WorldWideScience

Sample records for network adaptive wavelets

  1. Adaptive Wavelet Transforms

    Energy Technology Data Exchange (ETDEWEB)

    Szu, H.; Hsu, C. [Univ. of Southwestern Louisiana, Lafayette, LA (United States)

    1996-12-31

    Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.

  2. Wavelet-Based MPNLMS Adaptive Algorithm for Network Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Hongyang Deng

    2007-03-01

    Full Text Available The μ-law proportionate normalized least mean square (MPNLMS algorithm has been proposed recently to solve the slow convergence problem of the proportionate normalized least mean square (PNLMS algorithm after its initial fast converging period. But for the color input, it may become slow in the case of the big eigenvalue spread of the input signal's autocorrelation matrix. In this paper, we use the wavelet transform to whiten the input signal. Due to the good time-frequency localization property of the wavelet transform, a sparse impulse response in the time domain is also sparse in the wavelet domain. By applying the MPNLMS technique in the wavelet domain, fast convergence for the color input is observed. Furthermore, we show that some nonsparse impulse responses may become sparse in the wavelet domain. This motivates the usage of the wavelet-based MPNLMS algorithm. Advantages of this approach are documented.

  3. Wavelet-Based MPNLMS Adaptive Algorithm for Network Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Doroslovački Miloš

    2007-01-01

    Full Text Available The μ-law proportionate normalized least mean square (MPNLMS algorithm has been proposed recently to solve the slow convergence problem of the proportionate normalized least mean square (PNLMS algorithm after its initial fast converging period. But for the color input, it may become slow in the case of the big eigenvalue spread of the input signal's autocorrelation matrix. In this paper, we use the wavelet transform to whiten the input signal. Due to the good time-frequency localization property of the wavelet transform, a sparse impulse response in the time domain is also sparse in the wavelet domain. By applying the MPNLMS technique in the wavelet domain, fast convergence for the color input is observed. Furthermore, we show that some nonsparse impulse responses may become sparse in the wavelet domain. This motivates the usage of the wavelet-based MPNLMS algorithm. Advantages of this approach are documented.

  4. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    Science.gov (United States)

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    Science.gov (United States)

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  6. Content-Adaptive Packetization and Streaming of Wavelet Video over IP Networks

    Directory of Open Access Journals (Sweden)

    Chien-Peng Ho

    2007-03-01

    Full Text Available This paper presents a framework of content-adaptive packetization scheme for streaming of 3D wavelet-based video content over lossy IP networks. The tradeoff between rate and distortion is controlled by jointly adapting scalable source coding rate and level of forward error correction (FEC protection. A content dependent packetization mechanism with data-interleaving and Reed-Solomon protection for wavelet-based video codecs is proposed to provide unequal error protection. This paper also tries to answer an important question for scalable video streaming systems: given extra bandwidth, should one increase the level of channel protection for the most important packets, or transmit more scalable source data? Experimental results show that the proposed framework achieves good balance between quality of the received video and level of error protection under bandwidth-varying lossy IP networks.

  7. Content-Adaptive Packetization and Streaming of Wavelet Video over IP Networks

    Directory of Open Access Journals (Sweden)

    Ho Chien-Peng

    2007-01-01

    Full Text Available This paper presents a framework of content-adaptive packetization scheme for streaming of 3D wavelet-based video content over lossy IP networks. The tradeoff between rate and distortion is controlled by jointly adapting scalable source coding rate and level of forward error correction (FEC protection. A content dependent packetization mechanism with data-interleaving and Reed-Solomon protection for wavelet-based video codecs is proposed to provide unequal error protection. This paper also tries to answer an important question for scalable video streaming systems: given extra bandwidth, should one increase the level of channel protection for the most important packets, or transmit more scalable source data? Experimental results show that the proposed framework achieves good balance between quality of the received video and level of error protection under bandwidth-varying lossy IP networks.

  8. Adaptive complementary fuzzy self-recurrent wavelet neural network controller for the electric load simulator system

    Directory of Open Access Journals (Sweden)

    Wang Chao

    2016-03-01

    Full Text Available Due to the complexities existing in the electric load simulator, this article develops a high-performance nonlinear adaptive controller to improve the torque tracking performance of the electric load simulator, which mainly consists of an adaptive fuzzy self-recurrent wavelet neural network controller with variable structure (VSFSWC and a complementary controller. The VSFSWC is clearly and easily used for real-time systems and greatly improves the convergence rate and control precision. The complementary controller is designed to eliminate the effect of the approximation error between the proposed neural network controller and the ideal feedback controller without chattering phenomena. Moreover, adaptive learning laws are derived to guarantee the system stability in the sense of the Lyapunov theory. Finally, the hardware-in-the-loop simulations are carried out to verify the feasibility and effectiveness of the proposed algorithms in different working styles.

  9. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet.

    Science.gov (United States)

    Shao, Haidong; Jiang, Hongkai; Wang, Fuan; Wang, Yanan

    2017-07-01

    Automatic and accurate identification of rolling bearing fault categories, especially for the fault severities and compound faults, is a challenge in rotating machinery fault diagnosis. For this purpose, a novel method called adaptive deep belief network (DBN) with dual-tree complex wavelet packet (DTCWPT) is developed in this paper. DTCWPT is used to preprocess the vibration signals to refine the fault characteristics information, and an original feature set is designed from each frequency-band signal of DTCWPT. An adaptive DBN is constructed to improve the convergence rate and identification accuracy with multiple stacked adaptive restricted Boltzmann machines (RBMs). The proposed method is applied to the fault diagnosis of rolling bearings. The results confirm that the proposed method is more effective than the existing methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Adaptive Wavelet Neural Network Backstepping Sliding Mode Tracking Control for PMSM Drive System

    OpenAIRE

    Liu, Da; Li, Muguo

    2015-01-01

    This paper presents a wavelet neural network backstepping sliding mode controller (WNNBSSM) for permanent-magnet synchronous motor (PMSM) position servo control system. Backstepping sliding mode (BSSM) is utilized to guarantee favorable tracking performance and stability of the whole system, meanwhile, wavelet neural network (WNN) is used for approximating nonlinear uncertainties. The designed controller combined the merits of the backstepping sliding mode control with robust characteristics ...

  11. Adaptive boxcar/wavelet transform

    Science.gov (United States)

    Sezer, Osman G.; Altunbasak, Yucel

    2009-01-01

    This paper presents a new adaptive Boxcar/Wavelet transform for image compression. Boxcar/Wavelet decomposition emphasizes the idea of average-interpolation representation which uses dyadic averages and their interpolation to explain a special case of biorthogonal wavelet transforms (BWT). This perspective for image compression together with lifting scheme offers the ability to train an optimum 2-D filter set for nonlinear prediction (interpolation) that will adapt to the context around the low-pass wavelet coefficients for reducing energy in the high-pass bands. Moreover, the filters obtained after training is observed to posses directional information with some textural clues that can provide better prediction performance. This work addresses a firrst step towards obtaining this new set of training-based fillters in the context of Boxcar/Wavelet transform. Initial experimental results show better subjective quality performance compared to popular 9/7-tap and 5/3-tap BWTs with comparable results in objective quality.

  12. Applications of adaptive wavelets for speech

    Science.gov (United States)

    Kadambe, Shubha L.; Srinivasan, Pramila

    1994-07-01

    Our objective is to demonstrate the applicability of adaptive wavelets for speech applications. In particular, we discuss two applications, namely, classification of unvoiced sounds and speaker identification. First, a method to classify unvoiced sounds using adaptive wavelets, which would help in developing a unified algorithm to classify phonemes (speech sounds), is described. Next, the applicability of adaptive wavelets to identify speakers using very short speech data (one pitch period) is exhibited. The described text-independent phoneme based speaker identification algorithm identifies a speaker by first modeling phonemes and then by clustering all the phonemes belonging to the same speaker into one class. For both applications, we use feed-forward neural network architecture. We demonstrate the performance of both unvoiced sounds classifier and speaker identification algorithms by using representative real speech examples.

  13. Fault Detection and Location by Static Switches in Microgrids Using Wavelet Transform and Adaptive Network-Based Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2014-04-01

    Full Text Available Microgrids are a highly efficient means of embedding distributed generation sources in a power system. However, if a fault occurs inside or outside the microgrid, the microgrid should be immediately disconnected from the main grid using a static switch installed at the secondary side of the main transformer near the point of common coupling (PCC. The static switch should have a reliable module implemented in a chip to detect/locate the fault and activate the breaker to open the circuit immediately. This paper proposes a novel approach to design this module in a static switch using the discrete wavelet transform (DWT and adaptive network-based fuzzy inference system (ANFIS. The wavelet coefficient of the fault voltage and the inference results of ANFIS with the wavelet energy of the fault current at the secondary side of the main transformer determine the control action (open or close of a static switch. The ANFIS identifies the faulty zones inside or outside the microgrid. The proposed method is applied to the first outdoor microgrid test bed in Taiwan, with a generation capacity of 360.5 kW. This microgrid test bed is studied using the real-time simulator eMegaSim developed by Opal-RT Technology Inc. (Montreal, QC, Canada. The proposed method based on DWT and ANFIS is implemented in a field programmable gate array (FPGA by using the Xilinx System Generator. Simulation results reveal that the proposed method is efficient and applicable in the real-time control environment of a power system.

  14. Adaptive predictions of the euro/złoty currency exchange rate using state space wavelet networks and forecast combinations

    Directory of Open Access Journals (Sweden)

    Brdyś Mietek A.

    2016-03-01

    Full Text Available The paper considers the forecasting of the euro/Polish złoty (EUR/PLN spot exchange rate by applying state space wavelet network and econometric forecast combination models. Both prediction methods are applied to produce one-trading-day-ahead forecasts of the EUR/PLN exchange rate. The paper presents the general state space wavelet network and forecast combination models as well as their underlying principles. The state space wavelet network model is, in contrast to econometric forecast combinations, a non-parametric prediction technique which does not make any distributional assumptions regarding the underlying input variables. Both methods can be used as forecasting tools in portfolio investment management, asset valuation, IT security and integrated business risk intelligence in volatile market conditions.

  15. A new method based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for recognition of urine cells from microscopic images independent of rotation and scaling.

    Science.gov (United States)

    Avci, Derya; Leblebicioglu, Mehmet Kemal; Poyraz, Mustafa; Dogantekin, Esin

    2014-02-01

    So far, analysis and classification of urine cells number has become an important topic for medical diagnosis of some diseases. Therefore, in this study, we suggest a new technique based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for Recognition of Urine Cells from Microscopic Images Independent of Rotation and Scaling. Some digital image processing methods such as noise reduction, contrast enhancement, segmentation, and morphological process are used for feature extraction stage of this ADWEENN in this study. Nowadays, the image processing and pattern recognition topics have come into prominence. The image processing concludes operation and design of systems that recognize patterns in data sets. In the past years, very difficulty in classification of microscopic images was the deficiency of enough methods to characterize. Lately, it is seen that, multi-resolution image analysis methods such as Gabor filters, discrete wavelet decompositions are superior to other classic methods for analysis of these microscopic images. In this study, the structure of the ADWEENN method composes of four stages. These are preprocessing stage, feature extraction stage, classification stage and testing stage. The Discrete Wavelet Transform (DWT) and adaptive wavelet entropy and energy is used for adaptive feature extraction in feature extraction stage to strengthen the premium features of the Artificial Neural Network (ANN) classifier in this study. Efficiency of the developed ADWEENN method was tested showing that an avarage of 97.58% recognition succes was obtained.

  16. EEG Artifact Removal Using a Wavelet Neural Network

    Science.gov (United States)

    Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom

    2011-01-01

    !n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.

  17. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    Science.gov (United States)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  18. Modeling Network Traffic in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Sheng Ma

    2004-12-01

    Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.

  19. Adaptive wavelet algorithms for solving operator equations

    NARCIS (Netherlands)

    Gantumur, T.

    2006-01-01

    This thesis treats various aspects of adaptive wavelet algorithms for solving operator equations. For a separable Hilbert space H, a linear functional f in H', and a boundedly invertible linear operator A:H->H', we consider the problem of finding u from H satisfying Au=f. Typically A is given by a

  20. Text-independent speaker identification system based on adaptive wavelets

    Science.gov (United States)

    Kadambe, Shubha L.; Srinivasan, Pramila

    1994-03-01

    In this paper, we describe a text-independent phoneme-based speaker identification system that uses adaptive wavelets to model the phonemes. This system identifies a speaker by modeling a very short segment of phonemes and then by clustering all the phonemes belonging to the same speaker into one class. The classification is achieved by using a two layer feed forward neural network classifier. The performance of this speaker identification system is demonstrated by considering the phonemes that were extracted from various sentences spoken by three speakers in the TIMIT acoustic-phonetic speech corpus.

  1. WAKES: Wavelet Adaptive Kinetic Evolution Solvers

    Science.gov (United States)

    Mardirian, Marine; Afeyan, Bedros; Larson, David

    2016-10-01

    We are developing a general capability to adaptively solve phase space evolution equations mixing particle and continuum techniques in an adaptive manner. The multi-scale approach is achieved using wavelet decompositions which allow phase space density estimation to occur with scale dependent increased accuracy and variable time stepping. Possible improvements on the SFK method of Larson are discussed, including the use of multiresolution analysis based Richardson-Lucy Iteration, adaptive step size control in explicit vs implicit approaches. Examples will be shown with KEEN waves and KEEPN (Kinetic Electrostatic Electron Positron Nonlinear) waves, which are the pair plasma generalization of the former, and have a much richer span of dynamical behavior. WAKES techniques are well suited for the study of driven and released nonlinear, non-stationary, self-organized structures in phase space which have no fluid, limit nor a linear limit, and yet remain undamped and coherent well past the drive period. The work reported here is based on the Vlasov-Poisson model of plasma dynamics. Work supported by a Grant from the AFOSR.

  2. A new model for sizing of stand-alone photovoltaic systems using neural network adaptive frame wavelet

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, A. [University Center of Medea, Institute of Engineering Sciences, Ain Dahab (Algeria); Benghanem, M. [University of Sciences Technology Houari Boumediene (USTHB), Faculty of ElectricalEngineering, El-Alia, Algiers (Algeria); Hadj Arab, A. [Development Center of Renewable Energy (CDER), Bouzareah, Algiers (Algeria); Guessoum, A. [Ministry for the Higher Education and Scientific Research, Algiers (Algeria)

    2004-07-01

    The objective of this work is to train the MLP-IIR model to learn the estimation and modeling of the optimal sizing coefficients of stand-alone PV system with a minimum of input data. Once trained, the MLP-IIR estimates these coefficients faster. The validation of the model was performed with unknown sizing coefficient, which the network has not seen before. The ability of the network to make acceptable estimations even in an unusual day is an advantage of the present method. It should be stressed that the training of the network required about 1 minute on a Pentium III 800MHz machine. The estimation with correlation coefficient of 98 % was obtained. This accuracy is well within the acceptable level used by design engineers. The traditional methods of sizing PV system (empirical, analytical, numerical and hybrid) allows to estimate the sizing of PV system for one given site, and requires the availability of several parameters such as the daily solar radiation data, altitude, longitude, the load, the characteristics of stand alone PV system, the inclination of the panels and to take very much computing time for estimation of optimal coefficients. On the other hand, the model that we developed allows estimating the PV-array area and the storage capacity from a minimum input data (altitude, longitude) based on the optimal sizing coefficients and does not take much time for simulation. The advantage of this model is to estimate of the PV-array area and the storage capacity in any site in Algeria particularly in isolated sites, where the global solar radiation data is not always available. Also, this presents a good result compared between other neural network architecture. The results have been obtained for Algerian meteorological data, but the methodology can be applied to any geographical area. (orig.)

  3. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  4. Adapted wavelet analysis from theory to software

    CERN Document Server

    Wickerhauser, Mladen Victor

    1994-01-01

    This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients

  5. Big data extraction with adaptive wavelet analysis (Presentation Video)

    Science.gov (United States)

    Qu, Hongya; Chen, Genda; Ni, Yiqing

    2015-04-01

    Nondestructive evaluation and sensing technology have been increasingly applied to characterize material properties and detect local damage in structures. More often than not, they generate images or data strings that are difficult to see any physical features without novel data extraction techniques. In the literature, popular data analysis techniques include Short-time Fourier Transform, Wavelet Transform, and Hilbert Transform for time efficiency and adaptive recognition. In this study, a new data analysis technique is proposed and developed by introducing an adaptive central frequency of the continuous Morlet wavelet transform so that both high frequency and time resolution can be maintained in a time-frequency window of interest. The new analysis technique is referred to as Adaptive Wavelet Analysis (AWA). This paper will be organized in several sections. In the first section, finite time-frequency resolution limitations in the traditional wavelet transform are introduced. Such limitations would greatly distort the transformed signals with a significant frequency variation with time. In the second section, Short Time Wavelet Transform (STWT), similar to Short Time Fourier Transform (STFT), is defined and developed to overcome such shortcoming of the traditional wavelet transform. In the third section, by utilizing the STWT and a time-variant central frequency of the Morlet wavelet, AWA can adapt the time-frequency resolution requirement to the signal variation over time. Finally, the advantage of the proposed AWA is demonstrated in Section 4 with a ground penetrating radar (GPR) image from a bridge deck, an analytical chirp signal with a large range sinusoidal frequency change over time, the train-induced acceleration responses of the Tsing-Ma Suspension Bridge in Hong Kong, China. The performance of the proposed AWA will be compared with the STFT and traditional wavelet transform.

  6. Adaptive wavelet methods for solving operator equations: An overview

    NARCIS (Netherlands)

    Stevenson, R.; DeVore, R.A.; Kunoth, A.

    2009-01-01

    In [Math. Comp, 70 (2001), 27-75] and [Found. Comput. Math., 2(3) (2002), 203-245], Cohen, Dahmen and DeVore introduced adaptive wavelet methods for solving operator equations. These papers meant a break-through in the field, because their adaptive methods were not only proven to converge, but also

  7. Adaptive wavelet-based recognition of oscillatory patterns on electroencephalograms

    Science.gov (United States)

    Nazimov, Alexey I.; Pavlov, Alexey N.; Hramov, Alexander E.; Grubov, Vadim V.; Koronovskii, Alexey A.; Sitnikova, Evgenija Y.

    2013-02-01

    The problem of automatic recognition of specific oscillatory patterns on electroencephalograms (EEG) is addressed using the continuous wavelet-transform (CWT). A possibility of improving the quality of recognition by optimizing the choice of CWT parameters is discussed. An adaptive approach is proposed to identify sleep spindles (SS) and spike wave discharges (SWD) that assumes automatic selection of CWT-parameters reflecting the most informative features of the analyzed time-frequency structures. Advantages of the proposed technique over the standard wavelet-based approaches are considered.

  8. A Novel Fractional-Order PID Controller for Integrated Pressurized Water Reactor Based on Wavelet Kernel Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-xin Zhao

    2014-01-01

    Full Text Available This paper presents a novel wavelet kernel neural network (WKNN with wavelet kernel function. It is applicable in online learning with adaptive parameters and is applied on parameters tuning of fractional-order PID (FOPID controller, which could handle time delay problem of the complex control system. Combining the wavelet function and the kernel function, the wavelet kernel function is adopted and validated the availability for neural network. Compared to the conservative wavelet neural network, the most innovative character of the WKNN is its rapid convergence and high precision in parameters updating process. Furthermore, the integrated pressurized water reactor (IPWR system is established by RELAP5, and a novel control strategy combining WKNN and fuzzy logic rule is proposed for shortening controlling time and utilizing the experiential knowledge sufficiently. Finally, experiment results verify that the control strategy and controller proposed have the practicability and reliability in actual complicated system.

  9. A network security situation prediction model based on wavelet neural network with optimized parameters

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2016-08-01

    Full Text Available The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN with optimized parameters by the Improved Niche Genetic Algorithm (INGA. The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN, Genetic Algorithm-Back Propagation Neural Network (GA-BPNN and WNN.

  10. An Adaptive Inpainting Algorithm Based on DCT Induced Wavelet Regularization

    Science.gov (United States)

    2013-01-01

    JOURNAL ARTICLE (Postprint) 3. DATES COVERED (From - To) JAN 2012 – JAN 2013 4. TITLE AND SUBTITLE AN ADAPTIVE INPAINTING ALGORITHM BASED ON...image inpainting optimization model whose objective functional is a smoothed ℓ1 norm of the weighted non-decimated discrete cosine transform (DCT...analysis. Non-decimated wavelet transforms with these filters are explored to analyze images to be inpainted . Our numerical experiments verify that

  11. Wavelet Neural Network Model for Yield Spread Forecasting

    Directory of Open Access Journals (Sweden)

    Firdous Ahmad Shah

    2017-11-01

    Full Text Available In this study, a hybrid method based on coupling discrete wavelet transforms (DWTs and artificial neural network (ANN for yield spread forecasting is proposed. The discrete wavelet transform (DWT using five different wavelet families is applied to decompose the five different yield spreads constructed at shorter end, longer end, and policy relevant area of the yield curve to eliminate noise from them. The wavelet coefficients are then used as inputs into Levenberg-Marquardt (LM ANN models to forecast the predictive power of each of these spreads for output growth. We find that the yield spreads constructed at the shorter end and policy relevant areas of the yield curve have a better predictive power to forecast the output growth, whereas the yield spreads, which are constructed at the longer end of the yield curve do not seem to have predictive information for output growth. These results provide the robustness to the earlier results.

  12. Wavelet neural networks with applications in financial engineering, chaos, and classification

    CERN Document Server

    Alexandridis, Antonios K

    2014-01-01

    Through extensive examples and case studies, Wavelet Neural Networks provides a step-by-step introduction to modeling, training, and forecasting using wavelet networks. The acclaimed authors present a statistical model identification framework to successfully apply wavelet networks in various applications, specifically, providing the mathematical and statistical framework needed for model selection, variable selection, wavelet network construction, initialization, training, forecasting and prediction, confidence intervals, prediction intervals, and model adequacy testing. The text is ideal for

  13. Multi-input Multi-output Beta Wavelet Network: Modeling of Acoustic Units for Speech Recognition

    OpenAIRE

    Chokri Ben Amar; Mourad Zaied; Ridha Ejbali

    2012-01-01

    In this paper, we propose a novel architecture of wavelet network called Multi-input Multi-output Wavelet Network MIMOWN as a generalization of the old architecture of wavelet network. This newel prototype was applied to speech recognition application especially to model acoustic unit of speech. The originality of our work is the proposal of MIMOWN to model acoustic unit of speech. This approach was proposed to overcome limitation of old wavelet network model. The use of the multi-input multi...

  14. Multi-focus image fusion algorithm based on adaptive PCNN and wavelet transform

    Science.gov (United States)

    Wu, Zhi-guo; Wang, Ming-jia; Han, Guang-liang

    2011-08-01

    Being an efficient method of information fusion, image fusion has been used in many fields such as machine vision, medical diagnosis, military applications and remote sensing. In this paper, Pulse Coupled Neural Network (PCNN) is introduced in this research field for its interesting properties in image processing, including segmentation, target recognition et al. and a novel algorithm based on PCNN and Wavelet Transform for Multi-focus image fusion is proposed. First, the two original images are decomposed by wavelet transform. Then, based on the PCNN, a fusion rule in the Wavelet domain is given. This algorithm uses the wavelet coefficient in each frequency domain as the linking strength, so that its value can be chosen adaptively. Wavelet coefficients map to the range of image gray-scale. The output threshold function attenuates to minimum gray over time. Then all pixels of image get the ignition. So, the output of PCNN in each iteration time is ignition wavelet coefficients of threshold strength in different time. At this moment, the sequences of ignition of wavelet coefficients represent ignition timing of each neuron. The ignition timing of PCNN in each neuron is mapped to corresponding image gray-scale range, which is a picture of ignition timing mapping. Then it can judge the targets in the neuron are obvious features or not obvious. The fusion coefficients are decided by the compare-selection operator with the firing time gradient maps and the fusion image is reconstructed by wavelet inverse transform. Furthermore, by this algorithm, the threshold adjusting constant is estimated by appointed iteration number. Furthermore, In order to sufficient reflect order of the firing time, the threshold adjusting constant αΘ is estimated by appointed iteration number. So after the iteration achieved, each of the wavelet coefficient is activated. In order to verify the effectiveness of proposed rules, the experiments upon Multi-focus image are done. Moreover

  15. Wind Speed Forecasting by Wavelet Neural Networks: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Chuanan Yao

    2013-01-01

    Full Text Available Due to the environmental degradation and depletion of conventional energy, much attention has been devoted to wind energy in many countries. The intermittent nature of wind power has had a great impact on power grid security. Accurate forecasting of wind speed plays a vital role in power system stability. This paper presents a comparison of three wavelet neural networks for short-term forecasting of wind speed. The first two combined models are two types of basic combinations of wavelet transform and neural network, namely, compact wavelet neural network (CWNN and loose wavelet neural network (LWNN in this study, and the third model is a new hybrid method based on the CWNN and LWNN models. The efficiency of the combined models has been evaluated by using actual wind speed from two test stations in North China. The results show that the forecasting performances of the CWNN and LWNN models are unstable and are affected by the test stations selected; the third model is far more accurate than the other forecasting models in spite of the drawback of lower computational efficiency.

  16. A novel wavelet neural network based pathological stage detection technique for an oral precancerous condition

    Science.gov (United States)

    Paul, R R; Mukherjee, A; Dutta, P K; Banerjee, S; Pal, M; Chatterjee, J; Chaudhuri, K; Mukkerjee, K

    2005-01-01

    Aim: To describe a novel neural network based oral precancer (oral submucous fibrosis; OSF) stage detection method. Method: The wavelet coefficients of transmission electron microscopy images of collagen fibres from normal oral submucosa and OSF tissues were used to choose the feature vector which, in turn, was used to train the artificial neural network. Results: The trained network was able to classify normal and oral precancer stages (less advanced and advanced) after obtaining the image as an input. Conclusions: The results obtained from this proposed technique were promising and suggest that with further optimisation this method could be used to detect and stage OSF, and could be adapted for other conditions. PMID:16126873

  17. WaveJava: Wavelet-based network computing

    Science.gov (United States)

    Ma, Kun; Jiao, Licheng; Shi, Zhuoer

    1997-04-01

    Wavelet is a powerful theory, but its successful application still needs suitable programming tools. Java is a simple, object-oriented, distributed, interpreted, robust, secure, architecture-neutral, portable, high-performance, multi- threaded, dynamic language. This paper addresses the design and development of a cross-platform software environment for experimenting and applying wavelet theory. WaveJava, a wavelet class library designed by the object-orient programming, is developed to take advantage of the wavelets features, such as multi-resolution analysis and parallel processing in the networking computing. A new application architecture is designed for the net-wide distributed client-server environment. The data are transmitted with multi-resolution packets. At the distributed sites around the net, these data packets are done the matching or recognition processing in parallel. The results are fed back to determine the next operation. So, the more robust results can be arrived quickly. The WaveJava is easy to use and expand for special application. This paper gives a solution for the distributed fingerprint information processing system. It also fits for some other net-base multimedia information processing, such as network library, remote teaching and filmless picture archiving and communications.

  18. Hybrid Fuzzy Wavelet Neural Networks Architecture Based on Polynomial Neural Networks and Fuzzy Set/Relation Inference-Based Wavelet Neurons.

    Science.gov (United States)

    Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold

    2017-08-11

    This paper presents a hybrid fuzzy wavelet neural network (HFWNN) realized with the aid of polynomial neural networks (PNNs) and fuzzy inference-based wavelet neurons (FIWNs). Two types of FIWNs including fuzzy set inference-based wavelet neurons (FSIWNs) and fuzzy relation inference-based wavelet neurons (FRIWNs) are proposed. In particular, a FIWN without any fuzzy set component (viz., a premise part of fuzzy rule) becomes a wavelet neuron (WN). To alleviate the limitations of the conventional wavelet neural networks or fuzzy wavelet neural networks whose parameters are determined based on a purely random basis, the parameters of wavelet functions standing in FIWNs or WNs are initialized by using the C-Means clustering method. The overall architecture of the HFWNN is similar to the one of the typical PNNs. The main strategies in the design of HFWNN are developed as follows. First, the first layer of the network consists of FIWNs (e.g., FSIWN or FRIWN) that are used to reflect the uncertainty of data, while the second and higher layers consist of WNs, which exhibit a high level of flexibility and realize a linear combination of wavelet functions. Second, the parameters used in the design of the HFWNN are adjusted through genetic optimization. To evaluate the performance of the proposed HFWNN, several publicly available data are considered. Furthermore a thorough comparative analysis is covered.

  19. 3-D electrical resistivity tomography using adaptive wavelet parameter grids

    Science.gov (United States)

    Plattner, A.; Maurer, H. R.; Vorloeper, J.; Blome, M.

    2012-04-01

    We present a novel adaptive model parametrization strategy for the 3-D electrical resistivity tomography problem and demonstrate its capabilities with a series of numerical examples. In contrast to traditional parametrization schemes, which are based on fixed disjoint blocks, we discretize the subsurface in terms of Haar wavelets and adaptively adjust the parametrization as the iterative inversion proceeds. This results in a favourable balance of cell sizes and parameter reliability, that is, in regions where the data constrain the subsurface properties well, our parametrization strategy leads to a fine grid, whereas poorly resolved areas are represented only by a few large blocks. This is documented with eigenvalue analyses and by computing model resolution matrices. During the initial iteration steps, only a few model parameters are involved, which reduces the risk that the regularization dominates the inversion. The algorithm also automatically accounts for non-linear effects caused by pronounced conductivity contrasts. Inside conductive features a finer grid is generated than inside more resistive structures. The automated parameter adaptation is computationally efficient, because the coarsening and refinement subroutines have a nearly linear numerical complexity with respect to the number of model parameters. Because our approach is not tightly coupled to electrical resistivity tomography, it should be straightforward to adapt it to other data types.

  20. Performance evaluation of wavelet scattering network in image texture classification in various color spaces

    OpenAIRE

    Wu, Jiasong; Jiang, Longyu,; Han, Xu; Senhadji, Lotfi; Shu, Huazhong

    2014-01-01

    Texture plays an important role in many image analysis applications. In this paper, we give a performance evaluation of color texture classification by performing wavelet scattering network in various color spaces. Experimental results on the KTH_TIPS_COL database show that opponent RGB based wavelet scattering network outperforms other color spaces. Therefore, when dealing with the problem of color texture classification, opponent RGB based wavelet scattering network is recommended.

  1. Speech Subvocal Signal Processing using Packet Wavelet and Neuronal Network

    Directory of Open Access Journals (Sweden)

    Luis E. Mendoza

    2013-11-01

    Full Text Available This paper presents the results obtained from the recording, processing and classification of words in the Spanish language by means of the analysis of subvocal speech signals. The processed database has six words (forward, backward, right, left, start and stop. In this work, the signals were sensed with surface electrodes placed on the surface of the throat and acquired with a sampling frequency of 50 kHz. The signal conditioning consisted in: the location of area of interest using energy analysis, and filtering using Discrete Wavelet Transform. Finally, the feature extraction was made in the time-frequency domain using Wavelet Packet and statistical techniques for windowing. The classification was carried out with a backpropagation neural network whose training was performed with 70% of the database obtained. The correct classification rate was 75%±2.

  2. Wavelet analysis of polarization maps of polycrystalline biological fluids networks

    Science.gov (United States)

    Ushenko, Y. A.

    2011-12-01

    The optical model of human joints synovial fluid is proposed. The statistic (statistic moments), correlation (autocorrelation function) and self-similar (Log-Log dependencies of power spectrum) structure of polarization two-dimensional distributions (polarization maps) of synovial fluid has been analyzed. It has been shown that differentiation of polarization maps of joint synovial fluid with different physiological state samples is expected of scale-discriminative analysis. To mark out of small-scale domain structure of synovial fluid polarization maps, the wavelet analysis has been used. The set of parameters, which characterize statistic, correlation and self-similar structure of wavelet coefficients' distributions of different scales of polarization domains for diagnostics and differentiation of polycrystalline network transformation connected with the pathological processes, has been determined.

  3. Adaptive dynamical networks

    Science.gov (United States)

    Maslennikov, O. V.; Nekorkin, V. I.

    2017-10-01

    Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.

  4. Reliable epileptic seizure detection using an improved wavelet neural network

    Directory of Open Access Journals (Sweden)

    Zarita Zainuddin

    2013-05-01

    Full Text Available BackgroundElectroencephalogram (EEG signal analysis is indispensable in epilepsy diagnosis as it offers valuable insights for locating the abnormal distortions in the brain wave. However, visual interpretation of the massive amounts of EEG signals is time-consuming, and there is often inconsistent judgment between experts. AimsThis study proposes a novel and reliable seizure detection system, where the statistical features extracted from the discrete wavelet transform are used in conjunction with an improved wavelet neural network (WNN to identify the occurrence of seizures. Method Experimental simulations were carried out on a well-known publicly available dataset, which was kindly provided by the Epilepsy Center, University of Bonn, Germany. The normal and epileptic EEG signals were first pre-processed using the discrete wavelet transform. Subsequently, a set of statistical features was extracted to train a WNNs-based classifier. ResultsThe study has two key findings. First, simulation results showed that the proposed improved WNNs-based classifier gave excellent predictive ability, where an overall classification accuracy of 98.87% was obtained. Second, by using the 10th and 90th percentiles of the absolute values of the wavelet coefficients, a better set of EEG features can be identified from the data, as the outliers are removed before any further downstream analysis.ConclusionThe obtained high prediction accuracy demonstrated the feasibility of the proposed seizure detection scheme. It suggested the prospective implementation of the proposed method in developing a real time automated epileptic diagnostic system with fast and accurate response that could assist neurologists in the decision making process.

  5. adaptive single-pole autoreclosure scheme based on wavelet ...

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    WAVELET TRANSFORM AND MULTILAYER PERCEPTRON. E. A. Frimpong, P. Y. Okyere and E. K. Anto. Department of ... value to achieve successful autoreclosing (Park et al., 2004; Megahed et al., 2003; Kim et al.,. 2000; Ahn ... transform (Fitton et al., 1996; Zoric et al.,. 2000), and wavelet transform (Yu and Song,. 1998a ...

  6. Energy-Efficient Transmission of Wavelet-Based Images in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Vincent Lecuire

    2007-01-01

    Full Text Available We propose a self-adaptive image transmission scheme driven by energy efficiency considerations in order to be suitable for wireless sensor networks. It is based on wavelet image transform and semireliable transmission to achieve energy conservation. Wavelet image transform provides data decomposition in multiple levels of resolution, so the image can be divided into packets with different priorities. Semireliable transmission enables priority-based packet discarding by intermediate nodes according to their battery's state-of-charge. Such an image transmission approach provides a graceful tradeoff between the reconstructed images quality and the sensor nodes' lifetime. An analytical study in terms of dissipated energy is performed to compare the self-adaptive image transmission scheme to a fully reliable scheme. Since image processing is computationally intensive and operates on a large data set, the cost of the wavelet image transform is considered in the energy consumption analysis. Results show up to 80% reduction in the energy consumption achieved by our proposal compared to a nonenergy-aware one, with the guarantee for the image quality to be lower-bounded.

  7. Neural network wavelet technology: A frontier of automation

    Science.gov (United States)

    Szu, Harold

    1994-01-01

    Neural networks are an outgrowth of interdisciplinary studies concerning the brain. These studies are guiding the field of Artificial Intelligence towards the, so-called, 6th Generation Computer. Enormous amounts of resources have been poured into R/D. Wavelet Transforms (WT) have replaced Fourier Transforms (FT) in Wideband Transient (WT) cases since the discovery of WT in 1985. The list of successful applications includes the following: earthquake prediction; radar identification; speech recognition; stock market forecasting; FBI finger print image compression; and telecommunication ISDN-data compression.

  8. Forecasting Baltic Dirty Tanker Index by Applying Wavelet Neural Networks

    DEFF Research Database (Denmark)

    Fan, Shuangrui; JI, TINGYUN; Bergqvist, Rickard

    2013-01-01

    modeling techniques used in freight rate forecasting. At the same time research in shipping index forecasting e.g. BDTI applying artificial intelligent techniques is scarce. This analyses the possibilities to forecast the BDTI by applying Wavelet Neural Networks (WNN). Firstly, the characteristics......Baltic Exchange Dirty Tanker Index (BDTI) is an important assessment index in world dirty tanker shipping industry. Actors in the industry sector can gain numerous benefits from accurate forecasting of the BDTI. However, limitations exist in traditional stochastic and econometric explanation...

  9. Adaptive-Anisotropic Wavelet Collocation Method on general curvilinear coordinate systems

    Science.gov (United States)

    Brown-Dymkoski, Eric; Vasilyev, Oleg V.

    2017-03-01

    A new general framework for an Adaptive-Anisotropic Wavelet Collocation Method (A-AWCM) for the solution of partial differential equations is developed. This proposed framework addresses two major shortcomings of existing wavelet-based adaptive numerical methodologies, namely the reliance on a rectangular domain and the ;curse of anisotropy;, i.e. drastic over-resolution of sheet- and filament-like features arising from the inability of the wavelet refinement mechanism to distinguish highly correlated directional information in the solution. The A-AWCM addresses both of these challenges by incorporating coordinate transforms into the Adaptive Wavelet Collocation Method for the solution of PDEs. The resulting integrated framework leverages the advantages of both the curvilinear anisotropic meshes and wavelet-based adaptive refinement in a complimentary fashion, resulting in greatly reduced cost of resolution for anisotropic features. The proposed Adaptive-Anisotropic Wavelet Collocation Method retains the a priori error control of the solution and fully automated mesh refinement, while offering new abilities through the flexible mesh geometry, including body-fitting. The new A-AWCM is demonstrated for a variety of cases, including parabolic diffusion, acoustic scattering, and unsteady external flow.

  10. WAVELET-NETWORK BASED ON L1-NORM MINIMISATION FOR LEARNING CHAOTIC TIME SERIES

    Directory of Open Access Journals (Sweden)

    J. Rodriguez-Asomoza

    2005-12-01

    Full Text Available This paper presents a wavelet-neural network based on the L1-norm minimisation for learning chaotic time series.The proposed approach, which is based on multi-resolution analysis, uses wavelets as activation functions in thehidden layer of the wavelet-network. We propose using the L1-norm, as opposed to the L2-norm, due to the wellknownfact that the L1-norm is superior to the L2-norm criterion when the signal has heavy tailed distributions oroutliers. A comparison of the proposed approach with previous reported schemes using a time series benchmark ispresented. Simulation results show that the proposed wavelet-network based on the L1-norm performs better thanthe standard back-propagation network and the wavelet-network based on the traditional L2-norm when applied tosynthetic data.

  11. Adaptive parallel logic networks

    Science.gov (United States)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  12. Wavelet neural networks applied to pulping of oil palm fronds.

    Science.gov (United States)

    Zainuddin, Zarita; Wan Daud, Wan Rosli; Pauline, Ong; Shafie, Amran

    2011-12-01

    In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Rotation Invariant Face Detection Using Wavelet, PCA and Radial Basis Function Networks

    OpenAIRE

    Kamruzzaman, S. M.; Siddiqi, Firoz Ahmed; Islam, Md. Saiful; Haque, Md. Emdadul; Alam, Mohammad Shamsul

    2010-01-01

    This paper introduces a novel method for human face detection with its orientation by using wavelet, principle component analysis (PCA) and redial basis networks. The input image is analyzed by two-dimensional wavelet and a two-dimensional stationary wavelet. The common goals concern are the image clearance and simplification, which are parts of de-noising or compression. We applied an effective procedure to reduce the dimension of the input vectors using PCA. Radial Basis Function (RBF) neur...

  14. Applications of Wavelet Neural Network Model to Building Settlement Prediction: A Case Study

    Directory of Open Access Journals (Sweden)

    Qulin TAN

    2014-04-01

    Full Text Available Deformation monitoring is a significant work for engineering safety, which is performed throughout the entire process of engineering design, construction and operation. Based on the theoretic analysis of wavelet and neural network, we applied the improved BP neural network model, auxiliary wavelet neural network model and embedded wavelet neural network model to the settlement prediction in one practical engineering monitoring project with MATLAB software programming. The cumulative and the interval settlement was predicted and compared with measured data. The overall performances of the three models were analyzed and compared. The results show that the accuracies of two kinds of wavelet neural network models are roughly the same, which prediction errors of monitoring points are less than 1mm, obviously superior to the single BP neural network model.

  15. On Seismic Ground Roll Filtering Using the Wavelet Transform and Neural Network

    Science.gov (United States)

    Benaissa, Zahia; Benaissa, Abdelkader; Ouadfeul, Sid-Ali; Aliouane, Leila; Boudella, Amar

    2013-04-01

    Here, we present an adapted filtering technique for the non-stationary signals. It is based on the wavelet transform and its rebuilding formula. This technique is used generally to detect and extract locally in the time-scale field particular events from seismic data. We show the efficiency of this technique to filter the ground roll from reflection seismic vibroseis recording (shot gather). The results for two different filtering processes are presented, one of these results is based on the annulment of the transform coefficients in the selected zone relating to the ground roll, and the other one is based on their attenuation (roll-off). Obtained results shows the efficiency of the first process especially when the wavelet transform is calculated only on the noisy zone and when the ground roll is made up of two or more pseudo-Rayleigh waves, in this case iterations are mandatory to improve the signal to noise ratio using the second process. The current work shows also the use of the artificial neural network on the prediction of the mute parameters in the F-K domain to be used on the Ground Roll attenuation. The proposed idea is very robust and useful in case of 3D seismic data. A set of 3D seismic Inlines are used for the training of the Multilayer Perceptron (MLP) neural network machine. Application to real data shows clearly the robustness of the proposed technique. Keywords: Filtering - Ground roll - Wavelet transform - Seismic - Reflection - Signal to noise ratio - Artificial neuronal network -3D-MLP- Training.

  16. Classification of epileptic EEG using neural network and wavelet transform

    Science.gov (United States)

    Petrosian, Arthur A.; Homan, Richard; Prokhorov, Danil; Wunsch, Donald C., II

    1996-10-01

    One of the major contributions of electroencephalography has been its application in the diagnosis and clinical evaluation of epilepsy. The interpretation of the EEG is achieved through visual inspection by a trained electroencephalographer. However, descriptions of rules used during the visual analysis of data are often subjective and can vary from one reader to another. Computerized methods are a means to standardize this process. In recent years, much effort has been made to develop such methods that can characterize different interictal, ictal, and postictal stages. the main issue of whether there exists a preictal phenomenon remains unresolved. In the present study we address this issue making use of specifically designed and trained recurrent neural networks in conjunction with signal wavelet decomposition technique. The purpose of this combined consideration was to demonstrate the potential for seizure prediction by up to several minutes prior to its onset.

  17. An improved adaptive wavelet shrinkage for ultrasound despeckling

    Indian Academy of Sciences (India)

    ... Perundurai 638 052, India. 2Department of Electronics and Communication Engineering, Kongunadu College of. Engineering and Technology, Thottiyam 621 ... ter achieves an improvement in terms of quantitative measures and in terms of visual quality of the images. Keywords. Wavelet; translation invariance; inter and ...

  18. Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.

    Science.gov (United States)

    Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza

    2015-11-01

    In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Wavelet Adaptive Algorithm and Its Application to MRE Noise Control System

    Directory of Open Access Journals (Sweden)

    Zhang Yulin

    2015-01-01

    Full Text Available To address the limitation of conventional adaptive algorithm used for active noise control (ANC system, this paper proposed and studied two adaptive algorithms based on Wavelet. The twos are applied to a noise control system including magnetorheological elastomers (MRE, which is a smart viscoelastic material characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Simulation results reveal that the Decomposition LMS algorithm (D-LMS and Decomposition and Reconstruction LMS algorithm (DR-LMS based on Wavelet can significantly improve the noise reduction performance of MRE control system compared with traditional LMS algorithm.

  20. Serial identification of EEG patterns using adaptive wavelet-based analysis

    Science.gov (United States)

    Nazimov, A. I.; Pavlov, A. N.; Nazimova, A. A.; Grubov, V. V.; Koronovskii, A. A.; Sitnikova, E.; Hramov, A. E.

    2013-10-01

    A problem of recognition specific oscillatory patterns in the electroencephalograms with the continuous wavelet-transform is discussed. Aiming to improve abilities of the wavelet-based tools we propose a serial adaptive method for sequential identification of EEG patterns such as sleep spindles and spike-wave discharges. This method provides an optimal selection of parameters based on objective functions and enables to extract the most informative features of the recognized structures. Different ways of increasing the quality of patterns recognition within the proposed serial adaptive technique are considered.

  1. An Adaptive Wavelet?Vaguelette Algorithm for the Solution of PDEs*1

    Science.gov (United States)

    Fröhlich, Jochen; Schneider, Kai

    1997-01-01

    The paper first describes a fast algorithm for the discrete orthonormal wavelet transform and its inverse without using the scaling function. This approach permits to compute the decomposition of a function into a lacunary wavelet basis, i.e., a basis constituted of a subset of all basis functions up to a certain scale, without modification. The construction is then extended to operator-adapted biorthogonal wavelets. This is relevant for the solution of certain nonlinear evolutionary PDEs where a priori information about the significant coefficients is available. We pursue the approach described in (J. Fröhlich and K. Schneider, Europ. J. Mech. B/Fluids13,439, 1994) which is based on the explicit computation of the scalewise contributions of the approximated function to the values at points of hierarchical grids. Here, we present an improved construction employing the cardinal function of the multiresolution. The new method is applied to the Helmholtz equation and illustrated by comparative numerical results. It is then extended for the solution of a nonlinear parabolic PDE with semi-implicit discretization in time and self-adaptive wavelet discretization in space. Results with full adaptivity of the spatial wavelet discretization are presented for a one-dimensional flame front as well as for a two-dimensional problem.

  2. Fuzzy Wavelet Neural Network Using a Correntropy Criterion for Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Leandro L. S. Linhares

    2015-01-01

    Full Text Available Recent researches have demonstrated that the Fuzzy Wavelet Neural Networks (FWNNs are an efficient tool to identify nonlinear systems. In these structures, features related to fuzzy logic, wavelet functions, and neural networks are combined in an architecture similar to the Adaptive Neurofuzzy Inference Systems (ANFIS. In practical applications, the experimental data set used in the identification task often contains unknown noise and outliers, which decrease the FWNN model reliability. In order to reduce the negative effects of these erroneous measurements, this work proposes the direct use of a similarity measure based on information theory in the FWNN learning procedure. The Mean Squared Error (MSE cost function is replaced by the Maximum Correntropy Criterion (MCC in the traditional error backpropagation (BP algorithm. The input-output maps of a real nonlinear system studied in this work are identified from an experimental data set corrupted by different outliers rates and additive white Gaussian noise. The results demonstrate the advantages of the proposed cost function using the MCC as compared to the MSE. This work also investigates the influence of the kernel size on the performance of the MCC in the BP algorithm, since it is the only free parameter of correntropy.

  3. Adaptive Wavelet Transform Method to Identify Cracks in Gears

    Directory of Open Access Journals (Sweden)

    Belsak Ales

    2010-01-01

    Full Text Available Many damages and faults can cause problems in gear unit operation. A crack in the tooth root is probably the least desirable among them. It often leads to failure of gear unit operation. By monitoring vibrations, it is possible to determine the presence of a crack. Signals are, however, very noisy. This makes it difficult to define properties of individual components. Wavelet analysis is an effective tool for analysing signals and for defining properties. In this paper, a denoising method based on wavelet analysis, which takes prior information about impulse probability density into consideration, is used to identify transient information from vibration signals of a gear unit with a fatigue crack in the tooth root.

  4. Wavelet Network Model Based on Multiple Criteria Decision Making for Forecasting Temperature Time Series

    OpenAIRE

    Zhang, Jian; Yang, Xiao-hua; Chen, Xiao-juan

    2015-01-01

    Due to nonlinear and multiscale characteristics of temperature time series, a new model called wavelet network model based on multiple criteria decision making (WNMCDM) has been proposed, which combines the advantage of wavelet analysis, multiple criteria decision making, and artificial neural network. One case for forecasting extreme monthly maximum temperature of Miyun Reservoir has been conducted to examine the performance of WNMCDM model. Compared with nearest neighbor bootstrapping regr...

  5. Mouse EEG spike detection based on the adapted continuous wavelet transform

    Science.gov (United States)

    Tieng, Quang M.; Kharatishvili, Irina; Chen, Min; Reutens, David C.

    2016-04-01

    Objective. Electroencephalography (EEG) is an important tool in the diagnosis of epilepsy. Interictal spikes on EEG are used to monitor the development of epilepsy and the effects of drug therapy. EEG recordings are generally long and the data voluminous. Thus developing a sensitive and reliable automated algorithm for analyzing EEG data is necessary. Approach. A new algorithm for detecting and classifying interictal spikes in mouse EEG recordings is proposed, based on the adapted continuous wavelet transform (CWT). The construction of the adapted mother wavelet is founded on a template obtained from a sample comprising the first few minutes of an EEG data set. Main Result. The algorithm was tested with EEG data from a mouse model of epilepsy and experimental results showed that the algorithm could distinguish EEG spikes from other transient waveforms with a high degree of sensitivity and specificity. Significance. Differing from existing approaches, the proposed approach combines wavelet denoising, to isolate transient signals, with adapted CWT-based template matching, to detect true interictal spikes. Using the adapted wavelet constructed from a predefined template, the adapted CWT is calculated on small EEG segments to fit dynamical changes in the EEG recording.

  6. Research of fetal ECG extraction using wavelet analysis and adaptive filtering.

    Science.gov (United States)

    Wu, Shuicai; Shen, Yanni; Zhou, Zhuhuang; Lin, Lan; Zeng, Yanjun; Gao, Xiaofeng

    2013-10-01

    Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction based on wavelet analysis, the least mean square (LMS) adaptive filtering algorithm, and the spatially selective noise filtration (SSNF) algorithm. First, abdominal signals and thoracic signals were processed by stationary wavelet transform (SWT), and the wavelet coefficients at each scale were obtained. For each scale, the detail coefficients were processed by the LMS algorithm. The coefficient of the abdominal signal was taken as the original input of the LMS adaptive filtering system, and the coefficient of the thoracic signal as the reference input. Then, correlations of the processed wavelet coefficients were computed. The threshold was set and noise components were removed with the SSNF algorithm. Finally, the processed wavelet coefficients were reconstructed by inverse SWT to obtain fetal ECG. Twenty cases of simulated data and 12 cases of clinical data were used. Experimental results showed that the proposed method outperforms the LMS algorithm: (1) it shows improvement in case of superposition R-peaks of fetal ECG and maternal ECG; (2) noise disturbance is eliminated by incorporating the SSNF algorithm and the extracted waveform is more stable; and (3) the performance is proven quantitatively by SNR calculation. The results indicated that the proposed algorithm can be used for extracting fetal ECG from abdominal signals. © 2013 Elsevier Ltd. All rights reserved.

  7. Choosing Wavelet Methods, Filters, and Lengths for Functional Brain Network Construction.

    Directory of Open Access Journals (Sweden)

    Zitong Zhang

    Full Text Available Wavelet methods are widely used to decompose fMRI, EEG, or MEG signals into time series representing neurophysiological activity in fixed frequency bands. Using these time series, one can estimate frequency-band specific functional connectivity between sensors or regions of interest, and thereby construct functional brain networks that can be examined from a graph theoretic perspective. Despite their common use, however, practical guidelines for the choice of wavelet method, filter, and length have remained largely undelineated. Here, we explicitly explore the effects of wavelet method (MODWT vs. DWT, wavelet filter (Daubechies Extremal Phase, Daubechies Least Asymmetric, and Coiflet families, and wavelet length (2 to 24-each essential parameters in wavelet-based methods-on the estimated values of graph metrics and in their sensitivity to alterations in psychiatric disease. We observe that the MODWT method produces less variable estimates than the DWT method. We also observe that the length of the wavelet filter chosen has a greater impact on the estimated values of graph metrics than the type of wavelet chosen. Furthermore, wavelet length impacts the sensitivity of the method to detect differences between health and disease and tunes classification accuracy. Collectively, our results suggest that the choice of wavelet method and length significantly alters the reliability and sensitivity of these methods in estimating values of metrics drawn from graph theory. They furthermore demonstrate the importance of reporting the choices utilized in neuroimaging studies and support the utility of exploring wavelet parameters to maximize classification accuracy in the development of biomarkers of psychiatric disease and neurological disorders.

  8. [The application of adaptive algorithm and wavelet transform in the filtering of ECG signal].

    Science.gov (United States)

    Zhang, Jingzhou; Zhang, Guanglei; Dai, Guanzhong

    2006-10-01

    Electrocardiographic (ECG) signal are a kind of basic physiological signals of human body, and are very important in clinical diagnosis. But the ECG signals from body surface are often interfered by noises such as 50 Hz noise, baseline displacemant, electromyography (EMG) noise and edv. These noises bring obstacle to the diagnosis of cardiovascular diseases. To eliminate the ECG signals noises mentioned above,this paper adopts LMS adaptive algorithm and wavelet transform theory to design three kinds of digital adaptive filters-adaptive noise cancellation filter, wavelet transform filter and adaptive signal dividing filter to filter the corresponding noises. The results show that the three kinds of noises existing in the ECG signal have been efficiently eliminated.

  9. Adaptive Wavelet Scale Selection-based Method for Separating Respiration and Heartbeat in Bio-radars

    Directory of Open Access Journals (Sweden)

    Hu Xikun

    2016-10-01

    Full Text Available Extracting periodic heartbeat signals based on the traditional Fourier transform using a noncontact bio-radar is difficult because chest displacements caused by the heart are much smaller than those caused by respiration. Normally, they can be separated using the continuous wavelet transform; however, the miniscule difference of wavelet scale selection under different conditions may influence the separation performance to some extent. To solve this problem, this study proposes a method based on signal-to-noise ratio calibration to adaptively select the Morletdyadic wavelet scales and then separate the heartbeat signal from the respiration one using the selected scales, which can be applied to detect vital signs of different conditions. The experimental results have exhibited the accuracy and feasibility of the proposed method.

  10. Application of wavelet transformation and adaptive neighborhood based modified backpropagation (ANMBP) for classification of brain cancer

    Science.gov (United States)

    Werdiningsih, Indah; Zaman, Badrus; Nuqoba, Barry

    2017-08-01

    This paper presents classification of brain cancer using wavelet transformation and Adaptive Neighborhood Based Modified Backpropagation (ANMBP). Three stages of the processes, namely features extraction, features reduction, and classification process. Wavelet transformation is used for feature extraction and ANMBP is used for classification process. The result of features extraction is feature vectors. Features reduction used 100 energy values per feature and 10 energy values per feature. Classifications of brain cancer are normal, alzheimer, glioma, and carcinoma. Based on simulation results, 10 energy values per feature can be used to classify brain cancer correctly. The correct classification rate of proposed system is 95 %. This research demonstrated that wavelet transformation can be used for features extraction and ANMBP can be used for classification of brain cancer.

  11. An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects

    Directory of Open Access Journals (Sweden)

    Min Se Dong

    2011-06-01

    Full Text Available Abstract Background Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. Methods In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. Results A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. Conclusions The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians.

  12. Adapted waveform analysis, wavelet packets, and local cosine libraries as a tool for image processing

    Science.gov (United States)

    Coifman, Ronald R.; Woog, Lionel J.

    1995-09-01

    Adapted wave form analysis, refers to a collection of FFT like adapted transform algorithms. Given an image these methods provide special matched collections of templates (orthonormal bases) enabling an efficient coding of the image. Perhaps the closest well known example of such coding method is provided by musical notation, where each segment of music is represented by a musical score made up of notes (templates) characterised by their duration, pitch, location and amplitude, our method corresponds to transcribing the music in as few notes as possible. The extension to images and video is straightforward we describe the image by collections of oscillatory patterns (paint brush strokes)of various sizes locations and amplitudes using a variety of orthogonal bases. These selected basis functions are chosen inside predefined libraries of oscillatory localized functions (trigonometric and wavelet-packets waveforms) so as to optimize the number of parameters needed to describe our object. These algorithms are of complexity N log N opening the door for a large range of applications in signal and image processing, such as compression, feature extraction denoising and enhancement. In particular we describe a class of special purpose compressions for fingerprint irnages, as well as denoising tools for texture and noise extraction. We start by relating traditional Fourier methods to wavelet, wavelet-packet based algorithms using a recent refinement of the windowed sine and cosine transforms. We will then derive an adapted local sine transform show it's relation to wavelet and wavelet-packet analysis and describe an analysis toolkit illustrating the merits of different adaptive and nonadaptive schemes.

  13. Adaptive inpainting algorithm based on DCT induced wavelet regularization.

    Science.gov (United States)

    Li, Yan-Ran; Shen, Lixin; Suter, Bruce W

    2013-02-01

    In this paper, we propose an image inpainting optimization model whose objective function is a smoothed l(1) norm of the weighted nondecimated discrete cosine transform (DCT) coefficients of the underlying image. By identifying the objective function of the proposed model as a sum of a differentiable term and a nondifferentiable term, we present a basic algorithm inspired by Beck and Teboulle's recent work on the model. Based on this basic algorithm, we propose an automatic way to determine the weights involved in the model and update them in each iteration. The DCT as an orthogonal transform is used in various applications. We view the rows of a DCT matrix as the filters associated with a multiresolution analysis. Nondecimated wavelet transforms with these filters are explored in order to analyze the images to be inpainted. Our numerical experiments verify that under the proposed framework, the filters from a DCT matrix demonstrate promise for the task of image inpainting.

  14. Sensor fault diagnosis based on discrete wavelet transform and BP neural network

    Science.gov (United States)

    Liu, Quan; Jiang, Xuemei

    2005-11-01

    Sensor technology is one of three major pillars of the modern information technology. With the extensive application of sensor, the dependability of the sensor is paid more and more attention. The development of sensor faults diagnose technology offers strong guarantee for using the sensor reliably. In this paper, the application of combining the wavelet and BP neural networks to sensors failure detection is studied, and a novel diagnosis method based on discrete wavelet transform and BP neural network was proposed to detect and identify sensor abrupt fault. Since wavelet transform can accurately localize sensor signal characteristics both in time and frequency domain, it is very suitable for non-stationary signal analysis. After discrete wavelet transform analysis for sensor output, eigenvector of energy changing rate was extracted, and classification of sensor fault was conducted by using BP neural network. The proposed method does not need construction of sensor model and measurement of sensor input. Hence redundant data can be reduced by omitting some wavelet coefficients and the capability of fault detection can be improved. Sensor fault diagnosis is simulated by the computer. Through a large amount of simulated examples it indicates that the sensors fault diagnosis method based on the theory of wavelet has characteristic such as good sensitivity, high accuracy rate and robust ability to overcome noise. Simulation results proved the effectiveness of this method.

  15. Discovering functional gene expression patterns in the metabolic network of Escherichia coli with wavelets transforms

    Directory of Open Access Journals (Sweden)

    Zapatka Marc

    2006-03-01

    Full Text Available Abstract Background Microarray technology produces gene expression data on a genomic scale for an endless variety of organisms and conditions. However, this vast amount of information needs to be extracted in a reasonable way and funneled into manageable and functionally meaningful patterns. Genes may be reasonably combined using knowledge about their interaction behaviour. On a proteomic level, biochemical research has elucidated an increasingly complete image of the metabolic architecture, especially for less complex organisms like the well studied bacterium Escherichia coli. Results We sought to discover central components of the metabolic network, regulated by the expression of associated genes under changing conditions. We mapped gene expression data from E. coli under aerobic and anaerobic conditions onto the enzymatic reaction nodes of its metabolic network. An adjacency matrix of the metabolites was created from this graph. A consecutive ones clustering method was used to obtain network clusters in the matrix. The wavelet method was applied on the adjacency matrices of these clusters to collect features for the classifier. With a feature extraction method the most discriminating features were selected. We yielded network sub-graphs from these top ranking features representing formate fermentation, in good agreement with the anaerobic response of hetero-fermentative bacteria. Furthermore, we found a switch in the starting point for NAD biosynthesis, and an adaptation of the l-aspartate metabolism, in accordance with its higher abundance under anaerobic conditions. Conclusion We developed and tested a novel method, based on a combination of rationally chosen machine learning methods, to analyse gene expression data on the basis of interaction data, using a metabolic network of enzymes. As a case study, we applied our method to E. coli under oxygen deprived conditions and extracted physiologically relevant patterns that represent an

  16. Application of Self-Adaptive Wavelet Ridge Demodulation Method Based on LCD to Incipient Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Songrong Luo

    2015-01-01

    Full Text Available When a local defect occurs in gearbox, the vibration signals present as the form of multicomponent amplitude modulation and frequency modulation (AM-FM. Demodulation analysis is an effective way for this kind of signal. A self-adaptive wavelet ridge demodulation method based on LCD is proposed in this paper. Firstly, multicomponent AM-FM signal is decomposed into series of intrinsic scale components (ISCs and the special intrinsic scale component is selected in order to decrease the lower frequency background noise. Secondly, the genetic algorithm is employed to optimize wavelet parameters according to the inherent characteristics of signal; thirdly, self-adaptive wavelet ridge demodulation wavelet for the selected ISC component is performed to get instantaneous amplitude (IA or instantaneous frequency (IF. Lastly, the characteristics frequency can be obtained to identify the working state or failure information from its spectrum. By two simulation signals, the proposed method was compared with various existing demodulation methods; the simulation results show that it has higher accuracy and higher noise tolerant performance than others. Furthermore, the proposed method was applied to incipient fault diagnosis for gearbox and the results show that it is simple and effective.

  17. Comparison between extreme learning machine and wavelet neural networks in data classification

    Science.gov (United States)

    Yahia, Siwar; Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2017-03-01

    Extreme learning Machine is a well known learning algorithm in the field of machine learning. It's about a feed forward neural network with a single-hidden layer. It is an extremely fast learning algorithm with good generalization performance. In this paper, we aim to compare the Extreme learning Machine with wavelet neural networks, which is a very used algorithm. We have used six benchmark data sets to evaluate each technique. These datasets Including Wisconsin Breast Cancer, Glass Identification, Ionosphere, Pima Indians Diabetes, Wine Recognition and Iris Plant. Experimental results have shown that both extreme learning machine and wavelet neural networks have reached good results.

  18. Adaptive Single-Pole Autoreclosure Scheme Based on Wavelet ...

    African Journals Online (AJOL)

    Adaptive autoreclosing is a fast emerging technology for improving power system marginal sta-bility during faults. It avoids reclosing unto permanent faults and recloses unto transient faults only after the secondary arc has extinguished. The challenges that come with the application of the adaptive autoreclosing technology ...

  19. Sensitivity Analysis of Wavelet Neural Network Model for Short-Term Traffic Volume Prediction

    Directory of Open Access Journals (Sweden)

    Jinxing Shen

    2013-01-01

    Full Text Available In order to achieve a more accurate and robust traffic volume prediction model, the sensitivity of wavelet neural network model (WNNM is analyzed in this study. Based on real loop detector data which is provided by traffic police detachment of Maanshan, WNNM is discussed with different numbers of input neurons, different number of hidden neurons, and traffic volume for different time intervals. The test results show that the performance of WNNM depends heavily on network parameters and time interval of traffic volume. In addition, the WNNM with 4 input neurons and 6 hidden neurons is the optimal predictor with more accuracy, stability, and adaptability. At the same time, a much better prediction record will be achieved with the time interval of traffic volume are 15 minutes. In addition, the optimized WNNM is compared with the widely used back-propagation neural network (BPNN. The comparison results indicated that WNNM produce much lower values of MAE, MAPE, and VAPE than BPNN, which proves that WNNM performs better on short-term traffic volume prediction.

  20. Cultural evolutionary design of adaptive wavelet filters based on lifting scheme for micro-instruments

    CERN Document Server

    Manna, C; Romanucci, Carmine; Zanesco, Antonio; Arpaia, Pasquale

    2010-01-01

    An evolutionary procedure based on cultural algorithms for the optimal design of adaptive wavelet filters based on lifting scheme is proposed. Numerical results of characterization, based on statistical experiment design, as well as validation, based on the comparison with a genetic optimization algorithm, are presented. Experimental results of the validation on two case studies for reducing uncertainty arising from noise in on-field corrosion rate measurements are highlighted. (C) 2010 Elsevier Ltd. All rights reserved.

  1. High-Accuracy Methods for Numerical Flow Analysis Using Adaptive Non-Linear Wavelets

    Science.gov (United States)

    2012-08-01

    of one dimensional grid system Data representation of two dimensional grid system is as shown in Fig. 1-3. Original flow data is the NACA0012 ...restriction technique, we checked the overall enhancement in computational efficiency of NACA0012 flow problems. Here, the AUSMPW+ scheme [21] is...adaptive wavelet method with a 2nd level resolution, respectively. Table 2-1 Test cases and results for the flow at NACA0012 airfoil NACA0012 Airfoil

  2. A new time-adaptive discrete bionic wavelet transform for enhancing speech from adverse noise environment

    Science.gov (United States)

    Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui

    2012-04-01

    Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.

  3. An adaptive wavelet stochastic collocation method for irregular solutions of stochastic partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Webster, Clayton G [ORNL; Zhang, Guannan [ORNL; Gunzburger, Max D [ORNL

    2012-10-01

    Accurate predictive simulations of complex real world applications require numerical approximations to first, oppose the curse of dimensionality and second, converge quickly in the presence of steep gradients, sharp transitions, bifurcations or finite discontinuities in high-dimensional parameter spaces. In this paper we present a novel multi-dimensional multi-resolution adaptive (MdMrA) sparse grid stochastic collocation method, that utilizes hierarchical multiscale piecewise Riesz basis functions constructed from interpolating wavelets. The basis for our non-intrusive method forms a stable multiscale splitting and thus, optimal adaptation is achieved. Error estimates and numerical examples will used to compare the efficiency of the method with several other techniques.

  4. An adaptive wavelet-galerkin method for parabolic partial differentia equations

    Directory of Open Access Journals (Sweden)

    Victoria Vampa

    2015-01-01

    Full Text Available In this paper an Adaptive Wavelet-Galerkin method for the solution of parabolic partial differential equations modeling physical problems with different spatial and temporal scales is developed. A semi-implicit time difference scheme is applied and B-spline multiresolution structure on the interval is used. As in many cases these solutions are known to present localized sharp gradients, local error estimators are designed and an efficient adaptive strategy to choose the appropriate scale for each time is developed. Finally, experiments were performed to illustrate the applicability and efficiency of the proposed method.

  5. Nonlinear identification of a DIR-SOFC stack using wavelet networks

    Science.gov (United States)

    Li, Jun; Kang, Ying-Wei; Cao, Guang-Yi; Zhu, Xin-Jian; Tu, Heng-Yong; Li, Jian

    2008-05-01

    Application of wavelet networks for identification of a direct internal reforming solid oxide fuel cell (DIR-SOFC) stack is reported in this paper. The SOFC is a complex system particularly when it is directly fueled with hydrocarbons (natural gas, coal gas, etc.). Most of the traditional models of the SOFC, based on the reforming, electrochemical and thermal modeling, are too complicated. To facilitate controller design and analysis of systems, the wavelet network dynamic model of the DIR-SOFC is constructed, avoiding the consideration of the complex processes in the fuel cells. The input and output data are used for initializing and training the wavelet network by a recursive approach. The Gram-Schmidt algorithm, the Cross-Validation method and immune selection principles are applied to optimization of the network. The simulation is performed and comparisons of characteristics under different operating conditions are given. The results show high static and dynamic accuracy of the identified model. Further, the obtained wavelet network model can be used for developing the model-based controllers of DIR-SOFC.

  6. A Network Traffic Prediction Model Based on Quantum-Behaved Particle Swarm Optimization Algorithm and Fuzzy Wavelet Neural Network

    OpenAIRE

    Kun Zhang; Zhao Hu; Xiao-Ting Gan; Jian-Bo Fang

    2016-01-01

    Due to the fact that the fluctuation of network traffic is affected by various factors, accurate prediction of network traffic is regarded as a challenging task of the time series prediction process. For this purpose, a novel prediction method of network traffic based on QPSO algorithm and fuzzy wavelet neural network is proposed in this paper. Firstly, quantum-behaved particle swarm optimization (QPSO) was introduced. Then, the structure and operation algorithms of WFNN are presented. The pa...

  7. Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models.

    Science.gov (United States)

    Barzegar, Rahim; Fijani, Elham; Asghari Moghaddam, Asghar; Tziritis, Evangelos

    2017-12-01

    Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh-Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985-Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Block-based wavelet transform coding of mammograms with region-adaptive quantization

    Science.gov (United States)

    Moon, Nam Su; Song, Jun S.; Kwon, Musik; Kim, JongHyo; Lee, ChoongWoong

    1998-06-01

    To achieve both high compression ratio and information preserving, it is an efficient way to combine segmentation and lossy compression scheme. Microcalcification in mammogram is one of the most significant sign of early stage of breast cancer. Therefore in coding, detection and segmentation of microcalcification enable us to preserve it well by allocating more bits to it than to other regions. Segmentation of microcalcification is performed both in spatial domain and in wavelet transform domain. Peak error controllable quantization step, which is off-line designed, is suitable for medical image compression. For region-adaptive quantization, block- based wavelet transform coding is adopted and different peak- error-constrained quantizers are applied to blocks according to the segmentation result. In view of preservation of microcalcification, the proposed coding scheme shows better performance than JPEG.

  9. Classification of broadleaf and grass weeds using gabor wavelets and an artificial neural network

    NARCIS (Netherlands)

    Tang, L.; Tian, L.F.; Steward, B.L.

    2003-01-01

    A texture-based weed classification method was developed. The method consisted of a low-level Gabor wavelets-based feature extraction algorithm and a high-level neural network-based pattern recognition algorithm. This classification method was specifically developed to explore the feasibility of

  10. ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Luiz Albino Teixeira Júnior

    2015-04-01

    Full Text Available This paper proposes a method (denoted by WD-ANN that combines the Artificial Neural Networks (ANN and the Wavelet Decomposition (WD to generate short-term global horizontal solar radiation forecasting, which is an essential information for evaluating the electrical power generated from the conversion of solar energy into electrical energy. The WD-ANN method consists of two basic steps: firstly, it is performed the decomposition of level p of the time series of interest, generating p + 1 wavelet orthonormal components; secondly, the p + 1 wavelet orthonormal components (generated in the step 1 are inserted simultaneously into an ANN in order to generate short-term forecasting. The results showed that the proposed method (WD-ANN improved substantially the performance over the (traditional ANN method.

  11. Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks.

    Science.gov (United States)

    Jin, Junghwan; Kim, Jinsoo

    2015-01-01

    Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autoregressive conditional heteroskedasticity, and artificial neural network models are employed to predict natural gas prices. We also emphasize the boundary problem in wavelet decomposition, and compare results that consider the boundary problem case with those that do not. The empirical results show that our suggested approach can handle the boundary problem, such that it facilitates the extraction of the appropriate forecasting results. The performance of the wavelet-hybrid approach was superior in all cases, whereas the application of detail components in the forecasting was only able to yield a small improvement in forecasting performance. Therefore, forecasting with only an approximation component would be acceptable, in consideration of forecasting efficiency.

  12. A speech recognition system based on hybrid wavelet network including a fuzzy decision support system

    Science.gov (United States)

    Jemai, Olfa; Ejbali, Ridha; Zaied, Mourad; Ben Amar, Chokri

    2015-02-01

    This paper aims at developing a novel approach for speech recognition based on wavelet network learnt by fast wavelet transform (FWN) including a fuzzy decision support system (FDSS). Our contributions reside in, first, proposing a novel learning algorithm for speech recognition based on the fast wavelet transform (FWT) which has many advantages compared to other algorithms and in which major problems of the previous works to compute connection weights were solved. They were determined by a direct solution which requires computing matrix inversion, which may be intensive. However, the new algorithm was realized by the iterative application of FWT to compute connection weights. Second, proposing a new classification way for this speech recognition system. It operated a human reasoning mode employing a FDSS to compute similarity degrees between test and training signals. Extensive empirical experiments were conducted to compare the proposed approach with other approaches. Obtained results show that the new speech recognition system has a better performance than previously established ones.

  13. Adaptive Wavelet Threshold Denoising Method for Machinery Sound Based on Improved Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2016-07-01

    Full Text Available As the sound signal of a machine contains abundant information and is easy to measure, acoustic-based monitoring or diagnosis systems exhibit obvious superiority, especially in some extreme conditions. However, the sound directly collected from industrial field is always polluted. In order to eliminate noise components from machinery sound, a wavelet threshold denoising method optimized by an improved fruit fly optimization algorithm (WTD-IFOA is proposed in this paper. The sound is firstly decomposed by wavelet transform (WT to obtain coefficients of each level. As the wavelet threshold functions proposed by Donoho were discontinuous, many modified functions with continuous first and second order derivative were presented to realize adaptively denoising. However, the function-based denoising process is time-consuming and it is difficult to find optimal thresholds. To overcome these problems, fruit fly optimization algorithm (FOA was introduced to the process. Moreover, to avoid falling into local extremes, an improved fly distance range obeying normal distribution was proposed on the basis of original FOA. Then, sound signal of a motor was recorded in a soundproof laboratory, and Gauss white noise was added into the signal. The simulation results illustrated the effectiveness and superiority of the proposed approach by a comprehensive comparison among five typical methods. Finally, an industrial application on a shearer in coal mining working face was performed to demonstrate the practical effect.

  14. A simple structure wavelet transform circuit employing function link neural networks and SI filters

    Science.gov (United States)

    Mu, Li; Yigang, He

    2016-12-01

    Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.

  15. Off-Line Handwritten Signature Recognition by Wavelet Entropy and Neural Network

    Directory of Open Access Journals (Sweden)

    Khaled Daqrouq

    2017-05-01

    Full Text Available Handwritten signatures are widely utilized as a form of personal recognition. However, they have the unfortunate shortcoming of being easily abused by those who would fake the identification or intent of an individual which might be very harmful. Therefore, the need for an automatic signature recognition system is crucial. In this paper, a signature recognition approach based on a probabilistic neural network (PNN and wavelet transform average framing entropy (AFE is proposed. The system was tested with a wavelet packet (WP entropy denoted as a WP entropy neural network system (WPENN and with a discrete wavelet transform (DWT entropy denoted as a DWT entropy neural network system (DWENN. Our investigation was conducted over several wavelet families and different entropy types. Identification tasks, as well as verification tasks, were investigated for a comprehensive signature system study. Several other methods used in the literature were considered for comparison. Two databases were used for algorithm testing. The best recognition rate result was achieved by WPENN whereby the threshold entropy reached 92%.

  16. A wavelet-based spatially adaptive method for mammographic contrast enhancement.

    Science.gov (United States)

    Sakellaropoulos, P; Costaridou, L; Panayiotakis, G

    2003-03-21

    A method aimed at minimizing image noise while optimizing contrast of image features is presented. The method is generic and it is based on local modification of multiscale gradient magnitude values provided by the redundant dyadic wavelet transform. Denoising is accomplished by a spatially adaptive thresholding strategy, taking into account local signal and noise standard deviation. Noise standard deviation is estimated from the background of the mammogram. Contrast enhancement is accomplished by applying a local linear mapping operator on denoised wavelet magnitude values. The operator normalizes local gradient magnitude maxima to the global maximum of the first scale magnitude subimage. Coefficient mapping is controlled by a local gain limit parameter. The processed image is derived by reconstruction from the modified wavelet coefficients. The method is demonstrated with a simulated image with added Gaussian noise, while an initial quantitative performance evaluation using 22 images from the DDSM database was performed. Enhancement was applied globally to each mammogram, using the same local gain limit value. Quantitative contrast and noise metrics were used to evaluate the quality of processed image regions containing verified lesions. Results suggest that the method offers significantly improved performance over conventional and previously reported global wavelet contrast enhancement methods. The average contrast improvement, noise amplification and contrast-to-noise ratio improvement indices were measured as 9.04, 4.86 and 3.04, respectively. In addition, in a pilot preference study, the proposed method demonstrated the highest ranking, among the methods compared. The method was implemented in C++ and integrated into a medical image visualization tool.

  17. A wavelet-based spatially adaptive method for mammographic contrast enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Sakellaropoulos, P; Costaridou, L; Panayiotakis, G [Department of Medical Physics, School of Medicine, University of Patras, Patras 26500 (Greece)

    2003-03-21

    A method aimed at minimizing image noise while optimizing contrast of image features is presented. The method is generic and it is based on local modification of multiscale gradient magnitude values provided by the redundant dyadic wavelet transform. Denoising is accomplished by a spatially adaptive thresholding strategy, taking into account local signal and noise standard deviation. Noise standard deviation is estimated from the background of the mammogram. Contrast enhancement is accomplished by applying a local linear mapping operator on denoised wavelet magnitude values. The operator normalizes local gradient magnitude maxima to the global maximum of the first scale magnitude subimage. Coefficient mapping is controlled by a local gain limit parameter. The processed image is derived by reconstruction from the modified wavelet coefficients. The method is demonstrated with a simulated image with added Gaussian noise, while an initial quantitative performance evaluation using 22 images from the DDSM database was performed. Enhancement was applied globally to each mammogram, using the same local gain limit value. Quantitative contrast and noise metrics were used to evaluate the quality of processed image regions containing verified lesions. Results suggest that the method offers significantly improved performance over conventional and previously reported global wavelet contrast enhancement methods. The average contrast improvement, noise amplification and contrast-to-noise ratio improvement indices were measured as 9.04, 4.86 and 3.04, respectively. In addition, in a pilot preference study, the proposed method demonstrated the highest ranking, among the methods compared. The method was implemented in C++ and integrated into a medical image visualization tool.

  18. Research on two-port network of wavelet transform processor using surface acoustic wavelet devices and its application.

    Science.gov (United States)

    Liu, Shoubing; Lu, Wenke; Zhu, Changchun

    2017-11-01

    The goal of this research is to study two-port network of wavelet transform processor (WTP) using surface acoustic wave (SAW) devices and its application. The motive was prompted by the inconvenience of the long research and design cycle and the huge research funding involved with traditional method in this field, which were caused by the lack of the simulation and emulation method of WTP using SAW devices. For this reason, we introduce the two-port network analysis tool, which has been widely used in the design and analysis of SAW devices with uniform interdigital transducers (IDTs). Because the admittance parameters calculation formula of the two-port network can only be used for the SAW devices with uniform IDTs, this analysis tool cannot be directly applied into the design and analysis of the processor using SAW devices, whose input interdigital transducer (IDT) is apodized weighting. Therefore, in this paper, we propose the channel segmentation method, which can convert the WTP using SAW devices into parallel channels, and also provide with the calculation formula of the number of channels, the number of finger pairs and the static capacitance of an interdigital period in each parallel channel firstly. From the parameters given above, we can calculate the admittance parameters of the two port network for each channel, so that we can obtain the admittance parameter of the two-port network of the WTP using SAW devices on the basis of the simplification rule of parallel two-port network. Through this analysis tool, not only can we get the impulse response function of the WTP using SAW devices but we can also get the matching circuit of it. Large numbers of studies show that the parameters of the two-port network obtained by this paper are consistent with those measured by network analyzer E5061A, and the impulse response function obtained by the two-port network analysis tool is also consistent with that measured by network analyzer E5061A, which can meet the

  19. [Application of wavelet transform and neural network in the near-infrared spectrum analysis of oil shale].

    Science.gov (United States)

    Li, Su-Yi; Ji, Yan-Ju; Liu, Wei-Yu; Wang, Zhi-Hong

    2013-04-01

    In the present study, an innovative method is proposed, employing both wavelet transform and neural network, to analyze the near-infrared spectrum data in oil shale survey. The method entails using db8 wavelet at 3 levels decomposition to process raw data, using the transformed data as the input matrix, and creating the model through neural network. To verify the validity of the method, this study analyzes 30 synthesized oil shale samples, in which 20 samples are randomly selected for network training, the other 10 for model prediction, and uses the full spectrum and the wavelet transformed spectrum to carry out 10 network models, respectively. Results show that the mean speed of the full spectrum neural network modeling is 570.33 seconds, and the predicted residual sum of squares (PRESS) and correlation coefficient of prediction are 0.006 012 and 0.843 75, respectively. In contrast, the mean speed of the wavelet network modeling method is 3.15 seconds, and the mean PRESS and correlation coefficient of prediction are 0.002 048 and 0.953 19, respectively. These results demonstrate that the wavelet neural network modeling method is significantly superior to the full spectrum neural network modeling method. This study not only provides a new method for more efficient and accurate detection of the oil content of oil shale, but also indicates the potential for applying wavelet transform and neutral network in broad near-infrared spectrum analysis.

  20. Adaptive Wavelet Galerkin Methods on Distorted Domains: Setup of the Algebraic System

    Science.gov (United States)

    2000-01-01

    Istituto di Analisi Numerica del C.N.R. in Pavia, Italy. References 1. Barinka, A., T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen, and K. Urban...C. Canuto, and K. Urban, On the adaptive computation of integrals of wavelets, Preprint No. 1129, Istituto di Analisi Numerica del C.N.R. Pavia, 1999...additional features in 2d and 3d. Preprint 1052, Istituto di Analisi Numerica del C.N.R., Pavia, 1997. To appear in Appl. Comp. Harm. Anal. 5. Cohen, A

  1. Navigation of autonomous mobile robot using different activation functions of wavelet neural network

    Directory of Open Access Journals (Sweden)

    Panigrahi Pratap Kumar

    2015-03-01

    Full Text Available An autonomous mobile robot is a robot which can move and act autonomously without the help of human assistance. Navigation problem of mobile robot in unknown environment is an interesting research area. This is a problem of deducing a path for the robot from its initial position to a given goal position without collision with the obstacles. Different methods such as fuzzy logic, neural networks etc. are used to find collision free path for mobile robot. This paper examines behavior of path planning of mobile robot using three activation functions of wavelet neural network i.e. Mexican Hat, Gaussian and Morlet wavelet functions by MATLAB. The simulation result shows that WNN has faster learning speed with respect to traditional artificial neural network.

  2. A Wavelet Analysis-Based Dynamic Prediction Algorithm to Network Traffic

    Directory of Open Access Journals (Sweden)

    Meng Fan-Bo

    2016-01-01

    Full Text Available Network traffic is a significantly important parameter for network traffic engineering, while it holds highly dynamic nature in the network. Accordingly, it is difficult and impossible to directly predict traffic amount of end-to-end flows. This paper proposes a new prediction algorithm to network traffic using the wavelet analysis. Firstly, network traffic is converted into the time-frequency domain to capture time-frequency feature of network traffic. Secondly, in different frequency components, we model network traffic in the time-frequency domain. Finally, we build the prediction model about network traffic. At the same time, the corresponding prediction algorithm is presented to attain network traffic prediction. Simulation results indicates that our approach is promising.

  3. Fetal Electrocardiogram Extraction and Analysis Using Adaptive Noise Cancellation and Wavelet Transformation Techniques.

    Science.gov (United States)

    Sutha, P; Jayanthi, V E

    2017-12-08

    Birth defect-related demise is mainly due to congenital heart defects. In the earlier stage of pregnancy, fetus problem can be identified by finding information about the fetus to avoid stillbirths. The gold standard used to monitor the health status of the fetus is by Cardiotachography(CTG), cannot be used for long durations and continuous monitoring. There is a need for continuous and long duration monitoring of fetal ECG signals to study the progressive health status of the fetus using portable devices. The non-invasive method of electrocardiogram recording is one of the best method used to diagnose fetal cardiac problem rather than the invasive methods.The monitoring of the fECG requires development of a miniaturized hardware and a efficient signal processing algorithms to extract the fECG embedded in the mother ECG. The paper discusses a prototype hardware developed to monitor and record the raw mother ECG signal containing the fECG and a signal processing algorithm to extract the fetal Electro Cardiogram signal. We have proposed two methods of signal processing, first is based on the Least Mean Square (LMS) Adaptive Noise Cancellation technique and the other method is based on the Wavelet Transformation technique. A prototype hardware was designed and developed to acquire the raw ECG signal containing the mother and fetal ECG and the signal processing techniques were used to eliminate the noises and extract the fetal ECG and the fetal Heart Rate Variability was studied. Both the methods were evaluated with the signal acquired from a fetal ECG simulator, from the Physionet database and that acquired from the subject. Both the methods are evaluated by finding heart rate and its variability, amplitude spectrum and mean value of extracted fetal ECG. Also the accuracy, sensitivity and positive predictive value are also determined for fetal QRS detection technique. In this paper adaptive filtering technique uses Sign-sign LMS algorithm and wavelet techniques with

  4. Fast solution of geophysical inversion using adaptive mesh, space-filling curves and wavelet compression

    Science.gov (United States)

    Davis, Kristofer; Li, Yaoguo

    2011-04-01

    Many geophysical inverse problems involve large and dense coefficient matrices that often exceed the limitations of physical memory in commonly available computers. The repeated multiplications of such matrices to vectors during processing or inversion require an immense amount of computing power. These two factors pose a significant challenge to solving large-scale inverse problems in practice and can render many realistic problems intractable. To overcome these limitations, we develop a new computational approach for this class of problems by combining an adaptive quadtree or octree model discretization and wavelet transforms on reordered parameter sets. The adaptive mesh discretizes the model region according to the required resolutions based on localized anomalies. Hilbert space-filling curves and similar ordering of the reduced parameter set then enable a higher compression of the coefficient matrix by forming its sparse representation in the 1-D wavelet domain. This combination can reduce the storage requirement by 100 to 1000 times and, therefore, also speeds up the computation during the processing stage by the same factor. As a result, problems can now be solved that were computationally prohibitive. We present the algorithm and illustrate its effectiveness with an example from equivalent source construction in potential-field processing.

  5. Neuro-fuzzy-wavelet network for detection and classification of the voltage disturbances in electrical power system; Rede neuro-fuzzy-wavelet para deteccao e classificacao de anomalias de tensao em sistemas eletricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Malange, Fernando C.V. [Universidade do Estado de Mato Grosso (UEMT), Caceres, MT (Brazil). Dept. de Computacao], E-mail: fmalange@gmail.com; Minussi, Carlos R. [Universidade Estadual Paulista (UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica], E-mail: minussi@dee.feis.unesp.br

    2009-07-01

    A methodology for identifying and classifying voltage disturbances (harmonics, voltage sag, etc.) using fuzzy ARTMAP neural networks is presented. It is an ART (adaptive resonance theory) architecture family neural network that presents the stability and plasticity properties, which are fundamental requests for developing a reliable electrical systems with reduced processing time. Stability means a guarantee of good solutions; plasticity allows realize the training without restart the system every time there are new patterns to be stored in a weight matrix of the neural network. The training is realized from the wave forms provided by the acquisition data system, using the wavelets theory to generate the coefficients that constitute the input patterns of the neural network. Results from simulations show that the accuracy index is nearly 100%. (author)

  6. Using wavelet-feedforward neural networks to improve air pollution forecasting in urban environments.

    Science.gov (United States)

    Dunea, Daniel; Pohoata, Alin; Iordache, Stefania

    2015-07-01

    The paper presents the screening of various feedforward neural networks (FANN) and wavelet-feedforward neural networks (WFANN) applied to time series of ground-level ozone (O3), nitrogen dioxide (NO2), and particulate matter (PM10 and PM2.5 fractions) recorded at four monitoring stations located in various urban areas of Romania, to identify common configurations with optimal generalization performance. Two distinct model runs were performed as follows: data processing using hourly-recorded time series of airborne pollutants during cold months (O3, NO2, and PM10), when residential heating increases the local emissions, and data processing using 24-h daily averaged concentrations (PM2.5) recorded between 2009 and 2012. Dataset variability was assessed using statistical analysis. Time series were passed through various FANNs. Each time series was decomposed in four time-scale components using three-level wavelets, which have been passed also through FANN, and recomposed into a single time series. The agreement between observed and modelled output was evaluated based on the statistical significance (r coefficient and correlation between errors and data). Daubechies db3 wavelet-Rprop FANN (6-4-1) utilization gave positive results for O3 time series optimizing the exclusive use of the FANN for hourly-recorded time series. NO2 was difficult to model due to time series specificity, but wavelet integration improved FANN performances. Daubechies db3 wavelet did not improve the FANN outputs for PM10 time series. Both models (FANN/WFANN) overestimated PM2.5 forecasted values in the last quarter of time series. A potential improvement of the forecasted values could be the integration of a smoothing algorithm to adjust the PM2.5 model outputs.

  7. Nonlinear Adaptive NeuroFuzzy Wavelet Based Damping Control Paradigm for SSSC

    Directory of Open Access Journals (Sweden)

    BADAR, R.

    2012-08-01

    Full Text Available Static Synchronous Series Compensator (SSSC is a series compensating Flexible AC Transmission System (FACTS controller with primary objective of power flow control on a line by injecting a voltage in series with transmission line. However, it can efficiently be used for improving the system stability by using a supplementary damping control system. In this work, Adaptive Neurofuzzy Wavelet Control (ANFWC paradigm for SSSC supplementary damping control system has been proposed and successfully applied to a Single Machine Infinite Bus (SMIB power system. Gradient descent based back propagation algorithm, being simple with sufficient efficiency, has been used to update the controller parameters. The robustness of the proposed control strategy has been validated using nonlinear time domain simulations for different faults and various operating conditions of power system. Finally, the results have been compared with Conventional Adaptive Takagi-Sugino Controller (CATC on the basis of different performance indices.

  8. Control Strategy Based on Wavelet Transform and Neural Network for Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Y. D. Song

    2013-01-01

    Full Text Available This paper deals with an energy management of a hybrid power generation system. The proposed control strategy for the energy management is based on the combination of wavelet transform and neural network arithmetic. The hybrid system in this paper consists of an emulated wind turbine generator, PV panels, DC and AC loads, lithium ion battery, and super capacitor, which are all connected on a DC bus with unified DC voltage. The control strategy is responsible for compensating the difference between the generated power from the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into smoothed component and fast fluctuated component. In consideration of battery protection, the neural network is introduced to calculate the reference power of battery. Super capacitor (SC is controlled to regulate the DC bus voltage. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.

  9. Performance evaluation of wavelet-based ECG compression algorithms for telecardiology application over CDMA network.

    Science.gov (United States)

    Kim, Byung S; Yoo, Sun K

    2007-09-01

    The use of wireless networks bears great practical importance in instantaneous transmission of ECG signals during movement. In this paper, three typical wavelet-based ECG compression algorithms, Rajoub (RA), Embedded Zerotree Wavelet (EZ), and Wavelet Transform Higher-Order Statistics Coding (WH), were evaluated to find an appropriate ECG compression algorithm for scalable and reliable wireless tele-cardiology applications, particularly over a CDMA network. The short-term and long-term performance characteristics of the three algorithms were analyzed using normal, abnormal, and measurement noise-contaminated ECG signals from the MIT-BIH database. In addition to the processing delay measurement, compression efficiency and reconstruction sensitivity to error were also evaluated via simulation models including the noise-free channel model, random noise channel model, and CDMA channel model, as well as over an actual CDMA network currently operating in Korea. This study found that the EZ algorithm achieves the best compression efficiency within a low-noise environment, and that the WH algorithm is competitive for use in high-error environments with degraded short-term performance with abnormal or contaminated ECG signals.

  10. A Network Traffic Prediction Model Based on Quantum-Behaved Particle Swarm Optimization Algorithm and Fuzzy Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2016-01-01

    Full Text Available Due to the fact that the fluctuation of network traffic is affected by various factors, accurate prediction of network traffic is regarded as a challenging task of the time series prediction process. For this purpose, a novel prediction method of network traffic based on QPSO algorithm and fuzzy wavelet neural network is proposed in this paper. Firstly, quantum-behaved particle swarm optimization (QPSO was introduced. Then, the structure and operation algorithms of WFNN are presented. The parameters of fuzzy wavelet neural network were optimized by QPSO algorithm. Finally, the QPSO-FWNN could be used in prediction of network traffic simulation successfully and evaluate the performance of different prediction models such as BP neural network, RBF neural network, fuzzy neural network, and FWNN-GA neural network. Simulation results show that QPSO-FWNN has a better precision and stability in calculation. At the same time, the QPSO-FWNN also has better generalization ability, and it has a broad prospect on application.

  11. Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hang T.; Nabney, Ian T. [Non-linearity and Complexity Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom)

    2010-09-15

    This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their NMSEs are 0.02314 and 0.15384 respectively. (author)

  12. Method of detecting abnormal signals by wavelet and adaptive digital filter; Wavelet to tekio digital filter ni yoru ijo shingo no kenshutsuho

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T. [Idemitsu Engineering Co. Ltd., Tokyo (Japan); Hanakuma, Y.; Nakayama, K. [Idemitsu Petrochemical Co. Ltd., Tokyo (Japan); Nakanishi, E. [Kobe University, Kobe (Japan)

    1994-09-15

    With an objective to improve incompleteness in abnormality detection in the conventional standard function monitoring using a discrete type control system, an abnormal signal detection method was developed that uses a wavelet that processes on-line signals easily and an adaptive digital filter (ADF). Multiplying the signal `f(t)` with a wavelet function `h{sub o}(t)` and integrating the result derives the wavelet conversion value `h(a, b)`. Since the weight imposed on the data can be changed, the `h(a, b)` responds sensitively to the change in `f(t)`. A Gbor function that facilitates on-line processing was used for `h{sub o}t`. The ADF detects errors between the target value and the output value by using the algorithm of Feintuch, and can estimate the change in the signal and the time when the abnormal signal has mixed in. The trend indication facilitates the monitoring, and makes the on-line detection possible. The effectiveness of the method was verified when it was applied to a simulation and detection of abnormality in catalyst flow rate in a polyethylene manufacturing device. 2 refs., 7 figs.

  13. Decentralized clustering over adaptive networks

    OpenAIRE

    Khawatmi, Sahar; Zoubir, Abdelhak M.; Sayed, Ali H.

    2015-01-01

    Cooperation among agents across the network leads to better estimation accuracy. However, in many network applications the agents infer and track different models of interest in an environment where agents do not know beforehand which models are being observed by their neighbors. In this work, we propose an adaptive and distributed clustering technique that allows agents to learn and form clusters from streaming data in a robust manner. Once clusters are formed, cooperation among agents with ...

  14. Wavelet neural networks initialization using hybridized clustering and harmony search algorithm: Application in epileptic seizure detection

    Science.gov (United States)

    Zainuddin, Zarita; Lai, Kee Huong; Ong, Pauline

    2013-04-01

    Artificial neural networks (ANNs) are powerful mathematical models that are used to solve complex real world problems. Wavelet neural networks (WNNs), which were developed based on the wavelet theory, are a variant of ANNs. During the training phase of WNNs, several parameters need to be initialized; including the type of wavelet activation functions, translation vectors, and dilation parameter. The conventional k-means and fuzzy c-means clustering algorithms have been used to select the translation vectors. However, the solution vectors might get trapped at local minima. In this regard, the evolutionary harmony search algorithm, which is capable of searching for near-optimum solution vectors, both locally and globally, is introduced to circumvent this problem. In this paper, the conventional k-means and fuzzy c-means clustering algorithms were hybridized with the metaheuristic harmony search algorithm. In addition to obtaining the estimation of the global minima accurately, these hybridized algorithms also offer more than one solution to a particular problem, since many possible solution vectors can be generated and stored in the harmony memory. To validate the robustness of the proposed WNNs, the real world problem of epileptic seizure detection was presented. The overall classification accuracy from the simulation showed that the hybridized metaheuristic algorithms outperformed the standard k-means and fuzzy c-means clustering algorithms.

  15. Identificação não linear usando uma rede fuzzy wavelet neural network modificada

    OpenAIRE

    Araújo Júnior, José Medeiros de

    2014-01-01

    Nas últimas décadas, as redes neurais têm se estabelecido como uma das principais ferramentas para a identificação de sistemas não lineares. Entre os diversos tipos de redes utilizadas em identificação, uma que se pode destacar é a rede neural wavelet (ou Wavelet Neural Network - WNN). Esta rede combina as características de multirresolução da teoria wavelet com a capacidade de aprendizado e generalização das redes neurais, podendo fornecer modelos mais exatos do que os ob...

  16. Wavelet Network: Online Sequential Extreme Learning Machine for Nonlinear Dynamic Systems Identification

    Directory of Open Access Journals (Sweden)

    Dhiadeen Mohammed Salih

    2015-01-01

    Full Text Available A single hidden layer feedforward neural network (SLFN with online sequential extreme learning machine (OSELM algorithm has been introduced and applied in many regression problems successfully. However, using SLFN with OSELM as black-box for nonlinear system identification may lead to building models for the identified plant with inconsistency responses from control perspective. The reason can refer to the random initialization procedure of the SLFN hidden node parameters with OSELM algorithm. In this paper, a single hidden layer feedforward wavelet network (WN is introduced with OSELM for nonlinear system identification aimed at getting better generalization performances by reducing the effect of a random initialization procedure.

  17. Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients

    Science.gov (United States)

    Krishnaveni, V.; Jayaraman, S.; Anitha, L.; Ramadoss, K.

    2006-12-01

    Electroencephalogram (EEG) gives researchers a non-invasive way to record cerebral activity. It is a valuable tool that helps clinicians to diagnose various neurological disorders and brain diseases. Blinking or moving the eyes produces large electrical potential around the eyes known as electrooculogram. It is a non-cortical activity which spreads across the scalp and contaminates the EEG recordings. These contaminating potentials are called ocular artifacts (OAs). Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the possible experimental designs and may affect the cognitive processes under investigation. In this paper, a nonlinear time-scale adaptive denoising system based on a wavelet shrinkage scheme has been used for removing OAs from EEG. The time-scale adaptive algorithm is based on Stein's unbiased risk estimate (SURE) and a soft-like thresholding function which searches for optimal thresholds using a gradient based adaptive algorithm is used. Denoising EEG with the proposed algorithm yields better results in terms of ocular artifact reduction and retention of background EEG activity compared to non-adaptive thresholding methods and the JADE algorithm.

  18. Daily Crude Oil Price Forecasting Using Hybridizing Wavelet and Artificial Neural Network Model

    Directory of Open Access Journals (Sweden)

    Ani Shabri

    2014-01-01

    Full Text Available A new method based on integrating discrete wavelet transform and artificial neural networks (WANN model for daily crude oil price forecasting is proposed. The discrete Mallat wavelet transform is used to decompose the crude price series into one approximation series and some details series (DS. The new series obtained by adding the effective one approximation series and DS component is then used as input into the ANN model to forecast crude oil price. The relative performance of WANN model was compared to regular ANN model for crude oil forecasting at lead times of 1 day for two main crude oil price series, West Texas Intermediate (WTI and Brent crude oil spot prices. In both cases, WANN model was found to provide more accurate crude oil prices forecasts than individual ANN model.

  19. A study on Fault Diagnosis Method of Rolling Bearing Based on Wavelet Packet and Improved BP Neural Network

    Science.gov (United States)

    Song, Mengmeng; Song, Haixia; Xiao, Shungen

    2017-12-01

    In this paper, rolling bearing fault diagnosis method is proposed based on wavelet packet threshold de-noising and improved BP neural network. It achieves the goal of signal de-noising by setting the appropriate threshold, and then the denoised signal is decomposed into three layers by wavelet packet. The energy characteristics of the 8 frequency bands are calculated respectively. Levenberg-Maquardt algorithm which is improved the traditional BP neural network to improve the diagnosis efficiency of BP neural network, is proposed. Taking the outer ring fault of rolling bearings as an example, the experimental results show that the wavelet packet threshold de-noising can effectively improve the signal-to-noise ratio. Compared with the traditional BP neural network, the improved BP neural network has better diagnosis efficiency.

  20. SHORT-TERM SOLAR RADIATION FORECASTING BY USING AN ITERATIVE COMBINATION OF WAVELET ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Julio Cesar Royer

    2016-03-01

    Full Text Available The information provided by accurate forecasts of solar energy time series are considered essential for performing an appropriate prediction of the electrical power that will be available in an electric system, as pointed out in Zhou et al. (2011. However, since the underlying data are highly non-stationary, it follows that to produce their accurate predictions is a very difficult assignment. In order to accomplish it, this paper proposes an iterative Combination of Wavelet Artificial Neural Networks (CWANN which is aimed to produce short-term solar radiation time series forecasting. Basically, the CWANN method can be split into three stages: at first one, a decomposition of level p, defined in terms of a wavelet basis, of a given solar radiation time series is performed, generating r+1 Wavelet Components (WC; at second one, these r+1 WCs are individually modeled by the k different ANNs, where k>5, and the 5 best forecasts of each WC are combined by means of another ANN, producing the combined forecasts of WC; and, at third one, the combined forecasts WC are simply added, generating the forecasts of the underlying solar radiation data. An iterative algorithm is proposed for iteratively searching for the optimal values for the CWANN parameters, as we will see. In order to evaluate it, ten real solar radiation time series of Brazilian system were modeled here. In all statistical results, the CWANN method has achieved remarkable greater forecasting performances when compared with a traditional ANN (described in Section 2.1.

  1. Finding the multipath propagation of multivariable crude oil prices using a wavelet-based network approach

    Science.gov (United States)

    Jia, Xiaoliang; An, Haizhong; Sun, Xiaoqi; Huang, Xuan; Gao, Xiangyun

    2016-04-01

    The globalization and regionalization of crude oil trade inevitably give rise to the difference of crude oil prices. The understanding of the pattern of the crude oil prices' mutual propagation is essential for analyzing the development of global oil trade. Previous research has focused mainly on the fuzzy long- or short-term one-to-one propagation of bivariate oil prices, generally ignoring various patterns of periodical multivariate propagation. This study presents a wavelet-based network approach to help uncover the multipath propagation of multivariable crude oil prices in a joint time-frequency period. The weekly oil spot prices of the OPEC member states from June 1999 to March 2011 are adopted as the sample data. First, we used wavelet analysis to find different subseries based on an optimal decomposing scale to describe the periodical feature of the original oil price time series. Second, a complex network model was constructed based on an optimal threshold selection to describe the structural feature of multivariable oil prices. Third, Bayesian network analysis (BNA) was conducted to find the probability causal relationship based on periodical structural features to describe the various patterns of periodical multivariable propagation. Finally, the significance of the leading and intermediary oil prices is discussed. These findings are beneficial for the implementation of periodical target-oriented pricing policies and investment strategies.

  2. Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

    Science.gov (United States)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    2010-02-01

    This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.

  3. Ripples in Communication : Reconfigurable and Adaptive Wireless Communication Systems based on Wavelet Packet Modulators

    NARCIS (Netherlands)

    Lakshmanan, M.K.

    2011-01-01

    Wavelet Packet Modulation (WPM) is a multi-carrier transmission technique that uses orthogonal wavelet packet bases to combine a collection of information bits into a single composite signal. This system can be considered as a viable alternative, for wide-band communication, to the popular

  4. Designing an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform

    OpenAIRE

    Rezaee Kh.; Haddadnia J

    2013-01-01

    Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic images require accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive K-means techniques to transmute the medical images implement the tumor estimation and detect breast...

  5. Discovery of a Strongly-Interrelated Gene Network in Corals under Constant Darkness by Correlation Analysis after Wavelet Transform on Complex Network Model

    OpenAIRE

    Longlong Liu; Jieqiong Qu; Xilong Zhou; Xuefeng Liu; Zhaobao Zhang; Xumin Wang; Tao Liu; Guiming Liu

    2014-01-01

    Coral reefs occupy a relatively small portion of sea area, yet serve as a crucial source of biodiversity by establishing harmonious ecosystems with marine plants and animals. Previous researches mainly focused on screening several key genes induced by stress. Here we proposed a novel method--correlation analysis after wavelet transform of complex network model, to explore the effect of light on gene expression in the coral Acropora millepora based on microarray data. In this method, wavelet t...

  6. Hybrid Generalised Additive Type-2 Fuzzy-Wavelet-Neural Network in Dynamic Data Mining

    Directory of Open Access Journals (Sweden)

    Bodyanskiy Yevgeniy

    2015-12-01

    Full Text Available In the paper, a new hybrid system of computational intelligence is proposed. This system combines the advantages of neuro-fuzzy system of Takagi-Sugeno-Kang, type-2 fuzzy logic, wavelet neural networks and generalised additive models of Hastie-Tibshirani. The proposed system has universal approximation properties and learning capability based on the experimental data sets which pertain to the neural networks and neuro-fuzzy systems; interpretability and transparency of the obtained results due to the soft computing systems and, first of all, due to type-2 fuzzy systems; possibility of effective description of local signal and process features due to the application of systems based on wavelet transform; simplicity and speed of learning process due to generalised additive models. The proposed system can be used for solving a wide class of dynamic data mining tasks, which are connected with non-stationary, nonlinear stochastic and chaotic signals. Such a system is sufficiently simple in numerical implementation and is characterised by a high speed of learning and information processing.

  7. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks

    Science.gov (United States)

    Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong

    2017-01-01

    A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.

  8. Multitask Diffusion Adaptation Over Networks

    Science.gov (United States)

    Chen, Jie; Richard, Cedric; Sayed, Ali H.

    2014-08-01

    Adaptive networks are suitable for decentralized inference tasks, e.g., to monitor complex natural phenomena. Recent research works have intensively studied distributed optimization problems in the case where the nodes have to estimate a single optimum parameter vector collaboratively. However, there are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously, in a collaborative manner, over the area covered by the network. In this paper, we employ diffusion strategies to develop distributed algorithms that address multitask problems by minimizing an appropriate mean-square error criterion with $\\ell_2$-regularization. The stability and convergence of the algorithm in the mean and in the mean-square sense is analyzed. Simulations are conducted to verify the theoretical findings, and to illustrate how the distributed strategy can be used in several useful applications related to spectral sensing, target localization, and hyperspectral data unmixing.

  9. Adaptive Dynamics of Regulatory Networks: Size Matters

    Directory of Open Access Journals (Sweden)

    Martinetz Thomas

    2009-01-01

    Full Text Available To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.

  10. Detection and classification of power quality disturbances using parallel neural networks based on discrete wavelet transform

    Directory of Open Access Journals (Sweden)

    Maryam Rahmati Garousi

    2016-03-01

    Full Text Available In this paper, a new method for the detection and classification of all types of power quality disturbances is presented. In addition to separating the disturbance signals, the proposed method is able to determine the type of disturbances. Disturbance waveforms are generated based on IEEE 1159 standard and they are de-noised using discrete wavelet transform. To detect the sinusoidal signals from disturbance signals, new criteria have been proposed. By introducing these new criteria, the classification algorithm is not active for non-disturbance signals. Therefore, the computation time is reduced. If a signal has disturbance, to extract the required information, it is analyzed using discrete wavelet transform. Using this information, the appropriate feature vectors are introduced. Parallel neural networks structures are proposed for the classification of disturbances. The inputs of these networks are the introduced feature vectors. The proposed method is done for all power quality disturbances including DC offset, flicker, interrupt, sag, swell, harmonic, notching, impulsive transient, oscillatory transient and eight combinations of these including the harmonics with transient, harmonic with flicker, harmonic with sag, harmonic with swell, sag with flicker, swell with flicker, transient with sag and transient with swell. The performance of this algorithm is compared with a single neural network structure. The results indicate using the parallel neural networks structure, computational time is much reduced and the accuracy of classification of power quality disturbances is significantly increased. Comparison the obtained results by the method with other methods, represents very high performance of the proposed method with precision %99.53.

  11. Driving factors of interactions between the exchange rate market and the commodity market: A wavelet-based complex network perspective

    Science.gov (United States)

    Wen, Shaobo; An, Haizhong; Chen, Zhihua; Liu, Xueyong

    2017-08-01

    In traditional econometrics, a time series must be in a stationary sequence. However, it usually shows time-varying fluctuations, and it remains a challenge to execute a multiscale analysis of the data and discover the topological characteristics of conduction in different scales. Wavelet analysis and complex networks in physical statistics have special advantages in solving these problems. We select the exchange rate variable from the Chinese market and the commodity price index variable from the world market as the time series of our study. We explore the driving factors behind the behavior of the two markets and their topological characteristics in three steps. First, we use the Kalman filter to find the optimal estimation of the relationship between the two markets. Second, wavelet analysis is used to extract the scales of the relationship that are driven by different frequency wavelets. Meanwhile, we search for the actual economic variables corresponding to different frequency wavelets. Finally, a complex network is used to search for the transfer characteristics of the combination of states driven by different frequency wavelets. The results show that statistical physics have a unique advantage over traditional econometrics. The Chinese market has time-varying impacts on the world market: it has greater influence when the world economy is stable and less influence in times of turmoil. The process of forming the state combination is random. Transitions between state combinations have a clustering feature. Based on these characteristics, we can effectively reduce the information burden on investors and correctly respond to the government's policy mix.

  12. Using Bayesian belief networks in adaptive management.

    Science.gov (United States)

    J.B. Nyberg; B.G. Marcot; R. Sulyma

    2006-01-01

    Bayesian belief and decision networks are relatively new modeling methods that are especially well suited to adaptive-management applications, but they appear not to have been widely used in adaptive management to date. Bayesian belief networks (BBNs) can serve many purposes for practioners of adaptive management, from illustrating system relations conceptually to...

  13. Forecasts for the Canadian Lynx time series using method that bombine neural networks, wavelet shrinkage and decomposition

    Directory of Open Access Journals (Sweden)

    Levi Lopes Teixeira

    2015-12-01

    Full Text Available Time series forecasting is widely used in various areas of human knowledge, especially in the planning and strategic direction of companies. The success of this task depends on the forecasting techniques applied. In this paper, a hybrid approach to project time series is suggested. To validate the methodology, a time series already modeled by other authors was chosen, allowing the comparison of results. The proposed methodology includes the following techniques: wavelet shrinkage, wavelet decomposition at level r, and artificial neural networks (ANN. Firstly, a time series to be forecasted is submitted to the proposed wavelet filtering method, which decomposes it to components of trend and linear residue. Then, both are decomposed via level r wavelet decomposition, generating r + 1 Wavelet Components (WCs for each one; and then each WC is individually modeled by an ANN. Finally, the predictions for all WCs are linearly combined, producing forecasts to the underlying time series. For evaluating purposes, the time series of Canadian Lynx has been used, and all results achieved by the proposed method were better than others in existing literature.

  14. In-Line Acoustic Device Inspection of Leakage in Water Distribution Pipes Based on Wavelet and Neural Network

    Directory of Open Access Journals (Sweden)

    Dileep Kumar

    2017-01-01

    Full Text Available Traditionally permanent acoustic sensors leak detection techniques have been proven to be very effective in water distribution pipes. However, these methods need long distance deployment and proper position of sensors and cannot be implemented on underground pipelines. An inline-inspection acoustic device is developed which consists of acoustic sensors. The device will travel by the flow of water through the pipes which record all noise events and detect small leaks. However, it records all the noise events regarding background noises, but the time domain noisy acoustic signal cannot manifest complete features such as the leak flow rate which does not distinguish the leak signal and environmental disturbance. This paper presents an algorithm structure with the modularity of wavelet and neural network, which combines the capability of wavelet transform analyzing leakage signals and classification capability of artificial neural networks. This study validates that the time domain is not evident to the complete features regarding noisy leak signals and significance of selection of mother wavelet to extract the noise event features in water distribution pipes. The simulation consequences have shown that an appropriate mother wavelet has been selected and localized to extract the features of the signal with leak noise and background noise, and by neural network implementation, the method improves the classification performance of extracted features.

  15. An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network.

    Science.gov (United States)

    Sun, Weifang; Yao, Bin; Zeng, Nianyin; Chen, Binqiang; He, Yuchao; Cao, Xincheng; He, Wangpeng

    2017-07-12

    As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault's characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault's characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal's features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear's weak fault features.

  16. Three-dimensional Wavelet-based Adaptive Mesh Refinement for Global Atmospheric Chemical Transport Modeling

    Science.gov (United States)

    Rastigejev, Y.; Semakin, A. N.

    2013-12-01

    Accurate numerical simulations of global scale three-dimensional atmospheric chemical transport models (CTMs) are essential for studies of many important atmospheric chemistry problems such as adverse effect of air pollutants on human health, ecosystems and the Earth's climate. These simulations usually require large CPU time due to numerical difficulties associated with a wide range of spatial and temporal scales, nonlinearity and large number of reacting species. In our previous work we have shown that in order to achieve adequate convergence rate and accuracy, the mesh spacing in numerical simulation of global synoptic-scale pollution plume transport must be decreased to a few kilometers. This resolution is difficult to achieve for global CTMs on uniform or quasi-uniform grids. To address the described above difficulty we developed a three-dimensional Wavelet-based Adaptive Mesh Refinement (WAMR) algorithm. The method employs a highly non-uniform adaptive grid with fine resolution over the areas of interest without requiring small grid-spacing throughout the entire domain. The method uses multi-grid iterative solver that naturally takes advantage of a multilevel structure of the adaptive grid. In order to represent the multilevel adaptive grid efficiently, a dynamic data structure based on indirect memory addressing has been developed. The data structure allows rapid access to individual points, fast inter-grid operations and re-gridding. The WAMR method has been implemented on parallel computer architectures. The parallel algorithm is based on run-time partitioning and load-balancing scheme for the adaptive grid. The partitioning scheme maintains locality to reduce communications between computing nodes. The parallel scheme was found to be cost-effective. Specifically we obtained an order of magnitude increase in computational speed for numerical simulations performed on a twelve-core single processor workstation. We have applied the WAMR method for numerical

  17. Adaptive Networks: the Governance for Sustainable Development

    NARCIS (Netherlands)

    S.G. Nooteboom (Sibout)

    2006-01-01

    textabstractIn this book, I reconstruct how policy makers, working together in what I term adaptive networks, have enabled a breakthrough in thinking about sustainable mobility in certain policy circles. I define the conduct of leading actors in these adaptive networks as sustainable change

  18. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...... history of their successful use in revealing the importance of various members of the network. However, modeling of covert, terrorist or criminal networks through social graph dose not really provide the hierarchical structure which exist in these networks as these networks are composed of leaders...... and followers etc. In this research we analyze and predict the most likely role a particular node can adapt once a member of the network is either killed or caught. The adaptation is based on computing Bayes posteriori probability of each node and the level of the said node in the network structure....

  19. Neural Network Reorganization Analysis During an Auditory Oddball Task in Schizophrenia Using Wavelet Entropy

    Directory of Open Access Journals (Sweden)

    Javier Gomez-Pilar

    2015-07-01

    Full Text Available The aim of the present study was to characterize the neural network reorganization during a cognitive task in schizophrenia (SCH by means of wavelet entropy (WE. Previous studies suggest that the cognitive impairment in patients with SCH could be related to the disrupted integrative functions of neural circuits. Nevertheless, further characterization of this effect is needed, especially in the time-frequency domain. This characterization is sensitive to fast neuronal dynamics and their synchronization that may be an important component of distributed neuronal interactions; especially in light of the disconnection hypothesis for SCH and its electrophysiological correlates. In this work, the irregularity dynamics elicited by an auditory oddball paradigm were analyzed through synchronized-averaging (SA and single-trial (ST analyses. They provide complementary information on the spatial patterns involved in the neural network reorganization. Our results from 20 healthy controls and 20 SCH patients showed a WE decrease from baseline to response both in controls and SCH subjects. These changes were significantly more pronounced for healthy controls after ST analysis, mainly in central and frontopolar areas. On the other hand, SA analysis showed more widespread spatial differences than ST results. These findings suggest that the activation response is weakly phase-locked to stimulus onset in SCH and related to the default mode and salience networks. Furthermore, the less pronounced changes in WE from baseline to response for SCH patients suggest an impaired ability to reorganize neural dynamics during an oddball task.

  20. Rainfall-runoff modeling at Jinsha River basin by integrated neural network with discrete wavelet transform

    Science.gov (United States)

    Tayyab, Muhammad; Zhou, Jianzhong; Dong, Xiaohua; Ahmad, Ijaz; Sun, Na

    2017-09-01

    Artificial neural network (ANN) models combined with time series decomposition are widely employed to calculate the river flows; however, the influence of the application of diverse decomposing approaches on assessing correctness is inadequately compared and examined. This study investigates the certainty of monthly streamflow by applying ANNs including feed forward back propagation neural network and radial basis function neural network (RBFNN) models integrated with discrete wavelet transform (DWT), at Jinsha River basin in the upper reaches of Yangtze River of China. The effect of the noise factor of the decomposed time series on the prediction correctness has also been argued in this paper. Data have been analyzed by comparing the simulation outputs of the models with the correlation coefficient (R) root mean square errors, mean absolute errors, mean absolute percentage error and Nash-Sutcliffe Efficiency. Results show that time series decomposition technique DWT contributes in improving the accuracy of streamflow prediction, as compared to single ANN's. The detailed comparative analysis showed that the RBFNN integrated with DWT has better forecasting capabilities as compared to other developed models. Moreover, for high-precision streamflow prediction, the high-frequency section of the original time series is very crucial, which is understandable in flood season.

  1. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    Science.gov (United States)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  2. Cryogenic dark matter search (CDMS II): Application of neural networks and wavelets to event analysis

    Energy Technology Data Exchange (ETDEWEB)

    Attisha, Michael J. [Brown U.

    2006-01-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering interactions with nuclei. This dissertation presents the CDMS detector technology and the commissioning of two towers of detectors at the deep underground site in Soudan, Minnesota. CDMS detectors comprise crystals of Ge and Si at temperatures of 20 mK which provide ~keV energy resolution and the ability to perform particle identification on an event by event basis. Event identification is performed via a two-fold interaction signature; an ionization response and an athermal phonon response. Phonons and charged particles result in electron recoils in the crystal, while neutrons and WIMPs result in nuclear recoils. Since the ionization response is quenched by a factor ~ 3(2) in Ge(Si) for nuclear recoils compared to electron recoils, the relative amplitude of the two detector responses allows discrimination between recoil types. The primary source of background events in CDMS arises from electron recoils in the outer 50 µm of the detector surface which have a reduced ionization response. We develop a quantitative model of this ‘dead layer’ effect and successfully apply the model to Monte Carlo simulation of CDMS calibration data. Analysis of data from the two tower run March-August 2004 is performed, resulting in the world’s most sensitive limits on the spin-independent WIMP-nucleon cross-section, with a 90% C.L. upper limit of 1.6 × 10-43 cm2 on Ge for a 60 GeV WIMP. An approach to performing surface event discrimination using neural networks and wavelets is developed. A Bayesian methodology to classifying surface events using neural networks is found to provide an optimized method based on minimization of the expected dark matter limit. The discrete wavelet analysis of CDMS phonon pulses improves surface event discrimination in conjunction with the neural

  3. A wavelet-based Projector Augmented-Wave (PAW) method: reaching frozen-core all-electron precision with a systematic, adaptive and localized wavelet basis set

    CERN Document Server

    Rangel, Tonatiuh; Genovese, Luigi; Torrent, Marc

    2016-01-01

    We present a Projector Augmented-Wave~(PAW) method based on a wavelet basis set. We implemented our wavelet-PAW method as a PAW library in the ABINIT package [http://www.abinit.org] and into BigDFT [http://www.bigdft.org]. We test our implementation in prototypical systems to illustrate the potential usage of our code. By using the wavelet-PAW method, we can simulate charged and special boundary condition systems with frozen-core all-electron precision. Furthermore, our work paves the way to large-scale and potentially order-N simulations within a PAW method.

  4. Investigating the performance of wavelet neural networks in ionospheric tomography using IGS data over Europe

    Science.gov (United States)

    Ghaffari Razin, Mir Reza; Voosoghi, Behzad

    2017-04-01

    Ionospheric tomography is a very cost-effective method which is used frequently to modeling of electron density distributions. In this paper, residual minimization training neural network (RMTNN) is used in voxel based ionospheric tomography. Due to the use of wavelet neural network (WNN) with back-propagation (BP) algorithm in RMTNN method, the new method is named modified RMTNN (MRMTNN). To train the WNN with BP algorithm, two cost functions is defined: total and vertical cost functions. Using minimization of cost functions, temporal and spatial ionospheric variations is studied. The GPS measurements of the international GNSS service (IGS) in the central Europe have been used for constructing a 3-D image of the electron density. Three days (2009.04.15, 2011.07.20 and 2013.06.01) with different solar activity index is used for the processing. To validate and better assess reliability of the proposed method, 4 ionosonde and 3 testing stations have been used. Also the results of MRMTNN has been compared to that of the RMTNN method, international reference ionosphere model 2012 (IRI-2012) and spherical cap harmonic (SCH) method as a local ionospheric model. The comparison of MRMTNN results with RMTNN, IRI-2012 and SCH models shows that the root mean square error (RMSE) and standard deviation of the proposed approach are superior to those of the traditional method.

  5. On the use of harmony search algorithm in the training of wavelet neural networks

    Science.gov (United States)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2015-10-01

    Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.

  6. Sunspots Time-Series Prediction Based on Complementary Ensemble Empirical Mode Decomposition and Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Guohui Li

    2017-01-01

    Full Text Available The sunspot numbers are the major target which describes the solar activity level. Long-term prediction of sunspot activity is of great importance for aerospace, communication, disaster prevention, and so on. To improve the prediction accuracy of sunspot time series, the prediction model based on complementary ensemble empirical mode decomposition (CEEMD and wavelet neural network (WNN is proposed. First, the sunspot time series are decomposed by CEEMD to obtain a set of intrinsic modal functions (IMFs. Then, the IMFs and residuals are reconstructed to obtain the training samples and the prediction samples, and these samples are trained and predicted by WNN. Finally, the reconstructed IMFs and residuals are the final prediction results. Five kinds of prediction models are compared, which are BP neural network prediction model, WNN prediction model, empirical mode decomposition and WNN hybrid prediction model, ensemble empirical mode decomposition and WNN hybrid prediction model, and the proposed method in this paper. The same sunspot time series are predicted with five kinds of prediction models. The experimental results show that the proposed model has better prediction accuracy and smaller error.

  7. A kurtosis-guided adaptive demodulation technique for bearing fault detection based on tunable-Q wavelet transform

    Science.gov (United States)

    Luo, Jiesi; Yu, Dejie; Liang, Ming

    2013-05-01

    This paper presents an adaptive demodulation technique for bearing fault detection. It is implemented via the tunable-Q wavelet transform (TQWT). With the TQWT, the bearing vibration signal is decomposed into sub-signals corresponding to different band-pass filters of the TQWT. Kurtosis as an effective indicator of signal impulsiveness is adopted to guide the merging of the sub-signals leading to a signal component which contains information most relevant to the bearing fault. The purpose of the proposed approach is to adaptively search for the best filter for envelope demodulation analysis. In fact, the implementation of the proposed method can be interpreted as the process to obtain the optimal filter for the Hilbert demodulation analysis by two steps of merging of the band-pass filters of the TQWT. The effectiveness of the proposed method has been demonstrated by both simulation and experimental analyses.

  8. Adaptability in dynamic wireless networks

    NARCIS (Netherlands)

    Iyer, V.G.

    2012-01-01

    Software for networked embedded systems faces several challenges when the deployed network is subject to changing circumstances during operation. Typically, inter-node communication and network connectivity are two crucial aspects that are directly affected by dynamics such as failing wireless links

  9. Recruitment dynamics in adaptive social networks

    Science.gov (United States)

    Shkarayev, Maxim S.; Schwartz, Ira B.; Shaw, Leah B.

    2013-06-01

    We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).

  10. An approach for tissue density classification in mammographic images using artificial neural network based on wavelet and curvelet transforms

    Science.gov (United States)

    Yaşar, Hüseyin; Ceylan, Murat

    2015-03-01

    Breast cancer is one of the types of cancer which is most commonly seen in women. Density of breast is an important indicator for the risk of cancer. In addition, densities of tissue may harden the diagnosis by hiding the abnormalities occurring on the breast. For this reason, during the process of diagnosis, the process of automatic classification of breast density has a significant importance. In this study, a new system with the base of Artificial Neural Network (ANN) and multiple resolution analysis is suggested. Wavelet and curvelet analyses having the most common use have been used as multi resolution analysis. 4 pieces of statistics which are minimum value, maximum value, mean value and standard deviation have been extracted from the images which have been eluted to their sub-bands via multi resolution analysis. For the purpose of testing the success of the system, 322 pieces of images which are in MIAS database have been used. The obtained results for different backgrounds are so satisfying; and the highest classification values have been obtained as 97.16 % with Wavelet transform and ANN for fatty background and 79.80 % with Wavelet transform and ANN for fatty-glanduar background. The same results have been obtained using Wavelet transform and ANN and Curvelet transform and ANN for dense background and accuracy rate of 84.82 % have been reached. The results of mean classification have been obtained, for three pieces of tissue types (fatty, fatty-glanduar, dense), in sequence as 84.47 % with the use of ANN, 85.71 % with the use of curvelet analysis and ANN; and 87.26 % with the use of wavelet analysis and ANN.

  11. Research on Marine Photovoltaic Power Forecasting Based on Wavelet Transform and Echo State Network

    Directory of Open Access Journals (Sweden)

    Xinhui Du

    2017-08-01

    Full Text Available With the rapid development of photovoltaic power generation technology, photovoltaic power generation system has gradually become an important component of the integrated energy system of marine. High precision short-term photovoltaic power generation forecasting is becoming one of the key technologies in ship energy saving and ship energy efficiency improving. Aiming at the characteristics of marine photovoltaic power generation system, we designed a highprecision power forecasting model (WT+ESN for marine photovoltaic power generation system with anti-marine environmental interference. In this model, the information mining of the photovoltaic system in marine environment is carried out based on wavelet theory, then the forecasting model basing on echo state network is construct ed. Lastly, three kinds of error metrics are compared with the three traditional models by Matlab, the result shows that the model has high forecasting accuracy and strong robustness to marine environmental factors, which is of great significance to save fuel for ships, improve the energy utilization rate and assist the power dispatching and fuel dispatching of the marine power generation system.

  12. WAVELET ANALYSIS AND NEURAL NETWORK CLASSIFIERS TO DETECT MID-SAGITTAL SECTIONS FOR NUCHAL TRANSLUCENCY MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Giuseppa Sciortino

    2016-04-01

    Full Text Available We propose a methodology to support the physician in the automatic identification of mid-sagittal sections of the fetus in ultrasound videos acquired during the first trimester of pregnancy. A good mid-sagittal section is a key requirement to make the correct measurement of nuchal translucency which is one of the main marker for screening of chromosomal defects such as trisomy 13, 18 and 21. NT measurement is beyond the scope of this article. The proposed methodology is mainly based on wavelet analysis and neural network classifiers to detect the jawbone and on radial symmetry analysis to detect the choroid plexus. Those steps allow to identify the frames which represent correct mid-sagittal sections to be processed. The performance of the proposed methodology was analyzed on 3000 random frames uniformly extracted from 10 real clinical ultrasound videos. With respect to a ground-truth provided by an expert physician, we obtained a true positive, a true negative and a balanced accuracy equal to 87.26%, 94.98% and 91.12% respectively.

  13. A Damage Prognosis Method of Girder Structures Based on Wavelet Neural Networks

    Directory of Open Access Journals (Sweden)

    Rumian Zhong

    2014-01-01

    Full Text Available Based on the basic theory of wavelet neural networks and finite element model updating method, a basic framework of damage prognosis method is proposed in this paper. Firstly, a damaged I-steel beam model testing is used to verify the feasibility and effectiveness of the proposed damage prognosis method. The results show that the predicted results of the damage prognosis method and the measured results are very well consistent, and the maximum error is less than 5%. Furthermore, Xinyihe Bridge in the Beijing-Shanghai Highway is selected as the engineering background, and the damage prognosis is conducted based on the data from the structural health monitoring system. The results show that the traffic volume will increase and seasonal differences will decrease in the next year and a half. The displacement has a slight increase and seasonal characters in the critical section of mid span, but the strain will increase distinctly. The analysis results indicate that the proposed method can be applied to the damage prognosis of girder bridge structures and has the potential for the bridge health monitoring and safety prognosis.

  14. Sound quality recognition using optimal wavelet-packet transform and artificial neural network methods

    Science.gov (United States)

    Xing, Y. F.; Wang, Y. S.; Shi, L.; Guo, H.; Chen, H.

    2016-01-01

    According to the human perceptional characteristics, a method combined by the optimal wavelet-packet transform and artificial neural network, so-called OWPT-ANN model, for psychoacoustical recognition is presented. Comparisons of time-frequency analysis methods are performed, and an OWPT with 21 critical bands is designed for feature extraction of a sound, as is a three-layer back-propagation ANN for sound quality (SQ) recognition. Focusing on the loudness and sharpness, the OWPT-ANN model is applied on vehicle noises under different working conditions. Experimental verifications show that the OWPT can effectively transfer a sound into a time-varying energy pattern as that in the human auditory system. The errors of loudness and sharpness of vehicle noise from the OWPT-ANN are all less than 5%, which suggest a good accuracy of the OWPT-ANN model in SQ recognition. The proposed methodology might be regarded as a promising technique for signal processing in the human-hearing related fields in engineering.

  15. Pipeline Bending Strain Measurement and Compensation Technology Based on Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-01-01

    Full Text Available The bending strain of long distance oil and gas pipelines may lead to instability of the pipeline and failure of materials, which seriously deteriorates the transportation security of oil and gas. To locate the position of the bending strain for maintenance, an Inertial Measurement Unit (IMU is usually adopted in a Pipeline Inspection Gauge (PIG. The attitude data of the IMU is usually acquired to calculate the bending strain in the pipe. However, because of the vibrations in the pipeline and other system noises, the resulting bending strain calculations may be incorrect. To improve the measurement precision, a method, based on wavelet neural network, was proposed. To test the proposed method experimentally, a PIG with the proposed method is used to detect a straight pipeline. It can be obtained that the proposed method has a better repeatability and convergence than the original method. Furthermore, the new method is more accurate than the original method and the accuracy of bending strain is raised by about 23% compared to original method. This paper provides a novel method for precisely inspecting bending strain of long distance oil and gas pipelines and lays a foundation for improving the precision of inspection of bending strain of long distance oil and gas pipelines.

  16. Bridge Performance Assessment Based on an Adaptive Neuro-Fuzzy Inference System with Wavelet Filter for the GPS Measurements

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2015-10-01

    Full Text Available This study describes the performance assessment of the Huangpu Bridge in Guangzhou, China based on long-term monitoring in real-time by the kinematic global positioning system (RTK-GPS technique. Wavelet transformde-noising is applied to filter the GPS measurements, while the adaptive neuro-fuzzy inference system (ANFIS time series output-only model is used to predict the deformations of GPS-bridge monitoring points. In addition, GPS and accelerometer monitoring systems are used to evaluate the bridge oscillation performance. The conclusions drawn from investigating the numerical results show that: (1the wavelet de-noising of the GPS measurements of the different recording points on the bridge is a suitable tool to efficiently eliminate the signal noise and extract the different deformation components such as: semi-static and dynamic displacements; (2 the ANFIS method with two multi-input single output model is revealed to powerfully predict GPS movement measurements and assess the bridge deformations; and (3 The installed structural health monitoring system and the applied ANFIS movement prediction performance model are solely sufficient to assure bridge safety based on the analyses of the different filtered movement components.

  17. Energy-efficient adaptive wireless network design

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Smit, Gerardus Johannes Maria; Bos, M.

    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data link layer protocol for wireless networks that provides quality of service (QoS) support for diverse

  18. Adaptive Learning in Weighted Network Games

    NARCIS (Netherlands)

    Bayer, Péter; Herings, P. Jean-Jacques; Peeters, Ronald; Thuijsman, Frank

    2017-01-01

    This paper studies adaptive learning in the class of weighted network games. This class of games includes applications like research and development within interlinked firms, crime within social networks, the economics of pollution, and defense expenditures within allied nations. We show that for

  19. Wavelet transform-based artificial neural networks (WT-ANN) in PM10 pollution level estimation, based on circular variables.

    Science.gov (United States)

    Shekarrizfard, Maryam; Karimi-Jashni, A; Hadad, K

    2012-01-01

    In this paper, a novel method in the estimation and prediction of PM(10) is introduced using wavelet transform-based artificial neural networks (WT-ANN). First, the application of wavelet transform, selected for its temporal shift properties and multiresolution analysis characteristics enabling it to reduce disturbing perturbations in input training set data, is presented. Afterward, the circular statistical indices which are used in this method are formally introduced in order to investigate the relation between PM(10) levels and circular meteorological variables. Then, the results of the simulation of PM(10) based on WT-ANN by use of MATLAB software are discussed. The results of the above-mentioned simulation show an enhanced accuracy and speed in PM(10) estimation/prediction and a high degree of robustness compared with traditional ANN models.

  20. Face Recognition Using MLP and RBF Neural Network with Gabor and Discrete Wavelet Transform Characterization: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Fatma Zohra Chelali

    2015-01-01

    Full Text Available Face recognition has received a great attention from a lot of researchers in computer vision, pattern recognition, and human machine computer interfaces in recent years. Designing a face recognition system is a complex task due to the wide variety of illumination, pose, and facial expression. A lot of approaches have been developed to find the optimal space in which face feature descriptors are well distinguished and separated. Face representation using Gabor features and discrete wavelet has attracted considerable attention in computer vision and image processing. We describe in this paper a face recognition system using artificial neural networks like multilayer perceptron (MLP and radial basis function (RBF where Gabor and discrete wavelet based feature extraction methods are proposed for the extraction of features from facial images using two facial databases: the ORL and computer vision. Good recognition rate was obtained using Gabor and DWT parameterization with MLP classifier applied for computer vision dataset.

  1. Adaptive Networks Theory, Models and Applications

    CERN Document Server

    Gross, Thilo

    2009-01-01

    With adaptive, complex networks, the evolution of the network topology and the dynamical processes on the network are equally important and often fundamentally entangled. Recent research has shown that such networks can exhibit a plethora of new phenomena which are ultimately required to describe many real-world networks. Some of those phenomena include robust self-organization towards dynamical criticality, formation of complex global topologies based on simple, local rules, and the spontaneous division of "labor" in which an initially homogenous population of network nodes self-organizes into functionally distinct classes. These are just a few. This book is a state-of-the-art survey of those unique networks. In it, leading researchers set out to define the future scope and direction of some of the most advanced developments in the vast field of complex network science and its applications.

  2. Adaptive Gain and Analog Wavelet Transform for Low-Power Infrared Image Sensors

    Directory of Open Access Journals (Sweden)

    P. Villard

    2012-01-01

    Full Text Available A decorrelation and analog-to-digital conversion scheme aiming to reduce the power consumption of infrared image sensors is presented in this paper. To exploit both intraframe redundancy and inherent photon shot noise characteristics, a column based 1D Haar analog wavelet transform combined with variable gain amplification prior to A/D conversion is used. This allows to use only an 11-bit ADC, instead of a 13-bit one, and to save 15% of data transfer. An 8×16 pixels test circuit demonstrates this functionality.

  3. Discovering Wavelets

    CERN Document Server

    Aboufadel, Edward

    1999-01-01

    An accessible and practical introduction to wavelets. With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets

  4. Sub-module Short Circuit Fault Diagnosis in Modular Multilevel Converter Based on Wavelet Transform and Adaptive Neuro Fuzzy Inference System

    DEFF Research Database (Denmark)

    Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    by employing wavelet transform under different fault conditions. Then the fuzzy logic rules are automatically trained based on the fuzzified fault features to diagnose the different faults. Neither additional sensor nor the capacitor voltages are needed in the proposed method. The high accuracy, good...... for continuous operation and post-fault maintenance. In this article, a fault diagnosis technique is proposed for the short circuit fault in a modular multi-level converter sub-module using the wavelet transform and adaptive neuro fuzzy inference system. The fault features are extracted from output phase voltage...

  5. Using Granular-Evidence-Based Adaptive Networks for Sensitivity Analysis

    OpenAIRE

    Vališevskis, A.

    2002-01-01

    This paper considers the possibility of using adaptive networks for sensitivity analysis. Adaptive network that processes fuzzy granules is described. The adaptive network training algorithm can be used for sensitivity analysis of decision making models. Furthermore, a case study concerning sensitivity analysis is described, which shows in what way the adaptive network can be used for sensitivity analysis.

  6. Adaptive sampling for real-time rendering of large terrain based on B-spline wavelet

    Science.gov (United States)

    Kalem, Sid Ali; Kourgli, Assia

    2017-05-01

    This paper describes a central processing unit (CPU)-based technique for terrain geometry rendering that could relieve graphics processing unit (GPU) from processing the appropriate level of detail (LOD) of the geometric surface. The proposed approach alleviates the computational load on the CPU and approaches GPU-based efficiency. As the datasets of realistic terrains are usually huge for real-time rendering, we suggest using a training stage to handle large tiled QuadTree terrain representation. The training stage is based on multiresolution wavelet decomposition and is used to limit the region of error control inside the tile. Maximum approximation errors are then calculated for each tile at different resolutions. Maximum world-space errors of the tile at different resolutions permit selection of the appropriate resolution of downsampling that will represent the tile at the run time. Tests and experiments demonstrate that B-spline 0 and B-spline 1 wavelets, well known for their properties of localization and their compact support, are suitable for fast and accurate localization of the maximum approximation error. The experimental results demonstrate that the proposed approach drastically reduces computation time in the CPU. Such a technique should also be used on low/medium end PCs, and embedded systems that are not equipped with the latest models of graphic hardware.

  7. Designing an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Rezaee Kh

    2013-09-01

    Full Text Available Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic images require accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive K-means techniques to transmute the medical images implement the tumor estimation and detect breast cancer tumors in mammograms in early stages. It also allows the rapid processing of the input data. Method: In the frst step, after designing a flter, the discrete wavelet transform is applied to the input images and the approximate coeffcients of scaling components are constructed. Then, the different parts of image are classifed in continuous spectrum. In the next step, by using adaptive K-means algorithm for initializing and smart choice of clusters’ number, the appropriate threshold is selected. Finally, the suspicious cancerous mass is separated by implementing the image processing techniques. Results: We Received 120 mammographic images in LJPEG format, which had been scanned in Gray-Scale with 50 microns size, 3% noise and 20% INU from clinical data taken from two medical databases (mini-MIAS and DDSM. The proposed algorithm detected tumors at an acceptable level with an average accuracy of 92.32% and sensitivity of 90.24%. Also, the Kappa coeffcient was approximately 0.85, which proved the suitable reliability of the system performance. Conclusion: The exact positioning of the cancerous tumors allows the radiologist to determine the stage of disease progression and suggest an appropriate treatment in accordance with the tumor growth. The low PPV and high NPV of the system is a warranty of the system and both clinical specialists and patients can trust its output.

  8. In-Network Adaptation of Video Streams Using Network Processors

    Directory of Open Access Journals (Sweden)

    Mohammad Shorfuzzaman

    2009-01-01

    problem can be addressed, near the network edge, by applying dynamic, in-network adaptation (e.g., transcoding of video streams to meet available connection bandwidth, machine characteristics, and client preferences. In this paper, we extrapolate from earlier work of Shorfuzzaman et al. 2006 in which we implemented and assessed an MPEG-1 transcoding system on the Intel IXP1200 network processor to consider the feasibility of in-network transcoding for other video formats and network processor architectures. The use of “on-the-fly” video adaptation near the edge of the network offers the promise of simpler support for a wide range of end devices with different display, and so forth, characteristics that can be used in different types of environments.

  9. Subband Coding, Wavelet Packet and Prony Analysis of Simulated and Measured Earth Faults on Compensated 10 kV Power Distribution Network

    DEFF Research Database (Denmark)

    Sørensen, Stefan; Nielsen, Hans Ove

    2002-01-01

    This paper deals with the subband coding (wavelet multiresolution analysis) and Wavelet packet signal processing tool on corrected PSCAD/EMTD® simulations and some results of a full scale earth fault experiment carried out on the Petersen-Coil compensated 10 kV research/laboratory distribution...... network at Kyndbyvaerket, Denmark. The PSCAD/EMTD® simulation model is equivalent to the research/laboratory network at Kyndbyvaerket, build on 25 corrected cable models and 4 line models in a radial network of approximately 7.4 km length connected to four distribution transformers. The purpose is to show...... fault transients and the Prony estimated exponential damped sinusoids....

  10. Diagnosis of epilepsy from electroencephalography signals using multilayer perceptron and Elman Artificial Neural Networks and Wavelet Transform.

    Science.gov (United States)

    Işik, Hakan; Sezer, Esma

    2012-02-01

    In this study, it has been intended to perform an automatic classification of Electroencephalography (EEG) signals via Artificial Neural Networks (ANN) and to investigate these signals using Wavelet Transform (WT) for diagnosing epilepsy syndrome. EEG signals have been decomposed into frequency sub-bands using WT and a set of feature vectors which were extracted from the sub-bands. Dimensions of these feature vectors have been reduced via Principal Component Analysis (PCA) method and then classified as epileptic or healthy using Multilayer Perceptron (MLP) and ELMAN ANN. Performance evaluation of the used ANN models have been carried out by performing Receiver Operation Characteristic (ROC) analysis.

  11. An adaptive complex network model for brain functional networks.

    Directory of Open Access Journals (Sweden)

    Ignacio J Gomez Portillo

    Full Text Available Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution.

  12. System Identification of a Nonlinear Multivariable Steam Generator Power Plant Using Time Delay and Wavelet Neural Networks

    Directory of Open Access Journals (Sweden)

    Laila Khalilzadeh Ganjali-khani

    2013-01-01

    Full Text Available One of the most effective strategies for steam generator efficiency enhancement is to improve the control system. For such an improvement, it is essential to have an accurate model for the steam generator of power plant. In this paper, an industrial steam generator is considered as a nonlinear multivariable system for identification. An important step in nonlinear system identification is the development of a nonlinear model. In recent years, artificial neural networks have been successfully used for identification of nonlinear systems in many researches. Wavelet neural networks (WNNs also are used as a powerful tool for nonlinear system identification. In this paper we present a time delay neural network model and a WNN model in order to identify an industrial steam generator. Simulation results show the effectiveness of the proposed models in the system identification and demonstrate that the WNN model is more precise to estimate the plant outputs.

  13. Wavelet analysis in neurodynamics

    Science.gov (United States)

    Pavlov, Aleksei N.; Hramov, Aleksandr E.; Koronovskii, Aleksei A.; Sitnikova, Evgenija Yu; Makarov, Valeri A.; Ovchinnikov, Alexey A.

    2012-09-01

    Results obtained using continuous and discrete wavelet transforms as applied to problems in neurodynamics are reviewed, with the emphasis on the potential of wavelet analysis for decoding signal information from neural systems and networks. The following areas of application are considered: (1) the microscopic dynamics of single cells and intracellular processes, (2) sensory data processing, (3) the group dynamics of neuronal ensembles, and (4) the macrodynamics of rhythmical brain activity (using multichannel EEG recordings). The detection and classification of various oscillatory patterns of brain electrical activity and the development of continuous wavelet-based brain activity monitoring systems are also discussed as possibilities.

  14. Adaptive Capacity Management in Bluetooth Networks

    DEFF Research Database (Denmark)

    Son, L.T.

    With the Internet and mobile wireless development, accelerated by high-speed and low cost VLSI device evolution, short range wireless communications have become more and more popular, especially Bluetooth. Bluetooth is a new short range radio technology that promises to be very convenient, low...... of Bluetooth devices is increasing, a larger-scale ad hoc network, scatternet, is formed, as well as the booming of Internet has demanded for large bandwidth and low delay mobile access. This dissertation is to address the capacity management issues in Bluetooth networks. The main goals of the network capacity...... resource constraints in Bluetooth networks and adapt to mobility and frequent changes of the network topology, as well as to bursty traffic of Internet data applications, which are supposedly very common in Bluetooth. Some performance characteristics of these approaches are illustrated by analysis as well...

  15. Investigating the effect of traditional Persian music on ECG signals in young women using wavelet transform and neural networks.

    Science.gov (United States)

    Abedi, Behzad; Abbasi, Ataollah; Goshvarpour, Atefeh

    2017-05-01

    In the past few decades, several studies have reported the physiological effects of listening to music. The physiological effects of different music types on different people are different. In the present study, we aimed to examine the effects of listening to traditional Persian music on electrocardiogram (ECG) signals in young women. Twenty-two healthy females participated in this study. ECG signals were recorded under two conditions: rest and music. For each ECG signal, 20 morphological and wavelet-based features were selected. Artificial neural network (ANN) and probabilistic neural network (PNN) classifiers were used for the classification of ECG signals during and before listening to music. Collected data were separated into two data sets: train and test. Classification accuracies of 88% and 97% were achieved in train data sets using ANN and PNN, respectively. In addition, the test data set was employed for evaluating the classifiers, and classification rates of 84% and 93% were obtained using ANN and PNN, respectively. The present study investigated the effect of music on ECG signals based on wavelet transform and morphological features. The results obtained here can provide a good understanding on the effects of music on ECG signals to researchers.

  16. A High-Performance Lossless Compression Scheme for EEG Signals Using Wavelet Transform and Neural Network Predictors

    Directory of Open Access Journals (Sweden)

    N. Sriraam

    2012-01-01

    Full Text Available Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67% is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications.

  17. The Assessment of Muscular Effort, Fatigue, and Physiological Adaptation Using EMG and Wavelet Analysis.

    Directory of Open Access Journals (Sweden)

    Ryan B Graham

    Full Text Available Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG. Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs to our previous data to comprehensively evaluate: 1 differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power, and 2 muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue

  18. Error Protection of Wavelet Scalable Video Streaming Using Wyner-Ziv Technique over a Lossy Network

    Science.gov (United States)

    Liu, Benjian; Xu, Ke

    This paper presents a novel error resilience scheme for wavelet scalable video coding. We use Wyner-Ziv codec to produce extra bits protecting the important parts of the embedded video streaming. At the same time these bits also as the second description of important parts are transmitted over auxiliary channel to the receiver for error resilience. The errors in the embedded video streaming can be corrected by Wyner-Ziv description which regards the decoded frame as side information. Moreover, Wyner-Ziv decoder utilizes a coarse estimated version of the corrupted parts exploiting frame correlation in wavelet video decoder to generate a refine version. Simulation results show that our proposed method can achieve much better performance compared with Forward Error Correction code. Meanwhile, this error resilient algorithm can achieve 2-3 dB PSNR gains over the motion compensation error concealment.

  19. Understanding Supply Networks from Complex Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Jamur Johnas Marchi

    2014-10-01

    Full Text Available This theoretical paper is based on complex adaptive systems (CAS that integrate dynamic and holistic elements, aiming to discuss supply networks as complex systems and their dynamic and co-evolutionary processes. The CAS approach can give clues to understand the dynamic nature and co-evolution of supply networks because it consists of an approach that incorporates systems and complexity. This paper’s overall contribution is to reinforce the theoretical discussion of studies that have addressed supply chain issues, such as CAS.

  20. Electromyography (EMG) signal recognition using combined discrete wavelet transform based adaptive neuro-fuzzy inference systems (ANFIS)

    Science.gov (United States)

    Arozi, Moh; Putri, Farika T.; Ariyanto, Mochammad; Khusnul Ari, M.; Munadi, Setiawan, Joga D.

    2017-01-01

    People with disabilities are increasing from year to year either due to congenital factors, sickness, accident factors and war. One form of disability is the case of interruptions of hand function. The condition requires and encourages the search for solutions in the form of creating an artificial hand with the ability as a human hand. The development of science in the field of neuroscience currently allows the use of electromyography (EMG) to control the motion of artificial prosthetic hand into the necessary use of EMG as an input signal to control artificial prosthetic hand. This study is the beginning of a significant research planned in the development of artificial prosthetic hand with EMG signal input. This initial research focused on the study of EMG signal recognition. Preliminary results show that the EMG signal recognition using combined discrete wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS) produces accuracy 98.3 % for training and 98.51% for testing. Thus the results can be used as an input signal for Simulink block diagram of a prosthetic hand that will be developed on next study. The research will proceed with the construction of artificial prosthetic hand along with Simulink program controlling and integrating everything into one system.

  1. Detection of Dendritic Spines Using Wavelet-Based Conditional Symmetric Analysis and Regularized Morphological Shared-Weight Neural Networks

    Directory of Open Access Journals (Sweden)

    Shuihua Wang

    2015-01-01

    Full Text Available Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological and psychiatric disorders (e.g., Alzheimer’s disease, Parkinson’s diseases, and autism. In this paper, we have proposed a novel automatic approach using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks (RMSNN for dendritic spine identification involving the following steps: backbone extraction, localization of dendritic spines, and classification. First, a new algorithm based on wavelet transform and conditional symmetric analysis has been developed to extract backbone and locate the dendrite boundary. Then, the RMSNN has been proposed to classify the spines into three predefined categories (mushroom, thin, and stubby. We have compared our proposed approach against the existing methods. The experimental result demonstrates that the proposed approach can accurately locate the dendrite and accurately classify the spines into three categories with the accuracy of 99.1% for “mushroom” spines, 97.6% for “stubby” spines, and 98.6% for “thin” spines.

  2. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.

    Science.gov (United States)

    Kang, Eunhee; Min, Junhong; Ye, Jong Chul

    2017-10-01

    Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from

  3. Discovery of a strongly-interrelated gene network in corals under constant darkness by correlation analysis after wavelet transform on complex network model.

    Directory of Open Access Journals (Sweden)

    Longlong Liu

    Full Text Available Coral reefs occupy a relatively small portion of sea area, yet serve as a crucial source of biodiversity by establishing harmonious ecosystems with marine plants and animals. Previous researches mainly focused on screening several key genes induced by stress. Here we proposed a novel method--correlation analysis after wavelet transform of complex network model, to explore the effect of light on gene expression in the coral Acropora millepora based on microarray data. In this method, wavelet transform and the conception of complex network were adopted, and 50 key genes with large differences were finally captured, including both annotated genes and novel genes without accurate annotation. These results shed light on our understanding of coral's response toward light changes and the genome-wide interaction among genes under the control of biorhythm, and hence help us to better protect the coral reef ecosystems. Further studies are needed to explore how functional connections are related to structural connections, and how connectivity arises from the interactions within and between different systems. The method introduced in this study for analyzing microarray data will allow researchers to explore genome-wide interaction network with their own dataset and understand the relevant biological processes.

  4. Discovery of a strongly-interrelated gene network in corals under constant darkness by correlation analysis after wavelet transform on complex network model.

    Science.gov (United States)

    Liu, Longlong; Qu, Jieqiong; Zhou, Xilong; Liu, Xuefeng; Zhang, Zhaobao; Wang, Xumin; Liu, Tao; Liu, Guiming

    2014-01-01

    Coral reefs occupy a relatively small portion of sea area, yet serve as a crucial source of biodiversity by establishing harmonious ecosystems with marine plants and animals. Previous researches mainly focused on screening several key genes induced by stress. Here we proposed a novel method--correlation analysis after wavelet transform of complex network model, to explore the effect of light on gene expression in the coral Acropora millepora based on microarray data. In this method, wavelet transform and the conception of complex network were adopted, and 50 key genes with large differences were finally captured, including both annotated genes and novel genes without accurate annotation. These results shed light on our understanding of coral's response toward light changes and the genome-wide interaction among genes under the control of biorhythm, and hence help us to better protect the coral reef ecosystems. Further studies are needed to explore how functional connections are related to structural connections, and how connectivity arises from the interactions within and between different systems. The method introduced in this study for analyzing microarray data will allow researchers to explore genome-wide interaction network with their own dataset and understand the relevant biological processes.

  5. Prediction ofWater Quality Parameters (NO3, CL in Karaj Riverby Usinga Combinationof Wavelet Neural Network, ANN and MLRModels

    Directory of Open Access Journals (Sweden)

    T. Rajaee

    2016-10-01

    Full Text Available IntroductionThe water quality is an issue of ongoing concern. Evaluation of the quantity and quality of running waters is considerable in hydro-environmental management.The prediction and control of the quality of Karaj river water, as one of the important needed water supply sources of Tehran, possesses great importance. In this study, Performance of Artificial Neural Network (ANN, Wavelet Neural Network combination (WANN and multi linear regression (MLR models, to predict next month the Nitrate (NO3 and Chloride (CL ions of "gate ofBylaqan sluice" station located in Karaj River has been evaluated. Materials and MethodsIn this research two separate ANN models for prediction of NO3 and CL has been expanded. Each one of the parameters for prediction (NO3 / CL has been put related to the past amounts of the same time series (NO3 / CL and its amounts of Q in past months.From astatisticalperiod of10yearswas usedforthe input of the models. Hence 80% of entire data from (96 initial months of data as training set, next 10% of data (12 months and 10% of the end of time series (terminal 12 months were considered as for validation and test of the models, respectively. In WANNcombination model, the real monthly observed time series of river discharge (Q and mentioned qualityparameters(NO3 / CL were decomposed to some sub-time series at different levels by wavelet analysis.Then the decomposed quality parameters to predict and Q time series were used at different levels as inputs to the ANN technique for predicting one-step-ahead Nitrate and Chloride. These time series play various roles in the original time series and the behavior of each is distinct, so the contribution to the original time series varies from each other. In addition, prediction of high NO3 and CL values greater than mean of data that have great importancewere investigated by the models. The capability of the models was evaluated by Coefficient of Efficiency (E and the Root Mean Square

  6. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system.

    Science.gov (United States)

    Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.

  7. Wavelet-based compression with ROI coding support for mobile access to DICOM images over heterogeneous radio networks.

    Science.gov (United States)

    Maglogiannis, Ilias; Doukas, Charalampos; Kormentzas, George; Pliakas, Thomas

    2009-07-01

    Most of the commercial medical image viewers do not provide scalability in image compression and/or region of interest (ROI) encoding/decoding. Furthermore, these viewers do not take into consideration the special requirements and needs of a heterogeneous radio setting that is constituted by different access technologies [e.g., general packet radio services (GPRS)/ universal mobile telecommunications system (UMTS), wireless local area network (WLAN), and digital video broadcasting (DVB-H)]. This paper discusses a medical application that contains a viewer for digital imaging and communications in medicine (DICOM) images as a core module. The proposed application enables scalable wavelet-based compression, retrieval, and decompression of DICOM medical images and also supports ROI coding/decoding. Furthermore, the presented application is appropriate for use by mobile devices activating in heterogeneous radio settings. In this context, performance issues regarding the usage of the proposed application in the case of a prototype heterogeneous system setup are also discussed.

  8. Brain tumor detection using scalp eeg with modified Wavelet-ICA and multi layer feed forward neural network.

    Science.gov (United States)

    Selvam, V Salai; Shenbagadevi, S

    2011-01-01

    Use of scalp EEG for the diagnosis of various cerebral disorders is progressively increasing. Though the advanced neuroimaging techniques such as MRI and CT-SCAN still stay as principal confirmative methods for detecting and localizing brain tumors, the development of automated systems for the detection of brain tumors using the scalp EEG has started attracting the researchers all over the world notably since 2000. This is because of two important facts: (i) cheapness and easiness of methods of recording and analyzing the scalp EEG and (ii) lower risk and possible early detection. This paper presents a method of detecting the brain tumor using the first, second and third order statistics of the scalp EEG with a Modified Wavelet-Independent Component Analysis (MwICA) technique and a multi-layer feed-forward neural network.

  9. Sensitive and specific peak detection for SELDI-TOF mass spectrometry using a wavelet/neural-network based approach.

    Directory of Open Access Journals (Sweden)

    Vincent A Emanuele

    Full Text Available SELDI-TOF mass spectrometer's compact size and automated, high throughput design have been attractive to clinical researchers, and the platform has seen steady-use in biomarker studies. Despite new algorithms and preprocessing pipelines that have been developed to address reproducibility issues, visual inspection of the results of SELDI spectra preprocessing by the best algorithms still shows miscalled peaks and systematic sources of error. This suggests that there continues to be problems with SELDI preprocessing. In this work, we study the preprocessing of SELDI in detail and introduce improvements. While many algorithms, including the vendor supplied software, can identify peak clusters of specific mass (or m/z in groups of spectra with high specificity and low false discover rate (FDR, the algorithms tend to underperform estimating the exact prevalence and intensity of peaks in those clusters. Thus group differences that at first appear very strong are shown, after careful and laborious hand inspection of the spectra, to be less than significant. Here we introduce a wavelet/neural network based algorithm which mimics what a team of expert, human users would call for peaks in each of several hundred spectra in a typical SELDI clinical study. The wavelet denoising part of the algorithm optimally smoothes the signal in each spectrum according to an improved suite of signal processing algorithms previously reported (the LibSELDI toolbox under development. The neural network part of the algorithm combines those results with the raw signal and a training dataset of expertly called peaks, to call peaks in a test set of spectra with approximately 95% accuracy. The new method was applied to data collected from a study of cervical mucus for the early detection of cervical cancer in HPV infected women. The method shows promise in addressing the ongoing SELDI reproducibility issues.

  10. Multiresolution wavelet-ANN model for significant wave height forecasting.

    Digital Repository Service at National Institute of Oceanography (India)

    Deka, P.C.; Mandal, S.; Prahlada, R.

    Hybrid wavelet artificial neural network (WLNN) has been applied in the present study to forecast significant wave heights (Hs). Here Discrete Wavelet Transformation is used to preprocess the time series data (Hs) prior to Artificial Neural Network...

  11. Social networks as embedded complex adaptive systems.

    Science.gov (United States)

    Benham-Hutchins, Marge; Clancy, Thomas R

    2010-09-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.

  12. Wavelet basics

    CERN Document Server

    Chan, Y T

    1995-01-01

    Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wave...

  13. Classification of Auditory Evoked Potentials based on the wavelet decomposition and SVM network

    Directory of Open Access Journals (Sweden)

    Michał Suchocki

    2015-12-01

    Full Text Available For electrophysiological hearing assessment and diagnosis of brain stem lesions, the most often used are auditory brainstem evoked potentials of short latency. They are characterized by successively arranged maxima as a function of time, called waves. Morphology of the course, in particular, the timing and amplitude of each wave, allow a neurologist to make diagnose, what is not an easy task. A neurologist should be experienced, concentrated, and should have very good perception. In order to support his diagnostic process, the authors have developed an algorithm implementing the automated classification of auditory evoked potentials to the group of pathological and physiological cases, the sensitivity and specificity determined for an independent test group (of 50 cases of respectively 84% and 88%.[b]Keywords[/b]: biomedical engineering, brainstem auditory evoked potentials, wavelet decomposition, support vector machine

  14. Assessment of Climatological Trends of Sea Level over the Indian Coast Using Artificial Neural Network and Wavelet Techniques

    Science.gov (United States)

    Sudha Rani, N. N. V.; Satyanarayana, A. N. V.; Bhaskaran, Prasad Kumar

    2017-04-01

    In the present study, an attempt has been made to understand the variability of mean sea level (MSL) over east and west coast of India during 1973-2010. For this purpose, the monthly tide gauge data available over Kandla, Mumbai and Cochin along west coast and Diamond Harbour, Haldia, Visakhapatnam and Chennai along east coast obtained from PSMSL data archives has been considered. Sea level data from the tide gauge records show loss of data due to any disfunctioning of equipment or upgrade of the tide gauge resulting loss of data. It requires no gaps in the time series of MSL during the study period, and needs to be filled with better accuracy and hence artificial neural networks was implemented. To examine any periodicities of MSL variability, continuous wavelet analysis was conducted. The interrelationships between the stations in time-frequency space were examined, using cross and coherence wavelet analysis as well. The study reveals notable interannual variability of MSL. An observational analysis was done to understand the relation between inter-annual variability of MSL anomalies and ENSO. During positive (negative) SOI as associated with positive (negative) MSL anomaly was noticed significantly for the winter season over east (west) coast, where as during post-monsoon season this was observed for east coast and is less prevalent along the west coast. The observational analysis revealed that for the west (east) coast positive IOD showed significantly increased (decreased) MSL anomalies and negative IOD showed significantly decreased (increased) MSL anomalies. It is also found that the concurrent ENSO and IOD may have a different impact on MSL. The observations also reveal an increase of 1.353 mm/year on the east coast and observed a total 0.372 mm/year on the west coast.

  15. Optimal Wavelets for Speech Signal Representations

    Directory of Open Access Journals (Sweden)

    Shonda L. Walker

    2003-08-01

    Full Text Available It is well known that in many speech processing applications, speech signals are characterized by their voiced and unvoiced components. Voiced speech components contain dense frequency spectrum with many harmonics. The periodic or semi-periodic nature of voiced signals lends itself to Fourier Processing. Unvoiced speech contains many high frequency components and thus resembles random noise. Several methods for voiced and unvoiced speech representations that utilize wavelet processing have been developed. These methods seek to improve the accuracy of wavelet-based speech signal representations using adaptive wavelet techniques, superwavelets, which uses a linear combination of adaptive wavelets, gaussian methods and a multi-resolution sinusoidal transform approach to mention a few. This paper addresses the relative performance of these wavelet methods and evaluates the usefulness of wavelet processing in speech signal representations. In addition, this paper will also address some of the hardware considerations for the wavelet methods presented.

  16. R-Peak Detection using Daubechies Wavelet and ECG Signal Classification using Radial Basis Function Neural Network

    Science.gov (United States)

    Rai, H. M.; Trivedi, A.; Chatterjee, K.; Shukla, S.

    2014-01-01

    This paper employed the Daubechies wavelet transform (WT) for R-peak detection and radial basis function neural network (RBFNN) to classify the electrocardiogram (ECG) signals. Five types of ECG beats: normal beat, paced beat, left bundle branch block (LBBB) beat, right bundle branch block (RBBB) beat and premature ventricular contraction (PVC) were classified. 500 QRS complexes were arbitrarily extracted from 26 records in Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database, which are available on Physionet website. Each and every QRS complex was represented by 21 points from p1 to p21 and these QRS complexes of each record were categorized according to types of beats. The system performance was computed using four types of parameter evaluation metrics: sensitivity, positive predictivity, specificity and classification error rate. The experimental result shows that the average values of sensitivity, positive predictivity, specificity and classification error rate are 99.8%, 99.60%, 99.90% and 0.12%, respectively with RBFNN classifier. The overall accuracy achieved for back propagation neural network (BPNN), multilayered perceptron (MLP), support vector machine (SVM) and RBFNN classifiers are 97.2%, 98.8%, 99% and 99.6%, respectively. The accuracy levels and processing time of RBFNN is higher than or comparable with BPNN, MLP and SVM classifiers.

  17. Heart murmur detection based on wavelet transformation and a synergy between artificial neural network and modified neighbor annealing methods.

    Science.gov (United States)

    Eslamizadeh, Gholamhossein; Barati, Ramin

    2017-05-01

    Early recognition of heart disease plays a vital role in saving lives. Heart murmurs are one of the common heart problems. In this study, Artificial Neural Network (ANN) is trained with Modified Neighbor Annealing (MNA) to classify heart cycles into normal and murmur classes. Heart cycles are separated from heart sounds using wavelet transformer. The network inputs are features extracted from individual heart cycles, and two classification outputs. Classification accuracy of the proposed model is compared with five multilayer perceptron trained with Levenberg-Marquardt, Extreme-learning-machine, back-propagation, simulated-annealing, and neighbor-annealing algorithms. It is also compared with a Self-Organizing Map (SOM) ANN. The proposed model is trained and tested using real heart sounds available in the Pascal database to show the applicability of the proposed scheme. Also, a device to record real heart sounds has been developed and used for comparison purposes too. Based on the results of this study, MNA can be used to produce considerable results as a heart cycle classifier. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A New Prediction Model for Transformer Winding Hotspot Temperature Fluctuation Based on Fuzzy Information Granulation and an Optimized Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-12-01

    Full Text Available Winding hotspot temperature is the key factor affecting the load capacity and service life of transformers. For the early detection of transformer winding hotspot temperature anomalies, a new prediction model for the hotspot temperature fluctuation range based on fuzzy information granulation (FIG and the chaotic particle swarm optimized wavelet neural network (CPSO-WNN is proposed in this paper. The raw data are firstly processed by FIG to extract useful information from each time window. The extracted information is then used to construct a wavelet neural network (WNN prediction model. Furthermore, the structural parameters of WNN are optimized by chaotic particle swarm optimization (CPSO before it is used to predict the fluctuation range of the hotspot temperature. By analyzing the experimental data with four different prediction models, we find that the proposed method is more effective and is of guiding significance for the operation and maintenance of transformers.

  19. Integrated Adaptive Analysis and Visualization of Satellite Network Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a system that enables integrated and adaptive analysis and visualization of satellite network management data. Integrated analysis and...

  20. Broken Rotor Bar Fault Detection and Classification Using Wavelet Packet Signature Analysis Based on Fourier Transform and Multi-Layer Perceptron Neural Network

    Directory of Open Access Journals (Sweden)

    Sahar Zolfaghari

    2017-12-01

    Full Text Available As a result of increasing machines capabilities in modern manufacturing, machines run continuously for hours. Therefore, early fault detection is required to reduce the maintenance expenses and obviate high cost and unscheduled downtimes. Fault diagnosis systems that provide features extraction and patterns classification of the fault are able to detect and classify the failures in machines. The majority of the related works that reported a procedure for detection of rotor bar breakage so far have applied motor current signal analysis using discrete wavelet transform. In this paper, the most appropriate features are extracted from the coefficients of a wavelet packet transform after fast Fourier transform of current signal. The aim of this study is to develop an effective and sensitive method for fault detection under low load conditions. Through combining the strength of both time-scale and frequency domain analysis techniques, a unified wavelet packet signature analysis pinpoints the fault signature in the special fault-oriented frequency bands. The wavelet analysis combined with a feed-forward neural network classifier provides an intelligent methodology for the automatic diagnosis of the fault severity during runtime of the motor. The faults severity is considered as one, two, and three broken rotor bars. The results have confirmed that the proposed method is effective for diagnosing rotor bar breakage fault in an induction motor and classification of fault severity.

  1. Optimization Models for Flexible and Adaptive SDN Network Virtualization Layers

    OpenAIRE

    Zerwas, Johannes; Blenk, Andreas; Kellerer, Wolfgang

    2016-01-01

    Network hypervisors provide the network virtualization layer for Software Defined Networking (SDN). They enable virtual network (VN) tenants to bring their SDN controllers to program their logical networks individually according to their demands. In order to make use of the high flexibility of virtual SDN networks and to provide high performance, the deployment of the virtualization layer needs to adapt to changing VN demands. This paper initializes the study of the optimization of dynamic SD...

  2. Generalized synchronization in complex dynamical networks via adaptive couplings

    NARCIS (Netherlands)

    Liu, Hui; Chen, Juan; Lu, Jun-an; Cao, Ming

    2010-01-01

    This paper investigates generalized synchronization of three typical classes of complex dynamical networks: scale-free networks, small-world networks. and interpolating networks. The proposed synchronization strategy is to adjust adaptively a node's coupling strength based oil the node's local

  3. Adaptive training of feedforward neural networks by Kalman filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ciftcioglu, Oe. [Istanbul Technical Univ. (Turkey). Dept. of Electrical Engineering; Tuerkcan, E. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1995-02-01

    Adaptive training of feedforward neural networks by Kalman filtering is described. Adaptive training is particularly important in estimation by neural network in real-time environmental where the trained network is used for system estimation while the network is further trained by means of the information provided by the experienced/exercised ongoing operation. As result of this, neural network adapts itself to a changing environment to perform its mission without recourse to re-training. The performance of the training method is demonstrated by means of actual process signals from a nuclear power plant. (orig.).

  4. Public goods games on adaptive coevolutionary networks

    Science.gov (United States)

    Pichler, Elgar; Shapiro, Avi M.

    2017-07-01

    Productive societies feature high levels of cooperation and strong connections between individuals. Public Goods Games (PGGs) are frequently used to study the development of social connections and cooperative behavior in model societies. In such games, contributions to the public good are made only by cooperators, while all players, including defectors, reap public goods benefits, which are shares of the contributions amplified by a synergy factor. Classic results of game theory show that mutual defection, as opposed to cooperation, is the Nash Equilibrium of PGGs in well-mixed populations, where each player interacts with all others. In this paper, we explore the coevolutionary dynamics of a low information public goods game on a complex network in which players adapt to their environment in order to increase individual payoffs relative to past payoffs parameterized by greediness. Players adapt by changing their strategies, either to cooperate or to defect, and by altering their social connections. We find that even if players do not know other players' strategies and connectivity, cooperation can arise and persist despite large short-term fluctuations.

  5. Speed Adaptation in Urban Road Network Management

    Directory of Open Access Journals (Sweden)

    Raiyn Jamal

    2016-06-01

    Full Text Available Various forecasting schemes have been proposed to manage traffic data, which is collected by videos cameras, sensors, and mobile phone services. However, these are not sufficient for collecting data because of their limited coverage and high costs for installation and maintenance. To overcome the limitations of these tools, we introduce a hybrid scheme based on intelligent transportation system (ITS and global navigation satellite system (GNSS. Applying the GNSS to calculate travel time has proven efficient in terms of accuracy. In this case, GNSS data is managed to reduce traffic congestion and road accidents. This paper introduces a short-time forecasting model based on real-time travel time for urban heterogeneous road networks. Travel time forecasting has been achieved by predicting travel speeds using an optimized exponential moving Average (EMA model. Furthermore for speed adaptation in heterogeneous road networks, it is necessary to introduce asuitable control strategy for longitude, based on the GNSS. GNSS products provide worldwide and real-time services using precise timing information and, positioning technologies.

  6. Determination of Blood Glucose Concentration by Using Wavelet Transform and Neural Networks

    Directory of Open Access Journals (Sweden)

    Vajravelu Ashok

    2013-03-01

    Full Text Available Background: Early and non-invasive determination of blood glucose level is of great importance. We aimed to present a new technique to accurately infer the blood glucose concentration in peripheral blood flow using non-invasive optical monitoring system.Methods: The data for the research were obtained from 900 individuals. Of them, 750 people had diabetes mellitus (DM. The system was designed using a helium neon laser source of 632.8 nm wavelength with 5mW power, photo detectors and digital storage oscilloscope. The laser beam was directed through a single optical fiber to the index finger and the scattered beams were collected by the photo detectors placed circumferentially to the transmitting fiber. The received signals were filtered using band pass filter and finally sent to a digital storage oscilloscope. These signals were then decomposed into approximation and detail coefficients using modified Haar Wavelet Transform. Back propagation neural and radial basis functions were employed for the prediction of blood glucose concentration.Results: The data of 450 patients were randomly used for training, 225 for testing and the rest for validation. The data showed that outputs from radial basis function were nearer to the clinical value. Significant variations could be seen from signals obtained from patients with DM and those without DM.Conclusion: The proposed non-invasive optical glucose monitoring system is able to predict the glucose concentration by proving that there is a definite variation in hematological distribution between patients with DM and those without DM.

  7. Diagnosis of Alzheimer’s Disease Using Dual-Tree Complex Wavelet Transform, PCA, and Feed-Forward Neural Network

    Directory of Open Access Journals (Sweden)

    Debesh Jha

    2017-01-01

    Full Text Available Background. Error-free diagnosis of Alzheimer’s disease (AD from healthy control (HC patients at an early stage of the disease is a major concern, because information about the condition’s severity and developmental risks present allows AD sufferer to take precautionary measures before irreversible brain damage occurs. Recently, there has been great interest in computer-aided diagnosis in magnetic resonance image (MRI classification. However, distinguishing between Alzheimer’s brain data and healthy brain data in older adults (age > 60 is challenging because of their highly similar brain patterns and image intensities. Recently, cutting-edge feature extraction technologies have found extensive application in numerous fields, including medical image analysis. Here, we propose a dual-tree complex wavelet transform (DTCWT for extracting features from an image. The dimensionality of feature vector is reduced by using principal component analysis (PCA. The reduced feature vector is sent to feed-forward neural network (FNN to distinguish AD and HC from the input MR images. These proposed and implemented pipelines, which demonstrate improvements in classification output when compared to that of recent studies, resulted in high and reproducible accuracy rates of 90.06 ± 0.01% with a sensitivity of 92.00 ± 0.04%, a specificity of 87.78 ± 0.04%, and a precision of 89.6 ± 0.03% with 10-fold cross-validation.

  8. An Automatic Gastrointestinal Polyp Detection System in Video Endoscopy Using Fusion of Color Wavelet and Convolutional Neural Network Features.

    Science.gov (United States)

    Billah, Mustain; Waheed, Sajjad; Rahman, Mohammad Motiur

    2017-01-01

    Gastrointestinal polyps are considered to be the precursors of cancer development in most of the cases. Therefore, early detection and removal of polyps can reduce the possibility of cancer. Video endoscopy is the most used diagnostic modality for gastrointestinal polyps. But, because it is an operator dependent procedure, several human factors can lead to misdetection of polyps. Computer aided polyp detection can reduce polyp miss detection rate and assists doctors in finding the most important regions to pay attention to. In this paper, an automatic system has been proposed as a support to gastrointestinal polyp detection. This system captures the video streams from endoscopic video and, in the output, it shows the identified polyps. Color wavelet (CW) features and convolutional neural network (CNN) features of video frames are extracted and combined together which are used to train a linear support vector machine (SVM). Evaluations on standard public databases show that the proposed system outperforms the state-of-the-art methods, gaining accuracy of 98.65%, sensitivity of 98.79%, and specificity of 98.52%.

  9. Chlorophyll a simulation in a lake ecosystem using a model with wavelet analysis and artificial neural network.

    Science.gov (United States)

    Wang, Fei; Wang, Xuan; Chen, Bin; Zhao, Ying; Yang, Zhifeng

    2013-05-01

    Accurate and reliable forecasting is important for the sustainable management of ecosystems. Chlorophyll a (Chl a) simulation and forecasting can provide early warning information and enable managers to make appropriate decisions for protecting lake ecosystems. In this study, we proposed a method for Chl a simulation in a lake that coupled the wavelet analysis and the artificial neural networks (WA-ANN). The proposed method had the advantage of data preprocessing, which reduced noise and managed nonstationary data. Fourteen variables were included in the developed and validated model, relating to hydrologic, ecological and meteorologic time series data from January 2000 to December 2009 at the Lake Baiyangdian study area, North China. The performance of the proposed WA-ANN model for monthly Chl a simulation in the lake ecosystem was compared with a multiple stepwise linear regression (MSLR) model, an autoregressive integrated moving average (ARIMA) model and a regular ANN model. The results showed that the WA-ANN model was suitable for Chl a simulation providing a more accurate performance than the MSLR, ARIMA, and ANN models. We recommend that the proposed method be widely applied to further facilitate the development and implementation of lake ecosystem management.

  10. Voltage Control of PM Synchronous Motor Driven PM Synchronous Generator System Using Recurrent Wavelet Neural Network Controller

    Directory of Open Access Journals (Sweden)

    C.H. Lin

    2013-04-01

    Full Text Available In this paper the two novel recurrent wavelet neural network (RWNN controllers are proposed for controlling output direct current (DC voltage of the rectifier and output alternate current (AC voltage of the inverter. The output power of the rectifier and the inverter is provided by three-phase permanent magnet synchronous generator (PMSG system directly-driven by permanent magnet synchronous motor (PMSM. Firstly, the field-oriented mechanism is implemented for controlling output of the PMSG system. Then, one RWNN controller is developed for controlling rectifier to convert AC voltage into DC link voltage and the other RWNN controller is implemented for controlling inverter to convert DC link voltage into AC line voltage. Moreover, two online trained RWNNs using backpropagation learning algorithms are developed for regulating both the DC link voltage of the rectifier and the AC line voltage of the inverter. Finally, the effectiveness and advantages of the proposed two RWNN controllers are demonstrated in comparison with the two PI controllers from some experimental results.

  11. Chlorophyll a Simulation in a Lake Ecosystem Using a Model with Wavelet Analysis and Artificial Neural Network

    Science.gov (United States)

    Wang, Fei; Wang, Xuan; Chen, Bin; Zhao, Ying; Yang, Zhifeng

    2013-05-01

    Accurate and reliable forecasting is important for the sustainable management of ecosystems. Chlorophyll a (Chl a) simulation and forecasting can provide early warning information and enable managers to make appropriate decisions for protecting lake ecosystems. In this study, we proposed a method for Chl a simulation in a lake that coupled the wavelet analysis and the artificial neural networks (WA-ANN). The proposed method had the advantage of data preprocessing, which reduced noise and managed nonstationary data. Fourteen variables were included in the developed and validated model, relating to hydrologic, ecological and meteorologic time series data from January 2000 to December 2009 at the Lake Baiyangdian study area, North China. The performance of the proposed WA-ANN model for monthly Chl a simulation in the lake ecosystem was compared with a multiple stepwise linear regression (MSLR) model, an autoregressive integrated moving average (ARIMA) model and a regular ANN model. The results showed that the WA-ANN model was suitable for Chl a simulation providing a more accurate performance than the MSLR, ARIMA, and ANN models. We recommend that the proposed method be widely applied to further facilitate the development and implementation of lake ecosystem management.

  12. Selecting Statistical Characteristics of Brain Signals to Detect Epileptic Seizures using Discrete Wavelet Transform and Perceptron Neural Network

    Directory of Open Access Journals (Sweden)

    Rezvan Abbasi

    2017-08-01

    Full Text Available Electroencephalogram signals (EEG have always been used in medical diagnosis. Evaluation of the statistical characteristics of EEG signals is actually the foundation of all brain signal processing methods. Since the correct prediction of disease status is of utmost importance, the goal is to use those models that have minimum error and maximum reliability. In anautomatic epileptic seizure detection system, we should be able to distinguish between EEG signals before, during and after seizure. Extracting useful characteristics from EEG data can greatly increase the classification accuracy. In this new approach, we first parse EEG signals to sub-bands in different categories with the help of discrete wavelet transform(DWT and then we derive statistical characteristics such as maximum, minimum, average and standard deviation for each sub-band. A multilayer perceptron (MLPneural network was used to assess the different scenarios of healthy and seizure among the collected signal sets. In order to assess the success and effectiveness of the proposed method, the confusion matrix was used and its accuracy was achieved98.33 percent. Due to the limitations and obstacles in analyzing EEG signals, the proposed method can greatly help professionals experimentally and visually in the classification and diagnosis of epileptic seizures.

  13. A wavelet transform coupled with a fuzzy neural network for prediction of significant st segmental changes in the ecg.

    Science.gov (United States)

    Compe, Victor P

    2008-01-01

    The leading cause of death in the United States for people 65 and over is heart disease. A significant factor contributing to this disease process is the damage caused by an infarction, which can manifest as an abnormality in the ST segment of an Electrocardiogram (ECG). This research will develop a pattern recognition model that will be capable of detecting these critical changes. This model will be developed using a feature extraction scheme based upon Wavelet analysis and a classification scheme based upon a Fuzzy Neural Network design. These schemes will be implemented using software tools available from MatLab. Evaluation of the model will be accomplished by simulation (MatLab) with representative ECG samples obtained from a database (e.g. MIT-BIH) that have been universally accepted for such a purpose. This model could be available for implementation into a device used in the pre-hospital setting that would provide the capability of early detection of critical ST changes. Accurate detection of these abnormalities can provide the means for establishing guidelines to determine a treatment protocol that may save lives.

  14. Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder.

    Science.gov (United States)

    Ahmadlou, Mehran; Adeli, Hojjat; Adeli, Amir

    2010-10-01

    A method is presented for investigation of EEG of children with autistic spectrum disorder using complexity and chaos theory with the goal of discovering a nonlinear feature space. Fractal Dimension is proposed for investigation of complexity and dynamical changes in autistic spectrum disorder in brain. Two methods are investigated for computation of fractal dimension: Higuchi's Fractal Dimension and Katz's Fractal Dimension. A wavelet-chaos-neural network methodology is presented for automated EEG-based diagnosis of autistic spectrum disorder. The model is tested on a database of eyes-closed EEG data obtained from two groups: nine autistic spectrum disorder children, 6 to 13 years old, and eight non-autistic spectrum disorder children, 7 to 13 years old. Using a radial basis function classifier, an accuracy of 90% was achieved based on the most significant features discovered via analysis of variation statistical test, which are three Katz's Fractal Dimensions in delta (of loci Fp2 and C3) and gamma (of locus T6) EEG sub-bands with P < 0.001.

  15. Wind Power Forecasting Using Multi-Objective Evolutionary Algorithms for Wavelet Neural Network-Optimized Prediction Intervals

    Directory of Open Access Journals (Sweden)

    Yanxia Shen

    2018-01-01

    Full Text Available The intermittency of renewable energy will increase the uncertainty of the power system, so it is necessary to predict the short-term wind power, after which the electrical power system can operate reliably and safely. Unlike the traditional point forecasting, the purpose of this study is to quantify the potential uncertainties of wind power and to construct prediction intervals (PIs and prediction models using wavelet neural network (WNN. Lower upper bound estimation (LUBE of the PIs is achieved by minimizing a multi-objective function covering both interval width and coverage probabilities. Considering the influence of the points out of the PIs to shorten the width of PIs without compromising coverage probability, a new, improved, multi-objective artificial bee colony (MOABC algorithm combining multi-objective evolutionary knowledge, called EKMOABC, is proposed for the optimization of the forecasting model. In this paper, some comparative simulations are carried out and the results show that the proposed model and algorithm can achieve higher quality PIs for wind power forecasting. Taking into account the intermittency of renewable energy, such a type of wind power forecast can actually provide a more reliable reference for dispatching of the power system.

  16. An Automatic Gastrointestinal Polyp Detection System in Video Endoscopy Using Fusion of Color Wavelet and Convolutional Neural Network Features

    Science.gov (United States)

    Waheed, Sajjad; Rahman, Mohammad Motiur

    2017-01-01

    Gastrointestinal polyps are considered to be the precursors of cancer development in most of the cases. Therefore, early detection and removal of polyps can reduce the possibility of cancer. Video endoscopy is the most used diagnostic modality for gastrointestinal polyps. But, because it is an operator dependent procedure, several human factors can lead to misdetection of polyps. Computer aided polyp detection can reduce polyp miss detection rate and assists doctors in finding the most important regions to pay attention to. In this paper, an automatic system has been proposed as a support to gastrointestinal polyp detection. This system captures the video streams from endoscopic video and, in the output, it shows the identified polyps. Color wavelet (CW) features and convolutional neural network (CNN) features of video frames are extracted and combined together which are used to train a linear support vector machine (SVM). Evaluations on standard public databases show that the proposed system outperforms the state-of-the-art methods, gaining accuracy of 98.65%, sensitivity of 98.79%, and specificity of 98.52%. PMID:28894460

  17. An Automatic Gastrointestinal Polyp Detection System in Video Endoscopy Using Fusion of Color Wavelet and Convolutional Neural Network Features

    Directory of Open Access Journals (Sweden)

    Mustain Billah

    2017-01-01

    Full Text Available Gastrointestinal polyps are considered to be the precursors of cancer development in most of the cases. Therefore, early detection and removal of polyps can reduce the possibility of cancer. Video endoscopy is the most used diagnostic modality for gastrointestinal polyps. But, because it is an operator dependent procedure, several human factors can lead to misdetection of polyps. Computer aided polyp detection can reduce polyp miss detection rate and assists doctors in finding the most important regions to pay attention to. In this paper, an automatic system has been proposed as a support to gastrointestinal polyp detection. This system captures the video streams from endoscopic video and, in the output, it shows the identified polyps. Color wavelet (CW features and convolutional neural network (CNN features of video frames are extracted and combined together which are used to train a linear support vector machine (SVM. Evaluations on standard public databases show that the proposed system outperforms the state-of-the-art methods, gaining accuracy of 98.65%, sensitivity of 98.79%, and specificity of 98.52%.

  18. Power Spectral Analysis of Short-Term Heart Rate Variability in Healthy and Arrhythmia Subjects by the Adaptive Continuous Morlet Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Ram Sewak SINGH

    2017-12-01

    Full Text Available Power spectral analysis of short-term heart rate variability (HRV can provide instant valuable information to understand the functioning of autonomic control over the cardiovascular system. In this study, an adaptive continuous Morlet wavelet transform (ACMWT method has been used to describe the time-frequency characteristics of the HRV using band power spectra and the median value of interquartile range. Adaptation of the method was based on the measurement of maximum energy concentration. The ACMWT has been validated on synthetic signals (i.e. stationary, non-stationary as slow varying and fast changing frequency with time modeled as closest to dynamic changes in HRV signals. This method has been also tested in the presence of additive white Gaussian noise (AWGN to show its robustness towards the noise. From the results of testing on synthetic signals, the ACMWT was found to be an enhanced energy concentration estimator for assessment of power spectral of short-term HRV time series compared to adaptive Stockwell transform (AST, adaptive modified Stockwell transform (AMST, standard continuous Morlet wavelet transform (CMWT and Stockwell transform (ST estimators at statistical significance level of 5%. Further, the ACMWT was applied to real HRV data from Fantasia and MIT-BIH databases, grouped as healthy young group (HYG, healthy elderly group (HEG, arrhythmia controlled medication group (ARCMG, and supraventricular tachycardia group (SVTG subjects. The global results demonstrate that spectral indices of low frequency power (LFp and high frequency power (HFp of HRV were decreased in HEG compared to HYG subjects (p<0.0001. While LFp and HFp indices were increased in ARCMG compared to HEG (p<0.00001. The LFp and HFp components of HRV obtained from SVTG were reduced compared to other group subjects (p<0.00001.

  19. Epidemics in Adaptive Social Networks with Temporary Link Deactivation

    Science.gov (United States)

    Tunc, Ilker; Shkarayev, Maxim S.; Shaw, Leah B.

    2013-04-01

    Disease spread in a society depends on the topology of the network of social contacts. Moreover, individuals may respond to the epidemic by adapting their contacts to reduce the risk of infection, thus changing the network structure and affecting future disease spread. We propose an adaptation mechanism where healthy individuals may choose to temporarily deactivate their contacts with sick individuals, allowing reactivation once both individuals are healthy. We develop a mean-field description of this system and find two distinct regimes: slow network dynamics, where the adaptation mechanism simply reduces the effective number of contacts per individual, and fast network dynamics, where more efficient adaptation reduces the spread of disease by targeting dangerous connections. Analysis of the bifurcation structure is supported by numerical simulations of disease spread on an adaptive network. The system displays a single parameter-dependent stable steady state and non-monotonic dependence of connectivity on link deactivation rate.

  20. Adapted wavelet transform improves time-frequency representations: a study of auditory elicited P300-like event-related potentials in rats

    Science.gov (United States)

    Richard, Nelly; Laursen, Bettina; Grupe, Morten; Drewes, Asbjørn M.; Graversen, Carina; Sørensen, Helge B. D.; Bastlund, Jesper F.

    2017-04-01

    Objective. Active auditory oddball paradigms are simple tone discrimination tasks used to study the P300 deflection of event-related potentials (ERPs). These ERPs may be quantified by time-frequency analysis. As auditory stimuli cause early high frequency and late low frequency ERP oscillations, the continuous wavelet transform (CWT) is often chosen for decomposition due to its multi-resolution properties. However, as the conventional CWT traditionally applies only one mother wavelet to represent the entire spectrum, the time-frequency resolution is not optimal across all scales. To account for this, we developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. Approach. An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. Main results. While only early ERP frequency changes between responses to target and non-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. Significance. The study suggests superior performance of the aCWT over the CWT in terms of detailed quantification of time-frequency properties of ERPs. Our methodological investigation indicates that accurate and complete assessment of time-frequency components of short-time neural signals is feasible with the novel analysis approach which may be advantageous for characterisation of several types of evoked potentials in particularly rodents.

  1. LTE Adaptation for Mobile Broadband Satellite Networks

    Directory of Open Access Journals (Sweden)

    Bastia Francesco

    2009-01-01

    Full Text Available One of the key factors for the successful deployment of mobile satellite systems in 4G networks is the maximization of the technology commonalities with the terrestrial systems. An effective way of achieving this objective consists in considering the terrestrial radio interface as the baseline for the satellite radio interface. Since the 3GPP Long Term Evolution (LTE standard will be one of the main players in the 4G scenario, along with other emerging technologies, such as mobile WiMAX; this paper analyzes the possible applicability of the 3GPP LTE interface to satellite transmission, presenting several enabling techniques for this adaptation. In particular, we propose the introduction of an inter-TTI interleaving technique that exploits the existing H-ARQ facilities provided by the LTE physical layer, the use of PAPR reduction techniques to increase the resilience of the OFDM waveform to non linear distortion, and the design of the sequences for Random Access, taking into account the requirements deriving from the large round trip times. The outcomes of this analysis show that, with the required proposed enablers, it is possible to reuse the existing terrestrial air interface to transmit over the satellite link.

  2. Adaptive Mobile Positioning in WCDMA Networks

    Directory of Open Access Journals (Sweden)

    Dong B.

    2005-01-01

    Full Text Available We propose a new technique for mobile tracking in wideband code-division multiple-access (WCDMA systems employing multiple receive antennas. To achieve a high estimation accuracy, the algorithm utilizes the time difference of arrival (TDOA measurements in the forward link pilot channel, the angle of arrival (AOA measurements in the reverse-link pilot channel, as well as the received signal strength. The mobility dynamic is modelled by a first-order autoregressive (AR vector process with an additional discrete state variable as the motion offset, which evolves according to a discrete-time Markov chain. It is assumed that the parameters in this model are unknown and must be jointly estimated by the tracking algorithm. By viewing a nonlinear dynamic system such as a jump-Markov model, we develop an efficient auxiliary particle filtering algorithm to track both the discrete and continuous state variables of this system as well as the associated system parameters. Simulation results are provided to demonstrate the excellent performance of the proposed adaptive mobile positioning algorithm in WCDMA networks.

  3. Wavelet applications in engineering electromagnetics

    National Research Council Canada - National Science Library

    Sarkar, Tapan; Salazar-Palma, Magdalena; Wicks, Michael C

    2002-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Road Map of the Book . . . . . . Introduction . . . . . . . . Why Use Wavelets? . . . . . . What Are Wavelets? . . . . . . What Is the Wavelet Transform? . . . Use...

  4. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  5. Information Theoretic Adaptive Tracking of Epidemics in Complex Networks

    CERN Document Server

    Harrington, Patrick L

    2013-01-01

    Adaptively monitoring the states of nodes in a large complex network is of interest in domains such as national security, public health, and energy grid management. Here, we present an information theoretic adaptive tracking and sampling framework that recursively selects measurements using the feedback from performing inference on a dynamic Bayesian Network. We also present conditions for the existence of a network specific, observation dependent, phase transition in the updated posterior of hidden node states resulting from actively monitoring the network. Since traditional epidemic thresholds are derived using observation independent Markov chains, the threshold of the posterior should more accurately model the true phase transition of a network. The adaptive tracking framework and epidemic threshold should provide insight into modeling the dynamic response of the updated posterior to active intervention and control policies while monitoring modern complex networks.

  6. Adaptive Dynamics, Control, and Extinction in Networked Populations

    Science.gov (United States)

    2015-07-09

    Adaptive Dynamics, Control, and Extinction in Networked Populations Ira B. Schwartz US Naval Research Laboratory Code 6792 Nonlinear System Dynamics...theory of large deviations to stochastic network extinction to predict extinction times. In particular, we use the theory to find the most probable...paths leading to extinction . We then apply the methodology to network models and discover how mean extinction times scale with network parameters in Erdos

  7. Adapted wavelet transform improves time-frequency representations: a study of auditory elicited P300-like event-related potentials in rats

    DEFF Research Database (Denmark)

    Richard, Nelly; Laursen, Bettina; Grupe, Morten

    2017-01-01

    ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. Main results. While only early ERP frequency changes between responses to target and non...... developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. Approach. An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated......-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. Significance. The study suggests...

  8. A Wavelet Perspective on the Allan Variance.

    Science.gov (United States)

    Percival, Donald B

    2016-04-01

    The origins of the Allan variance trace back 50 years ago to two seminal papers, one by Allan (1966) and the other by Barnes (1966). Since then, the Allan variance has played a leading role in the characterization of high-performance time and frequency standards. Wavelets first arose in the early 1980s in the geophysical literature, and the discrete wavelet transform (DWT) became prominent in the late 1980s in the signal processing literature. Flandrin (1992) briefly documented a connection between the Allan variance and a wavelet transform based upon the Haar wavelet. Percival and Guttorp (1994) noted that one popular estimator of the Allan variance-the maximal overlap estimator-can be interpreted in terms of a version of the DWT now widely referred to as the maximal overlap DWT (MODWT). In particular, when the MODWT is based on the Haar wavelet, the variance of the resulting wavelet coefficients-the wavelet variance-is identical to the Allan variance when the latter is multiplied by one-half. The theory behind the wavelet variance can thus deepen our understanding of the Allan variance. In this paper, we review basic wavelet variance theory with an emphasis on the Haar-based wavelet variance and its connection to the Allan variance. We then note that estimation theory for the wavelet variance offers a means of constructing asymptotically correct confidence intervals (CIs) for the Allan variance without reverting to the common practice of specifying a power-law noise type a priori. We also review recent work on specialized estimators of the wavelet variance that are of interest when some observations are missing (gappy data) or in the presence of contamination (rogue observations or outliers). It is a simple matter to adapt these estimators to become estimators of the Allan variance. Finally we note that wavelet variances based upon wavelets other than the Haar offer interesting generalizations of the Allan variance.

  9. ADAPTIVE NETWORK CODING IN WIRELESS COMMUNICATIONS

    DEFF Research Database (Denmark)

    2017-01-01

    A first network node (eNB) is configured to receive (404), from a second network node (UE), channel performance indicator values regarding a serving cell, and estimate (404) a number of network-coded packets based on the received channel performance indicator values, such that the estimated numbe...

  10. Collaborative Trust Networks in Engineering Design Adaptation

    DEFF Research Database (Denmark)

    Atkinson, Simon Reay; Maier, Anja; Caldwell, Nicholas

    2011-01-01

    ); applying the Change Prediction Method (CPM) tool. It posits the idea of the ‘Networks-in-Being’ with varying individual and collective characteristics. [Social] networks are considered to facilitate information exchange between actors. At the same time, networks failing to provide trusted-information can...... collaboration and decision-making by using the change prediction method as a way of scoping information propagation between actors within a network....... hinder effective communication and collaboration. Different combinations of trust may therefore improve or impair the likelihood of information flow, transfer and subsequent action (cause and effect). This paper investigates how analysing different types of network-structures-in-being can support...

  11. Adaptive-Compression Based Congestion Control Technique for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Joa-Hyoung Lee

    2010-03-01

    Full Text Available Congestion in a wireless sensor network causes an increase in the amount of data loss and delays in data transmission. In this paper, we propose a new congestion control technique (ACT, Adaptive Compression-based congestion control Technique based on an adaptive compression scheme for packet reduction in case of congestion. The compression techniques used in the ACT are Discrete Wavelet Transform (DWT, Adaptive Differential Pulse Code Modulation (ADPCM, and Run-Length Coding (RLC. The ACT first transforms the data from the time domain to the frequency domain, reduces the range of data by using ADPCM, and then reduces the number of packets with the help of RLC before transferring the data to the source node. It introduces the DWT for priority-based congestion control because the DWT classifies the data into four groups with different frequencies. The ACT assigns priorities to these data groups in an inverse proportion to the respective frequencies of the data groups and defines the quantization step size of ADPCM in an inverse proportion to the priorities. RLC generates a smaller number of packets for a data group with a low priority. In the relaying node, the ACT reduces the amount of packets by increasing the quantization step size of ADPCM in case of congestion. Moreover, in order to facilitate the back pressure, the queue is controlled adaptively according to the congestion state. We experimentally demonstrate that the ACT increases the network efficiency and guarantees fairness to sensor nodes, as compared with the existing methods. Moreover, it exhibits a very high ratio of the available data in the sink.

  12. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical...

  13. Adaptive Charging Algorithms for a Network of Electric Vehicles

    OpenAIRE

    Low, Zhi H.; Low, Steven H.

    2017-01-01

    Electric vehicle node controllers in accordance with embodiments of the invention enable adaptive charging. One embodiment includes one or more centralized computing systems; a communications network; a plurality of electric vehicle node controllers, where each electric vehicle node controller in the plurality of node controllers contains: a network interface; a processor; a memory containing: an adaptive charging application; a plurality of electric vehicle node parameters describing chargin...

  14. Adaptive relaying for ground fault protection of a distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M.S.; Sidhu, T.S.; Talukdar, B.K.

    1995-12-31

    With the advent of digital technology and microprocessor-based relays, it is possible to continuously monitor a power network, analyze it in real time, and change the relay settings to those most suitable at that time, thereby achieving improved protection of the network. This approach, known as adaptive relaying, was applied to the Saskatoon distribution network. This paper describes the software modules developed for setting ground fault overcurrent relays in the adaptive relay protection system. The major task in this system was the on-line coordination of relays, as most faults in a distribution system are of the single-phase to ground type and current unbalance due to single-phase loading contributes to the complexity of relay coordination. The modules served for network topology detection, state estimation, fault analysis, and relay setting and coordination. The paper also presents results of a study of the proposed adaptive ground fault protection scheme using a model distribution network.

  15. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  16. Wavelet-based associative memory

    Science.gov (United States)

    Jones, Katharine J.

    2004-04-01

    Faces provide important characteristics of a person"s identification. In security checks, face recognition still remains the method in continuous use despite other approaches (i.e. fingerprints, voice recognition, pupil contraction, DNA scanners). With an associative memory, the output data is recalled directly using the input data. This can be achieved with a Nonlinear Holographic Associative Memory (NHAM). This approach can also distinguish between strongly correlated images and images that are partially or totally enclosed by others. Adaptive wavelet lifting has been used for Content-Based Image Retrieval. In this paper, adaptive wavelet lifting will be applied to face recognition to achieve an associative memory.

  17. Adapting Bayes Network Structures to Non-stationary Domains

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre

    2006-01-01

    When an incremental structural learning method gradually modifies a Bayesian network (BN) structure to fit observations, as they are read from a database, we call the process structural adaptation. Structural adaptation is useful when the learner is set to work in an unknown environment, where a BN...

  18. Adapting Bayes Network Structures to Non-stationary Domains

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre

    2008-01-01

    When an incremental structural learning method gradually modifies a Bayesian network (BN) structure to fit a sequential stream of observations, we call the process structural adaptation. Structural adaptation is useful when the learner is set to work in an unknown environment, where a BN...

  19. Implementation of an Adaptive Learning System Using a Bayesian Network

    Science.gov (United States)

    Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki

    2015-01-01

    An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…

  20. Joint Source-Channel Coding for Wavelet-Based Scalable Video Transmission Using an Adaptive Turbo Code

    Directory of Open Access Journals (Sweden)

    Ramzan Naeem

    2007-01-01

    Full Text Available An efficient approach for joint source and channel coding is presented. The proposed approach exploits the joint optimization of a wavelet-based scalable video coding framework and a forward error correction method based on turbo codes. The scheme minimizes the reconstructed video distortion at the decoder subject to a constraint on the overall transmission bitrate budget. The minimization is achieved by exploiting the source rate distortion characteristics and the statistics of the available codes. Here, the critical problem of estimating the bit error rate probability in error-prone applications is discussed. Aiming at improving the overall performance of the underlying joint source-channel coding, the combination of the packet size, interleaver, and channel coding rate is optimized using Lagrangian optimization. Experimental results show that the proposed approach outperforms conventional forward error correction techniques at all bit error rates. It also significantly improves the performance of end-to-end scalable video transmission at all channel bit rates.

  1. Joint Source-Channel Coding for Wavelet-Based Scalable Video Transmission Using an Adaptive Turbo Code

    Directory of Open Access Journals (Sweden)

    Naeem Ramzan

    2007-03-01

    Full Text Available An efficient approach for joint source and channel coding is presented. The proposed approach exploits the joint optimization of a wavelet-based scalable video coding framework and a forward error correction method based on turbo codes. The scheme minimizes the reconstructed video distortion at the decoder subject to a constraint on the overall transmission bitrate budget. The minimization is achieved by exploiting the source rate distortion characteristics and the statistics of the available codes. Here, the critical problem of estimating the bit error rate probability in error-prone applications is discussed. Aiming at improving the overall performance of the underlying joint source-channel coding, the combination of the packet size, interleaver, and channel coding rate is optimized using Lagrangian optimization. Experimental results show that the proposed approach outperforms conventional forward error correction techniques at all bit error rates. It also significantly improves the performance of end-to-end scalable video transmission at all channel bit rates.

  2. A comparative study of scalable video coding schemes utilizing wavelet technology

    Science.gov (United States)

    Schelkens, Peter; Andreopoulos, Yiannis; Barbarien, Joeri; Clerckx, Tom; Verdicchio, Fabio; Munteanu, Adrian; van der Schaar, Mihaela

    2004-02-01

    Video transmission over variable-bandwidth networks requires instantaneous bit-rate adaptation at the server site to provide an acceptable decoding quality. For this purpose, recent developments in video coding aim at providing a fully embedded bit-stream with seamless adaptation capabilities in bit-rate, frame-rate and resolution. A new promising technology in this context is wavelet-based video coding. Wavelets have already demonstrated their potential for quality and resolution scalability in still-image coding. This led to the investigation of various schemes for the compression of video, exploiting similar principles to generate embedded bit-streams. In this paper we present scalable wavelet-based video-coding technology with competitive rate-distortion behavior compared to standardized non-scalable technology.

  3. Networked Airbourne Communications Using Adaptive Multi Beam Directional Links

    Science.gov (United States)

    2016-03-05

    January 8, 2009. works introduce more sophisticated channel models, and route selection by a method called percolation [7], [8]. For these examples ...Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can

  4. Adaptive Neurons For Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  5. Compensation for unmatched uncertainty with adaptive RBF network

    African Journals Online (AJOL)

    user

    3 Control Systems Research Group, School of Engineering, Liverpool John Moores University, Liverpool, UK ... Introduction ... new integral sliding surface that includes an additional design matrix with an adaptive RBF neural network. In addition to ... This may be tackled by neural network modeling in on-line mode but the.

  6. Adaptive Data Broadcast in Hybrid Networks

    National Research Council Canada - National Science Library

    Stathatos, Konstantinos; Roussopoulos, Nick; Baras, John S

    1997-01-01

    .... The goal is to build highly scalable systems with small response time. In this paper, we describe a technique that continuously adapts the broadcast content to match the hot-spot of the workload...

  7. Adaptation Methods in Mobile Communication Networks

    National Research Council Canada - National Science Library

    Vladimir Wieser

    2003-01-01

    Adaptation methods are the main tool for transmission rate maximization through the mobile channel and today the great attention is directed to them not only in theoretical domain but in standardization process, too...

  8. Adaptation Methods in Mobile Communication Networks

    National Research Council Canada - National Science Library

    Vladimir Wieser

    2003-01-01

      Adaptation methods are the main tool for transmission rate maximization through the mobile channel and today the great attention is directed to them not only in theoretical domain but in standardization process, too...

  9. Dynamic Virtual LANs for Adaptive Network Security

    National Research Council Canada - National Science Library

    Merani, Diego; Berni, Alessandro; Leonard, Michel

    2004-01-01

    The development of Network-Enabled capabilities in support of undersea research requires architectures for the interconnection and data sharing that are flexible, scalable, and built on open standards...

  10. Engineering Issues for an Adaptive Defense Network

    National Research Council Canada - National Science Library

    Piszcz, Alan; Orlans, Nicholas; Eyler-Walker, Zachary; Moore, David

    2001-01-01

    .... The primary issue was the capability to detect and defend against DDoS. Experimentation was performed with a packet filtering firewall, a network Quality of Service manager, multiple DDoS tools, and traffic generation tools...

  11. Adaptive Influence Maximization in Dynamic Social Networks

    OpenAIRE

    Tong, Guangmo; Wu, Weili; Tang, Shaojie; Du, Ding-Zhu

    2015-01-01

    For the purpose of propagating information and ideas through a social network, a seeding strategy aims to find a small set of seed users that are able to maximize the spread of the influence, which is termed as influence maximization problem. Despite a large number of works have studied this problem, the existing seeding strategies are limited to the static social networks. In fact, due to the high speed data transmission and the large population of participants, the diffusion processes in re...

  12. Adaptive Capacity Management in Bluetooth Networks

    OpenAIRE

    Son, L.T.

    2004-01-01

    With the Internet and mobile wireless development, accelerated by high-speed and low cost VLSI device evolution, short range wireless communications have become more and more popular, especially Bluetooth. Bluetooth is a new short range radio technology that promises to be very convenient, low power, and low cost mobile ad hoc solution for the global interconnection of all mobile devices. To implement Bluetooth network as a true mobile ad hoc wireless network operating in short radio range, h...

  13. An improved fault detection classification and location scheme based on wavelet transform and artificial neural network for six phase transmission line using single end data only.

    Science.gov (United States)

    Koley, Ebha; Verma, Khushaboo; Ghosh, Subhojit

    2015-01-01

    Restrictions on right of way and increasing power demand has boosted development of six phase transmission. It offers a viable alternative for transmitting more power, without major modification in existing structure of three phase double circuit transmission system. Inspite of the advantages, low acceptance of six phase system is attributed to the unavailability of a proper protection scheme. The complexity arising from large number of possible faults in six phase lines makes the protection quite challenging. The proposed work presents a hybrid wavelet transform and modular artificial neural network based fault detector, classifier and locator for six phase lines using single end data only. The standard deviation of the approximate coefficients of voltage and current signals obtained using discrete wavelet transform are applied as input to the modular artificial neural network for fault classification and location. The proposed scheme has been tested for all 120 types of shunt faults with variation in location, fault resistance, fault inception angles. The variation in power system parameters viz. short circuit capacity of the source and its X/R ratio, voltage, frequency and CT saturation has also been investigated. The result confirms the effectiveness and reliability of the proposed protection scheme which makes it ideal for real time implementation.

  14. Connection adaption for control of networked mobile chaotic agents.

    Science.gov (United States)

    Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Xiao, Gaoxi; Boccaletti, S

    2017-11-22

    In this paper, we propose a strategy for the control of mobile chaotic oscillators by adaptively rewiring connections between nearby agents with local information. In contrast to the dominant adaptive control schemes where coupling strength is adjusted continuously according to the states of the oscillators, our method does not request adaption of coupling strength. As the resulting interaction structure generated by this proposed strategy is strongly related to unidirectional chains, by investigating synchronization property of unidirectional chains, we reveal that there exists a certain coupling range in which the agents could be controlled regardless of the length of the chain. This feature enables the adaptive strategy to control the mobile oscillators regardless of their moving speed. Compared with existing adaptive control strategies for networked mobile agents, our proposed strategy is simpler for implementation where the resulting interaction networks are kept unweighted at all time.

  15. QOS-aware error recovery in wireless body sensor networks using adaptive network coding.

    Science.gov (United States)

    Razzaque, Mohammad Abdur; Javadi, Saeideh S; Coulibaly, Yahaya; Hira, Muta Tah

    2014-12-29

    Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.

  16. Robust adaptive synchronization of general dynamical networks ...

    Indian Academy of Sciences (India)

    1School of Information Science & Engineering, Northeastern University, Shenyang,. Liaoning, 110819, People's ... Introduction. Complex networks exist extensively in ecosystems, power grids, food webs and in many other spheres in our daily lives. Over the course of the past 30 years, technological revolu- tions of complex ...

  17. Designing Networked Adaptive Interactive Hybrid Systems

    NARCIS (Netherlands)

    Kester, L.J.H.M.

    2008-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. In these systems humans and intelligent machines will, in close interaction, be able to reach their goals under

  18. Adaptive Importance Sampling Simulation of Queueing Networks

    NARCIS (Netherlands)

    de Boer, Pieter-Tjerk; Nicola, V.F.; Rubinstein, N.; Rubinstein, Reuven Y.

    2000-01-01

    In this paper, a method is presented for the efficient estimation of rare-event (overflow) probabilities in Jackson queueing networks using importance sampling. The method differs in two ways from methods discussed in most earlier literature: the change of measure is state-dependent, i.e., it is a

  19. Adaptive traffic control systems for urban networks

    Directory of Open Access Journals (Sweden)

    Radivojević Danilo

    2017-01-01

    Full Text Available Adaptive traffic control systems represent complex, but powerful tool for improvement of traffic flow conditions in locations or zones where applied. Many traffic agencies, especially those that have a large number of signalized intersections with high variability of the traffic demand, choose to apply some of the adaptive traffic control systems. However, those systems are manufactured and offered by multiple vendors (companies that are competing for the market share. Due to that fact, besides the information available from the vendors themselves, or the information from different studies conducted on different continents, very limited amount of information is available about the details how those systems are operating. The reason for that is the protecting of the intellectual property from plagiarism. The primary goal of this paper is to make a brief analysis of the functionalities, characteristics, abilities and results of the most recognized, but also less known adaptive traffic control systems to the professional public and other persons with interest in this subject.

  20. Adaptive relaying for ground fault protection of a distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M.S.; Sidhu, T.S.; Talukdar, B.K. [Saskatchewan Univ., Saskatoon, SK (Canada)

    1995-12-31

    Adaptive protection was used for designing a protection system for the City of Saskatoon`s distribution network. The software and hardware were developed and the protection system was implemented in the laboratory at the University of Saskatchewan. In the first phase of the project, phase overcurrent relays were coordinated on the basis of three-phase faults. Most faults in distribution networks were single-phase to ground faults. Ground fault currents varied due to different grounding practices, changes in operating conditions and system topology. In the second phase of the project, adaptive capabilities for ground overcurrent and directional ground overcurrent protection were added. Software modules developed for achieving adaptive ground fault protection were described. Results from system studies carried out using the City of Saskatoon`s distribution network were also analyzed. 7 refs., 8 figs.

  1. QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding

    Directory of Open Access Journals (Sweden)

    Mohammad Abdur Razzaque

    2014-12-01

    Full Text Available Wireless body sensor networks (WBSNs for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS, in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network’s QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.

  2. A candidate multimodal functional genetic network for thermal adaptation

    Directory of Open Access Journals (Sweden)

    Katharina C. Wollenberg Valero

    2014-09-01

    Full Text Available Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1, affect genes with different cellular functions, namely (2 lipoprotein metabolism, (3 membrane channels, (4 stress response, (5 response to oxidative stress, (6 muscle contraction and relaxation, and (7 vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and

  3. Topology detection for adaptive protection of distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M.S.; Sidhu, T.S.; Talukdar, B.K. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Power System Research Group

    1995-12-31

    A general purpose network topology detection technique suitable for use in adaptive relaying applications is presented in this paper. Three test systems were used to check the performance of the proposed technique. Results obtained from the tests are included. The proposed technique was implemented in the laboratory as a part of the implementation of the adaptive protection scheme. The execution times of the topology detection software were monitored and were found to be acceptable.

  4. Scalable Harmonization of Complex Networks With Local Adaptive Controllers

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav; Herzallah, R.

    2017-01-01

    Roč. 47, č. 3 (2017), s. 394-404 ISSN 2168-2216 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Adaptive control * Adaptive estimation * Bayes methods * Complex networks * Decentralized control * Feedback * Feedforward systems * Recursive estimation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.350, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0457337.pdf

  5. Adaptive thresholds for neural networks with synaptic noise.

    Science.gov (United States)

    Bollé, D; Heylen, R

    2007-08-01

    The inclusion of a macroscopic adaptive threshold is studied for the retrieval dynamics of both layered feedforward and fully connected neural network models with synaptic noise. These two types of architectures require a different method to be solved numerically. In both cases it is shown that, if the threshold is chosen appropriately as a function of the cross-talk noise and of the activity of the stored patterns, adapting itself automatically in the course of the recall process, an autonomous functioning of the network is guaranteed. This self-control mechanism considerably improves the quality of retrieval, in particular the storage capacity, the basins of attraction and the mutual information content.

  6. Radio propagation and adaptive antennas for wireless communication networks

    CERN Document Server

    Blaunstein, Nathan

    2014-01-01

    Explores novel wireless networks beyond 3G, and advanced 4G technologies, such as MIMO, via propagation phenomena and the fundamentals of adapted antenna usage.Explains how adaptive antennas can improve GoS and QoS for any wireless channel, with specific examples and applications in land, aircraft and satellite communications.Introduces new stochastic approach based on several multi-parametric models describing various terrestrial scenarios, which have been experimentally verified in different environmental conditionsNew chapters on fundamentals of wireless networks, cellular and non-cellular,

  7. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  8. Adaptive bridge control strategy for opinion evolution on social networks.

    Science.gov (United States)

    Qian, Cheng; Cao, Jinde; Lu, Jianquan; Kurths, Jürgen

    2011-06-01

    In this paper, we present an efficient opinion control strategy for complex networks, in particular, for social networks. The proposed adaptive bridge control (ABC) strategy calls for controlling a special kind of nodes named bridge and requires no knowledge of the node degrees or any other global or local knowledge, which are necessary for some other immunization strategies including targeted immunization and acquaintance immunization. We study the efficiency of the proposed ABC strategy on random networks, small-world networks, scale-free networks, and the random networks adjusted by the edge exchanging method. Our results show that the proposed ABC strategy is efficient for all of these four kinds of networks. Through an adjusting clustering coefficient by the edge exchanging method, it is found out that the efficiency of our ABC strategy is closely related with the clustering coefficient. The main contributions of this paper can be listed as follows: (1) A new high-order social network is proposed to describe opinion dynamic. (2) An algorithm, which does not require the knowledge of the nodes' degree and other global∕local network structure information, is proposed to control the "bridges" more accurately and further control the opinion dynamics of the social networks. The efficiency of our ABC strategy is illustrated by numerical examples. (3) The numerical results indicate that our ABC strategy is more efficient for networks with higher clustering coefficient.

  9. Shaping embodied neural networks for adaptive goal-directed behavior.

    Directory of Open Access Journals (Sweden)

    Zenas C Chao

    2008-03-01

    Full Text Available The acts of learning and memory are thought to emerge from the modifications of synaptic connections between neurons, as guided by sensory feedback during behavior. However, much is unknown about how such synaptic processes can sculpt and are sculpted by neuronal population dynamics and an interaction with the environment. Here, we embodied a simulated network, inspired by dissociated cortical neuronal cultures, with an artificial animal (an animat through a sensory-motor loop consisting of structured stimuli, detailed activity metrics incorporating spatial information, and an adaptive training algorithm that takes advantage of spike timing dependent plasticity. By using our design, we demonstrated that the network was capable of learning associations between multiple sensory inputs and motor outputs, and the animat was able to adapt to a new sensory mapping to restore its goal behavior: move toward and stay within a user-defined area. We further showed that successful learning required proper selections of stimuli to encode sensory inputs and a variety of training stimuli with adaptive selection contingent on the animat's behavior. We also found that an individual network had the flexibility to achieve different multi-task goals, and the same goal behavior could be exhibited with different sets of network synaptic strengths. While lacking the characteristic layered structure of in vivo cortical tissue, the biologically inspired simulated networks could tune their activity in behaviorally relevant manners, demonstrating that leaky integrate-and-fire neural networks have an innate ability to process information. This closed-loop hybrid system is a useful tool to study the network properties intermediating synaptic plasticity and behavioral adaptation. The training algorithm provides a stepping stone towards designing future control systems, whether with artificial neural networks or biological animats themselves.

  10. Social Networking Adapted for Distributed Scientific Collaboration

    Science.gov (United States)

    Karimabadi, Homa

    2012-01-01

    Share is a social networking site with novel, specially designed feature sets to enable simultaneous remote collaboration and sharing of large data sets among scientists. The site will include not only the standard features found on popular consumer-oriented social networking sites such as Facebook and Myspace, but also a number of powerful tools to extend its functionality to a science collaboration site. A Virtual Observatory is a promising technology for making data accessible from various missions and instruments through a Web browser. Sci-Share augments services provided by Virtual Observatories by enabling distributed collaboration and sharing of downloaded and/or processed data among scientists. This will, in turn, increase science returns from NASA missions. Sci-Share also enables better utilization of NASA s high-performance computing resources by providing an easy and central mechanism to access and share large files on users space or those saved on mass storage. The most common means of remote scientific collaboration today remains the trio of e-mail for electronic communication, FTP for file sharing, and personalized Web sites for dissemination of papers and research results. Each of these tools has well-known limitations. Sci-Share transforms the social networking paradigm into a scientific collaboration environment by offering powerful tools for cooperative discourse and digital content sharing. Sci-Share differentiates itself by serving as an online repository for users digital content with the following unique features: a) Sharing of any file type, any size, from anywhere; b) Creation of projects and groups for controlled sharing; c) Module for sharing files on HPC (High Performance Computing) sites; d) Universal accessibility of staged files as embedded links on other sites (e.g. Facebook) and tools (e.g. e-mail); e) Drag-and-drop transfer of large files, replacing awkward e-mail attachments (and file size limitations); f) Enterprise-level data and

  11. Opportunistic Adaptive Transmission for Network Coding Using Nonbinary LDPC Codes

    Directory of Open Access Journals (Sweden)

    Cocco Giuseppe

    2010-01-01

    Full Text Available Network coding allows to exploit spatial diversity naturally present in mobile wireless networks and can be seen as an example of cooperative communication at the link layer and above. Such promising technique needs to rely on a suitable physical layer in order to achieve its best performance. In this paper, we present an opportunistic packet scheduling method based on physical layer considerations. We extend channel adaptation proposed for the broadcast phase of asymmetric two-way bidirectional relaying to a generic number of sinks and apply it to a network context. The method consists of adapting the information rate for each receiving node according to its channel status and independently of the other nodes. In this way, a higher network throughput can be achieved at the expense of a slightly higher complexity at the transmitter. This configuration allows to perform rate adaptation while fully preserving the benefits of channel and network coding. We carry out an information theoretical analysis of such approach and of that typically used in network coding. Numerical results based on nonbinary LDPC codes confirm the effectiveness of our approach with respect to previously proposed opportunistic scheduling techniques.

  12. Emergence of local synchronization in neuronal networks with adaptive couplings.

    Directory of Open Access Journals (Sweden)

    Shilpa Chakravartula

    Full Text Available Local synchronization, both prolonged and transient, of oscillatory neuronal behavior in cortical networks plays a fundamental role in many aspects of perception and cognition. Here we study networks of Hindmarsh-Rose neurons with a new type of adaptive coupling, and show that these networks naturally produce both permanent and transient synchronization of local clusters of neurons. These deterministic systems exhibit complex dynamics with 1/fη power spectra, which appears to be a consequence of a novel form of self-organized criticality.

  13. Emergence of local synchronization in neuronal networks with adaptive couplings.

    Science.gov (United States)

    Chakravartula, Shilpa; Indic, Premananda; Sundaram, Bala; Killingback, Timothy

    2017-01-01

    Local synchronization, both prolonged and transient, of oscillatory neuronal behavior in cortical networks plays a fundamental role in many aspects of perception and cognition. Here we study networks of Hindmarsh-Rose neurons with a new type of adaptive coupling, and show that these networks naturally produce both permanent and transient synchronization of local clusters of neurons. These deterministic systems exhibit complex dynamics with 1/fη power spectra, which appears to be a consequence of a novel form of self-organized criticality.

  14. In-network adaptation of SHVC video in software-defined networks

    Science.gov (United States)

    Awobuluyi, Olatunde; Nightingale, James; Wang, Qi; Alcaraz Calero, Jose Maria; Grecos, Christos

    2016-04-01

    Software Defined Networks (SDN), when combined with Network Function Virtualization (NFV) represents a paradigm shift in how future networks will behave and be managed. SDN's are expected to provide the underpinning technologies for future innovations such as 5G mobile networks and the Internet of Everything. The SDN architecture offers features that facilitate an abstracted and centralized global network view in which packet forwarding or dropping decisions are based on application flows. Software Defined Networks facilitate a wide range of network management tasks, including the adaptation of real-time video streams as they traverse the network. SHVC, the scalable extension to the recent H.265 standard is a new video encoding standard that supports ultra-high definition video streams with spatial resolutions of up to 7680×4320 and frame rates of 60fps or more. The massive increase in bandwidth required to deliver these U-HD video streams dwarfs the bandwidth requirements of current high definition (HD) video. Such large bandwidth increases pose very significant challenges for network operators. In this paper we go substantially beyond the limited number of existing implementations and proposals for video streaming in SDN's all of which have primarily focused on traffic engineering solutions such as load balancing. By implementing and empirically evaluating an SDN enabled Media Adaptation Network Entity (MANE) we provide a valuable empirical insight into the benefits and limitations of SDN enabled video adaptation for real time video applications. The SDN-MANE is the video adaptation component of our Video Quality Assurance Manager (VQAM) SDN control plane application, which also includes an SDN monitoring component to acquire network metrics and a decision making engine using algorithms to determine the optimum adaptation strategy for any real time video application flow given the current network conditions. Our proposed VQAM application has been implemented and

  15. TEXTURE BASED LAND COVER CLASSIFICATION ALGORITHM USING GABOR WAVELET AND ANFIS CLASSIFIER

    Directory of Open Access Journals (Sweden)

    S. Jenicka

    2016-05-01

    Full Text Available Texture features play a predominant role in land cover classification of remotely sensed images. In this study, for extracting texture features from data intensive remotely sensed image, Gabor wavelet has been used. Gabor wavelet transform filters frequency components of an image through decomposition and produces useful features. For classification of fuzzy land cover patterns in the remotely sensed image, Adaptive Neuro Fuzzy Inference System (ANFIS has been used. The strength of ANFIS classifier is that it combines the merits of fuzzy logic and neural network. Hence in this article, land cover classification of remotely sensed image has been performed using Gabor wavelet and ANFIS classifier. The classification accuracy of the classified image obtained is found to be 92.8%.

  16. Fault detection and analysis of electric generator based on wavelet transform and fuzzy logic technology

    Science.gov (United States)

    Ding, Guangbin; Pang, Peilin

    2008-10-01

    A new method combining wavelet transform with fuzzy theory is proposed to improve the limitation of traditional fault diagnosis technology of electric generator. In order to determine the threshold of each order of wavelet space and the decomposition level adaptively, the statistic rule is brought forward to increase the signal-noise-ratio. The wavelet transform is used to acquire the effective feature components and the proposed fuzzy diagnosis equation is used to complete classify fault pattern. The fault diagnosis model of electric generator is established and the network parameters training are fulfilled by the improved least squares algorithm. The input nodes include the information representing the fault characters. On basis of experiments data to train the fault diagnosis mode, the accurate classification results can be achieved in accordance with expert experience. In view of actual applications, the proposed method can effectively diagnose the fault pattern of electric generator.

  17. Compensation for unmatched uncertainty with adaptive RBF network

    African Journals Online (AJOL)

    Robust control for nonlinear uncertain systems has been solved for matched uncertainty but has not been completely solved yet for unmatched uncertainty. This paper developed a new method in which an adaptive radial basis function neural network is used to compensate for the effects of unmatched uncertainty in the ...

  18. Evolving RBF neural networks for adaptive soft-sensor design.

    Science.gov (United States)

    Alexandridis, Alex

    2013-12-01

    This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.

  19. Adaptive dynamic capacity borrowing in road-covering mobile networks

    NARCIS (Netherlands)

    Ule, A.; Boucherie, Richardus J.; Li, W.; Pan, Y.

    2006-01-01

    This paper introduces adaptive dynamic capacity borrowing strategies for wireless networks covering a road. In a F/TDMA-based model, road traffic prediction models are used to characterise the movement of hot spots, such as traffic jams, and subsequently to predict the teletraffic load offered to

  20. Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2015-01-01

    Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

  1. Adaptive Media Access Control for Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Dragoni, Nicola

    2012-01-01

    ODMAC (On-Demand Media Access Control) is a recently proposed MAC protocol designed to support individual duty cycles for Energy Harvesting — Wireless Sensor Networks (EH-WSNs). Individual duty cycles are vital for EH-WSNs, because they allow nodes to adapt their energy consumption to the ever...

  2. Neural network based adaptive control for nonlinear dynamic regimes

    Science.gov (United States)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  3. Adaptive clustering algorithm for community detection in complex networks

    Science.gov (United States)

    Ye, Zhenqing; Hu, Songnian; Yu, Jun

    2008-10-01

    Community structure is common in various real-world networks; methods or algorithms for detecting such communities in complex networks have attracted great attention in recent years. We introduced a different adaptive clustering algorithm capable of extracting modules from complex networks with considerable accuracy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular structure can emerge from a collection of these active nodes during a self-organization process where vertices constantly regroup. In addition, we show that our algorithm appears advantageous over other competing methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate organization in reality.

  4. A Prediction-Driven Adaptation Approach for Self-Adaptive Sensor Networks

    OpenAIRE

    Paez Anaya, Ivan Dario; Simko, Viliam; Bourcier, Johann; Plouzeau, Noël; Jézéquel, Jean-Marc

    2014-01-01

    International audience; Engineering self-adaptive software in unpredictable environments such as pervasive systems, where network's ability, remaining battery power and environmental conditions may vary over the lifetime of the system is a very challenging task. Many current software engineering approaches leverage run-time architectural models to ease the design of the autonomic control loop of these self-adaptive systems. While these approaches perform well in reacting to various evolutions...

  5. Adaptive relaying for ground fault protection of distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M. S.; Sidhu, T. S.; Talukdar, B. K.

    1995-06-01

    In consequence of the increasing complexity of power distribution networks frequent changes in relay settings to achieve effective protection against ground faults is essential. The principal focus of this paper was adaptive relaying which makes use of digital technology and microprocessors to design systems which can provide protection of complex distribution networks under all operating conditions. Specifically, the paper described software modules that were developed to achieve this capability, developed for the City of Saskatoon`s distribution network. The system provides reliable, fast and selective protection of all components of the distribution system by constantly monitoring all the buses and currents in the circuit by substation computers, which are under the control of a central control computer. In addition to adaptive protection, the system can also provide optimal control of feeder loads, transformers, reactors, and capacitors, cold load pick up and reclosing of circuit breakers and reclosers. 2 refs., 8 figs.

  6. Dual adaptive dynamic control of mobile robots using neural networks.

    Science.gov (United States)

    Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato

    2009-02-01

    This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.

  7. Supporting Dynamic Adaptive Streaming over HTTP in Wireless Meshed Networks using Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani

    2014-01-01

    This work studies the potential and impact of the FRANC network coding protocol for delivering high quality Dynamic Adaptive Streaming over HTTP (DASH) in wireless networks. Although DASH aims to tailor the video quality rate based on the available throughput to the destination, it relies...

  8. Network Experiences Lead to the Adaption of a Firm’s Network Competence

    Directory of Open Access Journals (Sweden)

    Bianka Kühne

    2011-12-01

    Full Text Available Networks become increasingly important as external sources of innovation for firms. Through networks firms get incontact with different actors with whom they can exchange information and collaborate. A firm’s ability to be asuccessful network actor depends on its network competence. This term can be defined as having the necessaryknowledge, skills and qualifications for networking as well as using them effectively. In this paper we investigate thelink between a firm’s network competence and the benefits resulting from it in a two‐way direction. First, thenetwork competence of the firm facilitates the adoption of information from other network actors which may leadto innovation success. Second the perceived network benefits shall in their turn influence the network competenceof the firm. Consequently, firms will adapt their network strategy corresponding their experiences. The objective ofthis paper is to investigate the dynamics of networking and its influence on the firm’s network competence. For thisexploratory research 3 Belgian networks are examined. In‐depth interviews are used in combination with semistructuredinterview guides to conduct the research. Our results indicate that some firms perceive benefits fromtheir network efforts, for others it is more a burden. Furthermore, in some of our cases we found that positiveexperiences with clear benefits motivate the firm to enhance its network competence. This is illustrated by the factthat collaborations are more frequently initiated, trust is more easily build, firms are more open to communicateinformation and the confidentiality threshold is overcome.

  9. Functional disorganization of small-world brain networks in mild Alzheimer's Disease and amnestic Mild Cognitive Impairment: an EEG study using Relative Wavelet Entropy (RWE).

    Science.gov (United States)

    Frantzidis, Christos A; Vivas, Ana B; Tsolaki, Anthoula; Klados, Manousos A; Tsolaki, Magda; Bamidis, Panagiotis D

    2014-01-01

    Previous neuroscientific findings have linked Alzheimer's Disease (AD) with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI) remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD). Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG) data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT), and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N = 500, 600, 700, 800 edges) across all participants and groups (fixed density values). All groups exhibited a small-world (SW) brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant's generic cognitive status. The deterioration of the network's organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation.

  10. Spontaneous formation of dynamical groups in an adaptive networked system

    Science.gov (United States)

    Li, Menghui; Guan, Shuguang; Lai, C.-H.

    2010-10-01

    In this work, we investigate a model of an adaptive networked dynamical system, where the coupling strengths among phase oscillators coevolve with the phase states. It is shown that in this model the oscillators can spontaneously differentiate into two dynamical groups after a long time evolution. Within each group, the oscillators have similar phases, while oscillators in different groups have approximately opposite phases. The network gradually converts from the initial random structure with a uniform distribution of connection strengths into a modular structure that is characterized by strong intra-connections and weak inter-connections. Furthermore, the connection strengths follow a power-law distribution, which is a natural consequence of the coevolution of the network and the dynamics. Interestingly, it is found that if the inter-connections are weaker than a certain threshold, the two dynamical groups will almost decouple and evolve independently. These results are helpful in further understanding the empirical observations in many social and biological networks.

  11. SVC VIDEO STREAM ALLOCATION AND ADAPTATION IN HETEROGENEOUS NETWORK

    Directory of Open Access Journals (Sweden)

    E. A. Pakulova

    2016-07-01

    Full Text Available The paper deals with video data transmission in format H.264/SVC standard with QoS requirements satisfaction. The Sender-Side Path Scheduling (SSPS algorithm and Sender-Side Video Adaptation (SSVA algorithm were developed. SSPS algorithm gives the possibility to allocate video traffic among several interfaces while SSVA algorithm dynamically changes the quality of video sequence in relation to QoS requirements. It was shown that common usage of two developed algorithms enables to aggregate throughput of access networks, increase parameters of Quality of Experience and decrease losses in comparison with Round Robin algorithm. For evaluation of proposed solution, the set-up was made. The trace files with throughput of existing public networks were used in experiments. Based on this information the throughputs of networks were limited and losses for paths were set. The results of research may be used for study and transmission of video data in heterogeneous wireless networks.

  12. Exploring complex networks by means of adaptive walkers.

    Science.gov (United States)

    Prignano, Luce; Moreno, Yamir; Díaz-Guilera, Albert

    2012-12-01

    Finding efficient algorithms to explore large networks with the aim of recovering information about their structure is an open problem. Here, we investigate this challenge by proposing a model in which random walkers with previously assigned home nodes navigate through the network during a fixed amount of time. We consider that the exploration is successful if the walker gets the information gathered back home, otherwise no data are retrieved. Consequently, at each time step, the walkers, with some probability, have the choice to either go backward approaching their home or go farther away. We show that there is an optimal solution to this problem in terms of the average information retrieved and the degree of the home nodes and design an adaptive strategy based on the behavior of the random walker. Finally, we compare different strategies that emerge from the model in the context of network reconstruction. Our results could be useful for the discovery of unknown connections in large-scale networks.

  13. An Adaptive Relocation Strategy for heterogeneous sensor networks

    Directory of Open Access Journals (Sweden)

    Salah Abdel-Mageid

    2011-07-01

    Full Text Available Heterogeneous sensor networks (HSNs have grown to be familiar in recent years due to their capabilities to increase network lifetime and reliability without a significant increase in the cost. Deploying sensor nodes in large-scale applications (i.e., battlefields and environmental monitoring requires decentralized solutions. In this paper, we propose a novel decentralized approach enabling us to consider the heterogeneous characteristics of sensor nodes. In the Adaptive Relocation Strategy, new geometric approaches are designed to perfectly deal with the most heterogeneous sensor characteristics. The simulation results are presented to show that the proposed solution achieves the high coverage performance in few rounds with minimum energy consumption and minimum computations. The performance comparison is also introduced to study how the designed parameters affect the network performance in terms of the network cost, the coverage enhancement, and the total energy consumption measured by the computational complexity and the average moving distance.

  14. Functional Disorganization of Small-World Brain Networks in mild Alzheimer’s Disease and amnestic Mild Cognitive Impairment: An EEG Study using Relative Wavelet Entropy (RWE

    Directory of Open Access Journals (Sweden)

    Christos A. Frantzidis

    2014-08-01

    Full Text Available Previous neuroscientific findings have linked Alzheimer’s disease (AD with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD. Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT, and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N=500, 600, 700, 800 edges across all participants and groups (fixed density values. All groups exhibited a small-world (SW brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant’s generic cognitive status. The deterioration of the network’s organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation.

  15. Leadership within regional climate change adaptation networks: the case of climate adaptation officers in Northern Hesse, Germany

    NARCIS (Netherlands)

    Stiller, S.J.; Meijerink, S.V.

    2016-01-01

    In the climate adaptation literature, leadership tends to be an understudied factor, although it may be crucial for regional adaptation governance. This article shows how leadership can be usefully conceptualized and operationalized within regional governance networks dealing with climate

  16. Adaptive nonlinear control of missiles using neural networks

    Science.gov (United States)

    McFarland, Michael Bryan

    Research has shown that neural networks can be used to improve upon approximate dynamic inversion for control of uncertain nonlinear systems. In one architecture, the neural network adaptively cancels inversion errors through on-line learning. Such learning is accomplished by a simple weight update rule derived from Lyapunov theory, thus assuring stability of the closed-loop system. In this research, previous results using linear-in-parameters neural networks were reformulated in the context of a more general class of composite nonlinear systems, and the control scheme was shown to possess important similarities and major differences with established methods of adaptive control. The neural-adaptive nonlinear control methodology in question has been used to design an autopilot for an anti-air missile with enhanced agile maneuvering capability, and simulation results indicate that this approach is a feasible one. There are, however, certain difficulties associated with choosing the proper network architecture which make it difficult to achieve the rapid learning required in this application. Accordingly, this technique has been further extended to incorporate the important class of feedforward neural networks with a single hidden layer. These neural networks feature well-known approximation capabilities and provide an effective, although nonlinear, parameterization of the adaptive control problem. Numerical results from a six-degree-of-freedom nonlinear agile anti-air missile simulation demonstrate the effectiveness of the autopilot design based on multilayer networks. Previous work in this area has implicitly assumed precise knowledge of the plant order, and made no allowances for unmodeled dynamics. This thesis describes an approach to the problem of controlling a class of nonlinear systems in the face of both unknown nonlinearities and unmodeled dynamics. The proposed methodology is similar to robust adaptive control techniques derived for control of linear

  17. Coupled interference based rate adaptation in ad hoc networks

    CSIR Research Space (South Africa)

    Awuor, F

    2011-09-01

    Full Text Available since the channel condition is time variant [5], [6]. Hence CIN considers link adaptation based on SINR performance to derive transmit power that minimizes coupled interference in the network. In [5], an algorithm is proposed where an average value... channel condition variance for proper choice of PHY mode. In [7], rate adaptation scheme is proposed wherein nodes select the power-rate pair to maximize their utility based on the previous measured SINRs. The values of SINR employed by [5],[6] and [7...

  18. Adaptive Regularization of Neural Networks Using Conjugate Gradient

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost......Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique...

  19. Social adaptation in multi-agent model of linguistic categorization is affected by network information flow

    National Research Council Canada - National Science Library

    Julian Zubek; Michał Denkiewicz; Juliusz Barański; Przemysław Wróblewski; Joanna Rączaszek-Leonardi; Dariusz Plewczynski

    2017-01-01

    ... network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions...

  20. Working memory load-dependent spatio-temporal activity of single-trial P3 response detected with an adaptive wavelet denoiser.

    Science.gov (United States)

    Zhang, Qiushi; Yang, Xueqian; Yao, Li; Zhao, Xiaojie

    2017-03-27

    Working memory (WM) refers to the holding and manipulation of information during cognitive tasks. Its underlying neural mechanisms have been explored through both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Trial-by-trial coupling of simultaneously collected EEG and fMRI signals has become an important and promising approach to study the spatio-temporal dynamics of such cognitive processes. Previous studies have demonstrated a modulation effect of the WM load on both the BOLD response in certain brain areas and the amplitude of P3. However, much remains to be explored regarding the WM load-dependent relationship between the amplitude of ERP components and cortical activities, and the low signal-to-noise ratio (SNR) of the EEG signal still poses a challenge to performing single-trial analyses. In this paper, we investigated the spatio-temporal activities of P3 during an n-back verbal WM task by introducing an adaptive wavelet denoiser into the extraction of single-trial P3 features and using general linear model (GLM) to integrate simultaneously collected EEG and fMRI data. Our results replicated the modulation effect of the WM load on the P3 amplitude. Additionally, the activation of single-trial P3 amplitudes was detected in multiple brain regions, including the insula, the cuneus, the lingual gyrus (LG), and the middle occipital gyrus (MOG). Moreover, we found significant correlations between P3 features and behavioral performance. These findings suggest that the single-trial integration of simultaneous EEG and fMRI signals may provide new insights into classical cognitive functions. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Detection of motor imagery of swallow EEG signals based on the dual-tree complex wavelet transform and adaptive model selection

    Science.gov (United States)

    Yang, Huijuan; Guan, Cuntai; Sui Geok Chua, Karen; San Chok, See; Wang, Chuan Chu; Kok Soon, Phua; Tang, Christina Ka Yin; Keng Ang, Kai

    2014-06-01

    Objective. Detection of motor imagery of hand/arm has been extensively studied for stroke rehabilitation. This paper firstly investigates the detection of motor imagery of swallow (MI-SW) and motor imagery of tongue protrusion (MI-Ton) in an attempt to find a novel solution for post-stroke dysphagia rehabilitation. Detection of MI-SW from a simple yet relevant modality such as MI-Ton is then investigated, motivated by the similarity in activation patterns between tongue movements and swallowing and there being fewer movement artifacts in performing tongue movements compared to swallowing. Approach. Novel features were extracted based on the coefficients of the dual-tree complex wavelet transform to build multiple training models for detecting MI-SW. The session-to-session classification accuracy was boosted by adaptively selecting the training model to maximize the ratio of between-classes distances versus within-class distances, using features of training and evaluation data. Main results. Our proposed method yielded averaged cross-validation (CV) classification accuracies of 70.89% and 73.79% for MI-SW and MI-Ton for ten healthy subjects, which are significantly better than the results from existing methods. In addition, averaged CV accuracies of 66.40% and 70.24% for MI-SW and MI-Ton were obtained for one stroke patient, demonstrating the detectability of MI-SW and MI-Ton from the idle state. Furthermore, averaged session-to-session classification accuracies of 72.08% and 70% were achieved for ten healthy subjects and one stroke patient using the MI-Ton model. Significance. These results and the subjectwise strong correlations in classification accuracies between MI-SW and MI-Ton demonstrated the feasibility of detecting MI-SW from MI-Ton models.

  2. Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem

    Directory of Open Access Journals (Sweden)

    Jiao-Hong Yi

    2016-01-01

    Full Text Available Probabilistic neural network has successfully solved all kinds of engineering problems in various fields since it is proposed. In probabilistic neural network, Spread has great influence on its performance, and probabilistic neural network will generate bad prediction results if it is improperly selected. It is difficult to select the optimal manually. In this article, a variant of probabilistic neural network with self-adaptive strategy, called self-adaptive probabilistic neural network, is proposed. In self-adaptive probabilistic neural network, Spread can be self-adaptively adjusted and selected and then the best selected Spread is used to guide the self-adaptive probabilistic neural network train and test. In addition, two simplified strategies are incorporated into the proposed self-adaptive probabilistic neural network with the aim of further improving its performance and then two versions of simplified self-adaptive probabilistic neural network (simplified self-adaptive probabilistic neural networks 1 and 2 are proposed. The variants of self-adaptive probabilistic neural networks are further applied to solve the transformer fault diagnosis problem. By comparing them with basic probabilistic neural network, and the traditional back propagation, extreme learning machine, general regression neural network, and self-adaptive extreme learning machine, the results have experimentally proven that self-adaptive probabilistic neural networks have a more accurate prediction and better generalization performance when addressing the transformer fault diagnosis problem.

  3. Wavelet based approach for facial expression recognition

    Directory of Open Access Journals (Sweden)

    Zaenal Abidin

    2015-03-01

    Full Text Available Facial expression recognition is one of the most active fields of research. Many facial expression recognition methods have been developed and implemented. Neural networks (NNs have capability to undertake such pattern recognition tasks. The key factor of the use of NN is based on its characteristics. It is capable in conducting learning and generalizing, non-linear mapping, and parallel computation. Backpropagation neural networks (BPNNs are the approach methods that mostly used. In this study, BPNNs were used as classifier to categorize facial expression images into seven-class of expressions which are anger, disgust, fear, happiness, sadness, neutral and surprise. For the purpose of feature extraction tasks, three discrete wavelet transforms were used to decompose images, namely Haar wavelet, Daubechies (4 wavelet and Coiflet (1 wavelet. To analyze the proposed method, a facial expression recognition system was built. The proposed method was tested on static images from JAFFE database.

  4. Adaptive Reference Control for Pressure Management in Water Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Jensen, Tom Nørgaard; Wisniewski, Rafal

    2015-01-01

    Water scarcity is an increasing problem worldwide and at the same time a huge amount of water is lost through leakages in the distribution network. It is well known that improved pressure control can lower the leakage problems. In this work water networks with a single pressure actuator and several....... Subsequently, these relations are exploited in an adaptive reference control scheme for the actuator pressure that ensures constant pressure at the critical points. Numerical experiments underpin the results. © Copyright IEEE - All rights reserved....

  5. Effects of Adaptive Wormhole Routing in Event Builder Networks

    CERN Document Server

    Moser, R; Branson, J; Brett, A; Cano, E; Carboni, A; Ciganek, M; Cittolin, S; Erhan, S; Gigi, D; Glege, F; Gómez-Reino, Robert; Gulmini, M; Gutiérrez-Mlot, E; Gutleber, J; Jacobs, C; Kim, J C; Klute, M; Lipeles, E; Lopez-Perez, Juan Antonio; Maron, G; Meijers, F; Meschi, E; Murray, S; Oh, A; Orsini, L; Paus, C; Petrucci, A; Pieri, M; Pollet, L; Rácz, A; Sakulin, H; Sani, M; Schieferdecker, P; Schwick, C; Sumorok, K; Suzuki, I; Tsirigkas, D; Varela, J; Bauer, G

    2007-01-01

    The data acquisition system of the CMS experiment at the Large Hadron Collider features a two-stage event builder, which combines data from about 500 sources into full events at an aggregate throughput of 100 GByte/s. To meet the requirements, several architectures and interconnect technologies have been quantitatively evaluated. Both Gigabit Ethernet and Myrinet networks will be employed during the first run. Nearly full bi-section throughput can be obtained using a custom software driver for Myrinet based on barrel shifter traffic shaping. This paper discusses the use of Myrinet dual-port network interface cards supporting channel bonding to achieve virtual 5GBit/s links with adaptive routing to alleviate the throughput limitations associated with wormhole routing. Adaptive routing is not expected to be suitable for high-throughput event builder applications in high-energy physics. To corroborate this claim, results from the CMS event builder preseries installation at CERN are presented and the problems of ...

  6. Adaptive PID control based on orthogonal endocrine neural networks.

    Science.gov (United States)

    Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D

    2016-12-01

    A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Naming game with biased assimilation over adaptive networks

    Science.gov (United States)

    Fu, Guiyuan; Zhang, Weidong

    2018-01-01

    The dynamics of two-word naming game incorporating the influence of biased assimilation over adaptive network is investigated in this paper. Firstly an extended naming game with biased assimilation (NGBA) is proposed. The hearer in NGBA accepts the received information in a biased manner, where he may refuse to accept the conveyed word from the speaker with a predefined probability, if the conveyed word is different from his current memory. Secondly, the adaptive network is formulated by rewiring the links. Theoretical analysis is developed to show that the population in NGBA will eventually reach global consensus on either A or B. Numerical simulation results show that the larger strength of biased assimilation on both words, the slower convergence speed, while larger strength of biased assimilation on only one word can slightly accelerate the convergence; larger population size can make the rate of convergence slower to a large extent when it increases from a relatively small size, while such effect becomes minor when the population size is large; the behavior of adaptively reconnecting the existing links can greatly accelerate the rate of convergence especially on the sparse connected network.

  8. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    Science.gov (United States)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  9. Improving link prediction in complex networks by adaptively exploiting multiple structural features of networks

    Science.gov (United States)

    Ma, Chuang; Bao, Zhong-Kui; Zhang, Hai-Feng

    2017-10-01

    So far, many network-structure-based link prediction methods have been proposed. However, these methods only highlight one or two structural features of networks, and then use the methods to predict missing links in different networks. The performances of these existing methods are not always satisfied in all cases since each network has its unique underlying structural features. In this paper, by analyzing different real networks, we find that the structural features of different networks are remarkably different. In particular, even in the same network, their inner structural features are utterly different. Therefore, more structural features should be considered. However, owing to the remarkably different structural features, the contributions of different features are hard to be given in advance. Inspired by these facts, an adaptive fusion model regarding link prediction is proposed to incorporate multiple structural features. In the model, a logistic function combing multiple structural features is defined, then the weight of each feature in the logistic function is adaptively determined by exploiting the known structure information. Last, we use the "learnt" logistic function to predict the connection probabilities of missing links. According to our experimental results, we find that the performance of our adaptive fusion model is better than many similarity indices.

  10. Organisational adaptation in an activist network: social networks, leadership, and change in al-Muhajiroun.

    Science.gov (United States)

    Kenney, Michael; Horgan, John; Horne, Cale; Vining, Peter; Carley, Kathleen M; Bigrigg, Michael W; Bloom, Mia; Braddock, Kurt

    2013-09-01

    Social networks are said to facilitate learning and adaptation by providing the connections through which network nodes (or agents) share information and experience. Yet, our understanding of how this process unfolds in real-world networks remains underdeveloped. This paper explores this gap through a case study of al-Muhajiroun, an activist network that continues to call for the establishment of an Islamic state in Britain despite being formally outlawed by British authorities. Drawing on organisation theory and social network analysis, we formulate three hypotheses regarding the learning capacity and social network properties of al-Muhajiroun (AM) and its successor groups. We then test these hypotheses using mixed methods. Our methods combine quantitative analysis of three agent-based networks in AM measured for structural properties that facilitate learning, including connectedness, betweenness centrality and eigenvector centrality, with qualitative analysis of interviews with AM activists focusing organisational adaptation and learning. The results of these analyses confirm that al-Muhajiroun activists respond to government pressure by changing their operations, including creating new platforms under different names and adjusting leadership roles among movement veterans to accommodate their spiritual leader's unwelcome exodus to Lebanon. Simple as they are effective, these adaptations have allowed al-Muhajiroun and its successor groups to continue their activism in an increasingly hostile environment. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Supervised Learning in Adaptive DNA Strand Displacement Networks.

    Science.gov (United States)

    Lakin, Matthew R; Stefanovic, Darko

    2016-08-19

    The development of engineered biochemical circuits that exhibit adaptive behavior is a key goal of synthetic biology and molecular computing. Such circuits could be used for long-term monitoring and control of biochemical systems, for instance, to prevent disease or to enable the development of artificial life. In this article, we present a framework for developing adaptive molecular circuits using buffered DNA strand displacement networks, which extend existing DNA strand displacement circuit architectures to enable straightforward storage and modification of behavioral parameters. As a proof of concept, we use this framework to design and simulate a DNA circuit for supervised learning of a class of linear functions by stochastic gradient descent. This work highlights the potential of buffered DNA strand displacement as a powerful circuit architecture for implementing adaptive molecular systems.

  12. Adaptive Gain Scheduled Semiactive Vibration Control Using a Neural Network

    Directory of Open Access Journals (Sweden)

    Kazuhiko Hiramoto

    2018-01-01

    Full Text Available We propose an adaptive gain scheduled semiactive control method using an artificial neural network for structural systems subject to earthquake disturbance. In order to design a semiactive control system with high control performance against earthquakes with different time and/or frequency properties, multiple semiactive control laws with high performance for each of multiple earthquake disturbances are scheduled with an adaptive manner. Each semiactive control law to be scheduled is designed based on the output emulation approach that has been proposed by the authors. As the adaptive gain scheduling mechanism, we introduce an artificial neural network (ANN. Input signals of the ANN are the measured earthquake disturbance itself, for example, the acceleration, velocity, and displacement. The output of the ANN is the parameter for the scheduling of multiple semiactive control laws each of which has been optimized for a single disturbance. Parameters such as weight and bias in the ANN are optimized by the genetic algorithm (GA. The proposed design method is applied to semiactive control design of a base-isolated building with a semiactive damper. With simulation study, the proposed adaptive gain scheduling method realizes control performance exceeding single semiactive control optimizing the average of the control performance subject to various earthquake disturbances.

  13. Adaptive comanagement of a marine protected area network in Fiji.

    Science.gov (United States)

    Weeks, Rebecca; Jupiter, Stacy D

    2013-12-01

    Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9-year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well-defined resource-access rights; community respect for a flexible system of customary governance; long-term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district-wide coordination, which provided a broader spatial context for adaptive-management decision making. Co-Manejo Adaptativo de una Red de Áreas Marinas Protegidas en Fiyi. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  14. Sparse gamma rhythms arising through clustering in adapting neuronal networks.

    Directory of Open Access Journals (Sweden)

    Zachary P Kilpatrick

    2011-11-01

    Full Text Available Gamma rhythms (30-100 Hz are an extensively studied synchronous brain state responsible for a number of sensory, memory, and motor processes. Experimental evidence suggests that fast-spiking interneurons are responsible for carrying the high frequency components of the rhythm, while regular-spiking pyramidal neurons fire sparsely. We propose that a combination of spike frequency adaptation and global inhibition may be responsible for this behavior. Excitatory neurons form several clusters that fire every few cycles of the fast oscillation. This is first shown in a detailed biophysical network model and then analyzed thoroughly in an idealized model. We exploit the fact that the timescale of adaptation is much slower than that of the other variables. Singular perturbation theory is used to derive an approximate periodic solution for a single spiking unit. This is then used to predict the relationship between the number of clusters arising spontaneously in the network as it relates to the adaptation time constant. We compare this to a complementary analysis that employs a weak coupling assumption to predict the first Fourier mode to destabilize from the incoherent state of an associated phase model as the external noise is reduced. Both approaches predict the same scaling of cluster number with respect to the adaptation time constant, which is corroborated in numerical simulations of the full system. Thus, we develop several testable predictions regarding the formation and characteristics of gamma rhythms with sparsely firing excitatory neurons.

  15. A Bayesian regularized artificial neural network for adaptive optics forecasting

    Science.gov (United States)

    Sun, Zhi; Chen, Ying; Li, Xinyang; Qin, Xiaolin; Wang, Huiyong

    2017-01-01

    Real-time adaptive optics is a technology for enhancing the resolution of ground-based optical telescopes and overcoming the disturbance of atmospheric turbulence. The performance of the system is limited by delay errors induced by the servo system and photoelectrons noise of wavefront sensor. In order to cut these delay errors, this paper proposes a novel model to forecast the future control voltages of the deformable mirror. The predictive model is constructed by a multi-layered back propagation network with Bayesian regularization (BRBP). For the purpose of parallel computation and less disturbance, we adopt a number of sub-BP neural networks to substitute the whole network. The Bayesian regularized network assigns a probability to the network weights, allowing the network to automatically and optimally penalize excessively complex models. The simulation results show that the BRBP introduces smaller mean absolute percentage error (MAPE) and mean square errors (MSE) than other typical algorithms. Meanwhile, real data analysis results show that the BRBP model has strong generalization capability and parallelism.

  16. LAMAN: Load Adaptable MAC for Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Realp Marc

    2005-01-01

    Full Text Available In mobile ad hoc radio networks, mechanisms on how to access the radio channel are extremely important in order to improve network efficiency. In this paper, the load adaptable medium access control for ad hoc networks (LAMAN protocol is described. LAMAN is a novel decentralized multipacket MAC protocol designed following a cross-layer approach. Basically, this protocol is a hybrid CDMA-TDMA-based protocol that aims at throughput maximization in multipacket communication environments by efficiently combining contention and conflict-free protocol components. Such combination of components is used to adapt the nodes' access priority to changes on the traffic load while, at the same time, accounting for the multipacket reception (MPR capability of the receivers. A theoretical analysis of the system is developed presenting closed expressions of network throughput and packet delay. By simulations the validity of our analysis is shown and the performances of a LAMAN-based system and an Aloha-CDMA-based one are compared.

  17. Adaptive multi-resolution Modularity for detecting communities in networks

    Science.gov (United States)

    Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He

    2018-02-01

    Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.

  18. Adaptive Decision-Making Scheme for Cognitive Radio Networks

    KAUST Repository

    Alqerm, Ismail

    2014-05-01

    Radio resource management becomes an important aspect of the current wireless networks because of spectrum scarcity and applications heterogeneity. Cognitive radio is a potential candidate for resource management because of its capability to satisfy the growing wireless demand and improve network efficiency. Decision-making is the main function of the radio resources management process as it determines the radio parameters that control the use of these resources. In this paper, we propose an adaptive decision-making scheme (ADMS) for radio resources management of different types of network applications including: power consuming, emergency, multimedia, and spectrum sharing. ADMS exploits genetic algorithm (GA) as an optimization tool for decision-making. It consists of the several objective functions for the decision-making process such as minimizing power consumption, packet error rate (PER), delay, and interference. On the other hand, maximizing throughput and spectral efficiency. Simulation results and test bed evaluation demonstrate ADMS functionality and efficiency.

  19. Network and adaptive system of systems modeling and analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Craig R.; Campbell, James E. Dr. (.; .); Anderson, Dennis James; Eddy, John P.

    2007-05-01

    This report documents the results of an LDRD program entitled ''Network and Adaptive System of Systems Modeling and Analysis'' that was conducted during FY 2005 and FY 2006. The purpose of this study was to determine and implement ways to incorporate network communications modeling into existing System of Systems (SoS) modeling capabilities. Current SoS modeling, particularly for the Future Combat Systems (FCS) program, is conducted under the assumption that communication between the various systems is always possible and occurs instantaneously. A more realistic representation of these communications allows for better, more accurate simulation results. The current approach to meeting this objective has been to use existing capabilities to model network hardware reliability and adding capabilities to use that information to model the impact on the sustainment supply chain and operational availability.

  20. Assortative and modular networks are shaped by adaptive synchronization processes.

    Science.gov (United States)

    Avalos-Gaytán, Vanesa; Almendral, Juan A; Papo, David; Schaeffer, Satu Elisa; Boccaletti, Stefano

    2012-07-01

    Modular organization and degree-degree correlations are ubiquitous in the connectivity structure of biological, technological, and social interacting systems. So far most studies have concentrated on unveiling both features in real world networks, but a model that succeeds in generating them simultaneously is needed. We consider a network of interacting phase oscillators, and an adaptation mechanism for the coupling that promotes the connection strengths between those elements that are dynamically correlated. We show that, under these circumstances, the dynamical organization of the oscillators shapes the topology of the graph in such a way that modularity and assortativity features emerge spontaneously and simultaneously. In turn, we prove that such an emergent structure is associated with an asymptotic arrangement of the collective dynamical state of the network into cluster synchronization.

  1. Comparison Between Wind Power Prediction Models Based on Wavelet Decomposition with Least-Squares Support Vector Machine (LS-SVM and Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2014-08-01

    Full Text Available A high penetration of wind energy into the electricity market requires a parallel development of efficient wind power forecasting models. Different hybrid forecasting methods were applied to wind power prediction, using historical data and numerical weather predictions (NWP. A comparative study was carried out for the prediction of the power production of a wind farm located in complex terrain. The performances of Least-Squares Support Vector Machine (LS-SVM with Wavelet Decomposition (WD were evaluated at different time horizons and compared to hybrid Artificial Neural Network (ANN-based methods. It is acknowledged that hybrid methods based on LS-SVM with WD mostly outperform other methods. A decomposition of the commonly known root mean square error was beneficial for a better understanding of the origin of the differences between prediction and measurement and to compare the accuracy of the different models. A sensitivity analysis was also carried out in order to underline the impact that each input had in the network training process for ANN. In the case of ANN with the WD technique, the sensitivity analysis was repeated on each component obtained by the decomposition.

  2. TCP adaptation with network coding and opportunistic data forwarding in multi-hop wireless networks

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2016-10-01

    Full Text Available Opportunistic data forwarding significantly increases the throughput in multi-hop wireless mesh networks by utilizing the broadcast nature of wireless transmissions and the fluctuation of link qualities. Network coding strengthens the robustness of data transmissions over unreliable wireless links. However, opportunistic data forwarding and network coding are rarely incorporated with TCP because the frequent occurrences of out-of-order packets in opportunistic data forwarding and long decoding delay in network coding overthrow TCP’s congestion control. In this paper, we propose a solution dubbed TCPFender, which supports opportunistic data forwarding and network coding in TCP. Our solution adds an adaptation layer to mask the packet loss caused by wireless link errors and provides early positive feedbacks to trigger a larger congestion window for TCP. This adaptation layer functions over the network layer and reduces the delay of ACKs for each coded packet. The simulation results show that TCPFender significantly outperforms TCP/IP in terms of the network throughput in different topologies of wireless networks.

  3. Traffic Adaptive MAC Protocols in Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Farhan Masud

    2017-01-01

    Full Text Available In Wireless Body Area Networks (WBANs, every healthcare application that is based on physical sensors is responsible for monitoring the vital signs data of patient. WBANs applications consist of heterogeneous and dynamic traffic loads. Routine patient’s observation is described as low-load traffic while an alarming situation that is unpredictable by nature is referred to as high-load traffic. This paper offers a thematic review of traffic adaptive Medium Access Control (MAC protocols in WBANs. First, we have categorized them based on their goals, methods, and metrics of evaluation. The Zigbee standard IEEE 802.15.4 and the baseline MAC IEEE 802.15.6 are also reviewed in terms of traffic adaptive approaches. Furthermore, a comparative analysis of the protocols is made and their performances are analyzed in terms of delay, packet delivery ratio (PDR, and energy consumption. The literature shows that no review work has been done on traffic adaptive MAC protocols in WBANs. This review work, therefore, could add enhancement to traffic adaptive MAC protocols and will stimulate a better way of solving the traffic adaptivity problem.

  4. Adaptive Management of Computing and Network Resources for Spacecraft Systems

    Science.gov (United States)

    Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.

  5. Rescue of endemic states in interconnected networks with adaptive coupling

    CERN Document Server

    Vazquez, F; Miguel, M San

    2015-01-01

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads only if the two layers are interconnected, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network, the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that finite-size effects are amplified by the rewiring, as the...

  6. ADAPTIVE SERVICE PROVISIONING FOR MOBILE AD HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    Cynthia Jayapal

    2010-09-01

    Full Text Available Providing efficient and scalable service provisioning in Mobile Ad Hoc Network (MANET is a big research challenge. In adaptive service provisioning mechanism an adaptive election procedure is used to select a coordinator node. The role of a service coordinator is crucial in any distributed directory based service provisioning scheme. The existing coordinator election schemes use either the nodeID or a hash function to choose the coordinator. In these schemes, the leader changes are more frequent due to node mobility. We propose an adaptive scheme that makes use of an eligibility factor that is calculated based on the distance to the zone center, remaining battery power and average speed to elect a core node that change according to the network dynamics. We also retain the node with the second highest priority as a backup node. Our algorithm is compared with the existing solution by simulation and the result shows that the core node selected by us is more stable and hence reduces the number of handoffs. This in turn improves the service delivery performance by increasing the packet delivery ratio and decreasing the delay, the overhead and the forwarding cost.

  7. Cyberspace Assurance Metrics: Utilizing Models of Networks, Complex Systems Theory, Multidimensional Wavelet Analysis, and Generalized Entrophy Measures

    National Research Council Canada - National Science Library

    Johnson, Joseph E; Gudkov, Vladimir

    2005-01-01

    ... as continuous group theory and Markov processes. Based upon this research he has proposed that entropy metrics, and the associated cluster analysis of the network so measured by these metrics, can be useful indicators of aberrant processes and behavior. Other team members have obtained important connections using higher order Renyi entropy metrics, and complexity theory to both monitor real networks and to study networks by simulation.

  8. Covalent Adaptable Networks (CANs): A Unique Paradigm in Crosslinked Polymers.

    Science.gov (United States)

    Kloxin, Christopher J; Scott, Timothy F; Adzima, Brian J; Bowman, Christopher N

    2010-03-23

    Polymer networks possessing reversible covalent crosslinks constitute a novel material class with the capacity for adapting to an externally applied stimulus. These covalent adaptable networks (CANs) represent a trend in polymer network fabrication towards the rational design of structural materials possessing dynamic characteristics for specialty applications. Herein, we discuss the unique attributes of CANs that must be considered when designing, fabricating, and characterizing these smart materials that respond to either thermal or photochemical stimuli. While there are many reversible reactions which to consider as possible crosslink candidates in CANs, there are very few that are readily and repeatedly reversible. Furthermore, characterization of the mechanical properties of CANs requires special consideration owing to their unique attributes. Ultimately, these attributes are what lead to the advantageous properties displayed by CANs, such as recyclability, healability, tunability, shape changes, and low polymerization stress. Throughout this perspective, we identify several trends and future directions in the emerging field of CANs that demonstrate the progress to date as well as the essential elements that are needed for further advancement.

  9. Understanding the Generation of Network Bursts by Adaptive Oscillatory Neurons

    Directory of Open Access Journals (Sweden)

    Tanguy Fardet

    2018-02-01

    Full Text Available Experimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation. We provide an analytic model to analyze network bursts generated by coupled adaptive exponential integrate-and-fire neurons. We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve to reach a synchronized intermittent bursting state. The presence of inhibitory neurons or plastic synapses can then modulate this dynamics in many ways but is not necessary for its appearance. Thanks to a simple self-consistent equation, our model gives an intuitive and semi-quantitative tool to understand the bursting behavior. Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain bursting termination. Through a thorough mapping between the theoretical parameters and ion-channel properties, we discuss the biological mechanisms that could be involved and the relevance of the explored parameter-space. Such an insight enables us to propose experimentally-testable predictions regarding how blocking fast, medium or slow after-hyperpolarization channels would affect the firing rate and burst duration, as well as the interburst interval.

  10. Event-driven approach of layered multicast to network adaptation in RED-based IP networks

    Science.gov (United States)

    Nahm, Kitae; Li, Qing; Kuo, C.-C. J.

    2003-11-01

    In this work, we investigate the congestion control problem for layered video multicast in IP networks of active queue management (AQM) using a simple random early detection (RED) queue model. AQM support from networks improves the visual quality of video streaming but makes network adaptation more di+/-cult for existing layered video multicast proticols that use the event-driven timer-based approach. We perform a simplified analysis on the response of the RED algorithm to burst traffic. The analysis shows that the primary problem lies in the weak correlation between the network feedback and the actual network congestion status when the RED queue is driven by burst traffic. Finally, a design guideline of the layered multicast protocol is proposed to overcome this problem.

  11. Distributed estimation for adaptive sensor selection in wireless sensor networks

    Science.gov (United States)

    Mahmoud, Magdi S.; Hassan Hamid, Matasm M.

    2014-05-01

    Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.

  12. Adaptive Information Access on Multiple Applications Support Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2014-01-01

    is used for safety and security monitoring purposes. In this paper, we evaluate different access strategies to remote dynamic information and compare between achieving information reliability (mismatch probability) and the associated power consumption. Lastly, based on the models, we propose an adaptive......Accessing information remotely to dynamically changing information elements cannot be avoided and has become a required functionality for various network services. Most applications require up-to-date information which is reliable and accurate. The information reliability in terms of using correct...... information is challenged by dynamic nature of information elements. These challenges are more prominent in case of wireless sensor network (WSN) applications, as the information that the sensor node collects are mostly dynamic in nature (say, temperature). Therefore, it is likely that there can be a mismatch...

  13. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  14. The emergence of complexity and restricted pleiotropy in adapting networks

    Directory of Open Access Journals (Sweden)

    Le Nagard Hervé

    2011-11-01

    Full Text Available Abstract Background The emergence of organismal complexity has been a difficult subject for researchers because it is not readily amenable to investigation by experimental approaches. Complexity has a myriad of untested definitions and our understanding of its evolution comes primarily from static snapshots gleaned from organisms ranked on an intuitive scale. Fisher's geometric model of adaptation, which defines complexity as the number of phenotypes an organism exposes to natural selection, provides a theoretical framework to study complexity. Yet investigations of this model reveal phenotypic complexity as costly and therefore unlikely to emerge. Results We have developed a computational approach to study the emergence of complexity by subjecting neural networks to adaptive evolution in environments exacting different levels of demands. We monitored complexity by a variety of metrics. Top down metrics derived from Fisher's geometric model correlated better with the environmental demands than bottom up ones such as network size. Phenotypic complexity was found to increase towards an environment-dependent level through the emergence of restricted pleiotropy. Such pleiotropy, which confined the action of mutations to only a subset of traits, better tuned phenotypes in challenging environments. However, restricted pleiotropy also came at a cost in the form of a higher genetic load, as it required the maintenance by natural selection of more independent traits. Consequently, networks of different sizes converged in complexity when facing similar environment. Conclusions Phenotypic complexity evolved as a function of the demands of the selective pressures, rather than the physical properties of the network architecture, such as functional size. Our results show that complexity may be more predictable, and understandable, if analyzed from the perspective of the integrated task the organism performs, rather than the physical architecture used to

  15. Fruit Classification by Wavelet-Entropy and Feedforward Neural Network Trained by Fitness-Scaled Chaotic ABC and Biogeography-Based Optimization

    Directory of Open Access Journals (Sweden)

    Shuihua Wang

    2015-08-01

    Full Text Available Fruit classification is quite difficult because of the various categories and similar shapes and features of fruit. In this work, we proposed two novel machine-learning based classification methods. The developed system consists of wavelet entropy (WE, principal component analysis (PCA, feedforward neural network (FNN trained by fitness-scaled chaotic artificial bee colony (FSCABC and biogeography-based optimization (BBO, respectively. The K-fold stratified cross validation (SCV was utilized for statistical analysis. The classification performance for 1653 fruit images from 18 categories showed that the proposed “WE + PCA + FSCABC-FNN” and “WE + PCA + BBO-FNN” methods achieve the same accuracy of 89.5%, higher than state-of-the-art approaches: “(CH + MP + US + PCA + GA-FNN ” of 84.8%, “(CH + MP + US + PCA + PSO-FNN” of 87.9%, “(CH + MP + US + PCA + ABC-FNN” of 85.4%, “(CH + MP + US + PCA + kSVM” of 88.2%, and “(CH + MP + US + PCA + FSCABC-FNN” of 89.1%. Besides, our methods used only 12 features, less than the number of features used by other methods. Therefore, the proposed methods are effective for fruit classification.

  16. Dual-Tree Complex Wavelet Transform and Image Block Residual-Based Multi-Focus Image Fusion in Visual Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2014-11-01

    Full Text Available This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT. The Sum-Modified-Laplacian (SML-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs.

  17. Adaptive and ubiquitous video streaming over Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Malik Mubashir Hassan

    2016-10-01

    Full Text Available In recent years, with the dramatic improvement on scalability of H.264/MPEG-4 standard and growing demand for new multimedia services have spurred the research on scalable video streaming over wireless networks in both industry and academia. Video streaming applications are increasingly being deployed in Wireless Mesh Networks (WMNs. However, robust streaming of video over WMNs poses many challenges due to varying nature of wireless networks. Bit-errors, packet-losses and burst-packet-losses are very common in such type of networks, which severely influence the perceived video quality at receiving end. Therefore, a carefully-designed error recovery scheme must be employed. In this paper, we propose an interactive and ubiquitous video streaming scheme for Scalable Video Coding (SVC based video streaming over WMNs towards heterogeneous receivers. Intelligently taking the benefit of path diversity, the proposed scheme initially calculates the quality of all candidate paths and then based on quality of path it decides adaptively the size and level of error protection for all packets in order to combat the effect of losses on perceived quality of reconstructed video at receiving end. Our experimental results show that the proposed streaming approach can react to varying channel conditions with less degradation in video quality.

  18. Adaptive elastic networks as models of supercooled liquids

    Science.gov (United States)

    Yan, Le; Wyart, Matthieu

    2015-08-01

    The thermodynamics and dynamics of supercooled liquids correlate with their elasticity. In particular for covalent networks, the jump of specific heat is small and the liquid is strong near the threshold valence where the network acquires rigidity. By contrast, the jump of specific heat and the fragility are large away from this threshold valence. In a previous work [Proc. Natl. Acad. Sci. USA 110, 6307 (2013), 10.1073/pnas.1300534110], we could explain these behaviors by introducing a model of supercooled liquids in which local rearrangements interact via elasticity. However, in that model the disorder characterizing elasticity was frozen, whereas it is itself a dynamic variable in supercooled liquids. Here we study numerically and theoretically adaptive elastic network models where polydisperse springs can move on a lattice, thus allowing for the geometry of the elastic network to fluctuate and evolve with temperature. We show numerically that our previous results on the relationship between structure and thermodynamics hold in these models. We introduce an approximation where redundant constraints (highly coordinated regions where the frustration is large) are treated as an ideal gas, leading to analytical predictions that are accurate in the range of parameters relevant for real materials. Overall, these results lead to a description of supercooled liquids, in which the distance to the rigidity transition controls the number of directions in phase space that cost energy and the specific heat.

  19. Adaptive control of call acceptance in WCDMA network

    Directory of Open Access Journals (Sweden)

    Milan Manojle Šunjevarić

    2013-10-01

    Full Text Available In this paper, an overview of the algorithms for access control in mobile wireless networks is presented. A review of adaptive control methods of accepting a call in WCDMA networks is discussed, based on the overview of the algorithms used for this purpose, and their comparison. Appropriate comments and conculsions in comparison with the basic characteristics of these algorithms are given. The OVSF codes are explained as well as how the allocation method influences the capacity and probability of blocking.. Introduction We are witnessing a steady increase in the number of demands placed upon modern wireless networks. New applications and an increasing number of users as well as user activities growth in recent years reinforce the need for an efficient use of the spectrum and its proper distribution among different applications and classes of services. Besides humans, the last few years saw different computers, machines, applications, and, in the future, many other devices, RFID applications, and finally networked objects, as a new kind of wireless networks "users". Because of the exceptional rise in the number of users, the demands placed upon modern wireless networks are becoming larger, and spectrum management plays an important role. For these reasons, choosing an appropriate call admission control algorithm is of great importance. Multiple access and resource management in wireless networks Radio resource management of mobile networks is a set of algorithms to manage the use of radio resources with the aim is to maximize the total capacity of wireless systems with equal distribution of resources to users. Management of radio resources in cellular networks is usually located in the base station controller, the base station and the mobile terminal, and is based on decisions made on appropriate measurement and feedback. It is often defined as the maximum volume of traffic load that the system can provide for some of the requirements for the

  20. Cyberspace Assurance Metrics: Utilizing Models of Networks, Complex Systems Theory, Multidimensional Wavelet Analysis, and Generalized Entrophy Measures

    National Research Council Canada - National Science Library

    Johnson, Joseph E; Gudkov, Vladimir

    2005-01-01

    .... The PI, under the funding of this grant, has discovered a strong connection between the topological specification of a network in the form of a connection matrix and the branches of mathematics known...

  1. From epidemics to information propagation : Striking differences in structurally similar adaptive network models

    NARCIS (Netherlands)

    Trajanovski, S.; Guo, D.; Van Mieghem, P.F.A.

    2015-01-01

    The continuous-time adaptive susceptible-infected-susceptible (ASIS) epidemic model and the adaptive information diffusion (AID) model are two adaptive spreading processes on networks, in which a link in the network changes depending on the infectious state of its end nodes, but in opposite ways:

  2. Cooperative and Adaptive Network Coding for Gradient Based Routing in Wireless Sensor Networks with Multiple Sinks

    Directory of Open Access Journals (Sweden)

    M. E. Migabo

    2017-01-01

    Full Text Available Despite its low computational cost, the Gradient Based Routing (GBR broadcast of interest messages in Wireless Sensor Networks (WSNs causes significant packets duplications and unnecessary packets transmissions. This results in energy wastage, traffic load imbalance, high network traffic, and low throughput. Thanks to the emergence of fast and powerful processors, the development of efficient network coding strategies is expected to enable efficient packets aggregations and reduce packets retransmissions. For multiple sinks WSNs, the challenge consists of efficiently selecting a suitable network coding scheme. This article proposes a Cooperative and Adaptive Network Coding for GBR (CoAdNC-GBR technique which considers the network density as dynamically defined by the average number of neighbouring nodes, to efficiently aggregate interest messages. The aggregation is performed by means of linear combinations of random coefficients of a finite Galois Field of variable size GF(2S at each node and the decoding is performed by means of Gaussian elimination. The obtained results reveal that, by exploiting the cooperation of the multiple sinks, the CoAdNC-GBR not only improves the transmission reliability of links and lowers the number of transmissions and the propagation latency, but also enhances the energy efficiency of the network when compared to the GBR-network coding (GBR-NC techniques.

  3. Multivariate wavelet frames

    CERN Document Server

    Skopina, Maria; Protasov, Vladimir

    2016-01-01

    This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...

  4. Wavelets, vibrations and scalings

    CERN Document Server

    Meyer, Yves

    1997-01-01

    Physicists and mathematicians are intensely studying fractal sets of fractal curves. Mandelbrot advocated modeling of real-life signals by fractal or multifractal functions. One example is fractional Brownian motion, where large-scale behavior is related to a corresponding infrared divergence. Self-similarities and scaling laws play a key role in this new area. There is a widely accepted belief that wavelet analysis should provide the best available tool to unveil such scaling laws. And orthonormal wavelet bases are the only existing bases which are structurally invariant through dyadic dilations. This book discusses the relevance of wavelet analysis to problems in which self-similarities are important. Among the conclusions drawn are the following: 1) A weak form of self-similarity can be given a simple characterization through size estimates on wavelet coefficients, and 2) Wavelet bases can be tuned in order to provide a sharper characterization of this self-similarity. A pioneer of the wavelet "saga", Meye...

  5. Wavelets in neuroscience

    CERN Document Server

    Hramov, Alexander E; Makarov, Valeri A; Pavlov, Alexey N; Sitnikova, Evgenia

    2015-01-01

    This book examines theoretical and applied aspects of wavelet analysis in neurophysics, describing in detail different practical applications of the wavelet theory in the areas of neurodynamics and neurophysiology and providing a review of fundamental work that has been carried out in these fields over the last decade. Chapters 1 and 2 introduce and review the relevant foundations of neurophysics and wavelet theory, respectively, pointing on one hand to the various current challenges in neuroscience and introducing on the other the mathematical techniques of the wavelet transform in its two variants (discrete and continuous) as a powerful and versatile tool for investigating the relevant neuronal dynamics. Chapter 3 then analyzes results from examining individual neuron dynamics and intracellular processes. The principles for recognizing neuronal spikes from extracellular recordings and the advantages of using wavelets to address these issues are described and combined with approaches based on wavelet neural ...

  6. Understanding Homophily and More-Becomes-More Through Adaptive Temporal-Causal Network Models

    NARCIS (Netherlands)

    Beukel, Sven van den; Goos, Simon; Treur, J.; De la Prieta, F

    2017-01-01

    This study describes the use of adaptive temporal-causal networks to model and simulate the development of mutually interacting opinion states and connections between individuals in social networks. The focus is on adaptive networks combining the homophily principle with the more becomes more

  7. Particle Swarm Optimization for Adaptive Resource Allocation in Communication Networks

    Directory of Open Access Journals (Sweden)

    Gheitanchi Shahin

    2010-01-01

    Full Text Available A generalized model of particle swarm optimization (PSO technique is proposed as a low complexity method for adaptive centralized and distributed resource allocation in communication networks. The proposed model is applied to adaptive multicarrier cooperative communications (MCCC technique which utilizes the subcarriers in deep fade using a relay node in order to improve the bandwidth efficiency. Centralized PSO, based on virtual particles (VPs, is introduced for single layer and cross-layer subcarrier allocation to improve the bit error rate performance in multipath frequency selective fading channels. In the single layer strategy, the subcarriers are allocated based on the channel gains. In the cross-layer strategy, the subcarriers are allocated based on a joint measure of channel gains and distance provided by the physical layer and network layer to mitigate the effect of path loss. The concept of training particles in distributed PSO is proposed and then is applied for relay node selection. The computational complexity and traffic of the proposed techniques are investigated, and it is shown that using PSO for subcarrier allocation has a lower complexity than the techniques in the literature. Significant reduction in the traffic overhead of PSO is demonstrated when using trained particles in distributed optimizations.

  8. Computation emerges from adaptive synchronization of networking neurons.

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    Full Text Available The activity of networking neurons is largely characterized by the alternation of synchronous and asynchronous spiking sequences. One of the most relevant challenges that scientists are facing today is, then, relating that evidence with the fundamental mechanisms through which the brain computes and processes information, as well as with the arousal (or progress of a number of neurological illnesses. In other words, the problem is how to associate an organized dynamics of interacting neural assemblies to a computational task. Here we show that computation can be seen as a feature emerging from the collective dynamics of an ensemble of networking neurons, which interact by means of adaptive dynamical connections. Namely, by associating logical states to synchronous neuron's dynamics, we show how the usual Boolean logics can be fully recovered, and a universal Turing machine can be constructed. Furthermore, we show that, besides the static binary gates, a wider class of logical operations can be efficiently constructed as the fundamental computational elements interact within an adaptive network, each operation being represented by a specific motif. Our approach qualitatively differs from the past attempts to encode information and compute with complex systems, where computation was instead the consequence of the application of control loops enforcing a desired state into the specific system's dynamics. Being the result of an emergent process, the computation mechanism here described is not limited to a binary Boolean logic, but it can involve a much larger number of states. As such, our results can enlighten new concepts for the understanding of the real computing processes taking place in the brain.

  9. Adaptive NetworkProfiler for Identifying Cancer Characteristic-Specific Gene Regulatory Networks.

    Science.gov (United States)

    Park, Heewon; Shimamura, Teppei; Imoto, Seiya; Miyano, Satoru

    2017-10-20

    There is currently much discussion about sample (patient)-specific gene regulatory network identification, since the efficiently constructed sample-specific gene networks lead to effective personalized cancer therapy. Although statistical approaches have been proposed for inferring gene regulatory networks, the methods cannot reveal sample-specific characteristics because the existing methods, such as an L1-type regularization, provide averaged results for all samples. Thus, we cannot reveal sample-specific characteristics in transcriptional regulatory networks. To settle on this issue, the NetworkProfiler was proposed based on the kernel-based L1-type regularization. The NetworkProfiler imposes a weight on each sample based on the Gaussian kernal function for controlling effect of samples on modeling a target sample, where the amount of weight depends on similarity of cancer characteristics between samples. The method, however, cannot perform gene regulatory network identification well for a target sample in a sparse region (i.e., for a target sample, there are only a few samples having a similar characteristic of the target sample, where the characteristic is considered as a modulator in sample-specific gene network construction), since a constant bandwidth in the Gaussian kernel function cannot effectively group samples for modeling a target sample in sparse region. The cancer characteristics, such as an anti-cancer drug sensitivity, are usually nonuniformly distributed, and thus modeling for samples in a sparse region is also a crucial issue. We propose a novel kernel-based L1-type regularization method based on a modified k-nearest neighbor (KNN)-Gaussian kernel function, called an adaptive NetworkProfiler. By using the modified KNN-Gaussian kernel function, our method provides robust results against the distribution of modulators, and properly groups samples according to a cancer characteristic for sample-specific analysis. Furthermore, we propose a sample

  10. Institutional networks and adaptive water governance in the Klamath River Basin, USA.

    Science.gov (United States)

    Polycentric networks of formal organizations and informal stakeholder groups, as opposed to centralized institutional hierarchies, can be critically important for strengthening the capacity of governance systems to adapt to unexpected social and biophysical change. Adaptive gover...

  11. Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Xueling Jiang

    2014-01-01

    Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.

  12. Robust adaptive learning of feedforward neural networks via LMI optimizations.

    Science.gov (United States)

    Jing, Xingjian

    2012-07-01

    Feedforward neural networks (FNNs) have been extensively applied to various areas such as control, system identification, function approximation, pattern recognition etc. A novel robust control approach to the learning problems of FNNs is further investigated in this study in order to develop efficient learning algorithms which can be implemented with optimal parameter settings and considering noise effect in the data. To this aim, the learning problem of a FNN is cast into a robust output feedback control problem of a discrete time-varying linear dynamic system. New robust learning algorithms with adaptive learning rate are therefore developed, using linear matrix inequality (LMI) techniques to find the appropriate learning rates and to guarantee the fast and robust convergence. Theoretical analysis and examples are given to illustrate the theoretical results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Scalable Lunar Surface Networks and Adaptive Orbit Access Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative network architecture, protocols, and algorithms are proposed for both lunar surface networks and orbit access networks. Firstly, an overlaying...

  14. Wavelets in scientific computing

    DEFF Research Database (Denmark)

    Nielsen, Ole Møller

    1998-01-01

    such a function well. These properties of wavelets have lead to some very successful applications within the field of signal processing. This dissertation revolves around the role of wavelets in scientific computing and it falls into three parts: Part I gives an exposition of the theory of orthogonal, compactly...

  15. Mobilization and Adaptation of a Rural Cradle-to-Career Network

    Science.gov (United States)

    Zuckerman, Sarah J.

    2016-01-01

    This case study explored the development of a rural cradle-to-career network with a dual focus on the initial mobilization of network members and subsequent adaptations made to maintain mobilization, while meeting local needs. Data sources included interviews with network members, observations of meetings, and documentary evidence. Network-based…

  16. Modeling and adaptive pinning synchronization control for a chaotic-motion motor in complex network

    Science.gov (United States)

    Zhu, Darui; Liu, Chongxin; Yan, Bingnan

    2014-01-01

    We introduce a chaos model for a permanent-magnet synchronous motor and construct a coupled chaotic motor in a complex dynamic network using the Newman-Watts small-world network algorithm. We apply adaptive pinning control theory for complex networks to obtain suitable adaptive feedback gain and the number of nodes to be pinned. Nodes of low degree are pinned to realize global asymptotic synchronization in the complex network. The proposed adaptive pinning controller is added to the complex motor network for simulation and verification.

  17. An orthogonal wavelet division multiple-access processor architecture for LTE-advanced wireless/radio-over-fiber systems over heterogeneous networks

    Science.gov (United States)

    Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos

    2014-12-01

    The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).

  18. Neural network based adaptive output feedback control: Applications and improvements

    Science.gov (United States)

    Kutay, Ali Turker

    Application of recently developed neural network based adaptive output feedback controllers to a diverse range of problems both in simulations and experiments is investigated in this thesis. The purpose is to evaluate the theory behind the development of these controllers numerically and experimentally, identify the needs for further development in practical applications, and to conduct further research in directions that are identified to ultimately enhance applicability of adaptive controllers to real world problems. We mainly focus our attention on adaptive controllers that augment existing fixed gain controllers. A recently developed approach holds great potential for successful implementations on real world applications due to its applicability to systems with minimal information concerning the plant model and the existing controller. In this thesis the formulation is extended to the multi-input multi-output case for distributed control of interconnected systems and successfully tested on a formation flight wind tunnel experiment. The command hedging method is formulated for the approach to further broaden the class of systems it can address by including systems with input nonlinearities. Also a formulation is adopted that allows the approach to be applied to non-minimum phase systems for which non-minimum phase characteristics are modeled with sufficient accuracy and treated properly in the design of the existing controller. It is shown that the approach can also be applied to augment nonlinear controllers under certain conditions and an example is presented where the nonlinear guidance law of a spinning projectile is augmented. Simulation results on a high fidelity 6 degrees-of-freedom nonlinear simulation code are presented. The thesis also presents a preliminary adaptive controller design for closed loop flight control with active flow actuators. Behavior of such actuators in dynamic flight conditions is not known. To test the adaptive controller design in

  19. Modeling multiple time scale firing rate adaptation in a neural network of local field potentials.

    Science.gov (United States)

    Lundstrom, Brian Nils

    2015-02-01

    In response to stimulus changes, the firing rates of many neurons adapt, such that stimulus change is emphasized. Previous work has emphasized that rate adaptation can span a wide range of time scales and produce time scale invariant power law adaptation. However, neuronal rate adaptation is typically modeled using single time scale dynamics, and constructing a conductance-based model with arbitrary adaptation dynamics is nontrivial. Here, a modeling approach is developed in which firing rate adaptation, or spike frequency adaptation, can be understood as a filtering of slow stimulus statistics. Adaptation dynamics are modeled by a stimulus filter, and quantified by measuring the phase leads of the firing rate in response to varying input frequencies. Arbitrary adaptation dynamics are approximated by a set of weighted exponentials with parameters obtained by fitting to a desired filter. With this approach it is straightforward to assess the effect of multiple time scale adaptation dynamics on neural networks. To demonstrate this, single time scale and power law adaptation were added to a network model of local field potentials. Rate adaptation enhanced the slow oscillations of the network and flattened the output power spectrum, dampening intrinsic network frequencies. Thus, rate adaptation may play an important role in network dynamics.

  20. Adaptive Neural Network Nonparametric Identifier With Normalized Learning Laws.

    Science.gov (United States)

    Chairez, Isaac

    2017-05-01

    This paper addresses the design of a normalized convergent learning law for neural networks (NNs) with continuous dynamics. The NN is used here to obtain a nonparametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties is the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on normalized algorithms was used to adjust the weights of the NN. The adaptive algorithm was derived by means of a nonstandard logarithmic Lyapunov function (LLF). Two identifiers were designed using two variations of LLFs leading to a normalized learning law for the first identifier and a variable gain normalized learning law. In the case of the second identifier, the inclusion of normalized learning laws yields to reduce the size of the convergence region obtained as solution of the practical stability analysis. On the other hand, the velocity of convergence for the learning laws depends on the norm of errors in inverse form. This fact avoids the peaking transient behavior in the time evolution of weights that accelerates the convergence of identification error. A numerical example demonstrates the improvements achieved by the algorithm introduced in this paper compared with classical schemes with no-normalized continuous learning methods. A comparison of the identification performance achieved by the no-normalized identifier and the ones developed in this paper shows the benefits of the learning law proposed in this paper.

  1. Adaptive pinning control of deteriorated nonlinear coupling networks with circuit realization.

    Science.gov (United States)

    Jin, Xiao-Zheng; Yang, Guang-Hong; Che, Wei-Wei

    2012-09-01

    This paper deals with a class of complex networks with nonideal coupling networks, and addresses the problem of asymptotic synchronization of the complex network through designing adaptive pinning control and coupling adjustment strategies. A more general coupled nonlinearity is considered as perturbations of the network, while a serious faulty network named deteriorated network is also proposed to be further study. For the sake of eliminating these adverse impacts for synchronization, indirect adaptive schemes are designed to construct controllers and adjusters on pinned nodes and nonuniform couplings of un-pinned nodes, respectively. According to Lyapunov stability theory, the proposed adaptive strategies are successful in ensuring the achievement of asymptotic synchronization of the complex network even in the presence of perturbed and deteriorated networks. The proposed schemes are physically implemented by circuitries and tested by simulation on a Chua's circuit network.

  2. Deblurring adaptive optics retinal images using deep convolutional neural networks.

    Science.gov (United States)

    Fei, Xiao; Zhao, Junlei; Zhao, Haoxin; Yun, Dai; Zhang, Yudong

    2017-12-01

    The adaptive optics (AO) can be used to compensate for ocular aberrations to achieve near diffraction limited high-resolution retinal images. However, many factors such as the limited aberration measurement and correction accuracy with AO, intraocular scatter, imaging noise and so on will degrade the quality of retinal images. Image post processing is an indispensable and economical method to make up for the limitation of AO retinal imaging procedure. In this paper, we proposed a deep learning method to restore the degraded retinal images for the first time. The method directly learned an end-to-end mapping between the blurred and restored retinal images. The mapping was represented as a deep convolutional neural network that was trained to output high-quality images directly from blurry inputs without any preprocessing. This network was validated on synthetically generated retinal images as well as real AO retinal images. The assessment of the restored retinal images demonstrated that the image quality had been significantly improved.

  3. Disruption and adaptation of urban transport networks from flooding

    Directory of Open Access Journals (Sweden)

    Pregnolato Maria

    2016-01-01

    Full Text Available Transport infrastructure networks are increasingly vulnerable to disruption from extreme rainfall events due to increasing surface water runoff from urbanization and changes in climate. Impacts from such disruptions typically extend far beyond the flood footprint, because of the interconnection and spatial extent of modern infrastructure. An integrated flood risk assessment couples high resolution information on depth and velocity from the CityCAT urban flood model with empirical analysis of vehicle speeds in different depths of flood water, to perturb a transport accessibility model and determine the impact of a given event on journey times across the urban area. A case study in Newcastle-upon-Tyne (UK shows that even minor flooding associate with a 1 in 10 year event can cause traffic disruptions of nearly half an hour. Two adaptation scenarios are subsequently tested (i hardening (i.e. flood protection a single major junction, (ii introduction of green roofs across all buildings. Both options have benefits in terms of reduced disruption, but for a 1 in 200 year event greening all roofs in the city provided only three times the benefit of protecting one critical road junction, highlighting the importance of understanding network attributes such as capacity and flows.

  4. Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior.

    Science.gov (United States)

    Romano, Sebastián A; Pietri, Thomas; Pérez-Schuster, Verónica; Jouary, Adrien; Haudrechy, Mathieu; Sumbre, Germán

    2015-03-04

    Spontaneous neuronal activity is spatiotemporally structured, influencing brain computations. Nevertheless, the neuronal interactions underlying these spontaneous activity patterns, and their biological relevance, remain elusive. Here, we addressed these questions using two-photon calcium imaging of intact zebrafish larvae to monitor the neuron-to-neuron spontaneous activity fine structure in the tectum, a region involved in visual spatial detection. Spontaneous activity was organized in topographically compact assemblies, grouping functionally similar neurons rather than merely neighboring ones, reflecting the tectal retinotopic map despite being independent of retinal drive. Assemblies represent all-or-none-like sub-networks shaped by competitive dynamics, mechanisms advantageous for visual detection in noisy natural environments. Notably, assemblies were tuned to the same angular sizes and spatial positions as prey-detection performance in behavioral assays, and their spontaneous activation predicted directional tail movements. Therefore, structured spontaneous activity represents "preferred" network states, tuned to behaviorally relevant features, emerging from the circuit's intrinsic non-linear dynamics, adapted for its functional role. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Development of quantum-based adaptive neuro-fuzzy networks.

    Science.gov (United States)

    Kim, Sung-Suk; Kwak, Keun-Chang

    2010-02-01

    In this study, we are concerned with a method for constructing quantum-based adaptive neuro-fuzzy networks (QANFNs) with a Takagi-Sugeno-Kang (TSK) fuzzy type based on the fuzzy granulation from a given input-output data set. For this purpose, we developed a systematic approach in producing automatic fuzzy rules based on fuzzy subtractive quantum clustering. This clustering technique is not only an extension of ideas inherent to scale-space and support-vector clustering but also represents an effective prototype that exhibits certain characteristics of the target system to be modeled from the fuzzy subtractive method. Furthermore, we developed linear-regression QANFN (LR-QANFN) as an incremental model to deal with localized nonlinearities of the system, so that all modeling discrepancies can be compensated. After adopting the construction of the linear regression as the first global model, we refined it through a series of local fuzzy if-then rules in order to capture the remaining localized characteristics. The experimental results revealed that the proposed QANFN and LR-QANFN yielded a better performance in comparison with radial basis function networks and the linguistic model obtained in previous literature for an automobile mile-per-gallon prediction, Boston Housing data, and a coagulant dosing process in a water purification plant.

  6. Discrete rate and variable power adaptation for underlay cognitive networks

    KAUST Repository

    Abdallah, Mohamed M.

    2010-01-01

    We consider the problem of maximizing the average spectral efficiency of a secondary link in underlay cognitive networks. In particular, we consider the network setting whereby the secondary transmitter employs discrete rate and variable power adaptation under the constraints of maximum average transmit power and maximum average interference power allowed at the primary receiver due to the existence of an interference link between the secondary transmitter and the primary receiver. We first find the optimal discrete rates assuming a predetermined partitioning of the signal-to-noise ratio (SNR) of both the secondary and interference links. We then present an iterative algorithm for finding a suboptimal partitioning of the SNR of the interference link assuming a fixed partitioning of the SNR of secondary link selected for the case where no interference link exists. Our numerical results show that the average spectral efficiency attained by using the iterative algorithm is close to that achieved by the computationally extensive exhaustive search method for the case of Rayleigh fading channels. In addition, our simulations show that selecting the optimal partitioning of the SNR of the secondary link assuming no interference link exists still achieves the maximum average spectral efficiency for the case where the average interference constraint is considered. © 2010 IEEE.

  7. Study on SOC wavelet analysis for LiFePO4 battery

    Science.gov (United States)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    Improving the prediction accuracy of SOC can reduce the complexity of the conservative and control strategy of the strategy such as the scheduling, optimization and planning of LiFePO4 battery system. Based on the analysis of the relationship between the SOC historical data and the external stress factors, the SOC Estimation-Correction Prediction Model based on wavelet analysis is established. Using wavelet neural network prediction model is of high precision to achieve forecast link, external stress measured data is used to update parameters estimation in the model, implement correction link, makes the forecast model can adapt to the LiFePO4 battery under rated condition of charge and discharge the operating point of the variable operation area. The test results show that the method can obtain higher precision prediction model when the input and output of LiFePO4 battery are changed frequently.

  8. Robust removal of short-duration artifacts in long neonatal EEG recordings using wavelet-enhanced ICA and adaptive combining of tentative reconstructions.

    Science.gov (United States)

    Zima, M; Tichavský, P; Paul, K; Krajča, V

    2012-08-01

    The goal of this paper is to describe a robust artifact removal (RAR) method, an automatic sequential procedure which is capable of removing short-duration, high-amplitude artifacts from long-term neonatal EEG recordings. Such artifacts are mainly caused by movement activity, and have an adverse effect on the automatic processing of long-term sleep recordings. The artifacts are removed sequentially in short-term signals using independent component analysis (ICA) transformation and wavelet denoising. In order to gain robustness of the RAR method, the whole EEG recording is processed multiple times. The resulting tentative reconstructions are then combined. We show results in a data set of signals from ten healthy newborns. Those results prove, both qualitatively and quantitatively, that the RAR method is capable of automatically rejecting the mentioned artifacts without changes in overall signal properties such as the spectrum. The method is shown to perform better than either the wavelet-enhanced ICA or the simple artifact rejection method without the combination procedure.

  9. An Adaptive Computational Network Model for Multi-Emotional Social Interaction

    NARCIS (Netherlands)

    Roller, Ramona; Blommestijn, Suzan Q.; Treur, J.

    2017-01-01

    The study reported in this paper investigates an adaptive temporal-causal network-model for emotion contagion. The dynamic network principles of emotion contagion and the adaptive principles of homophily and Hebbian learning were used to simulate the change in multiple emotions and social

  10. Neural network based adaptive control of nonlinear plants using random search optimization algorithms

    Science.gov (United States)

    Boussalis, Dhemetrios; Wang, Shyh J.

    1992-01-01

    This paper presents a method for utilizing artificial neural networks for direct adaptive control of dynamic systems with poorly known dynamics. The neural network weights (controller gains) are adapted in real time using state measurements and a random search optimization algorithm. The results are demonstrated via simulation using two highly nonlinear systems.

  11. Modified wavelet transform for unbiased frequency representation

    Science.gov (United States)

    Telfer, Brian A.; Szu, Harold H.

    1992-10-01

    A new wavelet transform normalization procedure is proposed for the construction of a weighted bank of matched filters. The standard normalization results in higher input frequencies producing larger wavelet transform magnitudes if the amplitude of the frequencies is held constant, while the new normalization produces equal responses. This is illustrated with an example of Gibb's overshooting phenomenon, and connections to neural networks are discussed. Another example is presented which illustrates a cocktail party effect. A derivation is given to show that an inverse transform still exists when using the new normalization.

  12. Improvement of electrocardiogram by empirical wavelet transform

    Science.gov (United States)

    Chanchang, Vikanda; Kumchaiseemak, Nakorn; Sutthiopad, Malee; Luengviriya, Chaiya

    2017-09-01

    Electrocardiogram (ECG) is a crucial tool in the detection of cardiac arrhythmia. It is also often used in a routine physical exam, especially, for elderly people. This graphical representation of electrical activity of heart is obtained by a measurement of voltage at the skin; therefore, the signal is always contaminated by noise from various sources. For a proper interpretation, the quality of the ECG should be improved by a noise reduction. In this article, we present a study of a noise filtration in the ECG by using an empirical wavelet transform (EWT). Unlike the traditional wavelet method, EWT is adaptive since the frequency spectrum of the ECG is taken into account in the construction of the wavelet basis. We show that the signal-to-noise ratio increases after the noise filtration for different noise artefacts.

  13. Adaptive synchronization of drive-response fractional-order complex dynamical networks with uncertain parameters

    Science.gov (United States)

    Yang, Li-xin; Jiang, Jun

    2014-05-01

    This paper investigates the adaptive synchronization in the drive-response fractional-order dynamical networks with uncertain parameters. By means of both the stability theory of fractional-order differential system and the adaptive control technique, a novel adaptive synchronization controller is developed with a more general and simpler analytical expression, which does not contain the parameters of the complex network, and effective adaptive laws of parameters. Furthermore, the very strong and conservative uniformly Lipschitz condition on the node dynamics of complex network is released. To demonstrate the validity of the proposed method, the examples for the synchronization of systems with the chaotic and hyper-chaotic node dynamics are presented.

  14. An OCP Compliant Network Adapter for GALS-based SoC Design Using the MANGO Network-on-Chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Mahadevan, Shankar; Olsen, Rasmus Grøndahl

    2005-01-01

    The demand for IP reuse and system level scalability in System-on-Chip (SoC) designs is growing. Network-onchip (NoC) constitutes a viable solution space to emerging SoC design challenges. In this paper we describe an OCP compliant network adapter (NA) architecture for the MANGO NoC. The NA...... decouples communication and computation, providing memory-mapped OCP transactions based on primitive message-passing services of the network. Also, it facilitates GALS-type systems, by adapting to the clockless network. This helps leverage a modular SoC design flow. We evaluate performance and cost of 0...

  15. Wavelets and renormalization

    CERN Document Server

    Battle, G A

    1999-01-01

    WAVELETS AND RENORMALIZATION describes the role played by wavelets in Euclidean field theory and classical statistical mechanics. The author begins with a stream-lined introduction to quantum field theory from a rather basic point of view. Functional integrals for imaginary-time-ordered expectations are introduced early and naturally, while the connection with the statistical mechanics of classical spin systems is introduced in a later chapter.A vastly simplified (wavelet) version of the celebrated Glimm-Jaffe construction of the F 4 3 quantum field theory is presented. It is due to Battle and

  16. Wavelets in physics

    CERN Document Server

    Fang, Li-Zhi

    1998-01-01

    Recent advances have shown wavelets to be an effective, and even necessary, mathematical tool for theoretical physics. This book is a timely overview of the progress of this new frontier. It includes an introduction to wavelet analysis, and applications in the fields of high energy physics, astrophysics, cosmology and statistical physics. The topics are selected for the interests of physicists and graduate students of theoretical studies. It emphasizes the need for wavelets in describing and revealing structure in physical problems, which is not easily accomplishing by other methods.

  17. A symmetry perceiving adaptive neural network and facial image recognition.

    Science.gov (United States)

    Sinha, P

    1998-11-30

    The paper deals with the forensic problem of comparing nearly from view and facial images for personal identification. The human recognition process for such problems, is primarily based on both holistic as well as feature-wise symmetry perception aided by subjective analysis for detecting ill-defined features. It has been attempted to approach the modelling of such a process by designing a robust symmetry perceiving adaptive neural network. The pair of images to be compared should be presented to the proposed neural network (NN) as source (input) and target images. The NN learns about the symmetry between the pair of images by analysing examples of associated feature pairs belonging to the source and the target images. In order to prepare a paired example of associated features for training purpose, when we select one particular feature on the source image as a unique pixel, we must associate it with the corresponding feature on the target image also. But, in practice, it is not always possible to fix the latter feature also as a unique pixel due to pictorial ambiguity. The robust or fault tolerant NN takes care of such a situation and allows fixing the associated target feature as a rectangular array of pixels, rather than fixing it as a unique pixel, which is pretty difficult to be done with certainty. From such a pair of sets of associated features, the NN searches out proper locations of the target features from the sets of ambiguous target features by a fuzzy analysis during its learning. If any of target features, searched out by the NN, lies outside the prespecified zone, the training of the NN is unsuccessful. This amounts to non-existence of symmetry between the pair of images and confirms non-identity. In case of a successful training, the NN gets adapted with appropriate symmetry relation between the pair of images and when the source image is input to the trained NN, it responds by outputting a processed source image which is superimposable over the

  18. On adaptive control of mobile slotted aloha networks

    Directory of Open Access Journals (Sweden)

    Lim J.-T.

    1995-01-01

    Full Text Available An adaptive control scheme for mobile slotted ALOHA is presented and the effect of capture on the adaptive control scheme is investigated. It is shown that with the proper choice of adaptation parameters the adaptive control scheme can be made independent of the effect of capture.

  19. Adaptation of the oral health version of an instrument for diagnosing the healthcare network?s stage of development

    National Research Council Canada - National Science Library

    Leal, Daniele Lopes; Paiva, Saul Martins; Werneck, Marcos Azeredo Furquim; Oliveira, Ana Cristina Borges de

    2014-01-01

    .... The current study aimed to describe the stages in the adaptation of the oral healthcare version of an instrument to evaluate the stage of development in the healthcare network under the Unified National Health System (SUS...

  20. Wave Forecasting Using Neuro Wavelet Technique

    Directory of Open Access Journals (Sweden)

    Pradnya Dixit

    2014-12-01

    Full Text Available In the present work a hybrid Neuro-Wavelet Technique is used for forecasting waves up to 6 hr, 12 hr, 18 hr and 24 hr in advance using hourly measured significant wave heights at an NDBC station 41004 near the east coast of USA. The NW Technique is employed by combining two methods, Discrete Wavelet Transform and Artificial Neural Networks. The hourly data of previously measured significant wave heights spanning over 2 years from 2010 and 2011 is used to calibrate and test the models. The discrete wavelet transform of NWT analyzes frequency of signal with respect to time at different scales. It decomposes time series into low (approximate and high (detail frequency components. The decomposition of approximate can be carried out up to desired multiple levels in order to provide more detail and approximate components which provides relatively smooth varying amplitude series. The neural network is trained with decorrelated approximate and detail wavelet coefficients. The outputs of networks during testing are reconstructed back using inverse DWT. The results were judged by drawing the wave plots, scatter plots and other error measures. The developed models show reasonable accuracy in prediction of significant wave heights from 6 to 24 hours. To compare the results traditional ANN models were also developed at the same location using the same data and for same time interval.

  1. Adaptive Synchronization of Fractional Neural Networks with Unknown Parameters and Time Delays

    Directory of Open Access Journals (Sweden)

    Weiyuan Ma

    2014-12-01

    Full Text Available In this paper, the parameters identification and synchronization problem of fractional-order neural networks with time delays are investigated. Based on some analytical techniques and an adaptive control method, a simple adaptive synchronization controller and parameter update laws are designed to synchronize two uncertain complex networks with time delays. Besides, the system parameters in the uncertain network can be identified in the process of synchronization. To demonstrate the validity of the proposed method, several illustrative examples are presented.

  2. Adaptive autonomous Communications Routing Optimizer for Network Efficiency Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Maximizing network efficiency for NASA's Space Networking resources is a large, complex, distributed problem, requiring substantial collaboration. We propose the...

  3. Distributed reinforcement learning for adaptive and robust network intrusion response

    Science.gov (United States)

    Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel

    2015-07-01

    Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.

  4. An Adaptive Amplifier System for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Mónica Lovay

    2012-01-01

    Full Text Available This paper presents an adaptive amplifier that is part of a sensor node in a wireless sensor network. The system presents a target gain that has to be maintained without direct human intervention despite the presence of faults. In addition, its bandwidth must be as large as possible. The system is composed of a software-based built-in self-test scheme implemented in the node that checks all the available gains in the amplifiers, a reconfigurable amplifier, and a genetic algorithm (GA for reconfiguring the node resources that runs on a host computer. We adopt a PSoC device from Cypress for the node implementation. The performance evaluation of the scheme presented is made by adopting four different types of fault models in the amplifier gains. The fault simulation results show that GA finds the target gain with low error, maintains the bandwidth above the minimum tolerable bandwidth, and presents a runtime lower than exhaustive search method.

  5. Adaptive moment closure for parameter inference of biochemical reaction networks.

    Science.gov (United States)

    Schilling, Christian; Bogomolov, Sergiy; Henzinger, Thomas A; Podelski, Andreas; Ruess, Jakob

    2016-11-01

    Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze. The parameter inference methods that tend to scale best in the dimension of the CTMC are based on so-called moment closure approximations. However, there exists a large number of different moment closure approximations and it is typically hard to say a priori which of the approximations is the most suitable for the inference procedure. Here, we propose a moment-based parameter inference method that automatically chooses the most appropriate moment closure method. Accordingly, contrary to existing methods, the user is not required to be experienced in moment closure techniques. In addition to that, our method adaptively changes the approximation during the parameter inference to ensure that always the best approximation is used, even in cases where different approximations are best in different regions of the parameter space. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Composite learning from adaptive backstepping neural network control.

    Science.gov (United States)

    Pan, Yongping; Sun, Tairen; Liu, Yiqi; Yu, Haoyong

    2017-11-01

    In existing neural network (NN) learning control methods, the trajectory of NN inputs must be recurrent to satisfy a stringent condition termed persistent excitation (PE) so that NN parameter convergence is obtainable. This paper focuses on command-filtered backstepping adaptive control for a class of strict-feedback nonlinear systems with functional uncertainties, where an NN composite learning technique is proposed to guarantee convergence of NN weights to their ideal values without the PE condition. In the NN composite learning, spatially localized NN approximation is employed to handle functional uncertainties, online historical data together with instantaneous data are exploited to generate prediction errors, and both tracking errors and prediction errors are employed to update NN weights. The influence of NN approximation errors on the control performance is also clearly shown. The distinctive feature of the proposed NN composite learning is that NN parameter convergence is guaranteed without the requirement of the trajectory of NN inputs being recurrent. Illustrative results have verified effectiveness and superiority of the proposed method compared with existing NN learning control methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Reward and Punishment based Cooperative Adaptive Sampling in Wireless Sensor Networks

    NARCIS (Netherlands)

    Masoum, Alireza; Meratnia, Nirvana; Taghikhaki, Zahra; Havinga, Paul J.M.

    2010-01-01

    Energy conservation is one of the main concerns in wireless sensor networks. One of the mechanisms to better manage energy in wireless sensor networks is adaptive sampling, by which instead of using a fixed frequency interval for sensing and data transmission, the wireless sensor network employs a

  8. Wavelets a primer

    CERN Document Server

    Blatter, Christian

    1998-01-01

    The Wavelet Transform has stimulated research that is unparalleled since the invention of the Fast Fourier Transform and has opened new avenues of applications in signal processing, image compression, radiology, cardiology, and many other areas. This book grew out of a short course for mathematics students at the ETH in Zurich; it provides a solid mathematical foundation for the broad range of applications enjoyed by the wavelet transform. Numerous illustrations and fully worked out examples enhance the book.

  9. From Calculus to Wavelets: A New Mathematical Technique Wavelet ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. From Calculus to Wavelets: A New Mathematical Technique Wavelet Analysis Physical Properties. Gerald B Folland. General Article Volume 2 Issue 4 April 1997 pp 25-37 ...

  10. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Science.gov (United States)

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  11. Breast image feature learning with adaptive deconvolutional networks

    Science.gov (United States)

    Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.

    2012-03-01

    Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).

  12. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Directory of Open Access Journals (Sweden)

    Claudia Casellato

    Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  13. Structure identification and adaptive synchronization of uncertain general complex dynamical networks

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Lu Hongqian [Shandong Institute of Light Industry, Shandong Jinan 250353 (China)

    2009-12-28

    This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.

  14. Adaptive Naive Bayes classification for wireless sensor networks

    NARCIS (Netherlands)

    Zwartjes, G.J.

    2017-01-01

    Wireless Sensor Networks are tiny devices equipped with sensors and wireless communication. These devices observe environments and communicatie about these observations. Machine Learning techniques are of interest for Wireless Sensor Network applications since they can reduce the amount of needed

  15. Exploring Educational and Cultural Adaptation through Social Networking Sites

    Science.gov (United States)

    Ryan, Sherry D.; Magro, Michael J.; Sharp, Jason H.

    2011-01-01

    Social networking sites have seen tremendous growth and are widely used around the world. Nevertheless, the use of social networking sites in educational contexts is an under explored area. This paper uses a qualitative methodology, autoethnography, to investigate how social networking sites, specifically Facebook[TM], can help first semester…

  16. Lecture notes on wavelet transforms

    CERN Document Server

    Debnath, Lokenath

    2017-01-01

    This book provides a systematic exposition of the basic ideas and results of wavelet analysis suitable for mathematicians, scientists, and engineers alike. The primary goal of this text is to show how different types of wavelets can be constructed, illustrate why they are such powerful tools in mathematical analysis, and demonstrate their use in applications. It also develops the required analytical knowledge and skills on the part of the reader, rather than focus on the importance of more abstract formulation with full mathematical rigor.  These notes differs from many textbooks with similar titles in that a major emphasis is placed on the thorough development of the underlying theory before introducing applications and modern topics such as fractional Fourier transforms, windowed canonical transforms, fractional wavelet transforms, fast wavelet transforms, spline wavelets, Daubechies wavelets, harmonic wavelets and non-uniform wavelets. The selection, arrangement, and presentation of the material in these ...

  17. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks

  18. Mobilization and Adaptation of a Rural Cradle-to-Career Network

    Directory of Open Access Journals (Sweden)

    Sarah J. Zuckerman

    2016-10-01

    Full Text Available This case study explored the development of a rural cradle-to-career network with a dual focus on the initial mobilization of network members and subsequent adaptations made to maintain mobilization, while meeting local needs. Data sources included interviews with network members, observations of meetings, and documentary evidence. Network-based social capital facilitated mobilization. Where networks were absent and where distrust and different values were evident, mobilization faltered. Three network adaptations were discovered: Special rural community organizing strategies, district-level action planning, and a theory of action focused on out-of-school factors. All three were attributable to the composition of mobilized stakeholders and this network’s rural social geography. These findings illuminate the importance of social geography in the development and advancement of rural cradle-to-career networks.

  19. Adaptive Noise Cancellation for speech Employing Fuzzy and Neural Network

    OpenAIRE

    Mohammed Hussein Miry; Ali Hussein Miry; Hussain Kareem Khleaf

    2011-01-01

    Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications such as noise cancellation. Noise cancellation is a common occurrence in today telecommunication systems. The LMS algorithm which is one of the most efficient criteria for determining the values of the adaptive noise cancellation coefficient...

  20. Adaptation and Fatigue Model for Neuron Networks and Large Time Asymptotics in a Nonlinear Fragmentation Equation

    National Research Council Canada - National Science Library

    Pakdaman, Khashayar; Perthame, Benoît; Salort, Delphine

    2014-01-01

    Motivated by a model for neural networks with adaptation and fatigue, we study a conservative fragmentation equation that describes the density probability of neurons with an elapsed time s after its last...

  1. Adaptive protection coordination scheme for distribution network with distributed generation using ABC

    National Research Council Canada - National Science Library

    Ibrahim, A.M; El-Khattam, W; ElMesallamy, M; Talaat, H.A

    2016-01-01

    This paper presents an adaptive protection coordination scheme for optimal coordination of DOCRs in interconnected power networks with the impact of DG, the used coordination technique is the Artificial Bee Colony (ABC...

  2. Adaptive RBF Neural Network Control for Three-Phase Active Power Filter

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2013-05-01

    Full Text Available Abstract An adaptive radial basis function (RBF neural network control system for three-phase active power filter (APF is proposed to eliminate harmonics. Compensation current is generated to track command current so as to eliminate the harmonic current of non-linear load and improve the quality of the power system. The asymptotical stability of the APF system can be guaranteed with the proposed adaptive neural network strategy. The parameters of the neural network can be adaptively updated to achieve the desired tracking task. The simulation results demonstrate good performance, for example showing small current tracking error, reduced total harmonic distortion (THD, improved accuracy and strong robustness in the presence of parameters variation and nonlinear load. It is shown that the adaptive RBF neural network control system for three-phase APF gives better control than hysteresis control.

  3. An hybrid neuro-wavelet approach for long-term prediction of solar wind

    Science.gov (United States)

    Napoli, Christian; Bonanno, Francesco; Capizzi, Giacomo

    2011-06-01

    Nowadays the interest for space weather and solar wind forecasting is increasing to become a main relevance problem especially for telecommunication industry, military, and for scientific research. At present the goal for weather forecasting reach the ultimate high ground of the cosmos where the environment can affect the technological instrumentation. Some interests then rise about the correct prediction of space events, like ionized turbulence in the ionosphere or impacts from the energetic particles in the Van Allen belts, then of the intensity and features of the solar wind and magnetospheric response. The problem of data prediction can be faced using hybrid computation methods so as wavelet decomposition and recurrent neural networks (RNNs). Wavelet analysis was used in order to reduce the data redundancies so obtaining representation which can express their intrinsic structure. The main advantage of the wavelet use is the ability to pack the energy of a signal, and in turn the relevant carried informations, in few significant uncoupled coefficients. Neural networks (NNs) are a promising technique to exploit the complexity of non-linear data correlation. To obtain a correct prediction of solar wind an RNN was designed starting on the data series. As reported in literature, because of the temporal memory of the data an Adaptative Amplitude Real Time Recurrent Learning algorithm was used for a full connected RNN with temporal delays. The inputs for the RNN were given by the set of coefficients coming from the biorthogonal wavelet decomposition of the solar wind velocity time series. The experimental data were collected during the NASA mission WIND. It is a spin stabilized spacecraft launched in 1994 in a halo orbit around the L1 point. The data are provided by the SWE, a subsystem of the main craft designed to measure the flux of thermal protons and positive ions.

  4. MULTI-RESOLUTION WAVELET ANALYSES OF TWO DIFFERENT PERFECTİONİSM SCALES: A UNIVERSITY SAMPLE

    Directory of Open Access Journals (Sweden)

    Y. KARACA

    2013-01-01

    Full Text Available Our prior studies indicated that statistical and wavelet analyses of perfectionism inventories were evaluated by SPSS and Wavelet packets. The main aim of the present study is to investigate different scale affects on perfectionism. We proposed that changes of low-frequency Meyer wavelets reflect students' perfectionism levels. We used Wavelet 1D and continuous 1D Wavelet analyses to measure their time dependence. We studied students' questionnaires. Multi-resolution analysis was obtained from continuous and discrete data as a function of cases at different scales. Large scale effects are assumed to play an important role on students with higher others-oriented perfectionism and adaptive perfectionism. Continuous wavelet 1D (Mexh analyses show the similar results and, large scale effects play an important role on students' behavior. In contrast, lower scale effects are assumed to play an important role on students with adaptive perfectionism and self-directed perfectionism

  5. Combined wavelets-DCT image compression

    Science.gov (United States)

    Ansari, Ahmad C.; Gertner, Izidor; Zeevi, Yehoshua Y.

    1992-07-01

    The mappings from multidimension to one dimension, or the inverse mappings, are theoretically described by space filling curves, i.e., Peano curves or Hilbert curves. The Peano Scan is an application of the Peano curve to the scanning of images, and it is used for analyzing, clustering, or compressing images, and for limiting the number of the colors used in an image. In this paper an efficient method for visual data compression is presented, combining generalized Peano Scan, wavelet decomposition, and adaptive subband coding technique. The Peano Scan is incorporated with the encoding scheme in order to cluster highly correlated pixels. Using wavelet decomposition, an adaptive subband coding technique is developed to encode each subband separately with an optimum algorithm. Discrete Cosine Transform (DCT) is applied on the low spatial frequency subband, and high spatial frequency subbands are encoded using Run Length encoding technique.

  6. Target recognition by wavelet transform

    CERN Document Server

    Li Zheng Dong; He Wu Liang; Pei Chun Lan; Peng Wen; SongChen; Zheng Xiao Dong

    2002-01-01

    Wavelet transform has an important character of multi-resolution power, which presents pyramid structure, and this character coincides the way by which people distinguish object from coarse to fineness and from large to tiny. In addition to it, wavelet transform benefits to reducing image noise, simplifying calculation, and embodying target image characteristic point. A method of target recognition by wavelet transform is provided

  7. Adapting water management to climate change: Institutional involvement, inter-institutional networks and barriers in India

    OpenAIRE

    Azhoni, Adani; Holman, Ian P.; Jude, Simon J.

    2017-01-01

    The capacity of a nation to address the hydrological impacts of climate change depends on the institutions through which water is governed. Inter-institutional networks that enable institutions to adapt and the factors that hinder smooth coordination are poorly understood. Using water governance in India as an example of a complex top-down bureaucratic system that requires effective networks between all key institutions, this research unravels the barriers to adaptation by combining quantitat...

  8. Simulation and experimental testbed for adaptive video streaming in ad hoc networks

    OpenAIRE

    Gonzalez-Martinez, Santiago Renan; Castellanos Hernández, Wilder Eduardo; Guzman Castillo, Paola Fernanda; Arce Vila, Pau; Guerri Cebollada, Juan Carlos

    2016-01-01

    This paper presents a performance evaluation of the scalable video streaming over mobile ad hoc networks. In particular, we focus on the rate-adaptive method for streaming scalable video (H.264/SVC). For effective adaptation a new cross-layer routing protocol is introduced. This protocol provides an efficient algorithm for available bandwidth estimation. With this information, the video source adjusts its bit rate during the video transmission according to the network state. We also propose a...

  9. [Robustness analysis of adaptive neural network model based on spike timing-dependent plasticity].

    Science.gov (United States)

    Chen, Yunzhi; Xu, Guizhi; Zhou, Qian; Guo, Miaomiao; Guo, Lei; Wan, Xiaowei

    2015-02-01

    To explore the self-organization robustness of the biological neural network, and thus to provide new ideas and methods for the electromagnetic bionic protection, we studied both the information transmission mechanism of neural network and spike timing-dependent plasticity (STDP) mechanism, and then investigated the relationship between synaptic plastic and adaptive characteristic of biology. Then a feedforward neural network with the Izhikevich model and the STDP mechanism was constructed, and the adaptive robust capacity of the network was analyzed. Simulation results showed that the neural network based on STDP mechanism had good rubustness capacity, and this characteristics is closely related to the STDP mechanisms. Based on this simulation work, the cell circuit with neurons and synaptic circuit which can simulate the information processing mechanisms of biological nervous system will be further built, then the electronic circuits with adaptive robustness will be designed based on the cell circuit.

  10. Finding Robust Adaptation Gene Regulatory Networks Using Multi-Objective Genetic Algorithm.

    Science.gov (United States)

    Ren, Hai-Peng; Huang, Xiao-Na; Hao, Jia-Xuan

    2016-01-01

    Robust adaptation plays a key role in gene regulatory networks, and it is thought to be an important attribute for the organic or cells to survive in fluctuating conditions. In this paper, a simplified three-node enzyme network is modeled by the Michaelis-Menten rate equations for all possible topologies, and a family of topologies and the corresponding parameter sets of the network with satisfactory adaptation are obtained using the multi-objective genetic algorithm. The proposed approach improves the computation efficiency significantly as compared to the time consuming exhaustive searching method. This approach provides a systemic way for searching the feasible topologies and the corresponding parameter sets to make the gene regulatory networks have robust adaptation. The proposed methodology, owing to its universality and simplicity, can be used to address more complex issues in biological networks.

  11. Network Adaptability from WMD Disruption and Cascading Failures

    Science.gov (United States)

    2016-04-01

    and this will cause a traffic flood which may cause blocking or congestion of services required for rescue operations. After the post-attack period...Transparent Optical Networks (ICTON), Stockholm, Sweden ; June 27, 2011. 4. B. Mukherjee, "Panorama of Optical Network Survivability," Keynote Talk...Design and Modeling Conference, Kista, Sweden , May 22, 2014. 8. B. Mukherjee, “Disaster preparedness for network and information infrastructures

  12. Numerical solution of differential equations arising in fluid dynamics using Legendre wavelet collocation method

    Science.gov (United States)

    Shiralashetti, S. C.; Deshi, A. B.

    Wavelet analysis is a recently developed mathematical tool for many problems. One of its main attractive features is the ability to accurately represent general functions with small number of adaptively chosen wavelet coefficients. In this paper, the Legendre wavelet collocation method (LWCM) for the numerical solution of differential equations is presented. The proposed method gives better results than the existing ones. Some of the illustrative examples are included to observe the performance of the proposed scheme.

  13. Wavelet image compression

    CERN Document Server

    Pearlman, William A

    2013-01-01

    This book explains the stages necessary to create a wavelet compression system for images and describes state-of-the-art systems used in image compression standards and current research. It starts with a high level discussion of the properties of the wavelet transform, especially the decomposition into multi-resolution subbands. It continues with an exposition of the null-zone, uniform quantization used in most subband coding systems and the optimal allocation of bitrate to the different subbands. Then the image compression systems of the FBI Fingerprint Compression Standard and the JPEG2000 S

  14. Smart social adaptation prevents catastrophic ecological regime shifts in networks of myopic harvesters

    Science.gov (United States)

    Donges, Jonathan; Lucht, Wolfgang; Wiedermann, Marc; Heitzig, Jobst; Kurths, Jürgen

    2015-04-01

    In the anthropocene, the rise of global social and economic networks with ever increasing connectivity and speed of interactions, e.g., the internet or global financial markets, is a key challenge for sustainable development. The spread of opinions, values or technologies on these networks, in conjunction with the coevolution of the network structures themselves, underlies nexuses of current concern such as anthropogenic climate change, biodiversity loss or global land use change. To isolate and quantitatively study the effects and implications of network dynamics for sustainable development, we propose an agent-based model of information flow on adaptive networks between myopic harvesters that exploit private renewable resources. In this conceptual model of a network of socio-ecological systems, information on management practices flows between agents via boundedly rational imitation depending on the state of the resource stocks involved in an interaction. Agents can also adapt the structure of their social network locally by preferentially connecting to culturally similar agents with identical management practices and, at the same time, disconnecting from culturally dissimilar agents. Investigating in detail the statistical mechanics of this model, we find that an increasing rate of information flow through faster imitation dynamics or growing density of network connectivity leads to a marked increase in the likelihood of environmental resource collapse. However, we show that an optimal rate of social network adaptation can mitigate this negative effect without loss of social cohesion through network fragmentation. Our results highlight that seemingly immaterial network dynamics of spreading opinions or values can be of large relevance for the sustainable management of socio-ecological systems and suggest smartly conservative network adaptation as a strategy for mitigating environmental collapse. Hence, facing the great acceleration, these network dynamics should

  15. Adaptive protection coordination scheme for distribution network with distributed generation using ABC

    Directory of Open Access Journals (Sweden)

    A.M. Ibrahim

    2016-09-01

    Full Text Available This paper presents an adaptive protection coordination scheme for optimal coordination of DOCRs in interconnected power networks with the impact of DG, the used coordination technique is the Artificial Bee Colony (ABC. The scheme adapts to system changes; new relays settings are obtained as generation-level or system-topology changes. The developed adaptive scheme is applied on the IEEE 30-bus test system for both single- and multi-DG existence where results are shown and discussed.

  16. Methodology for Simulation and Analysis of Complex Adaptive Supply Network Structure and Dynamics Using Information Theory

    Directory of Open Access Journals (Sweden)

    Joshua Rodewald

    2016-10-01

    Full Text Available Supply networks existing today in many industries can behave as complex adaptive systems making them more difficult to analyze and assess. Being able to fully understand both the complex static and dynamic structures of a complex adaptive supply network (CASN are key to being able to make more informed management decisions and prioritize resources and production throughout the network. Previous efforts to model and analyze CASN have been impeded by the complex, dynamic nature of the systems. However, drawing from other complex adaptive systems sciences, information theory provides a model-free methodology removing many of those barriers, especially concerning complex network structure and dynamics. With minimal information about the network nodes, transfer entropy can be used to reverse engineer the network structure while local transfer entropy can be used to analyze the network structure’s dynamics. Both simulated and real-world networks were analyzed using this methodology. Applying the methodology to CASNs allows the practitioner to capitalize on observations from the highly multidisciplinary field of information theory which provides insights into CASN’s self-organization, emergence, stability/instability, and distributed computation. This not only provides managers with a more thorough understanding of a system’s structure and dynamics for management purposes, but also opens up research opportunities into eventual strategies to monitor and manage emergence and adaption within the environment.

  17. An Information Theoretic Investigation Of Complex Adaptive Supply Networks With Organizational Topologies

    Science.gov (United States)

    2016-12-22

    trains of organizational elements, just as in neuroscience , one can determine the information flow patterns through the organization . [9] 6 Transfer...many service industries. Organizations have been noted to behave as complex adaptive systems or information supply networks with both formal and...informal structures. Thoroughly understanding supply network structure and behavior are critical to managing such organizations effectively, but their

  18. Wavelets in functional data analysis

    CERN Document Server

    Morettin, Pedro A; Vidakovic, Brani

    2017-01-01

    Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.

  19. Wavelets theory, algorithms, and applications

    CERN Document Server

    Montefusco, Laura

    2014-01-01

    Wavelets: Theory, Algorithms, and Applications is the fifth volume in the highly respected series, WAVELET ANALYSIS AND ITS APPLICATIONS. This volume shows why wavelet analysis has become a tool of choice infields ranging from image compression, to signal detection and analysis in electrical engineering and geophysics, to analysis of turbulent or intermittent processes. The 28 papers comprising this volume are organized into seven subject areas: multiresolution analysis, wavelet transforms, tools for time-frequency analysis, wavelets and fractals, numerical methods and algorithms, and applicat

  20. WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis

    Directory of Open Access Journals (Sweden)

    Li Song

    2010-04-01

    Full Text Available Abstract Background Quantitative proteomics technologies have been developed to comprehensively identify and quantify proteins in two or more complex samples. Quantitative proteomics based on differential stable isotope labeling is one of the proteomics quantification technologies. Mass spectrometric data generated for peptide quantification are often noisy, and peak detection and definition require various smoothing filters to remove noise in order to achieve accurate peptide quantification. Many traditional smoothing filters, such as the moving average filter, Savitzky-Golay filter and Gaussian filter, have been used to reduce noise in MS peaks. However, limitations of these filtering approaches often result in inaccurate peptide quantification. Here we present the WaveletQuant program, based on wavelet theory, for better or alternative MS-based proteomic quantification. Results We developed a novel discrete wavelet transform (DWT and a 'Spatial Adaptive Algorithm' to remove noise and to identify true peaks. We programmed and compiled WaveletQuant using Visual C++ 2005 Express Edition. We then incorporated the WaveletQuant program in the Trans-Proteomic Pipeline (TPP, a commonly used open source proteomics analysis pipeline. Conclusions We showed that WaveletQuant was able to quantify more proteins and to quantify them more accurately than the ASAPRatio, a program that performs quantification in the TPP pipeline, first using known mixed ratios of yeast extracts and then using a data set from ovarian cancer cell lysates. The program and its documentation can be downloaded from our website at http://systemsbiozju.org/data/WaveletQuant.

  1. Adaptive Sliding Mode Control of Chaos in Permanent Magnet Synchronous Motor via Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Tat-Bao-Thien Nguyen

    2014-01-01

    Full Text Available In this paper, based on fuzzy neural networks, we develop an adaptive sliding mode controller for chaos suppression and tracking control in a chaotic permanent magnet synchronous motor (PMSM drive system. The proposed controller consists of two parts. The first is an adaptive sliding mode controller which employs a fuzzy neural network to estimate the unknown nonlinear models for constructing the sliding mode controller. The second is a compensational controller which adaptively compensates estimation errors. For stability analysis, the Lyapunov synthesis approach is used to ensure the stability of controlled systems. Finally, simulation results are provided to verify the validity and superiority of the proposed method.

  2. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  3. An Adaptive-PSO-Based Self-Organizing RBF Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Lu, Wei; Hou, Ying; Qiao, Jun-Fei

    2018-01-01

    In this paper, a self-organizing radial basis function (SORBF) neural network is designed to improve both accuracy and parsimony with the aid of adaptive particle swarm optimization (APSO). In the proposed APSO algorithm, to avoid being trapped into local optimal values, a nonlinear regressive function is developed to adjust the inertia weight. Furthermore, the APSO algorithm can optimize both the network size and the parameters of an RBF neural network simultaneously. As a result, the proposed APSO-SORBF neural network can effectively generate a network model with a compact structure and high accuracy. Moreover, the analysis of convergence is given to guarantee the successful application of the APSO-SORBF neural network. Finally, multiple numerical examples are presented to illustrate the effectiveness of the proposed APSO-SORBF neural network. The results demonstrate that the proposed method is more competitive in solving nonlinear problems than some other existing SORBF neural networks.

  4. Wavelets in Recognition of Bird Sounds

    Directory of Open Access Journals (Sweden)

    Juha T. Tanttu

    2007-01-01

    Full Text Available This paper presents a novel method to recognize inharmonic and transient bird sounds efficiently. The recognition algorithm consists of feature extraction using wavelet decomposition and recognition using either supervised or unsupervised classifier. The proposed method was tested on sounds of eight bird species of which five species have inharmonic sounds and three reference species have harmonic sounds. Inharmonic sounds are not well matched to the conventional spectral analysis methods, because the spectral domain does not include any visible trajectories that computer can track and identify. Thus, the wavelet analysis was selected due to its ability to preserve both frequency and temporal information, and its ability to analyze signals which contain discontinuities and sharp spikes. The shift invariant feature vectors calculated from the wavelet coefficients were used as inputs of two neural networks: the unsupervised self-organizing map (SOM and the supervised multilayer perceptron (MLP. The results were encouraging: the SOM network recognized 78% and the MLP network 96% of the test sounds correctly.

  5. Active random noise control using adaptive learning rate neural networks with an immune feedback law

    Science.gov (United States)

    Sasaki, Minoru; Kuribayashi, Takumi; Ito, Satoshi

    2005-12-01

    In this paper an active random noise control using adaptive learning rate neural networks with an immune feedback law is presented. The adaptive learning rate strategy increases the learning rate by a small constant if the current partial derivative of the objective function with respect to the weight and the exponential average of the previous derivatives have the same sign, otherwise the learning rate is decreased by a proportion of its value. The use of an adaptive learning rate attempts to keep the learning step size as large as possible without leading to oscillation. In the proposed method, because of the immune feedback law change a learning rate of the neural networks individually and adaptively, it is expected that a cost function minimize rapidly and training time is decreased. Numerical simulations and experiments of active random noise control with the transfer function of the error path will be performed, to validate the convergence properties of the adaptive learning rate Neural Networks with the immune feedback law. Control results show that adaptive learning rate Neural Networks control structure can outperform linear controllers and conventional neural network controller for the active random noise control.

  6. Wavelet Transform -50 ...

    Indian Academy of Sciences (India)

    University of Hyderabad. His current research interests are in the areas of quantum information ..... The enterprising reader can perform a multi-level decomposition and reconstruction to discover that the problems of overshoots and undershoots plaguing the Fourier transform are absent in discrete wavelet transform. 1kn&(ff.

  7. Boosted bosons and wavelets

    CERN Document Server

    Søgaard, Andreas

    For the LHC Run 2 and beyond, experiments are pushing both the energy and the intensity frontier so the need for robust and efficient pile-up mitigation tools becomes ever more pressing. Several methods exist, relying on uniformity of pile-up, local correlations of charged to neutral particles, and parton shower shapes, all in $y − \\phi$ space. Wavelets are presented as tools for pile-up removal, utilising their ability to encode position and frequency information simultaneously. This allows for the separation of individual hadron collision events by angular scale and thus for subtracting of soft, diffuse/wide-angle contributions while retaining the hard, small-angle components from the hard event. Wavelet methods may utilise the same assumptions as existing methods, the difference being the underlying, novel representation. Several wavelet methods are proposed and their effect studied in simple toy simulation under conditions relevant for the LHC Run 2. One full pile-up mitigation tool (‘wavelet analysis...

  8. Community detection in complex networks via adapted Kuramoto dynamics

    Science.gov (United States)

    Maia, Daniel M. N.; de Oliveira, João E. M.; Quiles, Marcos G.; Macau, Elbert E. N.

    2017-12-01

    Based on the Kuramoto model, a new network model, namely, the generalized Kuramoto model with Fourier term, is introduced for studying community detection in complex networks. In particular, the Fourier term provides a natural phase locking of the trajectories into a pre-defined number of clusters. A mathematical approach is used to study the behavior of the solutions and its properties. Conditions for properly choosing the coupling parameters so that phase locking takes place are presented and a quality function called clustering density is introduced to measure the effectiveness of the communities identification. Illustrations with real and synthetic networks with community structure are presented.

  9. Social adaptation in multi-agent model of linguistic categorization is affected by network information flow.

    Science.gov (United States)

    Zubek, Julian; Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz

    2017-01-01

    This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.

  10. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    Science.gov (United States)

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  11. Fault location in underground cables using ANFIS nets and discrete wavelet transform

    Directory of Open Access Journals (Sweden)

    Shimaa Barakat

    2014-12-01

    Full Text Available This paper presents an accurate algorithm for locating faults in a medium voltage underground power cable using a combination of Adaptive Network-Based Fuzzy Inference System (ANFIS and discrete wavelet transform (DWT. The proposed method uses five ANFIS networks and consists of 2 stages, including fault type classification and exact fault location. In the first part, an ANFIS is used to determine the fault type, applying four inputs, i.e., the maximum detailed energy of three phase and zero sequence currents. Other four ANFIS networks are utilized to pinpoint the faults (one for each fault type. Four inputs, i.e., the maximum detailed energy of three phase and zero sequence currents, are used to train the neuro-fuzzy inference systems in order to accurately locate the faults on the cable. The proposed method is evaluated under different fault conditions such as different fault locations, different fault inception angles and different fault resistances.

  12. Location-Based Self-Adaptive Routing Algorithm for Wireless Sensor Networks in Home Automation

    Directory of Open Access Journals (Sweden)

    Hong SeungHo

    2011-01-01

    Full Text Available The use of wireless sensor networks in home automation (WSNHA is attractive due to their characteristics of self-organization, high sensing fidelity, low cost, and potential for rapid deployment. Although the AODVjr routing algorithm in IEEE 802.15.4/ZigBee and other routing algorithms have been designed for wireless sensor networks, not all are suitable for WSNHA. In this paper, we propose a location-based self-adaptive routing algorithm for WSNHA called WSNHA-LBAR. It confines route discovery flooding to a cylindrical request zone, which reduces the routing overhead and decreases broadcast storm problems in the MAC layer. It also automatically adjusts the size of the request zone using a self-adaptive algorithm based on Bayes' theorem. This makes WSNHA-LBAR more adaptable to the changes of the network state and easier to implement. Simulation results show improved network reliability as well as reduced routing overhead.

  13. Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis

    Science.gov (United States)

    Tang, Ming; Wang, Mingjie; Shi, Changji; Iglesias, Pablo A.; Devreotes, Peter N.; Huang, Chuan-Hsiang

    2014-10-01

    Numerous models explain how cells sense and migrate towards shallow chemoattractant gradients. Studies show that an excitable signal transduction network acts as a pacemaker that controls the cytoskeleton to drive motility. Here we show that this network is required to link stimuli to actin polymerization and chemotactic motility and we distinguish the various models of chemotaxis. First, signalling activity is suppressed towards the low side in a gradient or following removal of uniform chemoattractant. Second, signalling activities display a rapid shut off and a slower adaptation during which responsiveness to subsequent test stimuli decline. Simulations of various models indicate that these properties require coupled adaptive and excitable networks. Adaptation involves a G-protein-independent inhibitor, as stimulation of cells lacking G-protein function suppresses basal activities. The salient features of the coupled networks were observed for different chemoattractants in Dictyostelium and in human neutrophils, suggesting an evolutionarily conserved mechanism for eukaryotic chemotaxis.

  14. Macroscopic description of complex adaptive networks co-evolving with dynamic node states

    CERN Document Server

    Wiedermann, Marc; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-01-01

    In many real-world complex systems, the time-evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here, we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the co-evolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we show that in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability play a crucial role for the sustainability of the system's equilibrium state. We derive a macroscopic description of the system which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network and is applicable to many fields of study, such as epidemic spreading or social modeling.

  15. Quantification of biophysical adaptation benefits from Climate-Smart Agriculture using a Bayesian Belief Network.

    Science.gov (United States)

    de Nijs, Patrick J; Berry, Nicholas J; Wells, Geoff J; Reay, Dave S

    2014-10-20

    The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance.

  16. Online Algorithms for Adaptive Optimization in Heterogeneous Delay Tolerant Networks

    Directory of Open Access Journals (Sweden)

    Wissam Chahin

    2013-12-01

    Full Text Available Delay Tolerant Networks (DTNs are an emerging type of networks which do not need a predefined infrastructure. In fact, data forwarding in DTNs relies on the contacts among nodes which may possess different features, radio range, battery consumption and radio interfaces. On the other hand, efficient message delivery under limited resources, e.g., battery or storage, requires to optimize forwarding policies. We tackle optimal forwarding control for a DTN composed of nodes of different types, forming a so-called heterogeneous network. Using our model, we characterize the optimal policies and provide a suitable framework to design a new class of multi-dimensional stochastic approximation algorithms working for heterogeneous DTNs. Crucially, our proposed algorithms drive online the source node to the optimal operating point without requiring explicit estimation of network parameters. A thorough analysis of the convergence properties and stability of our algorithms is presented.

  17. Method for designing networking adaptive interactive hybrid systems

    NARCIS (Netherlands)

    Kester, L. J.H.M.

    2010-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to co-ordinate their activities over larger areas within shorter time intervals. Some envisioned application domains for such systems are defence, crisis management, traffic management and public

  18. Networked Adaptive Interactive Hybrid Systems (NAIHS) for multiplatform engagement capability

    NARCIS (Netherlands)

    Kester, L.J.H.M.

    2008-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. Some envisioned application domains for such systems are defence, crisis management, traffic management and public

  19. Creating networking adaptive interactive hybrid systems : A methodic approach

    NARCIS (Netherlands)

    Kester, L.J.

    2011-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. Some envisioned application domains for such systems are defense, crisis management, traffic management, public

  20. Exploring complex networks by means of adaptive walkers

    OpenAIRE

    Prignano, Luce; Moreno, Yamir; Diaz-Guilera, Albert

    2012-01-01

    Finding efficient algorithms to explore large networks with the aim of recovering information about their structure is an open problem. Here, we investigate this challenge by proposing a model in which random walkers with previously assigned home nodes navigate through the network during a fixed amount of time. We consider that the exploration is successful if the walker gets the information gathered back home, otherwise, no data is retrieved. Consequently, at each time step, the walkers, wit...

  1. Robust Adaptive Exponential Synchronization of Stochastic Perturbed Chaotic Delayed Neural Networks with Parametric Uncertainties

    Directory of Open Access Journals (Sweden)

    Yang Fang

    2014-01-01

    Full Text Available This paper investigates the robust adaptive exponential synchronization in mean square of stochastic perturbed chaotic delayed neural networks with nonidentical parametric uncertainties. A robust adaptive feedback controller is proposed based on Gronwally’s inequality, drive-response concept, and adaptive feedback control technique with the update laws of nonidentical parametric uncertainties as well as linear matrix inequality (LMI approach. The sufficient conditions for robust adaptive exponential synchronization in mean square of uncoupled uncertain stochastic chaotic delayed neural networks are derived in terms of linear matrix inequalities (LMIs. The effect of nonidentical uncertain parameter uncertainties is suppressed by the designed robust adaptive feedback controller rapidly. A numerical example is provided to validate the effectiveness of the proposed method.

  2. GAUSSIAN MIXTURE MODELS FOR ADAPTATION OF DEEP NEURAL NETWORK ACOUSTIC MODELS IN AUTOMATIC SPEECH RECOGNITION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Natalia A. Tomashenko

    2016-11-01

    Full Text Available Subject of Research. We study speaker adaptation of deep neural network (DNN acoustic models in automatic speech recognition systems. The aim of speaker adaptation techniques is to improve the accuracy of the speech recognition system for a particular speaker. Method. A novel method for training and adaptation of deep neural network acoustic models has been developed. It is based on using an auxiliary GMM (Gaussian Mixture Models model and GMMD (GMM-derived features. The principle advantage of the proposed GMMD features is the possibility of performing the adaptation of a DNN through the adaptation of the auxiliary GMM. In the proposed approach any methods for the adaptation of the auxiliary GMM can be used, hence, it provides a universal method for transferring adaptation algorithms developed for GMMs to DNN adaptation.Main Results. The effectiveness of the proposed approach was shown by means of one of the most common adaptation algorithms for GMM models – MAP (Maximum A Posteriori adaptation. Different ways of integration of the proposed approach into state-of-the-art DNN architecture have been proposed and explored. Analysis of choosing the type of the auxiliary GMM model is given. Experimental results on the TED-LIUM corpus demonstrate that, in an unsupervised adaptation mode, the proposed adaptation technique can provide, approximately, a 11–18% relative word error reduction (WER on different adaptation sets, compared to the speaker-independent DNN system built on conventional features, and a 3–6% relative WER reduction compared to the SAT-DNN trained on fMLLR adapted features.

  3. Epidemic Dynamics On Information-Driven Adaptive Networks

    CERN Document Server

    Zhan, Xiu-Xiu; Sun, Gui-Quan; Zhang, Zi-Ke

    2015-01-01

    can evolve simultaneously. For the information-driven adaptive process, susceptible (infected) individuals who have abilities to recognize the disease would break the links of their infected (susceptible) neighbors to prevent the epidemic from further spreading. Simulation results and numerical analyses based on the pairwise approach indicate that the information-driven adaptive process can not only slow down the speed of epidemic spreading, but can also diminish the epidemic prevalence at the final state significantly. In addition, the disease spreading and information diffusion pattern on the lattice give a visual representation about how the disease is trapped into an isolated field with the information-driven adaptive process. Furthermore, we perform the local bifurcation analysis on four types of dynamical regions, including healthy, oscillatory, bistable and endemic, to understand the evolution of the observed dynamical behaviors. This work may shed some lights on understanding how information affects h...

  4. Multitask Diffusion Adaptation Over Networks With Common Latent Representations

    Science.gov (United States)

    Chen, Jie; Richard, Cedric; Sayed, Ali H.

    2017-04-01

    Online learning with streaming data in a distributed and collaborative manner can be useful in a wide range of applications. This topic has been receiving considerable attention in recent years with emphasis on both single-task and multitask scenarios. In single-task adaptation, agents cooperate to track an objective of common interest, while in multitask adaptation agents track multiple objectives simultaneously. Regularization is one useful technique to promote and exploit similarity among tasks in the latter scenario. This work examines an alternative way to model relations among tasks by assuming that they all share a common latent feature representation. As a result, a new multitask learning formulation is presented and algorithms are developed for its solution in a distributed online manner. We present a unified framework to analyze the mean-square-error performance of the adaptive strategies, and conduct simulations to illustrate the theoretical findings and potential applications.

  5. Adaptive Security Architecture based on EC-MQV Algorithm in Personal Network (PN)

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Prasad, Neeli R.

    2007-01-01

    Abstract — Personal Networks (PNs) have been focused on in order to support the user’s business and private activities without jeopardizing privacy and security of the users and their data. In such a network, it is necessary to produce a proper key agreement method according to the feature...... of the network. One of the features of the network is that the personal devices have deferent capabilities such as computational ability, memory size, transmission power, processing speed and implementation cost. Therefore an adaptive security mechanism should be contrived for such a network of various device...... combinations based on user’s location and device’s capability. The paper proposes new adaptive security architecture with three levels of asymmetric key agreement scheme by using context-aware security manager (CASM) based on elliptic curve cryptosystem (EC-MQV)....

  6. Analysis of utility-theoretic heuristics for intelligent adaptive network routing

    Energy Technology Data Exchange (ETDEWEB)

    Mikler, A.R.; Honavar, V.; Wong, J.S.K. [Iowa State Univ., Ames, IA (United States)

    1996-12-31

    Utility theory offers an elegant and powerful theoretical framework for design and analysis of autonomous adaptive communication networks. Routing of messages in such networks presents a real-time instance of a multi-criterion optimization problem in a dynamic and uncertain environment. In this paper, we incrementally develop a set of heuristic decision functions that can be used to guide messages along a near-optimal (e.g., minimum delay) path in a large network. We present an analysis of properties of such heuristics under a set of simplifying assumptions about the network topology and load dynamics and identify the conditions under which they are guaranteed to route messages along an optimal path. The paper concludes with a discussion of the relevance of the theoretical results presented in the paper to the design of intelligent autonomous adaptive communication networks and an outline of some directions of future research.

  7. Adaptation, Growth, and Resilience in Biological Distribution Networks

    Science.gov (United States)

    Ronellenfitsch, Henrik; Katifori, Eleni

    Highly optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is nonconvex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that such an optimal state is slowly achieved through natural selection. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. We show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as plant and animal vasculature. In addition, we show how the incorporation of spatially collective fluctuating sources yields a minimal model of realistic reticulation in distribution networks and thus resilience against damage.

  8. Utilizing Network QoS for Dependability of Adaptive Smart Grid Control

    DEFF Research Database (Denmark)

    Madsen, Jacob Theilgaard; Kristensen, Thomas le Fevre; Olsen, Rasmus Løvenstein

    2014-01-01

    A smart grid is a complex system consisting of a wide range of electric grid components, entities controlling power distribution, generation and consumption, and a communication network supporting data exchange. This paper focuses on the influence of imperfect network conditions on smart grid con......- trollers, and how this can be counteracted by utilizing Quality of Service (QoS) information from the communication network. Such an interface between grid controller and network QoS is particularly relevant for smart grid scenarios that use third party communication network infrastructure, where...... modification of networking and lower layer protocols are impossible. This paper defines a middleware solution for adaptation of smart grid control, which uses network QoS information and interacts with the smart grid controller to increase dependability. In order to verify the methodology, an example scenario...

  9. Adaptive Multipath Key Reinforcement for Energy Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Di Mauro, Alessio; Dragoni, Nicola

    2015-01-01

    reinforcement scheme specifically designed for EH-WSNs. The proposed scheme allows each node to take into consideration and adapt to the amount of energy available in the system. In particular, we present two approaches, one static and one fully dynamic, and we discuss some experimental results....

  10. Adaptive Relay Activation in the Network Coding Protocols

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Fitzek, Frank

    2015-01-01

    of the channel states. Furthermore, measurements using our Raspberry Pi testbed demonstrate that our adaptive approach outperforms the previous mechanism in real channel conditions, with only 1% overhead due to linearly dependent coded packets compared to the 11% overhead of the standard PlayNCool approach....

  11. Adaptive Forward Error Correction for Energy Efficient Optical Transport Networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert

    2013-01-01

    In this paper we propose a novel scheme for on the fly code rate adjustment for forward error correcting (FEC) codes on optical links. The proposed scheme makes it possible to adjust the code rate independently for each optical frame. This allows for seamless rate adaption based on the link state...

  12. Spectrum management considerations of adaptive power control in satellite networks

    Science.gov (United States)

    Sawitz, P.; Sullivan, T.

    1983-01-01

    Adaptive power control concepts for the compensation of rain attenuation are considered for uplinks and downlinks. The performance of example power-controlled and fixed-EIRP uplinks is compared in terms of C/Ns and C/Is. Provisional conclusions are drawn with regard to the efficacy of uplink and downlink power control orbit/spectrum utilization efficiency.

  13. An adaptive failure detector based on quality of service in peer-to-peer networks.

    Science.gov (United States)

    Dong, Jian; Ren, Xiao; Zuo, Decheng; Liu, Hongwei

    2014-09-05

    The failure detector is one of the fundamental components that maintain high availability of Peer-to-Peer (P2P) networks. Under different network conditions, the adaptive failure detector based on quality of service (QoS) can achieve the detection time and accuracy required by upper applications with lower detection overhead. In P2P systems, complexity of network and high churn lead to high message loss rate. To reduce the impact on detection accuracy, baseline detection strategy based on retransmission mechanism has been employed widely in many P2P applications; however, Chen's classic adaptive model cannot describe this kind of detection strategy. In order to provide an efficient service of failure detection in P2P systems, this paper establishes a novel QoS evaluation model for the baseline detection strategy. The relationship between the detection period and the QoS is discussed and on this basis, an adaptive failure detector (B-AFD) is proposed, which can meet the quantitative QoS metrics under changing network environment. Meanwhile, it is observed from the experimental analysis that B-AFD achieves better detection accuracy and time with lower detection overhead compared to the traditional baseline strategy and the adaptive detectors based on Chen's model. Moreover, B-AFD has better adaptability to P2P network.

  14. An Adaptive Failure Detector Based on Quality of Service in Peer-to-Peer Networks

    Directory of Open Access Journals (Sweden)

    Jian Dong

    2014-09-01

    Full Text Available The failure detector is one of the fundamental components that maintain high availability of Peer-to-Peer (P2P networks. Under different network conditions, the adaptive failure detector based on quality of service (QoS can achieve the detection time and accuracy required by upper applications with lower detection overhead. In P2P systems, complexity of network and high churn lead to high message loss rate. To reduce the impact on detection accuracy, baseline detection strategy based on retransmission mechanism has been employed widely in many P2P applications; however, Chen’s classic adaptive model cannot describe this kind of detection strategy. In order to provide an efficient service of failure detection in P2P systems, this paper establishes a novel QoS evaluation model for the baseline detection strategy. The relationship between the detection period and the QoS is discussed and on this basis, an adaptive failure detector (B-AFD is proposed, which can meet the quantitative QoS metrics under changing network environment. Meanwhile, it is observed from the experimental analysis that B-AFD achieves better detection accuracy and time with lower detection overhead compared to the traditional baseline strategy and the adaptive detectors based on Chen’s model. Moreover, B-AFD has better adaptability to P2P network.

  15. An adaptive routing scheme in scale-free networks

    Science.gov (United States)

    Ben Haddou, Nora; Ez-Zahraouy, Hamid; Benyoussef, Abdelilah

    2015-05-01

    We suggest an optimal form of traffic awareness already introduced as a routing protocol which combines structural and local dynamic properties of the network to determine the followed path between source and destination of the packet. Instead of using the shortest path, we incorporate the "efficient path" in the protocol and we propose a new parameter α that controls the contribution of the queue in the routing process. Compared to the original model, the capacity of the network can be improved more than twice when using the optimal conditions of our model. Moreover, the adjustment of the proposed parameter allows the minimization of the travel time.

  16. Creating an Adaptive Ecosystem Management Network Among Stakeholders of the Lower Roanoke River, North Carolina, USA

    Directory of Open Access Journals (Sweden)

    Susan L. Manring

    2005-12-01

    Full Text Available Adaptive ecosystem management (AEM requires building and managing an interorganizational network of stakeholders to conserve ecosystem integrity while sustaining ecosystem services. This paper demonstrates the usefulness of applying the concepts of interorganizational networks and learning organizations to AEM. A case study of the lower Roanoke River in North Carolina illustrates how an AEM network can evolve to guide stakeholders in creating a shared framework for generative learning, consensus building through collaboration, and decision making. Environmental professionals can use this framework to guide institutional arrangements and to coordinate the systematic development of cohesive interorganizational AEM networks.

  17. Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao-Li Li

    2014-01-01

    Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.

  18. Optical Character Recognition for Isolated Offline Handwritten Devanagari Numerals Using Wavelets

    Directory of Open Access Journals (Sweden)

    Gaurav Y. Tawde

    2014-02-01

    Full Text Available This paper presents a method of recognition of isolated offline handwritten Devanagari numerals using wavelets and neural network classifier. This method of optical character recognition takes the handwritten numeral image as input. After pre-processing, it is subjected to single level wavelet decomposition using Daubechies-4 wavelet filter. This wavelet decomposition allows viewing the input numeral at multiple resolutions. The Low-Low band components are used as inputs to multilayer perceptron (MLP classifier. The feed forward back propagation algorithm is used for classification of the input numeral.

  19. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system

    Science.gov (United States)

    Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.

    2000-01-01

    Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  20. Synchronization of general complex networks via adaptive control ...

    Indian Academy of Sciences (India)

    2014-03-07

    Mar 7, 2014 ... 3Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science &. Engineering, Zigong, Sichuan, 643000, People's Republic of China ...... inputs ui(t) (i = 1, 2, 3) and the values of control inputs are acceptable. From figures 1–5, it is easy to see that the controlled complex network ...

  1. Adaptive, Tactical Mesh Networking: Control Base MANET Model

    Science.gov (United States)

    2010-09-01

    pp. 316–320 Available: IEEE Xplore , http://ieeexplore.ieee.org [Accessed: June 9, 2010]. [5] N. Sidiropoulos, “Multiuser Transmit Beamforming...Mobile Mesh Segments of TNT Testbed .......... 11 Figure 5. Infrastructure and Ad Hoc Mode of IEEE 802.11................................ 13 Figure...6. The Power Spectral Density of OFDM................................................ 14 Figure 7. A Typical IEEE 802.16 Network

  2. Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Al-Medhwahi, Mohammed; Hashim, Fazirulhisyam; Ali, Borhanuddin Mohd; Sali, Aduwati

    2016-01-01

    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications.

  3. Effects of Implementing Adaptable Channelization in Wi-Fi Networks

    Directory of Open Access Journals (Sweden)

    Abid Hussain

    2016-01-01

    Full Text Available The unprecedented increase of wireless devices is now facing a serious threat of spectrum scarcity. The situation becomes even worse due to inefficient frequency distribution protocols, deployed in trivial Wi-Fi networks. The primary source of this inefficiency is static channelization used in wireless networks. In this work, we investigate the use of dynamic and flexible channelization, for optimal spectrum utilization in Wi-Fi networks. We propose optimal spectrum sharing algorithm (OSSA and analyze its effect on exhaustive list of essential network performance measuring parameters. The elementary concept of the proposed algorithm lies in the fact that frequency spectrum should be assigned to any access point (AP based on its current requirement. The OSSA algorithm assigns channels with high granularity, thus maximizing spectrum utilization by more than 20% as compared to static width channel allocation. This optimum spectrum utilization, in turn, increases throughput by almost 30% in many deployment scenarios. The achieved results depict considerable decrease in interference, while simultaneously increasing range. Similarly signal strength values at relatively longer distances improve significantly at narrower channel widths while simultaneously decreasing bit error rates. We found that almost 25% reduction in interference is possible in certain scenarios through proposed algorithm.

  4. Adaptive spectrum decision framework for heterogeneous dynamic spectrum access networks

    CSIR Research Space (South Africa)

    Masonta, M

    2015-09-01

    Full Text Available Spectrum decision is the ability of a cognitive radio (CR) system to select the best available spectrum band to satisfy dynamic spectrum access network (DSAN) users¿ quality of service (QoS) requirements without causing harmful interference...

  5. Creep-induced anisotropy in covalent adaptable network polymers.

    Science.gov (United States)

    Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai

    2017-10-11

    Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.

  6. Evolving artificial neural networks for cross-adaptive audio effects

    OpenAIRE

    Jordal, Iver

    2017-01-01

    Cross-adaptive audio effects have many applications within music technology, including for automatic mixing and live music. Commonly used methods of signal analysis capture the acoustical and mathematical features of the signal well, but struggle to capture the musical meaning. Together with the vast number of possible signal interactions, this makes manual exploration of signal interactions difficult and tedious. This project investigates Artificial Intelligence (AI) methods for finding usef...

  7. Adaptive learning in tracking control based on the dual critic network design.

    Science.gov (United States)

    Ni, Zhen; He, Haibo; Wen, Jinyu

    2013-06-01

    In this paper, we present a new adaptive dynamic programming approach by integrating a reference network that provides an internal goal representation to help the systems learning and optimization. Specifically, we build the reference network on top of the critic network to form a dual critic network design that contains the detailed internal goal representation to help approximate the value function. This internal goal signal, working as the reinforcement signal for the critic network in our design, is adaptively generated by the reference network and can also be adjusted automatically. In this way, we provide an alternative choice rather than crafting the reinforcement signal manually from prior knowledge. In this paper, we adopt the online action-dependent heuristic dynamic programming (ADHDP) design and provide the detailed design of the dual critic network structure. Detailed Lyapunov stability analysis for our proposed approach is presented to support the proposed structure from a theoretical point of view. Furthermore, we also develop a virtual reality platform to demonstrate the real-time simulation of our approach under different disturbance situations. The overall adaptive learning performance has been tested on two tracking control benchmarks with a tracking filter. For comparative studies, we also present the tracking performance with the typical ADHDP, and the simulation results justify the improved performance with our approach.

  8. Network bursting using experimentally constrained single compartment CA3 hippocampal neuron models with adaptation.

    Science.gov (United States)

    Dur-e-Ahmad, Muhammad; Nicola, Wilten; Campbell, Sue Ann; Skinner, Frances K

    2012-08-01

    The hippocampus is a brain structure critical for memory functioning. Its network dynamics include several patterns such as sharp waves that are generated in the CA3 region. To understand how population outputs are generated, models need to consider aspects of network size, cellular and synaptic characteristics and context, which are necessarily 'balanced' in appropriate ways to produce particular outputs. Thick slice hippocampal preparations spontaneously produce sharp waves that are initiated in CA3 regions and depend on the right balance of glutamatergic activities. As a step toward developing network models that can explain important balances in the generation of hippocampal output, we develop models of CA3 pyramidal cells. Our models are single compartment in nature, use an Izhikevich-type structure and involve parameter values that are specifically designed to encompass CA3 intrinsic properties. Importantly, they incorporate spike frequency adaptation characteristics that are directly comparable to those measured experimentally. Excitatory networks using these model cells are able to produce bursting suggesting that the amount of spike frequency adaptation expressed in the biological cells is an essential contributor to network bursting, and as such, may be important for sharp wave generation. The network bursting mechanism is numerically dissected showing the critical balance between adaptation and excitatory drive. The compact nature of our models allows large network simulations to be efficiently computed. This, together with the linkage of our models to cellular characteristics, will allow us to develop an understanding of population output of CA3 hippocampus with direct biological comparisons.

  9. An Emergency-Adaptive Routing Scheme for Wireless Sensor Networks for Building Fire Hazard Monitoring

    Science.gov (United States)

    Zeng, Yuanyuan; Sreenan, Cormac J.; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin

    2011-01-01

    Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work. PMID:22163774

  10. An emergency-adaptive routing scheme for wireless sensor networks for building fire hazard monitoring.

    Science.gov (United States)

    Zeng, Yuanyuan; Sreenan, Cormac J; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin

    2011-01-01

    Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.

  11. An Emergency-Adaptive Routing Scheme for Wireless Sensor Networks for Building Fire Hazard Monitoring

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zeng

    2010-06-01

    Full Text Available Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.

  12. An Emergency-Adaptive Routing Scheme for Wireless Sensor Networks for Building Fire Hazard Monitoring

    Directory of Open Access Journals (Sweden)

    Guilin Zheng

    2011-03-01

    Full Text Available Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.

  13. Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Yundi Chu

    2015-01-01

    Full Text Available An adaptive global sliding mode control (AGSMC using RBF neural network (RBFNN is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.

  14. Profile-based adaptive anomaly detection for network security.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengchu C. (Sandia National Laboratories, Albuquerque, NM); Durgin, Nancy Ann

    2005-11-01

    As information systems become increasingly complex and pervasive, they become inextricably intertwined with the critical infrastructure of national, public, and private organizations. The problem of recognizing and evaluating threats against these complex, heterogeneous networks of cyber and physical components is a difficult one, yet a solution is vital to ensuring security. In this paper we investigate profile-based anomaly detection techniques that can be used to address this problem. We focus primarily on the area of network anomaly detection, but the approach could be extended to other problem domains. We investigate using several data analysis techniques to create profiles of network hosts and perform anomaly detection using those profiles. The ''profiles'' reduce multi-dimensional vectors representing ''normal behavior'' into fewer dimensions, thus allowing pattern and cluster discovery. New events are compared against the profiles, producing a quantitative measure of how ''anomalous'' the event is. Most network intrusion detection systems (IDSs) detect malicious behavior by searching for known patterns in the network traffic. This approach suffers from several weaknesses, including a lack of generalizability, an inability to detect stealthy or novel attacks, and lack of flexibility regarding alarm thresholds. Our research focuses on enhancing current IDS capabilities by addressing some of these shortcomings. We identify and evaluate promising techniques for data mining and machine-learning. The algorithms are ''trained'' by providing them with a series of data-points from ''normal'' network traffic. A successful algorithm can be trained automatically and efficiently, will have a low error rate (low false alarm and miss rates), and will be able to identify anomalies in ''pseudo real-time'' (i.e., while the intrusion is still in progress

  15. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    Science.gov (United States)

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  16. Neural network L1 adaptive control of MIMO systems with nonlinear uncertainty.

    Science.gov (United States)

    Zhen, Hong-tao; Qi, Xiao-hui; Li, Jie; Tian, Qing-min

    2014-01-01

    An indirect adaptive controller is developed for a class of multiple-input multiple-output (MIMO) nonlinear systems with unknown uncertainties. This control system is comprised of an L 1 adaptive controller and an auxiliary neural network (NN) compensation controller. The L 1 adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary compensation controller is designed to approximate the unknown nonlinear functions by MIMO RBF neural networks to suppress the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights bounded. The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.

  17. Myoelectric signal compression using zero-trees of wavelet coefficients.

    Science.gov (United States)

    Norris, Jason A; Englehart, Kevin B; Lovely, Dennis F

    2003-11-01

    Recent progress in the diagnostic use of the myoelectric signal for neuromuscular diseases, coupled with increasing interests in telemedicine applications, mandate the need for an effective compression technique. The efficacy of the embedded zero-tree wavelet compression algorithm is examined with respect to some important analysis parameters (the length of the analysis segment and wavelet type) and measurement conditions (muscle type and contraction type). It is shown that compression performance improves with segment length, and that good choices of wavelet type include the Meyer wavelet and the fifth order biorthogonal wavelet. The effects of different muscle sites and contraction types on compression performance are less conclusive.A comparison of a number of lossy compression techniques has revealed that the EZW algorithm exhibits superior performance to a hard thresholding wavelet approach, but falls short of adaptive differential pulse code modulation. The bit prioritization capability of the EZW algorithm allows one to specify the compression factor online, making it an appealing technique for streaming data applications, as often encountered in telemedicine.

  18. Iterative PET Image Reconstruction Using Translation Invariant Wavelet Transform.

    Science.gov (United States)

    Zhou, Jian; Senhadji, Lotfi; Coatrieux, Jean-Louis; Luo, Limin

    2009-02-01

    The present work describes a Bayesian maximum a posteriori (MAP) method using a statistical multiscale wavelet prior model. Rather than using the orthogonal discrete wavelet transform (DWT), this prior is built on the translation invariant wavelet transform (TIWT). The statistical modeling of wavelet coefficients relies on the generalized Gaussian distribution. Image reconstruction is performed in spatial domain with a fast block sequential iteration algorithm. We study theoretically the TIWT MAP method by analyzing the Hessian of the prior function to provide some insights on noise and resolution properties of image reconstruction. We adapt the key concept of local shift invariance and explore how the TIWT MAP algorithm behaves with different scales. It is also shown that larger support wavelet filters do not offer better performance in contrast recovery studies. These theoretical developments are confirmed through simulation studies. The results show that the proposed method is more attractive than other MAP methods using either the conventional Gibbs prior or the DWT-based wavelet prior.

  19. Wavelets in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  20. Wavelets in medical imaging

    Science.gov (United States)

    Zahra, Noor e.; Sevindir, Hulya Kodal; Aslan, Zafer; Siddiqi, A. H.

    2012-07-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  1. Strong Attractors in Stochastic Adaptive Networks: Emergence and Characterization

    CERN Document Server

    Santos, Augusto Almeida; Krishnan, Ramayya; Moura, José M F

    2016-01-01

    We propose a family of models to study the evolution of ties in a network of interacting agents by reinforcement and penalization of their connections according to certain local laws of interaction. The family of stochastic dynamical systems, on the edges of a graph, exhibits \\emph{good} convergence properties, in particular, we prove a strong-stability result: a subset of binary matrices or graphs -- characterized by certain compatibility properties -- is a global almost sure attractor of the family of stochastic dynamical systems. To illustrate finer properties of the corresponding strong attractor, we present some simulation results that capture, e.g., the conspicuous phenomenon of emergence and downfall of leaders in social networks.

  2. Scalable and Media Aware Adaptive Video Streaming over Wireless Networks

    Science.gov (United States)

    Tizon, Nicolas; Pesquet-Popescu, Béatrice

    2008-12-01

    This paper proposes an advanced video streaming system based on scalable video coding in order to optimize resource utilization in wireless networks with retransmission mechanisms at radio protocol level. The key component of this system is a packet scheduling algorithm which operates on the different substreams of a main scalable video stream and which is implemented in a so-called media aware network element. The concerned type of transport channel is a dedicated channel subject to parameters (bitrate, loss rate) variations on the long run. Moreover, we propose a combined scalability approach in which common temporal and SNR scalability features can be used jointly with a partitioning of the image into regions of interest. Simulation results show that our approach provides substantial quality gain compared to classical packet transmission methods and they demonstrate how ROI coding combined with SNR scalability allows to improve again the visual quality.

  3. Photo Aesthetics Ranking Network with Attributes and Content Adaptation

    OpenAIRE

    Kong, Shu; Shen, Xiaohui; Lin, Zhe; Mech, Radomir; Fowlkes, Charless

    2016-01-01

    Real-world applications could benefit from the ability to automatically generate a fine-grained ranking of photo aesthetics. However, previous methods for image aesthetics analysis have primarily focused on the coarse, binary categorization of images into high- or low-aesthetic categories. In this work, we propose to learn a deep convolutional neural network to rank photo aesthetics in which the relative ranking of photo aesthetics are directly modeled in the loss function. Our model incorpor...

  4. A QoS-Driven Self-Adaptive Architecture For Wireless Sensor Networks

    OpenAIRE

    Jemal, Ahmed; Ben Halima, Riadh

    2013-01-01

    6 pages; International audience; Recently, Wireless Sensor Networks (WSN) have become increasingly used to perform distributed sensing and convey useful information. These kinds of environments are complex, heterogeneous and often affected by unpredictable behavior and poor management. This fostered considerable research on designs and techniques that enhance these systems with an adaptation behavior. In this paper, we focus on the self-adaptation branch of the research and give an overview o...

  5. Adaptive Synchronization of Complex Dynamical Networks Governed by Local Lipschitz Nonlinearlity on Switching Topology

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2013-01-01

    Full Text Available This paper investigates the adaptive synchronization of complex dynamical networks satisfying the local Lipschitz condition with switching topology. Based on differential inclusion and nonsmooth analysis, it is proved that all nodes can converge to the synchronous state, even though only one node is informed by the synchronous state via introducing decentralized adaptive strategies to the coupling strengths and feedback gains. Finally, some numerical simulations are worked out to illustrate the analytical results.

  6. Spatially constrained adaptive rewiring in cortical networks creates spatially modular small world architectures.

    Science.gov (United States)

    Jarman, Nicholas; Trengove, Chris; Steur, Erik; Tyukin, Ivan; van Leeuwen, Cees

    2014-12-01

    A modular small-world topology in functional and anatomical networks of the cortex is eminently suitable as an information processing architecture. This structure was shown in model studies to arise adaptively; it emerges through rewiring of network connections according to patterns of synchrony in ongoing oscillatory neural activity. However, in order to improve the applicability of such models to the cortex, spatial characteristics of cortical connectivity need to be respected, which were previously neglected. For this purpose we consider networks endowed with a metric by embedding them into a physical space. We provide an adaptive rewiring model with a spatial distance function and a corresponding spatially local rewiring bias. The spatially constrained adaptive rewiring principle is able to steer the evolving network topology to small world status, even more consistently so than without spatial constraints. Locally biased adaptive rewiring results in a spatial layout of the connectivity structure, in which topologically segregated modules correspond to spatially segregated regions, and these regions are linked by long-range connections. The principle of locally biased adaptive rewiring, thus, may explain both the topological connectivity structure and spatial distribution of connections between neuronal units in a large-scale cortical architecture.

  7. Robustness of non-interdependent and interdependent networks against dependent and adaptive attacks

    Science.gov (United States)

    Tyra, Adam; Li, Jingtao; Shang, Yilun; Jiang, Shuo; Zhao, Yanjun; Xu, Shouhuai

    2017-09-01

    Robustness of complex networks has been extensively studied via the notion of site percolation, which typically models independent and non-adaptive attacks (or disruptions). However, real-life attacks are often dependent and/or adaptive. This motivates us to characterize the robustness of complex networks, including non-interdependent and interdependent ones, against dependent and adaptive attacks. For this purpose, dependent attacks are accommodated by L-hop percolation where the nodes within some L-hop (L ≥ 0) distance of a chosen node are all deleted during one attack (with L = 0 degenerating to site percolation). Whereas, adaptive attacks are launched by attackers who can make node-selection decisions based on the network state in the beginning of each attack. The resulting characterization enriches the body of knowledge with new insights, such as: (i) the Achilles' Heel phenomenon is only valid for independent attacks, but not for dependent attacks; (ii) powerful attack strategies (e.g., targeted attacks and dependent attacks, dependent attacks and adaptive attacks) are not compatible and cannot help the attacker when used collectively. Our results shed some light on the design of robust complex networks.

  8. Co-evolutionary behaviour selection in adaptive social networks predicts clustered marginalization of minorities

    CERN Document Server

    Schleussner, Carl-Friedrich; Engemann, Denis A; Levermann, Anders

    2015-01-01

    Human behaviour is largely shaped by local social interactions and depends on the structure of connections between individuals in social networks. These two dimensions of behaviour selection are commonly studied in isolation by different disciplines and are often treated as independent processes. To the contrary, empirical findings on spread of behaviour in social networks suggest that local interactions between individuals and network evolution are interdependent. Empirical evidence, however, remains inconclusive as social network studies often suffer from limited sample sizes or are prohibitive on ethical grounds. Here we introduce a co-evolutionary adaptive network model of social behaviour selection that provides insights into generative mechanisms by resolving both these aspects through computer simulations. We considered four complementary models and evaluated them with regard to emulating empirical behaviour dynamics in social networks. For this purpose we modelled the prevalence of smoking and and the...

  9. Adaptive Synchronization for a Class of Uncertain Fractional-Order Neural Networks

    Directory of Open Access Journals (Sweden)

    Heng Liu

    2015-10-01

    Full Text Available In this paper, synchronization for a class of uncertain fractional-order neural networks subject to external disturbances and disturbed system parameters is studied. Based on the fractional-order extension of the Lyapunov stability criterion, an adaptive synchronization controller is designed, and fractional-order adaptation law is proposed to update the controller parameter online. The proposed controller can guarantee that the synchronization errors between two uncertain fractional-order neural networks converge to zero asymptotically. By using some proposed lemmas, the quadratic Lyapunov functions are employed in the stability analysis. Finally, numerical simulations are presented to confirm the effectiveness of the proposed method.

  10. Adaptive synchronization of the complex dynamical network with non-derivative and derivative coupling

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teachers' College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Sun Wen [School of Mathematics and Information, Yangtze University, Hubei Jingzhou 434023 (China)

    2010-04-05

    This Letter investigates the synchronization of a general complex dynamical network with non-derivative and derivative coupling. Based on LaSalle's invariance principle, adaptive synchronization criteria are obtained. Analytical result shows that under the designed adaptive controllers, a general complex dynamical network with non-derivative and derivative coupling can asymptotically synchronize to a given trajectory, and several useful criteria for synchronization are given. What is more, the coupling matrix is not assumed to be symmetric or irreducible. Finally, simulations results show the method is effective.

  11. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators

    Science.gov (United States)

    Papadopoulos, Lia; Kim, Jason Z.; Kurths, Jürgen; Bassett, Danielle S.

    2017-07-01

    Synchronization of non-identical oscillators coupled through complex networks is an important example of collective behavior, and it is interesting to ask how the structural organization of network interactions influences this process. Several studies have explored and uncovered optimal topologies for synchronization by making purposeful alterations to a network. On the other hand, the connectivity patterns of many natural systems are often not static, but are rather modulated over time according to their dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can shape the organization of the network itself are less well understood. Here, we study initially randomly connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reorganization to be isolated. We find that a simple rule—which preserves connections between more out-of-phase oscillators while rewiring connections between more in-phase oscillators—can cause initially disordered networks to organize into more structured topologies that support enhanced synchronization dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic frequencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive mechanism reorganizes the network and influences the dynamics. Importantly, for large enough coupling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including degree-frequency and frequency-neighbor frequency correlations. These properties have previously been associated with optimal synchronization or explosive transitions in which the networks were constructed using global information. On the contrary, by

  12. The Adaptive Neural Network Control of Quadrotor Helicopter

    Directory of Open Access Journals (Sweden)

    A. S. Yushenko

    2017-01-01

    Full Text Available The current steady-rising interest in using the unmanned multi-rotor aerial vehicles (UMAV designed to solve a wide range of tasks is, mainly, due to their simple design and high weight-carrying capacity as compared to classical helicopter options. Unfortunately, to solve a problem of multi-copter control is complicated because of essential nonlinearity and environmental perturbations. The most widely spread PID controllers and linear-quadratic regulators do not quite well cope with this task. The need arises for the prompt adjustment of PID controller coefficients in the course of operation or their complete re-tuning in cases of changing parameters of the control object.One of the control methods under changing conditions is the use of the sliding mode. This technology enables us to reach the stabilization and proper operation of the controlled system even under accidental external exposures and when there is a lack of the reasonably accurate mathematical model of the control object. The sliding principle is to ensure the system motion in the immediate vicinity of the sliding surface in the phase space. On the other hand, the sliding mode has some essential disadvantages. The most significant one is the high-frequency jitter of the system near the sliding surface. The sliding mode also implies the complete knowledge of the system dynamics. Various methods have been proposed to eliminate these drawbacks. For example, A.G. Aissaoui’s, H. Abid’s and M. Abid’s paper describes the application of fuzzy logic to control a drive and in Lon-Chen Hung’s and Hung-Yuan Chung’s paper an artificial neural network is used for the manipulator control.This paper presents a method of the quad-copter control with the aid of a neural network controller. This method enables us to control the system without a priori information on parameters of the dynamic model of the controlled object. The main neural network is a MIMO (“Multiple Input Multiple

  13. Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks.

    Science.gov (United States)

    Dao, Nhu-Ngoc; Kim, Joongheon; Park, Minho; Cho, Sungrae

    2016-01-01

    The convergent communication network will play an important role as a single platform to unify heterogeneous networks and integrate emerging technologies and existing legacy networks. Although there have been proposed many feasible solutions, they could not become convergent frameworks since they mainly focused on converting functions between various protocols and interfaces in edge networks, and handling functions for multiple services in core networks, e.g., the Multi-protocol Label Switching (MPLS) technique. Software-defined networking (SDN), on the other hand, is expected to be the ideal future for the convergent network since it can provide a controllable, dynamic, and cost-effective network. However, SDN has an original structural vulnerability behind a lot of advantages, which is the centralized control plane. As the brains of the network, a controller manages the whole network, which is attractive to attackers. In this context, we proposes a novel solution called adaptive suspicious prevention (ASP) mechanism to protect the controller from the Denial of Service (DoS) attacks that could incapacitate an SDN. The ASP is integrated with OpenFlow protocol to detect and prevent DoS attacks effectively. Our comprehensive experimental results show that the ASP enhances the resilience of an SDN network against DoS attacks by up to 38%.

  14. Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks.

    Directory of Open Access Journals (Sweden)

    Nhu-Ngoc Dao

    Full Text Available The convergent communication network will play an important role as a single platform to unify heterogeneous networks and integrate emerging technologies and existing legacy networks. Although there have been proposed many feasible solutions, they could not become convergent frameworks since they mainly focused on converting functions between various protocols and interfaces in edge networks, and handling functions for multiple services in core networks, e.g., the Multi-protocol Label Switching (MPLS technique. Software-defined networking (SDN, on the other hand, is expected to be the ideal future for the convergent network since it can provide a controllable, dynamic, and cost-effective network. However, SDN has an original structural vulnerability behind a lot of advantages, which is the centralized control plane. As the brains of the network, a controller manages the whole network, which is attractive to attackers. In this context, we proposes a novel solution called adaptive suspicious prevention (ASP mechanism to protect the controller from the Denial of Service (DoS attacks that could incapacitate an SDN. The ASP is integrated with OpenFlow protocol to detect and prevent DoS attacks effectively. Our comprehensive experimental results show that the ASP enhances the resilience of an SDN network against DoS attacks by up to 38%.

  15. Selective adaptation in networks of heterogeneous populations: model, simulation, and experiment.

    Directory of Open Access Journals (Sweden)

    Avner Wallach

    2008-02-01

    Full Text Available Biological systems often change their responsiveness when subject to persistent stimulation, a phenomenon termed adaptation. In neural systems, this process is often selective, allowing the system to adapt to one stimulus while preserving its sensitivity to another. In some studies, it has been shown that adaptation to a frequent stimulus increases the system's sensitivity to rare stimuli. These phenomena were explained in previous work as a result of complex interactions between the various subpopulations of the network. A formal description and analysis of neuronal systems, however, is hindered by the network's heterogeneity and by the multitude of processes taking place at different time-scales. Viewing neural networks as populations of interacting elements, we develop a framework that facilitates a formal analysis of complex, structured, heterogeneous networks. The formulation developed is based on an analysis of the availability of activity dependent resources, and their effects on network responsiveness. This approach offers a simple mechanistic explanation for selective adaptation, and leads to several predictions that were corroborated in both computer simulations and in cultures of cortical neurons developing in vitro. The framework is sufficiently general to apply to different biological systems, and was demonstrated in two different cases.

  16. Adaptive Neural Network Sliding Mode Control for Quad Tilt Rotor Aircraft

    Directory of Open Access Journals (Sweden)

    Yanchao Yin

    2017-01-01

    Full Text Available A novel neural network sliding mode control based on multicommunity bidirectional drive collaborative search algorithm (M-CBDCS is proposed to design a flight controller for performing the attitude tracking control of a quad tilt rotors aircraft (QTRA. Firstly, the attitude dynamic model of the QTRA concerning propeller tension, channel arm, and moment of inertia is formulated, and the equivalent sliding mode control law is stated. Secondly, an adaptive control algorithm is presented to eliminate the approximation error, where a radial basis function (RBF neural network is used to online regulate the equivalent sliding mode control law, and the novel M-CBDCS algorithm is developed to uniformly update the unknown neural network weights and essential model parameters adaptively. The nonlinear approximation error is obtained and serves as a novel leakage term in the adaptations to guarantee the sliding surface convergence and eliminate the chattering phenomenon, which benefit the overall attitude control performance for QTRA. Finally, the appropriate comparisons among the novel adaptive neural network sliding mode control, the classical neural network sliding mode control, and the dynamic inverse PID control are examined, and comparative simulations are included to verify the efficacy of the proposed control method.

  17. Adaptive Information Access in Multiple Applications Support Wireless Sensor Network

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2012-01-01

    set of requirements. Lastly, the paper suggests a mechanism by which the information access or acquisition can be adapted as per the requirements of the application. The main parameters focused in this paper are mismatch probability [1] and power dissipation with respect to sampling rate....... specific WSN considering its resource constraints, neglecting the return-of-investment and usefulness of the system. In this paper, we bring out the WSN scenario which supports multiple applications and study the challenges that would pose in implementation as each specific application has its own specific...

  18. Analysis and removing noise from speech using wavelet transform

    Science.gov (United States)

    Tomala, Karel; Voznak, Miroslav; Partila, Pavol; Rezac, Filip; Safarik, Jakub

    2013-05-01

    The paper discusses the use of Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) wavelet in removing noise from voice samples and evaluation of its impact on speech quality. One significant part of Quality of Service (QoS) in communication technology is the speech quality assessment. However, this part is seriously overlooked as telecommunication providers often focus on increasing network capacity, expansion of services offered and their enforcement in the market. Among the fundamental factors affecting the transmission properties of the communication chain is noise, either at the transmitter or the receiver side. A wavelet transform (WT) is a modern tool for signal processing. One of the most significant areas in which wavelet transforms are used is applications designed to suppress noise in signals. To remove noise from the voice sample in our experiment, we used the reference segment of the voice which was distorted by Gaussian white noise. An evaluation of the impact on speech quality was carried out by an intrusive objective algorithm Perceptual Evaluation of Speech Quality (PESQ). DWT and SWT transformation was applied to voice samples that were devalued by Gaussian white noise. Afterwards, we determined the effectiveness of DWT and SWT by means of objective algorithm PESQ. The decisive criterion for determining the quality of a voice sample once the noise had been removed was Mean Opinion Score (MOS) which we obtained in PESQ. The contribution of this work lies in the evaluation of efficiency of wavelet transformation to suppress noise in voice samples.

  19. Using Social Network Analysis to Evaluate Health-Related Adaptation Decision-Making in Cambodia

    Directory of Open Access Journals (Sweden)

    Kathryn J. Bowen

    2014-01-01

    Full Text Available Climate change adaptation in the health sector requires decisions across sectors, levels of government, and organisations. The networks that link these different institutions, and the relationships among people within these networks, are therefore critical influences on the nature of adaptive responses to climate change in the health sector. This study uses social network research to identify key organisational players engaged in developing health-related adaptation activities in Cambodia. It finds that strong partnerships are reported as developing across sectors and different types of organisations in relation to the health risks from climate change. Government ministries are influential organisations, whereas donors, development banks and non-government organisations do not appear to be as influential in the development of adaptation policy in the health sector. Finally, the study highlights the importance of informal partnerships (or ‘shadow networks’ in the context of climate change adaptation policy and activities. The health governance ‘map’ in relation to health and climate change adaptation that is developed in this paper is a novel way of identifying organisations that are perceived as key agents in the decision-making process, and it holds substantial benefits for both understanding and intervening in a broad range of climate change-related policy problems where collaboration is paramount for successful outcomes.

  20. Multidimensional adaptive evolution of a feed-forward network and the illusion of compensation

    Science.gov (United States)

    Bullaughey, Kevin

    2016-01-01

    When multiple substitutions affect a trait in opposing ways, they are often assumed to be compensatory, not only with respect to the trait, but also with respect to fitness. This type of compensatory evolution has been suggested to underlie the evolution of protein structures and interactions, RNA secondary structures, and gene regulatory modules and networks. The possibility for compensatory evolution results from epistasis. Yet if epistasis is widespread, then it is also possible that the opposing substitutions are individually adaptive. I term this possibility an adaptive reversal. Although possible for arbitrary phenotype-fitness mappings, it has not yet been investigated whether such epistasis is prevalent in a biologically-realistic setting. I investigate a particular regulatory circuit, the type I coherent feed-forward loop, which is ubiquitous in natural systems and is accurately described by a simple mathematical model. I show that such reversals are common during adaptive evolution, can result solely from the topology of the fitness landscape, and can occur even when adaptation follows a modest environmental change and the network was well adapted to the original environment. The possibility of adaptive reversals warrants a systems perspective when interpreting substitution patterns in gene regulatory networks. PMID:23289561