetical repository layout. The hydrogeological base case model is defined by constant head boundary conditions on the edges of a 2000 x 2000 x 1000 m 3 block. The pathway analysis carried out by the program PAWorks provides pathway parameters (pathway length, pathway width, transport aperture, reactive surface area, pathway transmissivity), canister statistics (average number of pathways per canister, percentage of canister locations with pathways) and visualisation of pathways. The project provided the following results from the alternative cases: Case 1: Model with a 100 m thick fracture network at the repository scale instead of 50 m in the base case. The model is little sensitive to the increase of the thickness of the local fracture network. Case 2: Model including fracture networks where the mean size and size standard deviation is twice the ones used in the base case. The travel times to the biosphere is slightly shortened by increasing the fracture diameter. Case 3: Two models with alternative hydraulic boundary conditions: two different flux boundary conditions are tested instead of head boundary conditions in the base case. The advective travel time is shortened by changing the boundary conditions in both alternative cases; in some cases it is reduced to less than a year. Case 4: Study of alternative pathway search algorithms: the pathway search is here based on minimum travel time. The pathway search algorithm of PAWorks based on minimum travel time gives much more optimistic results than the base case where the maximum flow rate was used. The mean travel time is about 5000 years. Due to editorial reasons only a subset of all this information is treated in this report

  5. Quantitative Analysis of the Security of Software-Defined Network Controller Using Threat/Effort Model

    Directory of Open Access Journals (Sweden)

    Zehui Wu

    2017-01-01

    Full Text Available SDN-based controller, which is responsible for the configuration and management of the network, is the core of Software-Defined Networks. Current methods, which focus on the secure mechanism, use qualitative analysis to estimate the security of controllers, leading to inaccurate results frequently. In this paper, we employ a quantitative approach to overcome the above shortage. Under the analysis of the controller threat model we give the formal model results of the APIs, the protocol interfaces, and the data items of controller and further provide our Threat/Effort quantitative calculation model. With the help of Threat/Effort model, we are able to compare not only the security of different versions of the same kind controller but also different kinds of controllers and provide a basis for controller selection and secure development. We evaluated our approach in four widely used SDN-based controllers which are POX, OpenDaylight, Floodlight, and Ryu. The test, which shows the similarity outcomes with the traditional qualitative analysis, demonstrates that with our approach we are able to get the specific security values of different controllers and presents more accurate results.

  6. Consistent robustness analysis (CRA) identifies biologically relevant properties of regulatory network models.

    Science.gov (United States)

    Saithong, Treenut; Painter, Kevin J; Millar, Andrew J

    2010-12-16

    A number of studies have previously demonstrated that "goodness of fit" is insufficient in reliably classifying the credibility of a biological model. Robustness and/or sensitivity analysis is commonly employed as a secondary method for evaluating the suitability of a particular model. The results of such analyses invariably depend on the particular parameter set tested, yet many parameter values for biological models are uncertain. Here, we propose a novel robustness analysis that aims to determine the "common robustness" of the model with multiple, biologically plausible parameter sets, rather than the local robustness for a particular parameter set. Our method is applied to two published models of the Arabidopsis circadian clock (the one-loop [1] and two-loop [2] models). The results reinforce current findings suggesting the greater reliability of the two-loop model and pinpoint the crucial role of TOC1 in the circadian network. Consistent Robustness Analysis can indicate both the relative plausibility of different models and also the critical components and processes controlling each model.

  7. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.; Byrne, H.M.; King, J.R.; Bennett, M.J.

    2013-01-01

    methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more

  8. Modeling and Analysis of Epidemic Diffusion within Small-World Network

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2012-01-01

    Full Text Available To depict the rule of epidemic diffusion, two different models, the Susceptible-Exposure-Infected-Recovered-Susceptible (SEIRS model and the Susceptible-Exposure-Infected-Quarantine-Recovered-Susceptible (SEIQRS model, are proposed and analyzed within small-world network in this paper. Firstly, the epidemic diffusion models are constructed with mean-filed theory, and condition for the occurrence of disease diffusion is explored. Then, the existence and global stability of the disease-free equilibrium and the endemic equilibrium for these two complex epidemic systems are proved by differential equations knowledge and Routh-Hurwiz theory. At last, a numerical example which includes key parameters analysis and critical topic discussion is presented to test how well the proposed two models may be applied in practice. These works may provide some guidelines for decision makers when coping with epidemic diffusion controlling problems.

  9. Network analysis of an in vitro model of androgen-resistance in prostate cancer

    International Nuclear Information System (INIS)

    Detchokul, Sujitra; Elangovan, Aparna; Crampin, Edmund J.; Davis, Melissa J.; Frauman, Albert G.

    2015-01-01

    The development of androgen resistance is a major limitation to androgen deprivation treatment in prostate cancer. We have developed an in vitro model of androgen-resistance to characterise molecular changes occurring as androgen resistance evolves over time. Our aim is to understand biological network profiles of transcriptomic changes occurring during the transition to androgen-resistance and to validate these changes between our in vitro model and clinical datasets (paired samples before and after androgen-deprivation therapy of patients with advanced prostate cancer). We established an androgen-independent subline from LNCaP cells by prolonged exposure to androgen-deprivation. We examined phenotypic profiles and performed RNA-sequencing. The reads generated were compared to human clinical samples and were analysed using differential expression, pathway analysis and protein-protein interaction networks. After 24 weeks of androgen-deprivation, LNCaP cells had increased proliferative and invasive behaviour compared to parental LNCaP, and its growth was no longer responsive to androgen. We identified key genes and pathways that overlap between our cell line and clinical RNA sequencing datasets and analysed the overlapping protein-protein interaction network that shared the same pattern of behaviour in both datasets. Mechanisms bypassing androgen receptor signalling pathways are significantly enriched. Several steroid hormone receptors are differentially expressed in both datasets. In particular, the progesterone receptor is significantly differentially expressed and is part of the interaction network disrupted in both datasets. Other signalling pathways commonly altered in prostate cancer, MAPK and PI3K-Akt pathways, are significantly enriched in both datasets. The overlap between the human and cell-line differential expression profiles and protein networks was statistically significant showing that the cell-line model reproduces molecular patterns observed in

  10. Multifractal analysis of complex networks

    International Nuclear Information System (INIS)

    Wang Dan-Ling; Yu Zu-Guo; Anh V

    2012-01-01

    Complex networks have recently attracted much attention in diverse areas of science and technology. Many networks such as the WWW and biological networks are known to display spatial heterogeneity which can be characterized by their fractal dimensions. Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we introduce a new box-covering algorithm for multifractal analysis of complex networks. This algorithm is used to calculate the generalized fractal dimensions D q of some theoretical networks, namely scale-free networks, small world networks, and random networks, and one kind of real network, namely protein—protein interaction networks of different species. Our numerical results indicate the existence of multifractality in scale-free networks and protein—protein interaction networks, while the multifractal behavior is not clear-cut for small world networks and random networks. The possible variation of D q due to changes in the parameters of the theoretical network models is also discussed. (general)

  11. A port-Hamiltonian approach to power network modeling and analysis

    NARCIS (Netherlands)

    Fiaz, S.; Zonetti, D.; Ortega, R.; Scherpen, J.M.A.; van der Schaft, A.J.

    2013-01-01

    In this paper we present a systematic framework for modeling of power networks. The basic idea is to view the complete power network as a port-Hamiltonian system on a graph where edges correspond to components of the power network and nodes are buses. The interconnection constraints are given by the

  12. Modeling Network Interdiction Tasks

    Science.gov (United States)

    2015-09-17

    118 xiii Table Page 36 Computation times for weighted, 100-node random networks for GAND Approach testing in Python ...in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 38 Accuracy measures for weighted, 100-node random networks for GAND...networks [15:p. 1]. A common approach to modeling network interdiction is to formulate the problem in terms of a two-stage strategic game between two

  13. Comparison of Prediction Model for Cardiovascular Autonomic Dysfunction Using Artificial Neural Network and Logistic Regression Analysis

    Science.gov (United States)

    Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo

    2013-01-01

    Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593

  14. A Network-Based Data Envelope Analysis Model in a Dynamic Balanced Score Card

    Directory of Open Access Journals (Sweden)

    Mojtaba Akbarian

    2015-01-01

    Full Text Available Performance assessment during the time and along with strategies is the most important requirements of top managers. To assess the performance, a balanced score card (BSC along with strategic goals and a data envelopment analysis (DEA are used as powerful qualitative and quantitative tools, respectively. By integrating these two models, their strengths are used and their weaknesses are removed. In this paper, an integrated framework of the BSC and DEA models is proposed for measuring the efficiency during the time and along with strategies based on the time delay of the lag key performance indicators (KPIs of the BSC model. The causal relationships during the time among perspectives of the BSC model are drawn as dynamic BSC at first. Then, after identifying the network-DEA structure, a new objective function for measuring the efficiency of nine subsidiary refineries of the National Iranian Oil Refining and Distribution Company (NIORDC during the time and along with strategies is developed.

  15. Analysis on evaluation ability of nonlinear safety assessment model of coal mines based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-liang; LIU Hai-bo; LIU Ai-hua

    2004-01-01

    Based on the integration analysis of goods and shortcomings of various methods used in safety assessment of coal mines, combining nonlinear feature of mine safety sub-system, this paper establishes the neural network assessment model of mine safety, analyzes the ability of artificial neural network to evaluate mine safety state, and lays the theoretical foundation of artificial neural network using in the systematic optimization of mine safety assessment and getting reasonable accurate safety assessment result.

  16. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    Science.gov (United States)

    Li, Zhiqiang; Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-04-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit.

  17. Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network

    Directory of Open Access Journals (Sweden)

    Klipp Edda

    2009-08-01

    Full Text Available Abstract Background Gene Regulatory Networks (GRNs control the differentiation, specification and function of cells at the genomic level. The levels of interactions within large GRNs are of enormous depth and complexity. Details about many GRNs are emerging, but in most cases it is unknown to what extent they control a given process, i.e. the grade of completeness is uncertain. This uncertainty stems from limited experimental data, which is the main bottleneck for creating detailed dynamical models of cellular processes. Parameter estimation for each node is often infeasible for very large GRNs. We propose a method, based on random parameter estimations through Monte-Carlo simulations to measure completeness grades of GRNs. Results We developed a heuristic to assess the completeness of large GRNs, using ODE simulations under different conditions and randomly sampled parameter sets to detect parameter-invariant effects of perturbations. To test this heuristic, we constructed the first ODE model of the whole sea urchin endomesoderm GRN, one of the best studied large GRNs. We find that nearly 48% of the parameter-invariant effects correspond with experimental data, which is 65% of the expected optimal agreement obtained from a submodel for which kinetic parameters were estimated and used for simulations. Randomized versions of the model reproduce only 23.5% of the experimental data. Conclusion The method described in this paper enables an evaluation of network topologies of GRNs without requiring any parameter values. The benefit of this method is exemplified in the first mathematical analysis of the complete Endomesoderm Network Model. The predictions we provide deliver candidate nodes in the network that are likely to be erroneous or miss unknown connections, which may need additional experiments to improve the network topology. This mathematical model can serve as a scaffold for detailed and more realistic models. We propose that our method can

  18. Tariff regulation and profitability of energy networks. A model analysis for TenneT TSO

    International Nuclear Information System (INIS)

    Mulder, M.

    2010-12-01

    In this paper we analyse the impact of the regulatory framework for the new regulatory period (2011-2013) on the long-term profitability of TenneT TSO, the operator of the high-voltage electricity network in the Netherlands. Long-term profitability is a key component of the financeability of a firm. In the long run, the return on capital should be at least equal to the opportunity costs of capital in order to finance investments. As the ultimate indicator for the long-term profitability, we use the net present value of economic profit, which is the difference between total revenues and total costs, including a normal return on capital. In order to simulate the future financial development of the TSO, we developed a model. On the basis of the model analysis, making a number of methodological assumptions, we conclude that the tariff regulation results in a positive long-term profitability, implying that the regulatory framework enables TenneT TSO to finance its investments in replacement and network expansion. In the long run all costs, including the normal costs of capital, will be fully compensated by the revenues, resulting in a (slightly) positive net present value of economic profit. This conclusion is subject to the condition that the TSO eliminates the existing inefficiencies in the network and that it is able to annually improve its overall efficiency. If this condition is not met, the shareholder might face a loss of more than one hundred million Euros.

  19. Model-based analysis and control of a network of basal ganglia spiking neurons in the normal and Parkinsonian states

    Science.gov (United States)

    Liu, Jianbo; Khalil, Hassan K.; Oweiss, Karim G.

    2011-08-01

    Controlling the spatiotemporal firing pattern of an intricately connected network of neurons through microstimulation is highly desirable in many applications. We investigated in this paper the feasibility of using a model-based approach to the analysis and control of a basal ganglia (BG) network model of Hodgkin-Huxley (HH) spiking neurons through microstimulation. Detailed analysis of this network model suggests that it can reproduce the experimentally observed characteristics of BG neurons under a normal and a pathological Parkinsonian state. A simplified neuronal firing rate model, identified from the detailed HH network model, is shown to capture the essential network dynamics. Mathematical analysis of the simplified model reveals the presence of a systematic relationship between the network's structure and its dynamic response to spatiotemporally patterned microstimulation. We show that both the network synaptic organization and the local mechanism of microstimulation can impose tight constraints on the possible spatiotemporal firing patterns that can be generated by the microstimulated network, which may hinder the effectiveness of microstimulation to achieve a desired objective under certain conditions. Finally, we demonstrate that the feedback control design aided by the mathematical analysis of the simplified model is indeed effective in driving the BG network in the normal and Parskinsonian states to follow a prescribed spatiotemporal firing pattern. We further show that the rhythmic/oscillatory patterns that characterize a dopamine-depleted BG network can be suppressed as a direct consequence of controlling the spatiotemporal pattern of a subpopulation of the output Globus Pallidus internalis (GPi) neurons in the network. This work may provide plausible explanations for the mechanisms underlying the therapeutic effects of deep brain stimulation (DBS) in Parkinson's disease and pave the way towards a model-based, network level analysis and closed

  20. Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model.

    Science.gov (United States)

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2016-10-06

    Comparative analysis of protein-protein interaction (PPI) networks provides an effective means of detecting conserved functional network modules across different species. Such modules typically consist of orthologous proteins with conserved interactions, which can be exploited to computationally predict the modules through network comparison. In this work, we propose a novel probabilistic framework for comparing PPI networks and effectively predicting the correspondence between proteins, represented as network nodes, that belong to conserved functional modules across the given PPI networks. The basic idea is to estimate the steady-state network flow between nodes that belong to different PPI networks based on a Markov random walk model. The random walker is designed to make random moves to adjacent nodes within a PPI network as well as cross-network moves between potential orthologous nodes with high sequence similarity. Based on this Markov random walk model, we estimate the steady-state network flow - or the long-term relative frequency of the transitions that the random walker makes - between nodes in different PPI networks, which can be used as a probabilistic score measuring their potential correspondence. Subsequently, the estimated scores can be used for detecting orthologous proteins in conserved functional modules through network alignment. Through evaluations based on multiple real PPI networks, we demonstrate that the proposed scheme leads to improved alignment results that are biologically more meaningful at reduced computational cost, outperforming the current state-of-the-art algorithms. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/CUFID .

  1. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    Science.gov (United States)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  2. On the Modeling and Analysis of Heterogeneous Radio Access Networks using a Poisson Cluster Process

    DEFF Research Database (Denmark)

    Suryaprakash, Vinay; Møller, Jesper; Fettweis, Gerhard P.

    processes, some of which are alluded to (later) in this paper. We model a heterogeneous network consisting of two types of base stations by using a particular Poisson cluster process model. The main contributions are two-fold. First, a complete description of the interference in heterogeneous networks...

  3. A neural network detection model of spilled oil based on the texture analysis of SAR image

    Science.gov (United States)

    An, Jubai; Zhu, Lisong

    2006-01-01

    A Radial Basis Function Neural Network (RBFNN) Model is investigated for the detection of spilled oil based on the texture analysis of SAR imagery. In this paper, to take the advantage of the abundant texture information of SAR imagery, the texture features are extracted by both wavelet transform and the Gray Level Co-occurrence matrix. The RBFNN Model is fed with a vector of these texture features. The RBFNN Model is trained and tested by the sample data set of the feature vectors. Finally, a SAR image is classified by this model. The classification results of a spilled oil SAR image show that the classification accuracy for oil spill is 86.2 by the RBFNN Model using both wavelet texture and gray texture, while the classification accuracy for oil spill is 78.0 by same RBFNN Model using only wavelet texture as the input of this RBFNN model. The model using both wavelet transform and the Gray Level Co-occurrence matrix is more effective than that only using wavelet texture. Furthermore, it keeps the complicated proximity and has a good performance of classification.

  4. Dynamics analysis of SIR epidemic model with correlation coefficients and clustering coefficient in networks.

    Science.gov (United States)

    Zhang, Juping; Yang, Chan; Jin, Zhen; Li, Jia

    2018-07-14

    In this paper, the correlation coefficients between nodes in states are used as dynamic variables, and we construct SIR epidemic dynamic models with correlation coefficients by using the pair approximation method in static networks and dynamic networks, respectively. Considering the clustering coefficient of the network, we analytically investigate the existence and the local asymptotic stability of each equilibrium of these models and derive threshold values for the prevalence of diseases. Additionally, we obtain two equivalent epidemic thresholds in dynamic networks, which are compared with the results of the mean field equations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Proposal of Constraints Analysis Method Based on Network Model for Task Planning

    Science.gov (United States)

    Tomiyama, Tomoe; Sato, Tatsuhiro; Morita, Toyohisa; Sasaki, Toshiro

    Deregulation has been accelerating several activities toward reengineering business processes, such as railway through service and modal shift in logistics. Making those activities successful, business entities have to regulate new business rules or know-how (we call them ‘constraints’). According to the new constraints, they need to manage business resources such as instruments, materials, workers and so on. In this paper, we propose a constraint analysis method to define constraints for task planning of the new business processes. To visualize each constraint's influence on planning, we propose a network model which represents allocation relations between tasks and resources. The network can also represent task ordering relations and resource grouping relations. The proposed method formalizes the way of defining constraints manually as repeatedly checking the network structure and finding conflicts between constraints. Being applied to crew scheduling problems shows that the method can adequately represent and define constraints of some task planning problems with the following fundamental features, (1) specifying work pattern to some resources, (2) restricting the number of resources for some works, (3) requiring multiple resources for some works, (4) prior allocation of some resources to some works and (5) considering the workload balance between resources.

  6. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2017-09-01

    Full Text Available A wireless-powered sensor network (WPSN consisting of one hybrid access point (HAP, a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.

  7. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis.

    Science.gov (United States)

    Zhang, Chao; Zhang, Pengcheng; Zhang, Weizhan

    2017-09-27

    A wireless-powered sensor network (WPSN) consisting of one hybrid access point (HAP), a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF) manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.

  8. Modeling and Stability Analysis of Worm Propagation in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Liping Feng

    2015-01-01

    Full Text Available An improved SIRS model considering communication radius and distributed density of nodes is proposed. The proposed model captures both the spatial and temporal dynamics of worms spread process. Using differential dynamical theories, we investigate dynamics of worm propagation to time in wireless sensor networks (WSNs. Reproductive number which determines global dynamics of worm propagation in WSNs is obtained. Equilibriums and their stabilities are also found. If reproductive number is less than one, the infected fraction of the sensor nodes disappears and if the reproduction number is greater than one, the infected fraction asymptotically stabilizes at the endemic equilibrium. Based on the reproduction number, we discuss the threshold of worm propagation about communication radius and distributed density of nodes in WSNs. Finally, numerical simulations verify the correctness of theoretical analysis.

  9. Failure rate modeling using fault tree analysis and Bayesian network: DEMO pulsed operation turbine study case

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo Nicola, E-mail: danilo.dongiovanni@enea.it [ENEA, Nuclear Fusion and Safety Technologies Department, via Enrico Fermi 45, Frascati 00040 (Italy); Iesmantas, Tomas [LEI, Breslaujos str. 3 Kaunas (Lithuania)

    2016-11-01

    Highlights: • RAMI (Reliability, Availability, Maintainability and Inspectability) assessment of secondary heat transfer loop for a DEMO nuclear fusion plant. • Definition of a fault tree for a nuclear steam turbine operated in pulsed mode. • Turbine failure rate models update by mean of a Bayesian network reflecting the fault tree analysis in the considered scenario. • Sensitivity analysis on system availability performance. - Abstract: Availability will play an important role in the Demonstration Power Plant (DEMO) success from an economic and safety perspective. Availability performance is commonly assessed by Reliability Availability Maintainability Inspectability (RAMI) analysis, strongly relying on the accurate definition of system components failure modes (FM) and failure rates (FR). Little component experience is available in fusion application, therefore requiring the adaptation of literature FR to fusion plant operating conditions, which may differ in several aspects. As a possible solution to this problem, a new methodology to extrapolate/estimate components failure rate under different operating conditions is presented. The DEMO Balance of Plant nuclear steam turbine component operated in pulse mode is considered as study case. The methodology moves from the definition of a fault tree taking into account failure modes possibly enhanced by pulsed operation. The fault tree is then translated into a Bayesian network. A statistical model for the turbine system failure rate in terms of subcomponents’ FR is hence obtained, allowing for sensitivity analyses on the structured mixture of literature and unknown FR data for which plausible value intervals are investigated to assess their impact on the whole turbine system FR. Finally, the impact of resulting turbine system FR on plant availability is assessed exploiting a Reliability Block Diagram (RBD) model for a typical secondary cooling system implementing a Rankine cycle. Mean inherent availability

  10. Failure rate modeling using fault tree analysis and Bayesian network: DEMO pulsed operation turbine study case

    International Nuclear Information System (INIS)

    Dongiovanni, Danilo Nicola; Iesmantas, Tomas

    2016-01-01

    Highlights: • RAMI (Reliability, Availability, Maintainability and Inspectability) assessment of secondary heat transfer loop for a DEMO nuclear fusion plant. • Definition of a fault tree for a nuclear steam turbine operated in pulsed mode. • Turbine failure rate models update by mean of a Bayesian network reflecting the fault tree analysis in the considered scenario. • Sensitivity analysis on system availability performance. - Abstract: Availability will play an important role in the Demonstration Power Plant (DEMO) success from an economic and safety perspective. Availability performance is commonly assessed by Reliability Availability Maintainability Inspectability (RAMI) analysis, strongly relying on the accurate definition of system components failure modes (FM) and failure rates (FR). Little component experience is available in fusion application, therefore requiring the adaptation of literature FR to fusion plant operating conditions, which may differ in several aspects. As a possible solution to this problem, a new methodology to extrapolate/estimate components failure rate under different operating conditions is presented. The DEMO Balance of Plant nuclear steam turbine component operated in pulse mode is considered as study case. The methodology moves from the definition of a fault tree taking into account failure modes possibly enhanced by pulsed operation. The fault tree is then translated into a Bayesian network. A statistical model for the turbine system failure rate in terms of subcomponents’ FR is hence obtained, allowing for sensitivity analyses on the structured mixture of literature and unknown FR data for which plausible value intervals are investigated to assess their impact on the whole turbine system FR. Finally, the impact of resulting turbine system FR on plant availability is assessed exploiting a Reliability Block Diagram (RBD) model for a typical secondary cooling system implementing a Rankine cycle. Mean inherent availability

  11. Modelling computer networks

    International Nuclear Information System (INIS)

    Max, G

    2011-01-01

    Traffic models in computer networks can be described as a complicated system. These systems show non-linear features and to simulate behaviours of these systems are also difficult. Before implementing network equipments users wants to know capability of their computer network. They do not want the servers to be overloaded during temporary traffic peaks when more requests arrive than the server is designed for. As a starting point for our study a non-linear system model of network traffic is established to exam behaviour of the network planned. The paper presents setting up a non-linear simulation model that helps us to observe dataflow problems of the networks. This simple model captures the relationship between the competing traffic and the input and output dataflow. In this paper, we also focus on measuring the bottleneck of the network, which was defined as the difference between the link capacity and the competing traffic volume on the link that limits end-to-end throughput. We validate the model using measurements on a working network. The results show that the initial model estimates well main behaviours and critical parameters of the network. Based on this study, we propose to develop a new algorithm, which experimentally determines and predict the available parameters of the network modelled.

  12. Social Learning Network Analysis Model to Identify Learning Patterns Using Ontology Clustering Techniques and Meaningful Learning

    Science.gov (United States)

    Firdausiah Mansur, Andi Besse; Yusof, Norazah

    2013-01-01

    Clustering on Social Learning Network still not explored widely, especially when the network focuses on e-learning system. Any conventional methods are not really suitable for the e-learning data. SNA requires content analysis, which involves human intervention and need to be carried out manually. Some of the previous clustering techniques need…

  13. Analysis of functional importance of binding sites in the Drosophila gap gene network model.

    Science.gov (United States)

    Kozlov, Konstantin; Gursky, Vitaly V; Kulakovskiy, Ivan V; Dymova, Arina; Samsonova, Maria

    2015-01-01

    The statistical thermodynamics based approach provides a promising framework for construction of the genotype-phenotype map in many biological systems. Among important aspects of a good model connecting the DNA sequence information with that of a molecular phenotype (gene expression) is the selection of regulatory interactions and relevant transcription factor bindings sites. As the model may predict different levels of the functional importance of specific binding sites in different genomic and regulatory contexts, it is essential to formulate and study such models under different modeling assumptions. We elaborate a two-layer model for the Drosophila gap gene network and include in the model a combined set of transcription factor binding sites and concentration dependent regulatory interaction between gap genes hunchback and Kruppel. We show that the new variants of the model are more consistent in terms of gene expression predictions for various genetic constructs in comparison to previous work. We quantify the functional importance of binding sites by calculating their impact on gene expression in the model and calculate how these impacts correlate across all sites under different modeling assumptions. The assumption about the dual interaction between hb and Kr leads to the most consistent modeling results, but, on the other hand, may obscure existence of indirect interactions between binding sites in regulatory regions of distinct genes. The analysis confirms the previously formulated regulation concept of many weak binding sites working in concert. The model predicts a more or less uniform distribution of functionally important binding sites over the sets of experimentally characterized regulatory modules and other open chromatin domains.

  14. A neural network construction method for surrogate modeling of physics-based analysis

    Science.gov (United States)

    Sung, Woong Je

    connection as a zero-weight connection, the potential contribution to training error reduction of any present or absent connection can readily be evaluated using the BP algorithm. Instead of being broken, the connections that contribute less remain frozen with constant weight values optimized to that point but they are excluded from further weight optimization until reselected. In this way, a selective weight optimization is executed only for the dynamically maintained pool of high gradient connections. By searching the rapidly changing weights and concentrating optimization resources on them, the learning process is accelerated without either a significant increase in computational cost or a need for re-training. This results in a more task-adapted network connection structure. Combined with another important criterion for the division of a neuron which adds a new computational unit to a network, a highly fitted network can be grown out of the minimal random structure. This particular learning strategy can belong to a more broad class of the variable connectivity learning scheme and the devised algorithm has been named Optimal Brain Growth (OBG). The OBG algorithm has been tested on two canonical problems; a regression analysis using the Complicated Interaction Regression Function and a classification of the Two-Spiral Problem. A comparative study with conventional Multilayer Perceptrons (MLPs) consisting of single- and double-hidden layers shows that OBG is less sensitive to random initial conditions and generalizes better with only a minimal increase in computational time. This partially proves that a variable connectivity learning scheme has great potential to enhance computational efficiency and reduce efforts to select proper network architecture. To investigate the applicability of the OBG to more practical surrogate modeling tasks, the geometry-to-pressure mapping of a particular class of airfoils in the transonic flow regime has been sought using both the

  15. The Semantic Network Model of Creativity: Analysis of Online Social Media Data

    Science.gov (United States)

    Yu, Feng; Peng, Theodore; Peng, Kaiping; Zheng, Sam Xianjun; Liu, Zhiyuan

    2016-01-01

    The central hypothesis of Semantic Network Model of Creativity is that creative people, who are exposed to more information that are both novel and useful, will have more interconnections between event schemas in their associations. The networks of event schemas in creative people's minds were expected to be wider and denser than those in less…

  16. Neural networks in data analysis and modeling for detecting littoral oil-spills by airborne laser fluorosensor remote sensing

    Science.gov (United States)

    Lin, Bin; An, Jubai; Brown, Carl E.; Chen, Weiwei

    2003-05-01

    In this paper an artificial neural network (ANN) approach, which is based on flexible nonlinear models for a very broad class of transfer functions, is applied for multi-spectral data analysis and modeling of airborne laser fluorosensor in order to differentiate between classes of oil on water surface. We use three types of algorithm: Perceptron Network, Back-Propagation (B-P) Network and Self-Organizing feature Maps (SOM) Network. Using the data in form of 64-channel spectra as inputs, the ANN presents the analysis and estimation results of the oil type on the basis of the type of background materials as outputs. The ANN is trained and tested using sample data set to the network. The results of the above 3 types of network are compared in this paper. It is proved that the training has developed a network that not only fits the training data, but also fits real-world data that the network will process operationally. The ANN model would play a significant role in the ocean oil-spill identification in the future.

  17. Computational modelling and analysis of the molecular network regulating sporulation initiation in Bacillus subtilis.

    Science.gov (United States)

    Ihekwaba, Adaoha E C; Mura, Ivan; Barker, Gary C

    2014-10-24

    Bacterial spores are important contaminants in food, and the spore forming bacteria are often implicated in food safety and food quality considerations. Spore formation is a complex developmental process involving the expression of more than 500 genes over the course of 6 to 8 hrs. The process culminates in the formation of resting cells capable of resisting environmental extremes and remaining dormant for long periods of time, germinating when conditions promote further vegetative growth. Experimental observations of sporulation and germination are problematic and time consuming so that reliable models are an invaluable asset in terms of prediction and risk assessment. In this report we develop a model which assists in the interpretation of sporulation dynamics. This paper defines and analyses a mathematical model for the network regulating Bacillus subtilis sporulation initiation, from sensing of sporulation signals down to the activation of the early genes under control of the master regulator Spo0A. Our model summarises and extends other published modelling studies, by allowing the user to execute sporulation initiation in a scenario where Isopropyl β-D-1-thiogalactopyranoside (IPTG) is used as an artificial sporulation initiator as well as in modelling the induction of sporulation in wild-type cells. The analysis of the model results and the comparison with experimental data indicate that the model is good at predicting inducible responses to sporulation signals. However, the model is unable to reproduce experimentally observed accumulation of phosphorelay sporulation proteins in wild type B. subtilis. This model also highlights that the phosphorelay sub-component, which relays the signals detected by the sensor kinases to the master regulator Spo0A, is crucial in determining the response dynamics of the system. We show that there is a complex connectivity between the phosphorelay features and the master regulatory Spo0A. Additional we discovered that the

  18. A study of groundwater monitoring data analysis using Artificial Neural Network model

    International Nuclear Information System (INIS)

    Watanabe, Kunio; Gautam, M.R.; Saegusa, Hiromitsu

    2003-05-01

    The results of groundwater flow modeling are to be justified using groundwater monitoring data in the hydrogeological characterization. On the other hand, hydraulic continuities of the geological structures, all of which are considered to have great effect on groundwater flow and/or groundwater quality, are to be estimated using the groundwater flow monitoring data with hydraulic response to some impacts such as borehole drilling, pumping test and so on. Therefore, the groundwater monitoring is important for characterizing the geological and hydrogeological environments. In order to characterize of hydrogeological environment using the monitoring data, it is important to evaluate the influence of artificial and natural impact on the monitoring data. In this study, the following three research works are carried out based on the groundwater monitoring data collected at the Tono area. Artificial Neural Network (ANN) was adopted as the tool for monitoring data analysis. Runoff analysis for assessment of importance of soil moisture on runoff estimation in a catchment. Analysis of water level fluctuation for determination influence factors in the water level fluctuation and for filtering out the influence factors from the water level data . Analysis of hydraulic pressure fluctuation in deep geological formations for hydrogeological characterization and assessment of human influence on the pore pressure in deep formation. Through this study, applicability of ANN for analysis and interpretation of the groundwater monitoring data could be confirmed and methodology for utilization the monitoring data for understanding and characterization of hydrogeological environment could be developed. (author)

  19. Modeling the citation network by network cosmology.

    Science.gov (United States)

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  20. Congruence analysis of geodetic networks - hypothesis tests versus model selection by information criteria

    Science.gov (United States)

    Lehmann, Rüdiger; Lösler, Michael

    2017-12-01

    Geodetic deformation analysis can be interpreted as a model selection problem. The null model indicates that no deformation has occurred. It is opposed to a number of alternative models, which stipulate different deformation patterns. A common way to select the right model is the usage of a statistical hypothesis test. However, since we have to test a series of deformation patterns, this must be a multiple test. As an alternative solution for the test problem, we propose the p-value approach. Another approach arises from information theory. Here, the Akaike information criterion (AIC) or some alternative is used to select an appropriate model for a given set of observations. Both approaches are discussed and applied to two test scenarios: A synthetic levelling network and the Delft test data set. It is demonstrated that they work but behave differently, sometimes even producing different results. Hypothesis tests are well-established in geodesy, but may suffer from an unfavourable choice of the decision error rates. The multiple test also suffers from statistical dependencies between the test statistics, which are neglected. Both problems are overcome by applying information criterions like AIC.

  1. Visual social network analysis: effective approach to model complex human social, behaviour & culture.

    Science.gov (United States)

    Ahram, Tareq Z; Karwowski, Waldemar

    2012-01-01

    The advent and adoption of internet-based social networking has significantly altered our daily lives. The educational community has taken notice of the positive aspects of social networking such as creation of blogs and to support groups of system designers going through the same challenges and difficulties. This paper introduces a social networking framework for collaborative education, design and modeling of the next generation of smarter products and services. Human behaviour modeling in social networking application aims to ensure that human considerations for learners and designers have a prominent place in the integrated design and development of sustainable, smarter products throughout the total system lifecycle. Social networks blend self-directed learning and prescribed, existing information. The self-directed element creates interest within a learner and the ability to access existing information facilitates its transfer, and eventual retention of knowledge acquired.

  2. Brain Network Modelling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther

    Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...

  3. [Methodological novelties applied to the anthropology of food: agent-based models and social networks analysis].

    Science.gov (United States)

    Díaz Córdova, Diego

    2016-01-01

    The aim of this article is to introduce two methodological strategies that have not often been utilized in the anthropology of food: agent-based models and social networks analysis. In order to illustrate these methods in action, two cases based in materials typical of the anthropology of food are presented. For the first strategy, fieldwork carried out in Quebrada de Humahuaca (province of Jujuy, Argentina) regarding meal recall was used, and for the second, elements of the concept of "domestic consumption strategies" applied by Aguirre were employed. The underlying idea is that, given that eating is recognized as a "total social fact" and, therefore, as a complex phenomenon, the methodological approach must also be characterized by complexity. The greater the number of methods utilized (with the appropriate rigor), the better able we will be to understand the dynamics of feeding in the social environment.

  4. Modeling, analysis and optimization of network-on-chip communication architectures

    CERN Document Server

    Ogras, Umit Y

    2013-01-01

    Traditionally, design space exploration for Systems-on-Chip (SoCs) has focused on the computational aspects of the problem at hand. However, as the number of components on a single chip and their performance continue to increase, the communication architecture plays a major role in the area, performance and energy consumption of the overall system. As a result, a shift from computation-based to communication-based design becomes mandatory. Towards this end, network-on-chip (NoC) communication architectures have emerged recently as a promising alternative to classical bus and point-to-point communication architectures. This book explores outstanding research problems related to modeling, analysis and optimization of NoC communication architectures. More precisely, we present novel design methodologies, software tools and FPGA prototypes to aid the design of application-specific NoCs.

  5. P2P Lending Risk Contagion Analysis Based on a Complex Network Model

    Directory of Open Access Journals (Sweden)

    Qi Wei

    2016-01-01

    Full Text Available This paper analyzes two major channels of P2P lending risk contagion in China—direct risk contagion between platforms and indirect risk contagion with other financial organizations as the contagion medium. Based on this analysis, the current study constructs a complex network model of P2P lending risk contagion in China and performs dynamics analogue simulations in order to analyze general characteristics of direct risk contagion among China’s online P2P lending platforms. The assumed conditions are that other financial organizations act as the contagion medium, with variations in the risk contagion characteristics set under the condition of significant information asymmetry in Internet lending. It is indicated that, compared to direct risk contagion among platforms, both financial organizations acting as the contagion medium and information asymmetry magnify the effect of risk contagion. It is also found that the superposition of media effects and information asymmetry is more likely to magnify the risk contagion effect.

  6. Modelling Framework and the Quantitative Analysis of Distributed Energy Resources in Future Distribution Networks

    DEFF Research Database (Denmark)

    Han, Xue; Sandels, Claes; Zhu, Kun

    2013-01-01

    There has been a large body of statements claiming that the large-scale deployment of Distributed Energy Resources (DERs) could eventually reshape the future distribution grid operation in numerous ways. Thus, it is necessary to introduce a framework to measure to what extent the power system......, comprising distributed generation, active demand and electric vehicles. Subsequently, quantitative analysis was made on the basis of the current and envisioned DER deployment scenarios proposed for Sweden. Simulations are performed in two typical distribution network models for four seasons. The simulation...... results show that in general the DER deployment brings in the possibilities to reduce the power losses and voltage drops by compensating power from the local generation and optimizing the local load profiles....

  7. Modeling Epidemic Network Failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...... the SID model’s behavior and impact on the network performance, as well as the severity of the infection spreading. The simulations are carried out in OPNET Modeler. The model provides an important input to epidemic connection recovery mechanisms, and can due to its flexibility and versatility be used...... to evaluate multiple epidemic scenarios in various network types....

  8. Diagnostics for generalized linear hierarchical models in network meta-analysis.

    Science.gov (United States)

    Zhao, Hong; Hodges, James S; Carlin, Bradley P

    2017-09-01

    Network meta-analysis (NMA) combines direct and indirect evidence comparing more than 2 treatments. Inconsistency arises when these 2 information sources differ. Previous work focuses on inconsistency detection, but little has been done on how to proceed after identifying inconsistency. The key issue is whether inconsistency changes an NMA's substantive conclusions. In this paper, we examine such discrepancies from a diagnostic point of view. Our methods seek to detect influential and outlying observations in NMA at a trial-by-arm level. These observations may have a large effect on the parameter estimates in NMA, or they may deviate markedly from other observations. We develop formal diagnostics for a Bayesian hierarchical model to check the effect of deleting any observation. Diagnostics are specified for generalized linear hierarchical NMA models and investigated for both published and simulated datasets. Results from our example dataset using either contrast- or arm-based models and from the simulated datasets indicate that the sources of inconsistency in NMA tend not to be influential, though results from the example dataset suggest that they are likely to be outliers. This mimics a familiar result from linear model theory, in which outliers with low leverage are not influential. Future extensions include incorporating baseline covariates and individual-level patient data. Copyright © 2017 John Wiley & Sons, Ltd.

  9. A neural network model for estimating soil phosphorus using terrain analysis

    Directory of Open Access Journals (Sweden)

    Ali Keshavarzi

    2015-12-01

    Full Text Available Artificial neural network (ANN model was developed and tested for estimating soil phosphorus (P in Kouhin watershed area (1000 ha, Qazvin province, Iran using terrain analysis. Based on the soil distribution correlation, vegetation growth pattern across the topographically heterogeneous landscape, the topographic and vegetation attributes were used in addition to pedologic information for the development of ANN model in area for estimating of soil phosphorus. Totally, 85 samples were collected and tested for phosphorus contents and corresponding attributes were estimated by the digital elevation model (DEM. In order to develop the pedo-transfer functions, data linearity was checked, correlated and 80% was used for modeling and ANN was tested using 20% of collected data. Results indicate that 68% of the variation in soil phosphorus could be explained by elevation and Band 1 data and significant correlation was observed between input variables and phosphorus contents. There was a significant correlation between soil P and terrain attributes which can be used to derive the pedo-transfer function for soil P estimation to manage nutrient deficiency. Results showed that P values can be calculated more accurately with the ANN-based pedo-transfer function with the input topographic variables along with the Band 1.

  10. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  11. Do narcissism and emotional intelligence win us friends? : modeling dynamics of peer popularity using inferential network analysis

    OpenAIRE

    Czarna, Anna; Leifeld, Philip; Śmieja-Nęcka, Magdalena; Dufner, Michael; Salovey, Peter

    2016-01-01

    This research investigated effects of narcissism and emotional intelligence (EI) on popularity in social networks. In a longitudinal field study, we examined the dynamics of popularity in 15 peer groups in two waves (N = 273). We measured narcissism, ability EI, and explicit and implicit self-esteem. In addition, we measured popularity at zero acquaintance and 3 months later. We analyzed the data using inferential network analysis (temporal exponential random graph modeling, TERGM) accounting...

  12. The stability of the extended model of hypothalamic-pituitary-adrenal axis examined by stoichiometric network analysis

    Science.gov (United States)

    Marković, V. M.; Čupić, Ž.; Ivanović, A.; Kolar-Anić, Lj.

    2011-12-01

    Stoichiometric network analysis (SNA) represents a powerful mathematical tool for stability analysis of complex stoichiometric networks. Recently, the important improvement of the method has been made, according to which instability relations can be entirely expressed via reaction rates, instead of thus far used, in general case undefined, current rates. Such an improved SNA methodology was applied to the determination of exact instability conditions of the extended model of the hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrinological system, whose hormone concentrations exert complex oscillatory evolution. For emergence of oscillations, the Hopf bifurcation condition was utilized. Instability relations predicted by SNA showed good correlation with numerical simulation data of the HPA axis model.

  13. Customer social network affects marketing strategy: A simulation analysis based on competitive diffusion model

    Science.gov (United States)

    Hou, Rui; Wu, Jiawen; Du, Helen S.

    2017-03-01

    To explain the competition phenomenon and results between QQ and MSN (China) in the Chinese instant messaging software market, this paper developed a new population competition model based on customer social network. The simulation results show that the firm whose product with greater network externality effect will gain more market share than its rival when the same marketing strategy is used. The firm with the advantage of time, derived from the initial scale effect will become more competitive than its rival when facing a group of common penguin customers within a social network, verifying the winner-take-all phenomenon in this case.

  14. Statistical analysis of network data with R

    CERN Document Server

    Kolaczyk, Eric D

    2014-01-01

    Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

  15. Standard representation and unified stability analysis for dynamic artificial neural network models.

    Science.gov (United States)

    Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D

    2018-02-01

    An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.

  16. Communication Network Analysis Methods.

    Science.gov (United States)

    Farace, Richard V.; Mabee, Timothy

    This paper reviews a variety of analytic procedures that can be applied to network data, discussing the assumptions and usefulness of each procedure when applied to the complexity of human communication. Special attention is paid to the network properties measured or implied by each procedure. Factor analysis and multidimensional scaling are among…

  17. Transmission analysis in WDM networks

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    1999-01-01

    This thesis describes the development of a computer-based simulator for transmission analysis in optical wavelength division multiplexing networks. A great part of the work concerns fundamental optical network simulator issues. Among these issues are identification of the versatility and user...... the different component models are invoked during the simulation of a system. A simple set of rules which makes it possible to simulate any network architectures is laid down. The modelling of the nonlinear fibre and the optical receiver is also treated. The work on the fibre concerns the numerical solution...

  18. Brand Marketing Model on Social Networks

    Directory of Open Access Journals (Sweden)

    Jolita Jezukevičiūtė

    2014-04-01

    Full Text Available The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalysis of a single case study revealed a brand marketingsocial networking tools that affect consumers the most. Basedon information analysis and methodological studies, develop abrand marketing model on social networks.

  19. Networks and Bargaining in Policy Analysis

    DEFF Research Database (Denmark)

    Bogason, Peter

    2006-01-01

    A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today.......A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today....

  20. Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-01-01

    Full Text Available DNA is a fundamental component of living systems where it plays a crucial role at both functional and structural level. The programmable properties of DNA make it an interesting building block for the construction of nanostructures. However, molecular mechanisms for the arrangement of these well-defined DNA assemblies are not fully understood. In this paper, the intrinsic dynamics of a DNA octahedron has been investigated by using two types of Elastic Network Models (ENMs. The application of ENMs to DNA nanocages include the analysis of the intrinsic flexibilities of DNA double-helices and hinge sites through the calculation of the square fluctuations, as well as the intrinsic collective dynamics in terms of cross-collective map calculation coupled with global motions analysis. The dynamics profiles derived from ENMs have then been evaluated and compared with previous classical molecular dynamics simulation trajectories. The results presented here revealed that ENMs can provide useful insights into the intrinsic dynamics of large DNA nanocages and represent a useful tool in the field of structural DNA nanotechnology.

  1. Sustainable Technology Analysis of Artificial Intelligence Using Bayesian and Social Network Models

    Directory of Open Access Journals (Sweden)

    Juhwan Kim

    2018-01-01

    Full Text Available Recent developments in artificial intelligence (AI have led to a significant increase in the use of AI technologies. Many experts are researching and developing AI technologies in their respective fields, often submitting papers and patent applications as a result. In particular, owing to the characteristics of the patent system that is used to protect the exclusive rights to registered technology, patent documents contain detailed information on the developed technology. Therefore, in this study, we propose a statistical method for analyzing patent data on AI technology to improve our understanding of sustainable technology in the field of AI. We collect patent documents that are related to AI technology, and then analyze the patent data to identify sustainable AI technology. In our analysis, we develop a statistical method that combines social network analysis and Bayesian modeling. Based on the results of the proposed method, we provide a technological structure that can be applied to understand the sustainability of AI technology. To show how the proposed method can be applied to a practical problem, we apply the technological structure to a case study in order to analyze sustainable AI technology.

  2. Network analysis applications in hydrology

    Science.gov (United States)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  3. Advanced Models and Algorithms for Self-Similar IP Network Traffic Simulation and Performance Analysis

    Science.gov (United States)

    Radev, Dimitar; Lokshina, Izabella

    2010-11-01

    The paper examines self-similar (or fractal) properties of real communication network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Advanced fractal models of sequentional generators and fixed-length sequence generators, and efficient algorithms that are used to simulate self-similar behavior of IP network traffic data are developed and applied. Numerical examples are provided; and simulation results are obtained and analyzed.

  4. Modeling and Optimization of M/G/1-Type Queueing Networks: An Efficient Sensitivity Analysis Approach

    Directory of Open Access Journals (Sweden)

    Liang Tang

    2010-01-01

    Full Text Available A mathematical model for M/G/1-type queueing networks with multiple user applications and limited resources is established. The goal is to develop a dynamic distributed algorithm for this model, which supports all data traffic as efficiently as possible and makes optimally fair decisions about how to minimize the network performance cost. An online policy gradient optimization algorithm based on a single sample path is provided to avoid suffering from a “curse of dimensionality”. The asymptotic convergence properties of this algorithm are proved. Numerical examples provide valuable insights for bridging mathematical theory with engineering practice.

  5. Analysis of Artificial Neural Network in Erosion Modeling: A Case Study of Serang Watershed

    Science.gov (United States)

    Arif, N.; Danoedoro, P.; Hartono

    2017-12-01

    Erosion modeling is an important measuring tool for both land users and decision makers to evaluate land cultivation and thus it is necessary to have a model to represent the actual reality. Erosion models are a complex model because of uncertainty data with different sources and processing procedures. Artificial neural networks can be relied on for complex and non-linear data processing such as erosion data. The main difficulty in artificial neural network training is the determination of the value of each network input parameters, i.e. hidden layer, momentum, learning rate, momentum, and RMS. This study tested the capability of artificial neural network application in the prediction of erosion risk with some input parameters through multiple simulations to get good classification results. The model was implemented in Serang Watershed, Kulonprogo, Yogyakarta which is one of the critical potential watersheds in Indonesia. The simulation results showed the number of iterations that gave a significant effect on the accuracy compared to other parameters. A small number of iterations can produce good accuracy if the combination of other parameters was right. In this case, one hidden layer was sufficient to produce good accuracy. The highest training accuracy achieved in this study was 99.32%, occurred in ANN 14 simulation with combination of network input parameters of 1 HL; LR 0.01; M 0.5; RMS 0.0001, and the number of iterations of 15000. The ANN training accuracy was not influenced by the number of channels, namely input dataset (erosion factors) as well as data dimensions, rather it was determined by changes in network parameters.

  6. Space evolution model and empirical analysis of an urban public transport network

    Science.gov (United States)

    Sui, Yi; Shao, Feng-jing; Sun, Ren-cheng; Li, Shu-jing

    2012-07-01

    This study explores the space evolution of an urban public transport network, using empirical evidence and a simulation model validated on that data. Public transport patterns primarily depend on traffic spatial-distribution, demands of passengers and expected utility of investors. Evolution is an iterative process of satisfying the needs of passengers and investors based on a given traffic spatial-distribution. The temporal change of urban public transport network is evaluated both using topological measures and spatial ones. The simulation model is validated using empirical data from nine big cities in China. Statistical analyses on topological and spatial attributes suggest that an evolution network with traffic demands characterized by power-law numerical values which distribute in a mode of concentric circles tallies well with these nine cities.

  7. Variable speed limit strategies analysis with mesoscopic traffic flow model based on complex networks

    Science.gov (United States)

    Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin

    As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.

  8. The College Football Student-Athlete's Academic Experience: Network Analysis and Model Development

    Science.gov (United States)

    Young, Kyle McLendon

    2010-01-01

    A grounded theory research study employing network analysis as a means of facilitating the latter stages of the coding process was conducted at a selective university that competes at the highest level of college football. The purpose of the study was to develop a better understanding of how interactive dynamics and controlling mechanisms, such as…

  9. Network model of security system

    Directory of Open Access Journals (Sweden)

    Adamczyk Piotr

    2016-01-01

    Full Text Available The article presents the concept of building a network security model and its application in the process of risk analysis. It indicates the possibility of a new definition of the role of the network models in the safety analysis. Special attention was paid to the development of the use of an algorithm describing the process of identifying the assets, vulnerability and threats in a given context. The aim of the article is to present how this algorithm reduced the complexity of the problem by eliminating from the base model these components that have no links with others component and as a result and it was possible to build a real network model corresponding to reality.

  10. Formal modeling and analysis of ER-α associated Biological Regulatory Network in breast cancer

    Directory of Open Access Journals (Sweden)

    Samra Khalid

    2016-10-01

    Full Text Available Background Breast cancer (BC is one of the leading cause of death among females worldwide. The increasing incidence of BC is due to various genetic and environmental changes which lead to the disruption of cellular signaling network(s. It is a complex disease in which several interlinking signaling cascades play a crucial role in establishing a complex regulatory network. The logical modeling approach of René Thomas has been applied to analyze the behavior of estrogen receptor-alpha (ER-α associated Biological Regulatory Network (BRN for a small part of complex events that leads to BC metastasis. Methods A discrete model was constructed using the kinetic logic formalism and its set of logical parameters were obtained using the model checking technique implemented in the SMBioNet software which is consistent with biological observations. The discrete model was further enriched with continuous dynamics by converting it into an equivalent Petri Net (PN to analyze the logical parameters of the involved entities. Results In-silico based discrete and continuous modeling of ER-α associated signaling network involved in BC provides information about behaviors and gene-gene interaction in detail. The dynamics of discrete model revealed, imperative behaviors represented as cyclic paths and trajectories leading to pathogenic states such as metastasis. Results suggest that the increased expressions of receptors ER-α, IGF-1R and EGFR slow down the activity of tumor suppressor genes (TSGs such as BRCA1, p53 and Mdm2 which can lead to metastasis. Therefore, IGF-1R and EGFR are considered as important inhibitory targets to control the metastasis in BC. Conclusion The in-silico approaches allow us to increase our understanding of the functional properties of living organisms. It opens new avenues of investigations of multiple inhibitory targets (ER-α, IGF-1R and EGFR for wet lab experiments as well as provided valuable insights in the treatment of cancers

  11. Capturing cognitive causal paths in human reliability analysis with Bayesian network models

    International Nuclear Information System (INIS)

    Zwirglmaier, Kilian; Straub, Daniel; Groth, Katrina M.

    2017-01-01

    reIn the last decade, Bayesian networks (BNs) have been identified as a powerful tool for human reliability analysis (HRA), with multiple advantages over traditional HRA methods. In this paper we illustrate how BNs can be used to include additional, qualitative causal paths to provide traceability. The proposed framework provides the foundation to resolve several needs frequently expressed by the HRA community. First, the developed extended BN structure reflects the causal paths found in cognitive psychology literature, thereby addressing the need for causal traceability and strong scientific basis in HRA. Secondly, the use of node reduction algorithms allows the BN to be condensed to a level of detail at which quantification is as straightforward as the techniques used in existing HRA. We illustrate the framework by developing a BN version of the critical data misperceived crew failure mode in the IDHEAS HRA method, which is currently under development at the US NRC . We illustrate how the model could be quantified with a combination of expert-probabilities and information from operator performance databases such as SACADA. This paper lays the foundations necessary to expand the cognitive and quantitative foundations of HRA. - Highlights: • A framework for building traceable BNs for HRA, based on cognitive causal paths. • A qualitative BN structure, directly showing these causal paths is developed. • Node reduction algorithms are used for making the BN structure quantifiable. • BN quantified through expert estimates and observed data (Bayesian updating). • The framework is illustrated for a crew failure mode of IDHEAS.

  12. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  13. Modular analysis of biological networks.

    Science.gov (United States)

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  14. How to interpret the results of medical time series data analysis: Classical statistical approaches versus dynamic Bayesian network modeling.

    Science.gov (United States)

    Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall

    2016-01-01

    Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.

  15. Noise and Synchronization Analysis of the Cold-Receptor Neuronal Network Model

    Directory of Open Access Journals (Sweden)

    Ying Du

    2014-01-01

    Full Text Available This paper analyzes the dynamics of the cold receptor neural network model. First, it examines noise effects on neuronal stimulus in the model. From ISI plots, it is shown that there are considerable differences between purely deterministic simulations and noisy ones. The ISI-distance is used to measure the noise effects on spike trains quantitatively. It is found that spike trains observed in neural models can be more strongly affected by noise for different temperatures in some aspects; meanwhile, spike train has greater variability with the noise intensity increasing. The synchronization of neuronal network with different connectivity patterns is also studied. It is shown that chaotic and high period patterns are more difficult to get complete synchronization than the situation in single spike and low period patterns. The neuronal network will exhibit various patterns of firing synchronization by varying some key parameters such as the coupling strength. Different types of firing synchronization are diagnosed by a correlation coefficient and the ISI-distance method. The simulations show that the synchronization status of neurons is related to the network connectivity patterns.

  16. Risk Analysis on Leakage Failure of Natural Gas Pipelines by Fuzzy Bayesian Network with a Bow-Tie Model

    OpenAIRE

    Shan, Xian; Liu, Kang; Sun, Pei-Liang

    2017-01-01

    Pipeline is the major mode of natural gas transportation. Leakage of natural gas pipelines may cause explosions and fires, resulting in casualties, environmental damage, and material loss. Efficient risk analysis is of great significance for preventing and mitigating such potential accidents. The objective of this study is to present a practical risk assessment method based on Bow-tie model and Bayesian network for risk analysis of natural gas pipeline leakage. Firstly, identify the potential...

  17. Logic-based models in systems biology: a predictive and parameter-free network analysis method.

    Science.gov (United States)

    Wynn, Michelle L; Consul, Nikita; Merajver, Sofia D; Schnell, Santiago

    2012-11-01

    Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network's dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples.

  18. Brand Marketing Model on Social Networks

    OpenAIRE

    Jolita Jezukevičiūtė; Vida Davidavičienė

    2014-01-01

    The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalys...

  19. Brand marketing model on social networks

    OpenAIRE

    Jezukevičiūtė, Jolita; Davidavičienė, Vida

    2014-01-01

    Paper analyzes the brand and its marketing solutions on social networks. This analysis led to the creation of improved brand marketing model on social networks, which will contribute to the rapid and cheap organization brand recognition, increase competitive advantage and enhance consumer loyalty. Therefore, the brand and a variety of social networks are becoming a hot research area for brand marketing model on social networks. The world‘s most successful brand marketing models exploratory an...

  20. NET-2 Network Analysis Program

    International Nuclear Information System (INIS)

    Malmberg, A.F.

    1974-01-01

    The NET-2 Network Analysis Program is a general purpose digital computer program which solves the nonlinear time domain response and the linearized small signal frequency domain response of an arbitrary network of interconnected components. NET-2 is capable of handling a variety of components and has been applied to problems in several engineering fields, including electronic circuit design and analysis, missile flight simulation, control systems, heat flow, fluid flow, mechanical systems, structural dynamics, digital logic, communications network design, solid state device physics, fluidic systems, and nuclear vulnerability due to blast, thermal, gamma radiation, neutron damage, and EMP effects. Network components may be selected from a repertoire of built-in models or they may be constructed by the user through appropriate combinations of mathematical, empirical, and topological functions. Higher-level components may be defined by subnetworks composed of any combination of user-defined components and built-in models. The program provides a modeling capability to represent and intermix system components on many levels, e.g., from hole and electron spatial charge distributions in solid state devices through discrete and integrated electronic components to functional system blocks. NET-2 is capable of simultaneous computation in both the time and frequency domain, and has statistical and optimization capability. Network topology may be controlled as a function of the network solution. (U.S.)

  1. Introducing Synchronisation in Deterministic Network Models

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.

    2006-01-01

    The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading...... to the suggestion of suitable network models. An existing model for flow control is presented and an inherent weakness is revealed and remedied. Examples are given and numerically analysed through deterministic network modelling. Results are presented to highlight the properties of the suggested models...

  2. Flower, a Model for the Analysis of Hydraulic Networks and Processes

    CERN Document Server

    Bottura, L

    2003-01-01

    We have developed in the past years a model that describes hydraulic networks that are typical of the cryogenic interconnection of superconducting magnets. The original model, called Flower, was used mostly to provide consistent boundary conditions for the operation of a magnet. The main limitations were associated with the number and nature of modelling elements available, and to the maximum size of the model that could be solved. Here we present an improvement of the model largely relaxing the above limitations by the addition of new modelling elements, such as parallel flow heat exchangers, and by a significant improvement in the numerics of the solver, using sparse matrix storage and solution techniques. We finally show a typical application to the case of a magnet quench in the LHC string.

  3. Analysis of Social Network Dynamics with Models from the Theory of Complex Adaptive Systems

    OpenAIRE

    Lymperopoulos , Ilias; Lekakos , George

    2013-01-01

    Part 4: Protocols, Regulation and Social Networking; International audience; The understanding and modeling of social dynamics in a complex and unpredictable world, emerges as a research target of particular importance. Success in this direction can yield valuable knowledge as to how social phenomena form and evolve in varying socioeconomic contexts comprising economic crises, societal disasters, cultural differences and security threats among others. The study of social dynamics occurring in...

  4. Clock Synchronization in Wireless Sensor Networks: A New Model and Analysis Approach Based on Networked Control Perspective

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2014-01-01

    Full Text Available Motivated by the importance of the clock synchronization in wireless sensor networks (WSNs, this paper proposes a new research approach and model approach, which quantitatively analyzes clock synchronization from the perspective of modern control theory. Two kinds of control strategies are used as examples to analyze the effect of the control strategy on clock synchronization from different perspectives, namely, the single-step optimal control and the LQG global optimal control. The proposed method establishes a state space model for clock relationship, thus making dimension extension and parameter identification easier, and is robust to changes under the condition of node failures and new nodes. And through the design of different control strategies and performance index functions, the method can satisfy various requirements of the synchronization precision, convergence speed, energy consumption and the computational complexity, and so on. Finally, the simulations show that the synchronization accuracy of the proposed method is higher than that of the existing protocol, and the former convergence speed of the synchronization error is faster.

  5. Modeling and Performance Analysis for Cell Access and Handoff Schemes in Two-Tier Cellular Networks

    Directory of Open Access Journals (Sweden)

    Kyungkoo Jun

    2014-01-01

    Full Text Available We investigate the effects of handoff on system performance in two-tier cellular networks. Two of the main performance metrics are new call blocking probability and handoff drop rate. We develop analytical models to evaluate the performance of two different handoff schemes. One scheme considers only femto-to-macrocell handoff while the other is bidirectional including macro-to-femtocell handoff. Our model is more elaborate than existing ones which have not considered the mobility of mobile stations. Numerical results show that the bidirectional scheme performs better than the femto-to-macrocell handoff as it achieves lower blocking probability and drop rate.

  6. Comparative empirical analysis of flow-weighted transit route networks in R-space and evolution modeling

    Science.gov (United States)

    Huang, Ailing; Zang, Guangzhi; He, Zhengbing; Guan, Wei

    2017-05-01

    Urban public transit system is a typical mixed complex network with dynamic flow, and its evolution should be a process coupling topological structure with flow dynamics, which has received little attention. This paper presents the R-space to make a comparative empirical analysis on Beijing’s flow-weighted transit route network (TRN) and we found that both the Beijing’s TRNs in the year of 2011 and 2015 exhibit the scale-free properties. As such, we propose an evolution model driven by flow to simulate the development of TRNs with consideration of the passengers’ dynamical behaviors triggered by topological change. The model simulates that the evolution of TRN is an iterative process. At each time step, a certain number of new routes are generated driven by travel demands, which leads to dynamical evolution of new routes’ flow and triggers perturbation in nearby routes that will further impact the next round of opening new routes. We present the theoretical analysis based on the mean-field theory, as well as the numerical simulation for this model. The results obtained agree well with our empirical analysis results, which indicate that our model can simulate the TRN evolution with scale-free properties for distributions of node’s strength and degree. The purpose of this paper is to illustrate the global evolutional mechanism of transit network that will be used to exploit planning and design strategies for real TRNs.

  7. Logic-based models in systems biology: a predictive and parameter-free network analysis method†

    Science.gov (United States)

    Wynn, Michelle L.; Consul, Nikita; Merajver, Sofia D.

    2012-01-01

    Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network’s dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples. PMID:23072820

  8. Analysis of the Spatial Variation of Network-Constrained Phenomena Represented by a Link Attribute Using a Hierarchical Bayesian Model

    Directory of Open Access Journals (Sweden)

    Zhensheng Wang

    2017-02-01

    Full Text Available The spatial variation of geographical phenomena is a classical problem in spatial data analysis and can provide insight into underlying processes. Traditional exploratory methods mostly depend on the planar distance assumption, but many spatial phenomena are constrained to a subset of Euclidean space. In this study, we apply a method based on a hierarchical Bayesian model to analyse the spatial variation of network-constrained phenomena represented by a link attribute in conjunction with two experiments based on a simplified hypothetical network and a complex road network in Shenzhen that includes 4212 urban facility points of interest (POIs for leisure activities. Then, the methods named local indicators of network-constrained clusters (LINCS are applied to explore local spatial patterns in the given network space. The proposed method is designed for phenomena that are represented by attribute values of network links and is capable of removing part of random variability resulting from small-sample estimation. The effects of spatial dependence and the base distribution are also considered in the proposed method, which could be applied in the fields of urban planning and safety research.

  9. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs......To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social......), and stochastic actor-oriented models. We focus most attention on ERGMs by providing an illustrative example of a model for a strategic information network within a local government. We draw inferences about the structural role played by individuals recognized as key innovators and conclude that such an approach...

  10. Sensitivity Analysis of Wavelet Neural Network Model for Short-Term Traffic Volume Prediction

    Directory of Open Access Journals (Sweden)

    Jinxing Shen

    2013-01-01

    Full Text Available In order to achieve a more accurate and robust traffic volume prediction model, the sensitivity of wavelet neural network model (WNNM is analyzed in this study. Based on real loop detector data which is provided by traffic police detachment of Maanshan, WNNM is discussed with different numbers of input neurons, different number of hidden neurons, and traffic volume for different time intervals. The test results show that the performance of WNNM depends heavily on network parameters and time interval of traffic volume. In addition, the WNNM with 4 input neurons and 6 hidden neurons is the optimal predictor with more accuracy, stability, and adaptability. At the same time, a much better prediction record will be achieved with the time interval of traffic volume are 15 minutes. In addition, the optimized WNNM is compared with the widely used back-propagation neural network (BPNN. The comparison results indicated that WNNM produce much lower values of MAE, MAPE, and VAPE than BPNN, which proves that WNNM performs better on short-term traffic volume prediction.

  11. Target-Centric Network Modeling

    DEFF Research Database (Denmark)

    Mitchell, Dr. William L.; Clark, Dr. Robert M.

    In Target-Centric Network Modeling: Case Studies in Analyzing Complex Intelligence Issues, authors Robert Clark and William Mitchell take an entirely new approach to teaching intelligence analysis. Unlike any other book on the market, it offers case study scenarios using actual intelligence...... reporting formats, along with a tested process that facilitates the production of a wide range of analytical products for civilian, military, and hybrid intelligence environments. Readers will learn how to perform the specific actions of problem definition modeling, target network modeling......, and collaborative sharing in the process of creating a high-quality, actionable intelligence product. The case studies reflect the complexity of twenty-first century intelligence issues by dealing with multi-layered target networks that cut across political, economic, social, technological, and military issues...

  12. Entropy Characterization of Random Network Models

    Directory of Open Access Journals (Sweden)

    Pedro J. Zufiria

    2017-06-01

    Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.

  13. The dynamical modeling and simulation analysis of the recommendation on the user-movie network

    Science.gov (United States)

    Zhang, Shujuan; Jin, Zhen; Zhang, Juan

    2016-12-01

    At present, most research about the recommender system is based on graph theory and algebraic methods, but these methods cannot predict the evolution of the system with time under the recommendation method, and cannot dynamically analyze the long-term utility of the recommendation method. However, these two aspects can be studied by the dynamical method, which essentially investigates the intrinsic evolution mechanism of things, and is widely used to study a variety of actual problems. So, in this paper, network dynamics is used to study the recommendation on the user-movie network, which consists of users and movies, and the movies are watched either by the personal search or through the recommendation. Firstly, dynamical models are established to characterize the personal search and the system recommendation mechanism: the personal search model, the random recommendation model, the preference recommendation model, the degree recommendation model and the hybrid recommendation model. The rationality of the models established is verified by comparing the stochastic simulation with the numerical simulation. Moreover, the validity of the recommendation methods is evaluated by studying the movie degree, which is defined as the number of the movie that has been watched. Finally, we combine the personal search and the recommendation to establish a more general model. The change of the average degree of all the movies is given with the strength of the recommendation. Results show that for each recommendation method, the change of the movie degree is different, and is related to the initial degree of movies, the adjacency matrix A representing the relation between users and movies, the time t. Additionally, we find that in a long time, the degree recommendation is not as good as that in a short time, which fully demonstrates the advantage of the dynamical method. For the whole user-movie system, the preference recommendation is the best.

  14. Network performance analysis

    CERN Document Server

    Bonald, Thomas

    2013-01-01

    The book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples i

  15. Application of Detailed Phase Comparison Protection Models for the Analysis of its Operation in Networks with Facts Devices

    Directory of Open Access Journals (Sweden)

    Ruban Nikolay Yu.

    2015-01-01

    Full Text Available The problem of relay protection misoperations in networks with FACTS devices is considered in the paper. It is offered a solution to this problem for a phase comparison protection of transmission power line through the use of its detailed model for the analysis of the functioning for a case of various normal, emergency and post-emergency modes of electric power systems. The research results of this approach are given in the paper.

  16. Do Narcissism and Emotional Intelligence Win Us Friends? Modeling Dynamics of Peer Popularity Using Inferential Network Analysis.

    Science.gov (United States)

    Czarna, Anna Z; Leifeld, Philip; Śmieja, Magdalena; Dufner, Michael; Salovey, Peter

    2016-09-27

    This research investigated effects of narcissism and emotional intelligence (EI) on popularity in social networks. In a longitudinal field study, we examined the dynamics of popularity in 15 peer groups in two waves (N = 273). We measured narcissism, ability EI, and explicit and implicit self-esteem. In addition, we measured popularity at zero acquaintance and 3 months later. We analyzed the data using inferential network analysis (temporal exponential random graph modeling, TERGM) accounting for self-organizing network forces. People high in narcissism were popular, but increased less in popularity over time than people lower in narcissism. In contrast, emotionally intelligent people increased more in popularity over time than less emotionally intelligent people. The effects held when we controlled for explicit and implicit self-esteem. These results suggest that narcissism is rather disadvantageous and that EI is rather advantageous for long-term popularity. © 2016 by the Society for Personality and Social Psychology, Inc.

  17. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  18. International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.

    Science.gov (United States)

    Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen

    2015-01-01

    This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.

  19. Graph Theoretical Analysis of Network Centric Operations Using Multi-Layer Models

    National Research Council Canada - National Science Library

    Wong-Jiru, Ann

    2006-01-01

    .... The research incorporates the importance of understanding network topology for evaluating an environment for net-centricity and using network characteristics to help commanders assess the effects...

  20. Stability and bifurcation analysis for a discrete-time bidirectional ring neural network model with delay

    Directory of Open Access Journals (Sweden)

    Yan-Ke Du

    2013-09-01

    Full Text Available We study a class of discrete-time bidirectional ring neural network model with delay. We discuss the asymptotic stability of the origin and the existence of Neimark-Sacker bifurcations, by analyzing the corresponding characteristic equation. Employing M-matrix theory and the Lyapunov functional method, global asymptotic stability of the origin is derived. Applying the normal form theory and the center manifold theorem, the direction of the Neimark-Sacker bifurcation and the stability of bifurcating periodic solutions are obtained. Numerical simulations are given to illustrate the main results.

  1. Multiscale virtual particle based elastic network model (MVP-ENM) for normal mode analysis of large-sized biomolecules.

    Science.gov (United States)

    Xia, Kelin

    2017-12-20

    In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.

  2. Statistical Models for Social Networks

    NARCIS (Netherlands)

    Snijders, Tom A. B.; Cook, KS; Massey, DS

    2011-01-01

    Statistical models for social networks as dependent variables must represent the typical network dependencies between tie variables such as reciprocity, homophily, transitivity, etc. This review first treats models for single (cross-sectionally observed) networks and then for network dynamics. For

  3. Social network analysis community detection and evolution

    CERN Document Server

    Missaoui, Rokia

    2015-01-01

    This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit

  4. Enabling model checking for collaborative process analysis: from BPMN to `Network of Timed Automata'

    Science.gov (United States)

    Mallek, Sihem; Daclin, Nicolas; Chapurlat, Vincent; Vallespir, Bruno

    2015-04-01

    Interoperability is a prerequisite for partners involved in performing collaboration. As a consequence, the lack of interoperability is now considered a major obstacle. The research work presented in this paper aims to develop an approach that allows specifying and verifying a set of interoperability requirements to be satisfied by each partner in the collaborative process prior to process implementation. To enable the verification of these interoperability requirements, it is necessary first and foremost to generate a model of the targeted collaborative process; for this research effort, the standardised language BPMN 2.0 is used. Afterwards, a verification technique must be introduced, and model checking is the preferred option herein. This paper focuses on application of the model checker UPPAAL in order to verify interoperability requirements for the given collaborative process model. At first, this step entails translating the collaborative process model from BPMN into a UPPAAL modelling language called 'Network of Timed Automata'. Second, it becomes necessary to formalise interoperability requirements into properties with the dedicated UPPAAL language, i.e. the temporal logic TCTL.

  5. Time-dependent reliability analysis of nuclear reactor operators using probabilistic network models

    International Nuclear Information System (INIS)

    Oka, Y.; Miyata, K.; Kodaira, H.; Murakami, S.; Kondo, S.; Togo, Y.

    1987-01-01

    Human factors are very important for the reliability of a nuclear power plant. Human behavior has essentially a time-dependent nature. The details of thinking and decision making processes are important for detailed analysis of human reliability. They have, however, not been well considered by the conventional methods of human reliability analysis. The present paper describes the models for the time-dependent and detailed human reliability analysis. Recovery by an operator is taken into account and two-operators models are also presented

  6. MODELING AND ANALYSIS OF ALGAL BLOOMS IN ARAS DAM BY ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    JAHANGIRI-RAD MAHSA

    2015-03-01

    Full Text Available Man made practices have contributed to large-scale algal blooms that have caused serious ecological, aesthetic, water purification and water distribution problems. Aras Dam, which provides Arasful city with drinking water, has chronic algal blooms since 1990. This study addresses the use of artificial neural network (ANN model to anticipate the chlorophyll-a concentration in water of dam reservoir. Operation tests carried out by collecting water samples from 5 stations and examined for physical quality parameters namely: water temperature, total suspended solids (TSS, biochemical oxygen demands (BOD, ortophosphate, total phosphorous and nitrate concentrations using standard methods. Chlorophyll-a was also checked separately in order to investigate the accuracy of the predicted results by ANN. The results showed that a network was highly accurate in predicting the Chl-a concentration. A good agreement between actual data and the ANN outputs for training was observed, indicating the validation of testing data sets. The initial results of the research indicate that the dam is enriched with nutrients (phosphorus and nitrogen. The Chl-a concentration that were predicted by the model were beyond the standard levels; indicating the possibility of eutrophication especially during fall season.

  7. Combination of Markov state models and kinetic networks for the analysis of molecular dynamics simulations of peptide folding.

    Science.gov (United States)

    Radford, Isolde H; Fersht, Alan R; Settanni, Giovanni

    2011-06-09

    Atomistic molecular dynamics simulations of the TZ1 beta-hairpin peptide have been carried out using an implicit model for the solvent. The trajectories have been analyzed using a Markov state model defined on the projections along two significant observables and a kinetic network approach. The Markov state model allowed for an unbiased identification of the metastable states of the system, and provided the basis for commitment probability calculations performed on the kinetic network. The kinetic network analysis served to extract the main transition state for folding of the peptide and to validate the results from the Markov state analysis. The combination of the two techniques allowed for a consistent and concise characterization of the dynamics of the peptide. The slowest relaxation process identified is the exchange between variably folded and denatured species, and the second slowest process is the exchange between two different subsets of the denatured state which could not be otherwise identified by simple inspection of the projected trajectory. The third slowest process is the exchange between a fully native and a partially folded intermediate state characterized by a native turn with a proximal backbone H-bond, and frayed side-chain packing and termini. The transition state for the main folding reaction is similar to the intermediate state, although a more native like side-chain packing is observed.

  8. Numerical analysis of the chimera states in the multilayered network model

    Science.gov (United States)

    Goremyko, Mikhail V.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Ghosh, Dibakar; Bera, Bidesh K.; Dana, Syamal K.; Hramov, Alexander E.

    2017-03-01

    We numerically study the interaction between the ensembles of the Hindmarsh-Rose (HR) neuron systems, arranged in the multilayer network model. We have shown that the fully identical layers, demonstrated individually different chimera due to the initial mismatch, come to the identical chimera state with the increase of inter-layer coupling. Within the multilayer model we also consider the case, when the one layer demonstrates chimera state, while another layer exhibits coherent or incoherent dynamics. It has been shown that the interactions chimera-coherent state and chimera-incoherent state leads to the both excitation of chimera as from the ensemble of fully coherent or incoherent oscillators, and suppression of initially stable chimera state

  9. Analysis and forecast of railway coal transportation volume based on BP neural network combined forecasting model

    Science.gov (United States)

    Xu, Yongbin; Xie, Haihong; Wu, Liuyi

    2018-05-01

    The share of coal transportation in the total railway freight volume is about 50%. As is widely acknowledged, coal industry is vulnerable to the economic situation and national policies. Coal transportation volume fluctuates significantly under the new economic normal. Grasp the overall development trend of railway coal transportation market, have important reference and guidance significance to the railway and coal industry decision-making. By analyzing the economic indicators and policy implications, this paper expounds the trend of the coal transportation volume, and further combines the economic indicators with the high correlation with the coal transportation volume with the traditional traffic prediction model to establish a combined forecasting model based on the back propagation neural network. The error of the prediction results is tested, which proves that the method has higher accuracy and has practical application.

  10. Outage analysis of selective cooperation in underlay cognitive networks with fixed gain relays and primary interference modeling

    KAUST Repository

    Hussain, Syed Imtiaz

    2012-09-01

    Selective cooperation is a well investigated technique in non-cognitive networks for efficient spectrum utilization and performance improvement. However, it is still a nascent topic for underlay cognitive networks. Recently, it was investigated for underlay networks where the secondary nodes were able to adapt their transmit power to always satisfy the interference threshold to the primary users. This is a valid assumption for cellular networks but many non-cellular devices have fixed transmit powers. In this situation, selective cooperation poses a more challenging problem and performs entirely differently. In this paper, we extend our previous work of selective cooperation based on either hop\\'s signal to noise ratio (SNR) with fixed gain and fixed transmit power relays in an underlay cognitive network. This work lacked in considering the primary interference over the cognitive network and presented a rather idealistic analysis. This paper deals with a more realistic system model and includes the effects of primary interference on the secondary transmission. We first derive end-to-end signal to interference and noise ratio (SINR) expression and the related statistics for a dual-hop relay link using asymptotic and approximate approaches. We then derive the statistics of the selected relay link based on maximum end-to-end SINR among the relays satisfying the interference threshold to the primary user. Using this statistics, we derive closed form asymptotic and approximate expressions for the outage probability of the system. Analytical results are verified through simulations. It is concluded that selective cooperation in underlay cognitive networks performs better only in low to medium SNR regions. © 2012 IEEE.

  11. Network models in economics and finance

    CERN Document Server

    Pardalos, Panos; Rassias, Themistocles

    2014-01-01

    Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis  that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.

  12. Wireless Underground Sensor Networks: Channel Modeling and Operation Analysis in the Terahertz Band

    Directory of Open Access Journals (Sweden)

    Mustafa Alper Akkaş

    2015-01-01

    Full Text Available Wireless underground sensor networks (WUSNs are networks of sensor nodes operating below the ground surface, which are envisioned to provide real-time monitoring capabilities in the complex underground environments consisting of soil, water, oil, and other components. In this paper, we investigate the possibilities and limitations of using WUSNs for increasing the efficiency of oil recovery processes. To realize this, millimeter scale sensor nodes with antennas at the same scale should be deployed in the confined oil reservoir fractures. This necessitates the sensor nodes to be operating in the terahertz (THz range and the main challenge is establishing reliable underground communication despite the hostile environment which does not allow the direct use of most existing wireless solutions. The major problems are extremely high path loss, small communication range, and high dynamics of the electromagnetic (EM waves when penetrating through soil, sand, and water and through the very specific crude oil medium. The objective of the paper is to address these issues in order to propose a novel communication channel model considering the propagation properties of terahertz EM waves in the complex underground environment of the oil reservoirs and to investigate the feasible transmission distances between nodes for different water-crude-oil-soil-CO2 compositions.

  13. Analysis of Recurrent Analog Neural Networks

    Directory of Open Access Journals (Sweden)

    Z. Raida

    1998-06-01

    Full Text Available In this paper, an original rigorous analysis of recurrent analog neural networks, which are built from opamp neurons, is presented. The analysis, which comes from the approximate model of the operational amplifier, reveals causes of possible non-stable states and enables to determine convergence properties of the network. Results of the analysis are discussed in order to enable development of original robust and fast analog networks. In the analysis, the special attention is turned to the examination of the influence of real circuit elements and of the statistical parameters of processed signals to the parameters of the network.

  14. FAST TCP over optical burst switched networks: Modeling and stability analysis

    KAUST Repository

    Shihada, Basem; El-Ferik, Sami; Ho, Pin-Han

    2013-01-01

    congestion-control mechanism in bufferless Optical Burst Switched Networks (OBS). The paper first shows that random burst contentions are essential to stabilize the network, but cause throughput degradation in FAST TCP flows when a burst with all the packets

  15. Noise Analysis studies with neural networks

    International Nuclear Information System (INIS)

    Seker, S.; Ciftcioglu, O.

    1996-01-01

    Noise analysis studies with neural network are aimed. Stochastic signals at the input of the network are used to obtain an algorithmic multivariate stochastic signal modeling. To this end, lattice modeling of a stochastic signal is performed to obtain backward residual noise sources which are uncorrelated among themselves. There are applied together with an additional input to the network to obtain an algorithmic model which is used for signal detection for early failure in plant monitoring. The additional input provides the information to the network to minimize the difference between the signal and the network's one-step-ahead prediction. A stochastic algorithm is used for training where the errors reflecting the measurement error during the training are also modelled so that fast and consistent convergence of network's weights is obtained. The lattice structure coupled to neural network investigated with measured signals from an actual power plant. (authors)

  16. Bifurcation analysis of oscillating network model of pattern recognition in the rabbit olfactory bulb

    Science.gov (United States)

    Baird, Bill

    1986-08-01

    A neural network model describing pattern recognition in the rabbit olfactory bulb is analysed to explain the changes in neural activity observed experimentally during classical Pavlovian conditioning. EEG activity recorded from an 8×8 arry of 64 electrodes directly on the surface on the bulb shows distinct spatial patterns of oscillation that correspond to the animal's recognition of different conditioned odors and change with conditioning to new odors. The model may be considered a variant of Hopfield's model of continuous analog neural dynamics. Excitatory and inhibitory cell types in the bulb and the anatomical architecture of their connection requires a nonsymmetric coupling matrix. As the mean input level rises during each breath of the animal, the system bifurcates from homogenous equilibrium to a spatially patterned oscillation. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of these unstable oscillatory modes independent of frequency. This allows a view of stored periodic attractors as fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  17. From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota.

    Science.gov (United States)

    Bauer, Eugen; Thiele, Ines

    2018-01-01

    An important hallmark of the human gut microbiota is its species diversity and complexity. Various diseases have been associated with a decreased diversity leading to reduced metabolic functionalities. Common approaches to investigate the human microbiota include high-throughput sequencing with subsequent correlative analyses. However, to understand the ecology of the human gut microbiota and consequently design novel treatments for diseases, it is important to represent the different interactions between microbes with their associated metabolites. Computational systems biology approaches can give further mechanistic insights by constructing data- or knowledge-driven networks that represent microbe interactions. In this minireview, we will discuss current approaches in systems biology to analyze the human gut microbiota, with a particular focus on constraint-based modeling. We will discuss various community modeling techniques with their advantages and differences, as well as their application to predict the metabolic mechanisms of intestinal microbial communities. Finally, we will discuss future perspectives and current challenges of simulating realistic and comprehensive models of the human gut microbiota.

  18. Analysis of Network Parameters Influencing Performance of Hybrid Multimedia Networks

    Directory of Open Access Journals (Sweden)

    Dominik Kovac

    2013-10-01

    Full Text Available Multimedia networks is an emerging subject that currently attracts the attention of research and industrial communities. This environment provides new entertainment services and business opportunities merged with all well-known network services like VoIP calls or file transfers. Such a heterogeneous system has to be able satisfy all network and end-user requirements which are increasing constantly. Therefore the simulation tools enabling deep analysis in order to find the key performance indicators and factors which influence the overall quality for specific network service the most are highly needed. This paper provides a study on the network parameters like communication technology, routing protocol, QoS mechanism, etc. and their effect on the performance of hybrid multimedia network. The analysis was performed in OPNET Modeler environment and the most interesting results are discussed at the end of this paper

  19. Network modelling methods for FMRI.

    Science.gov (United States)

    Smith, Stephen M; Miller, Karla L; Salimi-Khorshidi, Gholamreza; Webster, Matthew; Beckmann, Christian F; Nichols, Thomas E; Ramsey, Joseph D; Woolrich, Mark W

    2011-01-15

    There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. A General Model for Representing Arbitrary Unsymmetries in Various Types of Network Analysis

    DEFF Research Database (Denmark)

    Rønne-Hansen, Jan

    1997-01-01

    When dealing with unsymmetric faults various proposals have been put forward. In general they have been characterized by specific treatment of the single fault in accordance with the structure and impedances involved. The model presented is based on node equations and was originally developed for...... complicated fault situation which has not been treated before for traditional transient stability analysis...

  1. Systematic Analysis of Quantitative Logic Model Ensembles Predicts Drug Combination Effects on Cell Signaling Networks

    Science.gov (United States)

    2016-08-27

    bovine serum albumin (BSA) diluted to the amount corresponding to that in the media of the stimulated cells. Phospho-JNK comprises two isoforms whose...information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website (http://www.wileyonlinelibrary.com/psp4) Systematic Analysis of Quantitative Logic Model Morris et al. 553 www.wileyonlinelibrary/psp4

  2. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim

    2014-12-03

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  3. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim; Chasparis, Georgios; Shamma, Jeff S.

    2014-01-01

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  4. The role of network theory and object-oriented modeling within a framework for the vulnerability analysis of critical infrastructures

    International Nuclear Information System (INIS)

    Eusgeld, Irene; Kroeger, Wolfgang; Sansavini, Giovanni; Schlaepfer, Markus; Zio, Enrico

    2009-01-01

    A framework for the analysis of the vulnerability of critical infrastructures has been proposed by some of the authors. The framework basically consists of two successive stages: (i) a screening analysis for identifying the parts of the critical infrastructure most relevant with respect to its vulnerability and (ii) a detailed modeling of the operational dynamics of the identified parts for gaining insights on the causes and mechanisms responsible for the vulnerability. In this paper, a critical presentation is offered of the results of a set of investigations aimed at evaluating the potentials of (i) using network analysis based on measures of topological interconnection and reliability efficiency, for the screening task; (ii) using object-oriented modeling as the simulation framework to capture the detailed dynamics of the operational scenarios involving the most vulnerable parts of the critical infrastructure as identified by the preceding network analysis. A case study based on the Swiss high-voltage transmission system is considered. The results are cross-compared and evaluated; the needs of further research are defined

  5. Systems contestability in electricity distribution networks. An analysis from the telecommunications models within the neoclassical economic paradigm

    International Nuclear Information System (INIS)

    Schweickardt, Gustavo Alejandro; Pistonesi, Hector

    2008-01-01

    The introduction of contestability conditions in the market of electricity distribution, following the dominant economic paradigm (Neoclassical or Marginalist) and solidary to the commercialization segment, it doesn't exhibit satisfactory solutions at the present time. This asseveration, of general character, have special incumbency for those countries of Latin America that, from regulatory schemes, try to define a deregulated market for certain kind of user (denominated eligible). A eligible user is characterized by to have demands equal or higher than a preset threshold value of electric power/ energy. In this work, considering the models implemented in the telecommunications networks, the problem of allocation of distribution costs, as the first step toward a contestable offer in the retail energy service, is discussed to establishing access prices in the distribution networks (non contestable markets). The analysis is focalized to definition of two market segments: one regulated and other competitive. Their methodological and instrumentation difficulties, are presented, concluding in the necessity of an alternative paradigm.

  6. Neural network tagging in a toy model

    International Nuclear Information System (INIS)

    Milek, Marko; Patel, Popat

    1999-01-01

    The purpose of this study is a comparison of Artificial Neural Network approach to HEP analysis against the traditional methods. A toy model used in this analysis consists of two types of particles defined by four generic properties. A number of 'events' was created according to the model using standard Monte Carlo techniques. Several fully connected, feed forward multi layered Artificial Neural Networks were trained to tag the model events. The performance of each network was compared to the standard analysis mechanisms and significant improvement was observed

  7. Modeling online social signed networks

    Science.gov (United States)

    Li, Le; Gu, Ke; Zeng, An; Fan, Ying; Di, Zengru

    2018-04-01

    People's online rating behavior can be modeled by user-object bipartite networks directly. However, few works have been devoted to reveal the hidden relations between users, especially from the perspective of signed networks. We analyze the signed monopartite networks projected by the signed user-object bipartite networks, finding that the networks are highly clustered with obvious community structure. Interestingly, the positive clustering coefficient is remarkably higher than the negative clustering coefficient. Then, a Signed Growing Network model (SGN) based on local preferential attachment is proposed to generate a user's signed network that has community structure and high positive clustering coefficient. Other structural properties of the modeled networks are also found to be similar to the empirical networks.

  8. Social network analysis via multi-state reliability and conditional influence models

    International Nuclear Information System (INIS)

    Schneider, Kellie; Rainwater, Chase; Pohl, Ed; Hernandez, Ivan; Ramirez-Marquez, Jose Emmanuel

    2013-01-01

    This paper incorporates multi-state reliability measures into the assessment of a social network in which influence is treated as a multi-state commodity that flows through the network. The reliability of the network is defined as the probability that at least a certain level of influence reaches an intended target. We consider an individual's influence level as a function of the influence levels received from preceding actors in the network. We define several communication functions which describe the level of influence a particular actor will pass along to other actors within the network. Illustrative examples are presented, and the network reliability under the various communication influence levels is computed using exhaustive enumeration for a small example and Monte Carlo simulation for larger, more realistic sized examples.

  9. Analysis of Oscillatory Neural Activity in Series Network Models of Parkinson's Disease During Deep Brain Stimulation.

    Science.gov (United States)

    Davidson, Clare M; de Paor, Annraoi M; Cagnan, Hayriye; Lowery, Madeleine M

    2016-01-01

    Parkinson's disease is a progressive, neurodegenerative disorder, characterized by hallmark motor symptoms. It is associated with pathological, oscillatory neural activity in the basal ganglia. Deep brain stimulation (DBS) is often successfully used to treat medically refractive Parkinson's disease. However, the selection of stimulation parameters is based on qualitative assessment of the patient, which can result in a lengthy tuning period and a suboptimal choice of parameters. This study explores fourth-order, control theory-based models of oscillatory activity in the basal ganglia. Describing function analysis is applied to examine possible mechanisms for the generation of oscillations in interacting nuclei and to investigate the suppression of oscillations with high-frequency stimulation. The theoretical results for the suppression of the oscillatory activity obtained using both the fourth-order model, and a previously described second-order model, are optimized to fit clinically recorded local field potential data obtained from Parkinsonian patients with implanted DBS. Close agreement between the power of oscillations recorded for a range of stimulation amplitudes is observed ( R(2)=0.69-0.99 ). The results suggest that the behavior of the system and the suppression of pathological neural oscillations with DBS is well described by the macroscopic models presented. The results also demonstrate that in this instance, a second-order model is sufficient to model the clinical data, without the need for added complexity. Describing the system behavior with computationally efficient models could aid in the identification of optimal stimulation parameters for patients in a clinical environment.

  10. Stochastic Control of Multi-Scale Networks: Modeling, Analysis and Algorithms

    Science.gov (United States)

    2014-10-20

    correlation, protocol behavior (e.g., retransmissions), and network congestion ; and statistically analyzed the properties of LRD traffic from empirical data...traffic correlation, protocol behavior (e.g., retransmissions), and network congestion ; and statistically analyzed the properties of LRD traffic...Maximization in Wireless Networks, IEEE Transactions on Vehicular Technology, (07 2011): 0. doi: 10.1109/TVT.2011.2157544 Sugumar Murugesan, Philip

  11. Risk Analysis on Leakage Failure of Natural Gas Pipelines by Fuzzy Bayesian Network with a Bow-Tie Model

    Directory of Open Access Journals (Sweden)

    Xian Shan

    2017-01-01

    Full Text Available Pipeline is the major mode of natural gas transportation. Leakage of natural gas pipelines may cause explosions and fires, resulting in casualties, environmental damage, and material loss. Efficient risk analysis is of great significance for preventing and mitigating such potential accidents. The objective of this study is to present a practical risk assessment method based on Bow-tie model and Bayesian network for risk analysis of natural gas pipeline leakage. Firstly, identify the potential risk factors and consequences of the failure. Then construct the Bow-tie model, use the quantitative analysis of Bayesian network to find the weak links in the system, and make a prediction of the control measures to reduce the rate of the accident. In order to deal with the uncertainty existing in the determination of the probability of basic events, fuzzy logic method is used. Results of a case study show that the most likely causes of natural gas pipeline leakage occurrence are parties ignore signage, implicit signage, overload, and design defect of auxiliaries. Once the leakage occurs, it is most likely to result in fire and explosion. Corresponding measures taken on time will reduce the disaster degree of accidents to the least extent.

  12. The application of a coupled artificial neural network and fault tree analysis model to predict coal and gas outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Ruilin, Zhang [School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, PR (China); Lowndes, Ian S. [Process and Environmental Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-01

    This paper proposes the use of a coupled fault tree analysis (FTA) and artificial neural network (ANN) model to improve the prediction of the potential risk of coal and gas outburst events during the underground mining of thick and deep Chinese coal seams. The model developed has been used to investigate the gas emission characteristics and the geological conditions that exist within the Huaibei coal mining region, Anhui province, China. The coal seams in this region exhibit a high incidence of coal and gas outbursts. An analysis of the results obtained from an initial application of an FTA model, identified eight dominant model parameters related to the gas content or geological conditions of the coal seams, which characterize the potential risk of in situ coal and gas outbursts. The eight dominant model parameters identified by the FTA method were subsequently used as input variables to an ANN model. The results produced by the ANN model were used to develop a qualitative risk index to characterize the potential risk level of occurrence of coal and gas outburst events. Four different potential risk alarm levels were defined: SAFE, POTENTIAL, HIGH and STRONG. Solutions to the prediction model were obtained using a combination of quantitative and qualitative data including the gas content or gas pressure and the geological and geotechnical conditions of coal seams. The application of this combined solution method identified more explicit and accurate model relationships between the in situ geological conditions and the potential risk of coal and gas outbursts. An analysis of the model solutions concluded that the coupled FTA and ANN model may offer a reliable alternative method to forecast the potential risk of coal and gas outbursts. (author)

  13. Time Series Modeling of Army Mission Command Communication Networks: An Event-Driven Analysis

    Science.gov (United States)

    2013-06-01

    Lehmann, D. R. (1984). How advertising affects sales: Meta- analysis of econometric results. Journal of Marketing Research , 21, 65-74. Barabási, A. L...317-357. Leone, R. P. (1983). Modeling sales-advertising relationships: An integrated time series- econometric approach. Journal of Marketing ... Research , 20, 291-295. McGrath, J. E., & Kravitz, D. A. (1982). Group research. Annual Review of Psychology, 33, 195- 230. Monge, P. R., & Contractor

  14. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  15. Stoichiometric network analysis and associated dimensionless kinetic equations. Application to a model of the Bray-Liebhafsky reaction.

    Science.gov (United States)

    Schmitz, Guy; Kolar-Anić, Ljiljana Z; Anić, Slobodan R; Cupić, Zeljko D

    2008-12-25

    The stoichiometric network analysis (SNA) introduced by B. L. Clarke is applied to a simplified model of the complex oscillating Bray-Liebhafsky reaction under batch conditions, which was not examined by this method earlier. This powerful method for the analysis of steady-states stability is also used to transform the classical differential equations into dimensionless equations. This transformation is easy and leads to a form of the equations combining the advantages of classical dimensionless equations with the advantages of the SNA. The used dimensionless parameters have orders of magnitude given by the experimental information about concentrations and currents. This simplifies greatly the study of the slow manifold and shows which parameters are essential for controlling its shape and consequently have an important influence on the trajectories. The effectiveness of these equations is illustrated on two examples: the study of the bifurcations points and a simple sensitivity analysis, different from the classical one, more based on the chemistry of the studied system.

  16. Functional Module Analysis for Gene Coexpression Networks with Network Integration.

    Science.gov (United States)

    Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.

  17. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  18. A neighbourhood evolving network model

    International Nuclear Information System (INIS)

    Cao, Y.J.; Wang, G.Z.; Jiang, Q.Y.; Han, Z.X.

    2006-01-01

    Many social, technological, biological and economical systems are best described by evolved network models. In this short Letter, we propose and study a new evolving network model. The model is based on the new concept of neighbourhood connectivity, which exists in many physical complex networks. The statistical properties and dynamics of the proposed model is analytically studied and compared with those of Barabasi-Albert scale-free model. Numerical simulations indicate that this network model yields a transition between power-law and exponential scaling, while the Barabasi-Albert scale-free model is only one of its special (limiting) cases. Particularly, this model can be used to enhance the evolving mechanism of complex networks in the real world, such as some social networks development

  19. A tandem queueing model for delay analysis in disconnected ad hoc networks

    NARCIS (Netherlands)

    Al Hanbali, Ahmad; de Haan, Roland; Boucherie, Richardus J.; van Ommeren, Jan C.W.

    2007-01-01

    Ad hoc network routing protocols may fail to operate in the absence of an end-to-end connection from source to destination. This deficiency can be resolved by so-called opportunistic networking which exploits the mobility of the nodes by letting them operate as relays according to the

  20. Structural Modeling and Characteristics Analysis of Flow Interaction Networks in the Internet

    International Nuclear Information System (INIS)

    Wu Xiao-Yu; Gu Ren-Tao; Pan Zhuo-Ya; Jin Wei-Qi; Ji Yue-Feng

    2015-01-01

    Applying network duality and elastic mechanics, we investigate the interactions among Internet flows by constructing a weighted undirected network, where the vertices and the edges represent the flows and the mutual dependence between flows, respectively. Based on the obtained flow interaction network, we find the existence of ‘super flow’ in the Internet, indicating that some flows have a great impact on a huge number of other flows; moreover, one flow can spread its influence to another through a limited quantity of flows (less than 5 in the experimental simulations), which shows strong small-world characteristics like the social network. To reflect the flow interactions in the physical network congestion evaluation, the ‘congestion coefficient’ is proposed as a new metric which shows a finer observation on congestion than the conventional one. (paper)

  1. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  2. Network clustering analysis using mixture exponential-family random graph models and its application in genetic interaction data.

    Science.gov (United States)

    Wang, Yishu; Zhao, Hongyu; Deng, Minghua; Fang, Huaying; Yang, Dejie

    2017-08-24

    Epistatic miniarrary profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. It provides an incredible set of molecular tools and advanced technologies that should be efficiently understanding the relationship between the genotypes and phenotypes of individuals. However, the network information gained from EMAP cannot be fully exploited using the traditional statistical network models. Because the genetic network is always heterogeneous, for example, the network structure features for one subset of nodes are different from those of the left nodes. Exponentialfamily random graph models (ERGMs) are a family of statistical models, which provide a principled and flexible way to describe the structural features (e.g. the density, centrality and assortativity) of an observed network. However, the single ERGM is not enough to capture this heterogeneity of networks. In this paper, we consider a mixture ERGM (MixtureEGRM) networks, which model a network with several communities, where each community is described by a single EGRM.

  3. Computer network environment planning and analysis

    Science.gov (United States)

    Dalphin, John F.

    1989-01-01

    The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.

  4. Modeling and analysis of voice and data in cognitive radio networks

    CERN Document Server

    Gunawardena, Subodha

    2014-01-01

    This Springer Brief investigates the voice and elastic/interactive data service support over cognitive radio networks (CRNs), in terms of their delay requirements. The increased demand for wireless communication conflicts with the scarcity of the radio spectrum, but CRNS allow for more efficient use of the networks. The authors review packet level delay requirements of the voice service and session level delay requirements of the elastic/interactive data services, particularly constant-rate and on-o? voice tra?c capacities in CRNs with centralized and distributed network coordination. Some gen

  5. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L

    2009-05-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex

  6. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    International Nuclear Information System (INIS)

    Brown, D.L.

    2009-01-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems

  7. Carboy Security Risk Analysis Model of I and C System Using Bayesian Network

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jinsoo; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Son, Hanseong [Joongbu Univ., Geumsan (Korea, Republic of); Park, Jaekwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The Korea Institute of Nuclear Safety (KINS) as a regulatory agency declares the R. G 8.22 for applying cyber security in Korea in 2011. In nuclear power industrial, ShinUljin 1, 2 unit and Shingori 3, 4 unit are demonstrating the cyber security for the first time. And in terms of research, the National Security Research Institute and the Korea Atomic Energy Research Institute are developing the nuclear power plant cyber security system in Korean. Currently, these cyber securities like regulation, demonstration and research are focused on nuclear power plant. However, cyber security is also important for the nuclear research reactor like a HANARO which is in Daejeon, primarily due to its characteristic as research reactor since since people access more than power plant. Analysis of the key elements of cyber security is possible to study through the activity-quality and architecture analysis model of cyber security. It is possible to analyze the extent reflected final risk by evaluating input score for each checklist. In this way, you can see an important checklist. Further, if the cyber-attack occurs, it is possible to provide an evidentiary material that is able to determine the key check element corresponding to each situation via a reverse calculation of BN. Finally, Utilization is possible to create a simulated penetratio test scenario according to each situation. Analysis of the key elements of cyber security is possible to study through the activity-quality and architecture analysis model of cyber security. It is possible to analyze the extent reflected in the final risk by evaluating input score for each checklist, in this way, you can see an important checklist. Furthermore, if the cyber-attack occurs, it is possible to provide an evidentiary material that enables to determine the key check element corresponding to each situation via a reverse calculation of BN. Finally, Utilization is possible to create a simulated penetration test scenario according to

  8. Carboy Security Risk Analysis Model of I and C System Using Bayesian Network

    International Nuclear Information System (INIS)

    Shin, Jinsoo; Heo, Gyunyoung; Son, Hanseong; Park, Jaekwan

    2013-01-01

    The Korea Institute of Nuclear Safety (KINS) as a regulatory agency declares the R. G 8.22 for applying cyber security in Korea in 2011. In nuclear power industrial, ShinUljin 1, 2 unit and Shingori 3, 4 unit are demonstrating the cyber security for the first time. And in terms of research, the National Security Research Institute and the Korea Atomic Energy Research Institute are developing the nuclear power plant cyber security system in Korean. Currently, these cyber securities like regulation, demonstration and research are focused on nuclear power plant. However, cyber security is also important for the nuclear research reactor like a HANARO which is in Daejeon, primarily due to its characteristic as research reactor since since people access more than power plant. Analysis of the key elements of cyber security is possible to study through the activity-quality and architecture analysis model of cyber security. It is possible to analyze the extent reflected final risk by evaluating input score for each checklist. In this way, you can see an important checklist. Further, if the cyber-attack occurs, it is possible to provide an evidentiary material that is able to determine the key check element corresponding to each situation via a reverse calculation of BN. Finally, Utilization is possible to create a simulated penetratio test scenario according to each situation. Analysis of the key elements of cyber security is possible to study through the activity-quality and architecture analysis model of cyber security. It is possible to analyze the extent reflected in the final risk by evaluating input score for each checklist, in this way, you can see an important checklist. Furthermore, if the cyber-attack occurs, it is possible to provide an evidentiary material that enables to determine the key check element corresponding to each situation via a reverse calculation of BN. Finally, Utilization is possible to create a simulated penetration test scenario according to

  9. Network Analysis, Architecture, and Design

    CERN Document Server

    McCabe, James D

    2007-01-01

    Traditionally, networking has had little or no basis in analysis or architectural development, with designers relying on technologies they are most familiar with or being influenced by vendors or consultants. However, the landscape of networking has changed so that network services have now become one of the most important factors to the success of many third generation networks. It has become an important feature of the designer's job to define the problems that exist in his network, choose and analyze several optimization parameters during the analysis process, and then prioritize and evalua

  10. A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation

    International Nuclear Information System (INIS)

    Trucco, P.; Cagno, E.; Ruggeri, F.; Grande, O.

    2008-01-01

    The paper presents an innovative approach to integrate Human and Organisational Factors (HOF) into risk analysis. The approach has been developed and applied to a case study in the maritime industry, but it can also be utilised in other sectors. A Bayesian Belief Network (BBN) has been developed to model the Maritime Transport System (MTS), by taking into account its different actors (i.e., ship-owner, shipyard, port and regulator) and their mutual influences. The latter have been modelled by means of a set of dependent variables whose combinations express the relevant functions performed by each actor. The BBN model of the MTS has been used in a case study for the quantification of HOF in the risk analysis carried out at the preliminary design stage of High Speed Craft (HSC). The study has focused on a collision in open sea hazard carried out by means of an original method of integration of a Fault Tree Analysis (FTA) of technical elements with a BBN model of the influences of organisational functions and regulations, as suggested by the International Maritime Organisation's (IMO) Guidelines for Formal Safety Assessment (FSA). The approach has allowed the identification of probabilistic correlations between the basic events of a collision accident and the BBN model of the operational and organisational conditions. The linkage can be exploited in different ways, especially to support identification and evaluation of risk control options also at the organisational level. Conditional probabilities for the BBN have been estimated by means of experts' judgments, collected from an international panel of different European countries. Finally, a sensitivity analysis has been carried out over the model to identify configurations of the MTS leading to a significant reduction of accident probability during the operation of the HSC

  11. Classification and Analysis of Computer Network Traffic

    OpenAIRE

    Bujlow, Tomasz

    2014-01-01

    Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models of traffic for academic purposes. We define the objective of this thesis as finding a way to evaluate the performance of various applications in a high-speed Internet infrastructure. To satisfy the obje...

  12. Queueing Models for Mobile Ad Hoc Networks

    NARCIS (Netherlands)

    de Haan, Roland

    2009-01-01

    This thesis presents models for the performance analysis of a recent communication paradigm: \\emph{mobile ad hoc networking}. The objective of mobile ad hoc networking is to provide wireless connectivity between stations in a highly dynamic environment. These dynamics are driven by the mobility of

  13. Network topology analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, Jeffrey L.; Lee, David S.

    2008-01-01

    Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.

  14. Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2018-01-01

    Full Text Available Long-distance seawater intrusion has been widely observed through the subsurface conduit system in coastal karst aquifers as a source of groundwater contaminant. In this study, seawater intrusion in a dual-permeability karst aquifer with conduit networks is studied by the two-dimensional density-dependent flow and transport SEAWAT model. Local and global sensitivity analyses are used to evaluate the impacts of boundary conditions and hydrological characteristics on modeling seawater intrusion in a karst aquifer, including hydraulic conductivity, effective porosity, specific storage, and dispersivity of the conduit network and of the porous medium. The local sensitivity analysis evaluates the parameters' sensitivities for modeling seawater intrusion, specifically in the Woodville Karst Plain (WKP. A more comprehensive interpretation of parameter sensitivities, including the nonlinear relationship between simulations and parameters, and/or parameter interactions, is addressed in the global sensitivity analysis. The conduit parameters and boundary conditions are important to the simulations in the porous medium because of the dynamical exchanges between the two systems. The sensitivity study indicates that salinity and head simulations in the karst features, such as the conduit system and submarine springs, are critical for understanding seawater intrusion in a coastal karst aquifer. The evaluation of hydraulic conductivity sensitivity in the continuum SEAWAT model may be biased since the conduit flow velocity is not accurately calculated by Darcy's equation as a function of head difference and hydraulic conductivity. In addition, dispersivity is no longer an important parameter in an advection-dominated karst aquifer with a conduit system, compared to the sensitivity results in a porous medium aquifer. In the end, the extents of seawater intrusion are quantitatively evaluated and measured under different scenarios with the variabilities of

  15. Irrigation network design and reconstruction and its analysis by simulation model

    Directory of Open Access Journals (Sweden)

    Čistý Milan

    2014-06-01

    Full Text Available There are many problems related to pipe network rehabilitation, the main one being how to provide an increase in the hydraulic capacity of a system. Because of its complexity the conventional optimizations techniques are poorly suited for solving this task. In recent years some successful attempts to apply modern heuristic methods to this problem have been published. The main part of the paper deals with applying such technique, namely the harmony search methodology, to network rehabilitation optimization considering both technical and economic aspects of the problem. A case study of the sprinkler irrigation system is presented in detail. Two alternatives of the rehabilitation design are compared. The modified linear programming method is used first with new diameters proposed in the existing network so it could satisfy the increased demand conditions with the unchanged topology. This solution is contrasted to the looped one obtained using a harmony search algorithm

  16. Economic and Technical Efficiency of the Biomass Industry in China: A Network Data Envelopment Analysis Model Involving Externalities

    Directory of Open Access Journals (Sweden)

    Qingyou Yan

    2017-09-01

    Full Text Available This paper proposes the network data envelopment analysis (DEA model accounting for negative externalities and applies it for decomposition of profit inefficiency in the biomass-agriculture circular system (Bio-AG system. A circular structure of the Bio-AG system which is different from the previously applied network structures is assumed. Since the negative externalities (i.e., pollutant emissions from the biomass industry occur in the Bio-AG system, the property rights are taken into consideration to model the externalities-adjusted profits. Therefore, the changes in profits due to changes in the property rights (assuming no property rights, allocating property rights to agricultural sector, and allocating property rights to biomass power generation sector are quantified. Further, the decomposition shows that the biomass power generation sector is less affected by technical inefficiency if contrasted to allocative inefficiency in terms of the profit loss. The findings suggest that the biomass power generation technology influences the profits of the biomass industry. What is more, the inefficient allocation of resources is now the key factor undermining performance of the biomass industry. Therefore, the government should adopt measures to improve the allocation of resources and prevent excessive investments or development of less efficient technologies.

  17. Model for cost economic analysis in the maintenance of distribution networks

    International Nuclear Information System (INIS)

    Flores, N.; Leite, O.C.; Abe, R.Y.; Violante, R.A.

    1989-01-01

    A methodology for evaluating the costs from aerial distribution networks maintenance is described, aiming give a tool for the planning decisions, with the purpose to keeping the system operating in equilibrium conditions between the resources invested on the preventive and corrective maintenance. (C.G.C.)

  18. Stochastic Geometric Coverage Analysis in mmWave Cellular Networks with a Realistic Channel Model

    DEFF Research Database (Denmark)

    Rebato, Mattia; Park, Jihong; Popovski, Petar

    2017-01-01

    Millimeter-wave (mmWave) bands have been attracting growing attention as a possible candidate for next-generation cellular networks, since the available spectrum is orders of magnitude larger than in current cellular allocations. To precisely design mmWave systems, it is important to examine mmWa...

  19. Mobility-Aware Modeling and Analysis of Dense Cellular Networks With $C$ -Plane/ $U$ -Plane Split Architecture

    KAUST Repository

    Ibrahim, Hazem

    2016-09-19

    The unrelenting increase in the population of mobile users and their traffic demands drive cellular network operators to densify their network infrastructure. Network densification shrinks the footprint of base stations (BSs) and reduces the number of users associated with each BS, leading to an improved spatial frequency reuse and spectral efficiency, and thus, higher network capacity. However, the densification gain comes at the expense of higher handover rates and network control overhead. Hence, user’s mobility can diminish or even nullifies the foreseen densification gain. In this context, splitting the control plane ( C -plane) and user plane ( U -plane) is proposed as a potential solution to harvest densification gain with reduced cost in terms of handover rate and network control overhead. In this paper, we use stochastic geometry to develop a tractable mobility-aware model for a two-tier downlink cellular network with ultra-dense small cells and C -plane/ U -plane split architecture. The developed model is then used to quantify the effect of mobility on the foreseen densification gain with and without C -plane/ U -plane split. To this end, we shed light on the handover problem in dense cellular environments, show scenarios where the network fails to support certain mobility profiles, and obtain network design insights.

  20. NetGen: a novel network-based probabilistic generative model for gene set functional enrichment analysis.

    Science.gov (United States)

    Sun, Duanchen; Liu, Yinliang; Zhang, Xiang-Sun; Wu, Ling-Yun

    2017-09-21

    High-throughput experimental techniques have been dramatically improved and widely applied in the past decades. However, biological interpretation of the high-throughput experimental results, such as differential expression gene sets derived from microarray or RNA-seq experiments, is still a challenging task. Gene Ontology (GO) is commonly used in the functional enrichment studies. The GO terms identified via current functional enrichment analysis tools often contain direct parent or descendant terms in the GO hierarchical structure. Highly redundant terms make users difficult to analyze the underlying biological processes. In this paper, a novel network-based probabilistic generative model, NetGen, was proposed to perform the functional enrichment analysis. An additional protein-protein interaction (PPI) network was explicitly used to assist the identification of significantly enriched GO terms. NetGen achieved a superior performance than the existing methods in the simulation studies. The effectiveness of NetGen was explored further on four real datasets. Notably, several GO terms which were not directly linked with the active gene list for each disease were identified. These terms were closely related to the corresponding diseases when accessed to the curated literatures. NetGen has been implemented in the R package CopTea publicly available at GitHub ( http://github.com/wulingyun/CopTea/ ). Our procedure leads to a more reasonable and interpretable result of the functional enrichment analysis. As a novel term combination-based functional enrichment analysis method, NetGen is complementary to current individual term-based methods, and can help to explore the underlying pathogenesis of complex diseases.

  1. Developing Personal Network Business Models

    DEFF Research Database (Denmark)

    Saugstrup, Dan; Henten, Anders

    2006-01-01

    The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports...

  2. Bayesian networks precipitation model based on hidden Markov analysis and its application

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Surface precipitation estimation is very important in hydrologic forecast. To account for the influence of the neighbors on the precipitation of an arbitrary grid in the network, Bayesian networks and Markov random field were adopted to estimate surface precipitation. Spherical coordinates and the expectation-maximization (EM) algorithm were used for region interpolation, and for estimation of the precipitation of arbitrary point in the region. Surface precipitation estimation of seven precipitation stations in Qinghai Lake region was performed. By comparing with other surface precipitation methods such as Thiessen polygon method, distance weighted mean method and arithmetic mean method, it is shown that the proposed method can judge the relationship of precipitation among different points in the area under complicated circumstances and the simulation results are more accurate and rational.

  3. Performance analysis of quantum access network using code division multiple access model

    International Nuclear Information System (INIS)

    Hu Linxi; Yang Can; He Guangqiang

    2017-01-01

    A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently, the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise. (paper)

  4. An Efficient Data Compression Model Based on Spatial Clustering and Principal Component Analysis in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yihang Yin

    2015-08-01

    Full Text Available Wireless sensor networks (WSNs have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA. First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.

  5. An Efficient Data Compression Model Based on Spatial Clustering and Principal Component Analysis in Wireless Sensor Networks.

    Science.gov (United States)

    Yin, Yihang; Liu, Fengzheng; Zhou, Xiang; Li, Quanzhong

    2015-08-07

    Wireless sensor networks (WSNs) have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.

  6. Complex Networks in Psychological Models

    Science.gov (United States)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  7. A 3D Lumped Thermal Network Model for Long-term Load Profiles Analysis in High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Ghimire, Pramod

    2016-01-01

    )-based simulation is another method which is often used to analyze the steady-state thermal distribution of IGBT modules, but it is not possible to be used for long-term analysis of load profiles of power converter, which is needed for reliability assessments and better thermal design. This paper proposes a novel...... enables both accurate and fast temperature estimation of high power IGBT modules in the real loading conditions of the converter; meanwhile the critical details of the thermal dynamics and thermal distribution are also maintained. The proposed thermal model is verified by both FEM simulation......The conventional RC lumped thermal networks are widely used to estimate the temperature of power devices, but they are lack of accuracy in addressing detailed thermal behaviors/couplings in different locations and layers of the high power IGBT modules. On the other hand, Finite Element (FE...

  8. A sample movie of the tracer transport analysis using the three-dimensional fracture network model. Set of data

    International Nuclear Information System (INIS)

    Shobu, Nobuhiro; Kashiwazaki, Hiroshi

    2003-02-01

    There have been a few thousands of short term visitors to Geological Isolation Basic Research Facility of Tokai works in Japan Nuclear Cycle Development Institutes in every year. From the viewpoint of promotion of the visitor's understanding and smooth communication between researchers and visitors, the explanation of the technical information on geological disposal should be carried out in a more easily understandable manner, as well as conventional tour to engineering-scale test facility. Here is a sample movie of the tracer transport analysis using the three-dimensional fracture network model attached to this report with the CD-ROM. It has been being practically used as one of the explanation tools to support visitor's understanding. (author)

  9. Modeling and Vulnerability Analysis of Cyber-Physical Power Systems Considering Network Topology and Power Flow Properties

    Directory of Open Access Journals (Sweden)

    Jia Guo

    2017-01-01

    Full Text Available Conventional power systems are developing into cyber-physical power systems (CPPS with wide applications of communication, computer and control technologies. However, multiple practical cases show that the failure of cyber layers is a major factor leading to blackouts. Therefore, it is necessary to discuss the cascading failure process considering cyber layer failures and analyze the vulnerability of CPPS. In this paper, a CPPS model, which consists of cyber layer, physical layer and cyber-physical interface, is presented using complex network theory. Considering power flow properties, the impacts of cyber node failures on the cascading failure propagation process are studied. Moreover, two vulnerability indices are established from the perspective of both network structure and power flow properties. A vulnerability analysis method is proposed, and the CPPS performance before and after cascading failures is analyzed by the proposed method to calculate vulnerability indices. In the case study, three typical scenarios are analyzed to illustrate the method, and vulnerabilities under different interface strategies and attack strategies are compared. Two thresholds are proposed to value the CPPS vulnerability roughly. The results show that CPPS is more vulnerable under malicious attacks and cyber nodes with high indices are vulnerable points which should be reinforced.

  10. A model of coauthorship networks

    Science.gov (United States)

    Zhou, Guochang; Li, Jianping; Xie, Zonglin

    2017-10-01

    A natural way of representing the coauthorship of authors is to use a generalization of graphs known as hypergraphs. A random geometric hypergraph model is proposed here to model coauthorship networks, which is generated by placing nodes on a region of Euclidean space randomly and uniformly, and connecting some nodes if the nodes satisfy particular geometric conditions. Two kinds of geometric conditions are designed to model the collaboration patterns of academic authorities and basic researches respectively. The conditions give geometric expressions of two causes of coauthorship: the authority and similarity of authors. By simulation and calculus, we show that the forepart of the degree distribution of the network generated by the model is mixture Poissonian, and the tail is power-law, which are similar to these of some coauthorship networks. Further, we show more similarities between the generated network and real coauthorship networks: the distribution of cardinalities of hyperedges, high clustering coefficient, assortativity, and small-world property

  11. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  12. Industrial entrepreneurial network: Structural and functional analysis

    Science.gov (United States)

    Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.

    2016-12-01

    Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.

  13. Modeling and performance analysis of cooperative communications in cognitive radio networks

    KAUST Repository

    Khabazian, Mehdi

    2011-09-01

    In this paper, we study the performance of a network comprised of a primary user and a secondary user with the latter having cognitive radio capabilities. The secondary node uses the empty slots of the primary user to transmit its own traffic as well as to relay the primary\\'s traffic in a cooperative fashion. Taking a queuing theory approach, we find the probability generating functions of the numbers of packets in the queues of the primary and secondary users. Subsequently, we determine a number of performance measures such as the average queues\\' lengths, average packet transmission delays and secondary user\\'s queue surcharge due to cooperation. The numerical results along with the simulations show the importance of controlling the number of primary user packets admitted by the secondary user for cooperation and its impacts on the other performance measures. © 2011 IEEE.

  14. Electrical Thermal Network for Direct Contact Membrane Distillation Modeling and Analysis

    KAUST Repository

    Karam, Ayman M.

    2015-02-04

    Membrane distillation is an emerging water distillation technology that offers several advantages compared to conventional water desalination processes. Although progress has been made to model and understand the physics of the process, many studies are based on steady-state assumptions or are computationally not appropriate for real time control. This paper presents the derivation of a novel dynamical model, based on analogy between electrical and thermal systems, for direct contact membrane distillation (DCMD). The proposed model captures the dynamics of temperature distribution and distilled water flux. To demonstrate the adequacy of the proposed model, validation with transient and steady-state experimental data is presented.

  15. Telecommunications network modelling, planning and design

    CERN Document Server

    Evans, Sharon

    2003-01-01

    Telecommunication Network Modelling, Planning and Design addresses sophisticated modelling techniques from the perspective of the communications industry and covers some of the major issues facing telecommunications network engineers and managers today. Topics covered include network planning for transmission systems, modelling of SDH transport network structures and telecommunications network design and performance modelling, as well as network costs and ROI modelling and QoS in 3G networks.

  16. Using social network analysis tools in ecology : Markov process transition models applied to the seasonal trophic network dynamics of the Chesapeake Bay

    NARCIS (Netherlands)

    Johnson, Jeffrey C.; Luczkovich, Joseph J.; Borgatti, Stephen P.; Snijders, Tom A. B.; Luczkovich, S.P.

    2009-01-01

    Ecosystem components interact in complex ways and change over time due to a variety of both internal and external influences (climate change, season cycles, human impacts). Such processes need to be modeled dynamically using appropriate statistical methods for assessing change in network structure.

  17. Model for Building a Distribution Network Based on the Multivariate Analysis of the Industrial and Logistical Potential of Regions

    Directory of Open Access Journals (Sweden)

    Alexander Vladimirovich Kirillov

    2015-12-01

    Full Text Available The international integration of the Russian economy is connected to the need of the realization of the competitive advantages of the geopolitical position of Russia, the industrial potential of regions, the logistic infrastructure of transport corridors. This article discusses the design model of the supply chain (distribution network based on the multivariate analysis and the methodology of the substantiation of its configuration based on the cost factors and the level of the logistics infrastructure development. For solving the problem of placing one or more logistics centers in the service area, a two-stage algorithm is used. At the first stage, the decisions on the reasonability of the choice of one or another version of the development are made with А. В. Кириллов, В. Е. Целин 345 ЭКОНОМИКА РЕГИОНА №4 (2015 the use of the “Make or Buy” standard model. The criterion of decision making is the guaranteed overcoming of the threshold of “indifference” taking into account the statistical characteristics of costs for options of “buy” and “make” depending on the volume of consumption of goods or services. At the second stage, the Ardalan’s heuristic method is used for the evaluation of the choice of placing one or more logistics centers in the service area. The model parameters are based on the assessment of the development prospects of the region and its investment potential (existence and composition of employment, production, natural resources, financial and consumer opportunities, institutional, innovation, infrastructure capacity. Furthermore, such criteria as a regional financial appeal, professionally trained specialists, the competitive advantages of the promoted company and others are analyzed. An additional criterion is the development of the priority matrix, which considers such factors as difficulties of customs registration and certification, a level of regional transport

  18. Analysis of complex networks using aggressive abstraction.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  19. Campus network security model study

    Science.gov (United States)

    Zhang, Yong-ku; Song, Li-ren

    2011-12-01

    Campus network security is growing importance, Design a very effective defense hacker attacks, viruses, data theft, and internal defense system, is the focus of the study in this paper. This paper compared the firewall; IDS based on the integrated, then design of a campus network security model, and detail the specific implementation principle.

  20. Statistical analysis of fracture data, adapted for modelling Discrete Fracture Networks-Version 2

    Energy Technology Data Exchange (ETDEWEB)

    Munier, Raymond

    2004-04-01

    The report describes the parameters which are necessary for DFN modelling, the way in which they can be extracted from the data base acquired during site investigations, and their assignment to geometrical objects in the geological model. The purpose here is to present a methodology for use in SKB modelling projects. Though the methodology is deliberately tuned to facilitate subsequent DFN modelling with other tools, some of the recommendations presented here are applicable to other aspects of geo-modelling as well. For instance, we here recommend a nomenclature to be used within SKB modelling projects, which are truly multidisciplinary, to ease communications between scientific disciplines and avoid misunderstanding of common concepts. This report originally occurred as an appendix to a strategy report for geological modelling (SKB-R--03-07). Strategy reports were intended to be successively updated to include experience gained during site investigations and site modelling. Rather than updating the entire strategy report, we choose to present the update of the appendix as a stand-alone document. This document thus replaces Appendix A2 in SKB-R--03-07. In short, the update consists of the following: The target audience has been broadened and as a consequence thereof, the purpose of the document. Correction of errors found in various formulae. All expressions have been rewritten. Inclusion of more worked examples in each section. A new section describing area normalisation. A new section on spatial correlation. A new section describing anisotropy. A new chapter describing the expected output from DFN modelling, within SKB projects.

  1. Statistical analysis of fracture data, adapted for modelling Discrete Fracture Networks-Version 2

    International Nuclear Information System (INIS)

    Munier, Raymond

    2004-04-01

    The report describes the parameters which are necessary for DFN modelling, the way in which they can be extracted from the data base acquired during site investigations, and their assignment to geometrical objects in the geological model. The purpose here is to present a methodology for use in SKB modelling projects. Though the methodology is deliberately tuned to facilitate subsequent DFN modelling with other tools, some of the recommendations presented here are applicable to other aspects of geo-modelling as well. For instance, we here recommend a nomenclature to be used within SKB modelling projects, which are truly multidisciplinary, to ease communications between scientific disciplines and avoid misunderstanding of common concepts. This report originally occurred as an appendix to a strategy report for geological modelling (SKB-R--03-07). Strategy reports were intended to be successively updated to include experience gained during site investigations and site modelling. Rather than updating the entire strategy report, we choose to present the update of the appendix as a stand-alone document. This document thus replaces Appendix A2 in SKB-R--03-07. In short, the update consists of the following: The target audience has been broadened and as a consequence thereof, the purpose of the document. Correction of errors found in various formulae. All expressions have been rewritten. Inclusion of more worked examples in each section. A new section describing area normalisation. A new section on spatial correlation. A new section describing anisotropy. A new chapter describing the expected output from DFN modelling, within SKB projects

  2. Application of non-quantitative modelling in the analysis of a network warfare environment

    CSIR Research Space (South Africa)

    Veerasamy, N

    2008-07-01

    Full Text Available based on the use of secular associations, chronological origins, linked concepts, categorizations and context specifications. This paper proposes the use of non-quantitative methods through a morphological analysis to better explore and define...

  3. Uncertainty analysis of neural network based flood forecasting models: An ensemble based approach for constructing prediction interval

    Science.gov (United States)

    Kasiviswanathan, K.; Sudheer, K.

    2013-05-01

    Artificial neural network (ANN) based hydrologic models have gained lot of attention among water resources engineers and scientists, owing to their potential for accurate prediction of flood flows as compared to conceptual or physics based hydrologic models. The ANN approximates the non-linear functional relationship between the complex hydrologic variables in arriving at the river flow forecast values. Despite a large number of applications, there is still some criticism that ANN's point prediction lacks in reliability since the uncertainty of predictions are not quantified, and it limits its use in practical applications. A major concern in application of traditional uncertainty analysis techniques on neural network framework is its parallel computing architecture with large degrees of freedom, which makes the uncertainty assessment a challenging task. Very limited studies have considered assessment of predictive uncertainty of ANN based hydrologic models. In this study, a novel method is proposed that help construct the prediction interval of ANN flood forecasting model during calibration itself. The method is designed to have two stages of optimization during calibration: at stage 1, the ANN model is trained with genetic algorithm (GA) to obtain optimal set of weights and biases vector, and during stage 2, the optimal variability of ANN parameters (obtained in stage 1) is identified so as to create an ensemble of predictions. During the 2nd stage, the optimization is performed with multiple objectives, (i) minimum residual variance for the ensemble mean, (ii) maximum measured data points to fall within the estimated prediction interval and (iii) minimum width of prediction interval. The method is illustrated using a real world case study of an Indian basin. The method was able to produce an ensemble that has an average prediction interval width of 23.03 m3/s, with 97.17% of the total validation data points (measured) lying within the interval. The derived

  4. Computational Social Network Analysis

    CERN Document Server

    Hassanien, Aboul-Ella

    2010-01-01

    Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks

  5. Generalized Network Psychometrics : Combining Network and Latent Variable Models

    NARCIS (Netherlands)

    Epskamp, S.; Rhemtulla, M.; Borsboom, D.

    2017-01-01

    We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between

  6. Modeling Network Traffic in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Sheng Ma

    2004-12-01

    Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.

  7. Automated Analysis of Security in Networking Systems

    DEFF Research Database (Denmark)

    Buchholtz, Mikael

    2004-01-01

    such networking systems are modelled in the process calculus LySa. On top of this programming language based formalism an analysis is developed, which relies on techniques from data and control ow analysis. These are techniques that can be fully automated, which make them an ideal basis for tools targeted at non...

  8. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  9. Modeling of fluctuating reaction networks

    International Nuclear Information System (INIS)

    Lipshtat, A.; Biham, O.

    2004-01-01

    Full Text:Various dynamical systems are organized as reaction networks, where the population size of one component affects the populations of all its neighbors. Such networks can be found in interstellar surface chemistry, cell biology, thin film growth and other systems. I cases where the populations of reactive species are large, the network can be modeled by rate equations which provide all reaction rates within mean field approximation. However, in small systems that are partitioned into sub-micron size, these populations strongly fluctuate. Under these conditions rate equations fail and the master equation is needed for modeling these reactions. However, the number of equations in the master equation grows exponentially with the number of reactive species, severely limiting its feasibility for complex networks. Here we present a method which dramatically reduces the number of equations, thus enabling the incorporation of the master equation in complex reaction networks. The method is examplified in the context of reaction network on dust grains. Its applicability for genetic networks will be discussed. 1. Efficient simulations of gas-grain chemistry in interstellar clouds. Azi Lipshtat and Ofer Biham, Phys. Rev. Lett. 93 (2004), 170601. 2. Modeling of negative autoregulated genetic networks in single cells. Azi Lipshtat, Hagai B. Perets, Nathalie Q. Balaban and Ofer Biham, Gene: evolutionary genomics (2004), In press

  10. DC Analysis of an Ideal Diode Network Using Its Decomposed Piecevise-Linear Model

    Directory of Open Access Journals (Sweden)

    Z. Kolka

    1994-09-01

    Full Text Available A new method of finding the operating points in circuits containing ideal diodes which utilizes the decomposed form of the state model of an one-dimensional piecewise-linear (PWL system is developed. The universal procedure shown gives all the existing solutions quite automatically.

  11. Business model risk analysis: predicting the probability of business network profitability

    NARCIS (Netherlands)

    Johnson, Pontus; Iacob, Maria Eugenia; Valja, Margus; van Sinderen, Marten J.; Magnusson, Christer; Ladhe, Tobias; van Sinderen, Marten J.; Oude Luttighuis, P.H.W.M.; Folmer, Erwin Johan Albert; Bosems, S.

    In the design phase of business collaboration, it is desirable to be able to predict the profitability of the business-to-be. Therefore, techniques to assess qualities such as costs, revenues, risks, and profitability have been previously proposed. However, they do not allow the modeler to properly

  12. Social network analysis applied to team sports analysis

    CERN Document Server

    Clemente, Filipe Manuel; Mendes, Rui Sousa

    2016-01-01

    Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.

  13. Performance modeling, stochastic networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi R

    2013-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan

  14. Decarbonizing the European electricity sector. Modeling and policy analysis for electricity and CO_2 infrastructure networks

    International Nuclear Information System (INIS)

    Oei, Pao-Yu Charly Robin

    2016-01-01

    This dissertation uses three models to analyze different decarbonization strategies for combating global climate change: The cost minimizing mixed-integer model CCTS-Mod examines the economics of Carbon Capture, Transport, and Storage (CCTS) for the electricity and industry sector; the welfare maximizing quadratically constrained model ELMOD focuses on different trajectories for renewable energy sources (RES) and transmission grid expansions; and the equilibrium model ELCO combines the insights of the individual sectors to a combined CCTS and electricity investment and dispatch model. Modeling results show that an investment in CCTS is beneficial for the iron and steel sector once the CO_2 certificate price exceeds 50 Euros/t CO_2. The threshold is 75 Euros/t CO_2 for the cement industry and 100 Euros/t CO_2 for the electricity sector. Additional revenues from using CO_2 for enhanced oil recovery (CO_2-EOR) lead to an earlier adoption of CCTS in the North Sea region. The lack of economies of scale results in increasing CO_2 storage costs of more than 30%, while transport costs even double. Research from the last years, however, indicates that CCTS is unlikely to play an important role in decarbonizing the electricity sector. The identified reasons for this are incumbents' resistance to structural change, wrong technology choices, over-optimistic cost estimates, a premature focus on energy projects instead of industry, and the underestimation of transport and storage issues. Keeping global temperature rise below 2 C therefore implies the phase-out of fossilfueled power plants and, in particular, of CO_2-intensive coal power plants. The low CO_2 price established by the European Emissions Trading Scheme is insufficient to induce a fuel switch in the medium term. Therefore, supplementary national measures are necessary to reduce coal-based power generation; i.a. feed-in tariffs for RES, minimum CO_2 prices, or emissions performance standards. Analyses for Germany show

  15. Graph Based Models for Unsupervised High Dimensional Data Clustering and Network Analysis

    Science.gov (United States)

    2015-01-01

    A. Porter and my advisor. The text is primarily written by me. Chapter 5 is a version of [46] where my contribution is all of the analytical ...inn Euclidean space, a variational method refers to using calculus of variation techniques to find the minimizer (or maximizer) of a functional (energy... geometric inter- pretation of modularity optimization contrasts with existing interpretations (e.g., probabilistic ones or in terms of the Potts model

  16. From Ecology to Finance (and Back?): A Review on Entropy-Based Null Models for the Analysis of Bipartite Networks

    Science.gov (United States)

    Straka, Mika J.; Caldarelli, Guido; Squartini, Tiziano; Saracco, Fabio

    2018-04-01

    Bipartite networks provide an insightful representation of many systems, ranging from mutualistic networks of species interactions to investment networks in finance. The analyses of their topological structures have revealed the ubiquitous presence of properties which seem to characterize many—apparently different—systems. Nestedness, for example, has been observed in biological plant-pollinator as well as in country-product exportation networks. Due to the interdisciplinary character of complex networks, tools developed in one field, for example ecology, can greatly enrich other areas of research, such as economy and finance, and vice versa. With this in mind, we briefly review several entropy-based bipartite null models that have been recently proposed and discuss their application to real-world systems. The focus on these models is motivated by the fact that they show three very desirable features: analytical character, general applicability, and versatility. In this respect, entropy-based methods have been proven to perform satisfactorily both in providing benchmarks for testing evidence-based null hypotheses and in reconstructing unknown network configurations from partial information. Furthermore, entropy-based models have been successfully employed to analyze ecological as well as economic systems. As an example, the application of entropy-based null models has detected early-warning signals, both in economic and financial systems, of the 2007-2008 world crisis. Moreover, they have revealed a statistically-significant export specialization phenomenon of country export baskets in international trade, a result that seems to reconcile Ricardo's hypothesis in classical economics with recent findings on the (empirical) diversification industrial production at the national level. Finally, these null models have shown that the information contained in the nestedness is already accounted for by the degree sequence of the corresponding graphs.

  17. Artificial neural networks for plasma spectroscopy analysis

    International Nuclear Information System (INIS)

    Morgan, W.L.; Larsen, J.T.; Goldstein, W.H.

    1992-01-01

    Artificial neural networks have been applied to a variety of signal processing and image recognition problems. Of the several common neural models the feed-forward, back-propagation network is well suited for the analysis of scientific laboratory data, which can be viewed as a pattern recognition problem. The authors present a discussion of the basic neural network concepts and illustrate its potential for analysis of experiments by applying it to the spectra of laser produced plasmas in order to obtain estimates of electron temperatures and densities. Although these are high temperature and density plasmas, the neural network technique may be of interest in the analysis of the low temperature and density plasmas characteristic of experiments and devices in gaseous electronics

  18. Analysis of significance of environmental factors in landslide susceptibility modeling: Case study Jemma drainage network, Ethiopia

    Directory of Open Access Journals (Sweden)

    Vít Maca

    2017-06-01

    Full Text Available Aim of the paper is to describe methodology for calculating significance of environmental factors in landslide susceptibility modeling and present result of selected one. As a study area part of a Jemma basin in Ethiopian Highland is used. This locality is highly affected by mass movement processes. In the first part all major factors and their influence are described briefly. Majority of the work focuses on research of other methodologies used in susceptibility models and design of own methodology. This method is unlike most of the methods used completely objective, therefore it is not possible to intervene in the results. In article all inputs and outputs of the method are described as well as all stages of calculations. Results are illustrated on specific examples. In study area most important factor for landslide susceptibility is slope, on the other hand least important is land cover. At the end of article landslide susceptibility map is created. Part of the article is discussion of results and possible improvements of the methodology.

  19. Analysis of sulfate resistance in concrete based on artificial neural networks and USBR4908-modeling

    Directory of Open Access Journals (Sweden)

    Osama Hodhod

    2013-12-01

    Full Text Available One of the available tests that can be used to evaluate concrete sulfate resistance is USBR4908. However, there are deficiencies in this test method. This study focuses on the ANN as an alternative approach to evaluate the sulfate expansion. Three types of cement combined with FA or SF, along with variable W/B were study by USBR4908. ANN model were developed by five input parameters, W/B, cement content, FA or SF, C3A, and exposure duration; output parameter is determined as expansion. Back propagation algorithm was employed for the ANN training; a Tansig function was used as the nonlinear transfer function. It was clear that the ANN models give high prediction accuracy. In addition, The engineer can avoid the use of the borderline 2.5–5% C3A content in severe sulfate environments and borderline 6–8% C3A content in moderate sulfate environments, specially with W/B ratio greater than 0.45.

  20. A Retro-Analysis of I-40 Bridge Collapse on Freight Movement in the U.S. Highway Network using GIS and Assignment Models

    Directory of Open Access Journals (Sweden)

    Saniye Gizem Aydin, Ph.D.

    2012-12-01

    Full Text Available Bridges are critical but vulnerable elements of a highway transportation system. A bridge collapse not only affects the freight movement on the bridge but also the flow in the entire network, posing negative impacts on local, regional, and national economy. This study examines the spatial and economic impact of the 2002 I-40 Bridge collapse in Oklahoma on freight flow movement in the U.S. highway network. Freight Analysis Framework (FAF databases, TransCADTM software, and two assignment models (All-or-Nothing and User Equilibrium are used to analyze the freight flow changes before and after the bridge collapse along with two different freight assignment approaches. The first approach assigns the origin-destination freight flow to the network with the collapsed bridge removed. The second involves two successive assignments - first by excluding the pre-hazard freight flow on the bridge and assigning the rest of the flow to the post-disaster network, and second, by assigning the freight flow on the bridge in pre-disaster conditions to the post-disaster-network. The research showed that the bridge collapse did not only impact the freight flows on nearby highway network links, but also affected flows on links further away from the bridge. This finding casts doubts on the conventional models relying on gravity-based spatial distance decay effects, which often overestimate the nearby but underestimate the further-out freight flow changes in the network.

  1. Dynamic modeling and analysis of sexually transmitted diseases on heterogeneous networks

    Science.gov (United States)

    Li, Shuping; Jin, Zhen

    2015-06-01

    Considering homosexual contacts and heterosexual contacts in the course of sexual contacts, double degrees which describe the numbers of homosexual contacts and heterosexual contacts are introduced, correlation coefficients about degrees based on the joint probability distribution are given, and an SIS mean-field model about sexually transmitted diseases is presented when degrees are uncorrelated. The basic reproduction number of diseases is studied by the method of next generation matrix. Results show that, when homosexual contacts and heterosexual contacts all exist, once the disease is epidemic in the interior of male (female) population which is caused by male (female) homosexual transmissions, or the disease is epidemic between the two species which is caused by heterosexual transmissions, the disease must be epidemic in the whole population. Numerical simulations confirm the theoretical results.

  2. Topographic factor analysis: a Bayesian model for inferring brain networks from neural data.

    Directory of Open Access Journals (Sweden)

    Jeremy R Manning

    Full Text Available The neural patterns recorded during a neuroscientific experiment reflect complex interactions between many brain regions, each comprising millions of neurons. However, the measurements themselves are typically abstracted from that underlying structure. For example, functional magnetic resonance imaging (fMRI datasets comprise a time series of three-dimensional images, where each voxel in an image (roughly reflects the activity of the brain structure(s-located at the corresponding point in space-at the time the image was collected. FMRI data often exhibit strong spatial correlations, whereby nearby voxels behave similarly over time as the underlying brain structure modulates its activity. Here we develop topographic factor analysis (TFA, a technique that exploits spatial correlations in fMRI data to recover the underlying structure that the images reflect. Specifically, TFA casts each brain image as a weighted sum of spatial functions. The parameters of those spatial functions, which may be learned by applying TFA to an fMRI dataset, reveal the locations and sizes of the brain structures activated while the data were collected, as well as the interactions between those structures.

  3. Comprehensive reconstruction and in silico analysis of Aspergillus niger genome-scale metabolic network model that accounts for 1210 ORFs.

    Science.gov (United States)

    Lu, Hongzhong; Cao, Weiqiang; Ouyang, Liming; Xia, Jianye; Huang, Mingzhi; Chu, Ju; Zhuang, Yingping; Zhang, Siliang; Noorman, Henk

    2017-03-01

    Aspergillus niger is one of the most important cell factories for industrial enzymes and organic acids production. A comprehensive genome-scale metabolic network model (GSMM) with high quality is crucial for efficient strain improvement and process optimization. The lack of accurate reaction equations and gene-protein-reaction associations (GPRs) in the current best model of A. niger named GSMM iMA871, however, limits its application scope. To overcome these limitations, we updated the A. niger GSMM by combining the latest genome annotation and literature mining technology. Compared with iMA871, the number of reactions in iHL1210 was increased from 1,380 to 1,764, and the number of unique ORFs from 871 to 1,210. With the aid of our transcriptomics analysis, the existence of 63% ORFs and 68% reactions in iHL1210 can be verified when glucose was used as the only carbon source. Physiological data from chemostat cultivations, 13 C-labeled and molecular experiments from the published literature were further used to check the performance of iHL1210. The average correlation coefficients between the predicted fluxes and estimated fluxes from 13 C-labeling data were sufficiently high (above 0.89) and the prediction of cell growth on most of the reported carbon and nitrogen sources was consistent. Using the updated genome-scale model, we evaluated gene essentiality on synthetic and yeast extract medium, as well as the effects of NADPH supply on glucoamylase production in A. niger. In summary, the new A. niger GSMM iHL1210 contains significant improvements with respect to the metabolic coverage and prediction performance, which paves the way for systematic metabolic engineering of A. niger. Biotechnol. Bioeng. 2017;114: 685-695. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  5. Intentional risk management through complex networks analysis

    CERN Document Server

    Chapela, Victor; Moral, Santiago; Romance, Miguel

    2015-01-01

    This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution,  the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained  in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies a...

  6. Social network models predict movement and connectivity in ecological landscapes

    Science.gov (United States)

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  7. Social network models predict movement and connectivity in ecological landscapes.

    Science.gov (United States)

    Fletcher, Robert J; Acevedo, Miguel A; Reichert, Brian E; Pias, Kyle E; Kitchens, Wiley M

    2011-11-29

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  8. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  9. Network Anomaly Detection Based on Wavelet Analysis

    Science.gov (United States)

    Lu, Wei; Ghorbani, Ali A.

    2008-12-01

    Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  10. Sample Entropy Analysis of EEG Signals via Artificial Neural Networks to Model Patients’ Consciousness Level Based on Anesthesiologists Experience

    Directory of Open Access Journals (Sweden)

    George J. A. Jiang

    2015-01-01

    Full Text Available Electroencephalogram (EEG signals, as it can express the human brain’s activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA. Bispectral (BIS index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD method and analyzed using sample entropy (SampEn analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN model through using expert assessment of consciousness level (EACL which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.

  11. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    Directory of Open Access Journals (Sweden)

    Kim Hyun

    2011-12-01

    Full Text Available Abstract Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  12. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    Science.gov (United States)

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  13. Bifurcation Analysis for an SEIRS-V Model with Delays on the Transmission of Worms in a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zizhen Zhang

    2017-01-01

    Full Text Available Hopf bifurcation for an SEIRS-V model with delays on the transmission of worms in a wireless sensor network is investigated. We focus on existence of the Hopf bifurcation by regarding the diverse delay as a bifurcation parameter. The results show that propagation of worms in the wireless sensor network can be controlled when the delay is suitably small under some certain conditions. Then, we study properties of the Hopf bifurcation by using the normal form theory and center manifold theorem. Finally, we give a numerical example to support the theoretical results.

  14. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  15. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  16. Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective.

    Science.gov (United States)

    Gilson, Matthieu

    2018-04-01

    Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input-output mapping-determined by EC-for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data-movie viewing versus resting state-illustrates that changes in local variability and changes in brain coordination go hand in hand.

  17. Delay and Disruption Tolerant Networking MACHETE Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Gao, Jay L.

    2011-01-01

    To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity

  18. Social network analysis: Presenting an underused method for nursing research.

    Science.gov (United States)

    Parnell, James Michael; Robinson, Jennifer C

    2018-06-01

    This paper introduces social network analysis as a versatile method with many applications in nursing research. Social networks have been studied for years in many social science fields. The methods continue to advance but remain unknown to most nursing scholars. Discussion paper. English language and interpreted literature was searched from Ovid Healthstar, CINAHL, PubMed Central, Scopus and hard copy texts from 1965 - 2017. Social network analysis first emerged in nursing literature in 1995 and appears minimally through present day. To convey the versatility and applicability of social network analysis in nursing, hypothetical scenarios are presented. The scenarios are illustrative of three approaches to social network analysis and include key elements of social network research design. The methods of social network analysis are underused in nursing research, primarily because they are unknown to most scholars. However, there is methodological flexibility and epistemological versatility capable of supporting quantitative and qualitative research. The analytic techniques of social network analysis can add new insight into many areas of nursing inquiry, especially those influenced by cultural norms. Furthermore, visualization techniques associated with social network analysis can be used to generate new hypotheses. Social network analysis can potentially uncover findings not accessible through methods commonly used in nursing research. Social networks can be analysed based on individual-level attributes, whole networks and subgroups within networks. Computations derived from social network analysis may stand alone to answer a research question or incorporated as variables into robust statistical models. © 2018 John Wiley & Sons Ltd.

  19. Combinatorial explosion in model gene networks

    Science.gov (United States)

    Edwards, R.; Glass, L.

    2000-09-01

    The explosive growth in knowledge of the genome of humans and other organisms leaves open the question of how the functioning of genes in interacting networks is coordinated for orderly activity. One approach to this problem is to study mathematical properties of abstract network models that capture the logical structures of gene networks. The principal issue is to understand how particular patterns of activity can result from particular network structures, and what types of behavior are possible. We study idealized models in which the logical structure of the network is explicitly represented by Boolean functions that can be represented by directed graphs on n-cubes, but which are continuous in time and described by differential equations, rather than being updated synchronously via a discrete clock. The equations are piecewise linear, which allows significant analysis and facilitates rapid integration along trajectories. We first give a combinatorial solution to the question of how many distinct logical structures exist for n-dimensional networks, showing that the number increases very rapidly with n. We then outline analytic methods that can be used to establish the existence, stability and periods of periodic orbits corresponding to particular cycles on the n-cube. We use these methods to confirm the existence of limit cycles discovered in a sample of a million randomly generated structures of networks of 4 genes. Even with only 4 genes, at least several hundred different patterns of stable periodic behavior are possible, many of them surprisingly complex. We discuss ways of further classifying these periodic behaviors, showing that small mutations (reversal of one or a few edges on the n-cube) need not destroy the stability of a limit cycle. Although these networks are very simple as models of gene networks, their mathematical transparency reveals relationships between structure and behavior, they suggest that the possibilities for orderly dynamics in such

  20. Continuum Modeling of Biological Network Formation

    KAUST Repository

    Albi, Giacomo

    2017-04-10

    We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes the pressure field using a Darcy type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. We first introduce micro- and mesoscopic models and show how they are connected to the macroscopic PDE system. Then, we provide an overview of analytical results for the PDE model, focusing mainly on the existence of weak and mild solutions and analysis of the steady states. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on finite elements and study the qualitative properties of network structures for various parameter values.

  1. Hybrid simulation models of production networks

    CERN Document Server

    Kouikoglou, Vassilis S

    2001-01-01

    This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.

  2. Fundamentals of complex networks models, structures and dynamics

    CERN Document Server

    Chen, Guanrong; Li, Xiang

    2014-01-01

    Complex networks such as the Internet, WWW, transportationnetworks, power grids, biological neural networks, and scientificcooperation networks of all kinds provide challenges for futuretechnological development. In particular, advanced societies havebecome dependent on large infrastructural networks to an extentbeyond our capability to plan (modeling) and to operate (control).The recent spate of collapses in power grids and ongoing virusattacks on the Internet illustrate the need for knowledge aboutmodeling, analysis of behaviors, optimized planning and performancecontrol in such networks. F

  3. Modeling and Simulation Network Data Standards

    Science.gov (United States)

    2011-09-30

    approaches . 2.3. JNAT. JNAT is a Web application that provides connectivity and network analysis capability. JNAT uses propagation models and low-fidelity...COMBATXXI Movement Logger Data Output Dictionary. Field # Geocentric Coordinates (GCC) Heading Geodetic Coordinates (GDC) Heading Universal...B-8 Field # Geocentric Coordinates (GCC) Heading Geodetic Coordinates (GDC) Heading Universal Transverse Mercator (UTM) Heading

  4. Robust variable selection method for nonparametric differential equation models with application to nonlinear dynamic gene regulatory network analysis.

    Science.gov (United States)

    Lu, Tao

    2016-01-01

    The gene regulation network (GRN) evaluates the interactions between genes and look for models to describe the gene expression behavior. These models have many applications; for instance, by characterizing the gene expression mechanisms that cause certain disorders, it would be possible to target those genes to block the progress of the disease. Many biological processes are driven by nonlinear dynamic GRN. In this article, we propose a nonparametric differential equation (ODE) to model the nonlinear dynamic GRN. Specially, we address following questions simultaneously: (i) extract information from noisy time course gene expression data; (ii) model the nonlinear ODE through a nonparametric smoothing function; (iii) identify the important regulatory gene(s) through a group smoothly clipped absolute deviation (SCAD) approach; (iv) test the robustness of the model against possible shortening of experimental duration. We illustrate the usefulness of the model and associated statistical methods through a simulation and a real application examples.

  5. Bayesian networks modelling in support to cross-cutting analysis of water supply and sanitation in developing countries

    Directory of Open Access Journals (Sweden)

    C. Dondeynaz

    2013-09-01

    Full Text Available Despite the efforts made towards the Millennium Development Goals targets during the last decade, improved access to water supply or basic sanitation still remains unavailable for millions of people across the world. This paper proposes a set of models that use 25 key variables and country profiles from the WatSan4Dev data set involving water supply and sanitation (Dondeynaz et al., 2012. This paper suggests the use of Bayesian network modelling methods because they are more easily adapted to deal with non-normal distributions, and integrate a qualitative approach for data analysis. They also offer the advantage of integrating preliminary knowledge into the probabilistic models. The statistical performance of the proposed models ranges between 20 and 5% error rates, which are very satisfactory taking into account the strong heterogeneity of variables. Probabilistic scenarios run from the models allow an assessment of the relationships between human development, external support, governance aspects, economic activities and water supply and sanitation (WSS access. According to models proposed in this paper, gaining a strong poverty reduction will require the WSS access to reach 75–76% through: (1 the management of ongoing urbanisation processes to avoid slums development; and (2 the improvement of health care, for instance for children. Improving governance, such as institutional efficiency, capacities to make and apply rules, or control of corruption is positively associated with WSS sustainable development. The first condition for an increment of the HDP (human development and poverty remains of course an improvement of the economic conditions with higher household incomes. Moreover, a significant country commitment to the environment, associated with civil society freedom of expression constitutes a favourable setting for sustainable WSS services delivery. Intensive agriculture using irrigation practises also appears as a mean for sustainable

  6. Bayesian networks modelling in support to cross-cutting analysis of water supply and sanitation in developing countries

    Science.gov (United States)

    Dondeynaz, C.; López Puga, J.; Carmona Moreno, C.

    2013-09-01

    Despite the efforts made towards the Millennium Development Goals targets during the last decade, improved access to water supply or basic sanitation still remains unavailable for millions of people across the world. This paper proposes a set of models that use 25 key variables and country profiles from the WatSan4Dev data set involving water supply and sanitation (Dondeynaz et al., 2012). This paper suggests the use of Bayesian network modelling methods because they are more easily adapted to deal with non-normal distributions, and integrate a qualitative approach for data analysis. They also offer the advantage of integrating preliminary knowledge into the probabilistic models. The statistical performance of the proposed models ranges between 20 and 5% error rates, which are very satisfactory taking into account the strong heterogeneity of variables. Probabilistic scenarios run from the models allow an assessment of the relationships between human development, external support, governance aspects, economic activities and water supply and sanitation (WSS) access. According to models proposed in this paper, gaining a strong poverty reduction will require the WSS access to reach 75-76% through: (1) the management of ongoing urbanisation processes to avoid slums development; and (2) the improvement of health care, for instance for children. Improving governance, such as institutional efficiency, capacities to make and apply rules, or control of corruption is positively associated with WSS sustainable development. The first condition for an increment of the HDP (human development and poverty) remains of course an improvement of the economic conditions with higher household incomes. Moreover, a significant country commitment to the environment, associated with civil society freedom of expression constitutes a favourable setting for sustainable WSS services delivery. Intensive agriculture using irrigation practises also appears as a mean for sustainable WSS thanks to

  7. Bayesian networks modelling in support to cross cutting analysis of water supply and sanitation in developing countries

    Science.gov (United States)

    Dondeynaz, C.; López Puga, J.; Carmona Moreno, C.

    2013-02-01

    Despite the efforts made towards the millennium goals targets during the last decade, access to improved water supply or basic sanitation remains still not accessible for millions of people across the world. This paper proposes a set of models that use 25 key variables from the WatSan4Dev dataset and country profiles involving Water Supply and Sanitation (Dondeynaz et al., 2012). This paper proposes the use of Bayesian Network modelling methods because adapted to the management of non-normal distribution, and integrate a qualitative approach for data analysis. They also offer the advantage to integrate preliminary knowledge into the probabilistic models. The statistical performance of the proposed models ranges between 80 and 95% which is very satisfactory taking into account the strong heterogeneity of variables. Probabilistic scenarios run from the models allow a quantification of the relationships between human development, external support, governance aspects, economic activities and Water Supply and Sanitation (WSS) access. According to models proposed in this paper, a strong poverty reduction will induce an increment of the WSS access equal to 75-76% through: (1) the organisation of on-going urbanisation process to avoid slums development; and, (2) the improvement of health care for instance for children. On one side, improving governance, such as institutional efficiency, capacities to make and apply rules or control of corruption will also have a positive impact on WSS sustainable development. The first condition for an increment of the WSS access remains of course an improvement of the economic development with an increment of household income. Moreover, a significant country environmental commitment associated with civil society freedom of expression constitutes a favourable environment for sustainable WSS services delivery. Intensive agriculture through irrigation practises also appears as a mean for sustainable WSS thanks to multi-uses and

  8. NAPS: Network Analysis of Protein Structures

    Science.gov (United States)

    Chakrabarty, Broto; Parekh, Nita

    2016-01-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  9. Kinetic modelling and meta-analysis of the B. subtilis SigA regulatory network during spore germination and outgrowth

    Czech Academy of Sciences Publication Activity Database

    Ramaniuk, Olga; Černý, Martin; Krásný, Libor; Vohradský, Jiří

    2017-01-01

    Roč. 1860, č. 8 (2017), s. 894-904 ISSN 1874-9399 R&D Projects: GA MŠk(CZ) LM2015055; GA ČR GA13-16842S; GA MZd(CZ) NV17-29680A Institutional support: RVO:61388971 Keywords : Sigma A * Kinetic modelling * Regulatory network Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 5.018, year: 2016

  10. An evolving network model with modular growth

    International Nuclear Information System (INIS)

    Zou Zhi-Yun; Liu Peng; Lei Li; Gao Jian-Zhi

    2012-01-01

    In this paper, we propose an evolving network model growing fast in units of module, according to the analysis of the evolution characteristics in real complex networks. Each module is a small-world network containing several interconnected nodes and the nodes between the modules are linked by preferential attachment on degree of nodes. We study the modularity measure of the proposed model, which can be adjusted by changing the ratio of the number of inner-module edges and the number of inter-module edges. In view of the mean-field theory, we develop an analytical function of the degree distribution, which is verified by a numerical example and indicates that the degree distribution shows characteristics of the small-world network and the scale-free network distinctly at different segments. The clustering coefficient and the average path length of the network are simulated numerically, indicating that the network shows the small-world property and is affected little by the randomness of the new module. (interdisciplinary physics and related areas of science and technology)

  11. A Model for Telestrok Network Evaluation

    DEFF Research Database (Denmark)

    Storm, Anna; Günzel, Franziska; Theiss, Stephan

    2011-01-01

    analysis lacking, current telestroke reimbursement by third-party payers is limited to special contracts and not included in the regular billing system. Based on a systematic literature review and expert interviews with health care economists, third-party payers and neurologists, a Markov model...... was developed from the third-party payer perspective. In principle, it enables telestroke networks to conduct cost-effectiveness studies, because the majority of the required data can be extracted from health insurance companies’ databases and the telestroke network itself. The model presents a basis...

  12. Network Analysis Tools: from biological networks to clusters and pathways.

    Science.gov (United States)

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  13. Feasibility analysis of using inverse modeling for estimating natural groundwater recharge from a large-scale soil moisture monitoring network

    Science.gov (United States)

    Wang, Tiejun; Franz, Trenton E.; Yue, Weifeng; Szilagyi, Jozsef; Zlotnik, Vitaly A.; You, Jinsheng; Chen, Xunhong; Shulski, Martha D.; Young, Aaron

    2016-02-01

    Despite the importance of groundwater recharge (GR), its accurate estimation still remains one of the most challenging tasks in the field of hydrology. In this study, with the help of inverse modeling, long-term (6 years) soil moisture data at 34 sites from the Automated Weather Data Network (AWDN) were used to estimate the spatial distribution of GR across Nebraska, USA, where significant spatial variability exists in soil properties and precipitation (P). To ensure the generality of this study and its potential broad applications, data from public domains and literature were used to parameterize the standard Hydrus-1D model. Although observed soil moisture differed significantly across the AWDN sites mainly due to the variations in P and soil properties, the simulations were able to capture the dynamics of observed soil moisture under different climatic and soil conditions. The inferred mean annual GR from the calibrated models varied over three orders of magnitude across the study area. To assess the uncertainties of the approach, estimates of GR and actual evapotranspiration (ETa) from the calibrated models were compared to the GR and ETa obtained from other techniques in the study area (e.g., remote sensing, tracers, and regional water balance). Comparison clearly demonstrated the feasibility of inverse modeling and large-scale (>104 km2) soil moisture monitoring networks for estimating GR. In addition, the model results were used to further examine the impacts of climate and soil on GR. The data showed that both P and soil properties had significant impacts on GR in the study area with coarser soils generating higher GR; however, different relationships between GR and P emerged at the AWDN sites, defined by local climatic and soil conditions. In general, positive correlations existed between annual GR and P for the sites with coarser-textured soils or under wetter climatic conditions. With the rapidly expanding soil moisture monitoring networks around the

  14. Modelling dendritic ecological networks in space: anintegrated network perspective

    Science.gov (United States)

    Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of ecological networks, or in 2-D space, may be inadequate for studying the influence of structure and connectivity on ecological processes within DENs. We propose a conceptual taxonomy of network analysis methods that account for DEN characteristics to varying degrees and provide a synthesis of the different approaches within

  15. Data Farming Process and Initial Network Analysis Capabilities

    Directory of Open Access Journals (Sweden)

    Gary Horne

    2016-01-01

    Full Text Available Data Farming, network applications and approaches to integrate network analysis and processes to the data farming paradigm are presented as approaches to address complex system questions. Data Farming is a quantified approach that examines questions in large possibility spaces using modeling and simulation. It evaluates whole landscapes of outcomes to draw insights from outcome distributions and outliers. Social network analysis and graph theory are widely used techniques for the evaluation of social systems. Incorporation of these techniques into the data farming process provides analysts examining complex systems with a powerful new suite of tools for more fully exploring and understanding the effect of interactions in complex systems. The integration of network analysis with data farming techniques provides modelers with the capability to gain insight into the effect of network attributes, whether the network is explicitly defined or emergent, on the breadth of the model outcome space and the effect of model inputs on the resultant network statistics.

  16. Modelling Users` Trust in Online Social Networks

    Directory of Open Access Journals (Sweden)

    Iacob Cătoiu

    2014-02-01

    Full Text Available Previous studies (McKnight, Lankton and Tripp, 2011; Liao, Lui and Chen, 2011 have shown the crucial role of trust when choosing to disclose sensitive information online. This is the case of online social networks users, who must disclose a certain amount of personal data in order to gain access to these online services. Taking into account privacy calculus model and the risk/benefit ratio, we propose a model of users’ trust in online social networks with four variables. We have adapted metrics for the purpose of our study and we have assessed their reliability and validity. We use a Partial Least Squares (PLS based structural equation modelling analysis, which validated all our initial assumptions, indicating that our three predictors (privacy concerns, perceived benefits and perceived risks explain 48% of the variation of users’ trust in online social networks, the resulting variable of our study. We also discuss the implications and further research opportunities of our study.

  17. Bayesian network modelling of upper gastrointestinal bleeding

    Science.gov (United States)

    Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri

    2013-09-01

    Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.

  18. A Complex Network Approach to Distributional Semantic Models.

    Directory of Open Access Journals (Sweden)

    Akira Utsumi

    Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.

  19. Modeling and Analysis of Mechanical Properties of Aluminium Alloy (A413 Processed through Squeeze Casting Route Using Artificial Neural Network Model and Statistical Technique

    Directory of Open Access Journals (Sweden)

    R. Soundararajan

    2015-01-01

    Full Text Available Artificial Neural Network (ANN approach was used for predicting and analyzing the mechanical properties of A413 aluminum alloy produced by squeeze casting route. The experiments are carried out with different controlled input variables such as squeeze pressure, die preheating temperature, and melt temperature as per Full Factorial Design (FFD. The accounted absolute process variables produce a casting with pore-free and ideal fine grain dendritic structure resulting in good mechanical properties such as hardness, ultimate tensile strength, and yield strength. As a primary objective, a feed forward back propagation ANN model has been developed with different architectures for ensuring the definiteness of the values. The developed model along with its predicted data was in good agreement with the experimental data, inferring the valuable performance of the optimal model. From the work it was ascertained that, for castings produced by squeeze casting route, the ANN is an alternative method for predicting the mechanical properties and appropriate results can be estimated rather than measured, thereby reducing the testing time and cost. As a secondary objective, quantitative and statistical analysis was performed in order to evaluate the effect of process parameters on the mechanical properties of the castings.

  20. Continuum Model for River Networks

    Science.gov (United States)

    Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.

    1995-07-01

    The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.

  1. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis.

    Science.gov (United States)

    Uzun, Harun; Yıldız, Zeynep; Goldfarb, Jillian L; Ceylan, Selim

    2017-06-01

    As biomass becomes more integrated into our energy feedstocks, the ability to predict its combustion enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent sigmoid architecture to predict biomasses' higher heating values from only their proximate analyses, requiring minimal specificity as compared to models based on elemental composition. The model presented has a considerably higher correlation coefficient (0.963) and lower root mean square (0.375), mean absolute (0.328), and mean bias errors (0.010) than other models presented in the literature which, at least when applied to the present data set, tend to under-predict the combustion enthalpy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Agent based modeling of energy networks

    International Nuclear Information System (INIS)

    Gonzalez de Durana, José María; Barambones, Oscar; Kremers, Enrique; Varga, Liz

    2014-01-01

    Highlights: • A new approach for energy network modeling is designed and tested. • The agent-based approach is general and no technology dependent. • The models can be easily extended. • The range of applications encompasses from small to large energy infrastructures. - Abstract: Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed

  3. Discrete dynamic modeling of cellular signaling networks.

    Science.gov (United States)

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  4. Safeguards Network Analysis Procedure (SNAP): overview

    International Nuclear Information System (INIS)

    Chapman, L.D; Engi, D.

    1979-08-01

    Nuclear safeguards systems provide physical protection and control of nuclear materials. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system effectiveness. This is achieved through a standard set of symbols which characterize the various elements of safeguards systems and an analysis program to execute simulation models built using the SNAP symbology. The outputs provided by the SNAP simulation program supplements the safeguards analyst's evaluative capabilities and supports the evaluation of existing sites as well as alternative design possibilities. This paper describes the SNAP modeling technique and provides an example illustrating its use

  5. Information flow analysis of interactome networks.

    Directory of Open Access Journals (Sweden)

    Patrycja Vasilyev Missiuro

    2009-04-01

    Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we

  6. A Network Thermodynamic Approach to Compartmental Analysis

    Science.gov (United States)

    Mikulecky, D. C.; Huf, E. G.; Thomas, S. R.

    1979-01-01

    We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc. PMID:262387

  7. Hop-distance relationship analysis with quasi-UDG model for node localization in wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Chen Ping

    2011-01-01

    Full Text Available Abstract In wireless sensor networks (WSNs, location information plays an important role in many fundamental services which includes geographic routing, target tracking, location-based coverage, topology control, and others. One promising approach in sensor network localization is the determination of location based on hop counts. A critical priori of this approach that directly influences the accuracy of location estimation is the hop-distance relationship. However, most of the related works on the hop-distance relationship assume the unit-disk graph (UDG model that is unrealistic in a practical scenario. In this paper, we formulate the hop-distance relationship for quasi-UDG model in WSNs where sensor nodes are randomly and independently deployed in a circular region based on a Poisson point process. Different from the UDG model, quasi-UDG model has the non-uniformity property for connectivity. We derive an approximated recursive expression for the probability of the hop count with a given geographic distance. The border effect and dependence problem are also taken into consideration. Furthermore, we give the expressions describing the distribution of distance with known hop counts for inner nodes and those suffered from the border effect where we discover the insignificance of the border effect. The analytical results are validated by simulations showing the accuracy of the employed approximation. Besides, we demonstrate the localization application of the formulated relationship and show the accuracy improvement in the WSN localization.

  8. Diversity Performance Analysis on Multiple HAP Networks

    Science.gov (United States)

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-01-01

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques. PMID:26134102

  9. Diversity Performance Analysis on Multiple HAP Networks

    Directory of Open Access Journals (Sweden)

    Feihong Dong

    2015-06-01

    Full Text Available One of the main design challenges in wireless sensor networks (WSNs is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV. In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF and cumulative distribution function (CDF of the received signal-to-noise ratio (SNR are derived. In addition, the average symbol error rate (ASER with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.

  10. Network-Based Visual Analysis of Tabular Data

    Science.gov (United States)

    Liu, Zhicheng

    2012-01-01

    Tabular data is pervasive in the form of spreadsheets and relational databases. Although tables often describe multivariate data without explicit network semantics, it may be advantageous to explore the data modeled as a graph or network for analysis. Even when a given table design conveys some static network semantics, analysts may want to look…

  11. Pareto distance for multi-layer network analysis

    DEFF Research Database (Denmark)

    Magnani, Matteo; Rossi, Luca

    2013-01-01

    services, e.g., Facebook, Twitter, LinkedIn and Foursquare. As a result, the analysis of on-line social networks requires a wider scope and, more technically speaking, models for the representation of this fragmented scenario. The recent introduction of more realistic layered models has however determined......Social Network Analysis has been historically applied to single networks, e.g., interaction networks between co-workers. However, the advent of on-line social network sites has emphasized the stratified structure of our social experience. Individuals usually spread their identities over multiple...

  12. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  13. Multiple Social Networks, Data Models and Measures for

    DEFF Research Database (Denmark)

    Magnani, Matteo; Rossi, Luca

    2017-01-01

    Multiple Social Network Analysis is a discipline defining models, measures, methodologies, and algorithms to study multiple social networks together as a single social system. It is particularly valuable when the networks are interconnected, e.g., the same actors are present in more than one...

  14. Mobility-Aware Modeling and Analysis of Dense Cellular Networks With $C$ -Plane/ $U$ -Plane Split Architecture

    KAUST Repository

    Ibrahim, Hazem; Elsawy, Hesham; Nguyen, Uyen Trang; Alouini, Mohamed-Slim

    2016-01-01

    The unrelenting increase in the population of mobile users and their traffic demands drive cellular network operators to densify their network infrastructure. Network densification shrinks the footprint of base stations (BSs) and reduces the number

  15. Search for the standard model Higgs boson in $e^{+}e^{-}$ four- jet topology using neural networks and discriminant analysis

    CERN Document Server

    Mjahed, M

    2003-01-01

    We present an attempt to separate between Higgs boson events (e/sup + /e/sup -/ to ZH to qqbb) and other physics processes in the 4-jet channel (e/sup +/e/sup -/ to Z/ gamma , W/sup +/W, ZZ to 4jets), using the discriminant analysis and neural networks methods. Events were produced at LEP2 energies, using the Lund Monte Carlo generator and the Aleph package. The most discriminant variables as the reconstructed jet mass, the jet properties (b-tag, rapidity weighted moments) and other variables are used. (8 refs).

  16. Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering

    Science.gov (United States)

    Elangasinghe, M. A.; Singhal, N.; Dirks, K. N.; Salmond, J. A.; Samarasinghe, S.

    2014-09-01

    This paper uses artificial neural networks (ANN), combined with k-means clustering, to understand the complex time series of PM10 and PM2.5 concentrations at a coastal location of New Zealand based on data from a single site. Out of available meteorological parameters from the network (wind speed, wind direction, solar radiation, temperature, relative humidity), key factors governing the pattern of the time series concentrations were identified through input sensitivity analysis performed on the trained neural network model. The transport pathways of particulate matter under these key meteorological parameters were further analysed through bivariate concentration polar plots and k-means clustering techniques. The analysis shows that the external sources such as marine aerosols and local sources such as traffic and biomass burning contribute equally to the particulate matter concentrations at the study site. These results are in agreement with the results of receptor modelling by the Auckland Council based on Positive Matrix Factorization (PMF). Our findings also show that contrasting concentration-wind speed relationships exist between marine aerosols and local traffic sources resulting in very noisy and seemingly large random PM10 concentrations. The inclusion of cluster rankings as an input parameter to the ANN model showed a statistically significant (p advanced air dispersion models.

  17. Driver-centred vehicle automation: using network analysis for agent-based modelling of the driver in highly automated driving systems.

    Science.gov (United States)

    Banks, Victoria A; Stanton, Neville A

    2016-11-01

    To the average driver, the concept of automation in driving infers that they can become completely 'hands and feet free'. This is a common misconception, however, one that has been shown through the application of Network Analysis to new Cruise Assist technologies that may feature on our roads by 2020. Through the adoption of a Systems Theoretic approach, this paper introduces the concept of driver-initiated automation which reflects the role of the driver in highly automated driving systems. Using a combination of traditional task analysis and the application of quantitative network metrics, this agent-based modelling paper shows how the role of the driver remains an integral part of the driving system implicating the need for designers to ensure they are provided with the tools necessary to remain actively in-the-loop despite giving increasing opportunities to delegate their control to the automated subsystems. Practitioner Summary: This paper describes and analyses a driver-initiated command and control system of automation using representations afforded by task and social networks to understand how drivers remain actively involved in the task. A network analysis of different driver commands suggests that such a strategy does maintain the driver in the control loop.

  18. Analysis of Semantic Networks using Complex Networks Concepts

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2013-01-01

    In this paper we perform a preliminary analysis of semantic networks to determine the most important terms that could be used to optimize a summarization task. In our experiments, we measure how the properties of a semantic network change, when the terms in the network are removed. Our preliminar...

  19. Spectral Analysis of Rich Network Topology in Social Networks

    Science.gov (United States)

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  20. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication.

    Directory of Open Access Journals (Sweden)

    Gabrielle Stetz

    2017-01-01

    Full Text Available Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of

  1. Network Analysis of Rodent Transcriptomes in Spaceflight

    Science.gov (United States)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  2. Capacity analysis of vehicular communication networks

    CERN Document Server

    Lu, Ning

    2013-01-01

    This SpringerBrief focuses on the network capacity analysis of VANETs, a key topic as fundamental guidance on design and deployment of VANETs is very limited. Moreover, unique characteristics of VANETs impose distinguished challenges on such an investigation. This SpringerBrief first introduces capacity scaling laws for wireless networks and briefly reviews the prior arts in deriving the capacity of VANETs. It then studies the unicast capacity considering the socialized mobility model of VANETs. With vehicles communicating based on a two-hop relaying scheme, the unicast capacity bound is deriv

  3. Research on the model of home networking

    Science.gov (United States)

    Yun, Xiang; Feng, Xiancheng

    2007-11-01

    It is the research hotspot of current broadband network to combine voice service, data service and broadband audio-video service by IP protocol to transport various real time and mutual services to terminal users (home). Home Networking is a new kind of network and application technology which can provide various services. Home networking is called as Digital Home Network. It means that PC, home entertainment equipment, home appliances, Home wirings, security, illumination system were communicated with each other by some composing network technology, constitute a networking internal home, and connect with WAN by home gateway. It is a new network technology and application technology, and can provide many kinds of services inside home or between homes. Currently, home networking can be divided into three kinds: Information equipment, Home appliances, Communication equipment. Equipment inside home networking can exchange information with outer networking by home gateway, this information communication is bidirectional, user can get information and service which provided by public networking by using home networking internal equipment through home gateway connecting public network, meantime, also can get information and resource to control the internal equipment which provided by home networking internal equipment. Based on the general network model of home networking, there are four functional entities inside home networking: HA, HB, HC, and HD. (1) HA (Home Access) - home networking connects function entity; (2) HB (Home Bridge) Home networking bridge connects function entity; (3) HC (Home Client) - Home networking client function entity; (4) HD (Home Device) - decoder function entity. There are many physical ways to implement four function entities. Based on theses four functional entities, there are reference model of physical layer, reference model of link layer, reference model of IP layer and application reference model of high layer. In the future home network

  4. On traffic modelling in GPRS networks

    DEFF Research Database (Denmark)

    Madsen, Tatiana Kozlova; Schwefel, Hans-Peter; Prasad, Ramjee

    2005-01-01

    Optimal design and dimensioning of wireless data networks, such as GPRS, requires the knowledge of traffic characteristics of different data services. This paper presents an in-detail analysis of an IP-level traffic measurements taken in an operational GPRS network. The data measurements reported...... here are done at the Gi interface. The aim of this paper is to reveal some key statistics of GPRS data applications and to validate if the existing traffic models can adequately describe traffic volume and inter-arrival time distribution for different services. Additionally, we present a method of user...

  5. Complex Network Analysis of Guangzhou Metro

    OpenAIRE

    Yasir Tariq Mohmand; Fahad Mehmood; Fahd Amjad; Nedim Makarevic

    2015-01-01

    The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree...

  6. COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks

    NARCIS (Netherlands)

    Sie, Rory

    2012-01-01

    Sie, R. L. L. (2012). COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks (Unpublished doctoral dissertation). September, 28, 2012, Open Universiteit in the Netherlands (CELSTEC), Heerlen, The Netherlands.

  7. Time series analysis of temporal networks

    Science.gov (United States)

    Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh

    2016-01-01

    A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue

  8. Combining morphological analysis and Bayesian Networks for strategic decision support

    CSIR Research Space (South Africa)

    De Waal, AJ

    2007-12-01

    Full Text Available Morphological analysis (MA) and Bayesian networks (BN) are two closely related modelling methods, each of which has its advantages and disadvantages for strategic decision support modelling. MA is a method for defining, linking and evaluating...

  9. Energy modelling in sensor networks

    Science.gov (United States)

    Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.

    2007-06-01

    Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  10. Different approaches in Partial Least Squares and Artificial Neural Network models applied for the analysis of a ternary mixture of Amlodipine, Valsartan and Hydrochlorothiazide

    Science.gov (United States)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2014-03-01

    Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.

  11. Agent Based Modeling on Organizational Dynamics of Terrorist Network

    OpenAIRE

    Bo Li; Duoyong Sun; Renqi Zhu; Ze Li

    2015-01-01

    Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model ...

  12. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.

    2015-01-01

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation

  13. Integrating neural network technology and noise analysis

    International Nuclear Information System (INIS)

    Uhrig, R.E.; Oak Ridge National Lab., TN

    1995-01-01

    The integrated use of neural network and noise analysis technologies offers advantages not available by the use of either technology alone. The application of neural network technology to noise analysis offers an opportunity to expand the scope of problems where noise analysis is useful and unique ways in which the integration of these technologies can be used productively. The two-sensor technique, in which the responses of two sensors to an unknown driving source are related, is used to demonstration such integration. The relationship between power spectral densities (PSDs) of accelerometer signals is derived theoretically using noise analysis to demonstrate its uniqueness. This relationship is modeled from experimental data using a neural network when the system is working properly, and the actual PSD of one sensor is compared with the PSD of that sensor predicted by the neural network using the PSD of the other sensor as an input. A significant deviation between the actual and predicted PSDs indicate that system is changing (i.e., failing). Experiments carried out on check values and bearings illustrate the usefulness of the methodology developed. (Author)

  14. A comprehensive Network Security Risk Model for process control networks.

    Science.gov (United States)

    Henry, Matthew H; Haimes, Yacov Y

    2009-02-01

    The risk of cyber attacks on process control networks (PCN) is receiving significant attention due to the potentially catastrophic extent to which PCN failures can damage the infrastructures and commodity flows that they support. Risk management addresses the coupled problems of (1) reducing the likelihood that cyber attacks would succeed in disrupting PCN operation and (2) reducing the severity of consequences in the event of PCN failure or manipulation. The Network Security Risk Model (NSRM) developed in this article provides a means of evaluating the efficacy of candidate risk management policies by modeling the baseline risk and assessing expectations of risk after the implementation of candidate measures. Where existing risk models fall short of providing adequate insight into the efficacy of candidate risk management policies due to shortcomings in their structure or formulation, the NSRM provides model structure and an associated modeling methodology that captures the relevant dynamics of cyber attacks on PCN for risk analysis. This article develops the NSRM in detail in the context of an illustrative example.

  15. Networks and network analysis for defence and security

    CERN Document Server

    Masys, Anthony J

    2014-01-01

    Networks and Network Analysis for Defence and Security discusses relevant theoretical frameworks and applications of network analysis in support of the defence and security domains. This book details real world applications of network analysis to support defence and security. Shocks to regional, national and global systems stemming from natural hazards, acts of armed violence, terrorism and serious and organized crime have significant defence and security implications. Today, nations face an uncertain and complex security landscape in which threats impact/target the physical, social, economic

  16. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Li Chunguang; Maini, Philip K

    2005-01-01

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  17. Networks model of the East Turkistan terrorism

    Science.gov (United States)

    Li, Ben-xian; Zhu, Jun-fang; Wang, Shun-guo

    2015-02-01

    The presence of the East Turkistan terrorist network in China can be traced back to the rebellions on the BAREN region in Xinjiang in April 1990. This article intends to research the East Turkistan networks in China and offer a panoramic view. The events, terrorists and their relationship are described using matrices. Then social network analysis is adopted to reveal the network type and the network structure characteristics. We also find the crucial terrorist leader. Ultimately, some results show that the East Turkistan network has big hub nodes and small shortest path, and that the network follows a pattern of small world network with hierarchical structure.

  18. The Kuramoto model in complex networks

    Science.gov (United States)

    Rodrigues, Francisco A.; Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen

    2016-01-01

    Synchronization of an ensemble of oscillators is an emergent phenomenon present in several complex systems, ranging from social and physical to biological and technological systems. The most successful approach to describe how coherent behavior emerges in these complex systems is given by the paradigmatic Kuramoto model. This model has been traditionally studied in complete graphs. However, besides being intrinsically dynamical, complex systems present very heterogeneous structure, which can be represented as complex networks. This report is dedicated to review main contributions in the field of synchronization in networks of Kuramoto oscillators. In particular, we provide an overview of the impact of network patterns on the local and global dynamics of coupled phase oscillators. We cover many relevant topics, which encompass a description of the most used analytical approaches and the analysis of several numerical results. Furthermore, we discuss recent developments on variations of the Kuramoto model in networks, including the presence of noise and inertia. The rich potential for applications is discussed for special fields in engineering, neuroscience, physics and Earth science. Finally, we conclude by discussing problems that remain open after the last decade of intensive research on the Kuramoto model and point out some promising directions for future research.

  19. Models of neural networks for image analysis of cintillography from the urinary system; Modelos de redes neurais para analise de imagens cintilograficas do sistema urinario

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Paulo Sergio de Souza; Silva, Jorge Wagner Esteves da; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: wagner@lmp.ufrj.br; schirru@lmp.ufrj.br

    2000-07-01

    From the several available diagnostic techniques, the non-invasive ones are the less aggressive to the human body. The use of radionuclides for renal function evaluation seems to be more secure than the other diagnostic procedures. However, the use of radioactive materials, makes it necessary to maximize the beneficial effects of this technique, conducing inevitably to the development of support tools for the analysis of their results. The objective of this work is to improve a system model for image analysis of scintillation. The detection and identification of renal anomalies is done by means of analysis of parts of the image, taking in account the spatial distribution of those anomalies. Geometric operations in conjunction with the segmentation technique enable the improvement of image analysis information processing. In this work, we look for the best artificial neural network architectures to introduce the knowledge of the medical expert into the diagnostic system. The search of the best neural network architectures, the geometric techniques and the image segmentation technique permitted a significant improvement of diagnostic analysis model by using scintillation. (author)

  20. Math Model and Calculation Analysis of Inter-harmonic of Double PWM Speed Control System in Distribution Network

    Directory of Open Access Journals (Sweden)

    Yang Wen-Huan

    2014-11-01

    Full Text Available Aiming at the problem that the distribution network voltage will fluctuate because of the inter-harmonic currents injected into the network by double PWM speed control system when regulating the speed of the asynchronous motor, we established the inter-harmonic current math model of double PWM speed control system according to switching function based on a real bridge crane. The distribution law of the inter-harmonic is got by calculating the grid-side currents and their spectrum while letting the motor run at different quadrants and frequencies. The result which is verified by simulation and experiment shows that the content of the inter harmonic currents is more than that of harmonic currents in double PWM speed control system, the frequency of the inter harmonics of the grid-side current mainly focus on the scope lower than the fundamental frequency, and when the motor runs at low frequencies, the THD of the grid-side current is high. The result has verified the reason why the voltage of a bridge crane distribution system of a deepwater port in Shanghai flickers.

  1. A novel Direct Small World network model

    Directory of Open Access Journals (Sweden)

    LIN Tao

    2016-10-01

    Full Text Available There is a certain degree of redundancy and low efficiency of existing computer networks.This paper presents a novel Direct Small World network model in order to optimize networks.In this model,several nodes construct a regular network.Then,randomly choose and replot some nodes to generate Direct Small World network iteratively.There is no change in average distance and clustering coefficient.However,the network performance,such as hops,is improved.The experiments prove that compared to traditional small world network,the degree,average of degree centrality and average of closeness centrality are lower in Direct Small World network.This illustrates that the nodes in Direct Small World networks are closer than Watts-Strogatz small world network model.The Direct Small World can be used not only in the communication of the community information,but also in the research of epidemics.

  2. Multiplicative Attribute Graph Model of Real-World Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myunghwan [Stanford Univ., CA (United States); Leskovec, Jure [Stanford Univ., CA (United States)

    2010-10-20

    Large scale real-world network data, such as social networks, Internet andWeb graphs, is ubiquitous in a variety of scientific domains. The study of such social and information networks commonly finds patterns and explain their emergence through tractable models. In most networks, especially in social networks, nodes also have a rich set of attributes (e.g., age, gender) associatedwith them. However, most of the existing network models focus only on modeling the network structure while ignoring the features of nodes in the network. Here we present a class of network models that we refer to as the Multiplicative Attribute Graphs (MAG), which naturally captures the interactions between the network structure and node attributes. We consider a model where each node has a vector of categorical features associated with it. The probability of an edge between a pair of nodes then depends on the product of individual attributeattribute similarities. The model yields itself to mathematical analysis as well as fit to real data. We derive thresholds for the connectivity, the emergence of the giant connected component, and show that the model gives rise to graphs with a constant diameter. Moreover, we analyze the degree distribution to show that the model can produce networks with either lognormal or power-law degree distribution depending on certain conditions.

  3. Biological mechanisms beyond network analysis via mathematical modeling. Comment on "Network science of biological systems at different scales: A review" by Marko Gosak et al.

    Science.gov (United States)

    Pedersen, Morten Gram

    2018-03-01

    Methods from network theory are increasingly used in research spanning from engineering and computer science to psychology and the social sciences. In this issue, Gosak et al. [1] provide a thorough review of network science applications to biological systems ranging from the subcellular world via neuroscience to ecosystems, with special attention to the insulin-secreting beta-cells in pancreatic islets.

  4. An Improved Walk Model for Train Movement on Railway Network

    International Nuclear Information System (INIS)

    Li Keping; Mao Bohua; Gao Ziyou

    2009-01-01

    In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic. (general)

  5. Infinite Multiple Membership Relational Modeling for Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel Nørgaard; Hansen, Lars Kai

    Learning latent structure in complex networks has become an important problem fueled by many types of networked data originating from practically all fields of science. In this paper, we propose a new non-parametric Bayesian multiplemembership latent feature model for networks. Contrary to existing...... multiplemembership models that scale quadratically in the number of vertices the proposedmodel scales linearly in the number of links admittingmultiple-membership analysis in large scale networks. We demonstrate a connection between the single membership relational model and multiple membership models and show...

  6. A stock market forecasting model combining two-directional two-dimensional principal component analysis and radial basis function neural network.

    Science.gov (United States)

    Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J

    2015-01-01

    In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.

  7. Outage analysis of selective cooperation in underlay cognitive networks with fixed gain relays and primary interference modeling

    KAUST Repository

    Hussain, Syed Imtiaz; Alouini, Mohamed-Slim; Qaraqe, Khalid A.; Hasna, Mazen Omar

    2012-01-01

    Selective cooperation is a well investigated technique in non-cognitive networks for efficient spectrum utilization and performance improvement. However, it is still a nascent topic for underlay cognitive networks. Recently, it was investigated

  8. Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex

    Science.gov (United States)

    Morgan, Sarah E.; Cole, Daniel J.; Chin, Alex W.

    2016-11-01

    Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.

  9. Transient stability analysis of a distribution network with distributed generators

    NARCIS (Netherlands)

    Xyngi, I.; Ishchenko, A.; Popov, M.; Sluis, van der L.

    2009-01-01

    This letter describes the transient stability analysis of a 10-kV distribution network with wind generators, microturbines, and CHP plants. The network being modeled in Matlab/Simulink takes into account detailed dynamic models of the generators. Fault simulations at various locations are

  10. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Using social network analysis and agent-based modelling to explore information flow using common operational pictures for maritime search and rescue operations.

    Science.gov (United States)

    Baber, C; Stanton, N A; Atkinson, J; McMaster, R; Houghton, R J

    2013-01-01

    The concept of common operational pictures (COPs) is explored through the application of social network analysis (SNA) and agent-based modelling to a generic search and rescue (SAR) scenario. Comparing the command structure that might arise from standard operating procedures with the sort of structure that might arise from examining information-in-common, using SNA, shows how one structure could be more amenable to 'command' with the other being more amenable to 'control' - which is potentially more suited to complex multi-agency operations. An agent-based model is developed to examine the impact of information sharing with different forms of COPs. It is shown that networks using common relevant operational pictures (which provide subsets of relevant information to groups of agents based on shared function) could result in better sharing of information and a more resilient structure than networks that use a COP. SNA and agent-based modelling are used to compare different forms of COPs for maritime SAR operations. Different forms of COP change the communications structures in the socio-technical systems in which they operate, which has implications for future design and development of a COP.

  12. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  13. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  14. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  15. A fusion networking model for smart grid power distribution backbone communication network based on PTN

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2016-01-01

    Full Text Available In current communication network for distribution in Chinese power grid systems, the fiber communication backbone network for distribution and TD-LTE power private wireless backhaul network of power grid are both bearing by the SDH optical transmission network, which also carries the communication network of transformer substation and main electric. As the data traffic of the distribution communication and TD-LTE power private wireless network grow rapidly in recent years, it will have a big impact with the SDH network’s bearing capacity which is mainly used for main electric communication in high security level. This paper presents a fusion networking model which use a multiple-layer PTN network as the unified bearing of the TD-LTE power private wireless backhaul network and fiber communication backbone network for distribution. Network dataflow analysis shows that this model can greatly reduce the capacity pressure of the traditional SDH network as well as ensure the reliability of the transmission of the communication network for distribution and TD-LTE power private wireless network.

  16. Advanced functional network analysis in the geosciences: The pyunicorn package

    Science.gov (United States)

    Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen

    2013-04-01

    Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.

  17. Social Network Analysis and informal trade

    DEFF Research Database (Denmark)

    Walther, Olivier

    networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...... approaches. The paper finally highlights some of the applications of social network analysis and their implications for trade policies....

  18. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  19. A graph model for opportunistic network coding

    KAUST Repository

    Sorour, Sameh; Aboutoraby, Neda; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    © 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase

  20. Mixture models with entropy regularization for community detection in networks

    Science.gov (United States)

    Chang, Zhenhai; Yin, Xianjun; Jia, Caiyan; Wang, Xiaoyang

    2018-04-01

    Community detection is a key exploratory tool in network analysis and has received much attention in recent years. NMM (Newman's mixture model) is one of the best models for exploring a range of network structures including community structure, bipartite and core-periphery structures, etc. However, NMM needs to know the number of communities in advance. Therefore, in this study, we have proposed an entropy regularized mixture model (called EMM), which is capable of inferring the number of communities and identifying network structure contained in a network, simultaneously. In the model, by minimizing the entropy of mixing coefficients of NMM using EM (expectation-maximization) solution, the small clusters contained little information can be discarded step by step. The empirical study on both synthetic networks and real networks has shown that the proposed model EMM is superior to the state-of-the-art methods.

  1. An Intelligent technical analysis using neural network

    Directory of Open Access Journals (Sweden)

    Reza Raei

    2011-07-01

    Full Text Available Technical analysis has been one of the most popular methods for stock market predictions for the past few decades. There have been enormous technical analysis methods to study the behavior of stock market for different kinds of trading markets such as currency, commodity or stock. In this paper, we propose two different methods based on volume adjusted moving average and ease of movement for stock trading. These methods are used with and without generalized regression neural network methods and the results are compared with each other. The preliminary results on historical stock price of 20 firms indicate that there is no meaningful difference between various proposed models of this paper.

  2. Spinal Cord Injury Model System Information Network

    Science.gov (United States)

    ... the UAB-SCIMS More The UAB-SCIMS Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network as a resource to promote knowledge in the ...

  3. Eight challenges for network epidemic models

    Directory of Open Access Journals (Sweden)

    Lorenzo Pellis

    2015-03-01

    Full Text Available Networks offer a fertile framework for studying the spread of infection in human and animal populations. However, owing to the inherent high-dimensionality of networks themselves, modelling transmission through networks is mathematically and computationally challenging. Even the simplest network epidemic models present unanswered questions. Attempts to improve the practical usefulness of network models by including realistic features of contact networks and of host–pathogen biology (e.g. waning immunity have made some progress, but robust analytical results remain scarce. A more general theory is needed to understand the impact of network structure on the dynamics and control of infection. Here we identify a set of challenges that provide scope for active research in the field of network epidemic models.

  4. Review Essay: Does Qualitative Network Analysis Exist?

    Directory of Open Access Journals (Sweden)

    Rainer Diaz-Bone

    2007-01-01

    Full Text Available Social network analysis was formed and established in the 1970s as a way of analyzing systems of social relations. In this review the theoretical-methodological standpoint of social network analysis ("structural analysis" is introduced and the different forms of social network analysis are presented. Structural analysis argues that social actors and social relations are embedded in social networks, meaning that action and perception of actors as well as the performance of social relations are influenced by the network structure. Since the 1990s structural analysis has integrated concepts such as agency, discourse and symbolic orientation and in this way structural analysis has opened itself. Since then there has been increasing use of qualitative methods in network analysis. They are used to include the perspective of the analyzed actors, to explore networks, and to understand network dynamics. In the reviewed book, edited by Betina HOLLSTEIN and Florian STRAUS, the twenty predominantly empirically orientated contributions demonstrate the possibilities of combining quantitative and qualitative methods in network analyses in different research fields. In this review we examine how the contributions succeed in applying and developing the structural analysis perspective, and the self-positioning of "qualitative network analysis" is evaluated. URN: urn:nbn:de:0114-fqs0701287

  5. Multi-regional input–output model and ecological network analysis for regional embodied energy accounting in China

    International Nuclear Information System (INIS)

    Zhang, Yan; Zheng, Hongmei; Yang, Zhifeng; Su, Meirong; Liu, Gengyuan; Li, Yanxian

    2015-01-01

    Chinese regions frequently exchange materials, but regional differences in economic development create unbalanced flows of these resources. In this study, we examined energy by assessing embodied energy consumption to describe the energy-flow structure in China's seven regions. Based on multi-regional monetary input–output tables and energy statistical yearbooks for Chinese provinces in 2002 and 2007, we accounted for both direct and indirect energy consumption, respectively, and the integral input and output of the provinces. Most integral inputs of energy flowed from north to south or from east to west, whereas integral output flows were mainly from northeast to southwest. This differed from the direct flows, which were predominantly from north to south and west to east. This demonstrates the importance of calculating both direct and indirect energy flows. Analysis of the distance and direction traveled by the energy consumption centers of gravity showed that the centers for embodied energy consumption and inputs moved southeast because of the movements of the centers of the Eastern region. However, the center for outputs moved northeast because the movement of the Central region. These analyses provide a basis for identifying how regional economic development policies influence the embodied energy consumption and its flows among regions. - Highlights: • We integrated multi-regional input–output analysis with ecological network analysis. • We accounted for both direct and indirect energy consumption. • The centers of gravity for embodied energy flows moved southeast from 2002 to 2007. • The results support planning of energy consumption and energy flows among regions.

  6. Google matrix analysis of directed networks

    Science.gov (United States)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  7. Capacity Analysis of Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    M. I. Gumel

    2012-06-01

    Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

  8. The model of social crypto-network

    Directory of Open Access Journals (Sweden)

    Марк Миколайович Орел

    2015-06-01

    Full Text Available The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks

  9. Entanglement effects in model polymer networks

    Science.gov (United States)

    Everaers, R.; Kremer, K.

    The influence of topological constraints on the local dynamics in cross-linked polymer melts and their contribution to the elastic properties of rubber elastic systems are a long standing problem in statistical mechanics. Polymer networks with diamond lattice connectivity (Everaers and Kremer 1995, Everaers and Kremer 1996a) are idealized model systems which isolate the effect of topology conservation from other sources of quenched disorder. We study their behavior in molecular dynamics simulations under elongational strain. In our analysis we compare the measured, purely entropic shear moduli G to the predictions of statistical mechanical models of rubber elasticity, making extensive use of the microscopic structural and topological information available in computer simulations. We find (Everaers and Kremer 1995) that the classical models of rubber elasticity underestimate the true change in entropy in a deformed network significantly, because they neglect the tension along the contour of the strands which cannot relax due to entanglements (Everaers and Kremer (in preparation)). This contribution and the fluctuations in strained systems seem to be well described by the constrained mode model (Everaers 1998) which allows to treat the crossover from classical rubber elasticity to the tube model for polymer networks with increasing strand length within one transparant formalism. While this is important for the description of the effects we try to do a first quantitative step towards their explanation by topological considerations. We show (Everaers and Kremer 1996a) that for the comparatively short strand lengths of our diamond networks the topology contribution to the shear modulus is proportional to the density of entangled mesh pairs with non-zero Gauss linking number. Moreover, the prefactor can be estimated consistently within a rather simple model developed by Vologodskii et al. and by Graessley and Pearson, which is based on the definition of an entropic

  10. Modelling Pollutant Dispersion in a Street Network

    Science.gov (United States)

    Salem, N. Ben; Garbero, V.; Salizzoni, P.; Lamaison, G.; Soulhac, L.

    2015-04-01

    This study constitutes a further step in the analysis of the performances of a street network model to simulate atmospheric pollutant dispersion in urban areas. The model, named SIRANE, is based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer, whose dynamics is assumed to be well established, and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections, and vertical exchange between street canyons and the overlying atmosphere. Here, we aim to evaluate the reliability of the parametrizations adopted to simulate these phenomena, by focusing on their possible dependence on the external wind direction. To this end, we test the model against concentration measurements within an idealized urban district whose geometrical layout closely matches the street network represented in SIRANE. The analysis is performed for an urban array with a fixed geometry and a varying wind incidence angle. The results show that the model provides generally good results with the reference parametrizations adopted in SIRANE and that its performances are quite robust for a wide range of the model parameters. This proves the reliability of the street network approach in simulating pollutant dispersion in densely built city districts. The results also show that the model performances may be improved by considering a dependence of the wind fluctuations at street intersections and of the vertical exchange velocity on the direction of the incident wind. This opens the way for further investigations to clarify the dependence of these parameters on wind direction and street aspect ratios.

  11. Network analysis literacy a practical approach to the analysis of networks

    CERN Document Server

    Zweig, Katharina A

    2014-01-01

    Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.

  12. Analysis of robustness of urban bus network

    Science.gov (United States)

    Tao, Ren; Yi-Fan, Wang; Miao-Miao, Liu; Yan-Jie, Xu

    2016-02-01

    In this paper, the invulnerability and cascade failures are discussed for the urban bus network. Firstly, three static models(bus stop network, bus transfer network, and bus line network) are used to analyse the structure and invulnerability of urban bus network in order to understand the features of bus network comprehensively. Secondly, a new way is proposed to study the invulnerability of urban bus network by modelling two layered networks, i.e., the bus stop-line network and the bus line-transfer network and then the interactions between different models are analysed. Finally, by modelling a new layered network which can reflect the dynamic passenger flows, the cascade failures are discussed. Then a new load redistribution method is proposed to study the robustness of dynamic traffic. In this paper, the bus network of Shenyang City which is one of the biggest cities in China, is taken as a simulation example. In addition, some suggestions are given to improve the urban bus network and provide emergency strategies when traffic congestion occurs according to the numerical simulation results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61473073, 61374178, 61104074, and 61203329), the Fundamental Research Funds for the Central Universities (Grant Nos. N130417006, L1517004), and the Program for Liaoning Excellent Talents in University (Grant No. LJQ2014028).

  13. Malware Propagation and Prevention Model for Time-Varying Community Networks within Software Defined Networks

    Directory of Open Access Journals (Sweden)

    Lan Liu

    2017-01-01

    Full Text Available As the adoption of Software Defined Networks (SDNs grows, the security of SDN still has several unaddressed limitations. A key network security research area is in the study of malware propagation across the SDN-enabled networks. To analyze the spreading processes of network malware (e.g., viruses in SDN, we propose a dynamic model with a time-varying community network, inspired by research models on the spread of epidemics in complex networks across communities. We assume subnets of the network as communities and links that are dense in subnets but sparse between subnets. Using numerical simulation and theoretical analysis, we find that the efficiency of network malware propagation in this model depends on the mobility rate q of the nodes between subnets. We also find that there exists a mobility rate threshold qc. The network malware will spread in the SDN when the mobility rate q>qc. The malware will survive when q>qc and perish when qmodel is effective, and the results may help to decide the SDN control strategy to defend against network malware and provide a theoretical basis to reduce and prevent network security incidents.

  14. Bayesian Network Webserver: a comprehensive tool for biological network modeling.

    Science.gov (United States)

    Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan

    2013-11-01

    The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.

  15. Analysis and modeling of ensemble recordings from respiratory pre-motor neurons indicate changes in functional network architecture after acute hypoxia

    Directory of Open Access Journals (Sweden)

    Roberto F Galán

    2010-09-01

    Full Text Available We have combined neurophysiologic recording, statistical analysis, and computational modeling to investigate the dynamics of the respiratory network in the brainstem. Using a multielectrode array, we recorded ensembles of respiratory neurons in perfused in situ rat preparations that produce spontaneous breathing patterns, focusing on inspiratory pre-motor neurons. We compared firing rates and neuronal synchronization among these neurons before and after a brief hypoxic stimulus. We observed a significant decrease in the number of spikes after stimulation, in part due to a transient slowing of the respiratory pattern. However, the median interspike interval did not change, suggesting that the firing threshold of the neurons was not affected but rather the synaptic input was. A bootstrap analysis of synchrony between spike trains revealed that, both before and after brief hypoxia, up to 45 % (but typically less than 5 % of coincident spikes across neuronal pairs was not explained by chance. Most likely, this synchrony resulted from common synaptic input to the pre-motor population, an example of stochastic synchronization. After brief hypoxia most pairs were less synchronized, although some were more, suggesting that the respiratory network was “rewired” transiently after the stimulus. To investigate this hypothesis, we created a simple computational model with feed-forward divergent connections along the inspiratory pathway. Assuming that 1 the number of divergent projections was not the same for all presynaptic cells, but rather spanned a wide range and 2 that the stimulus increased inhibition at the top of the network; this model reproduced the reduction in firing rate and bootstrap-corrected synchrony subsequent to hypoxic stimulation observed in our experimental data.

  16. Error performance analysis in downlink cellular networks with interference management

    KAUST Repository

    Afify, Laila H.

    2015-05-01

    Modeling aggregate network interference in cellular networks has recently gained immense attention both in academia and industry. While stochastic geometry based models have succeeded to account for the cellular network geometry, they mostly abstract many important wireless communication system aspects (e.g., modulation techniques, signal recovery techniques). Recently, a novel stochastic geometry model, based on the Equivalent-in-Distribution (EiD) approach, succeeded to capture the aforementioned communication system aspects and extend the analysis to averaged error performance, however, on the expense of increasing the modeling complexity. Inspired by the EiD approach, the analysis developed in [1] takes into consideration the key system parameters, while providing a simple tractable analysis. In this paper, we extend this framework to study the effect of different interference management techniques in downlink cellular network. The accuracy of the proposed analysis is verified via Monte Carlo simulations.

  17. C2 Network Analysis: Insights into Coordination & Understanding

    National Research Council Canada - National Science Library

    Hansberger, Jeffrey T; Schreiber, Craig; Spain, Randall D

    2008-01-01

    ...) workload management. This paper will address recent efforts, tools, and approaches on measuring and analyzing two of these distributed cognitive attributes through network analysis, coordination across agents and mental models...

  18. Life Cycle Network Modeling Framework and Solution Algorithms for Systems Analysis and Optimization of the Water-Energy Nexus

    Directory of Open Access Journals (Sweden)

    Daniel J. Garcia

    2015-07-01

    Full Text Available The water footprint of energy systems must be considered, as future water scarcity has been identified as a major concern. This work presents a general life cycle network modeling and optimization framework for energy-based products and processes using a functional unit of liters of water consumed in the processing pathway. We analyze and optimize the water-energy nexus over the objectives of water footprint minimization, maximization of economic output per liter of water consumed (economic efficiency of water, and maximization of energy output per liter of water consumed (energy efficiency of water. A mixed integer, multiobjective nonlinear fractional programming (MINLFP model is formulated. A mixed integer linear programing (MILP-based branch and refine algorithm that incorporates both the parametric algorithm and nonlinear programming (NLP subproblems is developed to boost solving efficiency. A case study in bioenergy is presented, and the water footprint is considered from biomass cultivation to biofuel production, providing a novel perspective into the consumption of water throughout the value chain. The case study, optimized successively over the three aforementioned objectives, utilizes a variety of candidate biomass feedstocks to meet primary fuel products demand (ethanol, diesel, and gasoline. A minimum water footprint of 55.1 ML/year was found, economic efficiencies of water range from −$1.31/L to $0.76/L, and energy efficiencies of water ranged from 15.32 MJ/L to 27.98 MJ/L. These results show optimization provides avenues for process improvement, as reported values for the energy efficiency of bioethanol range from 0.62 MJ/L to 3.18 MJ/L. Furthermore, the proposed solution approach was shown to be an order of magnitude more efficient than directly solving the original MINLFP problem with general purpose solvers.

  19. NATbox: a network analysis toolbox in R.

    Science.gov (United States)

    Chavan, Shweta S; Bauer, Michael A; Scutari, Marco; Nagarajan, Radhakrishnan

    2009-10-08

    There has been recent interest in capturing the functional relationships (FRs) from high-throughput assays using suitable computational techniques. FRs elucidate the working of genes in concert as a system as opposed to independent entities hence may provide preliminary insights into biological pathways and signalling mechanisms. Bayesian structure learning (BSL) techniques and its extensions have been used successfully for modelling FRs from expression profiles. Such techniques are especially useful in discovering undocumented FRs, investigating non-canonical signalling mechanisms and cross-talk between pathways. The objective of the present study is to develop a graphical user interface (GUI), NATbox: Network Analysis Toolbox in the language R that houses a battery of BSL algorithms in conjunction with suitable statistical tools for modelling FRs in the form of acyclic networks from gene expression profiles and their subsequent analysis. NATbox is a menu-driven open-source GUI implemented in the R statistical language for modelling and analysis of FRs from gene expression profiles. It provides options to (i) impute missing observations in the given data (ii) model FRs and network structure from gene expression profiles using a battery of BSL algorithms and identify robust dependencies using a bootstrap procedure, (iii) present the FRs in the form of acyclic graphs for visualization and investigate its topological properties using network analysis metrics, (iv) retrieve FRs of interest from published literature. Subsequently, use these FRs as structural priors in BSL (v) enhance scalability of BSL across high-dimensional data by parallelizing the bootstrap routines. NATbox provides a menu-driven GUI for modelling and analysis of FRs from gene expression profiles. By incorporating readily available functions from existing R-packages, it minimizes redundancy and improves reproducibility, transparency and sustainability, characteristic of open-source environments

  20. Switching performance of OBS network model under prefetched real traffic

    Science.gov (United States)

    Huang, Zhenhua; Xu, Du; Lei, Wen

    2005-11-01

    Optical Burst Switching (OBS) [1] is now widely considered as an efficient switching technique in building the next generation optical Internet .So it's very important to precisely evaluate the performance of the OBS network model. The performance of the OBS network model is variable in different condition, but the most important thing is that how it works under real traffic load. In the traditional simulation models, uniform traffics are usually generated by simulation software to imitate the data source of the edge node in the OBS network model, and through which the performance of the OBS network is evaluated. Unfortunately, without being simulated by real traffic, the traditional simulation models have several problems and their results are doubtable. To deal with this problem, we present a new simulation model for analysis and performance evaluation of the OBS network, which uses prefetched IP traffic to be data source of the OBS network model. The prefetched IP traffic can be considered as real IP source of the OBS edge node and the OBS network model has the same clock rate with a real OBS system. So it's easy to conclude that this model is closer to the real OBS system than the traditional ones. The simulation results also indicate that this model is more accurate to evaluate the performance of the OBS network system and the results of this model are closer to the actual situation.

  1. Service network analysis for agricultural mental health

    Directory of Open Access Journals (Sweden)

    Fuller Jeffrey D

    2009-05-01

    Full Text Available Abstract Background Farmers represent a subgroup of rural and remote communities at higher risk of suicide attributed to insecure economic futures, self-reliant cultures and poor access to health services. Early intervention models are required that tap into existing farming networks. This study describes service networks in rural shires that relate to the mental health needs of farming families. This serves as a baseline to inform service network improvements. Methods A network survey of mental health related links between agricultural support, health and other human services in four drought declared shires in comparable districts in rural New South Wales, Australia. Mental health links covered information exchange, referral recommendations and program development. Results 87 agencies from 111 (78% completed a survey. 79% indicated that two thirds of their clients needed assistance for mental health related problems. The highest mean number of interagency links concerned information exchange and the frequency of these links between sectors was monthly to three monthly. The effectiveness of agricultural support and health sector links were rated as less effective by the agricultural support sector than by the health sector (p Conclusion Aligning with agricultural agencies is important to build effective mental health service pathways to address the needs of farming populations. Work is required to ensure that these agricultural support agencies have operational and effective links to primary mental health care services. Network analysis provides a baseline to inform this work. With interventions such as local mental health training and joint service planning to promote network development we would expect to see over time an increase in the mean number of links, the frequency in which these links are used and the rated effectiveness of these links.

  2. A Social Network Analysis of Occupational Segregation

    DEFF Research Database (Denmark)

    Buhai, Ioan Sebastian; van der Leij, Marco

    We develop a social network model of occupational segregation between different social groups, generated by the existence of positive inbreeding bias among individuals from the same group. If network referrals are important for job search, then expected homophily in the contact network structure...

  3. 6th International Conference on Network Analysis

    CERN Document Server

    Nikolaev, Alexey; Pardalos, Panos; Prokopyev, Oleg

    2017-01-01

    This valuable source for graduate students and researchers provides a comprehensive introduction to current theories and applications in optimization methods and network models. Contributions to this book are focused on new efficient algorithms and rigorous mathematical theories, which can be used to optimize and analyze mathematical graph structures with massive size and high density induced by natural or artificial complex networks. Applications to social networks, power transmission grids, telecommunication networks, stock market networks, and human brain networks are presented. Chapters in this book cover the following topics: Linear max min fairness Heuristic approaches for high-quality solutions Efficient approaches for complex multi-criteria optimization problems Comparison of heuristic algorithms New heuristic iterative local search Power in network structures Clustering nodes in random graphs Power transmission grid structure Network decomposition problems Homogeneity hypothesis testing Network analy...

  4. Model checking mobile ad hoc networks

    NARCIS (Netherlands)

    Ghassemi, Fatemeh; Fokkink, Wan

    2016-01-01

    Modeling arbitrary connectivity changes within mobile ad hoc networks (MANETs) makes application of automated formal verification challenging. We use constrained labeled transition systems as a semantic model to represent mobility. To model check MANET protocols with respect to the underlying

  5. Analysis of the impact of crude oil price fluctuations on China's stock market in different periods-Based on time series network model

    Science.gov (United States)

    An, Yang; Sun, Mei; Gao, Cuixia; Han, Dun; Li, Xiuming

    2018-02-01

    This paper studies the influence of Brent oil price fluctuations on the stock prices of China's two distinct blocks, namely, the petrochemical block and the electric equipment and new energy block, applying the Shannon entropy of information theory. The co-movement trend of crude oil price and stock prices is divided into different fluctuation patterns with the coarse-graining method. Then, the bivariate time series network model is established for the two blocks stock in five different periods. By joint analysis of the network-oriented metrics, the key modes and underlying evolutionary mechanisms were identified. The results show that the both networks have different fluctuation characteristics in different periods. Their co-movement patterns are clustered in some key modes and conversion intermediaries. The study not only reveals the lag effect of crude oil price fluctuations on the stock in Chinese industry blocks but also verifies the necessity of research on special periods, and suggests that the government should use different energy policies to stabilize market volatility in different periods. A new way is provided to study the unidirectional influence between multiple variables or complex time series.

  6. Applications of social network analysis to obesity: a systematic review.

    Science.gov (United States)

    Zhang, S; de la Haye, K; Ji, M; An, R

    2018-04-20

    People's health behaviours and outcomes can be profoundly shaped by the social networks they are embedded in. Based on graph theory, social network analysis is a research framework for the study of social interactions and the structure of these interactions among social actors. A literature search was conducted in PubMed and Web of Science for articles published until August 2017 that applied social network analysis to examine obesity and social networks. Eight studies (three cross-sectional and five longitudinal) conducted in the US (n = 6) and Australia (n = 2) were identified. Seven focused on adolescents' and one on adults' friendship networks. They examined structural features of these networks that were associated with obesity, including degree distribution, popularity, modularity maximization and K-clique percolation. All three cross-sectional studies that used exponential random graph models found individuals with similar body weight status and/or weight-related behaviour were more likely to share a network tie than individuals with dissimilar traits. Three longitudinal studies using stochastic actor-based models found friendship network characteristics influenced change in individuals' body weight status and/or weight-related behaviour over time. Future research should focus on diverse populations and types of social networks and identifying the mechanisms by which social networks influence obesity to inform network-based interventions. © 2018 World Obesity Federation.

  7. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  8. Egocentric Social Network Analysis of Pathological Gambling

    Science.gov (United States)

    Meisel, Matthew K.; Clifton, Allan D.; MacKillop, James; Miller, Joshua D.; Campbell, W. Keith; Goodie, Adam S.

    2012-01-01

    Aims To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family, and co-workers. is an innovative way to look at relationships among individuals; the current study was the first to our knowledge to apply SNA to gambling behaviors. Design Egocentric social network analysis was used to formally characterize the relationships between social network characteristics and gambling pathology. Setting Laboratory-based questionnaire and interview administration. Participants Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. Findings The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers, and drinkers in their social networks than did nonpathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked, and drank with than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked, and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Conclusions Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers, and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. PMID:23072641

  9. Egocentric social network analysis of pathological gambling.

    Science.gov (United States)

    Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S

    2013-03-01

    To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  10. SOCIOLOGICAL UNDERSTANDING OF INTERNET: THEORETICAL APPROACHES TO THE NETWORK ANALYSIS

    Directory of Open Access Journals (Sweden)

    D. E. Dobrinskaya

    2016-01-01

    Full Text Available The network is an efficient way of social structure analysis for contemporary sociologists. It gives broad opportunities for detailed and fruitful research of different patterns of ties and social relations by quantitative analytical methods and visualization of network models. The network metaphor is used as the most representative tool for description of a new type of society. This new type is characterized by flexibility, decentralization and individualization. Network organizational form became the dominant form in modern societies. The network is also used as a mode of inquiry. Actually three theoretical network approaches in the Internet research case are the most relevant: social network analysis, “network society” theory and actor-network theory. Every theoretical approach has got its own notion of network. Their special methodological and theoretical features contribute to the Internet studies in different ways. The article represents a brief overview of these network approaches. This overview demonstrates the absence of a unified semantic space of the notion of “network” category. This fact, in turn, points out the need for detailed analysis of these approaches to reveal their theoretical and empirical possibilities in application to the Internet studies. 

  11. A Mathematical Model to Improve the Performance of Logistics Network

    Directory of Open Access Journals (Sweden)

    Muhammad Izman Herdiansyah

    2012-01-01

    Full Text Available The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimization

  12. Nonparametric Bayesian Modeling of Complex Networks

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Mørup, Morten

    2013-01-01

    an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...

  13. Social network analysis and supply chain management

    Directory of Open Access Journals (Sweden)

    Raúl Rodríguez Rodríguez

    2016-01-01

    Full Text Available This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes.

  14. Network structure exploration via Bayesian nonparametric models

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z

    2015-01-01

    Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)

  15. A network model for Ebola spreading.

    Science.gov (United States)

    Rizzo, Alessandro; Pedalino, Biagio; Porfiri, Maurizio

    2016-04-07

    The availability of accurate models for the spreading of infectious diseases has opened a new era in management and containment of epidemics. Models are extensively used to plan for and execute vaccination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the simplifying assumption of homogeneous mixing, which is central to most of the mathematically tractable models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other, and its network of contacts varies in time as a function of an activity potential. Our model contemplates the possibility of non-ideal and time-varying intervention policies, which are critical to accurately describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular, we show that an earlier application of the same intervention policy would have greatly reduced the number of EVD cases, the duration of the outbreak, and the infrastructures needed for the implementation of the intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The Network Protocol Analysis Technique in Snort

    Science.gov (United States)

    Wu, Qing-Xiu

    Network protocol analysis is a network sniffer to capture data for further analysis and understanding of the technical means necessary packets. Network sniffing is intercepted by packet assembly binary format of the original message content. In order to obtain the information contained. Required based on TCP / IP protocol stack protocol specification. Again to restore the data packets at protocol format and content in each protocol layer. Actual data transferred, as well as the application tier.

  17. Model of community emergence in weighted social networks

    Science.gov (United States)

    Kumpula, J. M.; Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K.

    2009-04-01

    Over the years network theory has proven to be rapidly expanding methodology to investigate various complex systems and it has turned out to give quite unparalleled insight to their structure, function, and response through data analysis, modeling, and simulation. For social systems in particular the network approach has empirically revealed a modular structure due to interplay between the network topology and link weights between network nodes or individuals. This inspired us to develop a simple network model that could catch some salient features of mesoscopic community and macroscopic topology formation during network evolution. Our model is based on two fundamental mechanisms of network sociology for individuals to find new friends, namely cyclic closure and focal closure, which are mimicked by local search-link-reinforcement and random global attachment mechanisms, respectively. In addition we included to the model a node deletion mechanism by removing all its links simultaneously, which corresponds for an individual to depart from the network. Here we describe in detail the implementation of our model algorithm, which was found to be computationally efficient and produce many empirically observed features of large-scale social networks. Thus this model opens a new perspective for studying such collective social phenomena as spreading, structure formation, and evolutionary processes.

  18. Ecological network analysis for a virtual water network.

    Science.gov (United States)

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  19. Support vector regression and artificial neural network models for stability indicating analysis of mebeverine hydrochloride and sulpiride mixtures in pharmaceutical preparation: A comparative study

    Science.gov (United States)

    Naguib, Ibrahim A.; Darwish, Hany W.

    2012-02-01

    A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.

  20. Basic general concepts in the network analysis

    Directory of Open Access Journals (Sweden)

    Boja Nicolae

    2004-01-01

    Full Text Available This survey is concerned oneself with the study of those types of material networks which can be met both in civil engineering and also in electrotechnics, in mechanics, or in hydrotechnics, and of which behavior lead to linear problems, solvable by means of Finite Element Method and adequate algorithms. Here, it is presented a unitary theory of networks met in the domains mentioned above and this one is illustrated with examples for the structural networks in civil engineering, electric circuits, and water supply networks, but also planar or spatial mechanisms can be comprised in this theory. The attention is focused to make evident the essential proper- ties and concepts in the network analysis, which differentiate the networks under force from other types of material networks. To such a network a planar, connected, and directed or undirected graph is associated, and with some vector fields on the vertex set this graph is endowed. .

  1. Network Analysis on Attitudes: A Brief Tutorial.

    Science.gov (United States)

    Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L J

    2017-07-01

    In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs.

  2. 4th International Conference in Network Analysis

    CERN Document Server

    Koldanov, Petr; Pardalos, Panos

    2016-01-01

    The contributions in this volume cover a broad range of topics including maximum cliques, graph coloring, data mining, brain networks, Steiner forest, logistic and supply chain networks. Network algorithms and their applications to market graphs, manufacturing problems, internet networks and social networks are highlighted. The "Fourth International Conference in Network Analysis," held at the Higher School of Economics, Nizhny Novgorod in May 2014, initiated joint research between scientists, engineers and researchers from academia, industry and government; the major results of conference participants have been reviewed and collected in this Work. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis.

  3. System analysis and planning of a gas distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Edwin F.M.; Farias, Helio Monteiro [AUTOMIND, Rio de Janeiro, RJ (Brazil); Costa, Carla V.R. [Universidade Salvador (UNIFACS), BA (Brazil)

    2009-07-01

    The increase in demand by gas consumers require that projects or improvements in gas distribution networks be made carefully and safely to ensure a continuous, efficient and economical supply. Gas distribution companies must ensure that the networks and equipment involved are defined and designed at the appropriate time to attend to the demands of the market. To do that a gas distribution network analysis and planning tool should use distribution networks and transmission models for the current situation and the future changes to be implemented. These models are used to evaluate project options and help in making appropriate decisions in order to minimize the capital investment in new components or simple changes in operational procedures. Gas demands are increasing and it is important that gas distribute design new distribution systems to ensure this growth, considering financial constraints of the company, as well as local legislation and regulation. In this study some steps of developing a flexible system that attends to those needs will be described. The analysis of distribution requires geographically referenced data for the models as well as an accurate connectivity and the attributes of the equipment. GIS systems are often used as a deposit center that holds the majority of this information. GIS systems are constantly updated as distribution network equipment is modified. The distribution network modeling gathered from this system ensures that the model represents the current network condition. The benefits of this architecture drastically reduce the creation and maintenance cost of the network models, because network components data are conveniently made available to populate the distribution network. This architecture ensures that the models are continually reflecting the reality of the distribution network. (author)

  4. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  5. Normal mode analysis based on an elastic network model for biomolecules in the Protein Data Bank, which uses dihedral angles as independent variables.

    Science.gov (United States)

    Wako, Hiroshi; Endo, Shigeru

    2013-06-01

    We have developed a computer program, named PDBETA, that performs normal mode analysis (NMA) based on an elastic network model that uses dihedral angles as independent variables. Taking advantage of the relatively small number of degrees of freedom required to describe a molecular structure in dihedral angle space and a simple potential-energy function independent of atom types, we aimed to develop a program applicable to a full-atom system of any molecule in the Protein Data Bank (PDB). The algorithm for NMA used in PDBETA is the same as the computer program FEDER/2, developed previously. Therefore, the main challenge in developing PDBETA was to find a method that can automatically convert PDB data into molecular structure information in dihedral angle space. Here, we illustrate the performance of PDBETA with a protein-DNA complex, a protein-tRNA complex, and some non-protein small molecules, and show that the atomic fluctuations calculated by PDBETA reproduce the temperature factor data of these molecules in the PDB. A comparison was also made with elastic-network-model based NMA in a Cartesian-coordinate system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Building functional networks of spiking model neurons.

    Science.gov (United States)

    Abbott, L F; DePasquale, Brian; Memmesheimer, Raoul-Martin

    2016-03-01

    Most of the networks used by computer scientists and many of those studied by modelers in neuroscience represent unit activities as continuous variables. Neurons, however, communicate primarily through discontinuous spiking. We review methods for transferring our ability to construct interesting networks that perform relevant tasks from the artificial continuous domain to more realistic spiking network models. These methods raise a number of issues that warrant further theoretical and experimental study.

  7. An investigation and comparison on network performance analysis

    OpenAIRE

    Lanxiaopu, Mi

    2012-01-01

    This thesis is generally about network performance analysis. It contains two parts. The theory part summarizes what network performance is and inducts the methods of doing network performance analysis. To answer what network performance is, a study into what network services are is done. And based on the background research, there are two important network performance metrics: Network delay and Throughput should be included in network performance analysis. Among the methods of network a...

  8. Modeling, Optimization & Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat

    2014-01-01

    . The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used......Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...

  9. Road Network Vulnerability Analysis Based on Improved Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2014-01-01

    Full Text Available We present an improved ant colony algorithm-based approach to assess the vulnerability of a road network and identify the critical infrastructures. This approach improves computational efficiency and allows for its applications in large-scale road networks. This research involves defining the vulnerability conception, modeling the traffic utility index and the vulnerability of the road network, and identifying the critical infrastructures of the road network. We apply the approach to a simple test road network and a real road network to verify the methodology. The results show that vulnerability is directly related to traffic demand and increases significantly when the demand approaches capacity. The proposed approach reduces the computational burden and may be applied in large-scale road network analysis. It can be used as a decision-supporting tool for identifying critical infrastructures in transportation planning and management.

  10. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  11. Topology design and performance analysis of an integrated communication network

    Science.gov (United States)

    Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.

    1985-01-01

    A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.

  12. Hybrid network defense model based on fuzzy evaluation.

    Science.gov (United States)

    Cho, Ying-Chiang; Pan, Jen-Yi

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  13. Port Hamiltonian modeling of Power Networks

    NARCIS (Netherlands)

    van Schaik, F.; van der Schaft, Abraham; Scherpen, Jacquelien M.A.; Zonetti, Daniele; Ortega, R

    2012-01-01

    In this talk a full nonlinear model for the power network in port–Hamiltonian framework is derived to study its stability properties. For this we use the modularity approach i.e., we first derive the models of individual components in power network as port-Hamiltonian systems and then we combine all

  14. Modelling traffic congestion using queuing networks

    Indian Academy of Sciences (India)

    Flow-density curves; uninterrupted traffic; Jackson networks. ... ness - also suffer from a big handicap vis-a-vis the Indian scenario: most of these models do .... more well-known queuing network models and onsite data, a more exact Road Cell ...

  15. Settings in Social Networks : a Measurement Model

    NARCIS (Netherlands)

    Schweinberger, Michael; Snijders, Tom A.B.

    2003-01-01

    A class of statistical models is proposed that aims to recover latent settings structures in social networks. Settings may be regarded as clusters of vertices. The measurement model is based on two assumptions. (1) The observed network is generated by hierarchically nested latent transitive

  16. Network interconnections: an architectural reference model

    NARCIS (Netherlands)

    Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.

    1985-01-01

    One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for

  17. Performance modeling of network data services

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.A.; Pierson, L.G.

    1997-01-01

    Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.

  18. Continuum Modeling of Biological Network Formation

    KAUST Repository

    Albi, Giacomo; Burger, Martin; Haskovec, Jan; Markowich, Peter A.; Schlottbom, Matthias

    2017-01-01

    We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes

  19. Literature Review on Modeling Cyber Networks and Evaluating Cyber Risks.

    Energy Technology Data Exchange (ETDEWEB)

    Kelic, Andjelka; Campbell, Philip L

    2018-04-01

    The National Infrastructure Simulations and Analysis Center (NISAC) conducted a literature review on modeling cyber networks and evaluating cyber risks. The literature review explores where modeling is used in the cyber regime and ways that consequence and risk are evaluated. The relevant literature clusters in three different spaces: network security, cyber-physical, and mission assurance. In all approaches, some form of modeling is utilized at varying levels of detail, while the ability to understand consequence varies, as do interpretations of risk. This document summarizes the different literature viewpoints and explores their applicability to securing enterprise networks.

  20. Static analysis of topology-dependent broadcast networks

    DEFF Research Database (Denmark)

    Nanz, Sebastian; Nielson, Flemming; Nielson, Hanne Riis

    2010-01-01

    changing network topology is a crucial ingredient. In this paper, we develop a static analysis that automatically constructs an abstract transition system, labelled by actions and connectivity information, to yield a mobility-preserving finite abstraction of the behaviour of a network expressed......Broadcast semantics poses significant challenges over point-to-point communication when it comes to formal modelling and analysis. Current approaches to analysing broadcast networks have focused on fixed connectivities, but this is unsuitable in the case of wireless networks where the dynamically...... in a process calculus with asynchronous local broadcast. Furthermore, we use model checking based on a 3-valued temporal logic to distinguish network behaviour which differs under changing connectivity patterns. (C) 2009 Elsevier Inc. All rights reserved....

  1. Synergistic effects in threshold models on networks

    Science.gov (United States)

    Juul, Jonas S.; Porter, Mason A.

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  2. Gossip spread in social network Models

    Science.gov (United States)

    Johansson, Tobias

    2017-04-01

    Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.

  3. Evaluation of EOR Processes Using Network Models

    DEFF Research Database (Denmark)

    Winter, Anatol; Larsen, Jens Kjell; Krogsbøll, Anette

    1998-01-01

    The report consists of the following parts: 1) Studies of wetting properties of model fluids and fluid mixtures aimed at an optimal selection of candidates for micromodel experiments. 2) Experimental studies of multiphase transport properties using physical models of porous networks (micromodels......) including estimation of their "petrophysical" properties (e.g. absolute permeability). 3) Mathematical modelling and computer studies of multiphase transport through pore space using mathematical network models. 4) Investigation of link between pore-scale and macroscopic recovery mechanisms....

  4. STEADY STATE PERFORMANCES ANALYSIS OF MODERN MARINE TWO-STROKE LOW SPEED DIESEL ENGINE USING MLP NEURAL NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    Ozren Bukovac

    2016-01-01

    Full Text Available Compared to the other marine engines for ship propulsion, turbocharged two-stroke low speed diesel engines have advantages due to their high efficiency and reliability. Modern low speed ”intelligent” marine diesel engines have a flexibility in its operation due to the variable fuel injection strategy and management of the exhaust valve drive. This paper carried out verified zerodimensional numerical simulations which have been used for MLP (Multilayer Perceptron neural network predictions of marine two-stroke low speed diesel engine steady state performances. The developed MLP neural network was used for marine engine optimized operation control. The paper presents an example of achieving lowest specific fuel consumption and for minimization of the cylinder process highest temperature for reducing NOx emission. Also, the developed neural network was used to achieve optimal exhaust gases heat flow for utilization. The obtained data maps give insight into the optimal working areas of simulated marine diesel engine, depending on the selected start of the fuel injection (SOI and the time of the exhaust valve opening (EVO.

  5. Weighted Complex Network Analysis of Pakistan Highways

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2013-01-01

    Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.

  6. Towards reproducible descriptions of neuronal network models.

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2009-08-01

    Full Text Available Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing--and thinking about--complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain.

  7. Improved Maximum Parsimony Models for Phylogenetic Networks.

    Science.gov (United States)

    Van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2018-05-01

    Phylogenetic networks are well suited to represent evolutionary histories comprising reticulate evolution. Several methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this article, we propose a new definition of maximum parsimony for phylogenetic networks that permits to model biological scenarios that cannot be modeled by the definitions currently present in the literature (namely, the "hardwired" and "softwired" parsimony). Building on this new definition, we provide several algorithmic results that lay the foundations for new parsimony-based methods for phylogenetic network reconstruction.

  8. Modeling, robust and distributed model predictive control for freeway networks

    NARCIS (Netherlands)

    Liu, S.

    2016-01-01

    In Model Predictive Control (MPC) for traffic networks, traffic models are crucial since they are used as prediction models for determining the optimal control actions. In order to reduce the computational complexity of MPC for traffic networks, macroscopic traffic models are often used instead of

  9. Tool wear modeling using abductive networks

    Science.gov (United States)

    Masory, Oren

    1992-09-01

    A tool wear model based on Abductive Networks, which consists of a network of `polynomial' nodes, is described. The model relates the cutting parameters, components of the cutting force, and machining time to flank wear. Thus real time measurements of the cutting force can be used to monitor the machining process. The model is obtained by a training process in which the connectivity between the network's nodes and the polynomial coefficients of each node are determined by optimizing a performance criteria. Actual wear measurements of coated and uncoated carbide inserts were used for training and evaluating the established model.

  10. Wireless Sensor Network Security Analysis

    OpenAIRE

    Hemanta Kumar Kalita; Avijit Kar

    2009-01-01

    The emergence of sensor networks as one of the dominant technology trends in the coming decades hasposed numerous unique challenges to researchers. These networks are likely to be composed of hundreds,and potentially thousands of tiny sensor nodes, functioning autonomously, and in many cases, withoutaccess to renewable energy resources. Cost constraints and the need for ubiquitous, invisibledeployments will result in small sized, resource-constrained sensor nodes. While the set of challenges ...

  11. Dynamic Evolution Model Based on Social Network Services

    Science.gov (United States)

    Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen

    2013-11-01

    Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.

  12. Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer’s disease animal model

    Directory of Open Access Journals (Sweden)

    Xiao-Rui eCheng

    2013-10-01

    Full Text Available Harboring the behavioral and histopathological signatures of Alzheimer’s disease (AD, senescence accelerated mouse-prone 8 (SAMP8 mice are currently considered a robust model for studying AD. However, the underlying mechanisms, prioritized pathways and genes in SAMP8 mice linked to AD remain unclear. In this study, we provide a biological interpretation of the molecular underpinnings of SAMP8 mice. Our results were derived from differentially expressed genes in the hippocampus and cerebral cortex of SAMP8 mice compared to age-matched SAMR1 mice at 2, 6, and 12 months of age using cDNA microarray analysis. On the basis of PPI, MetaCore and the co-expression network, we constructed a distinct genetic sub-network in the brains of SAMP8 mice. Next, we determined that the regulation of synaptic transmission and apoptosis were disrupted in the brains of SAMP8 mice. We found abnormal gene expression of RAF1, MAPT, PTGS2, CDKN2A, CAMK2A, NTRK2, AGER, ADRBK1, MCM3AP and STUB1, which may have initiated the dysfunction of biological processes in the brains of SAMP8 mice. Specifically, we found microRNAs, including miR-20a, miR-17, miR-34a, miR-155, miR-18a, miR-22, miR-26a, miR-101, miR-106b and miR-125b, that might regulate the expression of nodes in the sub-network. Taken together, these results provide new insights into the biological and genetic mechanisms of SAMP8 mice and add an important dimension to our understanding of the neuro-pathogenesis in SAMP8 mice from a systems perspective.

  13. Spatial analysis of bus transport networks using network theory

    Science.gov (United States)

    Shanmukhappa, Tanuja; Ho, Ivan Wang-Hei; Tse, Chi Kong

    2018-07-01

    In this paper, we analyze the bus transport network (BTN) structure considering the spatial embedding of the network for three cities, namely, Hong Kong (HK), London (LD), and Bengaluru (BL). We propose a novel approach called supernode graph structuring for modeling the bus transport network. A static demand estimation procedure is proposed to assign the node weights by considering the points of interests (POIs) and the population distribution in the city over various localized zones. In addition, the end-to-end delay is proposed as a parameter to measure the topological efficiency of the bus networks instead of the shortest distance measure used in previous works. With the aid of supernode graph representation, important network parameters are analyzed for the directed, weighted and geo-referenced bus transport networks. It is observed that the supernode concept has significant advantage in analyzing the inherent topological behavior. For instance, the scale-free and small-world behavior becomes evident with supernode representation as compared to conventional or regular graph representation for the Hong Kong network. Significant improvement in clustering, reduction in path length, and increase in centrality values are observed in all the three networks with supernode representation. The correlation between topologically central nodes and the geographically central nodes reveals the interesting fact that the proposed static demand estimation method for assigning node weights aids in better identifying the geographically significant nodes in the network. The impact of these geographically significant nodes on the local traffic behavior is demonstrated by simulation using the SUMO (Simulation of Urban Mobility) tool which is also supported by real-world empirical data, and our results indicate that the traffic speed around a particular bus stop can reach a jammed state from a free flow state due to the presence of these geographically important nodes. A comparison

  14. Using Social Network Analysis to Investigate Positive EOL Communication.

    Science.gov (United States)

    Xu, Jiayun; Yang, Rumei; Wilson, Andrew; Reblin, Maija; Clayton, Margaret F; Ellington, Lee

    2018-04-30

    End of life (EOL) communication is a complex process involving the whole family and multiple care providers. Applications of analysis techniques that account for communication beyond the patient and patient/provider, will improve clinical understanding of EOL communication. To introduce the use of social network analysis to EOL communication data, and to provide an example of applying social network analysis to home hospice interactions. We provide a description of social network analysis using social network analysis to model communication patterns during home hospice nursing visits. We describe three social network attributes (i.e. magnitude, directionality, and reciprocity) in the expression of positive emotion among hospice nurses, family caregivers, and hospice cancer patients. Differences in communication structure by primary family caregiver gender and across time were also examined. Magnitude (frequency) in the expression of positive emotion occurred most often between nurses and caregivers or nurses and patients. Female caregivers directed more positive emotion to nurses, and nurses directed more positive emotion to other family caregivers when the primary family caregiver was male. Reciprocity (mutuality) in positive emotion declined towards day of death, but increased on day of actual patient death. There was variation in reciprocity by the type of positive emotion expressed. Our example demonstrates that social network analysis can be used to better understand the process of EOL communication. Social network analysis can be expanded to other areas of EOL research, such as EOL decision-making and health care teamwork. Copyright © 2018. Published by Elsevier Inc.

  15. Modelling of virtual production networks

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available Nowadays many companies, especially small and medium-sized enterprises (SMEs, specialize in a limited field of production. It requires forming virtual production networks of cooperating enterprises to manufacture better, faster and cheaper. Apart from that, some production orders cannot be realized, because there is not a company of sufficient production potential. In this case the virtual production networks of cooperating companies can realize these production orders. These networks have larger production capacity and many different resources. Therefore it can realize many more production orders together than each of them separately. Such organization allows for executing high quality product. The maintenance costs of production capacity and used resources are not so high. In this paper a methodology of rapid prototyping of virtual production networks is proposed. It allows to execute production orders on time considered existing logistic constraints.

  16. A Network Disruption Modeling Tool

    National Research Council Canada - National Science Library

    Leinart, James

    1998-01-01

    Given that network disruption has been identified as a military objective and C2-attack has been identified as the mechanism to accomplish this objective, a target set must be acquired and priorities...

  17. Modeling stochasticity in biochemical reaction networks

    International Nuclear Information System (INIS)

    Constantino, P H; Vlysidis, M; Smadbeck, P; Kaznessis, Y N

    2016-01-01

    Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts. (topical review)

  18. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics.

    Science.gov (United States)

    Prescott, Aaron M; McCollough, Forest W; Eldreth, Bryan L; Binder, Brad M; Abel, Steven M

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  19. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    Directory of Open Access Journals (Sweden)

    Aaron M. Prescott

    2016-08-01

    Full Text Available Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. However, the dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB. In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB. Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms

  20. 3rd International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2014-01-01

    This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications.  Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale...

  1. Modeling Epidemics Spreading on Social Contact Networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua

    2015-09-01

    Social contact networks and the way people interact with each other are the key factors that impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR) model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact networks. The results from both simulations and real data set conclude that the epidemics are more likely to outbreak on social contact networks with higher average degree. We also present some potential immunization strategies, such as random set immunization, dominating set immunization, and high degree set immunization to further prove the conclusion.

  2. Spatial Epidemic Modelling in Social Networks

    Science.gov (United States)

    Simoes, Joana Margarida

    2005-06-01

    The spread of infectious diseases is highly influenced by the structure of the underlying social network. The target of this study is not the network of acquaintances, but the social mobility network: the daily movement of people between locations, in regions. It was already shown that this kind of network exhibits small world characteristics. The model developed is agent based (ABM) and comprehends a movement model and a infection model. In the movement model, some assumptions are made about its structure and the daily movement is decomposed into four types: neighborhood, intra region, inter region and random. The model is Geographical Information Systems (GIS) based, and uses real data to define its geometry. Because it is a vector model, some optimization techniques were used to increase its efficiency.

  3. Implementing network constraints in the EMPS model

    Energy Technology Data Exchange (ETDEWEB)

    Helseth, Arild; Warland, Geir; Mo, Birger; Fosso, Olav B.

    2010-02-15

    This report concerns the coupling of detailed market and network models for long-term hydro-thermal scheduling. Currently, the EPF model (Samlast) is the only tool available for this task for actors in the Nordic market. A new prototype for solving the coupled market and network problem has been developed. The prototype is based on the EMPS model (Samkjoeringsmodellen). Results from the market model are distributed to a detailed network model, where a DC load flow detects if there are overloads on monitored lines or intersections. In case of overloads, network constraints are generated and added to the market problem. Theoretical and implementation details for the new prototype are elaborated in this report. The performance of the prototype is tested against the EPF model on a 20-area Nordic dataset. (Author)

  4. Role models for complex networks

    Science.gov (United States)

    Reichardt, J.; White, D. R.

    2007-11-01

    We present a framework for automatically decomposing (“block-modeling”) the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph (“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy.

  5. Agent Based Modeling on Organizational Dynamics of Terrorist Network

    Directory of Open Access Journals (Sweden)

    Bo Li

    2015-01-01

    Full Text Available Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model are developed for modeling the hybrid relational structure and complex operational processes, respectively. To intuitively elucidate this method, the agent based modeling is used to simulate the terrorist network and test the performance in diverse scenarios. Based on the experimental results, we show how the changes of operational environments affect the development of terrorist organization in terms of its recovery and capacity to perform future tasks. The potential strategies are also discussed, which can be used to restrain the activities of terrorists.

  6. Model-based global sensitivity analysis as applied to identification of anti-cancer drug targets and biomarkers of drug resistance in the ErbB2/3 network

    Science.gov (United States)

    Lebedeva, Galina; Sorokin, Anatoly; Faratian, Dana; Mullen, Peter; Goltsov, Alexey; Langdon, Simon P.; Harrison, David J.; Goryanin, Igor

    2012-01-01

    High levels of variability in cancer-related cellular signalling networks and a lack of parameter identifiability in large-scale network models hamper translation of the results of modelling studies into the process of anti-cancer drug development. Recently global sensitivity analysis (GSA) has been recognised as a useful technique, capable of addressing the uncertainty of the model parameters and generating valid predictions on parametric sensitivities. Here we propose a novel implementation of model-based GSA specially designed to explore how multi-parametric network perturbations affect signal propagation through cancer-related networks. We use area-under-the-curve for time course of changes in phosphorylation of proteins as a characteristic for sensitivity analysis and rank network parameters with regard to their impact on the level of key cancer-related outputs, separating strong inhibitory from stimulatory effects. This allows interpretation of the results in terms which can incorporate the effects of potential anti-cancer drugs on targets and the associated biological markers of cancer. To illustrate the method we applied it to an ErbB signalling network model and explored the sensitivity profile of its key model readout, phosphorylated Akt, in the absence and presence of the ErbB2 inhibitor pertuzumab. The method successfully identified the parameters associated with elevation or suppression of Akt phosphorylation in the ErbB2/3 network. From analysis and comparison of the sensitivity profiles of pAkt in the absence and presence of targeted drugs we derived predictions of drug targets, cancer-related biomarkers and generated hypotheses for combinatorial therapy. Several key predictions have been confirmed in experiments using human ovarian carcinoma cell lines. We also compared GSA-derived predictions with the results of local sensitivity analysis and discuss the applicability of both methods. We propose that the developed GSA procedure can serve as a

  7. Modeling the interdependent network based on two-mode networks

    Science.gov (United States)

    An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian

    2017-10-01

    Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.

  8. Latent variable models are network models.

    Science.gov (United States)

    Molenaar, Peter C M

    2010-06-01

    Cramer et al. present an original and interesting network perspective on comorbidity and contrast this perspective with a more traditional interpretation of comorbidity in terms of latent variable theory. My commentary focuses on the relationship between the two perspectives; that is, it aims to qualify the presumed contrast between interpretations in terms of networks and latent variables.

  9. Modeling and Analysis of Energy Conservation Scheme Based on Duty Cycling in Wireless Ad Hoc Sensor Network

    Science.gov (United States)

    Chung, Yun Won; Hwang, Ho Young

    2010-01-01

    In sensor network, energy conservation is one of the most critical issues since sensor nodes should perform a sensing task for a long time (e.g., lasting a few years) but the battery of them cannot be replaced in most practical situations. For this purpose, numerous energy conservation schemes have been proposed and duty cycling scheme is considered the most suitable power conservation technique, where sensor nodes alternate between states having different levels of power consumption. In order to analyze the energy consumption of energy conservation scheme based on duty cycling, it is essential to obtain the probability of each state. In this paper, we analytically derive steady state probability of sensor node states, i.e., sleep, listen, and active states, based on traffic characteristics and timer values, i.e., sleep timer, listen timer, and active timer. The effect of traffic characteristics and timer values on the steady state probability and energy consumption is analyzed in detail. Our work can provide sensor network operators guideline for selecting appropriate timer values for efficient energy conservation. The analytical methodology developed in this paper can be extended to other energy conservation schemes based on duty cycling with different sensor node states, without much difficulty. PMID:22219676

  10. Modeling and Analysis of Energy Conservation Scheme Based on Duty Cycling in Wireless Ad Hoc Sensor Network

    Directory of Open Access Journals (Sweden)

    Yun Won Chung

    2010-06-01

    Full Text Available In sensor network, energy conservation is one of the most critical issues since sensor nodes should perform a sensing task for a long time (e.g., lasting a few years but the battery of them cannot be replaced in most practical situations. For this purpose, numerous energy conservation schemes have been proposed and duty cycling scheme is considered the most suitable power conservation technique, where sensor nodes alternate between states having different levels of power consumption. In order to analyze the energy consumption of energy conservation scheme based on duty cycling, it is essential to obtain the probability of each state. In this paper, we analytically derive steady state probability of sensor node states, i.e., sleep, listen, and active states, based on traffic characteristics and timer values, i.e., sleep timer, listen timer, and active timer. The effect of traffic characteristics and timer values on the steady state probability and energy consumption is analyzed in detail. Our work can provide sensor network operators guideline for selecting appropriate timer values for efficient energy conservation. The analytical methodology developed in this paper can be extended to other energy conservation schemes based on duty cycling with different sensor node states, without much difficulty.

  11. Custom Ontologies for Expanded Network Analysis

    Science.gov (United States)

    2006-12-01

    for Expanded Network Analysis. In Visualising Network Information (pp. 6-1 – 6-10). Meeting Proceedings RTO-MP-IST-063, Paper 6. Neuilly-sur-Seine...Even to this day, current research groups are working to develop an approach that involves taking all available text, video, imagery and audio and

  12. Consistency analysis of network traffic repositories

    NARCIS (Netherlands)

    Lastdrager, Elmer; Lastdrager, E.E.H.; Pras, Aiko

    Traffic repositories with TCP/IP header information are very important for network analysis. Researchers often assume that such repositories reliably represent all traffic that has been flowing over the network; little thoughts are made regarding the consistency of these repositories. Still, for

  13. Homophyly/Kinship Model: Naturally Evolving Networks

    Science.gov (United States)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  14. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications.

    Directory of Open Access Journals (Sweden)

    Kristin Blacklock

    2014-06-01

    Full Text Available A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple

  15. A ternary logic model for recurrent neuromime networks with delay.

    Science.gov (United States)

    Hangartner, R D; Cull, P

    1995-07-01

    In contrast to popular recurrent artificial neural network (RANN) models, biological neural networks have unsymmetric structures and incorporate significant delays as a result of axonal propagation. Consequently, biologically inspired neural network models are more accurately described by nonlinear differential-delay equations rather than nonlinear ordinary differential equations (ODEs), and the standard techniques for studying the dynamics of RANNs are wholly inadequate for these models. This paper develops a ternary-logic based method for analyzing these networks. Key to the technique is the realization that a nonzero delay produces a bounded stability region. This result significantly simplifies the construction of sufficient conditions for characterizing the network equilibria. If the network gain is large enough, each equilibrium can be classified as either asymptotically stable or unstable. To illustrate the analysis technique, the swim central pattern generator (CPG) of the sea slug Tritonia diomedea is examined. For wide range of reasonable parameter values, the ternary analysis shows that none of the network equilibria are stable, and thus the network must oscillate. The results show that complex synaptic dynamics are not necessary for pattern generation.

  16. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  17. An endogenous model of the credit network

    Science.gov (United States)

    He, Jianmin; Sui, Xin; Li, Shouwei

    2016-01-01

    In this paper, an endogenous credit network model of firm-bank agents is constructed. The model describes the endogenous formation of firm-firm, firm-bank and bank-bank credit relationships. By means of simulations, the model is capable of showing some obvious similarities with empirical evidence found by other scholars: the upper-tail of firm size distribution can be well fitted with a power-law; the bank size distribution can be lognormally distributed with a power-law tail; the bank in-degrees of the interbank credit network as well as the firm-bank credit network fall into two-power-law distributions.

  18. Modelling and designing electric energy networks

    International Nuclear Information System (INIS)

    Retiere, N.

    2003-11-01

    The author gives an overview of his research works in the field of electric network modelling. After a brief overview of technological evolutions from the telegraph to the all-electric fly-by-wire aircraft, he reports and describes various works dealing with a simplified modelling of electric systems and with fractal simulation. Then, he outlines the challenges for the design of electric networks, proposes a design process, gives an overview of various design models, methods and tools, and reports an application in the design of electric networks for future jumbo jets

  19. Modeling GMPLS and Optical MPLS Networks

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann; Wessing, Henrik

    2003-01-01

    . The MPLS concept is attractive because it can work as a unifying control structure. covering all technologies. This paper describes how a novel scheme for optical MPLS and circuit switched GMPLS based networks can incorporated in such multi-domain, MPLS-based scenarios and how it could be modeled. Network...

  20. Cyber threat model for tactical radio networks

    Science.gov (United States)

    Kurdziel, Michael T.

    2014-05-01

    The shift to a full information-centric paradigm in the battlefield has allowed ConOps to be developed that are only possible using modern network communications systems. Securing these Tactical Networks without impacting their capabilities has been a challenge. Tactical networks with fixed infrastructure have similar vulnerabilities to their commercial counterparts (although they need to be secure against adversaries with greater capabilities, resources and motivation). However, networks with mobile infrastructure components and Mobile Ad hoc Networks (MANets) have additional unique vulnerabilities that must be considered. It is useful to examine Tactical Network based ConOps and use them to construct a threat model and baseline cyber security requirements for Tactical Networks with fixed infrastructure, mobile infrastructure and/or ad hoc modes of operation. This paper will present an introduction to threat model assessment. A definition and detailed discussion of a Tactical Network threat model is also presented. Finally, the model is used to derive baseline requirements that can be used to design or evaluate a cyber security solution that can be scaled and adapted to the needs of specific deployments.

  1. Modeling documents with Generative Adversarial Networks

    OpenAIRE

    Glover, John

    2016-01-01

    This paper describes a method for using Generative Adversarial Networks to learn distributed representations of natural language documents. We propose a model that is based on the recently proposed Energy-Based GAN, but instead uses a Denoising Autoencoder as the discriminator network. Document representations are extracted from the hidden layer of the discriminator and evaluated both quantitatively and qualitatively.

  2. Designing Network-based Business Model Ontology

    DEFF Research Database (Denmark)

    Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz

    2015-01-01

    Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....

  3. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    Science.gov (United States)

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  4. A graph model for opportunistic network coding

    KAUST Repository

    Sorour, Sameh

    2015-08-12

    © 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.

  5. Bayesian Network Models in Cyber Security: A Systematic Review

    OpenAIRE

    Chockalingam, S.; Pieters, W.; Herdeiro Teixeira, A.M.; van Gelder, P.H.A.J.M.; Lipmaa, Helger; Mitrokotsa, Aikaterini; Matulevicius, Raimundas

    2017-01-01

    Bayesian Networks (BNs) are an increasingly popular modelling technique in cyber security especially due to their capability to overcome data limitations. This is also instantiated by the growth of BN models development in cyber security. However, a comprehensive comparison and analysis of these models is missing. In this paper, we conduct a systematic review of the scientific literature and identify 17 standard BN models in cyber security. We analyse these models based on 9 different criteri...

  6. Analysis and Testing of Mobile Wireless Networks

    Science.gov (United States)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  7. Establishment of turbidity forecasting model and early-warning system for source water turbidity management using back-propagation artificial neural network algorithm and probability analysis.

    Science.gov (United States)

    Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng

    2014-08-01

    The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.

  8. Complex Network Analysis of Guangzhou Metro

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2015-11-01

    Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.

  9. Extending Stochastic Network Calculus to Loss Analysis

    Directory of Open Access Journals (Sweden)

    Chao Luo

    2013-01-01

    Full Text Available Loss is an important parameter of Quality of Service (QoS. Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor.

  10. Modelling of word usage frequency dynamics using artificial neural network

    International Nuclear Information System (INIS)

    Maslennikova, Yu S; Bochkarev, V V; Voloskov, D S

    2014-01-01

    In this paper the method for modelling of word usage frequency time series is proposed. An artificial feedforward neural network was used to predict word usage frequencies. The neural network was trained using the maximum likelihood criterion. The Google Books Ngram corpus was used for the analysis. This database provides a large amount of data on frequency of specific word forms for 7 languages. Statistical modelling of word usage frequency time series allows finding optimal fitting and filtering algorithm for subsequent lexicographic analysis and verification of frequency trend models

  11. UMA/GAN network architecture analysis

    Science.gov (United States)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  12. Constructing an Intelligent Patent Network Analysis Method

    Directory of Open Access Journals (Sweden)

    Chao-Chan Wu

    2012-11-01

    Full Text Available Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks of the current method, this study proposes a novel patent analysis method, called the intelligent patent network analysis method, to make a visual network with great precision. Based on artificial intelligence techniques, the proposed method provides an automated procedure for searching patent documents, extracting patent keywords, and determining the weight of each patent keyword in order to generate a sophisticated visualization of the patent network. This study proposes a detailed procedure for generating an intelligent patent network that is helpful for improving the efficiency and quality of patent analysis. Furthermore, patents in the field of Carbon Nanotube Backlight Unit (CNT-BLU were analyzed to verify the utility of the proposed method.

  13. Development of QSAR models using artificial neural network analysis for risk assessment of repeated-dose, reproductive, and developmental toxicities of cosmetic ingredients.

    Science.gov (United States)

    Hisaki, Tomoka; Aiba Née Kaneko, Maki; Yamaguchi, Masahiko; Sasa, Hitoshi; Kouzuki, Hirokazu

    2015-04-01

    Use of laboratory animals for systemic toxicity testing is subject to strong ethical and regulatory constraints, but few alternatives are yet available. One possible approach to predict systemic toxicity of chemicals in the absence of experimental data is quantitative structure-activity relationship (QSAR) analysis. Here, we present QSAR models for prediction of maximum "no observed effect level" (NOEL) for repeated-dose, developmental and reproductive toxicities. NOEL values of 421 chemicals for repeated-dose toxicity, 315 for reproductive toxicity, and 156 for developmental toxicity were collected from Japan Existing Chemical Data Base (JECDB). Descriptors to predict toxicity were selected based on molecular orbital (MO) calculations, and QSAR models employing multiple independent descriptors as the input layer of an artificial neural network (ANN) were constructed to predict NOEL values. Robustness of the models was indicated by the root-mean-square (RMS) errors after 10-fold cross-validation (0.529 for repeated-dose, 0.508 for reproductive, and 0.558 for developmental toxicity). Evaluation of the models in terms of the percentages of predicted NOELs falling within factors of 2, 5 and 10 of the in-vivo-determined NOELs suggested that the model is applicable to both general chemicals and the subset of chemicals listed in International Nomenclature of Cosmetic Ingredients (INCI). Our results indicate that ANN models using in silico parameters have useful predictive performance, and should contribute to integrated risk assessment of systemic toxicity using a weight-of-evidence approach. Availability of predicted NOELs will allow calculation of the margin of safety, as recommended by the Scientific Committee on Consumer Safety (SCCS).

  14. Techniques for Intelligence Analysis of Networks

    National Research Council Canada - National Science Library

    Cares, Jeffrey R

    2005-01-01

    ...) there are significant intelligence analysis manifestations of these properties; and (4) a more satisfying theory of Networked Competition than currently exists for NCW/NCO is emerging from this research...

  15. Student Modeling in Orthopedic Surgery Training: Exploiting Symbiosis between Temporal Bayesian Networks and Fine-Grained Didactic Analysis

    Science.gov (United States)

    Chieu, Vu Minh; Luengo, Vanda; Vadcard, Lucile; Tonetti, Jerome

    2010-01-01

    Cognitive approaches have been used for student modeling in intelligent tutoring systems (ITSs). Many of those systems have tackled fundamental subjects such as mathematics, physics, and computer programming. The change of the student's cognitive behavior over time, however, has not been considered and modeled systematically. Furthermore, the…

  16. Modeling trust context in networks

    CERN Document Server

    Adali, Sibel

    2013-01-01

    We make complex decisions every day, requiring trust in many different entities for different reasons. These decisions are not made by combining many isolated trust evaluations. Many interlocking factors play a role, each dynamically impacting the others.? In this brief, 'trust context' is defined as the system level description of how the trust evaluation process unfolds.Networks today are part of almost all human activity, supporting and shaping it. Applications increasingly incorporate new interdependencies and new trust contexts. Social networks connect people and organizations throughout

  17. Constraints and entropy in a model of network evolution

    Science.gov (United States)

    Tee, Philip; Wakeman, Ian; Parisis, George; Dawes, Jonathan; Kiss, István Z.

    2017-11-01

    Barabási-Albert's "Scale Free" model is the starting point for much of the accepted theory of the evolution of real world communication networks. Careful comparison of the theory with a wide range of real world networks, however, indicates that the model is in some cases, only a rough approximation to the dynamical evolution of real networks. In particular, the exponent γ of the power law distribution of degree is predicted by the model to be exactly 3, whereas in a number of real world networks it has values between 1.2 and 2.9. In addition, the degree distributions of real networks exhibit cut offs at high node degree, which indicates the existence of maximal node degrees for these networks. In this paper we propose a simple extension to the "Scale Free" model, which offers better agreement with the experimental data. This improvement is satisfying, but the model still does not explain why the attachment probabilities should favor high degree nodes, or indeed how constraints arrive in non-physical networks. Using recent advances in the analysis of the entropy of graphs at the node level we propose a first principles derivation for the "Scale Free" and "constraints" model from thermodynamic principles, and demonstrate that both preferential attachment and constraints could arise as a natural consequence of the second law of thermodynamics.

  18. Mathematical and theoretical neuroscience cell, network and data analysis

    CERN Document Server

    Nieus, Thierry

    2017-01-01

    This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical  and numerical topics;  statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.

  19. Modeling polyvinyl chloride Plasma Modification by Neural Networks

    Science.gov (United States)

    Wang, Changquan

    2018-03-01

    Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.

  20. Mathematical model of highways network optimization

    Science.gov (United States)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2017-12-01

    The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.