WorldWideScience

Sample records for net water absorption

  1. Effect of cholera toxin on glucose absorption and net movements of water and electrolytes in the intestinal loop of sheep.

    Science.gov (United States)

    Hyun, H S; Onaga, T; Mineo, H; Kim, J T; Kato, S

    1996-12-01

    This study was designed to evaluate the effect of cholera toxin on glucose absorption and net movement of water and electrolytes in the jejunal loop of sheep. Intraluminal perfusion was performed at the rate of 1 ml/min with isotonic 10 mM glucose solution. Osmolality was adjusted by adding NaCl, and the outflow solution was collected every 10 min. After a 30 min control period, cholera toxin was applied intraluminally for 30 min at doses of 30, 60, and 120 micrograms/loop. In the control period, water, sodium and chloride were absorbed, while potassium and bicarbonate were secreted. Cholera toxin reversed the net absorption of water, sodium and chloride to net secretions, and this secretory response to cholera toxin was dose-dependent. Bicarbonate secretion was stimulated dose-dependently by cholera toxin. Potassium secretion was also increased at all doses, though this response was not dose-dependent. The net glucose absorption was decreased dose-dependently by cholera toxin. In conclusion, these results indicate that cholera toxin stimulates water and electrolyte secretion, and inhibits glucose absorption in the jejunal loop of sheep.

  2. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available Is it possible to develop a building that uses a net zero amount of water? In recent years it has become evident that it is possible to have buildings that use a net zero amount of electricity. This is possible when the building is taken off...

  3. Water absorption in brick masonry

    NARCIS (Netherlands)

    Brocken, H.J.P.; Smolders, H.R.

    1996-01-01

    The water absorption in brick, mortar that was cured separately, and masonry samples was studied using NMR. Models of the moisture transport are usually formulated on the basis of a diffusion equation. In the case of water absorption in separate brick and mortar samples, the moisture diffusivity in

  4. Water Absorption Behavior of Hemp Hurds Composites

    OpenAIRE

    Nadezda Stevulova; Julia Cigasova; Pavol Purcz; Ivana Schwarzova; Frantisek Kacik; Anton Geffert

    2015-01-01

    In this paper, water sorption behavior of 28 days hardened composites based on hemp hurds and inorganic binder was studied. Two kinds of absorption tests on dried cube specimens in deionized water bath at laboratory temperature were performed. Short-term (after one hour water immersion) and long-term (up to 180 days) water absorption tests were carried out to study their durability. Short-term water sorption behavior of original hemp hurds composites depends on mean particle length of hemp an...

  5. Dynamics of water absorption through superabsorbent polymer

    Science.gov (United States)

    Chang, Sooyoung; Kim, Wonjung

    2017-11-01

    Superabsorbent polymers (SAPs) consist of hydrophilic cross-linked polymer networks that can absorb and retain a great amount of water relative to their own mass, so that they are widely used for disposable diapers and holding soil moisture in agriculture. SAPs are typically available in the form of submillimeter-sized particles, and the water absorption is driven by capillary flows between particles as well as diffusion that entail swelling. Although the control of water absorption of SAPs is important in engineering applications, but the dynamics of water absorption in SAP particles has not been fully understood. We examine the dynamics of the water absorption of sodium polyacrylate, one of the most common SAP. We experimentally measured the water absorption of sodium polyacrylate particles in one-dimensional confined channel. The water flows through the particles were analyzed by capillarity dominant at the early stage and by diffusion involving volume expansion critical at a later stage. The results provide a quantitative basis of the hydrodynamic analysis of the water flow through SAP particles from a macroscopic point of view, facilitating the prediction of water uptake of SAPs in hygienic and agricultural applications. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No.2015R1A2A2A04006181).

  6. Creep feed intake during lactation enhances net absorption in the small intestine after weaning

    NARCIS (Netherlands)

    Kuller, W.I.; Beers-Schreurs, van H.M.G.; Soede, N.M.; Langendijk, P.; Taverne, M.A.M.; Kemp, B.; Verheijden, J.H.M.

    2007-01-01

    The aim of the study was to measure the effect of creep feeding during lactation on net absorption in the small intestine at 4 days after weaning. Intermittent suckling was used to increase creep feed intake during lactation. Creep feed containing chromic oxide was provided. Based on the colour of

  7. Absorption of formaldehyde in water

    NARCIS (Netherlands)

    Winkelman, Jozef Gerhardus Maria

    2003-01-01

    Deze dissertatie beschrijft theoretisch en experimenteel werk aan de absorptie van formaldehyde in water. Met resultaten hiervan zijn chemisch-technische modellen ontwikkeld voor de beschrijving en optimalisatie van industriële formaldehydeabsorbeurs. Deze samenvatting geeft eerst algemene

  8. Effect of osmolality on net fluid absorption in non-infected and ETEC-infected piglet small intestinal segments

    NARCIS (Netherlands)

    Kiers, J.L.; Hoogendoorn, A.; Nout, M.J.R.; Rombouts, F.M.; Nabuurs, M.J.A.; Meulen, van der J.

    2006-01-01

    In the small intestinal segment perfusion model the effect of osmolality on net fluid absorption in enterotoxigenic Escherichia coli (ETEC)-infected and non-infected small intestinal segments of piglets was investigated. In ETEC-infected segments net fluid absorption was reduced. Lowering the

  9. Water absorption characteristic of interlocking compressed earth brick units

    Science.gov (United States)

    Bakar, B. H. Abu; Saari, S.; Surip, N. A.

    2017-10-01

    This study aims to investigate the water absorption characteristic of interlocking compressed earth brick (ICEB) units. Apart from compressive strength, water absorption is an important property in masonry. This property can affect the quality of the brick itself and the bond strength between the brick and mortar in masonry structures and can result in reducing its strength properties. The units were tested for 24 h water absorption and 5 h boiling water absorption. A total of 170 ICEB units from four ICEB types underwent both tests. For the 24 h water absorption, the ICEB units were dried in the oven for 24 h and then cooled before being weighed. Thereafter, each brick was immersed in water for 24 h and weighed. The same specimens used for the 24 h water absorption test were re-used for the 5 h boiling water absorption test. After completing the 24 h water absorption test, the brick was boiled for 5-hours and weighed. The highest water absorption for the ICEBs in the 24-hour water absorption and 5 h boiling water absorption tests are 15.09% and 17.18%, respectively. The half brick has the highest water absorption (15.87%), whereas the beam brick has the lowest (13.20%). The water absorption of an ICEB unit is higher than that of normal bricks, although the water absorption of the former remains below the maximum rate of the brick water absorption (21%).

  10. Anomalous water absorption in porous materials

    CERN Document Server

    Lockington, D A

    2003-01-01

    The absorption of fluid by unsaturated, rigid porous materials may be characterized by the sorptivity. This is a simple parameter to determine and is increasingly being used as a measure of a material's resistance to exposure to fluids (especially moisture and reactive solutes) in aggressive environments. The complete isothermal absorption process is described by a nonlinear diffusion equation, with the hydraulic diffusivity being a strongly nonlinear function of the degree of saturation of the material. This diffusivity can be estimated from the sorptivity test. In a typical test the cumulative absorption is proportional to the square root of time. However, a number of researchers have observed deviation from this behaviour when the infiltrating fluid is water and there is some potential for chemo-mechanical interaction with the material. In that case the current interpretation of the test and estimation of the hydraulic diffusivity is no longer appropriate. Kuentz and Lavallee (2001) discuss the anomalous b...

  11. Electromagnetic-radiation absorption by water

    Science.gov (United States)

    Lunkenheimer, P.; Emmert, S.; Gulich, R.; Köhler, M.; Wolf, M.; Schwab, M.; Loidl, A.

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  12. Water Absorption Behavior of Hemp Hurds Composites

    Directory of Open Access Journals (Sweden)

    Nadezda Stevulova

    2015-04-01

    Full Text Available In this paper, water sorption behavior of 28 days hardened composites based on hemp hurds and inorganic binder was studied. Two kinds of absorption tests on dried cube specimens in deionized water bath at laboratory temperature were performed. Short-term (after one hour water immersion and long-term (up to 180 days water absorption tests were carried out to study their durability. Short-term water sorption behavior of original hemp hurds composites depends on mean particle length of hemp and on binder nature. The comparative study of long-term water sorption behavior of composites reinforced with original and chemically modified hemp hurds in three reagents confirmed that surface treatment of filler influences sorption process. Based on evaluation of sorption curves using a model for composites based on natural fibers, diffusion of water molecules in composite reinforced with original and chemically modified hemp hurds is anomalous in terms of the Fickian behavior. The most significant decrease in hydrophility of hemp hurds was found in case of hemp hurds modified by NaOH and it relates to change in the chemical composition of hemp hurds, especially to a decrease in average degree of cellulose polymerization as well as hemicellulose content.

  13. Water Absorption Behavior of Hemp Hurds Composites

    Science.gov (United States)

    Stevulova, Nadezda; Cigasova, Julia; Purcz, Pavol; Schwarzova, Ivana; Kacik, Frantisek; Geffert, Anton

    2015-01-01

    In this paper, water sorption behavior of 28 days hardened composites based on hemp hurds and inorganic binder was studied. Two kinds of absorption tests on dried cube specimens in deionized water bath at laboratory temperature were performed. Short-term (after one hour water immersion) and long-term (up to 180 days) water absorption tests were carried out to study their durability. Short-term water sorption behavior of original hemp hurds composites depends on mean particle length of hemp and on binder nature. The comparative study of long-term water sorption behavior of composites reinforced with original and chemically modified hemp hurds in three reagents confirmed that surface treatment of filler influences sorption process. Based on evaluation of sorption curves using a model for composites based on natural fibers, diffusion of water molecules in composite reinforced with original and chemically modified hemp hurds is anomalous in terms of the Fickian behavior. The most significant decrease in hydrophility of hemp hurds was found in case of hemp hurds modified by NaOH and it relates to change in the chemical composition of hemp hurds, especially to a decrease in average degree of cellulose polymerization as well as hemicellulose content.

  14. Water use efficiency of net primary production in global terrestrial ...

    Indian Academy of Sciences (India)

    Water use efficiency; global terrestrial ecosystems; MODIS; net primary production; evapotranspiration;. Köppen–Geiger climate classification. ... Terrestrial plants fix or trap carbon dioxide via photosynthesis to produce the material ...... S W 2007 Evaluating water stress controls on primary production in biogeochemical and ...

  15. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption.

    Science.gov (United States)

    Price, Edwin R; Brun, Antonio; Gontero-Fourcade, Manuel; Fernández-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.

  16. Effect of supplementary feeding during the sucking period on net absorption from the small intestine of weaned pigs

    NARCIS (Netherlands)

    Nabuurs, M.J.A.; Hoogendoorn, A.; Zijderveld-van Bemmel, van A.

    1996-01-01

    An intestinal perfusion technique was used to measure the effects of supplementary feeding (experiment 1) and temporary weaning (experiment 2) during the sucking period on the net absorption of fluid, sodium, chloride and potassium from the small intestine of pigs after weaning. The technique was

  17. Effect of processed and fermented soyabeans on net absorption in enterotoxigenic Escherichia coli-infected piglet small intestine

    NARCIS (Netherlands)

    Kiers, J.L.; Nout, M.J.R.; Rombouts, F.M.; Andel, van E.E.; Nabuurs, M.J.A.; Meulen, van der J.

    2006-01-01

    Infectious diarrhoea is a major problem in both children and piglets. Infection of enterotoxigenic Escherichia coli (ETEC) results in fluid secretion and electrolyte losses in the small intestine. In the present study the effect of processed and fermented soyabean products on net absorption during

  18. Moisture Absorption Model of Composites Considering Water Temperature Effect

    Directory of Open Access Journals (Sweden)

    HUI Li

    2016-11-01

    Full Text Available The influence of water temperature on composite moisture absorption parameters was investigated in temperature-controlled water bath. Experiments of carbon fiber/bismaleimide resin composites immersed in water of 60℃, 70℃and 80℃ were developed respectively. According to the moisture content-time curves obtained from the experimental results, the diffusion coefficient and the balanced moisture content of the composites immersed in different water temperature could be calculated. What's more, the effect of water temperature on the diffusion coefficient and the balanced moisture content were discussed too. According to the Arrhenius equation and the law of Fick, a moisture absorption model was proposed to simulate the hygroscopic behaviour of the composite laminates immersed in different water temperature which can predict the absorption rate of water of the composites immersed in distilled water of 95℃ at any time precisely and can calculate how long it will take to reach the specific absorption rate.

  19. Water Sustainability Assessments for Four Net Zero Water Installations

    Science.gov (United States)

    2013-12-01

    Infrastructure Development and Evaluation PVC Polyvinyl Chloride PX Post Exchange QAP Quality Assurance Plan REMIS Real Estate Management Information System...2010. Standard geospatial data layer quality assurance plan ( QAP ): Water line. SDSFIE 2. 6. 1: water_ling. Version 1. 0. 1, September 2010

  20. Mineralizing urban net-zero water treatment: Phase II field ...

    Science.gov (United States)

    Net-zero water (NZW) systems, or water management systems achieving high recycling rates and low residuals generation so as to avoid water import and export, can also conserve energy used to heat and convey water, while economically restoring local eco-hydrology. However, design and operating experience are extremely limited. The objective of this paper is to present the results of the second phase of operation of an advanced oxidation-based NZW pilot system designed, constructed, and operated for a period of two years, serving an occupied four-person apartment. System water was monitored, either continuously or thrice daily, for routine water quality parameters, minerals, and MicroTox® in-vitro toxicity, and intermittently for somatic and male-specific coliphage, adenovirus, Cryptosporidium, Giardia, emerging organic constituents (non-quantitative), and the Florida drinking water standards. All 115 drinking water standards with the exception of bromate were met in this phase. Neither virus nor protozoa were detected in the treated water, with the exception of measurement of adenovirus genome copies attributed to accumulation of inactive genetic material in hydraulic dead zones. Chemical oxygen demand was mineralized to 90% in treatment. Total dissolved solids were maintained at ∼500 mg/L at steady state, partially through aerated aluminum electrocoagulation. Bromate accumulation is projected to be controlled by aluminum electrocoagulation with separate dispo

  1. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    Science.gov (United States)

    Matthews, Dave; Brilly, Mitja; Kobold, Mira; Zagar, Mark; Houser, Paul

    2008-11-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate remotely sensed and in

  2. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Dave [Hydromet DSS, LLC, Silverthorne, CO 80498-1848 (United States); Brilly, Mitja [FGG University of Ljubljana (Slovenia); Kobold, Mira; Zagar, Mark [Environmental Agency of the Republic of Slovenia, Ljubljana (Slovenia); Houser, Paul [Center for Research on Environment and Water and George Mason University, Calverton, MD 20705 (United States)], E-mail: hydrometdss@comcast.net

    2008-11-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an 'actionable database' that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate

  3. Rate of water absorption and proximate analysis of different varieties ...

    African Journals Online (AJOL)

    Water absorption and proximate composition of four varieties of maize; sweet corn, pop corn, white corn and yellow corn soaked at different temperatures and time duration were determined. Absorption increased with increase in temperatures and time but generally low at 45°C. The total average rate of hydration at different ...

  4. Evidence for direct water absorption by shallow-rooted desert plants in desert-oasis ecotone, Northwest China

    Science.gov (United States)

    Fang, Jing

    2014-05-01

    Besides the absorption by roots from the soil substrate, it has long been known that plants exhibit alternative water-absorption strategies, particularly in drought-prone environments. For many tropical epiphytic orchids, air moisture can be absorbed directly by aerial roots. Some conifers are also found to utilize air moisture by foliar absorption during the summer fog season. However, few studies have been carried out on the atmospheric water vapor absorption by shallow-rooted desert plants. We conducted experiments in desert-oasis ecotone and investigated the effects of dew absorbed by three kinds of shallow-rooted seedlings on net photosynthesis rate, as well as on other water relations variables. Three kinds of typical shallow-rooted desert species (Bassia dasyphylla, Salsola collina and Corispermum declinatum) have been chosen and potted. Each species were subjected to contrasting watering regimes (normal and deficient) and different air moisture conditions (having dew and having no dew) for 10 weeks. Net photosynthesis rate was measured on six occasions during the study. Other water relations variables (midday shoot water potential, relative water content, stomatal conductance) were also measured. Under the dew conditions, average net photosynthesis rate, shoot water potential, leaf relative water content and stomatal conductance increased, with greater responses observed for plants subjected to a deficient watering regime than for well-watered plants. These results indicated dew occurred in arid region could be utilized through foliar absorption by some shallow-rooted plants, and for the shallow-rooted plants, the presence of dew could significantly relieve the deficit of water in water-stressed regime.

  5. Absorption of water and lubricating oils into porous nylon

    Science.gov (United States)

    Bertrand, P. A.

    1995-01-01

    Oil and water absorption from air into sintered porous nylon can be described by infiltration into the pores of the material. This process can be modeled by a diffusion-like mechanism. For water absorption, we find a formal diffusion coefficient of 1.5 x 10(exp -4)sq cm/min when the nylon is initially dry. The diffusion coefficient is 4 x 10(exp -6)sq cm/min when the nylon is oil-impregnated prior to air exposure. In a 52% RH atmosphere, dry nylon absorbs 3% w/w water, and oil-impregnated nylon absorbs 0.6% w/w water. For oil absorption there are three steps: (1) surface absorption and infiltration into (2) larger and (3) smaller pores. Surface absorption is too fast to be measured in these experiments. The diffusion coefficient for the second step is 6 x 10(exp -4)sq cm/min for SRG-60 oil into dry nylon and 4 x 10(exp -4)sq cm/min for air-equilibrated nylon. The diffusion coefficient for the third step is about 1 x 10(exp -6)sq cm/min for both cases. The total amount of oil absorbed is 31% w/w. The interaction between water and nylon is not as strong as that between water and cotton-phenolic: oil can replace water, and only a small amount of water can enter previously oil-impregnated nylon.

  6. Community of Practice Applications from WaterNet: The NASA Water Cycle Solutions Network

    Science.gov (United States)

    Matthews, D.; Brilly, M.; Gregoric, G.; Polajnar, J.; Houser, P.; Rodell, M.; Lehning, M.

    2009-04-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. It addresses a means for enhancing the social and economic developments of nations by increased use of practical research products from the terrestrial water cycle for making informed decisions. This paper provides a summary of the Water Cycle Community of Practice (CoP) plans and examples of Land Surface Model (LSM) applications for extreme events - floods, droughts, and heavy snowstorms in Europe. It discusses the concept of NASA's solutions networks focusing on the WaterNet. It invites EGU teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team is developing WaterNet by engaging relevant NASA water cycle research and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base. Recognizing the many existing highly valuable water-related science and application networks in the US and EU, we focus the balance of our efforts on enabling their interoperability - facilitating access and communications among decision-makers and scientists. We present results of our initial focus on identification, collection, and analysis of the two end points, these being the NWRs and EWRs and water related DSTs. We

  7. An effective way to reduce water absorption to terahertz

    Science.gov (United States)

    Wu, Yaxiong; Su, Bo; He, Jingsuo; Zhang, Cong; Zhang, Hongfei; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    Since many vibrations and rotational levels of biomolecules fall within the THz band, THz spectroscopy can be used to identify biological samples. In addition, most biomolecules need to maintain their biological activity in a liquid environment, but water as polar substance has strong absorption to the THz wave. Thus, it is difficult to detect the sample information in aqueous solution using THz wave. In order to prevent the information of biological samples were masked in the solution, many research methods were used to explore how to reduce the water absorption of terahertz. In this paper, we have developed a real-time chemical methodology through transmission Terahertz time-domain spectroscopy (THz-TDS) system. The material of Zeonor 1020r is used as substrate and cover plate, and PDMS as channel interlayer. The transmission of the empty microfluidic chip is more than 80% in the range of 0.2-2.6 THz by THz-TDS system. Then, experiments were carried out using chips, which were filled with different volumes of 1, 2- propanediol, and it has been proved that the microfluidic chip could reduce the water absorption of terahertz. Finally, in order to further explore the reduction of terahertz to water absorption, we inject different concentrations of electrolyte to the chip. The results show that with the addition of different electrolytes, terahertz transmission line has evident changes. It can be taken into account that the electrolyte has different effects about the hydrogen bonds in the aqueous solution. Some of them can promote water molecules clusters, while others destroy them. Based on the basis of microfluidic chip, the discovery of this phenomenon can provide a way that reduces water absorption of terahertz. This work has laid a solid foundation for the subsequent study in reducing water absorption of terahertz.

  8. Water absorption behaviour of hybrid interwoven cellulosic fibre composites

    Science.gov (United States)

    Maslinda, A. B.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Syayuthi, AR. A.

    2017-10-01

    The present paper investigated the water absorption behaviour of hybrid interwoven cellulosic fibre composites. Hybrid composites consisting of interwoven kenaf/jute and kenaf/hemp yarns were prepared by an infusion manufacturing technique that used epoxy as the polymer matrix. Water absorption test was conducted as elucidated in ASTM D570 standard by immersing the composite samples in tap water at room temperature until reaching their water content saturation point. For each composite type, average from five samples was recorded and the percentage of water uptake against the square root of time was plotted. As the effect of hybridization, the water uptake, diffusion and permeability coefficient of the hybrid composites were lesser than the individual woven composites.

  9. Lunar absorption spectrophotometer for measuring atmospheric water vapor.

    Science.gov (United States)

    Querel, Richard R; Naylor, David A

    2011-02-01

    A novel instrument has been designed to measure the nighttime atmospheric water vapor column abundance by near-infrared absorption spectrophotometry of the Moon. The instrument provides a simple, effective, portable, and inexpensive means of rapidly measuring the water vapor content along the lunar line of sight. Moreover, the instrument is relatively insensitive to the atmospheric model used and, thus, serves to provide an independent calibration for other measures of precipitable water vapor from both ground- and space-based platforms.

  10. Heterocyclic methacrylates for clinical applications. III. Water absorption characteristics.

    Science.gov (United States)

    Patel, M P; Braden, M

    1991-09-01

    The water absorption and desorption behaviour of poly(isobornyl methacrylate) and poly(tetrahydropyran-2-ylmethyl methacrylate) obeyed diffusion laws on repeated absorption/desorption cycles. However, the polymers of 2,3-epoxypropyl, tetrahydrofurfuryl and tetrahydropyranyl methacrylates did not obey diffusion laws, did not equilibrate after 2 yr immersion in water and exhibited very high uptake values (30-90%). For 2,3-epoxypropyl methacrylate, the sample disintegrated. A clearly detailed structure of the heterocyclic ring is critical. The use of these monomers in room temperature polymerizing poly(ethyl methacrylate)/monomer systems generally reflected the behaviour of the related homopolymers.

  11. Strength and water absorption characteristics of cement-bonded ...

    African Journals Online (AJOL)

    The rate of water absorption (< 25% after 24 hours) and the resultant thickness swelling (<1% after 24 hours) of the boards was relatively slow. It was concluded that the material could be used in bearing wall construction and as partitioning in bungalows and one- storey buildings in Nigeria. Journal of Civil Engineering ...

  12. Models for predicting compressive strength and water absorption of ...

    African Journals Online (AJOL)

    This work presents a mathematical model for predicting the compressive strength and water absorption of laterite-quarry dust cement block using augmented Scheffe's simplex lattice design. The statistical models developed can predict the mix proportion that will yield the desired property. The models were tested for lack of ...

  13. Water absorption tests for measuring permeability of field concrete.

    Science.gov (United States)

    2013-09-01

    The research results from CFIRE Project 04-06 were communicated to engineers and researchers in this project. : Specifically, the water absorption of concrete samples (i.e., 2-in. thick, 4-in. diameter discs cut from concrete : cylinders) was found s...

  14. Absorptive removal of biomass tar using water and oily materials.

    Science.gov (United States)

    Phuphuakrat, Thana; Namioka, Tomoaki; Yoshikawa, Kunio

    2011-01-01

    Water is the most common choice of absorption medium selected in many gasification systems. Because of poor solubility of tar in water, hydrophobic absorbents (diesel fuel, biodiesel fuel, vegetable oil, and engine oil) were studied on their absorption efficiency of biomass tar and compared with water. The results showed that only 31.8% of gravimetric tar was removed by the water scrubber, whereas the highest removal of gravimetric tar was obtained by a vegetable oil scrubber with a removal efficiency of 60.4%. When focusing on light PAH tar removal, the absorption efficiency can be ranked in the following order; diesel fuel>vegetable oil>biodiesel fuel>engine oil>water. On the other hand, an increase in gravimetric tar was observed for diesel fuel and biodiesel fuel scrubbers because of their easy evaporation. Therefore, the vegetable oil is recommended as the best absorbent to be used in gasification systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Mineralizing urban net-zero water treatment: Phase II field results and design recommendations

    Science.gov (United States)

    Net-zero water (NZW) systems, or water management systems achieving high recycling rates and low residuals generation so as to avoid water import and export, can also conserve energy used to heat and convey water, while economically restoring local eco-hydrology. However, design ...

  16. Water Continuum Absorption in the Infrared and Millimeter Spectral Regions.

    Science.gov (United States)

    Ma, Qiancheng

    1990-01-01

    The absorption coefficient due to the water continuum is calculated both in the high-frequency (infrared) wing and in the low-frequency (millimeter) wing of the pure rotational band. The statistical theory proposed by Rosenkranz to calculate the continuum absorption in the high-frequency wing is reviewed and extended. In this review, we discuss specifically the validity and the limitation of the approximations made by Rosenkranz. We then discuss several extensions to his theory, including increasing the number of rotational states used to calculate the band-average relaxation parameter, correcting the normalization factor, and eliminating the "boxcar approximation." These improvements allow us to eliminate some inconsistencies in the original formulation of Rosenkranz while obtaining substantially the same final results. As a consequence, we confirm his conclusions about the origin, magnitude, and temperature-dependence of the water continuum absorption in the high-frequency wing of the pure rotational band. A new theory is developed to calculate the continuum in the low-frequency wing, i.e., in the millimeter spectral region. This theory is based on a generalization of Fano's theory in which the spectral density is calculated for a system consisting of a pair of water molecules. The internal states are written in terms of the line space of the system, and the resolvent operator is obtained using the Lanczos algorithm. For the interaction between two water molecules, we include only the leading dipole-dipole anisotropic potential and model the isotropic interaction by a Lennard-Jones potential. Using reasonable values for the two Lennard-Jones potential parameters, and the known rotational constants and permanent dipole moment of a water molecule, we calculate the absorption coefficient for frequencies up to 450 GHz for temperatures between 282 and 315 K. Without any free parameters, the present results are in good agreement with an empirical model for the water

  17. Phytoplankton absorption predicts patterns in primary productivity in Australian coastal shelf waters

    Science.gov (United States)

    Robinson, C. M.; Cherukuru, N.; Hardman-Mountford, N. J.; Everett, J. D.; McLaughlin, M. J.; Davies, K. P.; Van Dongen-Vogels, V.; Ralph, P. J.; Doblin, M. A.

    2017-06-01

    The phytoplankton absorption coefficient (aPHY) has been suggested as a suitable alternate first order predictor of net primary productivity (NPP). We compiled a dataset of surface bio-optical properties and phytoplankton NPP measurements in coastal waters around Australia to examine the utility of an in-situ absorption model to estimate NPP. The magnitude of surface NPP (0.20-19.3 mmol C m-3 d-1) across sites was largely driven by phytoplankton biomass, with higher rates being attributed to the microplankton (>20 μm) size class. The phytoplankton absorption coefficient aPHY for PAR (photosynthetically active radiation; āPHY)) ranged from 0.003 to 0.073 m-1, influenced by changes in phytoplankton community composition, physiology and environmental conditions. The aPHY coefficient also reflected changes in NPP and the absorption model-derived NPP could explain 73% of the variability in measured surface NPP (n = 41; RMSE = 2.49). The absorption model was applied to two contrasting coastal locations to examine NPP dynamics: a high chlorophyll-high variation (HCHV; Port Hacking National Reference Station) and moderate chlorophyll-low variation (MCLV; Yongala National Reference Station) location in eastern Australia using the GIOP-DC satellite aPHY product. Mean daily NPP rates between 2003 and 2015 were higher at the HCHV site (1.71 ± 0.03 mmol C m-3 d-1) with the annual maximum NPP occurring during the austral winter. In contrast, the MCLV site annual NPP peak occurred during the austral wet season and had lower mean daily NPP (1.43 ± 0.03 mmol C m-3 d-1) across the time-series. An absorption-based model to estimate NPP is a promising approach for exploring the spatio-temporal dynamics in phytoplankton NPP around the Australian continental shelf.

  18. Irrigation Alternatives to Meet Army Net Zero Water Goals

    Science.gov (United States)

    2012-05-01

    water requirements and natural precipitation.  Use native or “climate-appropriate” material  Can reduce irrigation water by 50%, stands up better...Design plant groupings based on similar water requirements and rooting depths (hydrozoning)  Design with water use efficiency, potential for water

  19. [Radiation absorption, water content and contrast medium impregnation of gallstones].

    Science.gov (United States)

    Schmitt, W G

    1982-12-01

    Gallstones extracted by surgery were examined for CT density, which was compared with the x-ray-film, floating performance and chemical analysis of the stones. So far, the water content of the biliary concrements--14% on the average--has not been given much attention. Drying will considerably reduce the density; examination of dried gallstones yields a false picture of direct ray absorption. Pure cholesterol stones do not float in water, and they show positive values on Hounsfield's scale (+30--+60). The article discusses the question whether CT is suitable for effecting a better selection of gallstone patients who can be treated by drug therapy.

  20. The influence of fish culture in floating net cages on microbial indicators of water quality

    National Research Council Canada - National Science Library

    Gorlach-Lira, K; Pacheco, C; Carvalho, L C T; Melo Júnior, H N; Crispim, M C

    2013-01-01

    ... (Oreochromis niloticus) in floating net cages. The physico-chemical parameters, counts of mesophilic total aerobic bacteria, total and thermotolerant coliforms and fecal streptococci, and the presence of Escherichia coli in samples of water...

  1. Net infiltration of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Recharge in the Death Valley regional ground-water flow system (DVRFS) was estimated from net infiltration simulated by Hevesi and others (2003) using a...

  2. Estimation of water absorption coefficient using the TDR method

    Science.gov (United States)

    Suchorab, Zbigniew; Majerek, Dariusz; Brzyski, Przemysław; Sobczuk, Henryk; Raczkowski, Andrzej

    2017-07-01

    Moisture accumulation and transport in the building barriers is an important feature that influences building performance, causing serious exploitation problems as increased energy use, mold and bacteria growth, decrease of indoor air parameters that may lead to sick building syndrome (SBS). One of the parameters that is used to describe moisture characteristic of the material is water absorption coefficient being the measure of capillary behavior of the material as a function of time and the surface area of the specimen. As usual it is determined using gravimetric methods according to EN 1925:1999 standard. In this article we demonstrate the possibility of determination of water absorption coefficient of autoclaved aerated concrete (AAC) using the Time Domain Reflectometry (TDR) method. TDR is an electric technique that had been adopted from soil science and can be successfully used for real-time monitoring of moisture transport in building materials and envelopes. Data achieved using TDR readouts show high correlation with standard method of moisture absorptivity coefficient determination.

  3. Water use efficiency of net primary production in global terrestrial ...

    Indian Academy of Sciences (India)

    The carbon and water cycles of terrestrial ecosystems, which are strongly coupled via water use efficiency (WUE), are influenced by global climate change. To explore the relationship between the carbon and water cycles and predict the effect of climate change on terrestrial ecosystems, it is necessary to study the WUE in ...

  4. The water absorption effect on the hardness of composites polyester

    Science.gov (United States)

    Mohammed, A. A.; Issa, T. T.

    2016-04-01

    Unsaturated polyester resin (UPE) was used as the matrix .The iron woven wire and E-glass fiber type (0 - 9°), were used as a reinforcements additives of weight percentage (5, 10, 15) respectively. Samples were prepared by the hand lay-up method for (UPE), (UPE -Fe) and (UPE- Glass). Chemical analysis was used to identify the composition of Fe wire. Water immersing at room temperature for all samples were done at (2, 5, 7, 9, 12) days. Hardness test (Brinell) showed decreasing with increasing in immersion time for (UPE) from (67) HB to (95) HP after adding the reinforcement Fe fibers, with increasing in the water absorbed content especially in the days (2, 5). The water content of absorption was found to be either decreasing or increasing depending on the number of reinforcing layers added.

  5. Effect of filler water absorption on water swelling properties of natural rubber

    Science.gov (United States)

    Trakuldee, J.; Boonkerd, K.

    2017-07-01

    The efficient water swelling rubber can be obtained by using high hydrophilic rubber such as chloroprene rubber. However, chloroprene rubber is synthetic rubber developed from the petroleum. Recently, many researches try to replace the usage of synthetic rubber with natural rubber. This is not only due to the concerning of environment but the cost reduction as well. However, natural rubber is hydrophobic, thus not absorbing water. To develop the water swelling rubber from natural rubber, the addition of water absorption filler is needed. The study was aimed to formulate water swelling rubber from natural rubber filled with sodium polyacrylate (SA)/sodium bentonite clay (SBC) hybrid filler used to water absorbent. The filler loading was kept constantly at 150 phr. The effect of SA/SBC ratio varied from 1:0, 1:1, 1:2 and 1:3 on the water absorption of the hybrid filled natural rubber was determined. The obtained result showed that the water adsorption proportionally increased with increasing SA loading but decreased with increasing SBC loading. The effect of glycidyl methacrylate (GM) and poly ethylene glycol (PEG) on the water absorption was studied later. The result from a scanning electron microscope depicted that the presence of GM can depress the falling out of SA from the rubber matrix while the presence of PEG increased water absorption.

  6. Selective absorption of water from different oil–water emulsions with ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 4. Selective absorption of water from different oil–water emulsions with Psy-cl-poly(AAm) synthesized using irradiation copolymerization method. B S Kaith Kiran Kumar. Polymers Volume 30 Issue 4 August 2007 pp 387-391 ...

  7. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  8. Water- Lithium Bromide-γ- Butyrolactone Absorption Refrigerating Machine

    Science.gov (United States)

    Iyoki, Shigeki; Uemura, Tadashi

    This investigation was carried out in order to find corrosion inhibitors which would be effective in controlling the corrosion for the water-lithium bromide-γ-butyrolactone (20 moles water/1 mole γ-butyrolactone) absorption refrigerating machine. The experiments were carried out on continuous boiling test, intermittent boiling test and galvanic corrosion test with the use of organic inhibitors and inorganic inhibitors in γ-butyrolactone aqueous solution of lithium bromide. The metals used in these corrosion tests were mainly SS 41 and copper. From these experimental results, the most suitable corrosion inhibitors for SS 41 and copper in γ-butyrolactone aqueous solution of lithium bromide Were recognized to be benzotriazole, tolyltriazole and lithium molybdate.

  9. The Shiga toxin 2 B subunit inhibits net fluid absorption in human colon and elicits fluid accumulation in rat colon loops

    Directory of Open Access Journals (Sweden)

    V. Pistone Creydt

    2004-06-01

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC colonizes the large intestine causing a spectrum of disorders, including watery diarrhea, bloody diarrhea (hemorrhagic colitis, and hemolytic-uremic syndrome. It is estimated that hemolytic-uremic syndrome is the most common cause of acute renal failure in infants in Argentina. Stx is a multimeric toxin composed of one A subunit and five B subunits. In this study we demonstrate that the Stx2 B subunit inhibits the water absorption (Jw across the human and rat colonic mucosa without altering the electrical parameters measured as transepithelial potential difference and short circuit current. The time-course Jw inhibition by 400 ng/ml purified Stx2 B subunit was similar to that obtained using 12 ng/ml Stx2 holotoxin suggesting that both, A and B subunits of Stx2 contributed to inhibit the Jw. Moreover, non-hemorrhagic fluid accumulation was observed in rat colon loops after 16 h of treatment with 3 and 30 ng/ml Stx2 B subunit. These changes indicate that Stx2 B subunit induces fluid accumulation independently of A subunit activity by altering the usual balance of intestinal absorption and secretion toward net secretion. In conclusion, our results suggest that the Stx2 B subunit, which is non-toxic for Vero cells, may contribute to the watery diarrhea observed in STEC infection. Further studies will be necessary to determine whether the toxicity of Stx2 B subunit may have pathogenic consequences when it is used as a component in an acellular STEC vaccine or as a vector in cancer vaccines.

  10. Net ecosystem productivity, net primary productivity and ecosystem carbon sequestration in a Pinus radiata plantation subject to soil water deficit

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A.; Kelleher, F. M. [Lincoln Univ., Soil Sience Dept., Lincoln, (New Zealand); McSeveny, T. M. [Manaaki Whenua-Landcare Research, Lincoln, (New Zealand); Byers, J. N. [Almuth Arneth Landcare Research, Lincoln (New Zealand)

    1998-12-01

    Tree carbon uptake (net primary productivity excluding fine root turnover, NPP`) in pine trees growing in a region of New Zealand subject to summer soil water deficit was investigated jointly with canopy assimilation (A{sub c}) and ecosystem-atmosphere carbon exchange rate (net ecosystem productivity, NEP). Canopy assimilation and NEP were used to drive a biochemically-based and environmentally constrained model validated by seasonal eddy covariance measurements. Over a three year period with variable rainfall annual NPP` and NEP showed significant variations. At the end of the growing season, carbon was mostly allocated to wood, with nearly half to stems and about a quarter to coarse roots. On a biweekly basis NPP` lagged behind A{sub c}, suggesting the occurrence of intermediate carbon storage. On an annual basis, however the NPP`/A{sub c} ratio indicated a conservative allocation of carbon to autotrophic respiration. The combination of data from measurements with canopy and ecosystem carbon fluxes yielded an estimate of heterotrophic respiration (NPP`-NEP) of approximately 30 per cent of NPP` and 50 per cent NEP. The annual values of NEP and NPP` can also be used to derive a `best guess` estimate of the annual below-ground carbon turnover rate, assuming that the annual changes in the soil carbon content is negligible. 46 refs., 7 figs.

  11. Can net photosynthesis and water relations provide a clue on the ...

    African Journals Online (AJOL)

    Net photosynthesis, sap flow density (SFD) and water use efficiency (WUE) were measured in a Quercus suber forest in north Tunisia in an attempt to explain the forest decline. In general, sap flow was positively related to light intensity and water loss, indicating that high light intensities can increase the SFD up to the ...

  12. TIGER-NET – enabling an Earth Observation capacity for Integrated Water Resource Management in Africa

    DEFF Research Database (Denmark)

    Walli, A.; Tøttrup, C.; Naeimi, V.

    As part of the TIGER initiative [1] the TIGER-NET project aims to support the assessment and monitoring of water resources from watershed to transboundary basin level delivering indispensable information for Integrated Water Resource Management in Africa through: 1. Development of an open-source ...

  13. A regional and multi-faceted approach to postgraduate water education - the WaterNet experience in Southern Africa

    Science.gov (United States)

    Jonker, L.; van der Zaag, P.; Gumbo, B.; Rockström, J.; Love, D.; Savenije, H. H. G.

    2012-11-01

    This paper reports the experience of a regional network of academic departments involved in water education that started as a project and evolved, over a period of 12 yr, into an independent network organisation. The paper pursues three objectives. First, it argues that it makes good sense to organise postgraduate education and research on water resources on a regional scale and presents the WaterNet experience as an example that a regional approach can work. Second, it presents preliminary findings and conclusions that the regional approach presented by WaterNet did make a contribution to the capacity needs of the region both in terms of management and research capacity. Third, it draws two generalised lessons from the WaterNet experience. Lesson one pertains to the importance of legitimate ownership and an accountability structure for network effectiveness. Lesson two is related to the financial and intellectual resources required to jointly developing educational programmes through shared experience.

  14. Water osmotic absorption in Coleus blumei plants under salinity stress

    Directory of Open Access Journals (Sweden)

    José Ozinaldo Alves de Sena

    2006-11-01

    Full Text Available Three month old Coleus blumei plants in pots were treated with different NaCl concentrations: 0.00, 0.25, 0.50 and 1.00%. To determine the water osmotic absorption, the plants had their stems cut at 10 cm from the soil surface. The remaining stems were linked to glass tubes by flexible rubber tubes. Readings of the water column level in the glass tubes were performed at each 30 minutes, corresponding to the water osmotic absorption, with a total of eleven readings. Other Coleus blumei, with the same age, received the NaCl concentrations, and were evaluated under field conditions in terms of transpiration and stomatal resistance. A randomized complete block analysis was used with five replications. An increase of osmotic absorption was verified for all treatments up to three hours after application. Then a proportional reversion of osmotic absorption to the increases on saline concentration was observed, with a higher effect in the treatment with NaCl 1.00%, showing the increase of water loss by the roots. During this period time, the treatment showed a normal linear growth of the osmotic absorption. Transpiration was reduced proportionally to the increase of salinity concentration.Mudas envasadas de Coleus blumei, com três meses de idade, foram submetidas a diferentes concentrações de cloreto de sódio (NaCl: 0,00; 0,25; 0,50 e 1,00%. Visando determinar a absorção osmótica, as mudas tiveram seus caules cortados a 10 cm acima do solo. Os caules remanescentes foram interligados a tubos de vidro por tubos flexíveis de borracha. Foram feitas leituras (cm a cada 30 minutos dos níveis das colunas de água nos capilares, correspondentes às absorções osmóticas de água, sendo ao todo realizadas onze leituras. Em outro momento, mudas de C. blumei, com a mesma idade das anteriores, receberam as mesmas concentrações de NaCl descritas anteriormente, e, ao ar livre, foram avaliadas em termos de transpiração e resistência estomática, usando

  15. Water absorption in a refractive index model for bacterial spores

    Science.gov (United States)

    Siegrist, K. M.; Thrush, E.; Airola, M.; Carr, A. K.; Limsui, D. M.; Boggs, N. T.; Thomas, M. E.; Carter, C. C.

    2009-05-01

    The complexity of biological agents can make it difficult to identify the important factors impacting scattering characteristics among variables such as size, shape, internal structure and biochemical composition, particle aggregation, and sample additives. This difficulty is exacerbated by the environmentally interactive nature of biological organisms. In particular, bacterial spores equilibrate with environmental humidity by absorption/desorption of water which can affect both the complex refractive index and the size/shape distributions of particles - two factors upon which scattering characteristics depend critically. Therefore accurate analysis of experimental data for determination of refractive index must take account of particle water content. First, spectral transmission measurements to determine visible refractive index done on suspensions of bacterial spores must account for water (or other solvent) uptake. Second, realistic calculations of aerosol scattering cross sections should consider effects of atmospheric humidity on particle water content, size and shape. In this work we demonstrate a method for determining refractive index of bacterial spores bacillus atropheus (BG), bacillus thuringiensis (BT) and bacillus anthracis Sterne (BAs) which accounts for these effects. Visible index is found from transmission measurements on aqueous and DMSO suspensions of particles, using an anomalous diffraction approximation. A simplified version of the anomalous diffraction theory is used to eliminate the need for knowledge of particle size. Results using this approach indicate the technique can be useful in determining the visible refractive index of particles when size and shape distributions are not well known but fall within the region of validity of anomalous dispersion theory.

  16. Contact sponge water absorption test implemented for in situ measures

    Science.gov (United States)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  17. Hydraulic Strategy of Cactus Trichome for Absorption and Storage of Water under Arid Environment

    OpenAIRE

    Kiwoong Kim; Hyejeong Kim; Sung Ho Park; Sang Joon Lee

    2017-01-01

    Being an essential component in various metabolic activities, water is important for the survival of plants and animals. Cacti grown in arid areas have developed intrinsic water management systems, such as water collection through spines, water absorption through trichome, and water storage using mucilage. The water collection method of cactus is well-documented, but its water absorption and storage strategies remain to be elucidated. Thus, this study analyzed the morphology and wettability o...

  18. UV sensitivity of planktonic net community production in ocean surface waters

    OpenAIRE

    Regaudie de Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-01-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we tes...

  19. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    viability and monolayer integrity were developed. The effect of simulated intestinal fluids on the absorption of the poorly water-soluble drug substances, estradiol and diazepam, was studied. The flux of both drug substances across the Caco-2 cells was decreased when simulated intestinal fluids containing...... micelles were applied in the apical compartment. The flux of diazepam was further decreased when pharmaceutical surfactants (Labrafil, fatty acid ester of polyethylene glycol, Cremophor RH40, polysorbate 80 and Pluronic L81) were added to the medium. This was most likely caused by partial incorporation...... of the drug substances in the micelles, and accordingly the drug substances need to be released from the micelles before being absorbed. However, the solubility of estradiol and diazepam was higher in the simulated intestinal fluids, indicating that the presence of bile salts, phospholipids and lipolysis...

  20. Commercial Absorption Heat Pump Water Heater: Beta Prototype Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ally, Moonis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Vishaldeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-14

    The Beta version of the Commercial Absorption Heat Pump (CAHP) water heater was evaluated in the environmental chambers at Oak Ridge National Laboratory. Ambient air conditions ranged from 17 to 75 oF and inlet water temperatures ranged from 100 to 120oF in order to capture trends in performance. The unit was operated under full fire (100%) and partial fire (55%). The unit was found to perform at 90% of the project goal at the design conditions of 47oF ambient and 100oF water temperatures. The trends across the full range of environmental conditions were as expected for ambient air temperatures above 32oF. Below this temperature and for the full fire condition, frost accumulated on the evaporator coil. In future work a defrost strategy will be enabled, the unit will be thoroughly cleaned of an oil contamination and the rectifier will be reconfigured in order to meet the design goals and have a field test unit ready in early 2017.

  1. Using the right slope of the 970 nm absorption feature for estimating canopy water content

    NARCIS (Netherlands)

    Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E.

    2009-01-01

    Canopy water content (CWC) is important for understanding the functioning of terrestrial ecosystems. Biogeochemical processes like photosynthesis, transpiration and net primary production are related to foliar water. The first derivative of the reflectance spectrum at wavelengths corresponding to

  2. UV sensitivity of planktonic net community production in ocean surface waters

    Science.gov (United States)

    Regaudie-de-Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-05-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we test the sensitivity of net community production (NCP) to UVB of planktonic communities in surface waters across contrasting regions of the ocean. We observed here that UVB radiation affects net plankton community production at the ocean surface, imposing a shift in NCP by, on average, 50% relative to the values measured when excluding partly UVB. Our results show that under full solar radiation, the metabolic balance shows the prevalence of net heterotrophic community production. The demonstration of an important effect of UVB radiation on NCP in surface waters presented here is of particular relevance in relation to the increased UVB radiation derived from the erosion of the stratospheric ozone layer. Our results encourage design future research to further our understanding of UVB effects on the metabolic balance of plankton communities.

  3. Long-term water absorption tests for frost insulation materials taking into account frost attack

    Directory of Open Access Journals (Sweden)

    Toni A. Pakkala

    2014-01-01

    Full Text Available Water absorption of several different frost insulation materials was tested for four years. The test took into account both immersion and frost attack to materials. On the basis of the research the water absorption on XPS specimens is significantly minor compared to EPS specimens that were studied. The most significant result was that freezing of test specimens did not affect on water absorption of XPS specimens but had a major effect on water absorption of EPS specimens. With frozen EPS specimen the absorption continued increasing even after 48 months of immersion. Presumably the reason for such a behaviour is that the pore structure of EPS is not able to resist the tension caused by freezing water and therefore cracks are formed. Thus, more water absorbs inside the EPS through the cracks and it causes cracking deeper in the specimen which is why absorption increases after every freezing period.

  4. TIGER-NET- Enabling An Earth Observation Capacity For Integrated Water Resource Management In Africa

    Science.gov (United States)

    Walli, A.; Tøttrup, C.; Naeimi, V.; Bauer-Gottwein, P.; Bila, M.; Mufeti, P.; Tumbulto, J. W.; Rajah, C.; Moloele, LS.; Koetz, B.

    2013-12-01

    As part of the TIGER initiative [1] the TIGER-NET project aims to support the assessment and monitoring of water resources from watershed to transboundary basin level delivering indispensable information for Integrated Water Resource Management in Africa through: 1. Development of an open-source Water Observation and Information Systems (WOIS) for monitoring, assessing and inventorying water resources in a cost- effective manner; 2. Capacity building and training of African water authorities and technical centers to fully exploit the increasing observation capacity offered by current and upcoming generations of satellites, including the Sentinel missions. Dedicated application case studies have been developed and demonstrated covering all EO products required by and developed with the participating African water authorities for their water resource management tasks, such as water reservoir inventory, water quality monitoring, water demand planning as well as flood forecasting and monitoring.

  5. Effect of water absorption on the mechanical properties of poly(3-hydroxybutyrate)/vegetable fiber composites

    Science.gov (United States)

    Marinho, Vithória A. D.; Carvalho, Laura H.; Canedo, Eduardo L.

    2015-05-01

    The present work studies the effect of water absorption on the performance of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermoplastic obtained from renewable resources through low-impact biotechnological process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree.Water resistance is an important characteristic of structural composites, that may exposed to rain and humid environments. Both water absorption capacity (water solubility in the material) and the rate of water absorption (controlled by the diffusivity of water in the material) are important parameters. However, water absorption per se may not be the most important characteristic, insofar as the performance and applications of the compounds. It is the effect of the water content on the ultimate properties that determine the suitability of the material for applications that involve prolonged exposure to water.PHB/babassu composites with 0-20% load were prepared in an internal mixer. Two different types of babassu fibers having two different article size ranges were compounded with PHB and test specimens molded by compression. The water absorption capacity and the kinetic constant of water absorption were measured in triplicate. Mechanical properties under tension were measured for dry and moist specimens with different amounts of absorbed water.Results indicate that the performance of the composites is comparable to that of the pure matrix. Water absorption capacity increases from 0.7% (pure PHB) to 4% (PHB/20% babassu), but the water diffusivity (4.10□8 cm2/s) was found to be virtually independent of the water absorption level. Water absorption results in moderate drop in elastic modulus (10-30% at saturation, according to fiber content) but has little effect on tensile strength and elongation at break. Fiber type and initial particle size do not have a significant effect on water absorption or mechanical properties.

  6. Hydraulic Strategy of Cactus Trichome for Absorption and Storage of Water under Arid Environment

    Directory of Open Access Journals (Sweden)

    Kiwoong Kim

    2017-10-01

    Full Text Available Being an essential component in various metabolic activities, water is important for the survival of plants and animals. Cacti grown in arid areas have developed intrinsic water management systems, such as water collection through spines, water absorption through trichome, and water storage using mucilage. The water collection method of cactus is well-documented, but its water absorption and storage strategies remain to be elucidated. Thus, this study analyzed the morphology and wettability of cactus trichomes by using advanced bio-imaging techniques and by performing in vitro experiments on an artificial system mimicking these structures, respectively. In addition, the in situ water absorption process through the trichome cluster was quantitatively visualized. This paper proposes a new bio-inspired technique for dew collection based on information about the water management strategies of cactus. This study discusses the underlying water absorption and storage strategies of cactus and provides the experimental database required to develop a biomimetic water management device.

  7. Gamma radiation induces hydrogen absorption by copper in water.

    Science.gov (United States)

    Lousada, Cláudio M; Soroka, Inna L; Yagodzinskyy, Yuriy; Tarakina, Nadezda V; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A; Jonsson, Mats

    2016-04-18

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  8. Evaluation of tropospheric water vapor profiling using eye-safe, infrared differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Rye, B.J. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences]|[National Oceanic and Atmospheric Administration, Boulder, CO (United States). Environmental Technology Lab.; Machol, J.L.; Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Environmental Technology Lab.

    1996-05-14

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution are fundamental to the success of the ARM CART program. In addition, these should be acquired over long periods at low operational and maintenance cost. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. To date, application of profiles have been limited by vertical resolution and uniqueness and high operating cost, or diminished daytime performance, lack of eye-safety, and high maintenance cost. Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the studies reported here, we develop DIAL system performance models and examine the potential of solving some of the shortcomings of previous methods using parameters representative of current technologies. These simulations are also applied to determine the strengths and weaknesses unique to the DIAL method for this application.

  9. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts

    NARCIS (Netherlands)

    van Oversteeg, Christina H M; Doan, Hoang Q; de Groot, Frank M F; Cuk, Tanja

    2016-01-01

    X-ray absorption studies of the geometric and electronic structure of primarily heterogeneous Co, Ni, and Mn based water oxidation catalysts are reviewed. The X-ray absorption near edge and extended X-ray absorption fine structure studies of the metal K-edge, characterize the metal oxidation state,

  10. Comparison of water absorption methods: testing the water absorption of recently quarried and weathered porous limestone on site and under laboratory conditions

    Science.gov (United States)

    Rozgonyi-Boissinot, Nikoletta; Agárdi, Tamás; Karolina Cebula, Ágnes; Török, Ákos

    2017-04-01

    The water absorption of weathering sensitive stones is a critical parameter that influences durability. The current paper compares different methods of water absorption tests by using on site and laboratory tests. The aims of the tests were to assess the water absorption of un-weathered quarry stones and various weathering forms occurring on porous limestone monuments. For the tests a Miocene porous limestone was used that occurs in Central and Western Hungary and especially near and in Budapest. Besides the Hungarian occurrences the same or very similar porous limestones are found in Austria, Slovakia and in the Czech Republic. Several quarries were operating in these countries. Due to the high workability the stone have been intensively used as construction material from the Roman period onward. The most prominent monuments made of this stone were built in Vienna and in Budapest during the 18th -19th century and in the early 20th century. The high porosity and the micro-fabric of the stone make it prone to frost- and salt weathering. Three different limestone types were tested representing coarse-, medium- and fine grained lithologies. The test methods included Rilem tube (Karsten tube) tests and capillary water absorption tests. The latter methodology has been described in detail in EN 1925:2000. The test results of on-site tests of weathered porous limestone clearly show that the water absorption of dissolved limestone surfaces and crumbling or micro-cracked limestone is similar. The water absorption curves have similar inclinations marking high amount of absorbed water. To the contrary, the white weathering crusts covered stone blocks and black crusts have significantly lower water absorptions and many of these crusts are considered as very tight almost impermeable surfaces. Capillary water absorption tests in the laboratory allowed the determination of maximum water absorption of quarried porous limestone. Specimens were placed in 3 mm of water column and the

  11. [Water absorption of five dental resins used in bonded restorations].

    Science.gov (United States)

    Gillet, D; Dupuis, V

    2002-12-01

    The actual restorative dentistry need to bond material which are under the constraint of saliva likely, as all liquid, to enter inside the product with time and to modify its characteristics. In this study, we compare the behaviour of five materials opposite water absorption, in vitro, until one year: two composite resins (Tetric et Pertac II), two ceromer (ceromer (Tetric ceram et Tetric flow) and one compomer (Hytac(r)). Each pastille weight is expressed in percentage of initial weight. All materials loose weight in the first hours except Tetric ceram which stay stable. At 48 h, all materials except Pertac II get back their initial weight. At long-term, all the materials are stable with a profit of 1% for Hytac, 0.5% for Tetric, Tetric ceram et Tetric flow and a loss of à 0.3% for Pertac II. As a result of this study, we understand why the clinical used of Hytac must be done following strict conditions.

  12. Absorption properties of water-in-oil emulsions in the low THz frequency range

    DEFF Research Database (Denmark)

    Møller, Uffe; Folkenberg, Jacob Riis; Jepsen, Peter Uhd

    We use transmission THz spectroscopy to investigate the absorption properties of water-in-oil emulsions with water content varying in the 0-20% range, relevant for a range of food products. We find that at low frequencies the effective absorption coefficient of the emulsion is suppressed compared...

  13. Why a regional approach to postgraduate water education makes sense - the WaterNet experience in Southern Africa

    Science.gov (United States)

    Jonker, L.; van der Zaag, P.; Gumbo, B.; Rockström, J.; Love, D.; Savenije, H. H. G.

    2012-03-01

    This paper reports the experience of a regional network of academic departments involved in water education that started as a project and evolved, over a period of 12 yr, into an independent network organisation. The paper pursues three objectives. First, it argues that it makes good sense to organise postgraduate education and research on water resources on a regional scale. This is because water has a transboundary dimension that poses delicate sharing questions, an approach that promotes a common understanding of what the real water-related issues are, results in future water specialists speaking a common (water) language, enhances mutual respect, and can thus be considered an investment in future peace. Second, it presents the WaterNet experience as an example that a regional approach can work and has an impact. Third, it draws three generalised lessons from the WaterNet experience. Lesson 1: For a regional capacity building network to be effective, it must have a legitimate ownership structure and a clear mandate. Lesson 2: Organising water-related training opportunities at a regional and transboundary scale makes sense - not only because knowledge resources are scattered, but also because the topic - water - has a regional and transboundary scope. Lesson 3: Jointly developing educational programmes by sharing expertise and resources requires intense intellectual management and sufficient financial means.

  14. Water absorption and retention of porous ceramics fabricated by waste resources

    OpenAIRE

    Tomoaki, KATO; Masayoshi, Ohashi; Masayoshi, Fuji; Minoru, Takahashi

    2008-01-01

    Several counter measures have been carried out for mitigating heat island effect. One of those is installing on top of the roof with base materials having planted vegetation. The base materials are required good water absorption and retention which is necessary for the plant to survive. Therefore, in this study, we investigate the relationship between water absorption and water retention within the pore structures of porous ceramics. The raw materials of the ceramics were used waste resources...

  15. Net Zero Fort Carson: Integrating Energy, Water, and Waste Strategies to Lower the Environmental Impact of a Military Base

    Science.gov (United States)

    Military bases resemble small cities and face similar sustainability challenges. As pilot studies in the U.S. Army Net Zero program, 17 locations are moving to 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases target net z...

  16. Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis.

    Science.gov (United States)

    Shi, Xiaocai; Passe, Dennis H

    2010-10-01

    The purpose of this study is to summarize water, carbohydrate (CHO), and electrolyte absorption from carbohydrate-electrolyte (CHO-E) solutions based on all of the triple-lumen-perfusion studies in humans since the early 1960s. The current statistical analysis included 30 reports from which were obtained information on water absorption, CHO absorption, total solute absorption, CHO concentration, CHO type, osmolality, sodium concentration, and sodium absorption in the different gut segments during exercise and at rest. Mean differences were assessed using independent-samples t tests. Exploratory multiple-regression analyses were conducted to create prediction models for intestinal water absorption. The factors influencing water and solute absorption are carefully evaluated and extensively discussed. The authors suggest that in the human proximal small intestine, water absorption is related to both total solute and CHO absorption; osmolality exerts various impacts on water absorption in the different segments; the multiple types of CHO in the ingested CHO-E solutions play a critical role in stimulating CHO, sodium, total solute, and water absorption; CHO concentration is negatively related to water absorption; and exercise may result in greater water absorption than rest. A potential regression model for predicting water absorption is also proposed for future research and practical application. In conclusion, water absorption in the human small intestine is influenced by osmolality, solute absorption, and the anatomical structures of gut segments. Multiple types of CHO in a CHO-E solution facilitate water absorption by stimulating CHO and solute absorption and lowering osmolality in the intestinal lumen.

  17. EFFECT OF WATER ABSORPTION ON THE MECHANICAL PROPERTIES \\OF FLAX FIBER REINFORCED EPOXY COMPOSITES

    OpenAIRE

    Umit Huner

    2015-01-01

    Flax fiber reinforced epoxy composites were subjected to water immersion tests in order to study the effects of water absorption on the mechanical properties. Epoxy composites specimens containing 0, 1, 5 and 10% fiber weight were prepared. Water absorption tests were conducted by immersing specimens in a de-ionized water bath at 25 ­°C and 90 °C for different time durations. The tensile and flexural properties of water immersed specimens subjected to both aging conditions were evaluated and ...

  18. EPA Method 245.1: Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry

    Science.gov (United States)

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine mercuric chloride and methoxyethylmercuric acetate as total mercury using cold vapor atomic absorption spectrometry.

  19. Effect of water absorption on mechanical properties of hemp fibre/polyolefin’s composites

    CSIR Research Space (South Africa)

    Guduri, BBR

    2007-12-01

    Full Text Available % fibre weight were prepared. Water absorption tests were conducted by immersion specimens in a plastic container with normal tap water at room temperature for different time durations. The tensile, flexural and impact properties of dry and water immersion...

  20. Stratum corneum damage and ex vivo porcine skin water absorption - a pilot study

    DEFF Research Database (Denmark)

    Duch Lynggaard, C; Bang Knudsen, D; Jemec, G B E

    2009-01-01

    A simple ex vivo screening technique would be of interest for mass screening of substances for potential barrier disruptive qualities. Ex vivo water absorption as a marker of skin barrier integrity was studied on pig ear skin. Skin water absorption was quantified by weighing and weight changes were...... found to reflect prehydration barrier damage. It is suggested that this simple model may be elaborated to provide a rapid, economical screening tool for potential skin irritants....

  1. Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring

    Science.gov (United States)

    2016-03-31

    resources in the New York City metro area has demonstrated the potential application of this type of analysis for water monitoring, treatment and...comparative to the quality of the lake water , with primarily soluble compounds and colloids, but with fewer pollutants and bacteria/ algae ...parametric model representations, in conjunction with their spectral signature interpretation, before and after water treatment processes that

  2. Quality control of lightweight aggregate concrete based on initial and final water absorption tests

    Science.gov (United States)

    Maghfouri, M.; Shafigh, P.; Ibrahim, Z. Binti; Alimohammadi, V.

    2017-06-01

    Water absorption test is used to evaluate overall performance of concrete in terms of durability. The water absorption of lightweight concrete might be considerably higher than the conventional concrete due to higher rate of pores in concrete and lightweight aggregate. Oil palm shell is a bio-solid waste in palm oil industry, which could be used as lightweight aggregate in the concrete mixture. The present study aims to measure the initial and final water absorption and compressive strength of oil palm shell lightweight concrete in order to evaluation of quality control and durability performance. Total normal coarse aggregates were substituted with coarse oil palm shell in a high strength concrete mixture. The quality of concrete was then evaluated based on the compressive strength and water absorption rates. The results showed that fully substitution of normal coarse aggregates with oil palm shell significantly reduced the compressive strength. However, this concrete with the 28-day compressive strength of 40 MPa still can be used as structural concrete. The initial and final water absorption test results also showed that this concrete is not considered as a good concrete in terms of durability. Therefore, it is recommended that both compressive strength and waster absorption tests must be performed for quality control of oil palm shell concretes.

  3. models for predicting compressive strength and water absorption

    African Journals Online (AJOL)

    user

    The use of laterite, quarry dust and recycle aggregates etc as replacement for sand in sandcrete block production is common trend in ... concrete. There is also lack of appreciation for the role of water in the mix. Most often, as also found in some documented researches, water is added based on. Nigerian Journal of ...

  4. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration Environmental Technology Laboratoy, Boulder, CO (United States); Rye, B.J. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  5. Oxygen absorption by skin exposed to oxygen supersaturated water.

    Science.gov (United States)

    Reading, Stacey A; Yeomans, Maggie

    2012-05-01

    The present study tests the hypothesis that skin on the plantar surface of the foot absorbs oxygen (O(2)) when immersed in water that has a high dissolved O(2) content. Healthy male and female subjects (24.2 ± 1.4 years) soaked each foot in tap water (1.7 ± 0.1 mg O(2)·L(-1); 30.7 ± 0.3 °C) or O(2)-infused water (50.2 ± 1.7 mg O(2)·L(-1); 32.1 ± 0.5 °C) for up to 30 min in 50 different experiments. Transcutaneous oximetry and near infrared spectroscopy were used to evaluate changes in skin PO(2), oxygenated haemoglobin, and cytochrome oxidase aa(3) that resulted from treatment. Compared with the tap water condition, tissue oxygenation index was 3.5% ± 1.3% higher in feet treated for 30 min with O(2)-infused water. This effect persisted after treatment, as skin PO(2) was higher in feet treated with O(2)-infused water at 2 min (237 ± 9 vs. 112 ± 5 mm HG) and 15 min (131 ± 1 vs. 87 ± 4 mm HG) post-treatment. When blood flow to the foot was occluded for 5 min, feet resting in O(2)-infused water maintained a 3-fold higher O(2) consumption rate than feet treated with tap water (9.1 ± 1.4 vs. 3.0 ± 1.0 µL·100 g(-1)·min(-1)). We estimate that skin absorbs 4.5 mL of O(2)·m(-2)·min(-1) from O(2)-infused water. Thus, skin absorbs appreciable amounts of O(2) from O(2)-infused water. This finding may prove useful and assist development of treatments targeting skin diseases with ischemic origin.

  6. Climatic and oceanic forcing of new, net, and diatom production in the North Water

    Science.gov (United States)

    Tremblay, Jean-Eric; Gratton, Yves; Fauchot, Juliette; Price, Neil M.

    New, net, and diatom production in the North Water were estimated during May to July 1998 from in vitro measurements of nitrate uptake and mesoscale temporal changes in the inventories of nitrate, silicate, oxygen, and inorganic carbon (DIC). Sampling stations were divided into two domains according to the position of the dominant water types: the silicate-rich Arctic water (SRAW) and Baffin Bay Water (BBW). BBW dominated in the southeast and was associated with relatively shallow upper mixed layers (UMLs) and weak horizontal advection. A phytoplankton bloom started in late April in BBW and grew slowly over 7 weeks, during which time the build-up of particulate organic nitrogen and carbon accounted for ca. 80% of the nitrate and DIC deficit, respectively. Over half of the new production (1.37 g C m -2 d -1) during this period was attributed to wind-driven replenishment of nitrate in the euphotic zone. The bloom culminated when seasonally declining winds and rising temperatures severed the UML from the deep nutrient reservoir. The same change in weather induced ice melt, stratification, and bloom development in northern SRAW, which had previously been characterized by deep UMLs. Collectively, the results imply that the timing and magnitude of blooms in the North Water are controlled by a succession of oceanic and climatic forcings. New C production in the North Water during April to July (1.11 g C m -2 d -1) was an order of magnitude higher than in adjacent waters and up to 8 times higher than in the Northeast Water polynya. As much as 80% of this production was mediated by diatoms >5 μm, suggesting potentially high and efficient C transfer to the herbivorous food web and deep waters.

  7. Water Absorption Rate Prediction of PMMA and Its Composites Using BP Neural Network

    Directory of Open Access Journals (Sweden)

    Chen Kui

    2016-01-01

    Full Text Available Referring to water absorption rate of poly (methyl methacrylate (PMMA and its composites is hard to obtain under some working conditions, BP neural network prediction model was constructed. Regarding water absorption rate predictions of exfoliated PMMA/MMT nanocomposites in 0.1 mol/L H2SO4 solution, 0.1 mol/L NaOH solution and deionized water respectively as examples, the applicability of model established in water absorption rate prediction of PMMA and its composites was researched. The results show that the relative errors between prediction value obtained from model established and actual value of water absorption rate of composites soaking 63min in three kinds of mediums are 1.50%, 0.47% and 1.04% respectively, prediction accuracy is higher than that (relative errors are 3.89%, 3.40% and 4.43% respectively obtained from GM (1, 1 model obviously. BP neural network can be used to predict water absorption rate of PMMA and its composites.

  8. Grapevine water absorption in different soils. A spatio-temporal analysis.

    Science.gov (United States)

    Brillante, Luca; Bois, Benjamin; Lévêque, Jean; Mathieu, Olivier

    2015-04-01

    Hillslope vineyards show complex water dynamics between soil and plants. To gain further insight of this relationship, 8 grapevine plots were monitored during two vintages (2011-2013), on Corton Hill, Burgundy, France. Grapevine water status was monitored weekly by surveying water potential, and at harvest, using δ13C analysis of grape juice. Soil volumetric humidity was also measured weekly, using TDR probes. A pedotransfer function was developed to transform Electrical Resistivity Tomography (ERT) into Soil Volume Water and therefore to spatialise and describe variations in space and time in the Fraction of Transpirable Soil Water (FTSW). During the two years of monitoring, grapevines experienced great variation in water status, which ranged from low to substantial water deficit. With this freshly developed method, it was possible to observe differences in water absorption pattern by roots, in different soils, and at different depth. Great heterogeneity was observed, both laterally and vertically in grapevine water absorption. The contribution of each soil region to plant water status varies according to grapevine water status. It is different between day and night and depends from soil characteristics. It is to our knowledge the first time that water absorption by grapevine is revealed in space (2D) and time, and has therefore allowed a deeper comprehension of plant and soil dynamics in grapevine.

  9. Dynamics of Water Absorption and Evaporation During Methanol Droplet Combustion in Microgravity

    Science.gov (United States)

    Hicks, Michael C.; Dietrich, Daniel L.; Nayagam, Vedha; Williams, Forman A.

    2012-01-01

    The combustion of methanol droplets is profoundly influenced by the absorption and evaporation of water, generated in the gas phase as a part of the combustion products. Initially there is a water-absorption period of combustion during which the latent heat of condensation of water vapor, released into the droplet, enhances its burning rate, whereas later there is a water-evaporation period, during which the water vapor reduces the flame temperature suffciently to extinguish the flame. Recent methanol droplet-combustion experiments in ambient environments diluted with carbon dioxide, conducted in the Combustion Integrated Rack on the International Space Station (ISS), as a part of the FLEX project, provided a method to delineate the water-absorption period from the water-evaporation period using video images of flame intensity. These were obtained using an ultra-violet camera that captures the OH* radical emission at 310 nm wavelength and a color camera that captures visible flame emission. These results are compared with results of ground-based tests in the Zero Gravity Facility at the NASA Glenn Research Center which employed smaller droplets in argon-diluted environments. A simplified theoretical model developed earlier correlates the transition time at which water absorption ends and evaporation starts. The model results are shown to agree reasonably well with experiment.

  10. Model estimates of net primary productivity, evaportranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States

    Science.gov (United States)

    Hanqin Tian; Guangsheng Chen; Mingliang Liu; Chi Zhang; Ge Sun; Chaoqun Lu; Xiaofeng Xu; Wei Ren; Shufen Pan; Arthur. Chappelka

    2010-01-01

    The effects of global change on ecosystem productivity and water resources in the southern United States (SUS), a traditionally ‘water-rich’ region and the ‘timber basket’ of the country, are not well quantified. We carried out several simulation experiments to quantify ecosystem net primary productivity (NPP), evapotranspiration (ET)...

  11. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    Science.gov (United States)

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  12. Experimental Study on the Absorption of Toluene from Exhaust Gas by Paraffin/Surfactant/Water Emulsion

    Directory of Open Access Journals (Sweden)

    Ping Fang

    2016-01-01

    Full Text Available A new paraffin/surfactant/water emulsion (PSW for volatile organic compounds (VOCs controlling was prepared and its potential for VOCs removal was investigated. Results indicated that PSW-5 (5%, v/v provided higher toluene absorption efficiency (90.77% than the other absorbents used. The saturation pressure, Henry’s constant, and activity coefficient of toluene in PSW-5 were significantly lower than those in water, and toluene solubility (1.331 g·L−1 in the PSW-5 was more than 2.5 times higher than the value in water. Several factors potentially affecting the toluene absorption efficiency were systematically investigated. The results suggested that concentration and pH of PSW, absorption temperature, and gas flow rate all had a strong influence on the toluene absorption, but the inlet concentration of toluene had little effect on the toluene absorption. There were different absorbing performances of PSW-5 on different VOCs, and the ketones, esters, and aromatics were more easily removed by the PSW-5 than the alkanes. Regeneration and reuse of the PSW were possible; after 3 runs of regeneration the absorption efficiency of PSW-5 for toluene also could reach 82.42%. So, the PSW is an economic, efficient, and safe absorbent and has a great prospect in organic waste gas treatment.

  13. Water Absorption Behaviour and Its Effect on the Mechanical Properties of Flax Fibre Reinforced Bioepoxy Composites

    Directory of Open Access Journals (Sweden)

    E. Muñoz

    2015-01-01

    Full Text Available In the context of sustainable development, considerable interest is being shown in the use of natural fibres like as reinforcement in polymer composites and in the development of resins from renewable resources. This paper focuses on eco-friendly and sustainable green composites manufacturing using resin transfer moulding (RTM process. Flax fibre reinforced bioepoxy composites at different weight fractions (40 and 55 wt% were prepared in order to study the effect of water absorption on their mechanical properties. Water absorption test was carried out by immersion specimens in water bath at room temperature for a time duration. The process of water absorption of these composites was found to approach Fickian diffusion behavior. Diffusion coefficients and maximum water uptake values were evaluated; the results showed that both increased with an increase in fibre content. Tensile and flexural properties of water immersed specimens were evaluated and compared to dry composite specimens. The results suggest that swelling of flax fibres due to water absorption can have positive effects on mechanical properties of the composite material. The results of this study showed that RTM process could be used to manufacture natural fibre reinforced composites with good mechanical properties even for potential applications in a humid environment.

  14. An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list

    Directory of Open Access Journals (Sweden)

    A. J. L. Shillings

    2011-05-01

    Full Text Available Absorption of solar radiation by water dimer molecules in the Earth's atmosphere has the potential to act as a positive feedback effect for climate change. There seems little doubt from the results of previous laboratory and theoretical studies that significant concentrations of the water dimer should be present in the atmosphere, yet attempts to detect water dimer absorption signatures in atmospheric field studies have so far yielded inconclusive results. Here we report spectral measurements in the near-infrared around 750 nm in the expected region of the | 0〈f | 4〉b|0 〉 overtone of the water dimer's hydrogen-bonded OH stretching vibration. The results were obtained using broadband cavity ringdown spectroscopy (BBCRDS, a methodology that allows absorption measurements to be made under controlled laboratory conditions but over absorption path lengths representative of atmospheric conditions. In order to account correctly and completely for the overlapping absorption of monomer molecules in the same spectral region, we have also constructed a new list of spectral data (UCL08 for the water monomer in the 750–20 000 cm−1 (13 μm–500 nm range.

    Our results show that the additional lines included in the UCL08 spectral database provide an improved representation of the measured water monomer absorption in the 750 nm region. No absorption features other than those attributable to the water monomer were detected in BBCRDS experiments performed on water vapour samples containing dimer concentrations up to an order of magnitude greater than expected in the ambient atmosphere. The absence of detectable water dimer features leads us to conclude that, in the absence of significant errors in calculated dimer oscillator strengths or monomer/dimer equilibrium constants, the widths of any water dimer absorption features present around 750 nm are of the order of 100 cm−1 HWHM, and certainly greater

  15. Infrared reflection absorption study of water interaction with H ...

    Indian Academy of Sciences (India)

    Unknown

    100 nm per min (Liu et al 1992; Jones et al 1995). In order to understand the chemical oxidation process by water adsorption, the Si(100) surfaces have been investi- gated under ultra high vacuum conditions by high resolu- tion electron energy loss spectroscopy (Ibach et al 1982;. Ikeda et al 1995; Bitzera et al 1997) and ...

  16. Infrared reflection absorption study of water interaction with H ...

    Indian Academy of Sciences (India)

    Water adsorption on clean and hydrogenated Si(100) surfaces was studied under ultra high vacuum conditions using surface infrared spectroscopy. The study shows that H–Si–Si–OH and SiH2 ... Author Affiliations. G Ranga Rao1. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India ...

  17. Effect of water absorption by the aggregate on properties of high-strength lightweight concrete

    Energy Technology Data Exchange (ETDEWEB)

    Punkki, J.

    1995-12-31

    Recently, high-strength lightweight concrete has become an interesting building material for the offshore oil industry. This doctoral thesis presents an experimental investigation of the effect of water absorption by three different types of lightweight aggregates. One type did not show any water absorption ability at all and so represented no problem to the concrete production. For the two other high-strength aggregates, which were of more conventional types, the water absorption depended not only on the properties of the aggregates, but also on the concrete mixing procedure and the properties of the fresh cement paste. When water absorbing lightweight aggregate was used in a dry condition, the workability of the concrete was significantly reduced by the water absorption of the aggregate. This effect was not present when prewetted aggregate was used. The water absorption by the lightweight aggregate also affected the early compressive strength of concrete. After one day, dry aggregate gave on the average 10 MPa higher compressive strength than did prewetted aggregate. The strength-density ratio was affected by the moisture condition of the aggregate. Dry lightweight aggregate gave 9 MPa higher compressive strength at a density of 2000 kg/m{sup 3} compared to that of prewetted aggregate. The water absorption by the lightweight also affected the microstructure of the hardened concrete. Dry lightweight aggregate gave a slightly better microstructure than normal weight aggregate. The results indicate that the use of prewetted aggregate adversely affected the transition zone between the aggregate and the cement paste. 69 refs., 58 figs., 42 tabs.

  18. Magnesium absorption from mineral water decreases with increasing quantities of magnesium per serving in rats.

    Science.gov (United States)

    Nakamura, Eri; Tai, Hideyuki; Uozumi, Yoshinobu; Nakagawa, Koji; Matsui, Tohru

    2012-01-01

    It is hypothesized that magnesium (Mg) absorption from mineral water is affected by the concentration of Mg in the water, the consumption pattern, and the volume consumed per serving. The present study examined the effect of serving volume and consumption pattern of artificial mineral water (AMW) and Mg concentration on Mg absorption in rats. Magnesium in AMW was labeled with magnesium-25 as a tracer. Each group consisted of 6 or 7 rats. In experiment 1, the rats received 1 mL of AMW containing 200 mg Mg/L at 4 times, 400 mg Mg/L twice, or 800 mg Mg/L at 1 time. In experiment 2, the rats received 1 mL of AMW containing 200 mg Mg/L or 0.25 mL of AMW containing 800 mg Mg/L at 4 times or 1 mL of AMW containing 800 mg Mg/L at 1 time. The absorption of Mg decreased with increasing Mg concentrations in the same serving volume of AMW with different serving frequencies. When the AMW containing 800 mg Mg/L was portioned into 4 servings, Mg absorption increased to the level of absorption in the group exposed to AMW containing 200 mg Mg/L served at the same frequency. These results suggest that the Mg concentration and the volume of AMW do not affect Mg absorption per se, but Mg absorption from AMW decreases when the amount of Mg in each serving is increased. Thus, frequent consumption is preferable for mineral water rich in Mg when the total consumption of mineral water is the same. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The Relationship Between Dynamics and Structure in the Far Infrared Absorption Spectrum of Liquid Water

    Energy Technology Data Exchange (ETDEWEB)

    Woods, K.

    2005-01-14

    Using an intense source of far-infrared radiation, the absorption spectrum of liquid water is measured at a temperature ranging from 269 to 323 K. In the infrared spectrum we observe modes that are related to the local structure of liquid water. Here we present a FIR measured spectrum that is sensitive to the low frequency (< 100cm{sup -1}) microscopic details that exist in liquid water.

  20. Investigations of the 1 KHZ Sound Absorption in Sea Water.

    Science.gov (United States)

    1983-01-15

    P. Shepard Studies in Biological Oceanography Professors John D. Isaacs, John A. McGowvan and Michael M. Mullin xiv ABSTRACT OF THE DISSERTATION...observed by Thorp. The calculated relaxation frequency was not compatible with observed data. There was also a proposal by Knoche (1972) that an aluminum...phosphoric acid in sea water. Limnol. Oceanogr. 12, 243-252. Knoche , W. (1972) Durch aluminiumsulfa-complexe verursachte schallabsorption in Seewasser

  1. [Phytoplankton Light Absorption Properties During the Blooms in Adjacent Waters of the Changjiang Estuary].

    Science.gov (United States)

    Liu, Yang-yang; Shen, Fang; Li, Xiu-zhen

    2015-06-01

    Phytoplankton dominant species and their light absorption properties during the blooms occurred in August 2013 in adjacent waters of the Changjiang Estuary were analyzed. The results showed that phytoplankton blooms broke out in 10 out of 34 investigation stations, among which diatom blooms occurred in 6 stations while 3 stations were predominated by dinoflagellate. Phytoplankton absorption coefficients of both bloom and non-bloom waters exhibited large variations, with respective ranges of 0.199-0.832 m(-1) and 0.012-0.109 m(-1), while phytoplankton specific absorption coefficients spanned much narrower range, with the average values of bloom and non-bloom waters being 0.023 and 0.035 m2 x mg(-1), respectively. When transitioned from bloom to non-bloom waters, the proportion of phytoplankton with larger cell size lowered while that of smaller phytoplankton elevated, causing a less extent of package effect and thus higher specific absorption coefficients. Distinctive absorption spectra were observed between different types of bloom (such as diatom and dinoflagellate blooms) with similar phytoplankton cell size, mostly attributed to distinctive accessory pigment composition. The ratios of diadinoxanthin and chlorophyll-c2 concentrations to chlorophyll-a concentration in dinoflagellate blooms were higher than those in diatom blooms, which largely contributed to the shoulder peaks at 465 nm in dinoflagellate blooms.

  2. Water absorption and its effect on the tensile properties of tapioca starch/polyvinyl alcohol bioplastics

    Science.gov (United States)

    Judawisastra, H.; Sitohang, R. D. R.; Marta, L.; Mardiyati

    2017-07-01

    Tapioca is one of the largest sources of starch and makes it suitable to be used for bioplastic material. Addition of polyvinyl alcohol (PVA) has been shown to successfully reduce the brittleness of starch bioplastic. This study aims to investigate the influence of PVA addition to water absorption behavior and its effect on the tensile properties of tapioca starch/PVA bioplastics, which are still not yet fully understood until now. The bioplastics were prepared by solution casting method at gelatinization temperature, with PVA addition from 0 to 29 wt%. Examinations were carried out by means of water absorption test, tensile test and Fourier Transform Infrared (FTIR) Spectroscopy. Increasing content of PVA, up to 29 wt%, was found to decrease the water absorption of the bioplastics, with the lowest water saturation point of 251%. This is due to the interaction between starch and PVA which reduces the free OH groups in the resulting bioplastics. Consequently, this led to a decrease in water absorption-related deterioration, i.e. tensile properties degradation of the bioplastics. The addition of 29 wt% resulted into the lowest degradation in tensile strength (6%) and stiffness (30%), while accompanied with the highest elongation increase (39%) after water immersion.

  3. Intergrating cavity absorption meter measurements of dissolved substances and suspended particles in ocean water

    Science.gov (United States)

    Pope, Robin M.; Weidemann, Alan D.; Fry, Edward S.

    2000-01-01

    We have developed a new device to measure the separate contributions to the spectral absorption coefficient due to a pure liquid, due to the particles suspended in it, and due to the substances dissolved in it. This device, the Integrating Cavity Absorption Meter (ICAM), is essentially independent of scattering effects in the sample. In April 1993, a prototype of the ICAM was field tested on board the research vessel USNS Bartlett. A major part of the cruise track included criss-crossing the area where the Mississippi flows into the Gulf of Mexico at various ranges from the mouth of the river; thus samples were collected from areas of blue, green, and brown/black water. We evaluated 35 seawater samples collected with 5-l Niskin bottles from 22 locations to determine absorption spectra (380-700 nm) of suspended particles and dissolved substances (gelbstoff). Results validate the ICAM as a viable tool for marine optical absorption research. Gelbstoff absorption at 432.5 nm ranged from 0.024 to 0.603 m -1. Over the spectral region 380→560 nm, gelbstoff absorption by each of the samples could be accurately fit to a decaying exponential. The particle absorption spectra are generally characteristic of those of phytoplankton and exhibit a local maximum at 430-440 nm. Absorption values at 432.5 nm ranged from ˜zero to ˜1.0 m -1. Some samples with moderate particulate absorption, however, did not show the characteristic local maximum of phytoplankton in the blue and instead resembled the characteristic decaying exponential of detritus with a shape similar to that observed in the gelbstoff. The ratio of gelbstoff to particulate absorption at 432.5 nm ranged from 0.46 to 152.

  4. Water absorption and biodegradation kinetics of highly filled EOC-FS biocomposites

    Science.gov (United States)

    Zykova, A. K.; Pantyukhov, P. V.; Platov, Yu. T.; Bobojonova, G. A.; Ramos, C. Chaverri; Popov, A. A.

    2017-12-01

    The paper analyzes the water absorption and biodegradation kinetics in highly filled biocomposites based on ethylene-octene copolymer (EOC) and oil flax straw (FS). It is shown that adding the filler to EOC increases the water absorption from 0 to 22%. The tendency can be explained both by the low interfacial adhesion of EOC to FS and by the hydrophilic nature of the filler. According to biodegradation tests (10 months), the mass of pure EOC remains unchanged, suggesting that it fails to biodegrade in the environment. Increasing the filler content increases the weight loss of the composites and the degree of microbiological contamination (fungi filaments, bacteria) as evidenced by optical microscopy.

  5. EFFECT OF WATER ABSORPTION ON THE MECHANICAL PROPERTIES \\OF FLAX FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    Umit Huner

    2015-05-01

    Full Text Available Flax fiber reinforced epoxy composites were subjected to water immersion tests in order to study the effects of water absorption on the mechanical properties. Epoxy composites specimens containing 0, 1, 5 and 10% fiber weight were prepared. Water absorption tests were conducted by immersing specimens in a de-ionized water bath at 25 ­°C and 90 °C for different time durations. The tensile and flexural properties of water immersed specimens subjected to both aging conditions were evaluated and compared alongside dry composite specimens. The percentage of moisture uptake increased as the fiber volume fraction increased due to the high cellulose content. The tensile and flexural properties of reinforced epoxy specimens were found to decrease with increase in percentage moisture uptake. Moisture induced degradation of composite samples was significant at elevated temperature.

  6. European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vishaldeep [ORNL; Shen, Bo [ORNL; Keinath, Chris [Stone Mountain Technologies, Inc., Johnson City; Garrabrant, Michael A. [Stone Mountain Technologies, Inc., Johnson City; Geoghegan, Patrick J [ORNL

    2017-01-01

    High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in colder climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.

  7. Ab initio calculation of the electronic absorption spectrum of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  8. Reduction of the capillary water absorption of foamed concrete by using the porous aggregate

    Science.gov (United States)

    Namsone, E.; Sahmenko, G.; Namsone, E.; Korjakins, A.

    2017-10-01

    The article reports on the research of reduction of the capillary water absorption of foamed concrete (FC) by using the porous aggregate such as the granules of expanded glass (EG) and the cenospheres (CS). The EG granular aggregate is produced by using recycled glass and blowing agents, melted down in high temperature. The unique structure of the EG granules is obtained where the air is kept closed inside the pellet. The use of the porous aggregate in the preparation process of the FC samples provides an opportunity to improve some physical and mechanical properties of the FC, classifying it as a product of high-performance. In this research the FC samples were produced by adding the EG granules and the CS. The capillary water absorption of hardened samples has been verified. The pore size distribution has been determined by microscope. It is a very important characteristic, specifically in the cold climate territories–where temperature often falls below zero degrees. It is necessary to prevent forming of the micro sized pores in the final structure of the material as it reduces its water absorption capacity. In addition, at a below zero temperature water inside these micro sized pores can increase them by expanding the stress on their walls during the freezing process. Research of the capillary water absorption kinetics can be practical for prevision of the FC durability.

  9. Studies of Water Absorption Behavior of Plant Fibers at Different Temperatures

    Science.gov (United States)

    Saikia, Dip

    2010-05-01

    Moisture absorption of natural fiber plastic composites is one major concern in their outdoor applications. The absorbed moisture has many detrimental effects on the mechanical performance of these composites. A knowledge of the moisture diffusivity, permeability, and solubility is very much essential for the application of natural fibers as an excellent reinforcement in polymers. An effort has been made to study the water absorption behavior of some natural fibers such as bowstring hemp, okra, and betel nut at different temperatures to improve the long-term performance of composites reinforced with these fibers. The gain in moisture content in the fibers due to water absorption was measured as a function of exposure time at temperatures ranging from 300 K to 340 K. The thermodynamic parameters of the sorption process, such as diffusion coefficients and corresponding activation energies, were estimated.

  10. Water metamaterial for ultra-broadband and wide-angle absorption.

    Science.gov (United States)

    Xie, Jianwen; Zhu, Weiren; Rukhlenko, Ivan D; Xiao, Fajun; He, Chong; Geng, Junping; Liang, Xianling; Jin, Ronghong; Premaratne, Malin

    2018-02-19

    A subwavelength water metamaterial is proposed and analyzed for ultra-broadband perfect absorption at microwave frequencies. We experimentally demonstrate that this metamaterial shows over 90% absorption within almost the entire frequency band of 12-29.6 GHz. It is also shown that the proposed metamaterial exhibits a good thermal stability with its absorption performance almost unchanged for the temperature range from 0 to 100°C. The study of the angular tolerance of the metamaterial absorber shows its ability of working at wide angles of incidence. Given that the proposed water metamaterial absorber is low-cost and easy for manufacture, we envision it may find numerous applications in electromagnetics such as broadband scattering reduction and electromagnetic energy harvesting.

  11. Impact of wet season river flood discharge on phytoplankton absorption properties in the southern Great Barrier Reef region coastal waters

    Science.gov (United States)

    Cherukuru, Nagur; Brando, Vittorio E.; Blondeau-Patissier, David; Ford, Phillip W.; Clementson, Lesley A.; Robson, Barbara J.

    2017-09-01

    Light absorption due to particulate and dissolved material plays an important role in controlling the underwater light environment and the above water reflectance signature. Thorough understanding of absorption properties and their variability is important to estimate light propagation in the water column. However, knowledge of light absorption properties in flood impacted coastal waters is limited. To address this knowledge gap we investigated a bio-optical dataset collected during a flood (2008) in the southern Great Barrier Reef (GBR) region coastal waters. Results presented here show strong impact of river flood discharges on water column stratification, distribution of suspended substances and light absorption properties in the study area. Bio-optical analysis showed phytoplankton absorption efficiency to reduce in response to increased coloured dissolved organic matter presence in flood impacted coastal waters. Biogeophysical property ranges, relationships and parametrisation presented here will help model realistic underwater light environment and optical signature in flood impacted coastal waters.

  12. Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films.

    Science.gov (United States)

    Pereira, Rúben F; Carvalho, Anabela; Gil, M H; Mendes, Ausenda; Bártolo, Paulo J

    2013-10-15

    This study investigates the influence of Aloe vera on water absorption and the in vitro degradation rate of Aloe vera-Ca-alginate hydrogel films, for wound healing and drug delivery applications. The influence of A. vera content (5%, 15% and 25%, v/v) on water absorption was evaluated by the incubation of the films into a 0.1 M HCl solution (pH 1.0), acetate buffer (pH 5.5) and simulated body fluid solution (pH 7.4) during 24h. Results show that the water absorption is significantly higher for films containing high A. vera contents (15% and 25%), while no significant differences are observed between the alginate neat film and the film with 5% of A. vera. The in vitro enzymatic degradation tests indicate that an increase in the A. vera content significantly enhances the degradation rate of the films. Control films, incubated in a simulated body fluid solution without enzymes, are resistant to the hydrolytic degradation, exhibiting reduced weight loss and maintaining its structural integrity. Results also show that the water absorption and the in vitro degradation rate of the films can be tailored by changing the A. vera content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Study of an absorption machine for an ammonia-water system ...

    African Journals Online (AJOL)

    This paper deals with Study of an absorption machine for an ammonia-water system decentralized trigeneration. The effects of evaporator, absorber and boiler temperature on the coefficient of performance of this cycle investigate. Simulation results show that with increasing the evaporator and absorber temperature the ...

  14. Investigation of the impact of water absorption on retinal OCT imaging in the 1060 nm range

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Pedersen, Christian; Andersen, Peter E.

    2012-01-01

    Recently, the wavelength range around 1060 nm has become attractive for retinal imaging with optical coherence tomography (OCT), promising deep penetration into the retina and the choroid. The adjacent water absorption bands limit the useful bandwidth of broadband light sources, but until now...... sources for OCT....

  15. Ultraviolet-visible absorptive features of water extractable and humic fractions of animal manure and compost

    Science.gov (United States)

    UV-vis spectroscopy is a useful tool for characterizing water extractable or humic fractions of natural organic matter (WEOM). Whereas the whole UV-visible spectra of these fractions are more or less featureless, the specific UV absorptivity at 254 and 280 nm as well as spectral E2/E3 and E4/E6 rat...

  16. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  17. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...

  18. The Effect of Fiber Treatment on the Water Absorption of Piliostigma ...

    African Journals Online (AJOL)

    The comparative study of water absorption behaviour of composites reinforced with fiber and chemically modified in three reagents (NaOH, KMnO4, BPO) respectively confirmed that surface treatment of the fibres influences the sorption process. The most significant decrease in hydrophilicity of Piliostigma was found in the ...

  19. ABSORPTION OF GASES INTO ACTIVATED CARBON WATER SLURRIES IN A STIRRED CELL

    NARCIS (Netherlands)

    TINGE, JT; DRINKENBURG, AAH

    A surface-aerated stirred cell with a flat liquid surface was used to investigate the absorption of propane and ethene gas into slurries of activated carbon and water. Slurries with a solids concentration up to 4% by weight and particle diameters up to 565-mu-m were used. The experimental mass

  20. Effects of the mechanical damage on the water absorption process by corn kernel

    Directory of Open Access Journals (Sweden)

    Fernando Mendes Botelho

    2013-06-01

    Full Text Available The purpose of this study was to investigate and model the water absorption process by corn kernels with different levels of mechanical damage Corn kernels of AG 1510 variety with moisture content of 14.2 (% d.b. were used. Different mechanical damage levels were indirectly evaluated by electrical conductivity measurements. The absorption process was based on the industrial corn wet milling process, in which the product was soaked with a 0.2% sulfur dioxide (SO2 solution and 0.55% lactic acid (C3H6O3 in distilled water, under controlled temperatures of 40, 50, 60, and 70 ºC and different mechanical damage levels. The Peleg model was used for the analysis and modeling of water absorption process. The conclusion is that the structural changes caused by the mechanical damage to the corn kernels influenced the initial rates of water absorption, which were higher for the most damaged kernels, and they also changed the equilibrium moisture contents of the kernels. The Peleg model was well adjusted to the experimental data presenting satisfactory values for the analyzed statistic parameters for all temperatures regardless of the damage level of the corn kernels.

  1. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    Science.gov (United States)

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions.

  2. Analysis and parameterization of absorption properties of northern Norwegian coastal water

    Science.gov (United States)

    Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Sørensen, Kai; Norli, Marit; Stamnes, Knut; Muyimbwa, Dennis; Ssenyonga, Taddeo; Ssebiyonga, Nicolausi; Stamnes, Jakob J.

    2017-02-01

    Coastal water bodies are generally classified as Case 2 water, in which non-algal particles (NAP) and colored dissolved organic matter (CDOM) contribute significantly to the optical properties in addition to phytoplankton. These three constituents vary independently in Case 2 water and tend to be highly variable in space and time. We present data from measurements and analyses of the spectral absorption due to CDOM, total suspended matter (TSM), phytoplankton, and NAP in high-latitude northern Norwegian coastal water based on samples taken in spring, summer, and autumn.

  3. Evaluating the Life Cycle Environmental Benefits and Trade-Offs of Water Reuse Systems for Net-Zero Buildings.

    Science.gov (United States)

    Hasik, Vaclav; Anderson, Naomi E; Collinge, William O; Thiel, Cassandra L; Khanna, Vikas; Wirick, Jason; Piacentini, Richard; Landis, Amy E; Bilec, Melissa M

    2017-02-07

    Aging water infrastructure and increased water scarcity have resulted in higher interest in water reuse and decentralization. Rating systems for high-performance buildings implicitly promote the use of building-scale, decentralized water supply and treatment technologies. It is important to recognize the potential benefits and trade-offs of decentralized and centralized water systems in the context of high-performance buildings. For this reason and to fill a gap in the current literature, we completed a life cycle assessment (LCA) of the decentralized water system of a high-performance, net-zero energy, net-zero water building (NZB) that received multiple green building certifications and compared the results with two modeled buildings (conventional and water efficient) using centralized water systems. We investigated the NZB's impacts over varying lifetimes, conducted a break-even analysis, and included Monte Carlo uncertainty analysis. The results show that, although the NZB performs better in most categories than the conventional building, the water efficient building generally outperforms the NZB. The lifetime of the NZB, septic tank aeration, and use of solar energy have been found to be important factors in the NZB's impacts. While these findings are specific to the case study building, location, and treatment technologies, the framework for comparison of water and wastewater impacts of various buildings can be applied during building design to aid decision making. As we design and operate high-performance buildings, the potential trade-offs of advanced decentralized water treatment systems should be considered.

  4. Effects of High Hydrostatic Pressure on Water Absorption of Adzuki Beans

    Directory of Open Access Journals (Sweden)

    Shigeaki Ueno

    2015-05-01

    Full Text Available The effect of high hydrostatic pressure (HHP treatment on dried soybean, adzuki bean, and kintoki kidney bean, which are low-moisture-content cellular biological materials, was investigated from the viewpoint of water absorption. The samples were vacuum-packed with distilled water and pressurized at 200 MPa and 25 °C for 10 min. After the HHP treatment, time courses of the moisture contents of the samples were measured, and the dimensionless moisture contents were estimated. Water absorption in the case of soybean could be fitted well by a simple water diffusion model. High pressures were found to have negligible effects on water absorption into the cotyledon of soybean and kintoki kidney bean. A non-linear least square method based on the Weibull equation was applied for the adzuki beans, and the effective water diffusion coefficient was found to increase significantly from 8.6 × 10−13 to 6.7 × 10−10 m2/s after HHP treatment. Approximately 30% of the testa of the adzuki bean was damaged upon HHP treatment, which was comparable to the surface area of the testa in the partially peeled adzuki bean sample. Thus, HHP was confirmed to promote mass transfer to the cotyledon of legumes with a tight testa.

  5. Heat and Mass Diffusions in the Absorption of Water Vapor by Aqueous Solution of Lithium Bromide

    Science.gov (United States)

    Kashiwagi, Takao; Kurosaki, Yasuo; Nikai, Isao

    The recent development of absorption-type heat pump is highly essential from the viewpoint of extracting the effective energy from waste heat or solar energy. To increase the efficiency of energy conversion, it is important to improve the performance of absorbers. The objective of this paper is to obtain an increased understanding of the fine mechanisms of vapor absorption. A system combining holographic interferometry wity thermometry is adopted to observe the progress of one-dimensional water vapor absorption by aqueous solution of lithium bromide (LiBr) and also to measure the unsteady temperature and concentration distributions in the absorption process. The experiments are carried out under the condition that the solution surface is exposed to the saturated water vapor at reduced pressure, and the effects of LiBr mass concentration on absorption mechanism are examined in the concentration range 20-60 mass%. The interference fringes are analyzed to distinguish between the layers of heat conduction and mass diffusion. The temperature and concentration distributions thus determined experimentally are compared with numerical solutions obtained by the equations for unsteady heat conduction and mass diffusion taking into consideration the effect of heat by dilution, to give reasonable values of mass diffusivity hitherto remaining unknown. Especially in the range of 40-60 mass%, the mass diffusivity decreases extremely with the increase of mass concentration of LiBr and it falls down to 0.7-0.8×10-9 m2/s in case of 60 mass% solution.

  6. Water absorption in PEEK and PEI matrices. Contribution to the understanding of water-polar group interactions

    Science.gov (United States)

    Courvoisier, E.; Bicaba, Y.; Colin, X.

    2016-05-01

    The water absorption in two aromatic linear polymers (PEEK and PEI) was studied between 10% and 90% RH at 30, 50 and 70°C. It was found that these polymers display classical Henry and Fick's behaviors. Moreover, they have very close values of equilibrium water concentration C∞ and water diffusivity D presumably because their respective polar groups establish molecular interactions of the same nature with water. This assumption was checked from a literature compilation of values of C∞ and D for a large variety of linear and tridimensional polymers containing a single type of polar group. It was then evidenced that almost all types of carbonyl group (in particular, those belonging to imides, amides and ketones) have the same molar contribution to water absorption, except those belonging to esters which are much less hydrophilic. Furthermore, hydroxyl and sulfone groups are much more hydrophilic than carbonyl groups so that their molar contribution is located on another master curve. On this basis, semi-empirical structure/water transport property relationships were proposed. It was found that C∞ increases exponentially with the concentration of polar groups (presumably because water is doubly bonded), but also with the intensity of their molecular interactions with water. In contrast, D is inversely proportional to C∞, which means that polar group-water interactions slow down the rate of water diffusion.

  7. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    Science.gov (United States)

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  8. Mechanisms and Regulation of Intestinal Absorption of Water-soluble Vitamins: Cellular and Molecular Aspects

    DEFF Research Database (Denmark)

    Nexø, Ebba; Said, Hamid M

    2012-01-01

    The water-soluble vitamins represent a group of structurally and functionally unrelated compounds that share the common feature of being essential for normal cellular functions, growth, and development. With the exception of some endogenous production of niacin, human cells cannot synthesize...... these micronutrients, and thus, must obtain them from exogenous sources via intestinal absorption. The intestine, therefore, plays a critical role in maintaining and regulating normal body homeostasis of these essential nutrients, and interference with its normal absorptive function could lead to suboptimal states...

  9. An Integrated Model to Compare Net Electricity Generation for Carbon Dioxide- and Water-Based Geothermal Systems

    Science.gov (United States)

    Agarwal, Vikas

    Utilization of supercritical CO2 as a geothermal fluid instead of water has been proposed by Brown in 2000 and its advantages have been discussed by him and other researchers such as Karsten Pruess and Fouillac. This work assesses the net electricity that could be generated by using supercritical CO2 as a geothermal working fluid and compares it with water under the same temperature and pressure reservoir conditions. This procedure provides a method of direct comparison of water and CO2 as geothermal working fluids, in terms of net electricity generation over time given a constant geothermal fluid flow rate. An integrated three-part model has been developed to determine net electricity generation for CO2- and water-based geothermal reservoirs. This model consists of a wellbore model, reservoir simulation, and surface plant simulation. To determine the bottomhole pressure and temperature of the geothermal fluid (either water or CO2) in the injection well, a wellbore model was developed using fluid-phase, thermodynamic equations of state, fluid dynamics, and heat transfer models. A computer program was developed that solves for the temperature and pressure of the working fluid (either water or CO 2) down the wellbore by simultaneously solving for the fluid thermophysical properties, heat transfer, and frictional losses. For the reservoir simulation, TOUGH2, a general purpose numerical simulator has been used to model the temperature and pressure characteristics of the working fluid in the reservoir. The EOS1 module of TOUGH2 has been used for the water system and the EOS2 module of the TOUGH2 code has been employed for the CO2 case. The surface plant is simulated using CHEMCAD, a chemical process simulator, to determine the net electricity generated. A binary organic (iso-pentane) Rankine cycle is simulated. The calculated net electricity generated for the optimized water and CO2 systems are compared over the working time of the reservoir. Based on the theoretical

  10. Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites

    Directory of Open Access Journals (Sweden)

    T. Alomayri

    2014-09-01

    Full Text Available Cotton fabric (CF reinforced geopolymer composites are fabricated with fibre loadings of 4.5, 6.2 and 8.3 wt%. Results show that flexural strength, flexural modulus, impact strength, hardness and fracture toughness are increased as the fibre content increased. The ultimate mechanical properties were achieved with a fibre content of 8.3 wt%. The effect of water absorption on mechanical and physical properties of CF reinforced geopolymer composites is also investigated. The magnitude of maximum water uptake and diffusion coefficient is increased with an increase in fibre content. Flexural strength, modulus, impact strength, hardness and fracture toughness values are decreased as a result of water absorption. Scanning electron microscopy (SEM is used to characterise the microstructure and failure mechanisms of dry and wet cotton fibre reinforced geopolymer composites.

  11. Characterization of water absorption by CFRP using air-coupled ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Min; Lee, Joo Sung; Park, Ik Keun [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Yong Kwon [Technology Research and Development Institute, KEPCO Plant Service and Engineering Co., Ltd, Naju (Korea, Republic of)

    2014-04-15

    Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at 75 degree C for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

  12. Water absorption and tensile strength degradation of Petung bamboo (Dendrocalamus asper) fiber—reinforced polymeric composites

    Science.gov (United States)

    Judawisastra, H.; Sitohang, R. D. R.; Rosadi, M. S.

    2017-09-01

    Bamboo fibers have attracted great interest and are believed to have the potential as natural fiber for reinforcing polymer composites. This research aims to study water absorption behavior and its effect to tensile strength of the composites made from petung bamboo fiber, which is one of the most grown bamboo species in Indonesia. Unidirectional (UD) and random composites were manufactured using wet hand lay-up method. Examinations were carried out by means of boiling water immersion test, tensile test, scanning electron microscopy and Fourier transform infrared spectroscopy. Water absorption of UD petung bamboo fiber/polyester composites is higher than that of random composites, i.e. 3.6% compared to 2.2%. This was due to higher fiber volume fraction of the UD composites. Water absorption caused irreversible tensile strength degradation on the composites. The initial properties of the composites were not recovered even after drying. The absorbed water decreased the tensile strength by 6% in UD composites and 38% in random composites. This was most likely to occur due to the permanent interfacial degradation.

  13. Temporal Variations of Telluric Water Vapor Absorption at Apache Point Observatory

    Science.gov (United States)

    Li, Dan; Blake, Cullen H.; Nidever, David; Halverson, Samuel P.

    2018-01-01

    Time-variable absorption by water vapor in Earth’s atmosphere presents an important source of systematic error for a wide range of ground-based astronomical measurements, particularly at near-infrared wavelengths. We present results from the first study on the temporal and spatial variability of water vapor absorption at Apache Point Observatory (APO). We analyze ∼400,000 high-resolution, near-infrared (H-band) spectra of hot stars collected as calibration data for the APO Galactic Evolution Experiment (APOGEE) survey. We fit for the optical depths of telluric water vapor absorption features in APOGEE spectra and convert these optical depths to Precipitable Water Vapor (PWV) using contemporaneous data from a GPS-based PWV monitoring station at APO. Based on simultaneous measurements obtained over a 3° field of view, we estimate that our PWV measurement precision is ±0.11 mm. We explore the statistics of PWV variations over a range of timescales from less than an hour to days. We find that the amplitude of PWV variations within an hour is less than 1 mm for most (96.5%) APOGEE field visits. By considering APOGEE observations that are close in time but separated by large distances on the sky, we find that PWV is homogeneous across the sky at a given epoch, with 90% of measurements taken up to 70° apart within 1.5 hr having ΔPWV < 1.0 mm. Our results can be used to help simulate the impact of water vapor absorption on upcoming surveys at continental observing sites like APO, and also to help plan for simultaneous water vapor metrology that may be carried out in support of upcoming photometric and spectroscopic surveys.

  14. The effect of water absorption on the dielectric properties of polyethylene hexagonal boron nitride nanocomposites

    Science.gov (United States)

    Ayoob, Raed; Alhabill, Fuad N.; Andritsch, Thomas; Vaughan, Alun S.

    2018-02-01

    The effect of water absorption on the dielectric response of polyethylene/hexagonal boron nitride nanocomposites has been studied by dielectric spectroscopy. The nanocomposites have been prepared with hBN concentrations ranging from 2 wt% to 30 wt%. Fourier transform infrared spectroscopy and thermogravimetric analysis revealed a very small amount of hydroxyl groups on the surface of hBN. Mass loss measurements showed that the nanocomposites did not absorb any water under ambient and dry conditions while there was some water absorption under wet conditions. The dielectric spectroscopy results showed a broad relaxation peak, indicative of different states of water with water shells of different thickness, which moved to higher frequencies with increasing water content. However, the dielectric losses were significantly lower than the losses reported in the literature of nanocomposites under wet conditions. In addition, all the absorbed water was successfully removed under vacuum conditions which demonstrated that the interactions between the water and the nanocomposites were very weak, due to the hydrophobic nature of the hBN surface. This is a highly useful property, when considering these materials for applications in electrical insulation.

  15. Effect of water absorption on mechanical properties of flax fibre reinforced composites

    CSIR Research Space (South Africa)

    Guduri, BBR

    2007-01-01

    Full Text Available temperature for different time durations. After immersion for 24 h, the specimens were taken out from the water and all surface water was removed with a clean dry cloth or tissue paper. The specimens were reweighed to the nearest 0.1 mg within 1 min... of removing them from the water. The specimens were weighed regularly at 24, 48, 72, 96, 168, 336 and 504 h exposure. The moisture absorption was calculated by the weight difference. The percentage weight gain of the samples was measured at different time...

  16. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    Science.gov (United States)

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  17. Water absorption through salivary gland type I acini in the blacklegged tick, Ixodes scapularis

    Directory of Open Access Journals (Sweden)

    Donghun Kim

    2017-10-01

    Full Text Available Tick salivary glands play critical roles in maintaining water balance for survival, as they eliminate excess water and ions during blood feeding on hosts. In the long duration of fasting in the off-host period, ticks secrete hygroscopic saliva into the mouth cavity to uptake atmospheric water vapor. Type I acini of tick salivary glands are speculated to be involved in secretion of hygroscopic saliva based on ultrastructure studies. However, we recently proposed that type I acini play a role in resorption of water/ions from the primary saliva produced by other salivary acini (i.e., types II and III during the tick blood feeding phase. In this study, we tested the function of type I acini in unfed female Ixodes scapularis. The route of ingested water was tracked after forced feeding of water with fluorescent dye rhodamine123. We found that type-I acini of the salivary glands, but not type II and III, are responsible for water uptake. In addition, the ingestion of water through the midgut was also observed. Injection or feeding of ouabain, a Na/K-ATPase inhibitor, suppressed water absorption in type I acini. When I. scapularis was offered a droplet of water, ticks rarely imbibed water directly (5%, while some approached the water droplet to use the high humidity formed in the vicinity of the droplet (23%. We conclude that during both on- and off-host stages, type I acini in salivary glands of female Ixodes scapularis absorb water and ions.

  18. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    Science.gov (United States)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  19. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.; Cuta, F.M.; Olsen, K.B.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  20. Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet.

    Science.gov (United States)

    Fraine, Jonathan; Deming, Drake; Benneke, Bjorn; Knutson, Heather; Jordán, Andrés; Espinoza, Néstor; Madhusudhan, Nikku; Wilkins, Ashlee; Todorov, Kamen

    2014-09-25

    Transmission spectroscopy has so far detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain atmospheres with high mean molecular weights (little hydrogen), opaque clouds or scattering hazes, reducing our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of the exoplanet HAT-P-11b (which has a radius about four times that of Earth) from the optical wavelength range to the infrared. We detected water vapour absorption at a wavelength of 1.4 micrometres. The amplitude of the water absorption (approximately 250 parts per million) indicates that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height (over which the atmospheric pressure varies by a factor of e). The spectrum is indicative of a planetary atmosphere in which the abundance of heavy elements is no greater than about 700 times the solar value. This is in good agreement with the core-accretion theory of planet formation, in which a gas giant planet acquires its atmosphere by accreting hydrogen-rich gas directly from the protoplanetary nebula onto a large rocky or icy core.

  1. Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity

    DEFF Research Database (Denmark)

    Nielsen, G D; Søderberg, U; Jørgensen, Poul Jørgen

    1999-01-01

    Two studies were performed to examine the influence of fasting and food intake on the absorption and retention of nickel added to drinking water and to determine if nickel sensitization played any role in this regard. First, eight nonallergic male volunteers fasted overnight before being given...... nickel in drinking water (12 micrograms Ni/kg) and, at different time intervals, standardized 1400-kJ portions of scrambled eggs. When nickel was ingested in water 30 min or 1 h prior to the meal, peak nickel concentrations in serum occurred 1 h after the water intake, and the peak was 13-fold higher...... than the one seen 1 h after simultaneous intake of nickel-containing water and scrambled eggs. In the latter case, a smaller, delayed peak occurred 3 h after the meal. Median urinary nickel excretion half-times varied between 19.9 and 26.7 h. Within 3 days, the amount of nickel excreted corresponded...

  2. STUDY OF AN ABSORPTION MACHINE FOR AN AMMONIA-WATER SYSTEM DECENTRALIZED TRIGENERATION

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2016-05-01

    Full Text Available This paper deals with Study of an absorption machine for an ammonia-water system decentralized trigeneration. The effects of evaporator, absorber and boiler temperature on the coefficient of performance of this cycle investigate. Simulation results show that with increasing the evaporator and absorber temperature the coefficient of performance increased and decreased, respectively. By increasing boiler temperature the coefficient of performance is constant.

  3. Limited Effects of Water Absorption on Reducing the Accuracy of Leaf Nitrogen Estimation

    Directory of Open Access Journals (Sweden)

    Blowman J. Wang

    2017-03-01

    Full Text Available Nitrogen is an essential nutrient in many terrestrial ecosystems because it affects vegetation’s primary production. Due to the variety of nitrogen-containing substances and the differences in their composition across species, statistical approaches are now dominant in remote sensing retrieval of leaf nitrogen content. Many studies remove spectral regions characterized by strong water absorptions before retrieving nitrogen content, because water is believed to mask the absorption features of nitrogen. The objectives of this study are to discuss the necessity of this practice and to explore how water absorption affects leaf nitrogen estimation. Spectral measurements and chemical analyses for Maize, Sawtooth Oak, and Sweetgum leaves were carried out in 2014. The leaf optical properties model PROSPECT5 was used to eliminate the influences of water on the measured reflectance spectra. The inversion accuracy of PROPECT5 for chlorophyll, carotenoid, water, and dry matter of Maize was also discussed. Measured, simulated, and water-removed spectra were used to: (1 find the optimal nitrogen-related spectral index; and (2 regress with the area-based leaf nitrogen concentration (LNC using the partial least square regression technique (PLSR. Two types of spectral indices were selected in this study: Normalized Difference Spectral Index (NDSI and Ratio Spectral Index (RSI. Additionally, first-order derivative forms of measured, simulated, and water-removed spectra were devised to search for the optimal spectral indices. Finally, species-specific optimal indices and cross-species optimal indices, as well as their root mean square errors (RMSE and coefficients of determination (R2, were obtained. The Ending Top Percentile (ETP, an indicator of the performance of cross-species optimal indices, was also calculated. PLSR was combined with leave-one-out cross validation (LOOCV for each species. The predicted root mean square errors (RMSEP and predicted R2 were

  4. Improvement of intestinal absorption of water-soluble macromolecules by various polyamines: intestinal mucosal toxicity and absorption-enhancing mechanism of spermine.

    Science.gov (United States)

    Gao, Yang; He, Lin; Katsumi, Hidemasa; Sakane, Toshiyasu; Fujita, Takuya; Yamamoto, Akira

    2008-04-16

    The absorption-enhancing effects of three different polyamines, spermine (SPM), spermidine (SPD) and putrescine (PUT) on the intestinal absorption of water-soluble macromolecules were examined in rats. Fluorescein isothiocyanate-labeled dextrans (FDs) with different average molecular weights were chosen as models of water-soluble macromolecules and intestinal absorption of FDs with or without these polyamines was examined by an in situ closed loop method. The intestinal absorption of fluorescein isothiocyanate-labeled dextran with an average molecular weight of 4400 (FD4) was relatively low in the absence of these polyamines. However, its absorption was improved in the presence of 5-10mM SPM and 10mM SPD in the jejunum and 10mM SPM in the colon, while 10mM PUT had almost no absorption-enhancing effect on the intestinal absorption of FD4. Overall, the enhancing effects of these polyamines were greater in the jejunal membranes than in the colonic membranes. The absorption-enhancing effect of SPM decreased as the molecular weights of FDs increased. The intestinal membrane toxicity of 10mM SPM was evaluated by measuring the amount of protein and activity of lactate dehydrogenase (LDH) released from the intestinal epithelial cells. We also observed the morphological changes of intestinal mucosa in the presence or absence of SPM. The results indicated that the amount of protein and LDH was not changed in the presence of 10mM SPM, although we observed a significant increase in these biological markers in the presence of 3% Triton X-100, as a positive control. Furthermore, we found no significant change in the intestinal membrane with 10mM SPM by the morphological observation. These findings suggested that 10mM SPM did not cause any significant membrane damage to the intestinal epithelium. To investigate the absorption-enhancing mechanism of SPM, the transepithelial electrical resistance (TEER) of the rat jejunal membranes was studied by using a diffusion chamber method

  5. Improvement of scattering correction for in situ coastal and inland water absorption measurement using exponential fitting approach

    Science.gov (United States)

    Ye, Huping; Li, Junsheng; Zhu, Jianhua; Shen, Qian; Li, Tongji; Zhang, Fangfang; Yue, Huanyin; Zhang, Bing; Liao, Xiaohan

    2017-10-01

    The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values in situ using the nine-wavelength absorption and attenuation meter AC9. Establishing the correction always fails in Case 2 water when the correction assumes zero absorption in the near-infrared (NIR) region and underestimates the absorption coefficient in the red region, which affect processes such as semi-analytical remote sensing inversion. In this study, the scattering contribution was evaluated by an exponential fitting approach using AC9 measurements at seven wavelengths (412, 440, 488, 510, 532, 555, and 715 nm) and by applying scattering correction. The correction was applied to representative in situ data of moderately turbid coastal water, highly turbid coastal water, eutrophic inland water, and turbid inland water. The results suggest that the absorption levels in the red and NIR regions are significantly higher than those obtained using standard scattering error correction procedures. Knowledge of the deviation between this method and the commonly used scattering correction methods will facilitate the evaluation of the effect on satellite remote sensing of water constituents and general optical research using different scattering-correction methods.

  6. Water Absorption and HEMA Release of Resin-Modified Glass-Ionomers.

    Science.gov (United States)

    Beriat, Nilufer Celebi; Nalbant, Dilek

    2009-10-01

    The aim of this study was to evaluate the water absorption and the amount of hydroxyethyl metacrylate (HEMA) level released from various resin modified glass ionomer cements. Advance, Vitremer and Protec-Cem resin modified glass ionomer cements were used to evaluate the HEMA release. Ten specimens were fabricated from each cement in 10 x 1 mm height. Thirty specimens were immersed in glass containers filled with 20 ml deionized water. 1 ml solution was taken from the container at 10 minutes, 1 hour, 24 hour and 7 days intervals from each group and analyzed with high performance liquid chromatography (HPLC) machine and the results are presented in ppm. The data were subjected to Kruskal-Wallis, Mann-Whitney and Wilcoxon tests at a 0.05 significance level. At all time intervals Vitremer showed highest HEMA release ( 10 min: 54.2 ppm; 1 h: 86.8 ppm; 24 h: 93.4 ppm) (P=0.0001). At the end of 10 minutes and first hour, following Vitremer, HEMA release was highest for Protec-Cem (10 min: 14.8 ppm; 1 h: 23.6 ppm) and then Advance (10 min: 5.5 ppm; 1 h: 18.8 ppm) (PWater absorption tests were performed according to the specifications of ISO 4049. Water absorption was highest for Vitremer and lowest for the Protec-Cem and the difference among cement groups was significant (Pwater absorption values and Protec-Cem showed the lowest values. HEMA release by time was significant for Advance cement. This release may be relevant both to the risk of adverse pulpal responses in patients and to the risk of allergy in patients and dental personnel.

  7. Orientation of non-spherical protonated water clusters revealed by infrared absorption dichroism.

    Science.gov (United States)

    Daldrop, Jan O; Saita, Mattia; Heyden, Matthias; Lorenz-Fonfria, Victor A; Heberle, Joachim; Netz, Roland R

    2018-01-22

    Infrared continuum bands that extend over a broad frequency range are a key spectral signature of protonated water clusters. They are observed for many membrane proteins that contain internal water molecules, but their microscopic mechanism has remained unclear. Here we compute infrared spectra for protonated and unprotonated water chains, discs, and droplets from ab initio molecular dynamics simulations. The continuum bands of the protonated clusters exhibit significant anisotropy for chains and discs, with increased absorption along the direction of maximal cluster extension. We show that the continuum band arises from the nuclei motion near the excess charge, with a long-ranged amplification due to the electronic polarizability. Our experimental, polarization-resolved light-dark difference spectrum of the light-driven proton pump bacteriorhodopsin exhibits a pronounced dichroic continuum band. Our results suggest that the protonated water cluster responsible for the continuum band of bacteriorhodopsin is oriented perpendicularly to the membrane normal.

  8. Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites

    KAUST Repository

    Alamri, H.

    2013-01-01

    Recycled cellulose fibre (RCF) reinforced epoxy/clay nanocomposites were successfully synthesized with different weight percentages (0%, 1%, 3% and 5%) of organoclay platelets (30B). The objective of this study was to investigate the effect of water absorption on the physical and mechanical properties of the RCF reinforced epoxy/clay nanocomposites. TEM images indicated a well-intercalated structure of nanoclay/epoxy matrix with some exfoliated regions. Water absorption was found to decrease as the clay content increased. The flexural strength, flexural modulus and fracture toughness significantly decreased as a result of water absorption. However, the properties of impact strength and impact toughness were found to increase after exposing to water. The addition of nanoclay slightly minimized the effect of moisture on the mechanical properties. SEM images showed that water absorption severely damaged the cellulose fibres and the bonding at fibres-matrix interfaces in wet composites. © 2012 Elsevier Ltd. All rights reserved.

  9. Water dynamics of Ser-His-Glu-Cys-Asn powder and effects of moisture absorption on its chemical properties.

    Science.gov (United States)

    Lin, Songyi; Xue, Peiyu; Yang, Shuailing; Li, Xingfang; Dong, Xiuping; Chen, Feng

    2017-08-01

    This study has elucidated moisture dynamics in the soybean peptide, Ser-His-Glu-Cys-Asn (SHECN) powder by using dynamic vapor sorption (DVS) and nuclear magnetic resonance (NMR). We also tried to investigate the effects of moisture absorption on the biological activity and chemical properties of SHECN with some effective methods such as mid-infrared (MIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). DVS results showed that the moisture absorption of SHECN could reach a maximum of 33%, and the SHECN powder after synthesis actually existed in a trihydrate state of SHECN.3H2 O. Low-field NMR revealed that three water proportions including strong combined water, binding water and bulk water were involved in SHECN moisture absorption and absored water dominantly existed in the form of combined water. Magnetic resonance imaging (MRI) and MIR spectroscopy results indicated that moisture absorption could change the morphology and structure of SHECN. After moisture absorption at 50% and 75% relative humidity, 19 volatiles were identified by GC-MS analysis. Additionally, this study showed that a part of reductive groups in SHECN was oxidized and its antioxidant ability declined significantly (P < 0.05) after moisture absorption. Water absorbed into SHECN powder can significantly change its microstructure and cause its activity to decrease. We must prevent SHECN from absorbing moisture during storage because the water can accelerate the oxidation of samples and promote microbial reactions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Surface Arsenic Speciation of a Drinking-Water Treatment Residual Using X-Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Makris, K.C.; Sarkar, D.; Parsons, J.G.; Datta, R.; Gardea-Torresdey, J.L.

    2009-06-03

    Drinking-water treatment residuals (WTRs) present a low-cost geosorbent for As-contaminated waters and soils. Previous work has demonstrated the high affinity of WTRs for As, but data pertaining to the stability of sorbed As is missing. Sorption/desorption and X-ray absorption spectroscopy (XAS), both XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) studies, were combined to determine the stability of As sorbed by an Fe-based WTR. Arsenic(V) and As(III) sorption kinetics were biphasic in nature, sorbing <90% of the initial added As (15,000 mg kg{sup -1}) after 48 h of reaction. Subsequent desorption experiments with a high P load (7500 mg kg{sup -1}) showed negligible As desorption for both As species, approximately <3.5% of sorbed As; the small amount of desorbed As was attributed to the abundance of sorption sites. XANES data showed that sorption kinetics for either As(III) or As(V) initially added to solution had no effect on the sorbed As oxidation state. EXAFS spectroscopy suggested that As added either as As(III) or as As(V) formed inner-sphere mononuclear, bidentate complexes, suggesting the stability of the sorbed As, which was further corroborated by the minimum As desorption from the Fe-WTR.

  11. Changes on image texture features of breakfast flakes cereals during water absorption.

    Science.gov (United States)

    Medina, Wenceslao T; Quevedo, Roberto A; Aguilera, José M

    2013-02-01

    Normally breakfast cereal flakes are consumed by pouring them into a bowl and covering them with fresh or cold milk. During this process the liquid uptake causes changes in the surface and internal matrix of breakfast cereals that influence texture and integrity. Some breakfast cereal as flakes have a translucent structure that could provide information about the solid matrix and air cells and how they change during liquid absorption. The objective of the study was to assess the image texture changes of corn flakes and frosted flakes during water absorption at 5, 15 and 25 °C, employing 11 image feature textures extracted from grey-level co-occurrence matrix and grey-level run length matrix (at three directions) and to relate the fractal dimension (FD) of images with rupture force (RF) reduction during soaking of both flakes at 5 °C. The most relevant result from principal component analysis calculated with a matrix of 54 (soaking times) × 22 (texture features), shows that it was possible to distinguish an isolated group consisting of different soaking times at the same water temperature in each breakfast cereal flakes evaluated, corroborating that superficial liquid imbibition is important during the liquid absorption process when flakes are soaked. Furthermore, standardized FD could be related to RF in the period when samples tend to search for an equilibrium state.

  12. Net heterotrophy in Faroe Islands clear-water lakes: causes and consequences for bacterioplankton and phytoplankton

    DEFF Research Database (Denmark)

    Pålsson, C.; Kritzberg, E. S.; Christoffersen, K.

    2005-01-01

    ) and measured the grazing pressure exerted by common mixotrophic species on bacteria. 2. High respiration to primary production (6.6-33.2) and supersaturation of CO2 (830-2140 µatm) implied that the lakes were net heterotrophic and that the pelagic heterotrophic plankton were subsidised by allochthonous organic...... conditions and hence low primary production in combination with an input of allochthonous C with a relatively high availability. 4. Mixotrophic phytoplankton (Cryptomonas spp., Dinobryon spp. and flagellates cf. Ochromonas spp.) constituted a large percentage of the plankton community (17-83%), possibly...... carbon. However, in spite of the apparent high level of net heterotrophy, primary production exceeded bacterial production and the food base for higher trophic levels appeared to be mainly autotrophic. 3. We suggest that the observed net heterotrophy in these lakes was a result of the oligotrophic...

  13. Water absorption and moisture permeation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films.

    Science.gov (United States)

    Bajpai, M; Bajpai, S K; Jyotishi, Pooja

    2016-03-01

    In this work, aqueous solutions of chitosan (Ch) and [poly(acrylamide(AAm)-co-itaconicacid(IA)] have been mixed to yield Ch/poly(AAm-co-IA) Inter-polyelectrolyte complex (IPC) films. The films were characterized by FTIR, X-ray diffraction (XRD) and thermo gravimetric analysis (TGA). There was remarkable increase in the crystalline nature of IPC films. The films were investigated for their water absorption capacity in the physiological fluid (PF) of pH 7.4 at 37 °C. The amount of IA present in the film forming solutions affected the water absorption behavior of the resulting films. The dynamic water uptake data were interpreted by various kinetic models. The effect of pH on the swelling ratio (SR) indicated that the films showed highest swelling in lower as well as higher pH media. The water vapor transmission rates (WVTR) were obtained in the range of 6000-6645 g/m(2)/day. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Direct measurement of the soil water retention curve using X-ray absorption

    Directory of Open Access Journals (Sweden)

    A. Bayer

    2004-01-01

    Full Text Available X-ray absorption measurements have been explored as a fast experimental approach to determine soil hydraulic properties and to study rapid dynamic processes. As examples, the pressure-saturation relation θ(Ψ for a uniform sand column has been considered as has capillary rise in an initially dry sintered glass column. The θ(Ψ-relation is in reasonable agreement with that obtained by inverting a traditional multi-step outflow experiment. Monitoring the initial phase of capillary rise reveals behaviour that deviates qualitatively from the single-phase, local-equilibrium regime described by Richards’ equation. Keywords: X-ray absorption, soil hydraulic properties, soil water dynamics, Richards’ equation

  15. Graphical expression of thermodynamic characteristics of absorption process in ammonia-water system

    Directory of Open Access Journals (Sweden)

    Fortelný Zdeněk

    2012-04-01

    Full Text Available The adiabatic sorption is very interesting phenomenon that occurs when vapor of refrigerant is in contact with unsaturated liquid absorbent-refrigerant mixture and exchange of heat is forbid between the system and an environment. This contribution introduces new auxiliary lines that enable correct position determination of the adiabatic sorption process in the p-T-x diagram of ammoniawater system. The presented auxiliary lines were obtained from common functions for fast calculation of water-ammonia system properties. Absorption cycles designers often utilize p-t-x diagrams of working mixtures for first suggestion of new absorption cycles. The p-t-x diagrams enable fast correct determination of saturate states of liquid (and gaseous mixtures of refrigerants and absorbents. The working mixture isn’t only at saturated state during a real working cycle. If we know pressure and temperature of an unsaturated mixture, exact position determination is possible in the p-t-x diagrams too.

  16. Moisture absorption of starch based biocomposites reinforced with water hyacinth fibers

    Science.gov (United States)

    Abral, H.; Hartono, J.

    2017-06-01

    Bioplastic based on tapioca starch (TSB) is very sensitive on moisture; meanwhile this substance may be used to replace synthetic plastic. This paper reports effect of Water Hyacinth Fibers (WHF) content on performance moisture absorption of starch based biocomposites. WHF content in the TSB matrix was varied in 1, 3, 5, and 10% respectively. The samples were placed in closed room with high relative humidity (RH) of 99% at 250C with different duration for 30 and 960 min respectively. The result showed that moisture absorption in the beginning was increased rapidly, and then achieved a level steady state. After that, significant swelling of the sample occurred for further duration in 960 min. Gradient of the swelling was decreased as increasing the fibers content in the TSB matrix.

  17. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    Science.gov (United States)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and

  18. Effect of Interfacial Polarization and Water Absorption on the Dielectric Properties of Epoxy-Nanocomposites

    Directory of Open Access Journals (Sweden)

    Philipp Marx

    2017-05-01

    Full Text Available Five types of nanofillers, namely, silica, surface-silylated silica, alumina, surface-silylated alumina, and boron nitride, were tested in this study. Nanocomposites composed of an epoxy/amine resin and one of the five types of nanoparticles were tested as dielectrics with a focus on (i the surface functionalization of the nanoparticles and (ii the water absorption by the materials. The dispersability of the nanoparticles in the resin correlated with the composition (OH content of their surfaces. The interfacial polarization of the thoroughly dried samples was found to increase at lowered frequencies and increased temperatures. The β relaxation, unlike the interfacial polarization, was not significantly increased at elevated temperatures (below the glass-transition temperature. Upon the absorption of water under ambient conditions, the interfacial polarization increased significantly, and the insulating properties decreased or even deteriorated. This effect was most pronounced in the nanocomposite containing silica, and occurred as well in the nanocomposites containing silylated silica or non-functionalized alumina. The alternating current (AC breakdown strength of all specimens was in the range of 30 to 35 kV·mm−1. In direct current (DC breakdown tests, the epoxy resin exhibited the lowest strength of 110 kV·mm−1; the nanocomposite containing surface-silylated alumina had a strength of 170 kV·mm−1. In summary, water absorption had the most relevant impact on the dielectric properties of nanocomposites containing nanoparticles, the surfaces of which interacted with the water molecules. Nanocomposites containing silylated alumina particles or boron nitride showed the best dielectric properties in this study.

  19. Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity.

    Science.gov (United States)

    Nielsen, G D; Søderberg, U; Jørgensen, P J; Templeton, D M; Rasmussen, S N; Andersen, K E; Grandjean, P

    1999-01-01

    Two studies were performed to examine the influence of fasting and food intake on the absorption and retention of nickel added to drinking water and to determine if nickel sensitization played any role in this regard. First, eight nonallergic male volunteers fasted overnight before being given nickel in drinking water (12 micrograms Ni/kg) and, at different time intervals, standardized 1400-kJ portions of scrambled eggs. When nickel was ingested in water 30 min or 1 h prior to the meal, peak nickel concentrations in serum occurred 1 h after the water intake, and the peak was 13-fold higher than the one seen 1 h after simultaneous intake of nickel-containing water and scrambled eggs. In the latter case, a smaller, delayed peak occurred 3 h after the meal. Median urinary nickel excretion half-times varied between 19.9 and 26.7 h. Within 3 days, the amount of nickel excreted corresponded to 2.5% of the nickel ingested when it was mixed into the scrambled eggs. Increasing amounts were excreted as the interval between the water and the meal increased, with 25.8% of the administered dose being excreted when the eggs were served 4 h prior to the nickel-containing drinking water. In the second experiment, a stable nickel isotope, 61Ni, was given in drinking water to 20 nickel-sensitized women and 20 age-matched controls, both groups having vesicular hand eczema of the pompholyx type. Nine of 20 nickel allergic eczema patients experienced aggravation of hand eczema after nickel administration, and three also developed a maculopapular exanthema. No exacerbation was seen in the control group. The course of nickel absorption and excretion in the allergic groups did not differ and was similar to the pattern seen in the first study, although the absorption in the women was less. A sex-related difference in gastric emptying rates may play a role. Thus, food intake and gastric emptying are of substantial significance for the bioavailability of nickel from aqueous solutions

  20. Measurements of water molecule density by tunable diode laser absorption spectroscopy in dielectric barrier discharges with gas–water interface

    Science.gov (United States)

    Tachibana, Kunihide; Nakamura, Toshihiro; Kawasaki, Mitsuo; Morita, Tatsuo; Umekawa, Toyofumi; Kawasaki, Masahiro

    2018-01-01

    We measured water molecule (H2O) density by tunable diode-laser absorption spectroscopy (TDLAS) for applications in dielectric barrier discharges (DBDs) with a gas–water interface. First, the effects of water temperature and presence of gas flow were tested using a Petri dish filled with water and a gas injection nozzle. Second, the TDLAS system was applied to the measurements of H2O density in two types of DBDs; one was a normal (non-inverted) type with a dielectric-covered electrode above a water-filled counter electrode and the other was an inverted type with a water-suspending mesh electrode above a dielectric-covered counter electrode. The H2O density in the normal DBD was close to the density estimated from the saturated vapor pressure, whereas the density in the inverted DBD was about half of that in the former type. The difference is attributed to the upward gas flow in the latter type, that pushes the water molecules up towards the gas–water interface.

  1. Effect of twine diameter on fishing power of experimental gill nets used in Greenland waters

    DEFF Research Database (Denmark)

    Hovgård, Holger

    1996-01-01

    The relative fishing powers of experimental gill nets were estimated for shorthorn sculpin (Myoxocephalus scorpius), Greenland cod (Gadus ogac), and Atlantic cod (Gadus morhua). The results suggested that fishing power was negatively correlated to the ratio between twine diameter and mesh size...

  2. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    Science.gov (United States)

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  3. Modeling of water absorption induced cracks in resin-based composite supported ceramic layer structures.

    Science.gov (United States)

    Huang, Min; Thompson, V P; Rekow, E D; Soboyejo, W O

    2008-01-01

    Cracking patterns in the top ceramic layers of the modeled dental multilayers with polymer foundation are observed when they are immersed in water. This article developed a model to understand this cracking mechanism. When water diffuses into the polymer foundation of dental restorations, the foundation will expand; as a result, the stress will build up in the top ceramic layer because of the bending and stretching. A finite element model based on this mechanism is built to predict the stress build-up and the slow crack growth in the top ceramic layers during the water absorption. Our simulations show that the stress build-up by this mechanism is high enough to cause the cracking in the top ceramic layers and the cracking patterns predicted by our model are well consistent with those observed in experiments on glass/epoxy/polymer multilayers. The model is then used to discuss the life prediction of different dental ceramics.

  4. X-ray absorption of liquid water by advanced ab initio methods

    Science.gov (United States)

    Sun, Zhaoru; Chen, Mohan; Zheng, Lixin; Wang, Jianping; Santra, Biswajit; Shen, Huaze; Xu, Limei; Kang, Wei; Klein, Michael L.; Wu, Xifan

    2017-09-01

    Oxygen K -edge x-ray absorption spectra of liquid water are computed based on configurations from advanced ab initio molecular dynamics simulations, as well as an electron excitation theory from the GW method. One the one hand, the molecular structures of liquid water are accurately predicted by including both van der Waals interactions and a hybrid functional (PBE0). On the other hand, the dynamic screening effects on electron excitation are approximately described by the recently developed enhanced static Coulomb-hole and screened-exchange approximation of W. Kang and M. S. Hybertsen [Phys. Rev. B 82, 195108 (2010), 10.1103/PhysRevB.82.195108]. The resulting spectra of liquid water are in better quantitative agreement with the experimental spectra due to the softened hydrogen bonds and the slightly broadened spectra originating from the better screening model.

  5. RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments.

    Science.gov (United States)

    Qureshi, Umair Mujtaba; Shaikh, Faisal Karim; Aziz, Zuneera; Shah, Syed M Zafi S; Sheikh, Adil A; Felemban, Emad; Qaisar, Saad Bin

    2016-06-16

    Underwater Wireless Sensor Network (UWSN) communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM) signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW) at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water) environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss) of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz.

  6. RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments

    Directory of Open Access Journals (Sweden)

    Umair Mujtaba Qureshi

    2016-06-01

    Full Text Available Underwater Wireless Sensor Network (UWSN communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz.

  7. The Potential Use of Nanozycosil and Sodium Montmorillonite (NaMMT) Nanoclay to Decrease Water Absorption in MDF

    OpenAIRE

    Reza Zahed; Hadi Gholamian

    2011-01-01

    In the present study, the potential use of zycosil and clay nanomaterials was examined to decrease water absorption of Medium Density Fiberboard (MDF). For this, a group of MDF samples were coated by nanozycosil and in the other group, nanoclay was used to produce the MDF. Then, water absorption and thickness swelling of the MDFs were evaluated. In order to characterize the structure of the MDF, X-ray diffraction (XRD) and SEM observation were performed. The results of different tests indicat...

  8. Remote sensing as a tool for watershed-wide estimation of net solar radiation and water loss to the atmosphere

    Science.gov (United States)

    Khorram, S.; Thomas, R. W.

    1976-01-01

    Results are presented for a study intended to develop a general remote sensing-aided cost-effective procedure to estimate watershed-wide water loss to the atmosphere via evapotranspiration and to estimate net solar radiation over the watershed. Evapotranspiration estimation employs a basic two-stage two-phase sample of three information resolution levels. Net solar radiation is taken as one of the variables at each level of evapotranspiration modeling. The input information for models requiring spatial information will be provided by Landsat digital data, environmental satellite data, ground meteorological data, ground sample unit information, and topographic data. The outputs of the sampling-estimation/data bank system will be in-place maps of evapotranspiration on a data resolution element basis, watershed-wide evapotranspiration isopleths, and estimates of watershed and subbasin total evapotranspiration with associated statistical confidence bounds. The methodology developed is being tested primarily on the Spanish Creek Watershed Plumas County, California.

  9. Microclimate in ski boots--temperature, relative humidity, and water absorption.

    Science.gov (United States)

    Hofer, Patrick; Hasler, Michael; Fauland, Gulnara; Bechtold, Thomas; Nachbauer, Werner

    2014-05-01

    Ski boot quality is determined by mechanical properties and comfort. Comfort is strongly affected by cold feet. The purpose of this study was to determine the microclimate in ski boots. Climate chamber tests with five male subjects and field tests with two male subjects were conducted. Temperature and relative humidity were measured using four sensors placed on the foot and one on the liner. Absorbed water in liners and socks was measured with a precision balance. The subjects gave subjective ratings for comfort. The toe sensor temperature dropped below 20 °C at an ambient temperature of 0 °C, -10 °C, and -20 °C. Relative humidity values at the foot were as high as 78% in the climate chamber and 93% in the field. Water absorption in socks and liners ranged from 4 to 10 g in the climate chamber and 19 to 45.5 g in the field. The results reveal the importance of keeping the feet and in particular the toes warm during skiing. One possible improvement may be to construct the liner so that sweat and melted snow are kept as far away as possible from the foot. Liner material with high water absorption capacity and hydrophobic socks were suggested to prevent wet feet. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. Mathematical Model of a Lithium-Bromide/Water Absorption Refrigeration System Equipped with an Adiabatic Absorber

    Directory of Open Access Journals (Sweden)

    Salem M. Osta-Omar

    2016-11-01

    Full Text Available The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator, the cooling capacity of the system, and the ratio of the solution mass flow rate at the circulation pump to that at the solution pump are used as input data. The model evaluates the thermodynamic properties of all state points, the heat transfer in each component, the various mass flow rates, and the coefficient of performance (COP of the cycle. The results are used to investigate the effect of key parameters on the overall performance of the system. For instance, increasing the generator temperatures and decreasing the adiabatic absorber temperatures can increase the COP of the cycle. The results of this mathematical model can be used for designing and sizing new LiBr/water absorption refrigeration systems equipped with an adiabatic absorber or for optimizing existing aforementioned systems.

  11. Seasonal variability of the yellow substance absorption in the euphotic zone in the case II waters (Baltic Sea)

    Science.gov (United States)

    Kowalczuk, Piotr

    1997-12-01

    The value of the yellow substances absorption coefficient in the visible-light spectrum is a very important characteristics used in the optical classification of sea waters. This quantity also needs to be included in algorithms for the remote detection of optically-active sea water constituents. An extensive data base of measurements of optical parameters has been collected during series of cruises since 1993 in different water masses of the southern Baltic. The yellow substance absorption coefficient at wavelength 400 nm and yellow substance absorption spectrum slope coefficient were calculated, and the statistical distribution of values of those parameters in the three various waters masses (bay waters, coastal and open sea waters) is presented. The seasonal variability of both parameters in the three regions is analyzed. Results are discussed and compared of with published record of yellow substance properties and variability pattern of other optical properties in the Southern Baltic.

  12. Absorption of crystalline water ice in the far infrared at different temperatures

    Science.gov (United States)

    Reinert, C.; Mutschke, H.; Krivov, A. V.; Löhne, T.; Mohr, P.

    2015-01-01

    The optical properties of ice in the far infrared are important for models of protoplanetary and debris disks. In this report, we derive a new set of data for the absorption (represented by the imaginary part of the refractive index κ) of crystalline water ice in this spectral range. The study includes a detailed inspection of the temperature dependence, which has not been conducted in such detail before. We measured the transmission of three ice layers with different thicknesses at temperatures ϑ = 10...250 K and present data at wavelengths λ = 80...625 μm. We found a change in the spectral dependence of κ at a wavelength of 175 ± 6 μm. At shorter wavelengths, κ exhibits a constant flat slope and no significant temperature dependence. Long-ward of that wavelength, the slope gets steeper and has a clear, approximately linear temperature dependence. This change in behaviour is probably caused by a characteristic absorption band of water ice. The measured data were fitted by a power-law model that analytically describes the absorption behaviour at an arbitrary temperature. This model can readily be applied to any object of interest, for instance a protoplanetary or debris disk. To illustrate how the model works, we simulated the spectral energy distribution (SED) of the resolved, large debris disk around the nearby solar-type star HD 207129. Replacing our ice model by another, commonly used data set for water ice results in a different SED slope at longer wavelengths. This leads to changes in the characteristic model parameters of the disk, such as the inferred particle size distribution, and affects the interpretation of the underlying collisional physics of the disk.

  13. Applicability of energy-positive net-zero water management in Alaska: technology status and case study.

    Science.gov (United States)

    Wu, Tingting; Englehardt, James D; Guo, Tianjiao; Gassie, Lucien; Dotson, Aaron

    2017-11-22

    Challenges of water and wastewater management in Alaska include the potential need for above-grade and freeze-protected piping, high unit energy costs and, in many rural areas, low population density and median annual income. However, recently developed net-zero water (NZW), i.e., nearly closed-loop, direct potable water reuse systems, can retain the thermal energy in municipal wastewater, producing warm treated potable water without the need for substantial water re-heating, heat pumping or transfer, or additional energy conversion. Consequently, these systems are projected to be capable of saving more energy than they use in water treatment and conveyance, in the temperate USA. In this paper, NZW technology is reviewed in terms of potential applicability in Alaska by performing a hypothetical case study for the city of Fairbanks, Alaska. Results of this paper study indicate that in municipalities of Alaska with local engineering and road access, the use of NZW systems may provide an energy-efficient water service option. In particular, case study modeling suggests hot water energy savings are equivalent to five times the energy used for treatment, much greater savings than in mid-latitudes, due largely to the substantially higher energy needed for heating water from a conventional treatment system and lack of need for freeze-protected piping. Further study of the applicability of NZW technology in cold regions, with expanded evaluation in terms of system-wide lifecycle cost, is recommended.

  14. Parameterization of light absorption by components of seawater in optically complex coastal waters of the Crimea Peninsula (Black Sea).

    Science.gov (United States)

    Dmitriev, Egor V; Khomenko, Georges; Chami, Malik; Sokolov, Anton A; Churilova, Tatyana Y; Korotaev, Gennady K

    2009-03-01

    The absorption of sunlight by oceanic constituents significantly contributes to the spectral distribution of the water-leaving radiance. Here it is shown that current parameterizations of absorption coefficients do not apply to the optically complex waters of the Crimea Peninsula. Based on in situ measurements, parameterizations of phytoplankton, nonalgal, and total particulate absorption coefficients are proposed. Their performance is evaluated using a log-log regression combined with a low-pass filter and the nonlinear least-square method. Statistical significance of the estimated parameters is verified using the bootstrap method. The parameterizations are relevant for chlorophyll a concentrations ranging from 0.45 up to 2 mg/m(3).

  15. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    Science.gov (United States)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  16. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    Science.gov (United States)

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-07

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment.

  17. [Detecting Thallium in Water Samples using Dispersive Liquid Phase Microextraction-Graphite Furnace Atomic Absorption Spectroscopy].

    Science.gov (United States)

    Zhu, Jing; Li, Yan; Zheng, Bo; Tang, Wei; Chen, Xiao; Zou, Xiao-li

    2015-11-01

    To develope a method of solvent demulsification dispersive liquid phase microextraction (SD-DLPME) based on ion association reaction coupled with graphite furnace atomic absorption spectroscopy (GFAAS) for detecting thallium in water samples. Methods Thallium ion in water samples was oxidized to Tl(III) with bromine water, which reacted with Cl- to form TlCl4-. The ionic associated compound with trioctylamine was obtained and extracted. DLPME was completed with ethanol as dispersive solvent. The separation of aqueous and organic phase was achieved by injecting into demulsification solvent without centrifugation. The extractant was collected and injected into GFAAS for analysis. With palladium colloid as matrix modifier, a two step drying and ashing temperature programming process was applied for high precision and sensitivity. The linear range was 0.05-2.0 microg/L, with a detection limit of 0.011 microg/L. The relative standard derivation (RSD) for detecting Tl in spiked water sample was 9.9%. The spiked recoveries of water samples ranged from 94.0% to 103.0%. The method is simple, sensitive and suitable for batch analysis of Tl in water samples.

  18. Northern pike bycatch in an inland commercial hoop net fishery: effects of water temperature and net tending frequency on injury, physiology, and survival

    Energy Technology Data Exchange (ETDEWEB)

    Colotelo, Alison HA; Raby, Graham D.; Hasler, Caleb T.; Haxton, Tim; Smokorowski, Karen; Blouin-Demers, Gabriel; Cooke, Steven J.

    2013-01-01

    In lakes and rivers of eastern Ontario (Canada) commercial fishers use hoop nets to target a variety of fishes, but incidentally capture non-target (i.e., bycatch) gamefish species such as northern pike (Esox lucius). Little is known about the consequences of bycatch in inland commercial fisheries, making it difficult to identify regulatory options. Regulations that limit fishing during warmer periods and that require frequent net tending have been proposed as possible strategies to reduce bycatch mortality. Using northern pike as a model, we conducted experiments during two thermal periods (mid-April: 14.45 ± 0.32 °C, and late May: 17.17 ± 0.08 °C) where fish were retained in nets for 2 d and 6 d. A ‘0 d’ control group consisted of northern pike that were angled, immediately sampled and released. We evaluated injury, physiological status and mortality after the prescribed net retention period and for the surviving fish used radio telemetry with manual tracking to monitor delayed post-release mortality. Our experiments revealed that injury levels, in-net mortality, and post-release mortality tended to increase with net set duration and at higher temperatures. Pike exhibited signs of chronic stress and starvation following retention, particularly at higher temperatures. Total mortality rates were negligible for the 2 d holding period at 14 °C, 14% for 6 d holding at 14 °C, 21% for 2 d holding at 17 °C, and 58% for 6 d holding at 17 °C. No mortality was observed in control fish. Collectively, these data reveal that frequent net tending, particularly at warmer temperatures, may be useful for conserving gamefish populations captured as bycatch in inland hoop net fisheries.

  19. Zooplankton data collected from zooplankton net casts in Coastal Waters of Washington / Oregon; 01 January 1969 to 31 December 1972 (NODC Accession 9800078)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton data were collected using zooplankton net casts in Coastal Waters of Washington / Oregon. Data were collected from 01 January 1969 to 31 December 1972 by...

  20. Changes in water absorptivity of slag based cement mortars exposed to sulphur-oxidising A. thiooxidans bacteria

    Science.gov (United States)

    Estokova, A.; Smolakova, M.; Luptakova, A.; Strigac, J.

    2017-10-01

    Water absorptivity is heavily influenced by the volume and connectivity of pores in the pore network of cement composites and has been used as an important parameter for quantifying their durability. To improve the durability and permeability of mortars, various mineral admixtures such as furnace slag, silica fume or fly ash are added into the mortar and concrete mixtures. These admixtures provide numerous important advantages such as corrosion control, improvement of mechanical and physical properties and better workability. This study investigated the changes in absorptivity of cement mortars with different amounts of mineral admixture, represented by granulated blast furnace slag, under aggressive bacterial influence. The water absorptivity of mortars specimens exposed to sulphur-oxidising bacteria A. thiooxidans for the period of 3 and 6 months has changed due to bio-corrosion-based degradation process. The differences in water absorptivity in dependence on the mortars composition have been observed.

  1. A study on flexural and water absorption of surface modified rice husk flour/E-glass/polypropylene hybrid composite

    Science.gov (United States)

    Rassiah, K.; Sin, T. W.; Ismail, M. Z.

    2016-10-01

    This work is to study the effects of rice husk (RH)/E-Glass (EG)/polypropylene (PP) hybrid composites in terms of flexural and water absorption properties. The tests conducted are the flexural test and also the water absorption test using two types of water: distilled and sea water. The hybrid composites are prepared with various ratios of fibre weight fractions and the rice husk is treated using 2% Sodium Hydroxide (NaOH) to improve interaction and adhesion between the non-polar matrix and the polar lignocellulosic fibres. It was found that the content of rice husk/E-Glass fillers affected the structural integrity and flexural properties of hybrid composites. In addition, a higher ratio of rice husk contributes to higher water absorption in the hybrid composites.

  2. Improvements to water use and water stress estimates with the addition of IR and net radiometers to weather stations

    Science.gov (United States)

    Evapotranspiration (ET) is often estimated with the Penman-Monteith (P-M) equation. Net radiation (Rn) is a major component of the surface energy balance and an input to the P-M equation, but it is challenging and expensive to measure accurately. For these reasons, most weather stations do not inclu...

  3. Correlation between hardness and water absorption properties of Saudi kaolin and white clay geopolymer coating

    Science.gov (United States)

    Ramasamy, Shamala; Abdullah, Mohd Mustafa Al Bakri; Huang, Yue; Hussin, Kamarudin; Wang, Jin; Shahedan, Noor Fifinatasha

    2017-09-01

    Geopolymer is an uprising technology that is being studied worldwide. Geopolymer raw materials are basically aluminosilicate source materials. However, this technology is yet to infiltrate into pipelines and coating industries which initiated our research idea. The idea of creating universal geopolymer based coating material is mainly to help oil and gas industry reduce its maintenance cost. Kaolin based geopolymer paste was coated on glass reinforced epoxy (GRE) substrates which are majorly used as pipeline material in the oil and gas industry at Saudi Arabia. Kaolin and white clay was chosen as raw material to study the possibilities of utilizing underused aluminosilicate raw materials for geopolymer coating. To obtain suitable formulation, Na2SiO3/NaOH ratio was varied from 0.40 untill 0.60 while other parameters such as solid/liquid ratio and NaOH molarity were kept constant at values as per previous works. Geopolymer coated GRE substrates were then subjected to water absorption, flexural strength and hardness test to validate our findings. Water absorption is a crucial test as for coating materials which justifies the pratical usability of the coating product. Upon testing, kaolin and white clay based geopolymer coating each shows promising properties at Na2SiO3/NaOH ratio of 0.45 and 0.50 each.

  4. THE IMPACT OF LABORATORY AIR TEMPERATURE AND RELATIVE HUMIDITY ON BENTONITE WATER ABSORPTION CAPACITY

    Directory of Open Access Journals (Sweden)

    Helena Strgar

    2011-12-01

    Full Text Available Bentonite, which is a mineral component of geosynthetic clay liners, has important physical and chemical properties that ensure very small hydraulic permeability. The main component of bentonite is a clay mineral called sodium montmorillonite whose very low permeability is due to its ability to swell. The deposits of bentonite are spread all over the world, however, only a very small number of those deposits satisfies all the quality and durability demands that must be met if the bentonite is to be used in the sealing barriers. Depending on the location of installation and their purpose, geosynthetic clay liners must meet certain requirements. Their compatibility with the prescribed criterion is confirmed through various laboratory procedures. Amongst them are tests examining the index indicators (free swell index, fluid loss index, and water absorption capacity. This paper presents results regarding the impact of laboratory air temperature and relative humidity of the testing area on the water absorption capacity. This is one of the criteria that bentonite must satisfy during the quality and durability control of the mineral component of geosynthetic clay liner (the paper is published in Croatian.

  5. A new method to determine the density and water absorption of fine recycled aggregates

    Directory of Open Access Journals (Sweden)

    Fernando Rodrigues

    2013-01-01

    Full Text Available The construction industry keeps on demanding huge quantities of natural resources, mainly minerals for mortars and concrete production. The depletion of many quarries and environmental concerns about reducing the dumping of construction and demolition waste in quarries have led to an increase in the procuring and use of recycled aggregates from this type of waste. If they are to be incorporated in concrete and mortars it is essential to know their properties to guarantee the adequate performance of the end products, in both mechanical and durability-related terms. Existing regulated tests were developed for natural aggregates, however, and several problems arise when they are applied to recycled aggregates, especially fine recycled aggregates (FRA. This paper describes the main problems encountered with these tests and proposes an alternative method to determine the density and water absorption of FRA that removes them. The use of sodium hexametaphosphate solutions in the water absorption test has proven to improve its efficiency, minimizing cohesion between particles and helping to release entrained air.

  6. Requirements of first-principles calculations of X-ray absorption spectra of liquid water.

    Science.gov (United States)

    Fransson, Thomas; Zhovtobriukh, Iurii; Coriani, Sonia; Wikfeldt, Kjartan T; Norman, Patrick; Pettersson, Lars G M

    2016-01-07

    A computational benchmark study on X-ray absorption spectra of water has been performed by means of transition-potential density functional theory (TP-DFT), damped time-dependent density functional theory (TDDFT), and damped coupled cluster (CC) linear response theory. For liquid water, using TDDFT with a tailored CAM-B3LYP functional and a polarizable embedding, we find that an embedding with over 2000 water molecules is required to fully converge spectral features for individual molecules, but a substantially smaller embedding can be used within averaging schemes. TP-DFT and TDDFT calculations on 100 MD structures demonstrate that TDDFT produces a spectrum with spectral features in good agreement with experiment, while it is more difficult to fully resolve the spectral features in the TP-DFT spectrum. Similar trends were also observed for calculations of bulk ice. In order to further establish the performance of these methods, small water clusters have been considered also at the CC2 and CCSD levels of theory. Issues regarding the basis set requirements for spectrum simulations of liquid water and the determination of gas-phase ionization potentials are also discussed.

  7. Determination of iron in natural and mineral waters by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    ROLANDAS KAZLAUSKAS

    2004-05-01

    Full Text Available Simple methods for the determination of Fe in natural and mineral waters by flame atomic absorption spectrometry (AAS are suggested. The results of the investigation of selectivity of the proposed AAS method proved that this procedure is not affected by high concentrations of other metals. The calibration graph for iron was linear at levels near the detection limit up to at least 0.10 mg ml-1. For the determination of microamounts of iron in mineral waters, an extraction AAS technique was developed. Iron was retained as Fe-8-oxyquinoline complex and extracted into chloroform. The optimal conditions for the extraction of the iron complex were determined. The AAS method was applied to the determination of Fe in mineral waters and natural waters from different areas of Lithuania. The accuracy of the developed method was sufficient and evaluated in comparison with a photometric method. The obtained results demonstrated that the procedure could be successfully applied for the analysis of water samples with satisfactory accuracy.

  8. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China

    Directory of Open Access Journals (Sweden)

    Y. Cheng

    2011-11-01

    Full Text Available The mass absorption efficiency (MAE of elemental carbon (EC in Beijing was quantified using a thermal-optical carbon analyzer. The MAE measured at 632 nm was 8.45±1.71 and 9.41±1.92 m2 g−1 during winter and summer respectively. The daily variation of MAE was found to coincide with the abundance of organic carbon (OC, especially the OC to EC ratio, perhaps due to the enhancement by coating with organic aerosol (especially secondary organic aerosol, SOA or the artifacts resulting from the redistribution of liquid-like organic particles during the filter-based absorption measurements. Using a converting approach that accounts for the discrepancy caused by measurements methods of both light absorption and EC concentration, previously published MAE values were converted to the equivalent-MAE, which is the estimated value if using the same measurement methods as used in this study. The equivalent-MAE was found to be much lower in the regions heavily impacted by biomass burning (e.g., below 2.7 m2 g−1 for two Indian cities. Results from source samples (including diesel exhaust samples and biomass smoke samples also demonstrated that emissions from biomass burning would decrease the MAE of EC. Moreover, optical properties of water-soluble organic carbon (WSOC in Beijing were presented. Light absorption by WSOC exhibited strong wavelength (λ dependence such that absorption varied approximately as λ−7, which was characteristic of the brown carbon spectra. The MAE of WSOC (measured at 365 nm was 1.79±0.24 and 0.71±0.20 m2 g−1 during winter and summer respectively. The large discrepancy between the MAE of WSOC during winter and summer was attributed to the difference in the precursors of SOA such that anthropogenic volatile organic compounds (AVOCs should be more important as the precursors of SOA in winter. The MAE of WSOC in Beijing was much higher than results from

  9. Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations

    Science.gov (United States)

    Wentz, Frank J.; Meissner, Thomas

    2016-05-01

    The Liebe and Rosenkranz atmospheric absorption models for dry air and water vapor below 100 GHz are refined based on an analysis of antenna temperature (TA) measurements taken by the Global Precipitation Measurement Microwave Imager (GMI) in the frequency range 10.7 to 89.0 GHz. The GMI TA measurements are compared to the TA predicted by a radiative transfer model (RTM), which incorporates both the atmospheric absorption model and a model for the emission and reflection from a rough-ocean surface. The inputs for the RTM are the geophysical retrievals of wind speed, columnar water vapor, and columnar cloud liquid water obtained from the satellite radiometer WindSat. The Liebe and Rosenkranz absorption models are adjusted to achieve consistency with the RTM. The vapor continuum is decreased by 3% to 10%, depending on vapor. To accomplish this, the foreign-broadening part is increased by 10%, and the self-broadening part is decreased by about 40% at the higher frequencies. In addition, the strength of the water vapor line is increased by 1%, and the shape of the line at low frequencies is modified. The dry air absorption is increased, with the increase being a maximum of 20% at the 89 GHz, the highest frequency considered here. The nonresonant oxygen absorption is increased by about 6%. In addition to the RTM comparisons, our results are supported by a comparison between columnar water vapor retrievals from 12 satellite microwave radiometers and GPS-retrieved water vapor values.

  10. The effect of sewage sludge application on the growth and absorption rates of Pb and As in water spinach

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2016-01-01

    Full Text Available This paper investigated the effect of the application of sewage sludge on the growth rates and absorption rates of Pb and As in potted water spinach. Our results indicated that application of sewage sludge promoted vegetable growth, and the dry weight of water spinach reached a maximal value (4.38 ± 0.82 g upon 8% sludge application. We also found that the dry weights of water spinach after treatment were all greater than those of the control systems (CK. Treatment with sludge promoted the absorption of Pb and As in water spinach, with a significant (p < 0.05 increase of absorbed Pb following treatment concentrations above 10%, and a peak absorption of As at 8%. Finally, we found that concentrations of Pb and As were higher in rhizosphere-attached soil than in free pot.

  11. Effects of water vapor absorption on the physical and chemical stability of amorphous sodium indomethacin.

    Science.gov (United States)

    Tong, Ping; Zografi, George

    2004-03-12

    This study reports on the effects that water absorbed into amorphous sodium indomethacin (NaIMC) can have on simultaneous tendencies to crystallize to its trihydrate form and to undergo base-catalyzed hydrolysis because of the plasticizing effects of water on molecular mobility. Measurement of water vapor absorption at 30 degrees C and powder x-ray diffraction patterns as a function of relative humidity (RH) reveal that upon exposure to 21% RH, NaIMC does not crystallize over a 2-month period. Measurements of the glass transition temperature as a function of such exposure reveals a change in T(g) from 121 degrees C, dry, to 53 degrees C at 21% RH, such that T(g) at 21% RH is approximately 13 degrees C above the highest storage temperature of 40 degrees C used in the study. At 56% RH and higher, however, crystallization to the trihydrate occurs rapidly; although over the 2-month period, crystallization was never complete. Assessment of chemical degradation by high-performance liquid chromatography analysis revealed significant instability at 21% RH; whereas at higher RH, the extent of chemical degradation was reduced, reflecting the greater crystallization to the more chemically stable crystalline form. It is concluded that when amorphous forms of salts occur in solid dosage forms, the simultaneous effects of enhanced water vapor sorption on crystallization and chemical degradation must be considered, particularly when assessing solid-state chemical degradation at higher temperatures and RH (eg, 40 degrees C 75% RH).

  12. Fabrication of Porous Ceramic-Geopolymer Based Material to Improve Water Absorption and Retention in Construction Materials: A Review

    Science.gov (United States)

    Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.

    2017-06-01

    Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.

  13. Influence of Water Absorption on Volume Resistivity and the Dielectric Properties of Neat Epoxy Material

    KAUST Repository

    Sulaimani, Anwar Ali

    2014-07-15

    Influence of Water Absorption on the Dielectric Properties and Volume Resistivity of Neat Epoxy Material Anwar Ali Sulaimani Epoxy resins are widely used materials in the industry as electrical insulators, adhesives and in aircrafts structural components because of their high mechanical sti ness, strength and high temperature and chemical resistance properties. But still, the in uence of water uptake due to moisture adsorption is not fully understood as it detrimentally modi es the electrical and chemical properties of the material. Here, we investigate the in uence of water moisture uptake on the neat epoxy material by monitoring the change in the volume resistivity and dielectric properties of epoxy material at three di erent thickness con gurations: 0.250 mm, 0.50 mm and 1 mm thicknesses. Gravimetric analysis was done to monitor the mass uptake behaviour, Volume Resistivity was measured to monitor the change in conductivity of the material, and the dielectric properties were mapped to characterise the type of water mechanism available within the material during two ageing processes of sorption and desorption. Two-stage behaviours of di usion and reaction have been identi ed by the mass uptake analysis. Moreover, the plot of volume resistivity versus mass uptake has indi- cated a non-uniform relationship between the two quantities. However, the analysis of the dielectric spectrum at medium range of frequency and time has showed a change 5 in the dipolar activities and also showed the extent to which the water molecules can be segregated between bounding to the resin or existing as free water.

  14. Light absorption and partitioning in Arctic Ocean surface waters: impact of multiyear ice melting

    Directory of Open Access Journals (Sweden)

    S. Bélanger

    2013-10-01

    Full Text Available Ice melting in the Arctic Ocean exposes the surface water to more radiative energy with poorly understood effects on photo-biogeochemical processes and heat deposition in the upper ocean. In August 2009, we documented the vertical variability of light absorbing components at 37 stations located in the southeastern Beaufort Sea including both Mackenzie River-influenced waters and polar mixed layer waters. We found that melting multiyear ice released significant amount of non-algal particulates (NAP near the sea surface relative to subsurface waters. NAP absorption coefficients at 440 nm (aNAP(440 immediately below the sea surface were on average 3-fold (up to 10-fold higher compared to subsurface values measured at 2–3 m depth. The impact of this unusual feature on the light transmission and remote sensing reflectance (Rrs was further examined using a radiative transfer model. A 10-fold particle enrichment homogeneously distributed in the first meter of the water column slightly reduced photosynthetically available and usable radiation (PAR and PUR by ∼6 and ∼8%, respectively, relative to a fully homogenous water column with low particle concentration. In terms of Rrs, the particle enrichment significantly flattered the spectrum by reducing the Rrs by up to 20% in the blue-green spectral region (400–550 nm. These results highlight the impact of meltwater on the concentration of particles at sea surface, and the need for considering non-uniform vertical distribution of particles in such systems when interpreting remotely sensed ocean color. Spectral slope of aNAP spectra calculated in the UV (ultraviolet domain decreased with depth suggesting that this parameter is sensitive to detritus composition and/or diagenesis state (e.g., POM (particulate organic matter photobleaching.

  15. Effect of aminoalkyl methacrylate copolymer E/HCl on in vivo absorption of poorly water-soluble drug.

    Science.gov (United States)

    Yoshida, Takatsune; Kurimoto, Ippei; Yoshihara, Keiichi; Umejima, Hiroyuki; Ito, Naoki; Watanabe, Shunsuke; Sako, Kazuhiro; Kikuchi, Akihiko

    2013-11-01

    This study aimed to investigate in vivo absorption of tacrolimus formulated as a solid dispersion using Eudragit E®/HCl (E-SD). E-SD is an aminoalkyl methacrylate copolymer that can be dissolved under neutral pH conditions. E-SD was used alone as a solid dispersion carrier and/or was mixed with tacrolimus primarily dispersed with hydroxypropylmethylcellulose (HPMC). Tacrolimus was formulated with E-SD at several different ratios. Formulations with tacrolimus/E-SD ratio of 1/3 showed higher in vivo absorption, compared to tacrolimus dispersed in the excipients (primarily HPMC) found in commercially available tacrolimus capsules, using a rat in situ closed loop method. Good correlation was observed between in vitro drug solubility and in vivo drug absorption. In vitro solubility tests and rat oral absorption studies of tacrolimus/HPMC solid dispersion formulations were also conducted after mixing the HPMC dispersion with several ratios of E-SD. E-SD/tacrolimus/HPMC formulations yielded high in vitro drug solubility but comparatively low in vivo absorption. Dog oral absorption studies were conducted using capsules containing a formulation of tacrolimus/E-SD at a ratio of 1/5. The E-SD formulation-containing capsule showed higher in vivo drug absorption than tacrolimus dispersed in the standard HPMC capsule. These studies report enhancement of the in vivo absorption of a poorly water-soluble drug following dispersion with E-SD when compared to formulation in HPMC.

  16. Bile diversion in rats leads to a decreased plasma concentration of linoleic acid which is not due to decreased net intestinal absorption of dietary linoleic acid

    NARCIS (Netherlands)

    Minich, DM; Kalivianakis, M; Havinga, R; van Goor, H; Stellaard, F; Vonk, RJ; Kuipers, F; Verkade, HJ

    1999-01-01

    Decreased bile secretion into the intestine has been associated with low plasma concentrations of essential fatty acids (EFA) in humans. We studied the mechanism behind this relationship by determining the status and absorption of the major dietary EFA, linoleic acid (LA), in control and 1-week

  17. Effect of drying method on mechanical, thermal and water absorption properties of enzymatically crosslinked gelatin hydrogels

    Directory of Open Access Journals (Sweden)

    RAYSSA C. SIMONI

    Full Text Available ABSTRACT Enzymatically crossliked gelatin hydrogel was submitted to two different drying methods: air drying and freeze drying. The resulting polymeric tridimensional arrangement (compact or porous, respectively led to different thermal and swelling properties. Significant differences (p < 0.05 on thermal and mechanical characteristics as well as swelling in non-enzymatic gastric and intestinal simulated fluids (37 ºC were detected. Water absorption data in such media was modelled according to Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin equations. Freeze dried hydrogel showed Fickian diffusion behavior while air dried hydrogels presented poor adjustment to Higuchi model suggesting the importance of the relaxation mechanism at the beginning of swelling process. It was possible to conclude that the same gelatin hydrogel may be suitable to different applications depending on the drying process used.

  18. Standard Test Method for Water Absorption of Core Materials for Structural Sandwich Constructions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of the relative amount of water absorption by various types of structural core materials when immersed or in a high relative humidity environment. This test method is intended to apply to only structural core materials; honeycomb, foam, and balsa wood. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given may be approximate. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. Thermal properties, curing characteristics and water absorption of soybean oil-based thermoset

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available Epoxidized soybean oil (ESO was successfully thermal-cured by using methylhexahydrophthalic anhydride (MHHPA curing agent, in the presence of tetraethylammonium bromide (TEAB catalyst of varied concentration (0.3–0.8 phr. The polyesterification process of ESO thermoset was proven and supported by Fourier transforms infrared spectroscopy (FTIR and gas chromatography-mass spectroscopy analysis (GC-MS. A possible chemical reaction of the MHHPA, TEAB and ESO was proposed based on the experimental work. Differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA revealed that there is a positive relationship between the degree of conversion and crosslink density of ESO thermoset with TEAB concentration. The kinetics of water absorption of the ESO thermoset were found to conform to Fickian law behavior.

  20. An Attosecond Transient Absorption Spectroscopy Setup with a Water Window Attosecond source

    Science.gov (United States)

    Chew, Andrew; Yin, Yanchun; Li, Jie; Ren, Xiaoming; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-04-01

    Attosecond transient absorption, or time-resolved pump-probe spectroscopy, are excellent tools that can be used to investigate fast electron dynamics for a given atomic or molecular system. Recent push for high energy long wavelength few cycle laser sources has resulted in the production of x-ray spectra that would allow the probing of electron dynamics at the carbon k-edge in molecules such as CH4 and CO2. The motion of charges can be caused by photo-dissociation and charge migration. We present here the first results from our experimental setup where we produce a broadband attosecond pulse with spectra that stretches into the water window. National Science Foundation (1068604), Army Research Oce (W911NF-14-1-0383), Air Force Oce of Scientic Research (FA9550-15-1-0037, FA9550-16-1-0013) and the DARPA PULSE program by a Grant from AMRDEC (W31P4Q1310017).

  1. Electronic absorption line shapes at the water liquid/vapor interface.

    Science.gov (United States)

    Nelson, Katherine V; Benjamin, Ilan

    2012-04-12

    In order to investigate the factors that contribute to the electronic absorption line shape of a chromophore adsorbed at the water liquid/vapor interface, molecular dynamics simulations of a series of dipolar solutes undergoing various electronic transitions at various locations along the interface normal are studied. For electronic transitions that involve a change in the permanent dipole moment of the solute, the transition from the bulk water to the liquid/vapor interface involves a spectral shift consistent with the lower polarity of the interface. The change in the spectral width relative to that in the bulk is determined by several factors, which, depending on the nature of the transition and the dipole moment of the initial state, can result in a narrowing or broadening of the spectrum. These factors include the location of the interface region (which directly correlates with local polarity), the heterogeneity of the local solvation shell, and the width of the surface region. The contribution of the heterogeneity of the local solvation shell can be determined by comparing surface water with bulk methanol, whose polarity is comparable to one of the surface regions.

  2. Starch-based hydrogel loading with carbendazim for controlled-release and water absorption.

    Science.gov (United States)

    Bai, Chan; Zhang, Sufen; Huang, Lei; Wang, Haiyan; Wang, Wei; Ye, Qingfu

    2015-07-10

    Starch, with properties of eco-friendliness and abundance, is one of the most important natural polymers. Starch-based hydrogels were investigated as carriers of carbendazim to combine controlled-release and water absorption (WA). Three carbendazim-loaded hydrogels (CLHs) with different WA capacities were prepared by solution polymerization. The CLHs were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and liquid-chromatography mass-spectrometry (LC-MS/MS). Release kinetics of CLHs was investigated using (14)C-labeling method. The diffusion parameters of CLHs were 0.47, 0.57 and 0.81 in deionized H2O (ddH2O). WA affected release profile significantly, the release longevity reaching 240 h when WA was 800 g/g in ddH2O. Solution pH influenced release profiles and the lowest release rate occurred in the lowest pH. Addition of CLH (1.3g/kg soil) markedly increased water-holding capacity (WHC) of soil by 8.2%. The study indicated that starch-based CLH was a good controlled-release agent for carbendazim and water absorbent for soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Intrinsic UV absorption spectrometry observed with a liquid core waveguide as a sensor technique for monitoring ozone in water.

    Science.gov (United States)

    Le, Trang; Tao, Shiquan

    2011-08-21

    The industrial use of ozone as a sanitizing agent in water treatment and food processing in recent years calls for sensor technologies for monitoring ozone in water for process control. Ozone molecules absorb UV light with a peak absorption wavelength at 254 nm. This property has been used in this work to develop a simple sensor technology for online, real-time continuous monitoring of trace ozone in water. A Teflon AF2400 tube filled with pure water forms a liquid core waveguide (LCW), which is used as a long-path-length optical absorption cell. This pure water filled tube was deployed into a water sample. Ozone molecules dissolved in the water sample permeate through the Teflon AF2400 tube wall and dissolve in water filled in the tube. This prevents interference species from entering the LCW, and eliminates interferences. The optical absorption signal of the long-path-length cell at 254 nm measured by guiding light through the LCW is used as a sensing signal. This simple structured sensor does not involve any chemical reagent, is reversible, and has a response time <4.5 minutes. It can be used to detect ozone in water samples down to 3.6 × 10(-9) mol L(-1).

  4. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    Science.gov (United States)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  5. In air synthesis of Psy-cl-poly(AAm network and its application in water-absorption from oil-water emulsions

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available In this current investigation psyllium has been functionalized with acrylamide in the presence of potassium persulphate (KPS-hexamethylene tetramine (HMTA as an initiator-crosslinker system. After the initial optimization of different reaction parameters the resultant hydrogel was used for the absorption of water from different water-oil emulsions as a function of time, temperature, pH and NaCl concentration. 4216% of water absorption with 4.279·10–2 mol·l-1 HMTA concentration has been observed.

  6. Absorption and effect of the magnesium content of a mineral water in the human body.

    Science.gov (United States)

    Kiss, Sandor A; Forster, Tamás; Dongó, Agnes

    2004-12-01

    The kinetics of magnesium (Mg) absorption, after drinking Magnesia mineral water (204 mg Mg/L), was investigated in healthy humans aged (23-60 yrs). Serum Mg, calcium (Ca), potassium (K) and sodium (Na) content, blood hemoglobin, erythrocyte and white blood cell counts as well as urinary volume and urine Mg content were evaluated. Subjects drank 1.5 liters of Magnesia in 30 minutes; blood and the other tests were taken at 0, 2, 6, 24 and 48 hours, and after 1, 2, 3 and 4 weeks. Serum ion quotient was calculated. Serum Mg levels increased in all cases, and returned to individual normal values after 48 hrs. Subjects drank copious amounts of the mineral water only on the first two days, later they consumed one glass of mineral water at a time, totalling 1-1.5 liters daily. Urinary volume and its Mg content significantly increased, with individual differences in urine Mg content depending on degrees of tissue Mg deficiency. For example, two subjects, who had the same initial serum Mg levels (79 m/M/L), responded to consumption of Magnesia mineral water similarly, with comparable rise of serum Mg but with different urinary Mg excretion, one rapidly excreting Mg, while the other lost less Mg over a longer period of time. The retention of more Mg in one than the other suggests that she had a "hidden" tissue Mg deficiency, despite a serum Mg level within normal limits. No subject experienced ECG or rhythm disturbance, and blood pressure remained unchanged during the study. One patient developed diarrhea. Magnesia's high Mg (204 mg/M) and low Na (5.4 mg/L) content makes it an excellent source of Mg for patients suffering from heart problems and/or high blood pressure.

  7. Light absorption and the photoformation of hydroxyl radical and singlet oxygen in fog waters

    Science.gov (United States)

    Kaur, R.; Anastasio, C.

    2017-09-01

    The atmospheric aqueous-phase is a rich medium for chemical transformations of organic compounds, in part via photooxidants generated within the drops. Here we measure light absorption, photoformation rates and steady-state concentrations of two photooxidants - hydroxyl radical (•OH) and singlet molecular oxygen (1O2*) - in 8 illuminated fog waters from Davis, California and Baton Rouge, Louisiana. Mass absorption coefficients for dissolved organic compounds (MACDOC) in the samples are large, with typical values of 10,000-15,000 cm2 g-C-1 at 300 nm, and absorption extends to wavelengths as long as 450-600 nm. While nitrite and nitrate together account for an average of only 1% of light absorption, they account for an average of 70% of •OH photoproduction. Mean •OH photoproduction rates in fogs at the two locations are very similar, with an overall mean of 1.2 (±0.7) μM h-1 under Davis winter sunlight. The mean (±1σ) lifetime of •OH is 1.6 (±0.6) μs, likely controlled by dissolved organic compounds. Including calculated gas-to-drop partitioning of •OH, the average aqueous concentration of •OH is approximately 2 × 10-15 M (midday during Davis winter), with aqueous reactions providing approximately one-third of the hydroxyl radical source. At this concentration, calculated lifetimes of aqueous organics are on the order of 10 h for compounds with •OH rate constants of 1 × 1010 M-1 s-1 or higher (e.g., substituted phenols such as syringol (6.4 h) and guaiacol (8.4 h)), and on the order of 100 h for compounds with rate constants near 1 × 109 M-1 s-1 (e.g., isoprene oxidation products such as glyoxal (152 h), glyoxylic acid (58 h), and pyruvic acid (239 h)). Steady-state concentrations of 1O2* are approximately 100 times higher than those of •OH, in the range of (0.1-3.0) × 10-13 M. Since 1O2* is a more selective oxidant than •OH, it will only react appreciably with electron-rich species such as dimethyl furan (lifetime of 2.0 h) and

  8. Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination.

    Science.gov (United States)

    Tuzen, Mustafa; Citak, Demirhan; Mendil, Durali; Soylak, Mustafa

    2009-04-15

    A speciation procedure for As(III) and As(V) ions in environmental samples has been presented. As(V) was quantitatively recovered on aluminum hydroxide precipitate. After oxidation of As(III) by using dilute KMnO(4), the developed coprecipitation was applied to determination of total arsenic. Arsenic(III) was calculated as the difference between the total arsenic content and As(V) content. The determination of arsenic levels was performed by hydride generation atomic absorption spectrometry (HG-AAS). The analytical conditions for the quantitative recoveries of As(V) including pH, amount of aluminum as carrier element and sample volume, etc. on the presented coprecipitation system were investigated. The effects of some alkaline, earth alkaline, metal ions and also some anions were also examined. Preconcentration factor was calculated as 25. The detection limits (LOD) based on three times sigma of the blank (N: 21) for As(V) was 0.012 microg L(-1). The satisfactory results for the analysis of arsenic in NIST SRM 2711 Montana soil and LGC 6010 Hard drinking water certified reference materials for the validation of the method was obtained. The presented procedure was successfully applied to real samples including natural waters for arsenic speciation.

  9. Terahertz Absorption of Chemicals in Water: Ideal and Real Solutions and Mixtures

    Science.gov (United States)

    Funkner, Stefan; Niehues, Gudrun; Schmidt, Diedrich A.; Bründermann, Erik

    2013-08-01

    Complex biomolecules, such as proteins in liquids, show specific terahertz dynamics in reactions or in protein folding as measured by static or kinetic absorption. The complex nature of biomolecules requires investigating their frequency, space, and time characteristics via a multimodal approach that changes external parameters such as temperature, pressure, concentration, and solvents. Terahertz spectroscopy can add a new and deeper understanding to existing techniques in other spectral regions of the biological dynamics in the solvent of life, i.e. water. To understand more deeply complex liquids or macromolecules in water, it is essential to understand the building blocks of solutions, which may contain salts, or are components of larger molecules such as amino acids. Although this research mainly affects basic science, a few applications are in progress, some create interest in industry, and several pathways for new applications relevant to medical science are in view. In this article, we review THz spectroscopy of solutions and concentrate our description to liquids with small solutes such as salts and amino acids, and review the prerequisites for obtaining THz data from aqueous solutions.

  10. RESEARCH ON TRANSFER OF LIQUID WATER ABSORPTION OF KNITTED STRUCTURES FOR SOCKS DESTINATION

    Directory of Open Access Journals (Sweden)

    VLAD Dorin

    2016-05-01

    Full Text Available For to adjust the heat, body removes heat. Depending on physical effort, it gives more or less moisture. Moisture removed from the body should be taken from the skin and directed outwards through clothing. This can be due to moisture absorption ability, and because of the capillary effect. This study is a part of a very extensive work on the influence of characteristics and raw materials, knitted structure and density on comfort properties of socks. If a high level of perspiration, moisture liquid, it is important that it be removed as quickly from skin and clothing led outside. From here can evaporate into the environment. This is achieved through the capillary effect of fabrics that may effectively transport moisture. Storage capacity and moisture transfer of a textile depends on the composition and structure. In laboratory conditions, methods for assessing the behavior of textiles against moisture is applied differentially depending on the state humidity: vapor or liquid. With this method of determining the capacity of absorbing water by capillary action, samples have dimensions of 200/200 mm and at one end is immersed in water. The samples knit were made in two versions of the fineness machine.

  11. Comparative Evaluation of Sealing Ability, Water Absorption, and Solubility of Three Temporary Restorative Materials: Anin vitroStudy.

    Science.gov (United States)

    Prabhakar, A R; Shantha Rani, N; V Naik, Saraswathi

    2017-01-01

    The quality of the coronal seal of root canal filling material is important for periapical health. Absorption of water or saliva by the temporary restorative materials leads to dimensional changes, loss of retention, staining and breaking in margin contours. Hence this study was carried out to evaluate and compare the sealing properties, water absorption and solubility of IRM (intermediate restorative material), Cavit G and GC Caviton. Experimental, in vitro intergroup randomized control trial. 36 non carious premolars were randomly selected assigned to three groups, 12 teeth in each. Standard endodontic access cavities of approximately 4x4mm wide were prepared followed by the root canal obturation with Gutta-percha and restoration with experimental materials. For microleakage testing dye penetration method was used with 2% methylene blue dye. Followed by evaluation and scoring under stereomicroscope at 40x magnification. Disc shaped 12 specimens for each group were prepared for each material, stored in desiccator at 37° C, weighed daily to verify mass stabilization (dry mass,m1). Thereafter, the specimens were stored in distilled water at 37°C for 7days to obtain the mass after saturation with water (m2). The specimens were placed in the desiccators again, at 37° C, and reweighed until a constant dry mass is obtained (m3). Water absorption (WS) and solubility (SL) was determined by using the formulas, WS = m3 - m2/V and SL= ml - m3/ V. GC Caviton showed least microleakage and least water absorption followed by IRM and Cavit G, the differences were statistically highly significant ( p Cavit G. Prabhakar AR, Rani NS, Naik SV. Comparative Evaluation of Sealing Ability, Water Absorption, and Solubility of Three Temporary Restorative Materials: An in vitro Study. Int J Clin Pediatr Dent 2017;10(2):136-141.

  12. Longitudinal dose distribution and energy absorption in PMMA and water cylinders undergoing CT scans.

    Science.gov (United States)

    Li, Xinhua; Zhang, Da; Liu, Bob

    2014-10-01

    The knowledge of longitudinal dose distribution provides the most direct view of the accumulated dose in computed tomography (CT) scanning. The purpose of this work was to perform a comprehensive study of dose distribution width and energy absorption with a wide range of subject sizes and beam irradiated lengths. Cumulative dose distribution along the z-axis was calculated based on the previously published CT dose equilibration data by Li, Zhang, and Liu [Med. Phys. 40, 031903 (10pp.) (2013)] and a mechanism for computing dose on axial lines by Li, Zhang, and Liu [Med. Phys. 39, 5347-5352 (2012)]. Full width at half maximum (FWHM), full width at tenth maximum (FWTM), the total energy (E) absorbed in a small cylinder of unit mass per centimeter square about the central or peripheral axis, and the energy (Ein) absorbed inside irradiated length (L) were subsequently extracted from the dose distribution. Extensive results of FWHM, FWTM, and Ein/E were presented on the central and peripheral axes of infinitely long PMMA (diameters 6-50 cm) and water (diameters 6-55 cm) cylinders with L explanation of dose distribution width results was presented. This study enables the reader to gain a comprehensive view of dose distribution width and energy absorption and provides useful data for estimating doses to organs inside or beyond the irradiated region. The dose length product (DLP) presented by CT scanners is equal to neither E nor Ein. Both E and Ein can be evaluated using the equations and results presented in this paper and are robust with both constant and variable tube current scanning techniques.

  13. Net removal of dissolved organic carbon in the anoxic waters of the Black Sea

    NARCIS (Netherlands)

    Margolin, A.R.; Gerringa, L.J.A.; Hansell, D.A.; Rijkenberg, M.J.A.

    2016-01-01

    Dissolved organic carbon (DOC) concentrations in the deep Black Sea are ~2.5 times higher than found in the globalocean. The two major external sources of DOC are rivers and the Sea of Marmara, a transit point for waters from theMediterranean Sea. In addition, expansive phytoplankton blooms

  14. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.; Nix, G.

    2001-08-06

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures.

  15. Preventing microbial growth on pall-rings when upgrading biogas using absorption with water wash

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Anna

    2006-07-15

    For produced biogas to be usable as vehicle fuel it has to be upgraded to a higher energy content. This is accomplished by elevation of the methane concentration through removal of carbon dioxide. Absorption with water wash is the most common upgrading method used in Sweden today. The upgrading technique is based on the fact that carbon dioxide is more soluble in water than methane. Upgrading plants that utilises this method have problems with microbial growth in the system. This growth eventually leads to a stop in operation due to the gradually drop in upgrading capacity. The aim of this thesis were to evaluate the possibility to through some kind of water treatment maintain an acceptable level of growth or altogether prevent it in order to maintain an acceptable process capacity and thereby avoid the need to clean. Through collection of literature the implementation possibilities were evaluated with regard to efficiency, economic sustainability and if there would be a release of any harmful substances. In order to prevent the microbial growth in the columns the treatment should either focus on removing microorganisms or limit the accessible nutrients. For the single pass system it is concluded that the treatment should reduce the biofilm formation and be employed in an intermittent way. Among the evaluated treatments focusing on the reduction of microorganisms the addition of peracetic acid seems to be the most promising one. For the regenerating system the treatment method could focus on either one. As for the single pass system peracetic acid could be added to reduce the amount of microorganism. To reduce the amount of organic matter an advanced oxidation process could be deployed with the advantage that it also could remove the microorganisms.

  16. Fiscal Year 2013 Net Zero Energy-Water-Waste Portfolio for Fort Leonard Wood

    Science.gov (United States)

    2014-12-01

    Stormwater Management Implement and achieve objectives from USEPA Army Policy Army Sustainable Design and Development Policy, December 2013...facilities with follow-up projects, ERDC/CERL SR-14-11 54 and established stormwater management requirements. EO 13514 extend- ed water reduction...EnEff Stadt (a comprehen- sive approach to urban areas with local and district heating networks), the World Bank Energy Sector Management Assistance

  17. Simulated body fluid and water absorption effects on poly(methyl methacrylate/hydroxyapatite denture base composites

    Directory of Open Access Journals (Sweden)

    2010-09-01

    Full Text Available Poly(methyl methacrylate (PMMA/hydroxyapatite (HA composite has potential application in denture base materials. The denture base materials should exhibit good mechanical properties and dimensional stability in moist environment. Silane coupling agent [3-methacryloxypropyltrimethoxy silane (γ-MPS] was used to treat the HA fillers in order to enhance the interfacial interaction between the PMMA and HA. In this research, the kinetics and effects of Simulated Body Fluid (SBF and water absorption on the flexural properties of PMMA/HA composites were studied for an immersion duration of 2 months. The mathematical treatment used in analyzing the data was the single free phase model of diffusion, which assumed Fickian diffusion and utilized Fick’s second law of diffusion. The kinetics of water absorption of the PMMA/HA composites conformed to Fickian law behavior, whereby the initial moisture absorption follows a linear relationship between the percentage gain at any time t and t1/2, followed by saturation. It was found that the equilibrium moisture content and the diffusion coefficient are depending on the concentration of γ-MPS in PMMA/5HA composites. The reduction of equilibrium moisture content of PMMA/5HA is due to the hydrophobic behavior of γ-MPS and compatibility of PMMA with HA. The retention ability in flexural modulus and strength of PMMA/HA composites upon subjected towater absorption are considerably good. The reduction of flexural strength of the PMMA/HA composites after water absorption and SBF absorption could be attributed to the plasticizing effect of water molecules.

  18. Bile diversion in rats leads to a decreased plasma concentration of linoleic acid which is not due to decreased net intestinal absorption of dietary linoleic acid.

    Science.gov (United States)

    Minich, D M; Kalivianakis, M; Havinga, R; van Goor, H; Stellaard, F; Vonk, R J; Kuipers, F; Verkade, H J

    1999-04-19

    Decreased bile secretion into the intestine has been associated with low plasma concentrations of essential fatty acids (EFA) in humans. We studied the mechanism behind this relationship by determining the status and absorption of the major dietary EFA, linoleic acid (LA), in control and 1-week bile-diverted rats. The absorption of LA was quantified by a balance method and by measuring plasma concentrations of [13C]LA after its intraduodenal administration. Absolute and relative concentrations of LA in plasma were decreased in bile-diverted rats (Pabsorption of LA was similar between bile-diverted and control rats (1.96+/-0.14 vs. 1.91+/-0.07 mmol/day, respectively; P>0.05). After intraduodenal administration of [13C]LA, plasma concentrations were approximately 3-4-fold lower in bile-diverted rats for at least 6 h (Pacid and [13C]arachidonic acid were increased in bile-diverted rats (Pabsorption of LA, but may be related to increased metabolism of LA.

  19. The Effect of Clear Paints, Nanozycofil and Nanozycosil on Water Absorption and Contact Angle of Poplar Wood

    Directory of Open Access Journals (Sweden)

    Hadi Gholamian

    2012-01-01

    Full Text Available In this research, the effect of nano-zycosil, nano-zycofil, acid catalyzed lacquer and nitrocellulose lacquer and polyester on improving the water absorption and contact angle of wood was investigated. Some boards were prepared from the sapwood of poplar (P.nigra. They were dried based  on T6E3 schedule and some specimens were cut according to EN 927-5 standard (20 × 70 × 150 mm.  They were coated and immersed with the nano particles and clear paints.  The clear paint- and nanoparticles-coated samples were dried in laboratory environment and in an oven at the temperatures of 1032°c, respectively. After drying process, the water absorption of the samples was measured after 2, 24, 72, 168 h immersion. The contact angle of samples was measured after 1 and 10 seconds. The results revealed that the pattern of water absorption for the paints and nanoparticles is different. The samples coated with combined acid catalyzed lacquers and nitrocellulose lacquers and those coated with nanozycosil had the highest resistance to water absorption. The greatest contact angle was observed for the samples coated by nanozycosil.

  20. RESIDUAL STRENGTH OF CHOPPED STRAND MAT GLASS FIBRE/EPOXY COMPOSITE STRUCTURES: EFFECT OF TEMPERATURE AND WATER ABSORPTION

    National Research Council Canada - National Science Library

    M. M. Rahman; F. Tarlochan; K. J. T. Jeffrey

    2011-01-01

    ...= 0.5and maximum stress σmax = 60 MPa. The residual strength curves were used to investigate the strength of chopped strand mat glass fibre/epoxy under the effect of temperature and the interactive environment of water absorption and temperature...

  1. Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2017-01-01

    Micrometer-sized vapor-gas bubbles are formed due to local heating of a water suspension containing absorptive pigment particles of 100 nm diameter. The heating is performed by CW near-infrared (980 nm) laser radiation with controllable power, focused into a 100 mu m spot within a 2 mm suspension...

  2. Forward modeling and retrieval of water vapor from the Global Ozone Monitoring Experiment: Treatment of narrowband absorption spectra

    NARCIS (Netherlands)

    Lang, R.; Maurellis, A.N.; van der Zande, W.J.; Aben, I.; Landgraf, J.; Ubachs, W.M.G.

    2002-01-01

    [1] We present the algorithm and results for a new fast forward modeling technique applied to the retrieval of atmospheric water vapor from satellite measurements using a weak ro-vibrational overtone band in the visible. The algorithm uses an Optical Absorption Coefficient Spectroscopy (OACS) method

  3. Configuration optimization of series flow double-effect water-lithium bromide absorption refrigeration systems by cost minimization

    DEFF Research Database (Denmark)

    Mussati, Sergio F.; Cignitti, Stefano; Mansouri, Seyed Soheil

    2018-01-01

    An optimal process configuration for double-effect water-lithium bromide absorption refrigeration systems with series flow – where the solution is first passed through the high-temperature generator – is obtained by minimization of the total annual cost for a required cooling capacity. To this en...

  4. Modelling effects of seasonal variation in water table depth on net ecosystem CO2 exchange of a tropical peatland

    Science.gov (United States)

    Mezbahuddin, M.; Grant, R. F.; Hirano, T.

    2014-02-01

    Seasonal variation in water table depth (WTD) determines the balance between aggradation and degradation of tropical peatlands. Longer dry seasons together with human interventions (e.g. drainage) can cause WTD drawdowns making tropical peatland C storage highly vulnerable. Better predictive capacity for effects of WTD on net CO2 exchange is thus essential to guide conservation of tropical peat deposits. Mathematical modelling of basic eco-hydrological processes under site-specific conditions can provide such predictive capacity. We hereby deploy a process-based mathematical model ecosys to study effects of seasonal variation in WTD on net ecosystem productivity (NEP) of a drainage affected tropical peat swamp forest at Palangkaraya, Indonesia. Simulated NEP suggested that the peatland was a C source (NEP ~ -2 g C m-2 d-1, where a negative sign represents a C source and a positive sign a C sink) during rainy seasons with shallow WTD, C neutral or a small sink (NEP ~ +1 g C m-2 d-1) during early dry seasons with intermediate WTD and a substantial C source (NEP ~ -4 g C m-2 d-1) during late dry seasons with deep WTD from 2002 to 2005. These values were corroborated by regressions (P 0.8, intercepts approaching 0 and slopes approaching 1. We also simulated a gradual increase in annual NEP from 2002 (-609 g C m-2) to 2005 (-373 g C m-2) with decreasing WTD which was attributed to declines in duration and intensity of dry seasons following the El Niño event of 2002. This increase in modelled NEP was corroborated by EC-gap filled annual NEP estimates. Our modelling hypotheses suggested that (1) poor aeration in wet soils during shallow WTD caused slow nutrient (predominantly phosphorus) mineralization and consequent slow plant nutrient uptake that suppressed gross primary productivity (GPP) and hence NEP (2) better soil aeration during intermediate WTD enhanced nutrient mineralization and hence plant nutrient uptake, GPP and NEP and (3) deep WTD suppressed NEP through a

  5. [Column chromatographic preconcentration of trace copper in natural water using dithizone supported on naphthalene and determined by atomic absorption spectrometer].

    Science.gov (United States)

    He, H; Ju, Z

    1998-12-01

    In this paper a column chromatographic preconcentration method using dithizone supported on naphthalene for copper in natural water is provided. The dissolving reagent is dimethylformamide (DMF). The dissolving solution is determined by atomic absorption spectrometer. The effect of pH, the flow rate of water samples, the choice of dissolving reagent, the effect of diverse ions were studied. RSD is 2.3%. The recoveries for the added standard are between 96%-103%. This method was applied to determined trace copper in natural water samples and standard water samples with satisfactory results.

  6. Phosphorus absorption and use efficiency by Lotus spp. under water stress conditions in two soils: A pot experiment

    Directory of Open Access Journals (Sweden)

    Carolina Castillo

    2013-03-01

    Full Text Available The response to P and water deficiencies of forage Lotus species has not been sufficiently studied in the Andisol and Vertisol soil orders in Chile's marginal areas. A pot experiment under cover was carried out between October 2007 and March 2008 to study the effects of P and soil water availability (SWA on DM production, P absorption, and P use efficiency in Lotus spp. The experiment included three Lotus (L. corniculatus L., L. tenuis Waldst. & Kit. ex Willd., and L. uliginosus Schkuhr species, two soils (Andisol and Vertisol, two contrasting P levels (low and high, and two SWA levels (10% and 100%. A completely randomized design with a 3 x 2 x 2 x 2 factorial arrangement with four replicates was used. Accumulated shoot and root DM, P absorption and efficiency, and arbuscular mycorrhizal (AM colonization were measured. Phosphorus absorption was significantly higher in Andisol with 100% SWA and high P in the three species, which was reflected in P efficiency where the species exhibited higher P absorption efficiency (PAE and P utilization efficiency (PUE with low P, and mean of the three species with low P and high SWA. When the P level was low, L. uliginosus showed the highest PAE and L. corniculatus exhibited the highest PUE. Phosphorus efficiency was also influenced by AM colonization since on the average mycorrhization in the three species was significantly higher in the low P treatments. Differences existed among species for DM production, response to P, P absorption, PAE, and PUE.

  7. Study on the microstructure and water absorption changes of exterior thin-layer polymer renders during natural and artificial ageing

    Directory of Open Access Journals (Sweden)

    Gintare Griciute

    2015-03-01

    Full Text Available This paper presents the experimental investigation results of exterior render of external thermal insulation composite systems (ETICS. The study involved natural (long-term and artificially accelerated (short-term ageing including effect of UV radiation. For research purposes the cycle of accelerated UV radiation ageing test, imitating the impact of one natural year in Lithuanian climate conditions, have been composed and used. In order to determine the visual, microstructure and water absorption changes and find out the correlation between the natural and artificial weathering, the results of tested aged and untreated samples have been compared. The main attention was focused on the changes of structure and physical properties after short-term and long-term ageing tests. The structural changes of render surface of ETICS after UV tests were determined using scanning electron microscope (SEM. The water absorption of ETIC system was determined by partially submerging. Analysis of render surface microstructure showed that UV rays destroy continuous polymer film on the acrylic and silicone render surface, but water absorption of ETICS does not increase in both cases. Water absorption rates of acrylic, silicon and silicate renders after one natural year of exposure become similar. The polymer film formed on exterior acrylic and silicone render surface was destroyed during one year natural and equivalent laboratory ageing. In conjunction, the carbonization process was taking place, the newly formed calcite crystals covering pores and capillaries, consequently the water absorption rate of all ETICS samples decreased.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.4869

  8. Analysis of intestinal water absorption and changes in circulating blood volume in rats.

    Science.gov (United States)

    Morita, M

    1987-01-01

    To analyze the change in blood volume after intestinal absorption, circulating blood volume was continuously monitored in rats after infusion of various solutions into the small intestine. Arterial and venous catheters were connected to a system for continuous monitoring of blood volume by the dilution method using 51Cr-labeled erythrocytes. Test solutions (tap water, 0.45, 0.9, 1.8% NaCl, 0.45% NaCl with 2% glucose, and 5% glucose) were infused at a rate of 1 ml/100 g body wt. for 10 min through a duodenal catheter. After the infusion, blood volume increased except in the 1.8% NaCl group, which showed a transient decrease in blood volume by about 10%. The rate of blood volume increase was highest in the 0.45% NaCl with 2% glucose group and lowest in the 1.8% NaCl group. The retention ratio of infused solution in the vascular space was almost identical among the groups and was about 22%. These results indicate that the rate of increase in blood volume after intestinal administration of fluid is modified by the osmolality of the fluid and Na-glucose co-transport, whereas the retention ratio of the infused fluid in blood is constant.

  9. Hotspots of soil N2O emission enhanced through water absorption by plant residue

    Science.gov (United States)

    Kravchenko, A. N.; Toosi, E. R.; Guber, A. K.; Ostrom, N. E.; Yu, J.; Azeem, K.; Rivers, M. L.; Robertson, G. P.

    2017-07-01

    N2O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N2O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N2O production, most of which occurs within very small discrete soil volumes. Such hotspots of N2O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N2O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N2O emissions: water absorption by plant residue that creates unique micro-environmental conditions, markedly different from those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4-10-fold and led to accelerated N2O production via microbial denitrification. The presence of large (∅ >35 μm) pores was a prerequisite for maximized hotspot N2O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N2O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment.

  10. Hotspots of soil N2O emission enhanced through water absorption by plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, A.N.; Toosi, E.R.; Guber, A.K.; Ostrom, N.E.; Yu, J.; Azeem, K.; Rivers, M.L.; Robertson , G.P. (UAF Pakistan); (UC); (Hubei); (MSU)

    2017-06-05

    N2O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N2O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N2O production, most of which occurs within very small discrete soil volumes. Such hotspots of N2O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N2O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N2O emissions: water absorption by plant residue that creates unique micro-environmental conditions, markedly different from those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4–10-fold and led to accelerated N2O production via microbial denitrification. The presence of large (Ø >35 μm) pores was a prerequisite for maximized hotspot N2O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N2O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment.

  11. Measurements of Water Absorption in the Warm Exo-Uranus GJ 3470b

    Science.gov (United States)

    Benneke, Björn; Crossfield, Ian; Knutson, Heather; McCullough, Peter; Lothringer, Joshua; Howard, Andrew; Morley, Caroline; Fortney, Jonathan; Dragomir, Diana; Gilliland, Ron

    2015-12-01

    The discovery of short-period planets with masses and radii intermediate between Earth and Neptune was one of the biggest surprises in the brief history of exoplanet science. These “super-Earths” and “sub-Neptunes” are an order of magnitude more abundant than close-in giant planets. Despite this ubiquity, we know little about their typical compositions and formation histories. Spectroscopic transit observations can shed new light on these mysterious worlds by probing their atmospheric compositions. In this talk, we will give an overview of our ongoing 124-orbit (200-hour) Hubble Space Telescope program to reveal the chemical diversity and formation histories of super-Earths. This unprecedented survey will provide the first comprehensive look at this intriguing new class of planets ranging from 1 Neptune mass and temperatures close to 2000K to a 1 Earth mass planet near the habitable zone of its host star. In this talk, I will discuss the scope of the program and present early science results including measurements of water absorption in the atmosphere of the warm exo-Uranus GJ3470b.

  12. Fitness analysis method for magnesium in drinking water with atomic absorption using quadratic curve calibration

    Directory of Open Access Journals (Sweden)

    Esteban Pérez-López

    2014-11-01

    Full Text Available Because of the importance of quantitative chemical analysis in research, quality control, sales of services and other areas of interest , and the limiting of some instrumental analysis methods for quantification with linear calibration curve, sometimes because the short linear dynamic ranges of the analyte, and sometimes by limiting the technique itself, is that there is a need to investigate a little more about the convenience of using quadratic curves for analytical quantification, which seeks demonstrate that it is a valid calculation model for chemical analysis instruments. To this was taken as an analysis method based on the technique and atomic absorption spectroscopy in particular a determination of magnesium in a sample of drinking water Tacares sector Northern Grecia, employing a nonlinear calibration curve and a curve specific quadratic behavior, which was compared with the test results obtained for the same analysis with a linear calibration curve. The results show that the methodology is valid for the determination referred to, with all confidence, since the concentrations are very similar, and as used hypothesis testing can be considered equal.

  13. Ultra Narrowband Optical Filters for Water Vapor Differential Absorption Lidar (DIAL) Atmospheric Measurements

    Science.gov (United States)

    Stenholm, Ingrid; DeYoung, Russell J.

    2001-01-01

    Differential absorption lidar (DIAL) systems are being deployed to make vertical profile measurements of atmospheric water vapor from ground and airborne platforms. One goal of this work is to improve the technology of such DIAL systems that they could be deployed on space-based platforms. Since background radiation reduces system performance, it is important to reduce it. One way to reduce it is to narrow the bandwidth of the optical receiver system. However, since the DIAL technique uses two or more wavelengths, in this case separated by 0.1 nm, a fixed-wavelength narrowband filter that would encompass both wavelengths would be broader than required for each line, approximately 0.02 nm. The approach employed in this project is to use a pair of tunable narrowband reflective fiber Bragg gratings. The Bragg gratings are germanium-doped silica core fiber that is exposed to ultraviolet radiation to produce index-of-refraction changes along the length of the fiber. The gratings can be tuned by stretching. The backscattered laser radiation is transmitted through an optical circulator to the gratings, reflected back to the optical circulator by one of the gratings, and then sent to a photodiode. The filter reflectivities were >90 percent, and the overall system efficiency was 30 percent.

  14. Estimating Snow Water Equivalent with Backscattering at X and Ku Band Based on Absorption Loss

    Directory of Open Access Journals (Sweden)

    Yurong Cui

    2016-06-01

    Full Text Available Snow water equivalent (SWE is a key parameter in the Earth’s energy budget and water cycle. It has been demonstrated that SWE can be retrieved using active microwave remote sensing from space. This necessitates the development of forward models that are capable of simulating the interactions of microwaves and the snow medium. Several proposed models have described snow as a collection of sphere- or ellipsoid-shaped ice particles embedded in air, while the microstructure of snow is, in reality, more complex. Natural snow usually forms a sintered structure following mechanical and thermal metamorphism processes. In this research, the bi-continuous vector radiative transfer (bi-continuous-VRT model, which firstly constructs snow microstructure more similar to real snow and then simulates the snow backscattering signal, is used as the forward model for SWE estimation. Based on this forward model, a parameterization scheme of snow volume backscattering is proposed. A relationship between snow optical thickness and single scattering albedo at X and Ku bands is established by analyzing the database generated from the bi-continuous-VRT model. A cost function with constraints is used to solve effective albedo and optical thickness, while the absorption part of optical thickness is obtained from these two parameters. SWE is estimated after a correction for physical temperature. The estimated SWE is correlated with the measured SWE with an acceptable accuracy. Validation against two-year measurements, using the SnowScat instrument from the Nordic Snow Radar Experiment (NoSREx, shows that the estimated SWE using the presented algorithm has a root mean square error (RMSE of 16.59 mm for the winter of 2009–2010 and 19.70 mm for the winter of 2010–2011.

  15. Modelling of the Water Absorption Kinetics and Determination of the Water Diffusion Coefficient in the Pith of Raffia vinifera of Bandjoun, Cameroon

    Directory of Open Access Journals (Sweden)

    E. Tiaya Mbou

    2017-01-01

    Full Text Available The present work focuses on the study of the water absorption phenomenon through the pith of Raffia vinifera along the stem. The water absorption kinetics was studied experimentally by the gravimetric method with the discontinuous control of the sampling mass at temperature of 30°C. The samples of 70 mm × 8 mm × 4 mm were taken from twelve sampling zones of the stem of Raffia vinifera. The result shows that the percentage of water absorption of the pith of Raffia vinifera increases from the periphery to the center in the radial position and from the base to the leaves in the longitudinal position. Fick’s second law was adopted for the study of the water diffusion. Eleven models were tested for the modelling of the water absorption kinetics and the model of Sikame Tagne (2014 is the optimal model. The diffusion coefficients of two stages were determined by the solution of the Fick equation in the twelve sampling zones described by Sikame Tagne et al. (2014. The diffusion coefficients decreased from the center to the periphery in the radial position and from the base to the leaves in the longitudinal position.

  16. Small intestinal absorption during endotoxemia in swine.

    Science.gov (United States)

    Kanno, S; Emil, S; Kosi, M; Monforte-Munoz, H; Atkinson, J

    1996-10-01

    We studied the effects of systemic endotoxemia on small intestinal absorption in an in vivo animal model. Seven adolescent Yorkshire swine underwent creation of 25 cm distal ileal Thiry-Vella fistulae. After 1 week recovery, the fistulae were perfused with a solution of glucose and electrolytes labeled with 14C-PEG, and net absorption of water, Na+, Cl-, and glucose was calculated. Animals were studied under three different conditions: (1) Basal fasting state, (2) immediately after intravenous injection of E. coli lipopolysaccharide (LPS; 250 micrograms/kg), and (3) 24 hours after LPS. Water, Na+, and Cl- absorption was significantly reduced 2 hours after LPS, but recovered to baseline values by the third hour after LPS. Twenty-four hours after LPS water, Na+, and Cl- absorption was significantly decreased below baseline values. Glucose absorption after LPS paralleled that of water and electrolytes, except that the transient early recovery was not observed. Histological studies of the ileum after LPS showed marked epithelial inflammation at 6 hours, villous atrophy at 24 hours, and signs of recovery at 7 days. Intestinal absorption of water, electrolytes, and glucose is adversely affected in the immediate and early periods after an endotoxemic episode, but the histological epithelial injury secondary to endotoxemia is reversible.

  17. Effect of the hardener to epoxy monomer ratio on the water absorption behavior of the DGEBA/TETA epoxy system

    Directory of Open Access Journals (Sweden)

    Ayrton Alef Castanheira Pereira

    2016-02-01

    Full Text Available Abstract The water absorption behavior of the DGEBA/TETA epoxy system was evaluated as a function of the epoxy monomer to amine hardener ratio. Weight gain versus immersion time curves were obtained and the experimental points were fitted using Fickian and Non-Fickian diffusion models. The results obtained showed that for all epoxy monomer to hardener ratios analyzed water diffusion followed non-Fickian behavior. It was possible to correlate the water absorption behavior to the macromolecular structure developed when the epoxy/ hardener ratio was varied. All epoxy/hardener ratios present a two-phase macromolecular structure, composed of regions with high crosslink density and regions with lower crosslinking. Epoxy rich systems have a more open macromolecular structure with a lower fraction of the dense phase than the amine rich systems, which present a more compact two-phase structure.

  18. Assessing the Portion of the Crack Length Contributing to Water Sorption in Concrete Using X-ray Absorption

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Couch, Jon; Geiker, Mette Rica

    2009-01-01

    the influence of cracks with varying width and length on water sorption in concrete. Concrete wedge splitting specimens, conditioned to 50% relative humidity, were loaded to varying crack openings. Water sorption was monitored for ponded specimens with varying crack widths and lengths by taking multiple x......-ray absorption measurements over time. The effect cracks have on sorption is discussed and compared to the behavior of pristine concrete. In addition, the maximum water sorption depth after one hour of exposure is compared to crack lengths determined by the cracked hinge model.......While it is generally known that cracks accelerate fluid movements, there is a need to quantify how cracks influence the controlling transport mechanism(s) for more accurate service life modeling. This paper describes an experimental approach using x-ray absorption measurements to quantify...

  19. Investigating the influence of alkalization on the mechanical and water absorption properties of coconut and sponge fibers reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Okikiola Ganiu AGBABIAKA

    2014-11-01

    Full Text Available Natural fibers are products made from renewable agricultural and forestry feedstock, which can include wood, grasses, and crops, as well as wastes and residues. There are two primary ways these fibers are used: to create polymers or as reinforcement and filler. Thermoplastic polymer may be reinforced or filled using natural fibers such as coir, sponge, hemp, flax, or sisal. This paper focused on the influence of alkalization (NaOH treatment on the mechanical and water absorption properties of selected natural fibers (coconut and sponge fibers reinforced polypropylene composites. In this study, coconut and sponge fiber were extracted from its husk by soaking them in water and was dried before it was cut into 10mm length. Those fibers were chemically treated with sodium hydroxide (NaOH in a shaking water bath before it was used as reinforcement in polypropylene composite. The reinforced polypropylene composite was produced by dispersing the coconut fibers randomly in the polypropylene before it was fabricated in a compression molding machine where the composite was produced. The fiber content used were; 2%wt, 4%wt, 6%wt, 8%wt and 10%wt. Tensile and flexural properties was observed from universal testing machine while water absorption test was carried out on the samples for seven (7 days. It was observed that the influence of NaOH treatment highly enhanced the Flexural and water absorption properties of sponge fiber reinforced polypropylene composites than coconut fiber reinforced composite samples.

  20. The effect of a nanofilled resin-based coating on water absorption by teeth restored with glass ionomer.

    Science.gov (United States)

    Hankins, Amanda D; Hatch, Robert H; Benson, Jarred H; Blen, Bernard J; Tantbirojn, Daranee; Versluis, Antheunis

    2014-04-01

    A nanofilled, resin-based light-cured coating (G-Coat Plus, GC America, Alsip, Ill.) may reduce water absorption by glass ionomers. The authors investigated this possibility by measuring cuspal flexure caused by swelling of glass ionomer-restored teeth. The authors cut large mesio-occlusodistal slots (4-millimeter wide, 4-mm deep) in 12 extracted premolars and restored them with a glass ionomer cement (Fuji IX GP Extra, GC America). Six teeth were coated, and the other six were uncoated controls. The authors digitized the teeth in three dimensions by using an optical scanner after preparation and restoration and during an eight-week storage in water. They calculated cuspal flexure and analyzed the results by using an analysis of variance and Student-Newman-Keuls post hoc tests (significance level .05). They used dye penetration along the interface to verify bonding. Inward cuspal flexure indicated restoration shrinkage. Coated restorations had significantly higher flexure (mean [standard deviation], -11.9 [3.5] micrometers) than did restorations without coating (-7.3 [1.5] μm). Flexure in both groups decreased significantly (P water storage and, after eight weeks, it changed to expansion for uncoated control restorations. Dye penetration along the interfaces was not significant, which ruled out debonding as the cause of cuspal relaxation. Teeth restored with glass ionomer cement exhibited shrinkage, as seen by inward cuspal flexure. The effect of the protective coating on water absorption was evident in the slower shrinkage compensation. The study results show that teeth restored with glass ionomers exhibited setting shrinkage that deformed tooth cusps. Water absorption compensated for the shrinkage. Although the coating may be beneficial for reducing water absorption, it also slows the shrinkage compensation rate (that is, the rate that hygroscopic expansion compensates for cuspal flexure from shrinkage).

  1. Determination of water pH using absorption-based optical sensors: evaluation of different calculation methods

    Science.gov (United States)

    Wang, Hongliang; Liu, Baohua; Ding, Zhongjun; Wang, Xiangxin

    2017-02-01

    Absorption-based optical sensors have been developed for the determination of water pH. In this paper, based on the preparation of a transparent sol-gel thin film with a phenol red (PR) indicator, several calculation methods, including simple linear regression analysis, quadratic regression analysis and dual-wavelength absorbance ratio analysis, were used to calculate water pH. Results of MSSRR show that dual-wavelength absorbance ratio analysis can improve the calculation accuracy of water pH in long-term measurement.

  2. MOLECULAR PROPERTIES OF SELECTED POLYSACCHARIDES DETERMINED BY SEC CHROMATOGRAPHY AND THEIR IMPACT ON WATER ABSORPTION OF WHEAT FLOUR

    Directory of Open Access Journals (Sweden)

    Krzysztof Buksa

    2012-02-01

    Full Text Available Chemical composition and solubility in water of selected polysaccharides as β-glucan, arabinoxylan and inulin preparation were determined. All these preparation were of good purity, they consist of at least 71% of polysaccharide of intrest. Solubility in water was the highest in the case of inulin and the lowest in the case of β-glucan. Molecular properties of examined preparations were determined by SEC chromatography. β-glucan and arabinoxylan were of much higher molecular mass than inulin. Molecular mass of examined polysacharides was corelated with increase of water absorption of the flour caused by 2% addition of each polysaccharide.doi:10.5219/173   

  3. Seasonal trends of light-saturated net photosynthesis and stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and carbon dioxide

    Science.gov (United States)

    Ramesh Murthy; Stanley J. Zarnoch; P.M. Dougherty

    1997-01-01

    Repeated measures analysis was used to evaluate the effect of long-term CO2 enhancement on seasonal trends of light-saturated rates of net photosynthesis (Asat) and stomatal conductance to water vapour (gsat) of 9-year-old loblolly pine (Pinus taeda L.; trees grown in a 2x2...

  4. Interaction of plasma-generated water cluster ions with chemically-modified Si surfaces investigated by infrared absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Ayumi Hirano-Iwata

    2016-03-01

    Full Text Available We have investigated the interaction of water cluster ions generated by discharge plasma, with chemically modified Si surfaces using infrared absorption spectroscopy in the multiple internal reflection geometry. We observe that water cluster ions readily adsorb on SiO2-covered Si surfaces to form water droplets. We demonstrate that positively- and negatively-charged cluster ions adsorb on the SiO2-covered Si surface in different manners, indicating ionic interaction of the water droplets with the negatively-charged SiO2 surface. Water droplets formed on the protein-coated surface rupture the amide bond of the proteins, suggesting the function of protein decomposition of water cluster ions.

  5. Spectral studies of ocean water with space-borne sensor SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS

    Directory of Open Access Journals (Sweden)

    M. Vountas

    2007-09-01

    Full Text Available Methods enabling the retrieval of oceanic parameter from the space borne instrumentation Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY (SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS are presented. SCIAMACHY onboard ENVISAT measures back scattered solar radiation at a spectral resolution (0.2 to 1.5 nm. The DOAS method was used for the first time to fit modelled Vibrational Raman Scattering (VRS in liquid water and in situ measured phytoplankton absorption reference spectra to optical depths measured by SCIAMACHY. Spectral structures of VRS and phytoplankton absorption were clearly found in these optical depths. Both fitting approaches lead to consistent results. DOAS fits correlate with estimates of chlorophyll concentrations: low fit factors for VRS retrievals correspond to large chlorophyll concentrations and vice versa; large fit factors for phytoplankton absorption correspond with high chlorophyll concentrations and vice versa. From these results a simple retrieval technique taking advantage of both measurements is shown. First maps of global chlorophyll concentrations were compared to the corresponding MODIS measurements with very promising results. In addition, results from this study will be used to improve atmospheric trace gas DOAS-retrievals from visible wavelengths by including these oceanographic signatures.

  6. High-efficiency NO(x) absorption in water using equipment packed with a glass fiber filter.

    Science.gov (United States)

    Yasuda, Masahiro; Tsugita, Nobuhiro; Ito, Katsuaki; Yamauchi, Shiro; Glomm, Wilhelm R; Tsuji, Izumi; Asano, Hideaki

    2011-03-01

    NO(X) absorption in water is quite difficult by comparison with other exhausted gas, such as SO(2), CO(2), and NH(3) because of low solubility of NO(X) in water. We have been developed a NO(X) absorption equipment with a glass fiber filter having high porosity and surface area. When feed NO(X) gas concentration was high, high NO(X) removal efficiency was obtained. This was because the surface area per glass fiber filter volume was about 40 to 600 times higher than for common packing materials. For verification test and industrial application, a high concentration of NO(X) gas (206,000 ppm) produced by a metal dissolution process was treated with a series of two absorption experiments. We can attain 97.6% of NO(X) removal efficiency, and HNO(3) concentration in water was concentrated up to 56.3 wt %. Furthermore, ozone addition to gas and usage of ozone saturated water as an absorbent resulted in complete removal of NO(X) in the gas (up to 120 ppm). This result indicated the importance of aqueous phase oxidation of HNO(2), which produces NO in the gas phase.

  7. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    Science.gov (United States)

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-11-26

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.

  8. The influence of recycled expanded polystyrene (EPS) on concrete properties: Influence on flexural strength, water absorption and shrinkage

    Science.gov (United States)

    Elsalah, Jamaleddin; Al-Sahli, Yosra; Akish, Ahmed; Saad, Omar; Hakemi, Abdurrahman

    2013-12-01

    Expanded polystyrene waste in a granular form was used as a lightweight aggregate in order to produce lightweight concretë Lightweight EPS concrete composites were produced by replacing the coarse aggregate, either partially or fully with equal volume of EPS aggregates. The coarse aggregate replacements levels used were 25, 50, 75, and 100%, which corresponded to (9.20, 18.40, 27.60, and 36.8%) from total volume. The investigation is directed towards the development and performance evaluation of the concrete composites containing EPS aggregates, without addition of either bonding additives, or super-plasticizers on some concrete properties such as flexure strength, water absorption and change in length (or shrinkage). Experimental results showed that a density reduction of 12% caused flexure strength to decrease by 25.3% at a replacement level of 25% EPS. However, the reduction percentage strongly depends upon the replacement level of EPS granules. Moreover, the lower strength concretes showed a higher water absorption values compared to higher strength concrete, i.e., increasing the volume percentage of EPS increases the water absorption as well as the negative strain (shrinkage). The negative strain was higher at concretes of lower density (containing a high amount of EPS aggregate). The water to cement ratio of EPS aggregate concrete is found to be slightly lower than that of conventional concrete.

  9. Validation of phenol red versus gravimetric method for water reabsorption correction and study of gender differences in Doluisio's absorption technique.

    Science.gov (United States)

    Tuğcu-Demiröz, Fatmanur; Gonzalez-Alvarez, Isabel; Gonzalez-Alvarez, Marta; Bermejo, Marival

    2014-10-01

    The aim of the present study was to develop a method for water flux reabsorption measurement in Doluisio's Perfusion Technique based on the use of phenol red as a non-absorbable marker and to validate it by comparison with gravimetric procedure. The compounds selected for the study were metoprolol, atenolol, cimetidine and cefadroxil in order to include low, intermediate and high permeability drugs absorbed by passive diffusion and by carrier mediated mechanism. The intestinal permeabilities (Peff) of the drugs were obtained in male and female Wistar rats and calculated using both methods of water flux correction. The absorption rate coefficients of all the assayed compounds did not show statistically significant differences between male and female rats consequently all the individual values were combined to compare between reabsorption methods. The absorption rate coefficients and permeability values did not show statistically significant differences between the two strategies of concentration correction. The apparent zero order water absorption coefficients were also similar in both correction procedures. In conclusion gravimetric and phenol red method for water reabsorption correction are accurate and interchangeable for permeability estimation in closed loop perfusion method. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    Directory of Open Access Journals (Sweden)

    Wojdyga Krzysztof

    2017-01-01

    Full Text Available Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  11. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    Science.gov (United States)

    Wojdyga, Krzysztof; Malicki, Marcin

    2017-11-01

    Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  12. Thermodynamic optimization of a solar system for cogeneration of water heating/purification and absorption cooling

    Science.gov (United States)

    Hovsapian, Zohrob O.

    This dissertation presents a contribution to understanding the behavior of solar powered air conditioning and refrigeration systems with a view to determining the manner in which refrigeration rate; mass flows, heat transfer areas, and internal architecture are related. A cogeneration system consisting of a solar concentrator, a cavity-type receiver, a gas burner, and a thermal storage reservoir is devised to simultaneously produce water heating/purification and cooling (absorption refrigerator system). A simplified mathematical model, which combines fundamental and empirical correlations, and principles of classical thermodynamics, mass and heat transfer, is developed. An experimental setup was built to adjust and validate the numerical results obtained with the mathematical model. The proposed model is then utilized to simulate numerically the system transient and steady state response under different operating and design conditions. A system global optimization for maximum performance (or minimum exergy destruction) in the search for minimum pull-down and pull-up times, and maximum system second law efficiency is performed with low computational time. Appropriate dimensionless groups are identified and the results presented in normalized charts for general application. The numerical results show that the three way maximized system second law efficiency, etaII,max,max,max, occurs when three system characteristic mass flow rates are optimally selected in general terms as dimensionless heat capacity rates, i.e., (Psisps , Psiwxwx, PsiHs)opt ≅ (1.43, 0.17, 0.19). The minimum pull-down and pull-up times, and maximum second law efficiencies found with respect to the optimized operating parameters are sharp and, therefore important to be considered in actual design. As a result, the model is expected to be a useful tool for simulation, design, and optimization of solar energy systems in the context of distributed power generation.

  13. Pyruvate-enriched oral rehydration solution improved intestinal absorption of water and sodium during enteral resuscitation in burns.

    Science.gov (United States)

    Hu, Sen; Liu, Wei-wei; Zhao, Ying; Lin, Zhi-long; Luo, Hong-min; Bai, Xiao-dong; Sheng, Zhi-yong; Zhou, Fang-qiang

    2014-06-01

    To investigate alteration in intestinal absorption during enteral resuscitation with pyruvate-enriched oral rehydration solution (Pyr-ORS) in scalded rats. To compare pyruvate-enriched oral rehydration solution (Pyr-ORS) with World Health Organisation oral rehydration solution (WHO-ORS), 120 rats were randomly divided into 6 groups and 2 subgroups. At 1.5 and 4.5 h after a 35% TBSA scald, the intestinal absorption rate, mucosal blood flow (IMBF), Na(+)-K(+)-ATPase activity and aquaporin-1 (AQP-1) expression were determined (n = 10), respectively. The intestinal Na(+)-K(+)-ATPase activity, AQP-1 expression and IMBF were markedly decreased in scald groups, but they were profoundly preserved by enteral resuscitation with WHO-ORS and further improved significantly with Pyr-ORS at both time points. Na(+)-K+-ATPase activities remained higher in enteral resuscitation with Pyr-ORS (Group SP) than those with WHO-ORS (Group SW) at 4.5 h. AQP-1 and IMBF were significantly greater in Group SP than in Group SW at both time points. Intestinal absorption rates of water and sodium were obviously inhibited in scald groups; however, rates were also significantly preserved in Group SP than in Group SW with an over 20% increment at both time points. The Pyr-ORS may be superior to the standard WHO-ORS in the promotion of intestinal absorption of water and sodium during enteral resuscitation. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  14. A Compact In Situ Sensor for Measurement of Absorption and Backscattering in Natural Waters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an active sensor for in situ measurement of the inherent optical properties (IOPs) absorption and backscattering at multiple wavelengths....

  15. Impacts of climate and land use change on ecosystem hydrology and net primary productivity: Linking water availability to food security in Asia

    Science.gov (United States)

    Dangal, S. R. S.; Tian, H.; Pan, S.; Zhang, B.; Yang, J.

    2015-12-01

    The nexus approach to food, water and energy security in Asia is extremely important and relevant as the region has to feed two-third of the world's population and accounts for 59% of the global water consumption. The distribution pattern of food, water and energy resources have been shaped by the legacy effect of both natural and anthropogenic disturbances and therefore are vulnerable to climate change and human activities including land use/cover change (LUCC) and land management (irrigation and nitrogen fertilization). In this study, we used the Dynamic Land Ecosystem Model (DLEM) to examine the effects of climate change, land use/cover change, and land management practices (irrigation and nitrogen fertilization) on the spatiotemporal trends and variability in water availability and its role in limiting net primary productivity (NPP) and food security in the 20th and early 21st centuries. Our specific objectives are to quantify how climate change, LUCC and other environmental changes have interactively affected carbon and water dynamics across the Asian region. In particular, we separated the Asian region into several sub-region based on the primary limiting factor - water, food and energy. We then quantified how changes in environmental factors have altered the water and food resources during the past century. We particularly focused on Net Primary Productivity (NPP) and water cycle (Evapotranspiration, discharge, and runoff) as a measure of available food and water resources, respectively while understanding the linkage between food and water resources in Asia.

  16. Adding silanes to MMA: the effects on the water absorption, adhesive strength and mechanical properties of acrylic denture base resins.

    Science.gov (United States)

    Kanie, T; Fujii, K; Arikawa, H; Inoue, K

    2000-12-01

    The adhesive strength of porcelain artificial teeth and polymethylmethacrylates (PMMAs), which contained silanes with various number of vinyl or ethoxy groups, and the mechanical and physical properties of the PMMAs were measured. Four types of PMMAs with silanes showed high adhesive shear strength and caused fractures in the porcelain. Water absorption of the PMMAs increased with the addition of silane, but that of one type with silane was almost the same as the PMMA only type. The flexural strengths of the PMMAs with silane, except for one type, showed no significant differences compared with that of PMMA (p < 0.05). The Tg levels of all PMMAs with silane fell less than that of PMMA. From these results, it was found that PMMA with silane from three vinyl groups and one ethoxy group showed excellent chemical bonding to porcelain and low water absorption.

  17. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  18. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  19. A process to estimate net infiltration using a site-scale water-budget approach, Rainier Mesa, Nevada National Security Site, Nevada, 2002–05

    Science.gov (United States)

    Smith, David W.; Moreo, Michael T.; Garcia, C. Amanda; Halford, Keith J.; Fenelon, Joseph M.

    2017-08-29

    This report documents a process used to estimate net infiltration from precipitation, evapotranspiration (ET), and soil data acquired at two sites on Rainier Mesa. Rainier Mesa is a groundwater recharge area within the Nevada National Security Site where recharged water flows through bedrock fractures to a deep (450 meters) water table. The U.S. Geological Survey operated two ET stations on Rainier Mesa from 2002 to 2005 at sites characterized by pinyon-juniper and scrub-brush vegetative cover. Precipitation and ET data were corrected to remove measurement biases and gap-filled to develop continuous datasets. Net infiltration (percolation below the root zone) and changes in root-zone water storage were estimated using a monthly water-balance model.Site-scale water-budget results indicate that the heavily-fractured welded-tuff bedrock underlying thin (<40 centimeters) topsoil is a critical water source for vegetation during dry periods. Annual precipitation during the study period ranged from fourth lowest (182 millimeters [mm]) to second highest (708 mm) on record (record = 55 years). Annual ET exceeded precipitation during dry years, indicating that the fractured-bedrock reservoir capacity is sufficient to meet atmospheric-evaporative demands and to sustain vegetation through extended dry periods. Net infiltration (82 mm) was simulated during the wet year after the reservoir was rapidly filled to capacity. These results support previous conclusions that preferential fracture flow was induced, resulting in an episodic recharge pulse that was detected in nearby monitoring wells. The occurrence of net infiltration only during the wet year is consistent with detections of water-level rises in nearby monitoring wells that occur only following wet years.

  20. Water Absorption Behavior of Polystyrene Particles Prepared by Emulsion Polymerization with Nonionic Emulsifiers and Innovative Easy Synthesis of Hollow Particles.

    Science.gov (United States)

    Okubo, Masayoshi; Kobayashi, Hiroshi; Huang, Chujuan; Miyanaga, Eri; Suzuki, Toyoko

    2017-04-11

    Submicrometer-sized raspberry-like polystyrene (PS) particles, which were prepared by emulsion polymerization with polyoxyethylene nonylphenyl ether nonionic emulsifier (Emulgen 910, HLB 12.2) and potassium persulfate initiator, contained 8.5 vol % (relative to the particle) of water and 5.5 wt % (relative to PS) of Emulgen 910 in the inside. The water absorption decreased the glass transition temperature of the PS particles dispersed in an aqueous medium. The wt % (relative to PS) of the incorporated Emulgen 910 increased with increasing initial Emulgen 910 concentration in the emulsion polymerization, but the wt % (relative to the total Emulgen 910 used) of the incorporated Emulgen 910 was constant at approximately 50% independent of the initial concentration. The vol % (relative to particle) of water increased to 46% by heat treatment at 90 °C for 24 h, which was based on further water absorption, and resulted in spherical hollow particles, where the amount of the incorporated Emulgen 910 remarkably decreased in a short treatment and then remained almost constant during the heat treatment. After another 24 h treatment, the percentage of nonhollow particles increased gradually, which was based on the escape of the water domain together with Emulgen 910 from the inside of the particles. On the other hand, spherical PS particles prepared by emulsifier-free emulsion polymerization did not contain water in the inside and were not changed to hollow ones by a similar heat treatment. From these results, an innovative easy method to synthesize hydrophobic hollow PS particles is proposed.

  1. Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method covers procedures for determining water absorption, bulk density, apparent porosity, and apparent specific gravity of fired unglazed whiteware products. 1.2 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  2. Fabrication of novel chitosan/PAN/magnetic ZSM-5 zeolite coated sponges for absorption of oil from water surfaces.

    Science.gov (United States)

    Samadi, Saman; Yazd, Shabnam Sharif; Abdoli, Hossein; Jafari, Pooya; Aliabadi, Majid

    2017-12-01

    In the present study, the chitosan (bottom layer)/polyacrylonitrile (top layer, PAN) nanofibers were coated on the sponge surface. The synthesized magnetic Fe3O4- ZSM-5 nanozeolites have been loaded into the chitosan/PAN nanofibers to increase the performance of nanofibers toward absorption of lubricating oil, motor oil and pump oil from water surfaces. Scanning electron microscope (SEM), Transmission electron microscope (TEM) and X-ray diffraction (XRD) analysis were used to characterize the synthesized nanozeolites. The morphology and wettability of nanofibers were determined using SEM and water contact angle tests. The influence of Fe3O4- ZSM-5 nanozeolite content and chitosan/PAN/Fe3O4- ZSM-5 nanofiber thickness was evaluated on the potential of sponges for oils absorption. The maximum capacity of the chitosan/PAN/Fe3O4- ZSM-5 nanofibers coated sponges for absorption of motor oil, lubricating oil and pump oil was found to be 99.4, 95.3 and 88.1g/g, in Fe3O4- ZSM-5 2wt.% and nanofiber thickness of 12μm (chitosan layer of 2μm and PAN layer of 10μm). The reusability of nanofibrous sponges showed that the hydrophobic chitosan/PAN/Fe3O4- ZSM-5 nanofibers coated sponges can be easily reused in water-oil separation for many cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Assessment of optical path length in tissue using neodymium and water absorptions for application to near-infrared spectroscopy.

    Science.gov (United States)

    Nighswander-Rempel, Stephen P; Kupriyanov, Valery V; Shaw, R Anthony

    2005-01-01

    Quantitative analysis of blood oxygen saturation using near-IR spectroscopy is made difficult by uncertainties in both the absolute value and the wavelength dependence of the optical path length. We introduce a novel means of assessing the wavelength dependence of path length, exploiting the relative intensities of several absorptions exhibited by an exogenous contrast agent (neodymium). Combined with a previously described method that exploits endogenous water absorptions, the described technique estimates the absolute path length at several wavelengths throughout the visible/near-IR range of interest. Isolated rat hearts (n = 11) are perfused separately with Krebs-Henseleit buffer (KHB) and a KHB solution to which neodymium had been added, and visible/near-IR spectra are acquired using an optical probe made up of emission and collection fibers in concentric rings of diameters 1 and 3 mm, respectively. Relative optical path lengths at 520, 580, 679, 740, 800, 870, and 975 nm are 0.41+/-0.13, 0.49+/-0.21, 0.90+/-0.09, 0.94+/-0.01, 1.00, 0.84+/-0.01, and 0.78+/-0.08, respectively. The absolute path length at 975 nm is estimated to be 3.8+/-0.6 mm, based on the intensity of the water absorptions and the known tissue water concentration. These results are strictly valid only for the experimental geometry applied here. Copyright 2005 Society of Photo-Optical Instrumentation Engineers.

  4. Investigation on the withdrawal strength of screw, nail and water absorption of Nanoclay-MDF dust-PP composite

    Directory of Open Access Journals (Sweden)

    Mehrab Madhoushi

    2012-06-01

    Full Text Available In this research, effects of using nanoclay on withdrawal strength of screw and nail and also water absorption of nanoclay-MDF dust-PP composite were investigated. Hence, sanding dust of MDF used as lignocellulose material and polypropylene as the thermoplastic material. Also, nanoclay of Cloisite® 15A was used in three different weights 2%, 4% and 6%. At first, raw materials were produced using extruder to fabricate granules. Then, 36 boards (12 treatments in 3 replicates with nominal density of 1 gr/cm3 and dimensions of 30 cm by 20 cm by 1 cm were produced using hot molding method. Afterwards, samples were conditioned at room temperature conditions for 3 weeks. Then, withdrawal strengths of nails and screws were measured according to BS Standard (CEN/TS15534–1:2007. Also, water absorption and thickness swelling of samples were determined. Results showed that the withdrawal strengths of nails and screws decreases as MDF dust weight is increased. Maximum withdrawal strengths of nails and screws were obtained with 2% of nanoclay. Furthermore, increasing percentage of dust weight as well as nanoclay particles water absorption and thickness swelling of samples are reduced.

  5. Polypropylene Nonwoven Fabric@Poly(ionic liquid)s for Switchable Oil/Water Separation, Dye Absorption, and Antibacterial Applications.

    Science.gov (United States)

    Ren, Yongyuan; Guo, Jiangna; Lu, Qian; Xu, Dan; Qin, Jing; Yan, Feng

    2018-01-15

    Pollutants in wastewater include oils, dyes, and bacteria, making wastewater cleanup difficult. Multifunctional wastewater treatment media consisting of poly(ionic liquid)-grafted polypropylene (PP) nonwoven fabrics (PP@PIL) are prepared by a simple and scalable surface-grafting process. The fabricated PP@PIL fabrics exhibit impressive switchable oil/water separation (η>99 %) and dye absorption performance (q=410 mg g -1 ), as well as high antibacterial properties. The oil/water separation can be easily switched by anion exchanging of the PIL segments. Moreover, the multiple functions (oil/water separation, dye absorption, and antibacterial properties) occurred at the same time, and did not interfere with each other. The multifunctional fibrous filter can be easily regenerated by washing with an acid solution, and the absorption capacity is maintained after many recycling tests. These promising features make PIL-grafted PP nonwoven fabric a potential one-step treatment for multicomponent wastewater. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comparing efficacy of a sweep net and a dip method for collection of mosquito larvae in large bodies of water in South Africa [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Katherine K. Brisco

    2016-04-01

    Full Text Available In this study we tested an alternative method for collecting mosquito larvae called the sweep net catch method and compared its efficiency to that of the traditional dip method. The two methods were compared in various water bodies within Kruger National Park and Lapalala Wilderness area, South Africa. The sweep net catch method performed 5 times better in the collection of Anopheles larvae and equally as well as the dip method in the collection of Culex larvae (p =8.58 x 10-5. Based on 15 replicates the collector’s experience level did not play a significant role in the relative numbers of larvae collected using either method. This simple and effective sweep net catch method will greatly improve the mosquito larval sampling capacity in the field setting.

  7. Light absorption by water-soluble organic carbon in atmospheric fine particles in the central Tibetan Plateau.

    Science.gov (United States)

    Zhang, YanGe; Xu, JianZhong; Shi, JinSen; Xie, CongHui; Ge, XinLei; Wang, JunFeng; Kang, ShiChang; Zhang, Qi

    2017-09-01

    Brown carbon (BrC) has recently received much attention because of its light absorption features. The chemical compositions, optical properties, and sources of fine aerosol at a high-elevation mountain observatory (4730 m a.s.l.) in the central Tibetan Plateau were measured between 31 May and 1 July 2015. A low flow-rate sampler was used to collect 24-h average fine particulate matter (PM2.5) filter samples. Water-soluble ions, organic carbon (OC), elemental carbon, water-soluble organic carbon (WSOC), and light absorption by water-soluble BrC were determined for 26 filter samples. The mean (± 1σ) OC and WSOC concentrations were 0.76 ± 0.43 and 0.39 ± 0.15 μgC/m3, respectively, and the mean WSOC/OC mass ratio was 0.59 ± 0.22. The OC and WSOC concentrations were relatively higher (0.59-1.80 and 0.33-0.83 μgC/m3, respectively) during the pre-monsoon period (2-13 June) and were relatively lower (0.27-0.77 and 0.12-0.50 μgC/m3, respectively) during the monsoon period (14 June to 1 July), probably because of wet scavenging of aerosols during long-range transport and the presence of cleaner marine air masses during the monsoon period. The absorption spectra of PM2.5 water extracts smoothly increase from visible range to ultraviolet range. The absorption Ångström exponent, which describes the wavelength dependence of water-soluble BrC, was 2.74-10.61 (mean 6.19 ± 1.70), and its value was similar in the pre-monsoon period (6.57 ± 0.56) to that in the monsoon period (5.91 ± 2.14). The water-soluble BrC mass absorption efficiency, 0.38 ± 0.16 m2/(g C), was much lower than those observed in most urban areas but similar to those in other remote sites. Absorption coefficient at 365 nm, typically used as a proxy for water-soluble BrC, correlated well with the WSOC concentration (R 2  = 0.57), K+ concentration (R 2  = 0.75), and organic aerosol biomass burning markers characterized by an Aerodyne aerosol mass spectrometer (C2H4O2+ + C3H5O2

  8. Influence of Concentration of Compatibilizer on Long- term Water Absorption and Thickness Swelling Behavior of Polypropylene, Wood Flour/Glass Fiber Hybrid Composites

    OpenAIRE

    Alireza Ghotbifar; Saeid Kazemi najafi; Rabi Behrooz ashkiki

    2011-01-01

    The influence of concentration (2, 3 and 5%) of Maleic Anhydride Grafted Polypropylene (MAPP) on long term water absorption and thickness swelling of wood flour/E-glass fiber Hybrid polypropylene composites were studied. The samples (strips with 10 mm thickness and 70 mm width) were made using a laboratory twin-screw extruder. Long term water absorption and thickness swelling kinetics of manufactured hybrid composites were evaluated by immersing them in water at room temperature for several w...

  9. The relationship between water absorption characteristics and the mechanical strength of resin-modified glass-ionomer cements in long-term water storage.

    Science.gov (United States)

    Akashi, A; Matsuya, Y; Unemori, M; Akamine, A

    1999-09-01

    The purpose of this study is to elucidate the water absorption characteristics of resin-modified glass-ionomer cements and to also investigate the relationship between the characteristics and mechanical strength after long-term water storage. The mechanism of water diffusion in these cements is also discussed. Water absorption was measured using a gravimetric analysis for 12 m, while the diffusion coefficient was calculated using Fick's law of diffusion. Water solubility was determined based on the weight of the residue in the immersed water. The compressive and diametral tensile strength were measured at 1, 2, 6, and 12 m. A correlation was observed between the diffusion coefficient and equilibrium water uptake, which thus suggests the water in the cements to diffuse through micro-voids in accordance with the 'Free volumetric theory'. A correlation was seen between the solubility and diffusion coefficient of the cements. The deterioration ratio, defined as the ratio of the strength at 12 m versus that at 1 m, was also calculated. Finally, a negative correlation was observed between the deterioration ratio of the compressive strength and the diffusion coefficients of the cements.

  10. Effect of Time-Temperature Path of Cure on the Water Absorption of High T sub g Epoxy Resins.

    Science.gov (United States)

    1986-05-01

    water increased. The decrease in RT density is ,e’a-ed to an increase in volume, which controls the amount of water absorbed. A cualitative model accounts...squares analysis was used to determine the best values of kD , CH’ and b for a given system (Fig. 17) (38). These values, for the difunc- tional partially...is determined from an analysis of the equilibrium sorption isotherm, without regard to an absorption model. In the analysis , the penetrant activity

  11. Chemically reacting on MHD boundary layer flow of CuO-water and MgO-water nanofluids past a stretching sheet in porous media with radiation absorption and heat generation/absorption

    Science.gov (United States)

    Kumaresan, E.; Vijaya Kumar, A. G.; Rushi Kumar, B.

    2017-11-01

    In the present investigation, a numerical analysis has been carried out for steady two dimensional MHD free convective boundary layer flows of electrically conducting nanofluids past a uniformly stretching sheet through porous media with radiation absorption, heat generation/absorption, thermal radiation, chemical reaction, thermo-diffusion and diffusion – thermo effects. We considered two types of nanofluids namely MgO-water and CuO-water. The mathematical model was governed by a system of linear and non-linear partial differential equations with prescribed boundary conditions. The governing boundary-layer equations are first transformed into a system of coupled nonlinear ordinary differential equations using similarity variables. The transformed equations were solved numerically by the shooting method with Runge-Kutta scheme. Finally the effects of various dimensionless governing parameters like magnetic field parameter, chemical reaction parameter, thermal radiation parameter, radiation absorption parameter, heat generation parameter, Dufour number, Soret number, volume fraction of the nanoparticles and shape of the nanoparticles on velocity, temperature and concentration profiles along with the friction factor, local Nusselt and Sherwood numbers are thoroughly studied and explicitly explained in tabular form.

  12. Phytoplankton community dynamic detection from the chlorophyll-specific absorption coefficient in productive inland waters

    Directory of Open Access Journals (Sweden)

    Fernanda Sayuri Yoshino Watanabe

    2017-10-01

    Full Text Available Abstract Aim: In this research, we investigated the spectral variability of the specific phytoplankton absorption coefficient, a*φ, measured in a tropical meso-to-hypertrophic reservoir, aiming to find spectral features associated with the chlorophyll-a (chla and other accessory pigments present in different phytoplankton species. Methods To accomplish this research, two fieldworks were carried out in different seasons in order to report a high bio-optical variation. Phytoplankton absorption coefficient, aφ, and chla concentration were measured in laboratory to estimate a*φ. Results The outcomes have indicated that there is a remarkable phytoplankton community dynamic as spatially as seasonally. Chla absorption features were well-defined at 440 nm and 675 nm. Conclusions All the a*φ spectra exhibited the absorption peak around 630 nm associated with phycocyanin pigment present in cyanobacteria. Some spectra have shown a peak at about 460 nm, which is related to chlorophyll b and chlorophyll c (chlb and chlc, respectively found in different phytoplankton species. In turn, absorption features of carotenoids around 490 nm also were identified, however, well defined just in curves measured in austral autumn. Such spectral features are found in phytoplankton groups already identified in the study area such as Chlorophyceae, Bacillariophyceae, Cyanophyceae, Conjugatophyceae, Chrysophyceae, among others. We expect that the results are useful in researches about remote sensing of phytoplankton and eutrophication in reservoirs.

  13. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  14. Seasonal and Topographic Variation in Net Primary Productivity and Water Use Efficiency in a Southwest Sky Island Fores

    Science.gov (United States)

    Murphy, P.; Minor, R. L.; Sanchez-Canete, E. P.; Potts, D. L.; Barron-Gafford, G.

    2016-12-01

    Western North American Forests represent an uncertain sink for atmospheric carbon. While understanding of the physical drivers of productivity in these forests has grown in the last decade, the relative influence of topographic position in the complex terrain of montane systems remains understudied. The high-latitude mixed conifer forest ecosystems of the southern Arizona Madrean Sky Islands are characterized by low precipitation, high annual variation in temperature, and heterogeneous topography. Eddy covariance measurements these forests show distinct seasonal trends due to temperature and bi-modal precipitation patterns, but these measurements are unable to resolve potential differences in physiological function on opposing north and south aspects within the footprint of the tower. Most of the year, north aspects receive less energy input due to the oblique angle of incoming solar radiation, leading to a divergence in soil moistures and temperatures. However, overall movement of energy and material is much higher on these north aspects on an annual basis. The implications of these differences for net primary productivity (NPP) and water use efficiency (WUE) are poorly addressed in the literature. We evaluated the relative control that topography has on the physical environment (soil moisture and temperature) and how these factors affect water stress, NPP, and WUE. We combined leaf-level measurements of photosynthesis and transpiration with other physiological and meteorological measurements to determine how the dominant vegetation functions as a result of microclimatic conditions. Initial results from the spring and summer measurement periods suggest topographical differences in microclimate, resulting in differences in NPP in the spring, but not the summer. Also, each of the three species on the same aspect responded differently to the same microclimatic conditions, underscoring interspecific variation at the site. How might these patterns change throughout an

  15. Water absorption enhances the uptake of mannitol and decreases Cr-EDTA/mannitol permeability ratios in cat small intestine in situ

    NARCIS (Netherlands)

    Bijlsma, P. B.; Fihn, B. M.; Sjöqvist, A.; Groot, J. A.; Taminiau, J. A. J. M.; Jodal, M.

    2002-01-01

    Background: Recently, we hypothesized that mannitol absorption in human intestinal permeability tests is a reflection of small intestinal water absorption and is dependent mainly on the efficiency of the countercurrent multiplier in the villi. This may affect the outcome of clinical double-sugar

  16. Improvements to water vapor transmission and capillary absorption measurements in porous materials

    Science.gov (United States)

    Samuel L. Zelinka; Samuel V. Glass; Charles R. Boardman

    2016-01-01

    The vapor permeability (or equivalently the vapor diffusion resistance factor) and the capillary absorption coefficient are frequently used as inputs to hygrothermal or heat, air, and moisture (HAM) models. However, it has been well documented that the methods used to determine these properties are sensitive to the operator, and wide variations in the properties have...

  17. Very high finesse optical-feedback cavity-enhanced absorption spectrometer for low concentration water vapor isotope analyses.

    Science.gov (United States)

    Landsberg, J; Romanini, D; Kerstel, E

    2014-04-01

    So far, cavity-enhanced absorption spectroscopy (CEAS) has been based on optical cavities with a high finesse F that, however, has been limited by mirror reflectivity and by cavity transmission considerations to a few times 10,000. Here, we demonstrate a compact near-infrared optical-feedback CEAS instrument for water vapor isotope ratio measurements, with F>140,000. We show that this very high finesse can be effectively exploited to improve the detection sensitivity to the full extent predicted by the increased effective path length to reach a noise equivalent absorption sensitivity of 5.7×10(-11)  cm(-1) Hz(-1/2) for a full spectrum registration (including possible effects of interference fringes and fit model inadequacies).

  18. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    Science.gov (United States)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2016-02-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.

  19. Interacting effects of elevated temperature and additional water on plant physiology and net ecosystem carbon fluxes in a high Arctic ecosystem

    Science.gov (United States)

    Maseyk, Kadmiel; Seibt, Ulrike; Lett, Céline; Lupascu, Massimo; Czimczik, Claudia; Sullivan, Patrick; Welker, Jeff

    2013-04-01

    Arctic ecosystems are experiencing temperature increases more strongly than the global average, and increases in precipitation are also expected amongst the climate impacts on this region in the future. These changes are expected to strongly influence plant physiology and soil biogeochemistry with subsequent implications for system carbon balance. We have investigated the effects of a long-term (10 years) increase in temperature, soil water and the combination of both on a tundra ecosystem at a field manipulation experiment in NW Greenland. Leaf gas exchange, chlorophyll fluorescence, carbon (C) and nitrogen (N) content and leaf isotopic composition, and leaf morphology were measured on Salix arctica plants in treatment and control plots in June-July 2011, and continuous measurements of net plant and soil fluxes of CO2 and water were made using automatic chambers coupled to a trace gas laser analyzer. Plants in the elevated temperature (T2) treatment had the highest photosynthetic capacity in terms of net CO2 assimilation rates and photosystem II efficiencies, and lowest rates of non-photochemical energy dissipation during photosynthesis. T2 plants also had the highest leaf N content, specific leaf area (SLA) and saturation light level of photosynthesis. It appears that warming increases soil N availability, which the plants direct towards increasing photosynthetic capacity and producing larger thinner leaves. On the other hand, the plants in the plots with both elevated temperatures and additional water (T2W) had the lowest photosystem II efficiencies and the highest rates of non-photochemical energy dissipation, due more to higher levels of constitutive energy dissipation than regulated thermal quenching. Watering, both in combination with higher temperatures and alone (W treatment), also reduced leaf SLA and leaf N relative to control plots. However, net photosynthetic rates remained similar to control plants, due in part to higher stomatal conductance (W) and

  20. Nano-sized water-in-oil-in-water emulsion enhances intestinal absorption of calcein, a high solubility and low permeability compound.

    Science.gov (United States)

    Koga, Kenjiro; Takarada, Nobuo; Takada, Kanji

    2010-02-01

    Our goal was to develop safe and stable multilayer emulsions capable of enhancing intestinal absorption of biopharmaceutics classification system (BCS) class III drugs. First, w/o emulsions were prepared using calcein as a model BCS class III compound and condensed ricinoleic acid tetraglycerin ester as a hydrophobic emulsifier. Then water-in-oil-in-water (w/o/w) emulsions were prepared with shirasu porous glass (SPG) membranes. Particle size analyses and calcein leakage from oil droplets in w/o/w emulsions led us to select stearic acid hexaglycerin esters (HS-11) and Gelucire 44/14 as hydrophilic emulsifiers. Analyses of the absorption-enhancing effects of w/o/w emulsions on intestinal calcein absorption in rats showed that calcein bioavailability after intraduodenal (i.d.) administration of HS-11 or Gelucire 44/14+polyvinyl alcohol (PVA) w/o/w emulsions prepared with 0.1-microm pore-sized SPGs was significantly higher than that of the calcein control. However, serum calcein concentration vs. time profiles after i.d. administration of w/o/w emulsions prepared with 1.1-microm and 30-microm pore-sized SPGs and an emulsion prepared with a calcein-containing outer water phase were comparable to control profiles. These results suggested that HS-11 or Gelucire 44/14+PVA are safe outer water phase additives and that 0.1-microm pore-sized SPGs are important for preparing w/o/w emulsions that enhanced intestinal calcein absorption. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  1. High Efficiency Water Heating Technology Development Final Report, Part II: CO2 and Absorption-Based Residential Heat Pump Water Heater Development

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patel, Viral K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mandel, Bracha T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  2. Measurements of mesospheric water vapour, aerosols and temperatures with the Spectral Absorption Line Imager (SALI-AT)

    Science.gov (United States)

    Shepherd, M. G.; Mullins, M.; Brown, S.; Sargoytchev, S. I.

    2001-08-01

    Water vapour concentration is one of the most important, yet one of the least known quantities of the mesosphere. Knowledge of water vapour concentration is the key to understanding many mesospheric processes, including the one that is primary focus of our investigation, mesospheric clouds (MC). The processes of formation and occurrence parameters of MC constitute an interesting problem in their own right, but recently evidence has been provided which suggests that they are a critical indicator of atmospheric change. The aim of the SALI-AT experiment is to make simultaneous (although not strictly collocated) measurements of water vapour, aerosols and temperature in the mesosphere and the mesopause region under twilight condition in the presence of mesospheric clouds. The water vapour will be measured in the regime of solar occultation utilizing a water vapour absorption band at 936 nm wavelength employing the SALI (Spectral Absorption Line Imager) instrument concept. A three-channel zenith photometer, AT-3, with wavelengths of 385 nm, 525 nm, and 1040 nm will measure Mie and Rayleigh scattering giving both mesospheric temperature profiles and the particle size distribution. Both instruments are small, low cost and low mass. It is envisioned that the SALI-AT experiment be flown on a small rocket - the Improved Orion/Hotel payload configuration, from the Andoya Rocket range, Norway. Alternatively the instrument can be flown as a "passenger" on larger rocket carrying other experiments. In either case flight costs are relatively low. Some performance simulations are presented showing that the instrument we have designed will be sufficiently sensitive to measure water vapor in concentrations that are expected at the summer mesopause, about 85 km height.

  3. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture

    Directory of Open Access Journals (Sweden)

    Julia García-González

    2014-09-01

    Full Text Available The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed technique.

  4. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture †

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-del Pozo, Julia Mª; Guerra-Romero, M. Ignacio

    2014-01-01

    The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed technique. PMID:28788188

  5. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture.

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia Mª; Guerra-Romero, M Ignacio

    2014-09-01

    The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed technique.

  6. Effect of Impact Modifier Type on Water Absorption and Thickness Swelling Parameters of Wood Flour- Recycled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Saman Ghahri

    2012-01-01

    Full Text Available In this research, the effect of impact modifier type on water diffusion coefficient, maximum water absorption and thickness swelling parameters of wood flour- recycled polypropylene composites were evaluated. For this purpose, a virgin PP was thermo-mechanically degraded by two times extrusion under controlled conditions in a twin-screw extruder at a rotor speed of 100 rpm and a temperature of 1900C. The virgin and recycled PP in 2nd stage, compatibilizer (0, 2 % w/w and wood flour were compounded at 50% weight sawdust loading in a counter-rotating twin-screw extruder in presence different type of impact modifiers (0, 6 % w/w. Ethylene vinyl acetate (EVA, ethylene-propylene-diene monomer (EPDM and acrylonitrile-butadiene-styrene (ABS were used as impact modifiers. The analysis of diffusion mechanism and thickness swelling rate were done based on Fick’s theory and swelling model for wood flour- recycled polypropylene composites. The composites containing two times recycled PP exhibited lower moisture diffusion coefficients, swelling rate parameter, maximum water absorption, thickness swelling. Also results showed that moisture diffusion coefficients and thickness swelling parameters of composites containing EVA are lower than composites containing EPDM and ABS. The use of compatibilizer decreased the moisture diffusion coefficients and thickness swelling parameters of the wood flour- recycled polypropylene composites

  7. Africa-wide monitoring of small surface water bodies using multisource satellite data: a monitoring system for FEWS NET: chapter 5

    Science.gov (United States)

    Velpuri, Naga Manohar; Senay, Gabriel B.; Rowland, James; Verdin, James P.; Alemu, Henok; Melesse, Assefa M.; Abtew, Wossenu; Setegn, Shimelis G.

    2014-01-01

    Continental Africa has the highest volume of water stored in wetlands, large lakes, reservoirs, and rivers, yet it suffers from problems such as water availability and access. With climate change intensifying the hydrologic cycle and altering the distribution and frequency of rainfall, the problem of water availability and access will increase further. Famine Early Warning Systems Network (FEWS NET) funded by the United States Agency for International Development (USAID) has initiated a large-scale project to monitor small to medium surface water points in Africa. Under this project, multisource satellite data and hydrologic modeling techniques are integrated to monitor several hundreds of small to medium surface water points in Africa. This approach has been already tested to operationally monitor 41 water points in East Africa. The validation of modeled scaled depths with field-installed gauge data demonstrated the ability of the model to capture both the spatial patterns and seasonal variations. Modeled scaled estimates captured up to 60 % of the observed gauge variability with a mean root-mean-square error (RMSE) of 22 %. The data on relative water level, precipitation, and evapotranspiration (ETo) for water points in East and West Africa were modeled since 1998 and current information is being made available in near-real time. This chapter presents the approach, results from the East African study, and the first phase of expansion activities in the West Africa region. The water point monitoring network will be further expanded to cover much of sub-Saharan Africa. The goal of this study is to provide timely information on the water availability that would support already established FEWS NET activities in Africa. This chapter also presents the potential improvements in modeling approach to be implemented during future expansion in Africa.

  8. Modification of water absorption capacity of a plastic based on bean protein using gamma irradiated starches as additives

    Energy Technology Data Exchange (ETDEWEB)

    Koeber, E. [Facultad de Ingenieria, Grupo de Ingenieria Bioquimica, Universidad de Buenos Aires, Paseo Colon 850, 1063, Buenos Aires (Argentina); Gonzalez, M.E. [Comision Nacional Energia Atomica, Av. Del Libertador 8250, Buenos Aires (Argentina); Gavioli, N. [Facultad de Ingenieria, Grupo de Ingenieria Bioquimica, Universidad de Buenos Aires, Paseo Colon 850, 1063, Buenos Aires (Argentina); Salmoral, E.M. [Facultad de Ingenieria, Grupo de Ingenieria Bioquimica, Universidad de Buenos Aires, Paseo Colon 850, 1063, Buenos Aires (Argentina)]. E-mail: esalmor@fi.uba.ar

    2007-01-15

    Some properties of a bean protein-starch plastic were modified by irradiation of the starch. Two kinds of starch from bean and cassava were irradiated with doses until 50 kGy before their inclusion in the composite. Water absorption of the resultant product was reduced by 36% and 60% in materials containing bean and cassava starch, respectively. A large decline in the elongation is observed till 10 kGy in both materials, while tensile strength diminished by 11% in the cassava composite.

  9. A numerical and experimental analysis of the process of water vapour absorption by a static lithium bromide solution

    Science.gov (United States)

    Goulet, R.; Knikker, R.; Boudard, E.; Stutz, B.; Bonjour, J.

    2014-02-01

    This paper describes a numerical and experimental analysis of the process of water vapour absorption by a static lithium bromide solution. In the experiment, the temperature evolution of the absorbent solution is measured at different heights. The numerical model solves the set of governing equations for the simultaneous heat and mass transfer inside the absorbent by means of the finite-volume method. An iterative method is used to take into account the strong coupling of heat and mass transfer at the interface and variations of thermophysical properties. A moving grid technique is employed to represent the increase of the solution volume. Model results are compared with our measurements and data reported in the literature. The influence of using constant properties is analysed by comparison with the variable properties and experimental results. It is found that this assumption provides acceptable results in the investigated pool absorption cases despite a strong underestimation of the increase of the solution volume in the course of the absorption process.

  10. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  11. Effects of sea-ice light attenuation and CDOM absorption in the water below the Eurasian sector of central Arctic Ocean (> 880N)

    DEFF Research Database (Denmark)

    Lund-Hansen, Lars Chresten; Markager, Stiig; Hancke, Kasper

    2015-01-01

    -year and first-year PAR transmittances. In spite of this low under-ice PAR, only 3% of the transmitted PAR through the ice was absorbed by phytoplankton in the water. On average, chlorophyll-a concentrations were low (0.34±0.69 SD mg chl-a m−3) in the water compared to the high (a375=0.52 m−1) coloured dissolved...... organic matter (CDOM) absorption coefficient with a strong terrestrial optical signature. Two distinct clusters of stations with waters of Pacific and North Atlantic origin were identified based on significant differences in temperature, salinity and CDOM absorption coefficient between water masses...

  12. WATER ABSORPTION IN GALACTIC TRANSLUCENT CLOUDS: CONDITIONS AND HISTORY OF THE GAS DERIVED FROM HERSCHEL /HIFI PRISMAS OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Flagey, N.; Goldsmith, P. F. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lis, D. C.; Monje, R.; Phillips, T. G. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Gerin, M.; De Luca, M.; Godard, B. [LERMA, UMR 8112 du CNRS, Observatoire de Paris, Ecole Normale Superieure, UPMC and UCP (France); Neufeld, D. [Department of Physics and Astronomy, Johns Hopkins Univ. 3400 N. Charles St., Baltimore, MD 21218 (United States); Sonnentrucker, P. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Goicoechea, J. R., E-mail: nflagey@jpl.nasa.gov [Centro de Astrobiologia (CSIC-INTA), E-28850 Torrejon de Ardoz, Madrid (Spain)

    2013-01-01

    We present Herschel/HIFI observations of the three ground state transitions of H{sub 2}O (556, 1669, and 1113 GHz) and H{sub 2}{sup 18}O (547, 1655, and 1101 GHz)-as well as the first few excited transitions of H{sub 2}O (987, 752, and 1661 GHz)-toward six high-mass star-forming regions, obtained as part of the PRISMAS (PRobing InterStellar Molecules with Absorption line Studies) Guaranteed Time Key Program. Water vapor associated with the translucent clouds in Galactic arms is detected in absorption along every line of sight in all the ground state transitions. The continuum sources all exhibit broad water features in emission in the excited and ground state transitions. Strong absorption features associated with the source are also observed at all frequencies except 752 GHz. We model the background continuum and line emission to infer the optical depth of each translucent cloud along the lines of sight. We derive the column density of H{sub 2}O or H{sub 2}{sup 18}O for the lower energy level of each transition observed. The total column density of water in translucent clouds is usually about a few 10{sup 13} cm{sup -2}. We find that the abundance of water relative to hydrogen nuclei is 1 Multiplication-Sign 10{sup -8} in agreement with models for oxygen chemistry in which high cosmic ray ionization rates are assumed. Relative to molecular hydrogen, the abundance of water is remarkably constant through the Galactic plane with X(H{sub 2}O) =5 Multiplication-Sign 10{sup -8}, which makes water a good traced of H{sub 2} in translucent clouds. Observations of the excited transitions of H{sub 2}O enable us to constrain the abundance of water in excited levels to be at most 15%, implying that the excitation temperature, T {sub ex}, in the ground state transitions is below 10 K. Further analysis of the column densities derived from the two ortho ground state transitions indicates that T {sub ex} {approx_equal} 5 K and that the density n(H{sub 2}) in the translucent clouds

  13. Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models

    DEFF Research Database (Denmark)

    Christensen, Morten

    by different directional wave spectra. The wave generator displacement signals applied in the tests are generated by means of linear digital filtering of Gaussian white noise in the time domain. An absorbing wave generator for 2-D wave facilities (wave channels) is developed. The absorbing wave generator...... in the wave channel in front of the wave generator. The results of physical model tests performed with an absorbing wave maker based on this principle show that the problem of rereflection is reduced significantly when active absorption is performed. Finally, an absorbing directional wave generator for 3-D...

  14. Petri Nets

    Indian Academy of Sciences (India)

    Associate Professor of. Computer Science and. Automation at the Indian. Institute of Science,. Bangalore. His research interests are broadly in the areas of stochastic modeling and scheduling methodologies for future factories; and object oriented modeling. GENERAL I ARTICLE. Petri Nets. 1. Overview and Foundations.

  15. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Petri Nets - Overview and Foundations. Y Narahari. General Article Volume 4 Issue 8 August 1999 pp ... Author Affiliations. Y Narahari1. Department ot Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  16. Scale coloration change following water absorption in the beetle Hoplia coerulea (Coleoptera)

    Science.gov (United States)

    Rassart, Marie; Simonis, Priscilla; Bay, Annick; Deparis, Olivier; Vigneron, Jean Pol

    2009-09-01

    The blue scales on the cuticle of the male beetle Hoplia coerulea can absorb water, with the consequence that these scales, which have been shown to be responsible for the beetle’s bright blue coloration, reversibly turn to emerald green with increasing water contents. Optical measurements are shown, by analytic photonic-crystal models, to be compatible with the full filling of the scales structures with water. The natural mechanism shows the way to produce a very efficient hygrochromic material: a medium which significantly changes color when its water contents are modified.

  17. Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater Part 1: Southern and South Central Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick J [ORNL; Shen, Bo [ORNL; Keinath, Christopher M. [Stone Mountain Technologies, Inc., Johnson City; Garrabrant, Michael A. [Stone Mountain Technologies, Inc., Johnson City

    2016-01-01

    Commercial hot water heating accounts for approximately 0.78 Quads of primary energy use with 0.44 Quads of this amount from natural gas fired heaters. An ammonia-water based commercial absorption system, if fully deployed, could achieve a high level of savings, much higher than would be possible by conversion to the high efficiency nonheat-pump gas fired alternatives. In comparison with air source electric heat pumps, the absorption system is able to maintain higher coefficients of performance in colder climates. The ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. A thermodynamic model of a single effect ammonia-water absorption system for commercial space and water heating was developed, and its performance was investigated for a range of ambient and return water temperatures. This allowed for the development of a performance map which was then used in a building energy modeling software. Modeling of two commercial water heating systems was performed; one using an absorption heat pump and another using a condensing gas storage system. The energy and financial savings were investigated for a range of locations and climate zones in the southern and south central United States. A follow up paper will analyze northern and north/central regions. Results showed that the system using an absorption heat pump offers significant savings.

  18. Pressure-Sensitive and Conductive Carbon Aerogels from Poplars Catkins for Selective Oil Absorption and Oil/Water Separation.

    Science.gov (United States)

    Li, Lingxiao; Hu, Tao; Sun, Hanxue; Zhang, Junping; Wang, Aiqin

    2017-05-31

    Multifunctional carbon aerogels that are both highly compressible and conductive have broad potential applications in the range of sound insulator, sensor, oil absorption, and electronics. However, the preparation of such carbon aerogels has been proven to be very challenging. Here, we report fabrication of pressure-sensitive and conductive (PSC) carbon aerogels by pyrolysis of cellulose aerogels composed of poplars catkin (PC) microfibers with a tubular structure. The wet PC gels can be dried directly in an oven without any deformation, in marked contrast to the brittle nature of traditional carbon aerogels. The resultant PSC aerogels exhibit ultralow density (4.3 mg cm-3), high compressibility (80%), high electrical conductivity (0.47 S cm-1), and high absorbency (80-161 g g-1) for oils and organic liquids. The PSC aerogels have potential applications in various fields such as elastomeric conductors, absorption of oils from water and oil/water separation, as the PSC aerogels feature simple preparation process with low-cost biomass as the precursor.

  19. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying.

    Science.gov (United States)

    Gieseler, Henning; Kessler, William J; Finson, Michael; Davis, Steven J; Mulhall, Phillip A; Bons, Vincent; Debo, David J; Pikal, Michael J

    2007-07-01

    The goal of this work was to demonstrate the use of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a noninvasive method to continuously measure the water vapor concentration and the vapor flow velocity in the spool connecting a freeze-dryer chamber and condenser. The instantaneous measurements were used to determine the water vapor mass flow rate (g/s). The mass flow determinations provided a continuous measurement of the total amount of water removed. Full load runs of pure water at different pressure and shelf temperature settings and a 5% (w/w) mannitol product run were performed in both laboratory and pilot scale freeze dryers. The ratio of "gravimetric/TDLAS" measurements of water removed was 1.02 +/- 0.06. A theoretical heat transfer model was used to predict the mass flow rate and the model results were compared to both the gravimetric and TDLAS data. Good agreement was also observed in the "gravimetric/TDLAS" ratio for the 5% mannitol runs dried in both freeze dryers. The endpoints of primary and secondary drying for the product runs were clearly identified. Comparison of the velocity and mass flux profiles between the laboratory and pilot dryers indicated a higher restriction to mass flow for the lab scale freeze dryer. Copyright 2007 Wiley-Liss, Inc.

  20. Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age.

    Science.gov (United States)

    Fernández, Victoria; Sancho-Knapik, Domingo; Guzmán, Paula; Peguero-Pina, José Javier; Gil, Luis; Karabourniotis, George; Khayet, Mohamed; Fasseas, Costas; Heredia-Guerrero, José Alejandro; Heredia, Antonio; Gil-Pelegrín, Eustaquio

    2014-09-01

    Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology. © 2014 American Society of Plant Biologists. All Rights Reserved.

  1. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Science.gov (United States)

    Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Lawrence B.

    2017-12-01

    Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation-reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May-October WTD drawdown of ˜ 0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re) by 0.26 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects on modeled

  2. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Directory of Open Access Journals (Sweden)

    M. Mezbahuddin

    2017-12-01

    Full Text Available Water table depth (WTD effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1 oxygen transport, which controls energy yields from microbial and root oxidation–reduction reactions, and (2 vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May–October WTD drawdown of  ∼  0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re by 0.26 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. Similar increases in

  3. Effect of Genetic Strain and Sex on Water Absorption and Water-To-Protein Ratio in Chicken Meat

    Directory of Open Access Journals (Sweden)

    MJGS Ferrari

    Full Text Available ABSTRACT The objectives of the present study were to evaluate the water and protein contents and the water-to-protein ratio of chicken parts before and after the pre-chilling process, to compare these results with the values officially recommended by the Brazilian Ministry of Agriculture, and to evaluate the effect of genetic strain and sex on these parameters. Water (% and protein (% contents, and water-to-protein ratio (WPR of boneless and skinless breast (FILLETS and breast with bone and skin (BREAST were determined before (BPC and after (APC carcass pre-chilling. A total of 585 samples were evaluated: 221 fillets/male, 216 breasts/male, 76 fillets/female, and 72 fillets/female of four different broilers strains were evaluated before (BPC and after (APC samples. Water and protein contents and water-to-protein ratio were determined according to the Brazilian legislation. Results showed that there were no significant differences between genetic strains (p<0.05 neither in samples collected before or after the chiller. There were no statistical differences in the parameters studied among genetic strains. However, a high percentage of male breast samples presented water level and water-to-protein ratio above the official limits already before pre-chilling.

  4. Light absorption by organic carbon from wood combustion

    Science.gov (United States)

    Chen, Y.; Bond, T. C.

    2010-02-01

    Carbonaceous aerosols affect the radiative balance of the Earth by absorbing and scattering light. While black carbon (BC) is highly absorbing, some organic carbon (OC) also has significant absorption, especially at near-ultraviolet and blue wavelengths. To the extent that OC absorbs visible light, it may be a non-negligible contributor to positive direct aerosol radiative forcing. Quantification of that absorption is necessary so that radiative-transfer models can evaluate the net radiative effect of OC. In this work, we examine absorption by primary OC emitted from solid fuel pyrolysis. We provide absorption spectra of this material, which can be related to the imaginary refractive index. This material has polar character but is not fully water-soluble: more than 92% was extractable by methanol or acetone, compared with 73% for water and 52% for hexane. Water-soluble OC contributes to light absorption at both ultraviolet and visible wavelengths. However, a larger portion of the absorption comes from OC that is extractable only by methanol. Absorption spectra of water-soluble OC are similar to literature reports. We compare spectra for material generated with different wood type, wood size and pyrolysis temperature. Higher wood temperature is the main factor creating OC with higher absorption; changing wood temperature from a devolatilizing state of 210 °C to a near-flaming state of 360 °C causes about a factor of four increase in mass-normalized absorption at visible wavelengths. A clear-sky radiative transfer model suggests that, despite the absorption, both high-temperature and low-temperature OC result in negative top-of-atmosphere radiative forcing over a surface with an albedo of 0.19 and positive radiative forcing over bright surfaces. Unless absorption by real ambient aerosol is higher than that measured here, it probably affects global average clear-sky forcing very little, but could be important in energy balances over bright surfaces.

  5. Light absorption by organic carbon from wood combustion

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2010-02-01

    Full Text Available Carbonaceous aerosols affect the radiative balance of the Earth by absorbing and scattering light. While black carbon (BC is highly absorbing, some organic carbon (OC also has significant absorption, especially at near-ultraviolet and blue wavelengths. To the extent that OC absorbs visible light, it may be a non-negligible contributor to positive direct aerosol radiative forcing. Quantification of that absorption is necessary so that radiative-transfer models can evaluate the net radiative effect of OC.

    In this work, we examine absorption by primary OC emitted from solid fuel pyrolysis. We provide absorption spectra of this material, which can be related to the imaginary refractive index. This material has polar character but is not fully water-soluble: more than 92% was extractable by methanol or acetone, compared with 73% for water and 52% for hexane. Water-soluble OC contributes to light absorption at both ultraviolet and visible wavelengths. However, a larger portion of the absorption comes from OC that is extractable only by methanol. Absorption spectra of water-soluble OC are similar to literature reports. We compare spectra for material generated with different wood type, wood size and pyrolysis temperature. Higher wood temperature is the main factor creating OC with higher absorption; changing wood temperature from a devolatilizing state of 210 °C to a near-flaming state of 360 °C causes about a factor of four increase in mass-normalized absorption at visible wavelengths. A clear-sky radiative transfer model suggests that, despite the absorption, both high-temperature and low-temperature OC result in negative top-of-atmosphere radiative forcing over a surface with an albedo of 0.19 and positive radiative forcing over bright surfaces. Unless absorption by real ambient aerosol is higher than that measured here, it probably affects global average clear-sky forcing very little, but could be important in energy balances over bright

  6. Quantifying the net benefit impacts of the Troy Waste Water Treatment Plant on Steelhead Habitat in the West Fork Little Bear Creek drainage

    Science.gov (United States)

    Sanchez-Murillo, R.; Brooks, E. S.; Boll, J.

    2010-12-01

    Discharge of waste water treatment plants (WWTPs) typically is viewed to result in water quality impairment. However, WWTPs can also be a source of nutrients to enhance the salmonid food web as well as an efficient way to maintain acceptable water temperature regimes and flow conditions during summer. We observed this paradox in West Fork Little Bear Creek (WFLB) in the City of Troy, Idaho. Despite the nutrient load, the WFLB had the highest Steelhead trout density in the watershed, with a mean density of 13.2 fish/100 m2. The objective of this project was to utilize a water quality model, QUAL2kw, and an ecology assessment to examine how the nutrient load from the WWTP affects: a) habitat conditions for steelhead juveniles, and b) physic-chemical parameters. Four monitoring stations were installed from May through November in 2009 and 2010. An undisturbed creek was used as a control site in 2010. Dissolved oxygen (DO), electrical conductivity, temperature, and discharge were measured continuously at each monitoring station. Weekly samples were collected at each monitoring station and analyzed for nitrate, nitrite, ammonia, total Kjeldahl nitrogen, total phosphorous, and orthophosphates. In 2010, Chlorophyll a was analyzed weekly, while bottom algae biomass was determined monthly. Results show that during summer months, the WWTP provides the majority of the flow (0.1 cfs) in the creek. Water samples and DO measurements taken 200 m downstream of the plant during late summer months indicate that nitrification process leads to low DO level well below the state standard of 6 mg/L for cold water biota. However dissolved oxygen levels recover within 1 km downstream. Discharge data suggest that without the flow from the treatment most of the creek would dry during late summer months. Abundance of macroinverbrates, high primary productivity, and sustained flow during summer suggests that the effluent from the WWTP is a net benefit to the Steelhead habitat in the basin

  7. High-accuracy measurement of low-water-content in liquid using NIR spectral absorption method

    Science.gov (United States)

    Peng, Bao-Jin; Wan, Xu; Jin, Hong-Zhen; Zhao, Yong; Mao, He-Fa

    2005-01-01

    Water content measurement technologies are very important for quality inspection of food, medicine products, chemical products and many other industry fields. In recent years, requests for accurate low-water-content measurement in liquid are more and more exigent, and great interests have been shown from the research and experimental work. With the development and advancement of modern production and control technologies, more accurate water content technology is needed. In this paper, a novel experimental setup based on near-infrared (NIR) spectral technology and fiber-optic sensor (OFS) is presented. It has a good measurement accuracy about -/+ 0.01%, which is better, to our knowledge, than most other methods published until now. It has a high measurement resolution of 0.001% in the measurement range from zero to 0.05% for water-in-alcohol measurement, and the water-in-oil measurement is carried out as well. In addition, the advantages of this method also include pollution-free to the measured liquid, fast measurement and so on.

  8. Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids.

    Science.gov (United States)

    Goodrich, Brett F; de la Fuente, Juan C; Gurkan, Burcu E; Lopez, Zulema K; Price, Erica A; Huang, Yong; Brennecke, Joan F

    2011-07-28

    Amine-functionalized anion-tethered ionic liquids (ILs) trihexyl(tetradecyl)phosphonium asparaginate [P(66614)][Asn], glutaminate [P(66614)][Gln], lysinate [P(66614)][Lys], methioninate [P(66614)][Met], prolinate [P(66614)][Pro], taurinate [P(66614)][Tau], and threoninate [P(66614)][Thr] were synthesized and investigated as potential absorbents for CO(2) capture from postcombustion flue gas. Their physical properties, including density, viscosity, glass transition temperature, and thermal decomposition temperature were determined. Furthermore, the CO(2) absorption isotherms of [P(66614)][Lys], [P(66614)][Tau], [P(66614)][Pro], and [P(66614)][Met] were measured using a volumetric method, and the results were modeled with two different Langmuir-type absorption models. The most important result of this study is that the viscosity of [P(66614)][Pro] only increased by a factor of 2 when fully complexed with 1 bar of CO(2) at room temperature. This is in stark contrast to the other chemically reacted ILs investigated here and all other amino acid-based ILs reported in the literature, which dramatically increase in viscosity, typically by 2 orders of magnitude, when complexed with CO(2). The unique behavior of [P(66614)][Pro] is likely due to its ring structure, which limits the number and availability of hydrogen atoms that can participate in a hydrogen bonding network. We found that water can be used to further reduce the viscosity of the CO(2)-complexed IL, while only slightly decreasing the CO(2) capacity. Finally, from temperature-dependent isotherms, we estimate a heat of absorption of -63 kJ/mol of CO(2) for the 1:1 reaction of CO(2) with [P(66614)][Pro], when we use the two-reaction model. © 2011 American Chemical Society

  9. Methylmercury and other chemical constituents in Pacific coastal fog water from seven sites in Central/Northern California (FogNet) during the summer of 2014

    Science.gov (United States)

    Weiss-Penzias, P. S.; Heim, W. A.; Fernandez, D.; Coale, K. H.; Oliphant, A. J.; Dann, D.; Porter, M.; Hoskins, D.; Dodge, C.

    2014-12-01

    This project investigates the mercury content in summertime Pacific coastal fog in California and whether fog could be an important vector for ocean emissions of mercury to be deposited via fog drip to upland coastal ecosystems. Efforts began in early 2014 with the building of 7 active-strand fog collectors based on the Colorado State University Caltech CASCC design. The new UCSC CASCC includes doors sealing the collector which open under microcomputer control based on environmental sensing (relative humidity). Seven sites spanning from Trinidad in the north to Marina in the south have collected samples June-August 2014 under a project called FogNet. Fog conditions were favorable for collecting large water volumes (> 250 mL) at many sites. Fog samplers were cleaned with soap and deionized water daily and field blanks taken immediately following cleaning. Fog water samples were collected overnight, split into an aliquot for anion and DOC/DIC analysis and the remaining sample was acidified. Monomethyl mercury (MMHg) concentrations in samples and field blanks for 3 sites in FogNet are shown in the accompanying figure. The range of MMHg concentrations from 10 fog water samples > 100 mL in volume was 0.9-9.3 ng/L (4.5-46.4 pM). Elevated MMHg concentrations (> 5 ng/L, 25 pM) were observed at 2 sites: UC Santa Cruz and Bodega Bay. The field blanks produced MMHg concentrations of 0.08-0.4 ng/L (0.4-2.0 pM), which was on average < 10% of the sample concentration and suggests the artifact due to sampling was small. The observed MMHg concentrations in fog water observed is this study are 1-2 orders of magnitude greater than MMHg concentrations seen previously in rain water samples from the California coast suggesting an additional source of MMHg to fog. Shipboard measurements of dimethyl mercury (DMHg) in coastal California seawater during the time period of FogNet operations (summer 2014) reveal surface waters that were supersaturated in DMHg which represents a potential

  10. Detection of copper in water using on-line plasma-excited atomic absorption spectroscopy (AAS).

    Science.gov (United States)

    Porento, Mika; Sutinen, Veijo; Julku, Timo; Oikari, Risto

    2011-06-01

    A measurement method and apparatus was developed to measure continuously toxic metal compounds in industrial water samples. The method was demonstrated by using copper as a sample metal. Water was injected into the sample line and subsequently into a nitrogen plasma jet, in which the samples comprising the metal compound dissolved in water were decomposed. The transmitted monochromatic light was detected and the absorbance caused by copper atoms was measured. The absorbance and metal concentration were used to calculate sensitivity and detection limits for the studied metal. The sensitivity, limit of detection, and quantification for copper were 0.45 ± 0.02, 0.25 ± 0.01, and 0.85 ± 0.04 ppm, respectively.

  11. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    Science.gov (United States)

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin; Platt, Ulrich

    2017-01-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  12. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    Science.gov (United States)

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin A.; Platt, Ulrich

    2017-05-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800-900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  13. Remote sensing leaf water stress in coffee (Coffea arabica) using secondary effects of water absorption and random forests

    Science.gov (United States)

    Chemura, Abel; Mutanga, Onisimo; Dube, Timothy

    2017-08-01

    Water management is an important component in agriculture, particularly for perennial tree crops such as coffee. Proper detection and monitoring of water stress therefore plays an important role not only in mitigating the associated adverse impacts on crop growth and productivity but also in reducing expensive and environmentally unsustainable irrigation practices. Current methods for water stress detection in coffee production mainly involve monitoring plant physiological characteristics and soil conditions. In this study, we tested the ability of selected wavebands in the VIS/NIR range to predict plant water content (PWC) in coffee using the random forest algorithm. An experiment was set up such that coffee plants were exposed to different levels of water stress and reflectance and plant water content measured. In selecting appropriate parameters, cross-correlation identified 11 wavebands, reflectance difference identified 16 and reflectance sensitivity identified 22 variables related to PWC. Only three wavebands (485 nm, 670 nm and 885 nm) were identified by at least two methods as significant. The selected wavebands were trained (n = 36) and tested on independent data (n = 24) after being integrated into the random forest algorithm to predict coffee PWC. The results showed that the reflectance sensitivity selected bands performed the best in water stress detection (r = 0.87, RMSE = 4.91% and pBias = 0.9%), when compared to reflectance difference (r = 0.79, RMSE = 6.19 and pBias = 2.5%) and cross-correlation selected wavebands (r = 0.75, RMSE = 6.52 and pBias = 1.6). These results indicate that it is possible to reliably predict PWC using wavebands in the VIS/NIR range that correspond with many of the available multispectral scanners using random forests and further research at field and landscape scale is required to operationalize these findings.

  14. Estimation of net ecosystem metabolism of seagrass meadows in the coastal waters of the East Sea and Black Sea using the noninvasive eddy covariance technique

    Science.gov (United States)

    Lee, Jae Seong; Kang, Dong-Jin; Hineva, Elitsa; Slabakova, Violeta; Todorova, Valentina; Park, Jiyoung; Cho, Jin-Hyung

    2017-06-01

    We measured the community-scale metabolism of seagrass meadows in Bulgaria (Byala [BY]) and Korea (Hoopo Bay [HP]) to understand their ecosystem function in coastal waters. A noninvasive in situ eddy covariance technique was applied to estimate net O2 flux in the seagrass meadows. From the high-quality and high-resolution time series O2 data acquired over > 24 h, the O2 flux driven by turbulence was extracted at 15-min intervals. The spectrum analysis of vertical flow velocity and O2 concentration clearly showed well-developed turbulence characteristics in the inertial subrange region. The hourly averaged net O2 fluxes per day ranged from -474 to 326 mmol O2 m-2 d-1 (-19 ± 41 mmol O2 m-2 d-1) at BY and from -74 to 482 mmol O2 m-2 d-1 (31 ± 17 mmol O2 m-2 d-1) at HP. The net O2 production rapidly responded to photosynthetically available radiation (PAR) and showed a good relationship between production and irradiance (P-I curve). The hysteresis pattern of P-I relationships during daytime also suggested increasing heterotrophic respiration in the afternoon. With the flow velocity between 3.30 and 6.70 cm s-1, the community metabolism during daytime and nighttime was significantly increased by 20 times and 5 times, respectively. The local hydrodynamic characteristics may be vital to determining the efficiency of community photosynthesis. The net ecosystem metabolism at BY was estimated to be -17 mmol O2 m-2 d-1, which was assessed as heterotrophy. However, that at HP was 36 mmol O2 m-2 d-1, which suggested an autotrophic state.

  15. Surfactant/oil/water system for the determination of selenium in eggs by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ieggli, C.V.S. [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil); Bohrer, D. [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil)], E-mail: ndenise@quimica.ufsm.br; Noremberg, S.; Nascimento, P.C. do; Carvalho, L.M. de [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil); Vieira, S.L.; Reis, R.N. [Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 7712, CEP 90540-000, Porto Alegre (Brazil)

    2009-06-15

    An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 {mu}g L{sup - 1}. The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical.

  16. SIMULATION OF SOLAR LITHIUM BROMIDE–WATER ABSORPTION COOLING SYSTEM WITH DOUBLE GLAZED FLAT PLATE COLLECTOR FOR ADRAR

    Directory of Open Access Journals (Sweden)

    ML CHOUGUI

    2014-12-01

    Full Text Available Adrar is a city in the Sahara desert, in southern Algeria known for its hot and dry climate, where a huge amount of energy is used for air conditioning. The aim of this research is to simulate a single effect lithium bromide–water absorption chiller coupled to a double-glazed flat plate collector to supply the cooling loads for a house of 200m2 in Adrar. The thermal energy is stored in an insulated thermal storage tank. The system was designed to cover a cooling load of 10.39KW for design day of July. Thermodynamic model was established to simulate the absorption cycle. The results have shown that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 65.3 m2, which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy.

  17. Energetic analysis of a commercial absorption refrigeration unit using an ammonia-water mixture

    Directory of Open Access Journals (Sweden)

    Josegil Jorge de Araújo

    2017-09-01

    Full Text Available The ROBUR® absorption refrigeration system (ARS, model ACF60, with a capacity of 17.5 kW, is tested, modeled and simulated in the steady state. To simulate the thermal load a heating system with secondary coolant was used, in which a programmable logic controller (PLC kept the inlet temperature EVA at around 285.15 K. The mathematical model used was based on balancing the mass, energy and ammonia concentrations and completed by closing equations such as, Newton's cooling equation. The mathematical model was implemented using the Engineering Equation Solver – EES®. The results obtained after modeling and a numerical permanent simulation are studied using the Duhring diagram. Potential points of internal heat recovery are visualized, and by using graphs of the binary mixture, it is possible to identify the thermodynamic states of all monitored points. The data obtained in the numerical simulation of the ARS was compared with data acquired in the actual tests of the ARS with the ROBUR® apparatus.

  18. Heritability of cooking time and water absorption traits in dry beans ...

    African Journals Online (AJOL)

    Both male and female effectations within sets for the cooking trait in F3 and F4 were highly significant for the traits studied. Variances due to General ... It appears from the results obtained in this study that soaking dry beans before cooking is indicative of the amount of time required to render them eating soft. Hence water ...

  19. A two-step approach to estimating selectivity and fishing power of research gill nets used in Greenland waters

    DEFF Research Database (Denmark)

    Hovgård, Holger

    1996-01-01

    Catches of Atlantic cod (Gadus morhua) from Greenland gill-net surveys were analyzed by a two-step approach. In the initial step the form of the selection curve was identified as binormal, which was caused by fish being gilled or caught by the maxillae. Both capture processes could be described...... by normal distributions and could be related to mesh size in accordance with the principle of geometrical similarity. In the second step the selection parameters were estimated by a nonlinear least squares fit. The model also estimated the relative efficiency of the two capture processes and the fishing...

  20. Effects of olsalazine and sulphasalazine on jejunal and ileal water and electrolyte absorption in normal human subjects.

    OpenAIRE

    Raimundo, A H; Patil, D H; Frost, P G; Silk, D B

    1991-01-01

    The effect of sulphasalazine and olsalazine on jejunal and ileal water and electrolyte absorption was investigated in normal subjects by a steady state intestinal perfusion of a physiological glucose bicarbonate electrolyte solution in the absence and presence of increasing concentrations of each drug. (Olsalazine 0.25 g/l, 1.0 g/l, jejunum; 0.5 g/l, 1.0 g/l, ileum; sulphasalazine 0.25 g/l, 0.5 g/l, 2.0 g/l jejunum; 1.0 g/l, 2.0 g/l, ileum.) In the jejunum olsalazine at 1.0 g/l significantly ...

  1. Water Absorption and Thermomechanical Characterization of Extruded Starch/Poly(lactic acid/Agave Bagasse Fiber Bioplastic Composites

    Directory of Open Access Journals (Sweden)

    F. J. Aranda-García

    2015-01-01

    Full Text Available Water absorption and thermomechanical behavior of composites based on thermoplastic starch (TPS are presented in this work, wherein the concentration of agave bagasse fibers (ABF, 0–15 wt% and poly(lactic acid (PLA, 0–30 wt% is varied. Glycerol (G is used as starch (S plasticizer to form TPS. Starch stands as the polymer matrix (70/30 wt/wt, S/G. The results show that TPS hygroscopicity decreases as PLA and fiber content increase. Storage, stress-strain, and flexural moduli increase with PLA and/or agave bagasse fibers (ABF content while impact resistance decreases. The TPS glass transition temperature increases with ABF content and decreases with PLA content. Micrographs of the studied biocomposites show a stratified brittle surface with a rigid fiber fracture.

  2. [Determination of trace lead in water and milk tea powder samples with organic coprecipitation-flame atomic absorption spectrometric].

    Science.gov (United States)

    Lin, Jian-Mei; Yao, Jun-Xue; Zhao, Wen-Yan

    2013-05-01

    A method was proposed for the determination of trace lead with flame atomic absorption spectrometry after preconcentration of lead by rapid coprecipitation technique with PAR-Fe (III) at pH 6.0. The analytical parameters including pH, amount of iron (III), amount of reagent, the standing time of the precipitate, etc., were examined. The detection limits (DL) were found to be 18.7 microg x L(-1) for Pb (II). In analysis of lake water and the milk tea powder samples, RSD's and the standard addition recovery of this method were in the ranges of 1.03%-2.24% and 94.2%-98.3% respectively. The effect of matrix can be overcome by the method and the results are satisfyiog. The method shows good application prospect in the determination of trace lead owing to its rapidness and reproducibility.

  3. Non-Darcy flow of water-based carbon nanotubes with nonlinear radiation and heat generation/absorption

    Science.gov (United States)

    Hayat, T.; Ullah, Siraj; Khan, M. Ijaz; Alsaedi, A.; Zaigham Zia, Q. M.

    2018-03-01

    Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy's law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined.

  4. KM3NeT

    CERN Multimedia

    KM3NeT is a large scale next-generation neutrino telescope located in the deep waters of the Mediterranean Sea, optimized for the discovery of galactic neutrino sources emitting in the TeV energy region.

  5. X-ray absorption and infrared spectra of water and ice: A first-principles electronic structure study

    Science.gov (United States)

    Chen, Wei

    Water is of essential importance for chemistry and biology, yet the physics concerning many of its distinctive properties is not well known. In this thesis we present a theoretical study of the x-ray absorption (XA) and infrared (IR) spectra of water in liquid and solid phase. Our theoretical tools are the density functional theory (DFT), Car-Parrinello (CP) molecular dynamics (MD), and the so-called GW method. Since a systematic review of these ab initio methods is not the task of this thesis, we only briefly recall the main concepts of these methods as needed in the course of our exposition. The focus is, instead, an investigation of what is the important physics necessary for a better description of these excitation processes, in particular, core electron excitations (in XA) that reveal the local electronic structure, and vibrational excitations (in IR) associated to the molecular dynamics. The most interesting question we are trying to answer is: as we include better approximations and more complete physical descriptions of these processes, how do the aforementioned spectra reflect the underlying hydrogen-bonding network of water? The first part of this thesis consists of the first four chapters, which focus on the study of core level excitation of water and ice. The x-ray absorption spectra of water and ice are calculated with a many-body approach for electron-hole excitations. The experimental features, even the small effects of a temperature change in the liquid, are reproduced with quantitative detail using molecular configurations generated by ab initio molecular dynamics. We find that the spectral shape is controlled by two major modifications of the short range order that mark the transition from ice to water. One is associated to dynamic breaking of the hydrogen bonds which leads to a strong enhancement of the pre-edge intensity in the liquid. The other is due to densification, which follows the partial collapse of the hydrogen bond network and is

  6. Determination of Trace Silver in Water Samples by Online Column Preconcentration Flame Atomic Absorption Spectrometry Using Termite Digestion Product

    Science.gov (United States)

    Bianchin, Joyce Nunes; Martendal, Edmar; Carasek, Eduardo

    2011-01-01

    A new method for Ag determination in water samples using solid phase extraction (SPE) coupled to a flow injection system and flame atomic absorption spectrometry was developed. The sorbent used for Ag preconcentration and extraction was the termite digestion product. Flow and chemical variables of the system were optimized through a multivariate procedure. The factors selected were adsorbent mass, buffer type and concentration, sample pH, and sample flow rate. The detection limit and precision were 3.4 μg L−1 and 3.8% (n = 6, 15 μg L−1), respectively. The enrichment factor and the linear working range were, respectively, 21 and 10–50 μg L−1. Results for recovery tests using different water samples were between 96 and 107%. The proposed methodology was applied with success for the determination of Ag in water used to wash clothes impregnated with silver nanoparticles, supplied by a factory located in Santa Catarina, Brazil. PMID:21804766

  7. eWaterCycle visualisation. combining the strength of NetCDF and Web Map Service: ncWMS

    Science.gov (United States)

    Hut, R.; van Meersbergen, M.; Drost, N.; Van De Giesen, N.

    2016-12-01

    As a result of the eWatercycle global hydrological forecast we have created Cesium-ncWMS, a web application based on ncWMS and Cesium. ncWMS is a server side application capable of reading any NetCDF file written using the Climate and Forecasting (CF) conventions, and making the data available as a Web Map Service(WMS). ncWMS automatically determines available variables in a file, and creates maps colored according to map data and a user selected color scale. Cesium is a Javascript 3D virtual Globe library. It uses WebGL for rendering, which makes it very fast, and it is capable of displaying a wide variety of data types such as vectors, 3D models, and 2D maps. The forecast results are automatically uploaded to our web server running ncWMS. In turn, the web application can be used to change the settings for color maps and displayed data. The server uses the settings provided by the web application, together with the data in NetCDF to provide WMS image tiles, time series data and legend graphics to the Cesium-NcWMS web application. The user can simultaneously zoom in to the very high resolution forecast results anywhere on the world, and get time series data for any point on the globe. The Cesium-ncWMS visualisation combines a global overview with local relevant information in any browser. See the visualisation live at forecast.ewatercycle.org

  8. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); D' Alessio, P.; Calvet, N. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Furlan, E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Green, J. [Department of Astronomy, University of Texas, 1 University Station, Austin, TX 78712 (United States); Pontoppidan, K., E-mail: baspci@rit.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  9. Long-term water absorption and thickness swelling and determine their characteristics in wood flour/polypropylene/Nano SiO2 nanocomposite

    Directory of Open Access Journals (Sweden)

    Saeed Ismaeilimoghadam

    2016-09-01

    Full Text Available The objective of this study was to investigate the effect of nano SiO2 on long-term water absorption and thickness swelling, humidity coefficient diffusion and thickness swelling rate of wood plastic composite. For this purpose, 60% wood flour, 40% polypropylene, 2 per hundred compound (phc MAPP in internal mixer (HAAKE were mixed. Nano SiO2 with 0, 1, 3 and 5 (phc ratios as a reinforcing was used too. Finally test samples were fabricated by using the injection molding machine. Then long-term water absorption and thickness swelling for 1848 hours according to the ASTM standard on the samples were measured. Humidity coefficient diffusion and thickness swelling rate for closer look long-term water absorption and thickness swelling behavior in wood plastic nanocomposite were calculated too. For ensure to the formation of hydrogen bonds between hydroxyl grope of SiO2 nanoparticles with hydroxyl grope of wood flour form Fourier transform infrared (FTIR spectroscopy tests was used. The results showed that water absorption behavior of nanocomposite is according to Fick's law, in addition with increasing to SiO2 nanoparticles, long-term water absorption and thickness swelling and humidity coefficient diffusion in wood plastic nanocomposite decreased. The results of infrared spectroscopy showed that hydrogen bond between the nano SiO2 and wood flour confirmed. Statistical analysis showed that after 1848 hours of immersion, nano SiO2 showed a significant effect at a confidence level of 99% on water absorption and thickness swelling, so the sample with 5% silica nanoparticles was chosen as the best treatment.

  10. Signal classification and event reconstruction for acoustic neutrino detection in sea water with KM3NeT

    Science.gov (United States)

    Kießling, Dominik

    2017-03-01

    The research infrastructure KM3NeT will comprise a multi cubic kilometer neutrino telescope that is currently being constructed in the Mediterranean Sea. Modules with optical and acoustic sensors are used in the detector. While the main purpose of the acoustic sensors is the position calibration of the detection units, they can be used as instruments for studies on acoustic neutrino detection, too. In this article, methods for signal classification and event reconstruction for acoustic neutrino detectors will be presented, which were developed using Monte Carlo simulations. For the signal classification the disk-like emission pattern of the acoustic neutrino signal is used. This approach improves the suppression of transient background by several orders of magnitude. Additionally, an event reconstruction is developed based on the signal classification. An overview of these algorithms will be presented and the efficiency of the classification will be discussed. The quality of the event reconstruction will also be presented.

  11. Signal classification and event reconstruction for acoustic neutrino detection in sea water with KM3NeT

    Directory of Open Access Journals (Sweden)

    Kießling Dominik

    2017-01-01

    Full Text Available The research infrastructure KM3NeT will comprise a multi cubic kilometer neutrino telescope that is currently being constructed in the Mediterranean Sea. Modules with optical and acoustic sensors are used in the detector. While the main purpose of the acoustic sensors is the position calibration of the detection units, they can be used as instruments for studies on acoustic neutrino detection, too. In this article, methods for signal classification and event reconstruction for acoustic neutrino detectors will be presented, which were developed using Monte Carlo simulations. For the signal classification the disk–like emission pattern of the acoustic neutrino signal is used. This approach improves the suppression of transient background by several orders of magnitude. Additionally, an event reconstruction is developed based on the signal classification. An overview of these algorithms will be presented and the efficiency of the classification will be discussed. The quality of the event reconstruction will also be presented.

  12. Retrieval of absorption and backscattering coefficients from HJ-1A/CCD imagery in coastal waters.

    Science.gov (United States)

    Chen, Jun; Quan, Wenting; Yao, Guoqing; Cui, Tingwei

    2013-03-11

    A simple semi-analytical model (SAB) was developed for computing a(560) and b(b)(550) from HJ-1A/CCD images. By comparison with field measurements, the SAB model produces 5.3-23.5% uncertainty for a(560) and b(b)(550) retrievals. The a(560) and b(b)(550) are also retrieved from satellite images. The match-up analysis results indicate that a(560) and b(b)(550) may be derived from the HJ-1A/CCD images with respective uncertainties of 29.84 and 21.35%. These findings imply that, provided that an atmospheric correction scheme for the green bands is available, the extensive database of HJ-1A/CCD imagery may be used for the quantitative monitoring of optical properties in coastal waters.

  13. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere.

    Science.gov (United States)

    Konopacky, Quinn M; Barman, Travis S; Macintosh, Bruce A; Marois, Christian

    2013-03-22

    Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation.

  14. Sensitive determination of cadmium in water samples by room temperature ionic liquid-based preconcentration and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Martinis, Estefania M. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, C.C. 131, M 5502 IRA Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Olsina, Roberto A. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis (Argentina); Altamirano, Jorgelina C. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, C.C. 131, M 5502 IRA Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina); Wuilloud, Rodolfo G. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, C.C. 131, M 5502 IRA Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)], E-mail: rwuilloud@mendoza-conicet.gov.ar

    2008-10-17

    A sensitive preconcentration methodology for Cd determination at trace levels in water samples was developed in this work. 1-Butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}MIM][PF{sub 6}]) room temperature ionic liquid (RTIL) was successfully used for Cd preconcentration, as cadmium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex [Cd-5-Br-PADAP]. Subsequently, Cd was back-extracted from the RTIL phase with 500 {mu}L of 0.5 mol L{sup -1} nitric acid and determined by electrothermal atomic absorption spectrometry (ETAAS). A preconcentration factor of 40 was achieved with 20 mL of sample. The limit of detection (LOD) obtained under optimum conditions was 3 ng L{sup -1} and the relative standard deviation (R.S.D.) for 10 replicates at 1 {mu}g L{sup -1} Cd{sup 2+} concentration level was 3.5%, calculated at peak heights. The calibration graph was linear from concentration levels near the detection limits up to at least 5 {mu}g L{sup -1}. A correlation coefficient of 0.9997 was achieved. Validation of the methodology was performed by standard addition method and analysis of certified reference material (CRM). The method was successfully applied to the determination of Cd in river and tap water samples.

  15. Evaluation of compressive strength and water absorption of soil-cement bricks manufactured with addition of pet (polyethylene terephthalate wastes

    Directory of Open Access Journals (Sweden)

    João Alexandre Paschoalin Filho

    2016-04-01

    Full Text Available This paper presents the evaluation of compressive strength of soil-cement bricks obtained by the inclusion in their mixture of PET flakes through mineral water bottles grinding. The Polyethylene Terephthalate (PET has been characterized by its difficulty of disaggregation in nature, requiring a long period for this. On the other hand, with the increase in civil construction activities the demand for raw material also increases, causing considerable environmental impacts. In this context, the objective of this research is to propose a simple methodology, preventing its dumping and accumulation in irregular areas, and reducing the demand of raw materials by the civil construction industry. The results showed that compressive strengths obtained were lower than recommended by NBR 8491 (Associação Brasileira de Normas Técnicas [ABNT], 2012b at seven days of curing time. However, they may be used as an alternative solution in masonry works in order to not submit themselves to great loads or structural functions. The studied bricks also presented water absorption near to recommended values by NBR 8491 (ABNT, 2012b. Manufacturing costs were also determined for this brick, comparing it with the costs of other brick types. Each brick withdrew from circulation approximately 300 g of PET waste. Thus, for an area of 1 m2 the studied bricks can promote the withdrawal of approximately 180 beverage bottles of 2 L capacity.

  16. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.

    Science.gov (United States)

    Chen, Wei; Yao, Xiaoqin; Cai, Kunzheng; Chen, Jining

    2011-07-01

    Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F(v)/F(0)), and maximum quantum efficiency of PSII photochemistry (F(v)/F(m)) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F(v)/F(0), and F(v)/F(m) of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.

  17. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Choleva, Tatiana G; Kappi, Foteini A; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L

    2016-05-01

    This work describes a new method for the extraction and determination of gold nanoparticles in environmental samples by means of in-situ suspended aggregate microextraction and electrothermal atomic absorption spectrometry. The method relies on the in-situ formation of a supramolecular aggregate phase through ion-association between a cationic surfactant and a benzene sulfonic acid derivative. Gold nanoparticles are physically entrapped into the aggregate phase which is separated from the bulk aqueous solution by vacuum filtration on the surface of a cellulose filter in the form of a thin film. The film is removed from the filter surface and is dissociated into an acidified methanolic solution which is used for analysis. Under the optimized experimental conditions, gold nanoparticles can be efficiently extracted from water samples with recovery rates between 81.0-93.3%, precision 5.4-12.0% and detection limits as low as 75femtomolL(-1) using only 20mL of sample volume. The satisfactory analytical features of the method along with the simplicity indicate the efficiency of this new approach to adequately collect and extract gold nanoparticle species from water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Immersed single-drop microextraction-electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples.

    Science.gov (United States)

    Bagheri, Habib; Naderi, Mehrnoush

    2009-06-15

    A new method based on single-drop microextraction (SDME) combined with electrothermal vaporization atomic absorption spectroscopy (ETV-AAS) was developed for the trace determination of mercury in water samples. A microdrop of m-xylene was applied as the extraction solvent. After extraction, the microdrop was introduced, directly, into a graphite furnace of AAS. Some important extraction parameters such as type of solvent, volume of solvent, sample stirring, ionic strength, sample pH, chelating agent concentration, sample temperature, and extraction time were investigated and optimized. The highest possible microdrop volume of 10 microL, a sampling temperature of 27 degrees C, and use of m-xylene containing dithizone, as complexing agent, are major parameters led to achieve a high enrichment factor of 970. Under the optimized conditions, the detection limit of the method was 0.01 microg L(-1) and the relative standard deviation was 6.1% (n=7). The proposed method has been successfully applied to the determination of Hg in two river water samples. The effects of interfering species such as Pt, Pd, Cu, Au, and Bi, having the tendency to form complexes with dithizone, at two concentration levels of 100 and 1000 microg L(-1) were also studied.

  19. [Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction with dithizone].

    Science.gov (United States)

    Xiao, Shan-Mei; Chen, Jian-Rong; Shen, Yu-Qin

    2006-05-01

    Cloud point extraction was used for the preconcentration of lead after the formation of a complex with dithizone in the presence of surfactant Triton X-114, and then the lead was determined by graphite furnace atomic absorption spectrometry. The conditions affecting the separation and detection process were optimized. Separation of the two phases was accomplished by centrifugation for 15 min at 4 000 rpm. Upon cooling in an ice-bath, the surfactant-rich phase became viscous. The aqueous phase could then be separated by inverting the tubes. Later, a solution of methanol containing 0.1 mol x L(-1) of HNO3 was added to the surfactant-rich phase up to 0.5 mL. The samples were determined by graphite furnace atomic absorption spectrometry with NH4H2PO4 and Mg(NO3)2 as a chemical modifier. At pH 8.0, the preconcentration of only 10 mL sample in the presence of 0.05% Triton X-114 and 20 micromol x L(-1) dithizone permitted the detection of 0.089 microg x L(-1) lead. The enhancement factors were 19.1 times for lead. The calibration graph using the preconcentration system for lead was linear with a correlation coefficient of 0.998 from levels near the detection limits up to at least 30 microg x L(-1). The regression equation was A = 0.026 1c (microg x L(-1)) + 0.010 6. The proposed method has been applied to the determination of lead in water samples.

  20. Coacervative extraction of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hagarová, Ingrid, E-mail: hagarova@fns.uniba.sk; Bujdoš, Marek; Matúš, Peter; Kubová, Jana

    2013-10-01

    In this work, a relatively simple and sensitive method for separation/preconcentration of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry has been proposed. The method is based on the extraction of Pb–dithizone chelate with coacervates made up of lauric acid in the presence of potassium ions and methanol. Several important factors affecting extraction efficiency such as pH, concentration of lauric acid and dithizone, ionic strength, incubation and centrifugation time were investigated and optimized. After separation of aqueous bulk solution from surfactant-rich phase, the final extract was redissolved by using 500 μl of methanol acidified with 0.2 mol l{sup −1} HNO{sub 3}. Under the optimized conditions (using initial sample volume of 10 ml), enrichment factor of 17.0, detection limit of 0.12 μg l{sup −1}, quantification limit of 0.38 μg l{sup −1}, relative standard deviation of 4.2% (for 2 μg l{sup −1} of Pb; n = 26), linearity of the calibration graph in the range of 0.5–4.0 μg l{sup −1} (with correlation coefficient better than 0.995) were achieved. The method was validated by the analysis of certified reference material (TMDA-61). Extraction recoveries for the CRM, spiked model solutions and spiked natural water samples were in the range of 91–96%. Finally, the method was applied to the separation/preconcentration and determination of trace lead in natural waters. - Highlights: • The potential of coacervates for the extraction of metal ions is examined. • No difficulties in coupling of ETAAS with the proposed CAE are observed. • Achieved preconcentration factor results in enhanced sensitivity. • Analytical performance is confirmed by the reliable determination of trace Pb. • The proposed CAE is ecofriendly and efficient.

  1. Water absorption experimental analysis of an orange peel and coconut shell particulate blend reinforcement material for composite fabrication

    Directory of Open Access Journals (Sweden)

    Oluwaseyi Ayodele Ajibade

    2017-06-01

    Full Text Available The extant literature on composites has downplayed the merits of orange peel particulates (OPPs and coconut shell particulates (CSPs as fillers in mixed forms despite their engineering purposes. An OPP-CSP mixture can be used to suppress the weight disadvantage of CSPs, exploit the water resistance advantage of CSP, enhance the mechanical properties and improve the wear resistance of OPPs as a result of the oily secretions of the OPP. Launching a new research direction of mixed filler experiments, this work examines the water absorption properties of mixed OPPs-CSPs of up to 30 cm3 mixtures by volume, according to filler literature norms and previous sensitivity tests. A principal result is that the average free swell of the particulate blend increased up to 164.61%, a value attained with an initial volume of CSPs equal to 10 cm3 in a combined initial volume of 30 cm3. Thus, the mixing ratio is 10 CSPs:20 OPPs (Type I. This free swell value can cause considerable changes to loadings and structures, which is a negative outcome. Sensitivity analysis showed that the higher-OPPs-in-particulate blend produced the most favourable free swell values. In practice, the findings of this study meet the growing needs of the composite industry for materials having unusual combinations of the properties of water-resistance for lightweight applications in tennis rackets, household interior decorations and agricultural silos. This novel contribution pioneers efforts to produce filler blends of particulate orange peels and coconut shells in independently varied proportions rather than being embedded in composites. Sensitivity analysis of the critical process parameters was carried out to understand the degree of responsiveness of model parameters of the blends. This is the first time such information has been reported in the literature.

  2. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.

    2003-01-01

    Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm(-1) were measured in the temperature range 30-42 C in steps of 2 degreesC. Measurements were carried out with an FT-IR spectrometer and a variable pathlength transmis...

  3. Combining in vitro and in silico methods for better prediction of surfactant effects on the absorption of poorly water soluble drugs-a fenofibrate case example

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Sjögren, Erik; Jacobsen, Jette

    2014-01-01

    performed using the GI-Sim absorption model. All simulation runs were performed twice adopting either a total small intestinal volume of 533mL or 105mL, in order to examine the implication of free luminal water volumes for the in silico predictions. For the tested formulations, the use of a small...

  4. The Effect of wheat straw particle size on the mechanical and water absorption properties of wheat straw/low density polyethylene biocomposites for packaging applications

    Directory of Open Access Journals (Sweden)

    Behjat Tajeddin

    2017-08-01

    Full Text Available Natural composites with biodegradability properties can be used as a renewable alternative to replacing conventional plastics. Thus, to reduce the plastics applications in the packaging industry, biocomposites content of wheat straw (with 40, 100, 140 mesh as a natural biodegradable composite and low density polyethylene (LDPE as a common synthetic polymer in the packaging industry were prepared and characterized by the mechanical and water absorption properties. Polyethylene-graft-maleic anhydride was used as a compatibilizer material. Morphology of wheat straw flour was studied by optical microscope to obtain the aspect ratio (L/D. The tensile and flexural tests were applied for determining mechanical properties and scanning electron microscope (SEM was used for particles distribution and sample structures. The water absorption of the samples was calculated by weight difference. The results indicated that the particle size of wheat straw four and the L/D amount are Significantly affected on the tensile strength and water absorption of the samples. However, the effect of wheat sraw particle size on the flexural strength was not significant. Overall conclusions show that by increasing the particle size of the filler (wheat straw, can prepare the biocomposite with better tensile strength and less water absorption compared with smaller particle size.

  5. Mineral Specific IR Molar Absorption Coefficients for Routine Water Determination in Olivine, SiO2 polymorphs and Garnet

    Science.gov (United States)

    Thomas, S.; Koch-Mueller, M.; Reichart, P.; Rhede, D.; Thomas, R.

    2007-12-01

    Conventionally applied Infrared (IR) calibrations [1, 2] for quantitative water analyses in solids are established on hydrous minerals and glasses with several wt% water. These calibrations are based on a negative correlation between the IR molar absorption coefficient (ɛ) for water and the mean wavenumber of the corresponding OH pattern. The correlation reflects the dependence of the OH band position on the appropriate O- H...O distances and thereby the magnitude of the dipole momentum which is proportional to the band intensity. However, it has been observed that these calibrations can not be adopted to nominally anhydrous minerals (NAMs) [3].To study the potential dependence of ɛ on structure and chemistry in NAMs we synthesized olivine and SiO2 polymorphs with specific isolated hydroxyl point defects, e.g. quartz, coesite and stishovite with B3++H+=Si4+ and/or Al3++H+=Si4+ substitutions. Experiments were performed with water in excess in piston cylinder and multi-anvil presses. Single crystal IR spectra demonstrate that we successfully managed to seperate generally complex OH patterns as e.g. observed in natural quartz and synthetic coesite. We quantified sample water contents of both natural samples and our run products by applying proton-proton-scattering [4], confocal microRaman spectroscopy [5] and Secondary Ion mass spectrometry. Resulting water concentrations were used to calculate new mineral specific ɛs. For olivine with the mean wavenumber of 3517 cm-1 we determined an ɛ value of 41,000±5,000 lmol-1H2Ocm-2. Quantification of olivine with the mean wavenumber of 3550 cm-1 in contrast resulted in an ɛ value of 47,000±1,000 lmol-1H2Ocm-2. Taking into account previous studies [6, 7] there is evidence to suggest a linear wavenumber dependent correlation for olivine, where ɛ increases with decreasing wavenumber. In case of the SiO2 system it turns out that the magnitude of ɛ within one structure type is independent of the liable OH point defect and

  6. Sensitivity of boreal forest regional water flux and net primary production simulations to sub-grid-scale land cover complexity

    Science.gov (United States)

    Kimball, J. S.; Running, S. W.; Saatchi, S. S.

    1999-11-01

    We use a general ecosystem process model (BIOME-BGC) coupled with remote sensing information to evaluate the sensitivity of boreal forest regional evapotranspiration (ET) and net primary production (NPP) to land cover spatial scale. Simulations were conducted over a 3 year period (1994-1996) at spatial scales ranging from 30 to 50 km within the BOREAS southern modeling subarea. Simulated fluxes were spatially complex, ranging from 0.1 to 3.9 Mg C ha-1 yr-1 and from 18 to 29 cm yr-1. Biomass and leaf area index heterogeneity predominantly controlled this complexity, while biophysical differences between deciduous and coniferous vegetation were of secondary importance. Spatial aggregation of land cover characteristics resulted in mean monthly NPP estimation bias from 25 to 48% (0.11-0.20 g C m-2 d-1) and annual estimation errors from 2 to 14% (0.04-0.31 Mg C ha-1 yr-1). Error was reduced at longer time intervals because coarse scale overestimation errors during spring were partially offset by underestimation of fine scale results during summer and winter. ET was relatively insensitive to land cover spatial scale with an average bias of less than 5% (0.04 kg m-2 d-1). Factors responsible for differences in scaling behavior between ET and NPP included compensating errors for ET calculations and boreal forest spatial and temporal NPP complexity. Careful consideration of landscape spatial and temporal heterogeneity is necessary to identify and mitigate potential error sources when using plot scale information to understand regional scale patterns. Remote sensing data integrated within an ecological process model framework provides an efficient mechanism to evaluate scaling behavior, interpret patterns in coarse resolution data, and identify appropriate scales of operation for various processes.

  7. Quantitative description of the relation between protein net charge and protein adsorption to air-water interfaces

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, A.G.J.; Jongh, H.H.J.de

    2005-01-01

    In this study a set of chemically engineered variants of ovalbumin was produced to study the effects of electrostatic charge on the adsorption kinetics and resulting surface pressure at the air-water interface. The modification itself was based on the coupling of succinic anhydride to lysine

  8. High-resolution continuum source graphite furnace molecular absorption spectrometry compared with ion chromatography for quantitative determination of dissolved fluoride in river water samples.

    Science.gov (United States)

    Ley, Philip; Sturm, Manfred; Ternes, Thomas A; Meermann, Björn

    2017-10-03

    In addition to beneficial health effects, fluoride can also have adverse effects on humans, animals, and plants if the daily intake is strongly elevated. One main source of fluoride uptake is water, and thus several ordinances exist in Germany that declare permissible concentrations of fluoride in, for example, drinking water, mineral water, and landfill seepage water. Controlling the fluoride concentrations in aqueous matrices necessitate valid and fast analytical methods. In this work an alternative method for the determination of fluoride in surface waters based on high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) was applied. Fluoride detection was made possible by the formation of a diatomic molecule, GaF, and detection of characteristic molecular absorption. On HR-CS-GFMAS parameter optimization, the method was adapted to surface water sample analysis. The influence of potential main matrix constituents such as Na+, Ca2+, Mg2+, and Cl- as well as surface water sampling/storage conditions on the molecular absorption signal of GaF was investigated. Method validation demonstrated a low limit of detection (8.1 μg L-1) and a low limit of quantification (26.9 μg L-1), both sufficient for direct river water sample analysis after 0.45-μm filtration. The optimized HR-CS-GFMAS method was applied for the analysis of real water samples from the rivers Rhine and Moselle. For method validation, samples were also analyzed by an ion chromatography (IC) method. IC and HR-CS-GFMAS results both agreed well. In comparison with IC, HR-CS-GFMAS has higher sample throughput, a lower limit of detection and a lower limit of quantification, and higher selectivity, and is a very suitable method for the analysis of dissolved fluoride in river water. Graphical abstract High-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) was applied for the quantitative analysis of dissolved fluoride in river

  9. Separation and preconcentration of trace amounts of gold from water samples prior to determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Fatemeh Sabermahani

    2016-11-01

    Full Text Available A preconcentration/separation procedure is presented for the solid phase extraction of trace gold(III as its rubeanic acid (dithiooxamide chelate on silica gel, prior to determination by flame atomic absorption spectrometry. The influences of analytical parameters including pH of the aqueous solution, the amount of the sorbent, time of the complex formation, ligand amount, flow rates of sample and elution solutions and the type, concentration and volume of elution solution on the quantitative recoveries of Au(III were investigated. At pH 3.5, the maximum sorption capacity of Au3+ was 7.5 mg g−1, by column method. The linearity was maintained in the concentration range of 1.0–3.4 × 104 ng mL−1 for gold in the original solution. The preconcentration factor of 100 and relative standard deviation of ±1.7% were obtained, under optimum conditions. The limit of detection (LOD was calculated as 0.80 ng mL−1, based on 3σbl/m (n = 8 in the original solutions. The proposed method was successfully applied to the determination trace amounts of gold in the water samples.

  10. Multiwalled carbon nanotubes microcolumn preconcentration and determination of gold in geological and water samples by flame atomic absorption spectrometry

    Science.gov (United States)

    Liang, Pei; Zhao, Ehong; Ding, Qiong; Du, Dan

    2008-06-01

    The potential of multiwalled carbon nanotubes (MWNTs) as solid-phase extraction adsorbent for the separation and preconcentration of gold has been investigated. Gold could be adsorbed quantitatively on MWNTs in the pH range of 1-6, and then eluted completely with 2 mL of 3% thiourea in 1 mol L - 1 HCl solution at a flow rate of 0.5 mL min - 1 . A new method using a microcolumn packed with MWNTs as sorbent has been developed for the preconcentration of trace amount of Au prior to its determination by flame atomic absorption spectrometry. Parameters influencing the preconcentration of Au, such as pH of the sample, sample flow rate and volume, elution solution and interfering ions, have been examined and optimized. Under the optimum experimental conditions, the detection limit of this method for Au was 0.15 µg L - 1 with an enrichment factor of 75, and the relative standard deviation (R.S.D) was 3.1% at the 100 µg L - 1 Au level. The method has been applied for the determination of trace amount of Au in geological and water samples with satisfactory results.

  11. Thermal design of lithium bromide-water solution vapor absorption cooling system for indirect evaporative cooling for IT pod

    Science.gov (United States)

    Sawant, Digvijay Ramkrishna

    Nowadays with increase use of internet, mobile there is increase in heat which ultimately increases the efficient cooling system of server room or IT POD. Use of traditional ways of cooling system has ultimately increased CO2 emission and depletion of CFC's are serious environmental issues which led scientific people to improve cooling techniques and eliminate use of CFC's. To reduce dependency on fossil fuels and 4environmental friendly system needed to be design. For being utilizing low grade energy source such as solar collector and reducing dependency on fossil fuel vapour absorption cooling system has shown a great driving force in today's refrigeration systems. This LiBr-water aabsorption cooling consists of five heat exchanger namely: Evaporator, Absorber, Solution Heat Exchanger, Generator, Condenser. The thermal design was done for a load of 23 kW and the procedure was described in the thesis. There are 120 servers in the IT POD emitting 196 W of heat each on full load and some of the heat was generated by the computer placed inside the IT POD. A detailed procedure has been discussed. A excel spreadsheet was to prepared with varying tube sizes to see the effect on flows and ultimately overall heat transfer coefficient.

  12. Recent Advances in Delivery Systems and Therapeutics of Cinnarizine: A Poorly Water Soluble Drug with Absorption Window in Stomach

    Directory of Open Access Journals (Sweden)

    Smita Raghuvanshi

    2014-01-01

    Full Text Available Low solubility causing low dissolution in gastrointestinal tract is the major problem for drugs meant for systemic action after oral administration, like cinnarizine. Pharmaceutical products of cinnarizine are commercialized globally as immediate release preparations presenting low absorption with low and erratic bioavailability. Approaches to enhance bioavailability are widely cited in the literature. An attempt has been made to review the bioavailability complications and clinical therapeutics of poorly water soluble drug: cinnarizine. The interest of writing this paper is to summarize the pharmacokinetic limitations of drug with special focus on strategies to improvise bioavailability along with effectiveness of novel dosage forms to circumvent the obstacle. The paper provides insight to the approaches to overcome low and erratic bioavailability of cinnarizine by cyclodextrin complexes and novel dosage forms: self-nanoemulsifying systems and buoyant microparticulates. Nanoformulations need to systematically explored in future, for their new clinical role in prophylaxis of migraine attacks in children. Clinical reports have affirmed the role of cinnarizine in migraine prophylaxis. Research needs to be dedicated to develop dosage forms for efficacious bioavailability and drug directly to brain.

  13. Graphene for separation and preconcentration of trace amounts of cobalt in water samples prior to flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Yukun Wang

    2016-09-01

    Full Text Available A new sensitive and simple method was developed for the preconcentration of trace amounts of cobalt (Co using 1-(2-pyridylazo-2-naphthol (PAN as chelating reagent prior to its determination by flame atomic absorption spectrometry. The proposed method is based on the utilization of a column packed with graphene as sorbent. Several effective parameters on the extraction and complex formation were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 5.0–240.0 μg L−1 with a detection limit of 0.36 μg L−1. The relative standard deviation for ten replicate measurements of 20.0 and 100.0 μg L−1 of Co were 3.45 and 3.18%, respectively. Comparative studies showed that graphene is superior to other adsorbents including C18 silica, graphitic carbon, and single- and multi-walled carbon nanotubes for the extraction of Co. The proposed method was successfully applied in the analysis of four real environmental water samples. Good spiked recoveries over the range of 95.8–102.6% were obtained.

  14. Improving Atmospheric Correction for Visible/Short Wave Infrared (VSWIR) Imaging Spectrometers with Iterative Fitting of Absorption By Three Phases of Water

    Science.gov (United States)

    Pennington, E. A.; Thompson, D. R.; Green, R. O.; Gao, B. C.

    2014-12-01

    Airborne imaging spectrometers like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) offer valuable insight into the Earth's terrestrial and ocean ecosystems, mineralogy, and land use. Estimating surface reflectance requires accounting for atmospheric absorption, which is sensitive to the local abundance of water vapor. Analysts typically estimate water vapor concentrations using the depths of absorption features, which can be inaccurate by up to 50% over surface features containing liquid water or ice. This can bias the retrieved water vapor maps and create atmospheric artifacts in reflectance spectra. A new retrieval method offers significant accuracy improvements over plant canopies or ice by estimating the path lengths of all three phases of water simultaneously, adjusting absorptions to best fit the measurement over a broader spectral interval. This paper assesses the remaining sources of error for the three-phase retrieval technique. We analyze retrievals for synthetic data when the 940 and 1140 nm wavelength features are fitted, for initial vapor path estimates ranging from 0 to ±50% accuracy. These tests indicate that most error comes from inaccuracy in the initial path estimate used to obtain vapor absorption coefficients. We evaluate a modified algorithm that uses multiple iterations to refine this estimate. Error is found to approach a constant value, demonstrating improved robustness to initialization conditions. We also assess the new iterative method using corrected AVIRIS data over various environments. The iterative method yields significantly better water vapor maps, reducing spurious correlations between vegetation canopy water and vapor estimates. The new iterative method offers accuracy improvements over traditional Visible/Short Wave Infrared (VSWIR) atmospheric correction methods, at modest computational cost.

  15. First testing of an AUV mission planning and guidance system for water quality monitoring and fish behavior observation in net cage fish farming

    Directory of Open Access Journals (Sweden)

    D. Karimanzira

    2014-12-01

    Full Text Available Recently, underwater vehicles have become low cost, reliable and affordable platforms for performing various underwater tasks. While many aquaculture systems are closed with no harmful output, open net cage fish farms and land-based fish farms can discharge significant amounts of wastewater containing nutrients, chemicals, and pharmaceuticals that impact on the surrounding environment. Although aquaculture development has often occurred outside a regulatory framework, government oversight is increasingly common at both the seafood quality control level, and at baseline initiatives addressing the basic problem of pollution generated by culture operations, e.g. the European marine and maritime directives. This requires regular, sustainable and cost-effective monitoring of the water quality. Such monitoring needs devices to detect the water quality in a large sea area at different depths in real time. This paper presents a concept for a guidance system for a carrier (an autonomous underwater vehicle of such devices for the automated detection and analysis of water quality parameters.

  16. Particle emission from polymer-doped water ice matrices induced by non-linear absorption of laser light at 1064 nm

    DEFF Research Database (Denmark)

    Purice, A.; Schou, Jørgen; Dinescu, M.

    2006-01-01

    Emission of PEG (polyethylene glycol) molecules and ions from an ice target induced by laser irradiation in the infrared (IR) regime at 1064 nm was studied. Matrices of 1 wt% PEG flash-frozen solutions were used for polymer deposition with MAPLE (matrix assisted pulsed laser evaporation). Even...... though linear absorption in defect-free water ice is two orders of magnitude larger at 1064 ran than 355 nm, the deposition rate and ion current density are much smaller for IR than for ultraviolet laser light. The similarity of results for both wavelengths indicates that non-linear absorption...

  17. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of antimony by automated-hydride atomic absorption spectrophotometry

    Science.gov (United States)

    Brown, G.E.; McLain, B.J.

    1994-01-01

    The analysis of natural-water samples for antimony by automated-hydride atomic absorption spectrophotometry is described. Samples are prepared for analysis by addition of potassium and hydrochloric acid followed by an autoclave digestion. After the digestion, potassium iodide and sodium borohydride are added automatically. Antimony hydride (stibine) gas is generated, then swept into a heated quartz cell for determination of antimony by atomic absorption spectrophotometry. Precision and accuracy data are presented. Results obtained on standard reference water samples agree with means established by interlaboratory studies. Spike recoveries for actual samples range from 90 to 114 percent. Replicate analyses of water samples of varying matrices give relative standard deviations from 3 to 10 percent.

  18. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products

    NARCIS (Netherlands)

    Minekus, M.; Smeets-Peeters, M.; Havenaar, R.; Bernalier, A.; Fonty, G.; Marol-Bonnin, S.; Alric, M.; Marteau, P.; Huis Veld, J.H.J. in 't

    1999-01-01

    This paper introduces a new type of system to simulate conditions in the large intestine. This system combines removal of metabolites and water with peristaltic mixing to obtain and handle physiological concentrations of microorganisms, dry matter and microbial metabolites. The system has been

  19. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean

  20. Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments

    Science.gov (United States)

    Teich, Monique; van Pinxteren, Dominik; Wang, Michael; Kecorius, Simonas; Wang, Zhibin; Müller, Thomas; Močnik, Griša; Herrmann, Hartmut

    2017-04-01

    Recently the importance of light absorbing carbon, so-called brown carbon (BrC), on aerosol light absorption properties became more and more evident. The presence of BrC can enhance the light absorption of aerosols and therefore have an impact on the earth climate system. Despite the numerous studies published in the past few years little is known about the molecular composition and sources of BrC or the impact of single organic molecules on the BrC light absorption. The present study aims to deepen the understanding of atmospheric particulate and water soluble BrC by determining the ambient concentrations of eight individual nitrated aromatic compounds (nitrophenols and nitrated salicylic acids), and connecting the obtained chemical information with the light absorption properties of aqueous particle extracts (indicating water soluble BrC) and the overall particulate BrC light absorption. High-volume filter samples were collected during six campaigns, performed at five locations in two seasons: (I) two campaigns with strong influence of biomass burning (BB) aerosol - at the TROPOS institute (winter, 2014, urban background, Leipzig, Germany) and the Melpitz research site (winter, 2014, rural background); (II) two campaigns with strong influence from biogenic emissions - at Melpitz (summer, 2014) and the forest site Waldstein (summer, 2014, Fichtelgebirge, Germany), and (III) two CAREBeijing-NCP campaigns - at Xianghe (summer, 2013, anthropogenic polluted background) and Wangdu (summer, 2014, anthropogenic polluted background with a distinct BB-episode), both in the North China Plain. The light absorption properties of the aqueous particle extracts were determined by UV/Vis spectrometry for the same set of filter samples. Particulate BrC light absorption properties were derived from a seven-wavelength Aethalometer for a subset of these samples. A clear seasonality was observed in the data from the German sites where higher concentrations as well as higher light

  1. Performance analysis of single stage libr-water absorption machine operated by waste thermal energy of internal combustion engine: Case study

    Science.gov (United States)

    Sharif, Hafiz Zafar; Leman, A. M.; Muthuraman, S.; Salleh, Mohd Najib Mohd; Zakaria, Supaat

    2017-09-01

    Combined heating, cooling, and power is also known as Tri-generation. Tri-generation system can provide power, hot water, space heating and air -conditioning from single source of energy. The objective of this study is to propose a method to evaluate the characteristic and performance of a single stage lithium bromide-water (LiBr-H2O) absorption machine operated with waste thermal energy of internal combustion engine which is integral part of trigeneration system. Correlations for computer sensitivity analysis are developed in data fit software for (P-T-X), (H-T-X), saturated liquid (water), saturated vapor, saturation pressure and crystallization temperature curve of LiBr-H2O Solution. Number of equations were developed with data fit software and exported into excel work sheet for the evaluation of number of parameter concerned with the performance of vapor absorption machine such as co-efficient of performance, concentration of solution, mass flow rate, size of heat exchangers of the unit in relation to the generator, condenser, absorber and evaporator temperatures. Size of vapor absorption machine within its crystallization limits for cooling and heating by waste energy recovered from exhaust gas, and jacket water of internal combustion engine also presented in this study to save the time and cost for the facilities managers who are interested to utilize the waste thermal energy of their buildings or premises for heating and air conditioning applications.

  2. Hydrogen production by the high temperature combination of the water gas shift and CO{sub 2} absorption reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bretado, M.A.E.; Vigil, M.D.D.; Gutierrez, J.S.; Ortiz, A.L.; Collins-Martinez, V. [Centro de Investigacion en Materiales Avanzados, Chihuahua, Chih (Mexico). Dept. de Quimica de Materiales

    2009-01-15

    Hydrogen is an important raw material for the chemical and petroleum industry. An important research field has surfaced, dealing with the production of high purity hydrogen for power generation purposes through fuel cells. Industrial technologies for hydrogen production are based on the use of fossil fuels, with catalytic steam methane reforming being the most important process together with partial oxidation of hydrocarbons and the integrated combined coal gasification cycle. Hydrogen production through the water gas shift (WGS) reaction requires two consecutive catalytic steps followed by carbon dioxide (CO{sub 2}) separation. However, combination of the WGS reaction and CO{sub 2} capture by a solid absorbent opens the opportunity to produce high purity hydrogen in one single step called absorption enhanced WGS or AEWGS. In theory, this process would not require a catalyst. This paper presented an experimental study of AEWGS using a quartz-made fixed bed reactor. The CO{sub 2} absorbents tested in this study were calcined dolomite, (CaOMgO) and sodium zirconate (Na{sub 2}ZrO{sub 3}). The paper described the experimental study, with particular reference to the thermodynamic analysis that determined the equilibrium conditions of the systems CO/H{sub 2}O (WGS) and CO/absorbent/H{sub 2} (AEWGS); synthesis and characterization; and the fixed bed reaction system. Results were determined by X-ray diffraction, BET surface area and crystallite size, and reaction evaluation. It was concluded that at reaction conditions, dolomite can efficiently remove CO{sub 2} at partial pressures three times lower than with the use of Na{sub 2}ZrO{sub 3} as absorbent. 24 refs., 1 tab., 6 figs.

  3. Novel Molecular Spectroscopic Multimethod Approach for Monitoring Water Absorption/Desorption Kinetics of CAD/CAM Poly(Methyl Methacrylate) Prosthodontics.

    Science.gov (United States)

    Wiedemair, Verena; Mayr, Sophia; Wimmer, Daniel S; Köck, Eva Maria; Penner, Simon; Kerstan, Andreas; Steinmassl, Patricia-Anca; Dumfahrt, Herbert; Huck, Christian W

    2017-07-01

    Water absorbed to poly(methyl methacrylate) (PMMA)-based CAD/CAM (computer-assisted design/computer-assisted manufacturing) prosthodontics can alter their properties including hardness and stability. In the present contribution, water absorption and desorption kinetics under defined experimental conditions were monitored employing several supplementary and advanced Fourier transform infrared (FT-IR) spectroscopic techniques in combination with multivariate analysis (MVA). In this synergistic vibrational spectroscopic multimethod approach, first a novel near-infrared (NIR) diffuse fiber optic probe reflection spectroscopic method was established for time-resolved analysis of water uptake within seven days under controlled conditions. Near-infrared water absorbance spectra in a wavenumber range between 5288-5100 cm-1 (combination band) and 5424-5352 cm-1 (second overtone) were used establishing corresponding calibration and validation models to quantify the amount of water in the milligram range. Therefore, 14 well-defined samples exposed to prior optimized experimental conditions were taken into consideration. The average daily water uptake conducting reference analysis was calculated as 22 mg/day for one week. Additionally, in this study for the first time NIR two-dimensional correlation spectroscopy (2D-COS) was conducted to monitor and interpret the spectral dynamics of water absorption on the prosthodontics in a wavenumber range of 5100-5300 cm-1. For sensitive time-resolved recording of water desorption, a recently developed high-temperature, high-pressure FT-IR reaction cell with water-free ultra-dry in situ and operando operation was applied. The reaction cell, as well as the sample holder, was fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high temperature zone. Applying a temperature gradient in the range of 25-150 ℃, mid-infrared (MIR) 2D-COS was successfully conducted to get insights into the dynamic

  4. Solar radiation absorption in the atmosphere due to water and ice clouds: Sensitivity experiments with plane-parallel clouds

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    One cloud radiation issue that has been troublesome for several decades is the absorption of solar radiation by clouds. Many hypotheses have been proposed to explain the discrepancies between observations and modeling results. A good review of these often-competing hypotheses has been provided by Stephens and Tsay. They characterize the available hypotheses as failing into three categories: (1) those linked to cloud microphysical and consequent optical properties; (2) those linked to the geometry and heterogeneity of clouds; and (3) those linked to atmospheric absorption.Current modeling practice is seriously inconsistent with new observational inferences concerning absorption of solar radiation in the atmosphere. The author and her colleagues contend that an emphasis on R may, therefore, not be the optimal way of addressing the cloud solar absorption issue. 4 refs., 1 fig.

  5. Investigation of Cephalexin Absorption Using Pumice from Aqueous Solution and the Effect Common Ions in Water in Removal It

    Directory of Open Access Journals (Sweden)

    Sahba Haji Bagher Tehrani

    2017-11-01

    Conclusion: According to the results obtained with increasing adsorbent dosage and the contact time efficiency increased. When PH and concentrations of cephalexin are increased efficiency is reduced. In this study, the modified pumice with hydrochloric acid in comparison with raw pumice has better efficiency in the absorption of cephalexin. According to the results of this study ions had little effect on the absorption of cephalexin. In this study, adsorption Cephalexin on to pumice follow of Frondlykh isotherm and pseudo-second order.

  6. The effect Na2SiO3/NaOH ratio to specific gravity and water absorption of artifiticial geopolymer aggregate dolomite based

    Science.gov (United States)

    Nor, Aiman Mahmad; Yahya, Zarina; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    Industry such as construction and materials had depended a lot on the available aggregate. The use of aggregate need to be designed so that it have a well sustainable system with good physical properties. This paper is using dolomite to produce an artificial aggregate. The dolomite based artificial aggregate is produced using geopolymer as a hardened process. The dolomite base artificial aggregate is tested with a different alkaline activator to find water absorption and density. The lowest water absorption of dolomite artificial aggregate is 14%. The specific gravity of the artificial aggregate tested are lower when the sodium silicate is decreasing. The lowest density of artificial aggregate obtain are with 2.03 g/cm3.

  7. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  8. Water Absorption and Diffusion Characteristics of Nanohydroxyapatite (nHA and Poly(hydroxybutyrate-co-hydroxyvalerate- Based Composite Tissue Engineering Scaffolds and Nonporous Thin Films

    Directory of Open Access Journals (Sweden)

    Naznin Sultana

    2013-01-01

    Full Text Available Water uptake characteristics of poly(hydroxybutyrate-co-hydroxyvalerate (PHBV- based composite tissue engineering (TE scaffolds incorporating nanosized hydroxyapatite (nHA have been investigated. The water absorption of these composite scaffolds obeyed the classical diffusion theory for the initial period of time. The diffusion coefficients of the composite scaffolds during the water absorption were much faster than those for the nonporous thin films, suggesting that the water uptake process depends on the presence of porosity and porous microstructure of the composite scaffolds. The incorporation of nHA increased the water uptake of both the composite scaffolds and thin films. It was also observed that the equilibrium uptake increased with the incorporation of nHA. This increase in the water uptake was largely due to the nHA particle aggregates in the microstructure of both composite scaffolds and thin films. The activation energy for diffusion was also determined using the Arrhenius equation for both porous scaffolds and thin films and the results suggested that the activation energy for scaffolds was lower than that for thin films.

  9. Absorption and fluorescence properties of chromophoric dissolved organic matter: implications for the monitoring of water quality in a large subtropical reservoir.

    Science.gov (United States)

    Liu, Xiaohan; Zhang, Yunlin; Shi, Kun; Zhu, Guangwei; Xu, Hai; Zhu, Mengyuan

    2014-12-01

    The development of techniques for real-time monitoring of water quality is of great importance for effectively managing inland water resources. In this study, we first analyzed the absorption and fluorescence properties in a large subtropical reservoir and then used a chromophoric dissolved organic matter (CDOM) fluorescence monitoring sensor to predict several water quality parameters including the total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), dissolved organic carbon (DOC), and CDOM fluorescence parallel factor analysis (PARAFAC) components in the reservoir. The CDOM absorption coefficient at 254 nm (a(254)), the humic-like component (C1), and the tryptophan-like component (C3) decreased significantly along a gradient from the northwest to the lake center, northeast, southwest, and southeast region in the reservoir. However, no significant spatial difference was found for the tyrosine-like component (C2), which contributed only four marked peaks. A highly significant linear correlation was found between the a(254) and CDOM concentration measured using the CDOM fluorescence sensor (r(2) = 0.865, n = 76, p water quality parameters and trace the humic-like fluorescence substance in clear aquatic ecosystems with DOC sensor is a useful tool for on-line water quality monitoring if the empirical relationship between the CDOM concentration measured using the CDOM fluorescence sensor and the water quality parameters is calibrated and validated.

  10. Absorption cross sections for water, ammonia, methane, neopentane, the chloromethanes, and CF22Cl2

    Energy Technology Data Exchange (ETDEWEB)

    Person, James C. [Argonne National Lab., IL (United States); Fowler, David E. [Macalester College, St. Paul, MN (United States); Nicole, Paul P. [Argonne National Lab., IL (United States)

    1975-12-01

    Experimental data on the absorption cross section (or differential oscillator strength) are presented for water, ammonia, methane, neopentane, CH3Cl, CH2Cl2, CHCl3, CCl4, and CF2Cl2. In all cases the upper energy limit is 21.2 eV, and the lower energy limit is between 11 and 13 eV.

  11. Investigating Langmuir films at the air-water interface using a planar array infrared reflection-absorption spectrograph

    Science.gov (United States)

    Kim, Young Shin

    In this work, a new planar array infrared reflection-absorption spectrograph (PA-IRRAS) was developed to investigate a broad range of Langmuir films at the air-water interface. This instrument is capable of recording sample and reference spectra simultaneously with an optical setup that is the same as that of a single-beam instrument but splits the incident infrared beam into two sections on a plane mirror (H) or a water trough. With this design, the instrument could accommodate large infrared accessories, such as a water trough. In addition, water bands were subtracted to obtain a high quality spectrum for a poly(lactic acid) (PLA) Langmuir film on the water subphase with a resolution of about 8 cm-1 in 10.8 sec. With this instrument, two types of monolayer systems were studied; polymeric and lipid Langmuir films at the air-water interface. For the polymeric monolayer system, PA-IRRAS was used as a probe to follow the real-time conformational changes associated with intermolecular interactions of the polymer chains during the compression of the monolayers. It was found that the mixture of poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) (D/L) formed a stereocomplex when the mixed solution developed the two-dimensional monolayer at the air-water interface. The stereocomplexation occurred before film compression, indicating that there is no direct correlation between film compression and stereocomplexation. For the lipid monolayer system, PA-IRRAS was also used as a probe to investigate the origin of the disruption of a lipid monolayer upon protein adsorption at the air-water interface. Analysis of the time-resolved PA-IRRAS spectra revealed that Cu(II) ion-chelated DSIDA lipid monolayer (Cu 2+-DSIDA) was readily disrupted by myoglobin adsorption as demonstrated by a blue shift of 1.7 cm-1 and a lower intensity in the vas(CH2) stretch mode of the lipid monolayer over a period of five hours. To find the origin of the disruption of the lipid monolayer, a

  12. Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table

    NARCIS (Netherlands)

    Robroek, B.J.M.; Schouten, M.G.C.; Limpens, J.; Berendse, F.; Poorter, H.

    2009-01-01

    Sphagnum cuspidatum, S. magellanicum and S. rubellum are three co-occurring peat mosses, which naturally have a different distribution along the microtopographical gradient of the surface of peatlands. We set out an experiment to assess the interactive effects of water table (low: -10 cm and high:

  13. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows

    Science.gov (United States)

    Richard, L.; Vasilchenko, S.; Mondelain, D.; Ventrillard, I.; Romanini, D.; Campargue, A.

    2017-11-01

    In a recent contribution [A. Campargue, S. Kassi, D. Mondelain, S. Vasilchenko, D. Romanini, Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J. Geophys. Res. Atmos., 121,13,180-13,203, doi:10.1002/2016JD025531], we reported accurate water vapor absorption continuum measurements by Cavity Ring-down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Absorption Spectroscopy (OF-CEAS) at selected spectral points of 4 near infrared transparency windows. In the present work, the self-continuum cross-sections, CS, are determined for two new spectral points. The 2491 cm-1 spectral point in the region of maximum transparency of the 4.0 μm window was measured by OF-CEAS in the 23-52 °C temperature range. The 4435 cm-1 spectral point of the 2.1 μm window was measured by CRDS at room temperature. The self-continuum cross-sections were determined from the pressure squared dependence of the continuum absorption. Comparison to the literature shows a reasonable agreement with 1970 s and 1980 s measurements using a grating spectrograph in the 4.0 μm window and a very good consistency with our previous laser measurements in the 2.1 μm window. For both studied spectral points, our values are much smaller than previous room temperature measurements by Fourier Transform Spectroscopy. Significant deviations (up to about a factor 4) are noted compared to the widely used semi empirical MT_CKD model of the absorption continuum. The measured temperature dependence at 2491 cm-1 is consistent with previous high temperature measurements in the 4.0 μm window and follows an exp(D0/kT) law, D0 being the dissociation energy of the water dimer.

  14. Accurate Laser Measurements of the Water Vapor Self-Continuum Absorption in Four Near Infrared Atmospheric Windows. a Test of the MT_CKD Model.

    Science.gov (United States)

    Campargue, Alain; Kassi, Samir; Mondelain, Didier; Romanini, Daniele; Lechevallier, Loïc; Vasilchenko, Semyon

    2017-06-01

    The semi empirical MT_CKD model of the absorption continuum of water vapor is widely used in atmospheric radiative transfer codes of the atmosphere of Earth and exoplanets but lacks of experimental validation in the atmospheric windows. Recent laboratory measurements by Fourier transform Spectroscopy have led to self-continuum cross-sections much larger than the MT_CKD values in the near infrared transparency windows. In the present work, we report on accurate water vapor absorption continuum measurements by Cavity Ring Down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Laser Spectroscopy (OF-CEAS) at selected spectral points of the transparency windows centered around 4.0, 2.1 and 1.25 μm. The temperature dependence of the absorption continuum at 4.38 μm and 3.32 μm is measured in the 23-39 °C range. The self-continuum water vapor absorption is derived either from the baseline variation of spectra recorded for a series of pressure values over a small spectral interval or from baseline monitoring at fixed laser frequency, during pressure ramps. In order to avoid possible bias approaching the water saturation pressure, the maximum pressure value was limited to about 16 Torr, corresponding to a 75% humidity rate. After subtraction of the local water monomer lines contribution, self-continuum cross-sections, C_{S}, were determined with a few % accuracy from the pressure squared dependence of the spectra base line level. Together with our previous CRDS and OF-CEAS measurements in the 2.1 and 1.6 μm windows, the derived water vapor self-continuum provides a unique set of water vapor self-continuum cross-sections for a test of the MT_CKD model in four transparency windows. Although showing some important deviations of the absolute values (up to a factor of 4 at the center of the 2.1 μm window), our accurate measurements validate the overall frequency dependence of the MT_CKD2.8 model.

  15. Influence of particle design on oral absorption of poorly water-soluble drug in a silica particle-supercritical fluid system.

    Science.gov (United States)

    Miura, Hiroshi; Kanebako, Makoto; Shirai, Hiroyuki; Nakao, Hiroshi; Inagi, Toshio; Terada, Katsuhide

    2011-01-01

    The physicochemical characteristics and oral absorption of a poorly water-soluble drug, K-832, adsorbed onto porous silica (Sylysia 350), were compared with those of K-832 adsorbed onto non-porous silica (Aerosil 200). K-832 and silica were treated with supercritical CO(2) (scCO(2)) to produce K-832-Sylysia 350 and K-832-Aerosil 200 formulations. Scanning electron microscopy, polarizing microscopy, powder X-ray diffraction, and differential scanning calorimetry results suggested that K-832 mainly existed in an amorphous state in both formulations. The specific surface area of both formulations was much larger than that of pure K-832 crystals. The dissolution rate of K-832 from both formulations was considerably greater than that from corresponding physical mixtures due to rapid wetting of the hydrophilic carrier surfaces and amorphous state, the dissolution from the K-832-Sylysia 350 formulation being the fastest. In vivo absorption tests on the two formulations indicated no significant differences in their peak concentration (C(max)) and the area under their plasma concentration-time curve (AUC), while the concentrations of K-832 in the K-832-Sylysia 350 formulation were significantly higher than those in the K-832-Aerosil 200 formulation 1 h and 1.5 h after administration of these formulations (ptests, the amorphous drugs in both formulations were stable at room temperature for at least 14 months. Thus, the absorption of poorly water-soluble drugs could be greatly improved by adsorption onto porous silica using scCO(2).

  16. Combining in vitro and in silico methods for better prediction of surfactant effects on the absorption of poorly water soluble drugs-a fenofibrate case example.

    Science.gov (United States)

    Berthelsen, Ragna; Sjögren, Erik; Jacobsen, Jette; Kristensen, Jakob; Holm, René; Abrahamsson, Bertil; Müllertz, Anette

    2014-10-01

    The aim of this study was to develop a sensitive and discriminative in vitro-in silico model able to simulate the in vivo performance of three fenofibrate immediate release formulations containing different surfactants. In addition, the study was designed to investigate the effect of dissolution volume when predicting the oral bioavailability of the formulations. In vitro dissolution studies were carried out using the USP apparatus 2 or a mini paddle assembly, containing 1000 mL or 100mL fasted state biorelevant medium, respectively. In silico simulations of small intestinal absorption were performed using the GI-Sim absorption model. All simulation runs were performed twice adopting either a total small intestinal volume of 533 mL or 105 mL, in order to examine the implication of free luminal water volumes for the in silico predictions. For the tested formulations, the use of a small biorelevant dissolution volume was critical for in vitro-in silico prediction of drug absorption. Good predictions, demonstrating rank order in vivo-in vitro-in silico correlations for Cmax, were obtained with in silico predictions utilizing a 105 mL estimate for the human intestinal water content combined with solubility and dissolution data performed in a mini paddle apparatus with 100mL fasted state simulated media. Copyright © 2014. Published by Elsevier B.V.

  17. Solid phase extraction and determination of nickel in water samples by using novel thiol-containing sulfonamide polymeric resin and atomic absorption spectrophotometer.

    Science.gov (United States)

    Karaaslan, Nagihan M; Senkal, B Filiz; Er, Cigdem; Avci, Halim; Yaman, Mehmet

    2011-08-01

    Interest in preconcentration techniques for the determination of metals at ultratrace levels still continues increasingly because of some disadvantages of flameless atomic absorption spectrometry as well as the high costs of other sensitive methods in compared to flame atomic absorption spectrometry. In this study, thiol-containing sulfonamide resin was synthesized, characterized and applied as a new sorption material for solid phase extraction of nickel in drinking water samples. After preconcentration procedure, flame atomic absorption spectrometry was used for determinations. Optimum parameters were found to be pH = 3.2, contact time = 20 min and eluate volume = 3 mL. The limit of detection was found to be 0.75 ng x mL(-1). The synthesized resin exhibits the superiority in compared to the other adsorption reagents because of the fact that there is no necessity of any complexing reagent, high sorption capacity as well as the relatively fast extraction rate. The Ni concentrations in the studied 21 kind of water samples were found to be in the range of BDL-4.0 ng x mL(-1).

  18. Influence of a net cage tilapia culture on the water quality of the Nova Avanhandava reservoir, São Paulo State, Brazil - doi: 10.4025/actascibiolsci.v34i3.7298

    Directory of Open Access Journals (Sweden)

    André Luiz Scarano Camargo

    2012-06-01

    Full Text Available In order to understand the influence of a net cage tilapia culture on the environment, water quality parameters were investigated during the period between December, 2005 and November, 2007. Three sampling stations were established in the reservoir of Nova Avanhandava (Zacarias, São Paulo State as follows: upstream of net cage area (P1, in the rearing place (P2 and downstream of net cage area (P3. The mean values of the parameters examined in the water sampling stations were within the standards of water quality recommended by resolution no. 357/2005 of the Conselho Nacional do Meio Ambiente for class 2 freshwater bodies. A significantly higher mean concentration of total phosphorus (p -1 was the result of the uneaten feed and feces of fish. The average concentration of total phosphorus in P3 was lower (0.015 mg L-1, which was assimilated by the aquatic ecosystem. The frequent monitoring of the water parameters is fundamental, so the producer can adjust the management according to environmental conditions, by reducing fish density or changing feeding rates for example, to mitigate or avoid water quality deterioration. 

  19. Parameterization of the chlorophyll a-specific in vivo light absorption coefficient covering estuarine, coastal and oceanic waters

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Markager, S.

    2004-01-01

    .015 m2 mg-1 Chl a) at 440 nm, the peak absorption of Chl a in the blue part of the spectrum. The variations in the modelled a*ph spectra were within realistic predictions of a*ph (¿) and the model satisfactorily reproduced the spectral flattening with increasing [Chl a]. The parameterization of a...

  20. Effects of sea-ice light attenuation and CDOM absorption in the water below the Eurasian sector of central Arctic Ocean (>88°N)

    DEFF Research Database (Denmark)

    Lund-Hansen, Lars Chresten; Markager, Stiig; Hancke, Kasper

    2015-01-01

    organic matter (CDOM) absorption coefficient with a strong terrestrial optical signature. Two distinct clusters of stations with waters of Pacific and North Atlantic origin were identified based on significant differences in temperature, salinity and CDOM absorption coefficient between water masses......) transmittance of the ice was low (0.09) and apparently related to a high degree of backscattering by air-filled brine channels left by brine draining. The under-ice PAR was also low (8.4±4.5 SD µmol photons m−2 s−1) and partly related to the low transmittance. There were no significant differences in multi......-year and first-year PAR transmittances. In spite of this low under-ice PAR, only 3% of the transmitted PAR through the ice was absorbed by phytoplankton in the water. On average, chlorophyll-a concentrations were low (0.34±0.69 SD mg chl-a m−3) in the water compared to the high (a375=0.52 m−1) coloured dissolved...

  1. [Using ultraviolet-visible ( UV-Vis) absorption spectrum to estimate the dissolved organic matter (DOM) concentration in water, soils and sediments of typical water-level fluctuation zones of the Three Gorges Reservoir areas].

    Science.gov (United States)

    Li, Lu-lu; Jiang, Tao; Lu, Song; Yan, Jin-long; Gao, Jie; Wei, Shi-qiang; Wang, Ding-yong; Guo, Nian; Zhao, Zhena

    2014-09-01

    Dissolved organic matter (DOM) is a very important component in terrestrial ecosystem. Chromophoric dissolved organic matter (CDOM) is a significant constituent of DOM, which can be measured by ultraviolet-visible (UV-Vis) absorption spectrum. Thus the relationship between CDOM and DOM was investigated and established by several types of models including single-wavelength model, double-wavelength model, absorption spectrum slope (S value) model and three-wavelength model, based on the UV-Vis absorption coefficients of soil and sediment samples (sampled in July of 2012) and water samples (sampled in November of 2012) respectively. The results suggested that the three-wavelength model was the best for fitting, and the determination coefficients of water, soil and sediment data were 0. 788, 0. 933 and 0. 856, respectively. Meanwhile, the nominal best model was validated with the UV-Vis data of 32 soil samples and 36 water samples randomly collected in 2013, showing the RRMSE and MRE were 16. 5% and 16. 9% respectively for soil DOM samples, 10. 32% and 9. 06% respectively for water DOM samples, which further suggested the prediction accuracy was higher in water DOM samples as compared with that in soil DOM samples.

  2. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Rosener, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  3. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science Oak Ridge National Lab., TN (United States)); Rosener, B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  4. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium.

    Science.gov (United States)

    Ognik, Katarzyna; Stępniowska, Anna; Cholewińska, Ewelina; Kozłowski, Krzysztof

    2016-09-01

    Copper nanoparticles used as a dietary supplement for poultry could affect the absorption of mineral elements. Hence the aim of the study was to determine the effect of administration of copper nanoparticles to chickens in drinking water on intestinal absorption of iron, zinc, and calcium. The experiment was carried out on 126 chicks assigned to seven experimental groups of 18 birds each (3 replications of 6 individuals each). The control group (G-C) did not receive copper nanoparticles. Groups: Cu-5(7), Cu-10(7), and Cu-15(7) received gold nanoparticles in their drinking water in the amounts of 5 mg/L for group Cu-5(7), 10 mg/L for group Cu-10(7), and 15 mg/L for group Cu-15(7) during 8 to 14, 22 to 28, and 36 of 42 days of the life of the chicks. The birds in groups Cu-5(3), Cu-10(3), and Cu-15(3) received copper nanoparticles in the same amounts, but only during 8 to 10, 22 to 24, and 36 to 38 days of life. Blood for analysis was collected from the wing vein of all chicks at the age of 42 days. After the rearing period (day 42), six birds from each experimental group with body weight similar to the group average were slaughtered. The carcasses were dissected and samples of the jejunum were collected for analysis of absorption of selected minerals. Mineral absorption was tested using the in vitro gastrointestinal sac technique. Oral administration of copper nanoparticles to chickens in the amount of 5, 10, and 15 mg/L led to accumulation of this element in the intestinal walls. The highest level of copper nanoparticles applied increased Cu content in the blood plasma of the birds. The in vitro study suggests that copper accumulated in the intestines reduces absorption of calcium and zinc, but does not affect iron absorption. © 2016 Poultry Science Association Inc.

  5. Net primary productivity (NPP) and associated parameters for the U.S. outer continental shelf waters, 1998-2009 (NODC Accession 0071184)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession consists of monthly net primary productivity (NPP) estimates for 1998-2009 derived from the Vertically Generalized Production Model (VGPM) for the 26...

  6. Flame atomic absorption spectrometric determination of trace quantities of cadmium in water samples after cloud point extraction in Triton X-114 without added chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Afkhami, Abbas [Department of Chemistry, Faculty of Science, Bu-Ali Sina University, Hamadan (Iran, Islamic Republic of)]. E-mail: afkhami@basu.ac.ir; Madrakian, Tayyebeh [Department of Chemistry, Faculty of Science, Bu-Ali Sina University, Hamadan (Iran, Islamic Republic of); Siampour, Hajar [Department of Chemistry, Faculty of Science, Bu-Ali Sina University, Hamadan (Iran, Islamic Republic of)

    2006-11-16

    A new micell-mediated phase separation method for preconcentration of ultra-trace quantities of cadmium as a prior step to its determination by flame atomic absorption spectrometry has been developed. The method is based on the cloud point extraction (CPE) of cadmium in iodide media with Triton X-114 in the absence of any chelating agent. The optimal extraction and reaction conditions (e.g., acid concentration, iodide concentration, effect of time) were studied, and the analytical characteristics of the method (e.g., limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 3-300 ng mL{sup -1} of cadmium. The detection limit of the method is 1.0 ng mL{sup -1} of cadmium. The interference effect of some anions and cations was also tested. The method was applied to the determination of cadmium in tap water, waste water, and sea water samples.

  7. Flame atomic absorption spectrometric determination of trace quantities of cadmium in water samples after cloud point extraction in Triton X-114 without added chelating agents.

    Science.gov (United States)

    Afkhami, Abbas; Madrakian, Tayyebeh; Siampour, Hajar

    2006-11-16

    A new micell-mediated phase separation method for preconcentration of ultra-trace quantities of cadmium as a prior step to its determination by flame atomic absorption spectrometry has been developed. The method is based on the cloud point extraction (CPE) of cadmium in iodide media with Triton X-114 in the absence of any chelating agent. The optimal extraction and reaction conditions (e.g., acid concentration, iodide concentration, effect of time) were studied, and the analytical characteristics of the method (e.g., limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 3-300 ng mL(-1) of cadmium. The detection limit of the method is 1.0 ng mL(-1) of cadmium. The interference effect of some anions and cations was also tested. The method was applied to the determination of cadmium in tap water, waste water, and sea water samples.

  8. RadNet Air Data From Little Rock, AR

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Little Rock, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  9. RadNet Air Data From Pittsburgh, PA

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Pittsburgh, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  10. RadNet Air Data From Montgomery, AL

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Montgomery, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. RadNet Air Data From Toledo, OH

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Toledo, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  12. RadNet Air Data From Honolulu, HI

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Honolulu, HI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  13. Separation and preconcentration of trace amounts of gold from water samples prior to determination by flame atomic absorption spectrometry

    OpenAIRE

    Sabermahani,Fatemeh; Taher,Mohammad Ali; Bahrami, Habibe

    2016-01-01

    A preconcentration/separation procedure is presented for the solid phase extraction of trace gold(III) as its rubeanic acid (dithiooxamide) chelate on silica gel, prior to determination by flame atomic absorption spectrometry. The influences of analytical parameters including pH of the aqueous solution, the amount of the sorbent, time of the complex formation, ligand amount, flow rates of sample and elution solutions and the type, concentration and volume of elution solution on the quantitati...

  14. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  15. Modelling the light absorption properties of particulate matter forming organic particles suspended in sea water. Part 3. Practical applications

    Directory of Open Access Journals (Sweden)

    Roman Majchrowski

    2006-12-01

    Full Text Available This paper brings to a close our cycle of articles on modelling the light absorption properties of particulate organic matter (POM in the sea. In the first two parts of this cycle (Woźniaket al. 2005a,b we discussed these properties with reference to various model chemical classes and physical types of POM. We have put these results into practice in the present third part. As a result of the appropriate theoretical speculations, logically underpinned by empirical knowledge, we selected 25 morphological variants of marine organic detritus, to which we ascribed definite chemical compositions and physical types. On this basis and using known spectra of the mass-specific coefficients of light absorption by various naturally occurring organic substances (systematised in Parts 1 and 2, we determined the absorption properties of these 25 morphological groups of particles, that is, the spectra of the imaginary part of the refractive index n'p(λ (in the 200-700 nm range of the particulate matter. They can be applied, with the aid of Mie's or some other similar theory, to calculate the bulk optical properties (absorbing and scattering of such sets of particles in the sea.

  16. Influence of the intermediate digestion phases of common formulation lipids on the absorption of a poorly water-soluble drug.

    Science.gov (United States)

    Kossena, Greg A; Charman, William N; Boyd, Ben J; Porter, Christopher J H

    2005-03-01

    The influence of different model intestinal phases (modelled on those likely to be produced in vivo after the digestion of commonly used formulation lipids) on the absorption profile of cinnarizine has been studied. Combinations of C8, C12, or C18:1 fatty acid and monoglyceride and simulated endogenous intestinal fluid were formulated to provide examples of liquid (L1), lamellar (L(alpha)), and cubic (C) liquid crystalline phases. Phases containing cinnarizine were dosed intraduodenally and absorption was assessed in an anesthetized rat model. Bile duct ligation was performed to inhibit the effects of digestion/dilution on the phase structure. Absorption from the L(alpha) phases (C8 and C12 lipids) was statistically higher (p precipitation of solubilized drug) and increasing in the case of the C18:1 C phase, possibly through the coexistence of L1 and C upon dilution permitting more efficient transfer of solubilized drug. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.

  17. A New Method of Absorption-Phase Nanotomography for 3D Observation of Mineral-Organic-Water Textiles and its Application to Pristine Carbonaceous Chondrites

    Science.gov (United States)

    Tsuchiyama, A.; Nakato, A.; Matsuno, J.; Sugimoto, M.; Uesugi, K.; Takeuchi, A.; Nakano, T.; Vaccaro, E.; Russel, S.; Nakamura-Messenger, K.; hide

    2017-01-01

    Pristine carbonaceous chondrites contain fine-grained matrix, which is composed largely of amorphous silicates, sub-micron silicate and sulfide crystals, and organic materials. They are regarded as primitive dust in the early Solar System that have suffered minimal alteration in their parent bodies. The matrix generally has different lithologies; some of them are unaltered but some are more or less aqueously altered. Their textures have been examined in 2D usually by FE-SEM/EDS, TEM/EDS, nano-SIMS and micro-XRD. Observation of their complex fine textures, such as spatial relation between different lithologies in 3D, is important for understanding aggregation and alteration processes. Synchrotron radiation (SR)-based X-ray tomography reveals 3D structures nondestructively with high spatial resolution of approximately greater than 100 nm. We have developed a new technique using absorption contrasts called "dual-energy tomography" (DET) to obtain 3D distribution of minerals at SPring-8, SR facility in Japan, and applied successfully to Itokawa particles. Phase and absorption contrast images can be simultaneously obtained in 3D by using "scanning-imaging x-ray microscopy" (SIXM) at SPring-8, which can discriminate between void, water and organic materials. We applied this technique combined with FIB micro-sampling to carbonaceous chondrites to search for primitive liquid water. In this study, we combined the DET and SIXM to obtain three dimensional submicron-scale association between minerals, organic materials and water and applied this to pristine carbonaceous chondrites.

  18. Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL for Profiling Water Vapor in the Lower Troposphere

    Directory of Open Access Journals (Sweden)

    Kevin S. Repasky

    2013-11-01

    Full Text Available A laser transmitter has been developed and incorporated into a micro-pulse differential absorption lidar (DIAL for water vapor profiling in the lower troposphere as an important step towards long-term autonomous field operation. The laser transmitter utilizes two distributed Bragg reflector (DBR diode lasers to injection seed a pulsed tapered semiconductor optical amplifier (TSOA, and is capable of producing up to 10 mJ of pulse energy with a 1 ms pulse duration and a 10 kHz pulse repetition frequency. The on-line wavelength of the laser transmitter can operate anywhere along the water vapor absorption feature centered at 828.187 nm (in vacuum depending on the prevailing atmospheric conditions, while the off-line wavelength operates at 828.287 nm. This laser transmitter has been incorporated into a DIAL instrument utilizing a 35.6 cm Schmidt-Cassegrain telescope and fiber coupled avalanche photodiode (APD operating in the photon counting mode. The performance of the DIAL instrument was demonstrated over a ten-day observation period. During this observation period, data from radiosondes were used to retrieve water vapor number density profiles for comparisons with the number density profiles retrieved from the DIAL data.

  19. Effect of silanized-chitosan on flammability, mechanical, water absorption and biodegradability properties of pseudo-stem banana fiber and montmorillonite filled waste polypropylene biocomposite

    Science.gov (United States)

    Prasetyo, W. E.; Prihandoko, A.; Pujiasih, S.; Widianto, A.; Rahmawati, N.; Saputra, O. A.; Handayani, D. S.

    2017-02-01

    Growing consciousness for an eco-friendly environment has revived the interest to develop composite fibers from biobased products. In this study, flammability, mechanical, water absorption and biodegradability properties of chitosan filled biocomposite waste polypropylene (wPP) reinforced with pseudo-stem banana fiber (PBF) and montmorillonite (MMt) biocomposites has been conducted investigate. It was successfully processed in solution method. Chitosan was chemically treated with glycidyloxypropyltrimethoxysilane (GPTMS) to improve interfacial adhesion between chitosan and wPP. The chitosan treated with GPTMS content in the biocomposites were varied from 0 to 7% (dry wt. basis). Flammability, tensile strength and water absorption index of biocomposites were measured according to ASTM D635, ASTM D638, and ASTM D570 respectively. To study the nature of its biodegradability, the biocomposites were technically buried in garbage dump land. The results show that the addition of treated chitosan 3-GPTMS has improved thermal properties such as Time to Ignition (TTi), Burning Rate (BR), and Heat release (HR) of treated biocomposites compared with neat PP and untreated biocomposite with treated chitosan. The treated biocomposites exhibit higher tensile strength and Young’s modulus, but lower elongation at break compared with neat PP and untreated biocomposites with treated chitosan. The biocomposites show a reduction in the rate of water uptake with higher loading of CH.

  20. Photocatalytic degradation of water contaminants in multiple photoreactors and evaluation of reaction kinetic constants independent of photon absorption, irradiance, reactor geometry, and hydrodynamics.

    Science.gov (United States)

    Grčić, Ivana; Li Puma, Gianluca

    2013-12-03

    The literature on photocatalytic oxidation of water pollutants often reports reaction kinetic constants, which cannot be unraveled from photoreactor type and experimental conditions. This study addresses this challenging aspect by presenting a general and simple methodology for the evaluation of fundamental "intrinsic" reaction kinetic constants of photocatalytic degradation of water contaminants, which are independent of photoreactor type, catalyst concentration, irradiance levels, and hydrodynamics. The degradation of the model contaminant, oxalic acid (OA) on titanium dioxide (TiO2) aqueous suspensions, was monitored in two annular photoreactors (PR1 and PR2). The photoreactors with significantly different geometries were operated under different hydrodynamic regimes (turbulent batch mode and laminar flow-through recirculation mode), optical thicknesses, catalyst and OA concentrations, and photon irradiances. The local volumetric rate of photon absorption (LVRPA) was evaluated by the six-flux radiation absorption-scattering model (SFM). The SFM was further combined with a comprehensive kinetic model for the adsorption and photodecomposition of OA on TiO2 to determine local reaction rates and, after integration over the reactor volume, the intrinsic reaction kinetic constants. The model could determine the oxidation of OA in both PR1 and PR2 under a wide range of experimental conditions. This study demonstrates a more meaningful way for determining reaction kinetic constants of photocatalytic degradation of water contaminants.

  1. The Use Level of Chrome Tannage For Rabbit Fur Leather Observed on Tearing Strength, Stitch Tearing Strength, Water Absorption and Organoleptic

    Directory of Open Access Journals (Sweden)

    Mustakim Mustakim

    2012-02-01

    Full Text Available The purpose of this study was to find out the appropiate of chrome tannage level for rabbit fur leather quality. The result were expected to contribute information for many people who relate with tanning technology, especialy about the use level of chrome tannage for fur leather quality and could as patern to hold further research.The material that used were 12 pieces of three months of rabbit skin. The method is Completely Randomized Design, consist of three treatments of chrome tannage (Chromosal B, they were : B1 (Chromosal B 6%, B2 (Chromosal B 8%, and B3 (Chromosal B 10%. Each of treatment hold on four replications. The variables which measured are tearing strength, stitch teraing strength, water absorption and organoleptic consist of “kekuatan bulu”’ “kerataan bulu” and “kelemasan kulit” in fur leather. Data was analysed by analysis variance followed by Duncan’s Multiple Range Test. The result of this research show that the use level of chromosal B give very significant influence among tearing strength, stitch tearing strength and water absorption. It gave significant influence among the organoleptic test. Based on the result, can be concluded that 10 percent of chrome tannage (chromosal B, produce the best result on tearing strength, stitch tearing strength, water absorption and organoleptic for “kekuatan bulu” and “kerataan bulu”. The incrase of chrome tannage offer will decrease the “kelemasan kulit” in fur leather and the best “kelemasan kulit” produced by the lowest chrome tannage offer, that was 6 percent of Chromosal B. The best quality of rabbit fur leather produced by 10 percent of chrome tannage offer.   Keywords: chrome, tannage, fur leather

  2. Numerical Simulation of Wave Interaction with Moving Net Structures

    DEFF Research Database (Denmark)

    Chen, Hao; Christensen, Erik Damgaard

    2015-01-01

    was described as a sheet of porous media with prescribed rigid body motion and mesh motion was incorporated to conform the motion of the net. Free surface wave generation and absorption framework was also introduced to simulate wave interaction with moving net structures. The results showed that mesh motion...

  3. LASER MEDICINE: Effect of laser radiation absorption in water and blood on the optimal wavelength for endovenous obliteration of varicose veins

    Science.gov (United States)

    Zhilin, K. M.; Minaev, V. P.; Sokolov, Aleksandr L.

    2009-08-01

    This work examines laser radiation absorption in water and blood at the wavelengths that are used in endovenous laser treatment (EVLT): 0.81-1.06, 1.32, 1.47, 1.5 and 1.56 μm. It is shown that the best EVLT conditions are ensured by 1.56-μm radiation. Analysis of published data suggests that even higher EVLT efficacy may be achieved at wavelengths of 1.68 and 1.7 μm.

  4. Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting.

    Science.gov (United States)

    Zhang, Jianming; Jin, Xin; Morales-Guzman, Pablo I; Yu, Xin; Liu, Hong; Zhang, Hua; Razzari, Luca; Claverie, Jerome P

    2016-04-26

    Recently, surface plasmon resonance (SPR) effects have been widely used to construct photocatalysts which are active in the visible spectral region. Such plasmonic photocatalysts usually comprise a semiconductor material transparent in the visible range (such as TiO2) and plasmonic nano-objects (e.g., Au nanoparticles (Au NPs)). Specific SPRs, though, only partially cover the visible spectrum and feature weak light absorption. Here, we explore the unique role played by whispering gallery mode (WGM) resonances in the expression of the photocatalytic activity of plasmonic photocatalysts. Using numerical simulations, we demonstrate that, by solely exploiting a proper geometrical arrangement and WGM resonances in a TiO2 sphere, the plasmonic absorption can be extended over the entire visible range and can be increased by more than 40 times. Furthermore, the local electric field at the Au-TiO2 interface is also considerably enhanced. These results are experimentally corroborated, by means of absorption spectroscopy and Raman measurements. Accordingly, such WGM-assisted plasmonic photocatalysts, when employed in water splitting experiments, exhibit enhanced activity in the visible range. Our findings show a promising and straightforward way to design full solar spectrum photocatalysts.

  5. In-situ pre-concentration through repeated sampling and pyrolysis for ultrasensitive determination of thallium in drinking water by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Liu, Liwei; Zheng, Huaili; Xu, Bincheng; Xiao, Lang; Chigan, Yong; Zhangluo, Yilan

    2018-03-01

    In this paper, a procedure for in-situ pre-concentration in graphite furnace by repeated sampling and pyrolysis is proposed for the determination of ultra-trace thallium in drinking water by graphite furnace atomic absorption spectrometry (GF-AAS). Without any other laborious enrichment processes that routinely result in analyte loss and contamination, thallium was directly concentrated in the graphite furnace automatically and subsequently subject to analysis. The effects of several key factors, such as the temperature for pyrolysis and atomization, the chemical modifier, and the repeated sampling times were investigated. Under the optimized conditions, a limit of detection of 0.01µgL -1 was obtained, which fulfilled thallium determination in drinking water by GB 5749-2006 regulated by China. Successful analysis of thallium in certified water samples and drinking water samples was demonstrated, with analytical results in good agreement with the certified values and those by inductively coupled plasma mass spectrometry (ICP-MS), respectively. Routine spike-recovery tests with randomly selected drinking water samples showed satisfactory results of 80-96%. The proposed method is simple and sensitive for screening of ultra-trace thallium in drinking water samples. Copyright © 2017. Published by Elsevier B.V.

  6. Professional Enterprise NET

    CERN Document Server

    Arking, Jon

    2010-01-01

    Comprehensive coverage to help experienced .NET developers create flexible, extensible enterprise application code If you're an experienced Microsoft .NET developer, you'll find in this book a road map to the latest enterprise development methodologies. It covers the tools you will use in addition to Visual Studio, including Spring.NET and nUnit, and applies to development with ASP.NET, C#, VB, Office (VBA), and database. You will find comprehensive coverage of the tools and practices that professional .NET developers need to master in order to build enterprise more flexible, testable, and ext

  7. Central cooling: absorptive chillers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-08-01

    This technology evaluation covers commercially available single-effect, lithium-bromide absorption chillers ranging in nominal cooling capacities of 3 to 1,660 tons and double-effect lithium-bromide chillers from 385 to 1,060 tons. The nominal COP measured at operating conditions of 12 psig input steam for the single-effect machine, 85/sup 0/ entering condenser water, and 44/sup 0/F exiting chilled-water, ranges from 0.6 to 0.65. The nominal COP for the double-effect machine varies from 1.0 to 1.15 with 144 psig entering steam. Data are provided to estimate absorption-chiller performance at off-nominal operating conditions. The part-load performance curves along with cost estimating functions help the system design engineer select absorption equipment for a particular application based on life-cycle costs. Several suggestions are offered which may be useful for interfacing an absorption chiller with the remaining Integrated Community Energy System. The ammonia-water absorption chillers are not considered to be readily available technology for ICES application; therefore, performance and cost data on them are not included in this evaluation.

  8. Approaches for achieving long-term accuracy and precision of δ18O and δ2H for waters analyzed using laser absorption spectrometers.

    Science.gov (United States)

    Wassenaar, Leonard I; Coplen, Tyler B; Aggarwal, Pradeep K

    2014-01-21

    The measurement of δ(2)H and δ(18)O in water samples by laser absorption spectroscopy (LAS) are adopted increasingly in hydrologic and environmental studies. Although LAS instrumentation is easy to use, its incorporation into laboratory operations is not as easy, owing to extensive offline data manipulation required for outlier detection, derivation and application of algorithms to correct for between-sample memory, correcting for linear and nonlinear instrumental drift, VSMOW-SLAP scale normalization, and in maintaining long-term QA/QC audits. Here we propose a series of standardized water-isotope LAS performance tests and routine sample analysis templates, recommended procedural guidelines, and new data processing software (LIMS for Lasers) that altogether enables new and current LAS users to achieve and sustain long-term δ(2)H and δ(18)O accuracy and precision for these important isotopic assays.

  9. On-line preconcentration of cobalt in drinking water using a minicolumn packed with activated carbon coupled to electrothermal atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Cerutti, Soledad; Moyano, Susana; Gasquez, Jose A.; Stripeikis, Jorge; Olsina, Roberto A.; Martinez, Luis D. E-mail: ldm@unsl.edu.ar

    2003-11-21

    An on-line flow injection preconcentration-electrothermal atomic absorption spectrometry method is developed for trace determination of cobalt in drinking water samples by sorption on a conical minicolumn packed with activated carbon at pH 9.5. The cobalt was eluted from the minicolumn with 10% (v/v) nitric acid. An enrichment factor of 190-fold for a sample volume of 10 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 5 ng l{sup -1}. The precision for 10 replicate determinations at the 50 ng l{sup -1} Co level was 4.7% relative standard deviation. The calibration graph using the preconcentration system for cobalt was linear with a correlation coefficient of 0.9993 at levels near the DLs up to at least 0.35 {mu}g l{sup -1}. The method was successfully applied to the determination of cobalt in drinking water samples.

  10. Speciation analysis of mercury in water samples by cold vapor atomic absorption spectrometry after preconcentration with dithizone immobilized on microcrystalline naphthalene.

    Science.gov (United States)

    Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Nasirizadeh, Navid

    2004-03-01

    Trace amounts of inorganic mercury (Hg(2+)) and methylmercury cations (MeHg(2+)) were adsorbed quantitatively from acidic aqueous solution onto a column packed with immobilized dithizone on microcrystalline naphthalene. The trapped mercury was eluted with 10 ml of 7 mol L(-1) hydrochloric acid solution. The Hg(2+) was then directly reduced with tin (II) chloride, and volatilized mercury was determined by cold vapor atomic absorption spectrometry (CVAAS). Total mercury (Hgt) was determined after decomposition of MeHg(+) into Hg(2+). Hg(2+) and MeHg(+) cations were completely recovered from the water with a preconcentration factor of 200. The relative standard deviation obtained for eight replicate determinations at a concentration of 0.3 microg L(-1 )was 1.8%. The procedure was applied to analysis of water samples, and the accuracy was assessed via recovery experiment.

  11. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey); Soylak, Mustafa [Department of Chemistry, Erciyes University, 38039 Kayseri (Turkey)], E-mail: soylak@erciyes.edu.tr; Citak, Demirhan [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey); Ferreira, Hadla S.; Korn, Maria G.A. [Universidade Federal da Bahia, Instituto de Quimica, 40170-290 Salvador (Brazil); Bezerra, Marcos A. [Universidade Estadual do Sudoeste da Bahia, 45200-190 Jequie (Brazil)

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L{sup -1} nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 {mu}g L{sup -1}, respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 {mu}g L{sup -1}. The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  12. The control of haemolysis during transurethral resection of the prostate when water is used for irrigation: monitoring absorption by the ethanol method.

    Science.gov (United States)

    Hultén, J O; Tran, V T; Pettersson, G

    2000-12-01

    To determine whether the addition of ethanol to water for irrigation during transurethral resection of the prostate (TURP) and monitoring breath ethanol could be used to detect irrigant absorption and to limit free plasma haemoglobin in cases of absorption. One hundred patients (46 in Piteå, Sweden and 54 in Uong bi, Vietnam) underwent surgery for benign prostatic hyperplasia (BPH) under an intermittent irrigation technique using water containing 2% ethanol. An expired breath alcohol meter was used to monitor ethanol in the patients' breath every 5 min. Blood samples taken after TURP were assessed for free haemoglobin in 99 patients, and other markers of haemolysis were also evaluated in the Swedish group. Thirty-two patients had detectable ethanol in their breath. There was a close correlation between the maximum ethanol reading during surgery and the level of free plasma haemoglobin after TURP (r = 0.90, P meter should not be allowed to exceed 0.15 (corresponding to a blood ethanol level of 0.15 per thousand), which should maintain the free plasma haemoglobin level at < 1.0 g/L after TURP. Restricting the operative duration per se is not a reliable safety measure.

  13. X-ray absorption spectroscopy as a tool investigating arsenic(III) and arsenic(V) sorption by an aluminum-based drinking-water treatment residual.

    Science.gov (United States)

    Makris, Konstantinos C; Sarkar, Dibyendu; Parsons, Jason G; Datta, Rupali; Gardea-Torresdey, Jorge L

    2009-11-15

    Historic applications of arsenical pesticides to agricultural land have resulted in accumulation of residual arsenic (As) in such soils. In situ immobilization represents a cost-effective and least ecological disrupting treatment technology for soil As. Earlier work in our laboratory showed that drinking-water treatment residuals (WTRs), a low-cost, waste by-product of the drinking-water treatment process exhibit a high affinity for As. Wet chemical experiments (sorption kinetics and desorption) were coupled with X-ray absorption spectroscopy measurements to elucidate the bonding strength and type of As(V) and As(III) sorption by an aluminum-based WTR. A fast (1h), followed by a slower sorption stage resulted in As(V) and As(III) sorption capacities of 96% and 77%, respectively. Arsenic desorption with a 5mM oxalate from the WTR was minimal, being always <4%. X-ray absorption spectroscopy data showed inner-sphere complexation between As and surface hydroxyls. Reaction time (up to 48h) had no effect on the initial As oxidation state for sorbed As(V) and As(III). A combination of inner-sphere bonding types occurred between As and Al on the WTR surface because mixed surface geometries and interatomic distances were observed.

  14. Army Net Zero Prove Out. Army Net Zero Training Report

    Science.gov (United States)

    2014-11-20

    sensors were strategically placed throughout the installation by magnetically attaching them to water main valve stems. The sensors check sound...Recycle Wrap  Substitutes for Packaging Materials  Re-Use of Textiles and Linens  Setting Printers to Double-Sided Printing Net Zero Waste...can effectively achieve source reduction. Clean and Re-Use Shop Rags - Shop rags represent a large textile waste stream at many installations. As a

  15. Fast arsenic speciation in water by on-site solid phase extraction and high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Mihucz, Victor G.; Bencs, László; Koncz, Kornél; Tatár, Enikő; Weiszburg, Tamás; Záray, Gyula

    2017-02-01

    A method of high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS), combined with on-site separation/solid phase extraction (SPE) has been developed for the speciation of inorganic As (iAs) in geothermal and drinking water samples. The HR-CS-GFAAS calibration curves were linear up to 200 μg/L As, but using second order polynomial fitting, accurate calibration could be performed up to 500 μg/L. It has been demonstrated that sample pH should not be higher than 8 for an accurate speciation of As(V) with a recovery of ≈ 95%. Geothermal water had fairly high salt content (≈ 2200 mg/L) due to the presence of chlorides and sulfates at mg/L levels. Therefore, a two-fold dilution of these types of samples before SPE is recommended, especially, for total As determinations, when the As concentration is as high as 400 μg/L. For drinking water, sampled from public wells with records of As concentrations higher than the 10 μg/L in the past, the reduction of As contamination below the WHO's health limit value could be observed. However, the electrical conductivity was close to 2500 μS/cm, i.e., the guideline limit for drinking water, which was due to their higher chloride content. The proposed fit-for-purpose SPE-HR-CS-GFAAS method could be a candidate for screening drinking water quality.

  16. Wettability, Polarity, and Water Absorption of Holm Oak Leaves: Effect of Leaf Side and Age1[OPEN

    Science.gov (United States)

    Fernández, Victoria; Sancho-Knapik, Domingo; Guzmán, Paula; Peguero-Pina, José Javier; Gil, Luis; Karabourniotis, George; Khayet, Mohamed; Fasseas, Costas; Heredia-Guerrero, José Alejandro; Heredia, Antonio; Gil-Pelegrín, Eustaquio

    2014-01-01

    Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology. PMID:24913938

  17. In Situ Water Vapor Measurements Using Coupled UV Fragment Fluorescence/Absorption Spectroscopy in Support of CRYSTAL-FACE

    Science.gov (United States)

    Anderson, James G.

    2004-01-01

    Understanding the coupling of dynamics, chemistry, and radiation within the context of the NASA Earth Science Enterprise (ESE) and the national Climate Change Science Program (CCSP) requires, as a first-order priority, high spatial resolution, high-accuracy observations of water in its various phases. Given the powerful diagnostic importance of the condensed phases of water for dynamics and the impact of phase changes in water on the radiation field, the accurate, in situ observation of water vapor is of central importance to CRYSTAL FACE (CF). This is clear both from the defined scientific objectives of the NRA and from developments in the coupled fields of stratosphere/troposphere exchange, cirrus cloud formation/removal and mechanisms for the distribution of water vapor in the middle/upper troposphere. Accordingly, we were funded under NASA Grant NAG5-11548 to perform the following tasks for the CF mission: 1. Prepare the water vapor instrument for integration into the WB57F and test flights scheduled for Spring 2002. 2. Calibrate and prepare the water vapor instrument for the Summer 2002 CF science flights based in Jacksonville, Florida. 3. Provide both science and engineering support for the above-mentioned efforts. 4. Analyze and interpret the CF data in collaboration with other mission scientists. 5. Attend the science workshop in Spring 2003. 6. Publish the data and analysis in peer-reviewed journals.

  18. [The turbidity and pH impact analysis of low concentration water chemical oxygen demand ultraviolet absorption detection].

    Science.gov (United States)

    Wu, Guo-Qing; Bi, Wei-Hong; Fu, Guang-Wei; Li, Jian-Guo; Ji, Hong-Yue

    2013-11-01

    Configuration standard solution in the concentration range of 1 - 25 mg x L(-1) of potassium hydrogen phthalate was used as experimental subject, Ultraviolet absorption spectra was collected, the COD quantitative analysis model was established by partial least squares with different pretreatment methods and the turbidity of the compensation effect analysis was given. The results show the model uses smoothing first derivative pretreatment method, internal cross validation RMSECV root mean square value of 0.122 27, principal component number 4, the square of the prediction model correlation coefficient is 0.999 8, and the relative prediction error is in the range of 0.03%-1.7%; for 0-100 NTU's turbidity solution, the relative standard deviation RSD is 2.3% after compensation; with pH in the range of 3-10, influence can be ignored.

  19. Fiber optic NIR evanescent wave absorption sensor systems for in-situ monitoring of hydrocarbon compounds in waste and ground water

    Science.gov (United States)

    Buerck, Jochen; Denter, P.; Mensch, M.; Kraemer, K.; Scholz, Michael

    1999-02-01

    In situ measurements with the prototype of a portable fiber- optic sensor system for the monitoring of nonpolar hydrocarbons (HC) in ground water or industrial waste water are presented. This sensor system can be used for quantitative in situ analysis of pollutants such as aromatic solvents, fuels, mineral oils or chlorinated HCs in a broad concentration range from around 200 (mu) g(DOT) L-1 up to a few 100 mg(DOT) L-1. The sensing principle is based on solid phase extraction of analyte molecules into a hydrophobic silicone cladding of a quartz glass optical fiber and the direct absorptiometric measurement of the extracted species in the polymer through the evanescent wave. The sensor can be connected via all-silica fibers with a length of up to 100 m to a filter photometer developed at the IFIA, thus allowing even remote analysis in monitoring wells. This instrument provides a sum concentration signal of the extracted organic compounds by measuring the integral absorption at the C-H overtone bands in the near-infrared spectral range. In situ measurements with the sensor system were performed in a ground water circulation well at the VEGAS research facility (Universitat Stuttgart). Here, the sensor proved to trace the HC sum concentration of xylene isomers in process water pumped from the well to a stripper column. In further experiments the sensor was combined with an oil sampling device and was tested with simulated waste waters of a commercial vehicle plant contaminated with different types of mineral oil. In this case the sensor system was able to detect the presence of mineral oil films floating on water or oil-in-water emulsions with concentrations greater than 20 ppm (v/v) within a few minutes.

  20. Absorption of silicon from artesian aquifer water and its impact on bone health in postmenopausal women: a 12 week pilot study.

    Science.gov (United States)

    Li, Zhaoping; Karp, Hannah; Zerlin, Alona; Lee, Tsz Ying Amy; Carpenter, Catherine; Heber, David

    2010-10-14

    Decreased bone mineral density and osteoporosis in postmenopausal women represents a growing source of physical limitations and financial concerns in our aging population. While appropriate medical treatments such as bisphosphonate drugs and hormone replacement therapy exist, they are associated with serious side effects such as osteonecrosis of the jaw or increased cardiovascular risk. In addition to calcium and vitamin D supplementation, previous studies have demonstrated a beneficial effect of dietary silicon on bone health. This study evaluated the absorption of silicon from bottled artesian aquifer water and its effect on markers of bone metabolism. Seventeen postmenopausal women with low bone mass, but without osteopenia or osteoporosis as determined by dual x-ray absorptiometry (DEXA) were randomized to drink one liter daily of either purified water of low-silicon content (PW) or silicon-rich artesian aquifer water (SW) (86 mg/L silica) for 12 weeks. Urinary silicon and serum markers of bone metabolism were measured at baseline and after 12 weeks and analyzed with two-sided t-tests with p water group compared to the purified water group (p water supplementation. No significant change was observed in the serum markers of bone formation compared to baseline measurements for either group. These findings indicate that bottled water from artesian aquifers is a safe and effective way of providing easily absorbed dietary silicon to the body. Although the silicon did not affect bone turnover markers in the short-term, the mineral's potential as an alternative prevention or treatment to drug therapy for osteoporosis warrants further longer-term investigation in the future. ClinicalTrials.gov Identifier: NCT01067508.

  1. WaveNet

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with a...data from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  2. Fast sequential multi-element determination of major and minor elements in environmental samples and drinking waters by high-resolution continuum source flame atomic absorption spectrometry.

    Science.gov (United States)

    Gómez-Nieto, Beatriz; Gismera, Ma Jesús; Sevilla, Ma Teresa; Procopio, Jesús R

    2015-01-07

    The fast sequential multi-element determination of 11 elements present at different concentration levels in environmental samples and drinking waters has been investigated using high-resolution continuum source flame atomic absorption spectrometry. The main lines for Cu (324.754 nm), Zn (213.857 nm), Cd (228.802 nm), Ni (232.003 nm) and Pb (217.001 nm), main and secondary absorption lines for Mn (279.482 and 279.827 nm), Fe (248.327, 248.514 and 302.064 nm) and Ca (422.673 and 239.856 nm), secondary lines with different sensitivities for Na (589.592 and 330.237 nm) and K (769.897 and 404.414 nm) and a secondary line for Mg (202.582 nm) have been chosen to perform the analysis. A flow injection system has been used for sample introduction so sample consumption has been reduced up to less than 1 mL per element, measured in triplicate. Furthermore, the use of multiplets for Fe and the side pixel registration approach for Mg have been studied in order to reduce sensitivity and extend the linear working range. The figures of merit have been calculated and the proposed method was applied to determine these elements in a pine needles reference material (SRM 1575a), drinking and natural waters and soil extracts. Recoveries of analytes added at different concentration levels to water samples and extracts of soils were within 88-115% interval. In this way, the fast sequential multi-element determination of major and minor elements can be carried out, in triplicate, with successful results without requiring additional dilutions of samples or several different strategies for sample preparation using about 8-9 mL of sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...... use of CP-nets — because it means that the function representation and the translations (which are a bit mathematically complex) no longer are parts of the basic definition of CP-nets. Instead they are parts of the invariant method (which anyway demands considerable mathematical skills...

  5. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  6. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  7. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    -net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...

  8. Microscopic evaluation of polymeric film properties of anhydrous sunscreen compositions and their relation to absorption and water resistance.

    Science.gov (United States)

    Prettypaul, Donald; Fares, Hani

    2012-01-01

    The aim of this study was to investigate the mechanism by which a VA/butyl maleate/isobornyl acrylate copolymer increases the SPF and water resistance of sunscreen formulations. Anhydrous sunscreen formulations with and without polymer were applied on polymethyl methacrylate (PMMA) plates and absorbance spectra were generated. Before immersion, the areas under the curve for the control and test samples were 98.49 and 117.09, respectively, and were 94.63 and 118.22, after immersion. Static and after-immersion, in vivo SPF values confirmed a boost in SPF and an increase in water resistance for the formulation containing the polymer (VA/butyl maleate/isobornyl acrylate copolymer). Digital imaging of sunscreen films combined with image analysis and contact angle measurements suggest that the polymer conformation changes upon exposure to water. The polymer forms a protective barrier over the sunscreen film upon exposure to water, which explains the enhancement in water resistance. The polymeric film formed has a different refractive index than the sunscreen film. The change in refractive indices causes diffraction of incident light, thus increasing its pathlength, leading to an increase in SPF.

  9. Narrative absorption

    DEFF Research Database (Denmark)

    Narrative Absorption brings together research from the social sciences and Humanities to solve a number of mysteries: Most of us will have had those moments, of being totally absorbed in a book, a movie, or computer game. Typically we do not have any idea about how we ended up in such a state. No...

  10. Water vapour emission in vegetable fuel: absorption cell measurements and detection limits of our CO II Dial system

    Science.gov (United States)

    Bellecci, C.; De Leo, L.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Martellucci, S.; Richetta, M.

    2006-09-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason a considerable effort has been directed toward the forest protection and fire fighting. In the early forest fire detection, Lidar technique present considerable advantages compared to the passive detection methods based on infrared cameras currently in common use, due its higher sensitivity and ability to accurately locate the fire. The combustion phase of the vegetable matter causes a great amount of water vapour emission, thus the water molecule behaviour will be studied to obtain a fire detection system ready and efficient also before the flame propagation. A first evaluation of increment of the water vapour concentration compared to standard one will be estimated by a numerical simulation. These results will be compared with the experimental measurements carried out into a cell with a CO II Dial system, burning different kinds of vegetable fuel. Our results and their comparison will be reported in this paper.

  11. Column carbon dioxide and water vapor measurements by an airborne triple-pulse integrated path differential absorption lidar: novel lidar technologies and techniques with path to space

    Science.gov (United States)

    Singh, U. N.; Petros, M.; Refaat, T. F.; Yu, J.; Ismail, S.

    2017-09-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption features for the gas at this wavelength region [1]. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers [2]. Currently, LaRC team is engaged in designing, developing and demonstrating a triple-pulsed 2-micron direct detection Integrated Path Differential Absorption (IPDA) lidar to measure the weighted-average column dry-air mixing ratios of carbon dioxide (XCO2) and water vapor (XH2O) from an airborne platform [1, 3-5]. This novel technique allows measurement of the two most dominant greenhouse gases, simultaneously and independently, using a single instrument. This paper will provide status and details of the development of this airborne 2-micron triple-pulse IPDA lidar. The presented work will focus on the advancement of critical IPDA lidar components. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plans for IPDA lidar ground integration, testing and flight validation will also be discussed. This work enables new Earth observation measurements, while reducing risk, cost, size, volume, mass and development time of required instruments.

  12. Simultaneous preconcentration of cadmium and lead in water samples with silica gel and determination by flame atomic absorption spectrometry.

    Science.gov (United States)

    Xu, Hongbo; Wu, Yun; Wang, Jian; Shang, Xuewei; Jiang, Xiaojun

    2013-12-01

    A new method that utilizes pretreated silica gel as an adsorbent has been developed for simultaneous preconcentration of trace Cd(II) and Pb(II) prior to the measurement by flame atomic absorption spectrometry. The effects of pH, the shaking time, the elution condition and the coexisting ions on the separation/preconcentration conditions of analytes were investigated. Under optimized conditions, the static adsorption capacity of Cd(II) and Pb(II) were 45.5 and 27.1mg/g, the relative standard deviations were 3.2% and 1.7% (for n = 11), and the limits of detection obtained were 4.25 and 0.60 ng/mL, respectively. The method was validated by analyzing the certified reference materials GBW 07304a (stream sediment) and successfully applied to the analysis of various treated wastewater samples with satisfactory results. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. Temperature and water mole fraction measurements by time-domain-based supercontinuum absorption spectroscopy in a flame

    Science.gov (United States)

    Werblinski, Thomas; Mittmann, Frank; Altenhoff, Michael; Seeger, Thomas; Zigan, Lars; Will, Stefan

    2015-01-01

    In this manuscript, we present the first quantitative multi-scalar measurements by time-domain-based supercontinuum absorption spectroscopy in a flame. Temperature and mole fraction are determined simultaneously from broadband spectra ranging from 1,340 to 1,485 nm by a multi-peak least square fit between experiments and simulated spectra. To this end, a combination of the most comprehensive databases, namely the Barber-Tennyson database (BT2) and HITRAN2012, is used. Line strength values listed in BT2 are combined with averaged broadening coefficients and temperature exponents based on the upper rotational quantum number J from the latest HITRAN database to precisely model the line shape function for each transition. The height-dependent temperature and mole fraction profiles of a premixed one-dimensional flame of a McKenna type burner are reconstructed by direct comparison of experimental spectra with theory. For verification, the temperature data obtained are compared with a profile determined by coherent anti-Stokes Raman scattering.

  14. Technical and Economic Working Domains of Industrial Heat Pumps: Part 2 - Ammonia-Water Hybrid Absorption-Compression Heat Pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2014-01-01

    of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best possible vapour...

  15. Technical and economic working domains of industrial heat pumps: Part 2 - ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2015-01-01

    change of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best available...

  16. Flexural Properties of PVC/Bamboo Composites under Static and Dynamic-Thermal Conditions: Effects of Composition and Water Absorption

    Directory of Open Access Journals (Sweden)

    Shahril Anuar Bahari

    2017-01-01

    Full Text Available Polyvinyl chloride (PVC/bamboo composites have been prepared and assessed for their use in interior and exterior load-bearing applications. PVC composites were formed by compounding PVC with different bamboo particle sizes and loadings. The mechanical properties of these composites were determined at both ambient and elevated temperatures and after long-term water soaking. Analysis revealed that bamboo incorporation improved the PVC composite flexural modulus which was also observed with dynamic mechanical-thermal analysis on heating composites to ca. 70°C. Addition of 25% and 50% bamboo particles increases flexural modulus by 80% with dependency on whether fine (<75 μm or coarse (<1 mm particles were used. On water soaking to saturation, composites had water weight uptakes of 10%, with reduced flexural properties obtained for all water-soaked composites. Nonetheless, the results of this study show that PVC/bamboo composites achieve the minimum flexural performance of ASTM D 6662, indicating potential for their use in exterior applications.

  17. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris

    2014-01-01

    SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...

  18. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  19. Water absorption and viscosity behaviour of thermally stable novel graft copolymer of carboxymethyl cellulose and poly(sodium 1-hydroxy acrylate).

    Science.gov (United States)

    Kumar, Bijender; Negi, Yuvraj Singh

    2018-02-01

    A novel thermally stable hydrolysed carboxymethyl cellulose-g-poly(sodium 1-hydroxy acrylate) i.e. CMC-g-PNaHA graft copolymer was synthesized from the CMC and vinyl monomer 5-methylene-2-isopropyl-1,3-dioxolan-4-one (MD) in an aqueous medium using an initiator followed by transformation of resulting CMC-g-PMD via alkaline hydrolysis. The graft copolymerization is confirmed by the Fourier transform infrared spectroscopy (FT-IR), Nuclear magnetic resonance spectroscopy (NMR) and X-ray diffractometer (XRD). The influence of the CMC and PNaHA content on the properties of the resulting hydrolysed CMC-g-PNaHA graft copolymer was investigated. In comparison with the PNaHA polymer, the resulted hydrolysed CMC-g-PNaHA grafted copolymer has improved thermal stability, water absorption properties, viscosity and weight-average molecular weight. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Dithizone chloroform single drop microextraction system combined with electrothermal atomic absorption spectrometry using Ir as permanent modifier for the determination of Cd in water and biological samples

    Science.gov (United States)

    Fan, Zhefeng; Zhou, Wei

    2006-07-01

    A simple and sensitive method using dithizone-chloroform single drop microextraction has been developed for separation and preconcentration of trace Cd prior to its determination by electrothermal atomic absorption spectrometry with Ir as permanent modifier. Parameters, such as pyrolysis and atomization temperature, solvent type, pH, dithizone concentration, extraction time, organic drop volume, stirring rate and sample volume were investigated. Under the optimized conditions, a detection limit (3 σ) of 0.7 ng/l and enrichment factor of 65 were achieved. The relative standard deviation was 7.4% ( c = 0.2 μg/l, n = 5). The developed method has been applied to the determination of trace Cd in water samples and biological reference materials with satisfactory results.

  1. Dithizone-chloroform single drop microextraction system combined with electrothermal atomic absorption spectrometry using Ir as permanent modifier for the determination of Cd in water and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Fan Zhefeng [Department of Chemistry, Shanxi Normal University, Linfen 041004 (China)]. E-mail: zhefengfan@163.com; Zhou Wei [Department of Chemistry, Shanxi Normal University, Linfen 041004 (China)

    2006-07-15

    A simple and sensitive method using dithizone-chloroform single drop microextraction has been developed for separation and preconcentration of trace Cd prior to its determination by electrothermal atomic absorption spectrometry with Ir as permanent modifier. Parameters, such as pyrolysis and atomization temperature, solvent type, pH, dithizone concentration, extraction time, organic drop volume, stirring rate and sample volume were investigated. Under the optimized conditions, a detection limit (3{sigma}) of 0.7 ng/l and enrichment factor of 65 were achieved. The relative standard deviation was 7.4% (c = 0.2 {mu}g/l, n = 5). The developed method has been applied to the determination of trace Cd in water samples and biological reference materials with satisfactory results.

  2. Experimental characterization of the rectification process in ammonia-water absorption systems with a large-specific-area corrugated sheet structured packing

    Energy Technology Data Exchange (ETDEWEB)

    Sieres, Jaime; Fernandez-Seara, Jose; Uhia, Francisco J. [Area de Maquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, Campus Lagoas-Marcosende No 9, 36310 Vigo, Pontevedra (Spain)

    2009-09-15

    In this paper, the mass transfer performance of a large-specific-area corrugated sheet structured packing for ammonia-water absorption refrigeration systems (AARS) is reported. An experimental facility was used to test the performance of the packing. Experimental results of the temperature, ammonia concentration and mass flow rate of the rectified vapour are presented and discussed for different operating conditions including reflux ratio values from 0.2 to 1. The volumetric vapour phase mass transfer coefficient is calculated from the measured data and compared with different correlations found in the literature. A new correlation is proposed which was fitted from the experimental data. Finally, a comparison is made between the actual packing height used in the experimental setup and the height required to obtain the same ammonia rectification in AARS with different packings previously tested by the authors. (author)

  3. Calculation procedure to determine average mass transfer coefficients in packed columns from experimental data for ammonia-water absorption refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sieres, Jaime; Fernandez-Seara, Jose [University of Vigo, Area de Maquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, Vigo (Spain)

    2008-08-15

    The ammonia purification process is critical in ammonia-water absorption refrigeration systems. In this paper, a detailed and a simplified analytical model are presented to characterize the performance of the ammonia rectification process in packed columns. The detailed model is based on mass and energy balances and simultaneous heat and mass transfer equations. The simplified model is derived and compared with the detailed model. The range of applicability of the simplified model is determined. A calculation procedure based on the simplified model is developed to determine the volumetric mass transfer coefficients in the vapour phase from experimental data. Finally, the proposed model and other simple calculation methods found in the general literature are compared. (orig.)

  4. Simultaneous measurement of film thickness, temperature, and mass fraction of urea-water-solutions by multi-wavelength laser absorption spectroscopy

    Science.gov (United States)

    Yang, Huinan; Shi, Jianwei; Su, Mingxu; Wu, Wei; Cai, Xiaoshu

    2017-05-01

    Quantitative analysis for thickness, temperature, and mass fraction of liquid film is extremely crucial to the relevant industrial processes, but these parameters cannot be determined simultaneously by conventional measurement techniques. In the present work, a novel measurement method based on laser absorption spectroscopy was developed to measure the film temperature, thickness, and mass fraction of urea-water-solutions simultaneously by combining three wavelengths, 1420 nm, 1488 nm, and 1531 nm. Moreover, measurement accuracy of this method was validated by a calibration tool which provided liquid film with known film thickness, temperature, and mass fraction, respectively. It revealed that the deviation between the measured and known parameters with the developed method was 0.86%, 4.58%, and 3.85%, respectively.

  5. Ultrasound-assisted emulsification-microextraction combined with graphite furnace atomic absorption spectrometry for the determination of trace lead in water

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongmei; Zhang, Yu; Qiu, Bocheng; Li, Wenhua [College of Science, Nanjing Agricultural University, Nan Jing (China)

    2012-04-15

    The ultrasound-assisted emulsification-microextraction (USAEME) method was combined with graphite furnace atomic absorption spectrometry (GFAAS) for the determination of trace Pb using dithizone (H{sup 2}DZ) as chelating reagent. Some effective parameters influenced the detection and microextraction, such as ashing temperature and atomization temperature, pH, extraction solvent, sample volume, extraction time, and extraction temperature were selected and optimized. After extraction, the calibration curves for Pb was in the concentration range of 0.1-10 ng mL{sup -1}, and the linear equation was y = 0.097 x + 0.023 (R = 0.99). Under the optimized conditions, the detection limit of the method was 20 pg mL{sup -1} with an enrichment factor of 70 and the relative standards deviation (RSD) for seven determinations of 1 ng mL{sup -1} Pb was 11%. The proposed method was successfully applied to determine trace Pb in Yueya Lake water, pond water, and spiked samples. Furthermore, a certified reference material of Environment Water (GBW08607) was analyzed and the determined value was in good agreement with the certified value, which showed the accuracy, recovery, and applicability of the reported method. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. CO2 Absorption from Its Mixture with CH4 or N2 through Hollow Fiber Membrane Contactor using Water as Solvent

    Directory of Open Access Journals (Sweden)

    Sutrasno Kartohardjono

    2010-10-01

    Full Text Available Hollow fiber membrane contactors have been widely used as gas-liquid contactors recently such as in the CO2 absorption process from gas stream. This research aims to evaluate the effectiveness of hollow fiber membrane contactor to absorb CO2 from its mixture with CH4 or N2 using water through mass transfer and hydrodynamic tests. There are 3 membrane modules used in this research with shell diameter of 1.9 cm, length of 40 cm, outer fiber diameter of 2.7 mm and fiber number in the contactors of 10, 15 and 20. Liquid flow rates in the hollow fiber membrane contactors are varied in this research. Research results show that mass transfer coefficients in the membrane contactor increase with increasing liquid flow rate and decrease with increasing fiber number in the contactor. Flux of CO2 into water can achieve 1.4x10-9 mol CO2 /m2.s and mass transfer coefficients can achieve 1.23 x 10-7 m/s. Meanwhile, hydrodynamic test results show that water pressure drop in the membrane contactors increase with increasing fibernumber in the contactors.

  7. Separation and Enrichment of Gold in Water, Geological and Environmental Samples by Solid Phase Extraction on Multiwalled Carbon Nanotubes Prior to its Determination by Flame Atomic Absorption Spectrometry.

    Science.gov (United States)

    Duran, Ali; Tuzen, Mustafa; Soylak, Mustafa

    2015-01-01

    This study proposes the application of multi-walled carbon nanotubes as a solid sorbent for the preconcentration of gold prior to its flame atomic absorption spectrometry determination. Extraction was achieved by using a glass column (15.0 cm in length and 1.0 cm in diameter). Quantitative recoveries were obtained in the pH range of 2.5-4.0; the elution step was carried out with 5.0 ml of 1.0 mol/L HNO3 in acetone. In the ligand-free study, variables such as pH, eluent type, sample volume, flow rates, and matrix effect were examined for the optimum recovery of gold ions. The gold ions were able to be pre-concentrated by a factor of 150 and their LOD was determined to be 1.71 μg/L. In order to evaluate the accuracy of the developed method, addition-recovery tests were applied for the tap water, mineral water, and sea water samples. Gold recovery studies were implemented using a wet digestion technique for mine and soil samples taken from various media, and this method was also applied for anodic slime samples taken from the factories located in the Kayseri Industrial Zone of Turkey.

  8. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: mechanical restoration and healing process monitored by water absorption.

    Science.gov (United States)

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong

    2013-01-01

    Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks.

  9. Nano-engineering of p-n CuFeO2-ZnO heterojunction photoanode with improved light absorption and charge collection for photoelectrochemical water oxidation

    Science.gov (United States)

    Karmakar, Keshab; Sarkar, Ayan; Mandal, Kalyan; Gopal Khan, Gobinda

    2017-08-01

    The effective utilization of abundant visible solar light for photoelectrochemical water splitting is a green approach for energy harvesting, to reduce the enormous rise of carbon content in the atmosphere. Here, a novel efficient design strategy for p-n type nano-heterojunction photoanodes is demonstrated, with the goal of improving water splitting efficiency by growing low band gap p-CuFeO2 nanolayers on n-ZnO nanorods by an easy and scalable electrochemical route. The photoconversion efficiency of p-n CuFeO2/ZnO photoanodes is found to be ˜450% higher than that of pristine ZnO nanorod electrodes under visible solar light illumination (λ > 420 nm, intensity 10 mW cm-2). The p-n CuFeO2/ZnO nano-engineering not only boosts the visible light absorption but also resolves limitations regarding effective charge carrier separation and transportation due to interfacial band alignment. This photoanode also shows remarkably enhanced stability, where the formation of p-n nano-heterojunction enhances the easy migration of holes to the electrode/electrolyte interface, and of electrons to the counter electrode (Pt) for hydrogen generation. Therefore, this work demonstrates that p-n nano-engineering is a potential strategy to design light-harvesting electrodes for water splitting and clean energy generation.

  10. Preconcentration of trace amounts of lead in water samples with cetyltrimethylammonium bromide coated magnetite nanoparticles and its determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji

    2016-11-01

    Full Text Available A sensitive and simple magnetic solid phase extraction procedure was presented for the preconcentration of lead ions in environmental water samples. In the present study, lead ions form complexes with 1-(2-pyridilazo-2-naphthol reagent (PAN in basic medium, and then are quantitatively extracted to the surface of cetyltrimethylammonium bromide (CTAB-coated magnetite nanoparticles (Fe3O4 NPs. After magnetic separation of adsorbent, the adsorbent was eluted with 0.5% (v/v HCl in methanol prior to its analysis by flame atomic absorption spectrometry (FAAS. The pH of sample, concentrations of PAN, amounts of CTAB and Fe3O4 NPs, sample volume and desorption conditions were optimized. Under optimum conditions, the calibration curve was linear in the range of 0.05–100 ng mL−1 with R2 = 0.9996. Detection and quantification limits of the proposed method were 0.005 and 0.05 ng mL−1, respectively. Enhancement factor of 1050 was achieved using this method to extract 1000 mL of different environmental water samples. Compared with conventional solid phase extraction methods, the advantages of this method still include easy preparation of sorbents, short times of sample pre-treatment, high extraction yield, and high breakthrough volume. It shows great analytical potential in preconcentration of lead from large volume water samples.

  11. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry in water samples

    Directory of Open Access Journals (Sweden)

    Arpa Şahin Ç.

    2013-04-01

    Full Text Available A simple, rapid and inexpensive solidified floating organic drop microextraction (SFODME and flow injection flame atomic absorption spectrometric determination (FI-FAAS method for copper was developed. 3-amino-7-dimethylamino-2-methylphenazine (Neutral red, NR was used as the complexing agent. Several factors affecting the microextraction efficiency, such as, pH, NR and sodium dodecylbenzenesulfonate (SDBS concentration, extraction time, stirring rate, and temperature were investigated and optimized. Under optimized experimental conditions an enrichment factor of 541 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 0.5 – 20.0 ng mL–1 and the limit of detection (3s was 0.18 ng mL–1, the limit of quantification (10s was 0.58 ng mL–1. The relative standard deviation (RSD for 10 replicate measurements of 10 ng mL–1 copper was 2.7%. The developed method was successfully applied to the extraction and determination of copper in different certified reference materials (Estuarine water, Slew 3 and fortified water, TM 23.2 and real water samples and satisfactory results were obtained.

  12. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    Science.gov (United States)

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  13. Numerical study of the heat and material transport in the absorption of water vapour in aqueous LiBr solution; Numerische Untersuchung des Waerme- und Stofftransports bei der Absorption von Wasserdampf in waessriger LiBr-Loesung

    Energy Technology Data Exchange (ETDEWEB)

    Olbricht, Michael; Buchholz, Niklas; Fries, Simon; Addy, Joseph; Luke, Andrea [Kassel Univ. (Germany). Fachgebiet Technische Thermodynamik

    2016-07-01

    In absorption refrigerating machines with the working-material pair water/lithium bromide usually falling-film apparatuses are applied as absorbers, evaporators, and condensers. These are often performed as horizontal tube bundes. As critical, the process limiting component in the literature the absorper is called, because of which the their running, coupled heat and material transport processes are more detailedly theoretically studied. For this a model was developed, which maps starting from analytically describable physical connections the transport processes in the apparatus. The flow in the tube bundle is hereby divided in two sections, the flow in the liquid film on the tubes and the drop fall between the tubes. The basic equations are numerically solved under given boundary conditions, whereby for the description of the drop fall phase addititonally semi-empirical calculation approaches are used. The results are elucidated by means of concentration and temperature profiles in the film. A distinctly faster formation of the temperature boundary layer than the concentration boundary layer in the fim is shown, which makes the material transport to the limiting transport process in the absorber, which is already known from experimental studies.The physical plausibility of the model is by means of this fact confirmed by an analysis of the coupled transport processes by means of dimensionless characteristic numbers. Furthermore from the results an improvement of the heat and material transport at diminishing of the tube diameter can be derived. Just so by the results of the study an estimation method for the quality of the absorber by means of the subcooling is shown.

  14. Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples

    Science.gov (United States)

    Li, Shengqing; Cai, Shun; Hu, Wei; Chen, Hao; Liu, Hanlan

    2009-07-01

    A new method was developed for the determination of cadmium in water samples using ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (IL-based USA-DLLME) followed by electrothermal atomic absorption spectrometry (ETAAS). The IL-based USA-DLLME procedure is free of volatile organic solvents, and there is no need for a dispersive solvent, in contrast to conventional DLLME. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6), was quickly disrupted by an ultrasonic probe for 1 min and dispersed in water samples like a cloud. At this stage, a hydrophobic cadmium-DDTC complex was formed and extracted into the fine droplets of HMIMPF 6. After centrifugation, the concentration of the enriched cadmium in the sedimented phase was determined by ETAAS. Some effective parameters of the complex formation and microextraction, such as the concentration of the chelating agent, the pH, the volume of the extraction solvent, the extraction time, and the salt effect, have been optimized. Under optimal conditions, a high extraction efficiency and selectivity were reached for the extraction of 1.0 ng of cadmium in 10.0 mL of water solution employing 73 µL of HMIMPF 6 as the extraction solvent. The enrichment factor of the method is 67. The detection limit was 7.4 ng L - 1 , and the characteristic mass ( m0, 0.0044 absorbance) of the proposed method was 0.02 pg for cadmium (Cd). The relative standard deviation (RSD) for 11 replicates of 50 ng L - 1 Cd was 3.3%. The method was applied to the analysis of tap, well, river, and lake water samples and the Environmental Water Reference Material GSBZ 50009-88 (200921). The recoveries of spiked samples were in the range of 87.2-106%.

  15. Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline

    Science.gov (United States)

    Ipeaiyeda, Ayodele Rotimi; Ayoade, Abisayo Ruth

    2017-12-01

    Co-precipitation procedure has widely been employed for preconcentration and separation of metal ions from the matrices of environmental samples. This is simply due to its simplicity, low consumption of separating solvent and short duration for analysis. Various organic ligands have been used for this purpose. However, there is dearth of information on the application of 8-hydroxyquinoline (8-HQ) as ligand and Cu(II) as carrier element. The use of Cu(II) is desirable because there is no contamination and background adsorption interference. Therefore, the objective of this study was to use 8-HQ in the presence of Cu(II) for coprecipitation of Cd(II), Co(II), Cr(III), Ni(II) and Pb(II) from standard solutions and surface water prior to their determinations by flame atomic absorption spectrometry (FAAS). The effects of pH, sample volume, amount of 8-HQ and Cu(II) and interfering ions on the recoveries of metal ions from standard solutions were monitored using FAAS. The water samples were treated with 8-HQ under the optimum experimental conditions and metal concentrations were determined by FAAS. The metal concentrations in water samples not treated with 8-HQ were also determined. The optimum recovery values for metal ions were higher than 85.0%. The concentrations (mg/L) of Co(II), Ni(II), Cr(III), and Pb(II) in water samples treated with 8-HQ were 0.014 ± 0.002, 0.03 ± 0.01, 0.04 ± 0.02 and 0.05 ± 0.02, respectively. These concentrations and those obtained without coprecipitation technique were significantly different. Coprecipitation procedure using 8-HQ as ligand and Cu(II) as carrier element enhanced the preconcentration and separation of metal ions from the matrix of water sample.

  16. Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline

    Science.gov (United States)

    Ipeaiyeda, Ayodele Rotimi; Ayoade, Abisayo Ruth

    2017-07-01

    Co-precipitation procedure has widely been employed for preconcentration and separation of metal ions from the matrices of environmental samples. This is simply due to its simplicity, low consumption of separating solvent and short duration for analysis. Various organic ligands have been used for this purpose. However, there is dearth of information on the application of 8-hydroxyquinoline (8-HQ) as ligand and Cu(II) as carrier element. The use of Cu(II) is desirable because there is no contamination and background adsorption interference. Therefore, the objective of this study was to use 8-HQ in the presence of Cu(II) for coprecipitation of Cd(II), Co(II), Cr(III), Ni(II) and Pb(II) from standard solutions and surface water prior to their determinations by flame atomic absorption spectrometry (FAAS). The effects of pH, sample volume, amount of 8-HQ and Cu(II) and interfering ions on the recoveries of metal ions from standard solutions were monitored using FAAS. The water samples were treated with 8-HQ under the optimum experimental conditions and metal concentrations were determined by FAAS. The metal concentrations in water samples not treated with 8-HQ were also determined. The optimum recovery values for metal ions were higher than 85.0%. The concentrations (mg/L) of Co(II), Ni(II), Cr(III), and Pb(II) in water samples treated with 8-HQ were 0.014 ± 0.002, 0.03 ± 0.01, 0.04 ± 0.02 and 0.05 ± 0.02, respectively. These concentrations and those obtained without coprecipitation technique were significantly different. Coprecipitation procedure using 8-HQ as ligand and Cu(II) as carrier element enhanced the preconcentration and separation of metal ions from the matrix of water sample.

  17. Airborne differential absorption lidar for water vapour measurements in the upper troposphere and lower stratosphere in the spectral region around 940 nm

    Energy Technology Data Exchange (ETDEWEB)

    Poberaj, G.

    2000-07-01

    Two all-solid-state laser systems were developed and studied in detail to optimise their performance for an airborne water vapour differential absorption lidar (DIAL). Their special features are high average output powers and excellent spectral properties in the 940-nm spectral region relevant for monitoring very low water vapour contents in the upper troposphere and lower stratosphere. One system is an injection-seeded pulsed Ti:sapphire ring laser with a spectral bandwidth of 105 MHz and an average power of 1.1 W. The other system is an injection-seeded optical parametric oscillator (OPO) in a ring configuration. Using KTP as nonlinear crystal, a signal output with a spectral bandwidth of 140 MHz and an average power of 1.2 W was achieved. Both systems, the Ti:sapphire ring laser and the KTP OPO, possess spectral purity values higher than 99%. The pump source for these systems is a frequency doubled diode-pumped Nd:YAG laser operating at a repetition rate of 100 Hz. The KTP OPO system has been used as a transmitter in a new airborne water vapour DIAL instrument. For the first time, measurements of two-dimensional water vapour distributions with a high vertical (500 m) and horizontal (20 km) resolution across several potential vorticity streamers were performed. Very low water vapour mixing ratios (10-50 ppmv) and strong gradients were observed in the tropopause region. The sensitivity of the DIAL instrument in the centre of a stratospheric intrusion ranges from 3% in the near field to 12% in the far field (4 km). The first comparison experiments with in situ measuring instruments show a good agreement. Considerable differences are found between DIAL measurements and data obtained from the ECMWF operational analyses and a mesoscale numerical model. (orig.)

  18. Study on the microstructure and water absorption changes of exterior thin-layer polymer renders during natural and artificial ageing

    OpenAIRE

    Gintare Griciute; Raimondas Bliudzius

    2015-01-01

    This paper presents the experimental investigation results of exterior render of external thermal insulation composite systems (ETICS). The study involved natural (long-term) and artificially accelerated (short-term) ageing including effect of UV radiation. For research purposes the cycle of accelerated UV radiation ageing test, imitating the impact of one natural year in Lithuanian climate conditions, have been composed and used. In order to determine the visual, microstructure and water abs...

  19. Compact, open and general purpose cell of variable effective pathlength: direct absorption measurement of SO(4)(2-) in water.

    Science.gov (United States)

    Favier, J P; Bicanic, D; Chirtoc, M; Helander, P

    1996-06-01

    The use of an optothermal window (OW) was proposed for the direct (no need for sample preparation) spectroscopic, non-destructive measurement of SO(4)(2-) in water at 1078 cm(-1). The presently determined limit of detection (LOD) of 1 mmol/L is comparable to that provided by CO(2) laser photoacoustic spectroscopy, but about one order of magnitude superior to that obtainable by the ATR method.

  20. Functionalization of Biodegradable PLA Nonwoven Fabric as Superoleophilic and Superhydrophobic Material for Efficient Oil Absorption and Oil/Water Separation.

    Science.gov (United States)

    Gu, Jincui; Xiao, Peng; Chen, Peng; Zhang, Lei; Wang, Hanlin; Dai, Liwei; Song, Liping; Huang, Youju; Zhang, Jiawei; Chen, Tao

    2017-02-22

    Although the construction of superwettability materials for oil/water separation has been developed rapidly, the postprocess of the used separation materials themselves is still a thorny problem due to their nondegradation in the natural environment. In this work, we reported the functionalization of polylactic acid (PLA) nonwoven fabric as superoleophilic and superhydrophobic material for efficient treatment of oily wastewater with eco-friendly post-treatment due to the well-known biodegradable nature of PLA matrix.

  1. Craft-joule project: air-cooled water LiBr absorption cooling machine of low capacity for air conditioning (ACABMA)

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, A; Castro, J; Perez Segarra, C.D [Universitat Politecnica de Catalunya, Barcelona (Spain); Lucena, M.A [Instituto Nacional de Tecnica Aeroespecial (Spain)] (and others)

    2000-07-01

    The ACABMA (Air-Cooled water-LiBr Absorption cooling Machine of low capacity for Air- conditioning) project is a Craft-Joule Project within the framework of the Non Nuclear Energy Programme Joule III coordinated by the Centre Technologic de Transferencia de Calor (CTTC). The basic objective of this project is the development of a new air-cooled absorption cooling machine for air-conditioning, in the low power sector market. Making use of water-LiBr technology together with the air-cooling feature, it is possible to reach a better relationship between quality (in terms of performance, ecology, etc.) and price of such absorption machines, than the ones existing on the market. Air-cooling instead of water cooling saves installation costs specially in small systems and removes the demand for cooling water (an important aspect in Southern-European countries), thus increasing the possible application range. The main interest for the SME proposers is to take advantage of the increasing cooling demand in Europe, specially in southern countries. Another point of interest for the SME proposers is the development of a cheaper cooling and heating system in terms of energy and installation costs. In this moment the solar cooling systems are approx. 30% more expensive than the conventional ones. A cheaper absorption machine due to the air-cooling feature together with the possibility of energy savings due to low generator temperatures, that allow the absorption machine for solar applications or waste heat, will lead to solar cooling and heating systems more competitive to the conventional ones. In order to achieve the above mentioned goal, the following step are necessary and will be carried out in this project: i)solution of the air-cooling of the water-LiBr machine, the main problem that up to now has not allowed commercialization, ii)reduction of the size of the air-cooled elements of the machine in order to reduce the machine costs, iii)development of an efficient control

  2. Progress Toward an Autonomous Field Deployable Diode Laser Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere

    Science.gov (United States)

    Repasky, K. S.; Spuler, S.; Nehrir, A. R.; Moen, D.

    2013-12-01

    Water vapor is the most dominant greenhouse gas in the atmosphere and plays an important role in many key atmospheric processes associated with both weather and climate. Water vapor is highly variable in space and time due to large scale transport and biosphere-atmosphere interactions. Having long-term, high-resolution, vertical profiles of water vapor will help to better understand the water vapor structure and variability and its associated impact on weather and climate. A diode laser based differential absorption lidar (DIAL) for full-time water vapor and aerosol profiling in the lower troposphere has been demonstrated at Montana State University. This prototype instrument has the potential to form the basis of a ground based network of eye-safe autonomous instruments that can provide important information on the spatial and temporal variability of water vapor in the lower troposphere. To achieve this potential, major improvements to the prototype instrument need to be implemented and demonstrated including developing a laser transmitter capable of long term operation and modifying the optical receiver to make measurement below 0.5 km. During the past year, work on incorporating a new laser transmitter based on two distributed Bragg reflector (DBR) diode lasers, one operating at the on-line/side-line wavelength and the second operating at the off-line wavelength to injection seed a tapered semiconductor optical amplifier (TSOA) in a master oscillator power amplifier (MOPA) configuration has been completed. Recent work on the optical receiver is driven by the fact that the majority of the atmospheric water vapor resides below 2 km. The current single channel DIAL receiver has a narrow field of view and does not come in to full overlap until approximately 2 km. A two channel DIAL receiver has been designed that will allow the DIAL to achieve full overlap at ranges of less the 0.5 km providing significant improvement to the instrument performance. A discussion of

  3. Online Monitoring of Water-Quality Anomaly in Water Distribution Systems Based on Probabilistic Principal Component Analysis by UV-Vis Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dibo Hou

    2014-01-01

    Full Text Available This study proposes a probabilistic principal component analysis- (PPCA- based method for online monitoring of water-quality contaminant events by UV-Vis (ultraviolet-visible spectroscopy. The purpose of this method is to achieve fast and sound protection against accidental and intentional contaminate injection into the water distribution system. The method is achieved first by properly imposing a sliding window onto simultaneously updated online monitoring data collected by the automated spectrometer. The PPCA algorithm is then executed to simplify the large amount of spectrum data while maintaining the necessary spectral information to the largest extent. Finally, a monitoring chart extensively employed in fault diagnosis field methods is used here to search for potential anomaly events and to determine whether the current water-quality is normal or abnormal. A small-scale water-pipe distribution network is tested to detect water contamination events. The tests demonstrate that the PPCA-based online monitoring model can achieve satisfactory results under the ROC curve, which denotes a low false alarm rate and high probability of detecting water contamination events.

  4. Absorption cooling device. Absorptions-Kuehlvorrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Bourne, J.; Vardi, I.; Kimchi, Y.; Ben-Dror, J.

    1980-03-25

    The invention concerns improvements of absorption refrigerators, where a lithium chloride or lithium bromide/water cycle is used. According to the invention an inner separating or dividing structure between different functional parts of a machine of this type is provided. The structure contains two sections of wall, which are separated from one another by a suitable space, in order to achieve thermal insulation. This air space is provided with an opening in the direction towards the inside of the container and the opening is shielded to prevent the entry of liquids (in liquid or spray form).

  5. Summer extreme climatic event in the future: impact on the net CO2 and water fluxes of an upland grassland and buffering impact of elevated atmospheric CO2

    Science.gov (United States)

    Roy, Jacques; Ravel, Olivier; Landais, Damien; Piel, Clément; Defossez, Marc; Escape, Christophe; Devidal, Sébastien; Didier, Philippe; Bahn, Michael; Volaire, Florence; Augusti, Angela; Soussana, Jean-François; Picon-Cochard, Catherine

    2013-04-01

    Extreme climatic events are expected to be more frequent and intense in a few decades, but they will also occur in a climatic context different from the current one. In the Montpellier Ecotron, we studied the response of intact grassland monoliths (1m², 60 cm deep) sampled in an upland grassland of the French Massif Central. The first year the grasslands were acclimated to the average climatic conditions of the years around 2050 (+ 4 °C and - 56 mm for summer precipitations). The second year, the same climate was maintained but in half of the experimental units we imposed a summer drought and heat wave (50 % reduction of precipitations for a month and then 100 % precipitation reduction combined with a 3,4 °C increase in temperature for two weeks). A CO2 treatment (520 vs 380 µmol/mol) was crossed with the climatic treatment. Net CO2 fluxes were measured continuously during the second year of the experiment. The extreme climatic event induced a total senescence of the canopy whatever the CO2 treatment. The interactive effect of elevated CO2 with the drought treatment was significant at the onset of the drought and particularly large in the fall after the recovery period, with a net photosynthesis twice as high in the (extreme climate+ CO2) treatment compared to the control. Integrated over the year, elevated CO2 totally buffered the impact of the extreme climatic event on net CO2 exchanges. These results are discussed together with the evapotranspiration and soil humidity data.

  6. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D

    2011-01-01

    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  7. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  8. Instant Lucene.NET

    CERN Document Server

    Heydt, Michael

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A step-by-step guide that helps you to index, search, and retrieve unstructured data with the help of Lucene.NET.Instant Lucene.NET How-to is essential for developers new to Lucene and Lucene.NET who are looking to get an immediate foundational understanding of how to use the library in their application. It's assumed you have programming experience in C# already, but not that you have experience with search techniques such as information retrieval theory (although there will be a l

  9. In situ measurement of CO2 and water vapour isotopic compositions at a forest site using mid-infrared laser absorption spectroscopy.

    Science.gov (United States)

    Wada, Ryuichi; Matsumi, Yutaka; Takanashi, Satoru; Nakai, Yuichiro; Nakayama, Tomoki; Ouchi, Mai; Hiyama, Tetsuya; Fujiyoshi, Yasushi; Nakano, Takashi; Kurita, Naoyuki; Muramoto, Kenichiro; Kodama, Naomi

    2016-12-01

    We conducted continuous, high time-resolution measurements of CO2 and water vapour isotopologues ((16)O(12)C(16)O, (16)O(13)C(16)O and (18)O(12)C(16)O for CO2, and H2(18)O for water vapour) in a red pine forest at the foot of Mt. Fuji for 9 days from the end of July 2010 using in situ absorption laser spectroscopy. The δ(18)O values in water vapour were estimated using the δ(2)H-δ(18)O relationship. At a scale of several days, the temporal variations in δ(18)O-CO2 and δ(18)O-H2O are similar. The orders of the daily Keeling plots are almost identical. A possible reason for the similar behaviour of δ(18)O-CO2 and δ(18)O-H2O is considered to be that the air masses with different water vapour isotopic ratios moved into the forest, and changed the atmosphere of the forest. A significant correlation was observed between δ(18)O-CO2 and δ(13)C-CO2 values at nighttime (r(2)≈0.9) due to mixing between soil (and/or leaf) respiration and tropospheric CO2. The ratios of the discrimination coefficients (Δa/Δ) for oxygen (Δa) and carbon (Δ) isotopes during photosynthesis were estimated in the range of 0.7-1.2 from the daytime correlations between δ(18)O-CO2 and δ(13)C-CO2 values.

  10. Cloud point extraction-flame atomic absorption spectrometry for pre-concentration and determination of trace amounts of silver ions in water samples.

    Science.gov (United States)

    Yang, Xiupei; Jia, Zhihui; Yang, Xiaocui; Li, Gu; Liao, Xiangjun

    2017-03-01

    A cloud point extraction (CPE) method was used as a pre-concentration strategy prior to the determination of trace levels of silver in water by flame atomic absorption spectrometry (FAAS) The pre-concentration is based on the clouding phenomena of non-ionic surfactant, triton X-114, with Ag (I)/diethyldithiocarbamate (DDTC) complexes in which the latter is soluble in a micellar phase composed by the former. When the temperature increases above its cloud point, the Ag (I)/DDTC complexes are extracted into the surfactant-rich phase. The factors affecting the extraction efficiency including pH of the aqueous solution, concentration of the DDTC, amount of the surfactant, incubation temperature and time were investigated and optimized. Under the optimal experimental conditions, no interference was observed for the determination of 100 ng·mL-1 Ag+ in the presence of various cations below their maximum concentrations allowed in this method, for instance, 50 μg·mL-1 for both Zn2+ and Cu2+, 80 μg·mL-1 for Pb2+, 1000 μg·mL-1 for Mn2+, and 100 μg·mL-1 for both Cd2+ and Ni2+. The calibration curve was linear in the range of 1-500 ng·mL-1 with a limit of detection (LOD) at 0.3 ng·mL-1. The developed method was successfully applied for the determination of trace levels of silver in water samples such as river water and tap water.

  11. Cloud point extraction-flame atomic absorption spectrometry for pre-concentration and determination of trace amounts of silver ions in water samples

    Directory of Open Access Journals (Sweden)

    Xiupei Yang

    2017-03-01

    Full Text Available A cloud point extraction (CPE method was used as a pre-concentration strategy prior to the determination of trace levels of silver in water by flame atomic absorption spectrometry (FAAS The pre-concentration is based on the clouding phenomena of non-ionic surfactant, triton X-114, with Ag (I/diethyldithiocarbamate (DDTC complexes in which the latter is soluble in a micellar phase composed by the former. When the temperature increases above its cloud point, the Ag (I/DDTC complexes are extracted into the surfactant-rich phase. The factors affecting the extraction efficiency including pH of the aqueous solution, concentration of the DDTC, amount of the surfactant, incubation temperature and time were investigated and optimized. Under the optimal experimental conditions, no interference was observed for the determination of 100 ng·mL−1 Ag+ in the presence of various cations below their maximum concentrations allowed in this method, for instance, 50 μg·mL−1 for both Zn2+ and Cu2+, 80 μg·mL−1 for Pb2+, 1000 μg·mL−1 for Mn2+, and 100 μg·mL−1 for both Cd2+ and Ni2+. The calibration curve was linear in the range of 1–500 ng·mL−1 with a limit of detection (LOD at 0.3 ng·mL−1. The developed method was successfully applied for the determination of trace levels of silver in water samples such as river water and tap water.

  12. Graphite furnace atomic absorption spectrometric detection of vanadium in water and food samples after solid phase extraction on multiwalled carbon nanotubes.

    Science.gov (United States)

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Gul Kazi, Tasneem; Soylak, Mustafa

    2013-11-15

    Vanadium(V) ions as 8-hydroxyquinoline chelates were loaded on multiwalled carbon nanotubes (MWNTs) in a mini chromatographic column. Vanadium was determined by graphite furnace atomic absorption spectrometry (GFAAS). Various analytical parameters including pH of the working solutions, amounts of 8-hydroxyquinoline, eluent type, sample volume, and flow rates were investigated. The effects of matrix ions and some transition metals were also studied. The column can be reused 250 times without any loss in its sorption properties. The preconcentration factor was found as 100. Detection limit (3 s) and limit of quantification (10 s) for the vanadium in the optimal conditions were observed to be 0.012 µg L(-1) and 0.040 μg L(-1), respectively. The capacity of adsorption was 9.6 mg g(-1). Relative standard deviation (RSD) was found to be 5%. The validation of the method was confirmed by using NIST SRM 1515 Apple leaves, NIST SRM 1570a Spinach leaves and GBW 07605 Tea certified reference materials. The procedure was applied to the determination of vanadium in tap water and bottled drinking water samples. The procedure was also successfully applied to microwave digested food samples including black tea, coffee, tomato, cabbage, zucchini, apple and chicken samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter.

    Science.gov (United States)

    Wulfmeyer, V

    1998-06-20

    An all-solid-state laser transmitter for a water-vapor and temperature differential absorption lidar (DIAL) system in the near infrared is introduced. The laser system is based on a master-slave configuration. As the slave laser a Q-switched unidirectional alexandrite ring laser is used, which is injection seeded by the master laser, a cw Ti:sapphire ring laser. It is demonstrated that this laser system has, what is to my knowledge, the highest frequency stability (15 MHz rms), narrowest bandwidth (99.99%) of all the laser transmitters developed to date in the near infrared. These specifications fulfill the requirements for water-vapor measurements with an error caused by laser properties of specifications are maintained during long-term operation in the field. The single-mode operation of this laser system makes the narrow-band detection of the DIAL backscatter signal possible. Thus the system has the potential to be used for accurate temperature measurements and for simultaneous DIAL and Doppler wind measurements.

  14. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Martinis, Estefania M.; Berton, Paula [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Olsina, Roberto A. [INQUISAL-CONICET, Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Altamirano, Jorgelina C. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@lab.cricyt.edu.ar [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 {mu}l of 9.0 mol L{sup -1} hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L{sup -1} and the relative standard deviation (RSD) for 10 replicates at 1 {mu}g L{sup -1} Hg{sup 2+} was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  15. Determination of Lead in Water Samples Using a New Vortex-Assisted, Surfactant-Enhanced Emulsification Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    Peng, Guilong; He, Qiang; Lu, Ying; Mmereki, Daniel; Pan, Weiliang; Tang, Xiaohui; Zhou, Guangming; Mao, Yufeng; Su, Xaioxuan

    2016-04-01

    A low toxic solvent-based vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction (LT-VSLLME) combined with graphite furnace atomic absorption spectrometry was developed for the extraction and determination of lead (Pb) in water samples. In the LT-VSLLME method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Meanwhile, the addition of a surfactant, which acted as an emulsifier, could enhance the speed of the mass-transfer from aqueous samples to the extraction solvent. The influences of analytical parameters, including extraction solvent type and its volume, surfactant type and its volume, pH, concentration of chelating agent, salt effect and extraction time were investigated. Under the optimized conditions, a good relative standard deviation of 3.69% at 10 ng L(-1) was obtained. The calibration graph showed a linear pattern in the ranges of 5-30 ngL(-1), with a limit of detection of 0.76 ng L(-1). The linearity was obtained by five points in the concentration range of 5-30 ngL(-1). The enrichment factor was 320. The procedure was applied to wastewater and river water, and the accuracy was assessed through the analysis of the recovery experiments.

  16. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  17. PhysioNet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  18. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R

    2018-01-01

    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  19. TideNet

    Science.gov (United States)

    2015-10-30

    query tide data sources in a desired geographic region of USA and its territories (Figure 1). Users can select a tide data source through the Google Map ...select data sources according to the desired geographic region. It uses the Google Map interface to display data from different sources. Recent...Coastal Inlets Research Program TideNet The TideNet is a web-based Graphical User Interface (GUI) that provides users with GIS mapping tools to

  20. Building Neural Net Software

    OpenAIRE

    Neto, João Pedro; Costa, José Félix

    1999-01-01

    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  1. Interaction Nets in Russian

    OpenAIRE

    Salikhmetov, Anton

    2013-01-01

    Draft translation to Russian of Chapter 7, Interaction-Based Models of Computation, from Models of Computation: An Introduction to Computability Theory by Maribel Fernandez. "In this chapter, we study interaction nets, a model of computation that can be seen as a representative of a class of models based on the notion of 'computation as interaction'. Interaction nets are a graphical model of computation devised by Yves Lafont in 1990 as a generalisation of the proof structures of linear logic...

  2. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  3. A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry.

    Science.gov (United States)

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2015-05-01

    A relatively rapid, accurate and precise solid phase extraction method is presented for the determination of cadmium(II) and lead(II) in various food and water samples. Quantitation is carried out by flame atomic absorption spectrometry (FAAS). The method is based on the retention of the trace metal ions on Dowex Marathon C, a strong acid cation exchange resin. Some important parameters affecting the analytical performance of the method such as pH, flow rate and volume of the sample solution; type, concentration, volume, flow rate of the eluent; and matrix effects on the retention of the metal ions were investigated. Common coexisting ions did not interfere on the separation and determination of the analytes. The detection limits (3 σb) for Cd(II) and Pb(II) were found as 0.13 and 0.18 μg L(-1), respectively, while the limit of quantification values (10 σb) were computed as 0.43 and 0.60 μg L(-1) for the same sequence of the analytes. The precision (as relative standard deviation was lower than 4% at 5 μg L(-1) Cd(II) and 10 μg L(-1) Pb(II) levels, and the preconcentration factor was found to be 250. The accuracy of the proposed procedure was verified by analysing the certified reference materials, SPS-WW2 Batch 108 wastewater level 2 and INCT-TL-1 tea leaves, with the satisfactory results. In addition, for the accuracy of the method the recovery studies (⩾ 95%) were carried out. The method was applied to the determination of the analytes in the various natural waters (lake water, tap water, waste water with boric acid, waste water with H2SO4) and food samples (pomegranate flower, organic pear, radish leaf, lamb meat, etc.), and good results were obtained. While the food samples almost do not contain cadmium, they have included lead at low levels of 0.13-1.12 μg g(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Absorption of silicon from artesian aquifer water and its impact on bone health in postmenopausal women: a 12 week pilot study

    Directory of Open Access Journals (Sweden)

    Lee Tsz

    2010-10-01

    Full Text Available Abstract Background Decreased bone mineral density and osteoporosis in postmenopausal women represents a growing source of physical limitations and financial concerns in our aging population. While appropriate medical treatments such as bisphosphonate drugs and hormone replacement therapy exist, they are associated with serious side effects such as osteonecrosis of the jaw or increased cardiovascular risk. In addition to calcium and vitamin D supplementation, previous studies have demonstrated a beneficial effect of dietary silicon on bone health. This study evaluated the absorption of silicon from bottled artesian aquifer water and its effect on markers of bone metabolism. Methods Seventeen postmenopausal women with low bone mass, but without osteopenia or osteoporosis as determined by dual x-ray absorptiometry (DEXA were randomized to drink one liter daily of either purified water of low-silicon content (PW or silicon-rich artesian aquifer water (SW (86 mg/L silica for 12 weeks. Urinary silicon and serum markers of bone metabolism were measured at baseline and after 12 weeks and analyzed with two-sided t-tests with p Results The urinary silicon level increased significantly from 0.016 ± 0.010 mg/mg creatinine at baseline to 0.037 ± 0.014 mg/mg creatinine at week 12 in the SW group (p = 0.003, but there was no change for the PW group (0.010 ± 0.004 mg/mg creatinine at baseline vs. 0.009 ± 0.006 mg/mg creatinine at week 12, p = 0.679. The urinary silicon for the SW group was significantly higher in the silicon-rich water group compared to the purified water group (p Conclusions These findings indicate that bottled water from artesian aquifers is a safe and effective way of providing easily absorbed dietary silicon to the body. Although the silicon did not affect bone turnover markers in the short-term, the mineral's potential as an alternative prevention or treatment to drug therapy for osteoporosis warrants further longer-term investigation

  5. The effect of cutting on carbon dioxide absorption and carbohydrate ...

    African Journals Online (AJOL)

    grass) and Osteospermun sinuatum (Karoo-bush) plants during the flag leaf and flower bud stages respectively resulted in a sharp decline in net carbon dioxide absorption. As new photosynthetic material was produced the total carbon ...

  6. Net Zero Ft. Carson: making a greener Army base

    Science.gov (United States)

    The US Army Net Zero program seeks to reduce the energy, water, and waste footprint of bases. Seventeen pilot bases aim to achieve 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases are pursuing Net Zero in a single secto...

  7. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: mechanical restoration and healing process monitored by water absorption.

    Directory of Open Access Journals (Sweden)

    Wenting Li

    Full Text Available Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks.

  8. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mirabi, Ali; Dalirandeh, Zeinab [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Rad, Ali Shokuhi, E-mail: a.shokuhi@qaemshahriau.ac.ir [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2015-05-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe{sub 3}O{sub 4} as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L{sup −1} HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml{sup −1} and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results. - Highlights: • MNPs method is economical, simple, rapid and sensitive for trace analysis of Cd. • High preconcentration factor was obtained easily through this method. • A detection limit at ng mL{sup −1} level was achieved with 100.0 mL of sample. • This method provides good repeatability and extraction efficiency in a short time.

  9. Self-Healing Efficiency of Cementitious Materials Containing Microcapsules Filled with Healing Adhesive: Mechanical Restoration and Healing Process Monitored by Water Absorption

    Science.gov (United States)

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong

    2013-01-01

    Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks. PMID:24312328

  10. Vegetation species composition and canopy architecture information expressed in leaf water absorption measured in the 1000 nm and 2200 spectral region by an imaging spectrometer

    Science.gov (United States)

    Green, Robert O.; Roberts, Dar A.

    1995-01-01

    Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring, and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local to regional and even synoptic scales. Classical approaches rely on vegetation indices such as the normalized difference vegetation index (NDVI) to estimate biophysical parameters such as leaf area index or intercepted photosynthetically active radiation (IPAR). Another approach is to apply a variety of classification schemes to map vegetation and thus extrapolate fine-scale information about specific sites to larger areas of similar composition. Imaging spectrometry provides additional information that is not obtainable through broad-band sensors and that may provide improved inputs both to direct biophysical estimates as well as classification schemes. Some of this capability has been demonstrated through improved discrimination of vegetation, estimates of canopy biochemistry, and liquid water estimates from vegetation. We investigate further the potential of leaf water absorption estimated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data as a means for discriminating vegetation types and deriving canopy architectural information. We expand our analysis to incorporate liquid water estimates from two spectral regions, the 1000-nm region and the 2200-nm region. The study was conducted in the vicinity of Jasper Ridge, California, which is located on the San Francisco peninsula to the west of the Stanford University campus. AVIRIS data were acquired over Jasper Ridge, CA, on June 2, 1992, at 19:31 UTC. Spectra from three sites in this image were analyzed. These data are from an area of healthy grass, oak woodland, and redwood forest, respectively. For these analyses, the AVIRIS-measured upwelling radiance spectra for the entire Jasper

  11. Estimating absorption coefficients of colored dissolved organic matter (CDOM using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space

    Directory of Open Access Journals (Sweden)

    A. Matsuoka

    2013-02-01

    Full Text Available A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM, has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM was developed for southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows the separation of colored detrital matter (CDM into CDOM and non-algal particles (NAP through the determination of NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, which were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and coastal waters, respectively. A previous paper (Matsuoka et al., 2012 showed that dissolved organic carbon (DOC concentrations were tightly correlated with CDOM absorption in our study area (r2 = 0.97. By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  12. Self-absorption alpha particle factor in water: interest in the monitoring of specific military sites; Validation du facteur de correction de l'auto absorption des particules alpha dans une eau: application a la surveillance de sites specifiques de la defense

    Energy Technology Data Exchange (ETDEWEB)

    Cazoulat, A.; Lecompte, Y.; Bohand, S.; Gerasimo, P. [Bureau de Radioprotection Medicale, Service de Protection Radiologique des Armees, Lab. de Controle Radiotoxicologique, 92 - Clamart (France)

    2007-01-15

    Self-absorption alpha particle factor validation in water: Interest in the monitoring of specific military sites. The population internal intake prevention by radionuclides present in water needs to monitor the radioactive Level of this water. The French public health legislation introduces four radiological parameters for monitoring water, such as the gross alpha radioactivity. Regarding the alpha particle characteristics, a self-absorption factor has to be established beforehand, not to underestimate the real alpha radioactivity in water samples. The aim of this paper is to describe the procedure used by the laboratory of the French army radioprotection service to determine this f factor, which depends on the water residue mass m after evaporation. The relation is f = 0.0253 m + 1.2813. This formula can be employed for such waters used in this experiment and for masses between 0 and 100 mg. The uncertainty associated is about 11% (k = 2). Some water monitoring examples are given. It is specially the case of depleted uranium shells experiment centres, localized in Gramat and Bourges. (authors)

  13. Determination of total chromium at ultratrace levels in water and soil samples by coprecipitation microsample injection system flame atomic absorption spectrometry.

    Science.gov (United States)

    Baig, Jameel Ahmed; Elci, Latif; Khan, Muhammad Irfan; Kazi, Tasneem Gul

    2014-01-01

    A simple, robust, and novel analytical procedure was developed for determination of total chromium (Cr) by carrier element coprecipitation (CECP) coupled microsample injection system with flame atomic absorption spectrometry. For this method, Cr(III) was oxidized by Ce(SO4)2 in acidic media, and the resulting solution formed coprecipitates with ammonium pyrrolidine dithiocarbamate in the presence of Ce(III). The effective parameters of the developed method have been optimized and studied in detail. The LOD and enrichment factor of CECP were 2.13 μg/L and 100 ± 2.8, respectively, with 40 mL initial volumes. The RSD values (n = 6) were 96%). The accuracy of total Cr by CECP after microwave acid digestion was checked by using a certified reference material (GBW 07309 Stream Sediment). The difference between the found and certified values was not significant (P > 0.05). The proposed method was successfully applied to natural drinking water, industrial effluent wastewater, and the exchangeable fraction of garden soil from Denizli, Turkey.

  14. Speciation of Mn(II), Mn(VII) and total manganese in water and food samples by coprecipitation-atomic absorption spectrometry combination.

    Science.gov (United States)

    Citak, Demirhan; Tuzen, Mustafa; Soylak, Mustafa

    2010-01-15

    A speciation procedure based on the coprecipitation of manganese(II) with zirconium(IV) hydroxide has been developed for the investigation of levels of manganese species. The determination of manganese levels was performed by flame atomic absorption spectrometry (FAAS). Total manganese was determined after the reduction of Mn(VII) to Mn(II) by ascorbic acid. The analytical parameters including pH, amount of zirconium(IV), sample volume, etc., were investigated for the quantitative recoveries of manganese(II). The effects of matrix ions were also examined. The recoveries for manganese(II) were in the range of 95-98%. Preconcentration factor was calculated as 50. The detection limit for the analyte ions based on 3 sigma (n=21) was 0.75 microg L(-1) for Mn(II). The relative standard deviation was found to be lower than 7%. The validation of the presented procedure was performed by analysis of certified reference material having different matrices, NIST SRM 1515 (Apple Leaves) and NIST SRM 1568a (Rice Flour). The procedure was successfully applied to natural waters and food samples.

  15. The Effects of CaCO3 Coated Wood Free Paper Usage as Filler on Water Absorption, Mechanical and Thermal Properties of Cellulose-High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Emrah PEŞMAN

    2016-11-01

    Full Text Available In this study some physical, mechanical and thermal characteristics of high density polyethylene (HDPE and CaCO3 coated/pigmented wood free paper fiber composites were investigated. The fillers used in this study were uncoated cellulose, 5.8 %, 11.5 %, 16.5 % and 23.1 % CaCO3 coated wood free paper fibers. Each filler type was mixed with HDPE at 40% by weight fiber loading. In this case, the ratio of CaCO3 in plastic composites were calculated as 0 %, 2.3 %, 4.6 %, 6.6 % and 9.2 % respectively. Increased CaCO3 ratio improved the moisture resistant, flexural and tensile strength of cellulose-HDPE composites. However, the density of the cellulose-HDPE composites increased with CaCO3 addition. Energy Dispersive Spectroscopy on Scanning Electron Microscope analysis demonstrated the uniform distribution of CaCO3 and cellulose fiber in plastic matrix. In addition, the thermal properties of fiber plastic composites were investigated. The results of Differential scanning calorimetry analysis revealed that the crystallinity of the samples decreased with increasing CaCO3 content. Consequently, this work showed that CaCO3 coated waste paper fibers could be used as reinforcing filler against water absorption in thermoplastic matrix.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.14222

  16. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Abdollahi Atousa

    2014-07-01

    Full Text Available A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap. The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS. The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically investigated. The factors influencing, the complex formation and extraction of DLLME-SFO method such as type and volume of extraction and disperser solvents, pH, concentration of salt, centrifuging time and concentration of the chelating agent were optimized. The method was successfully applied to the determination of mercury in drinking and natural water and satisfactory relative recoveries (95–105% were achieved. The proposed procedure was based on very low consumption of organic solvents. The other benefits of the system were sensitive, simple, friendly to the environment, rejection of matrix constituent, low cost, the time consuming and high enrichment factor.

  17. Thermoresponsive Poly(Ionic Liquid)s in Aqueous Salt Solutions: Salting-Out Effect on Their Phase Behavior and Water Absorption/Desorption Properties.

    Science.gov (United States)

    Okafuji, Akiyoshi; Kohno, Yuki; Ohno, Hiroyuki

    2016-07-01

    Here, a thermoresponsive phase behavior of polymerized ionic liquids (PILs) composed of poly([tri-n-alkyl(vinylbenzyl)phosphonium]chloride) (poly([Pnnn VB ]Cl) is reported, where n (the number of carbon atoms of an alkyl chain) = 4, 5, or 6 after mixing with aqueous sodium chloride solutions. Both monomeric [P555VB ]Cl and the resulting poly([P555VB ]Cl) linear homopolymer show a lower critical solution temperature (LCST)-type phase behavior in aq. NaCl solutions. The phase transition temperature of the PIL shifts to lower value by increasing concentration of NaCl. Also the swelling degree of cross-linked poly([P555VB ]Cl) gel decreases by increasing NaCl concentration, clearly suggesting the "salting-out" effect of NaCl results in a significant dehydration of the poly([P555VB ]Cl) gel. The absorbed water in the PIL gel is desorbed by moderate heating via the LCST behavior, and the absolute absorption/desorption amount is improved by copolymerization of [P555VB ]Cl with more hydrophilic [P444VB ]Cl monomer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Green Preconcentration Method for Determination of Cobalt and Lead in Fresh Surface and Waste Water Samples Prior to Flame Atomic Absorption Spectrometry

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem Gul; Shah, Faheem; Afridi, Hassan Imran; Khan, Sumaira; Arian, Sadaf Sadia; Brahman, Kapil Dev

    2012-01-01

    Cloud point extraction (CPE) has been used for the preconcentration and simultaneous determination of cobalt (Co) and lead (Pb) in fresh and wastewater samples. The extraction of analytes from aqueous samples was performed in the presence of 8-hydroxyquinoline (oxine) as a chelating agent and Triton X-114 as a nonionic surfactant. Experiments were conducted to assess the effect of different chemical variables such as pH, amounts of reagents (oxine and Triton X-114), temperature, incubation time, and sample volume. After phase separation, based on the cloud point, the surfactant-rich phase was diluted with acidic ethanol prior to its analysis by the flame atomic absorption spectrometry (FAAS). The enhancement factors 70 and 50 with detection limits of 0.26 μg L−1 and 0.44 μg L−1 were obtained for Co and Pb, respectively. In order to validate the developed method, a certified reference material (SRM 1643e) was analyzed and the determined values obtained were in a good agreement with the certified values. The proposed method was applied successfully to the determination of Co and Pb in a fresh surface and waste water sample. PMID:23227429

  19. On-line preconcentration of ultra-trace thallium(I in water samples with titanium dioxide nanoparticles and determination by graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Saeid Asadpour

    2016-11-01

    Full Text Available A new method has been developed for the determination of Tl(I based on simultaneous sorption and preconcentration with a microcolumn packed with TiO2 nanoparticle with a high specific surface area prepared by Sonochemical synthesis prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS. The optimum experimental parameters for preconcentration of thallium, such as elution condition, pH, and sample volume and flow rate have been investigated. Tl(I can be quantitatively retained by TiO2 nanoparticles at pH 9.0, then eluted completely with 1.0 mol L−1 HCl. The adsorption capacity of TiO2 nanoparticles for Tl(I was found to be 25 mg g−1. Also detection limit, precision (RSD, n = 8 and enrichment factor for Tl(I were 87 ng L−1, 6.4% and 100, respectively. The method has been applied for the determination of trace amounts of Tl(I in some environmental water samples with satisfactory results.

  20. Influences of mesoporous zinc-calcium silicate on water absorption, degradability, antibacterial efficacy, hemostatic performances and cell viability to microporous starch based hemostat.

    Science.gov (United States)

    Hou, Yu; Xia, Yan; Pan, Yongkang; Tang, Songchao; Sun, Xiaofei; Xie, Yang; Guo, Han; Wei, Jie

    2017-07-01

    Efficacious hemostatic agents have significant potential application in visceral organ or large vessel arterial injure. In this study, mesoporous zinc-calcium silicate (m-ZCS) was synthesized, and microporous starch (MS) based hemostatic agents of m-ZCS/MS composites for hemorrhage control was fabricated. The results showed that the incorporation of m-ZCS into MS significantly enhanced the water absorption and degradability of the composites, which were dependent on the m-ZCS content. Moreover, the composites with antibacterial property could inhibit the growth of Escherichia coli (E. coli) and the antibacterial ratios increased with the m-ZCS content. The in vitro coagulation evaluation by using activated partial thromboplastin time (APTT) and prothrombin time (PT) revealed that the composites significantly activated the intrinsic and extrinsic pathway of coagulation cascade. In addition, for the animal model of rabbits in ear vein, skin, arterial and liver injuries, the hemostatic time of the composites obviously reduced with the increase of m-ZSC content, in which the composite with 15wt% m-ZCS content (15mZSC) showed remarkable efficacy on bleeding control. The composites could promote the viability of L929 cells, indicating no cytotoxicity of the composites. The results suggested that the m-ZCS/MS composites with excellent hemostatic and antibacterial properties might be a candidate for controlling bleeding and infection. Copyright © 2017. Published by Elsevier B.V.