Sample records for net transpiration water

  1. Comparison of corn transpiration, eddy covariance, and soil water loss (United States)

    Stem flow gages are used to estimate plant transpiration, but only a few studies compare transpiration with other measures of soil water loss. The purpose of this study was to compare transpiration from stem flow measurements with soil water changes estimated by daily neutron probe readings. Monitor...

  2. A method to determine plant water source using transpired water (United States)

    Menchaca, L. B.; Smith, B. M.; Connolly, J.; Conrad, M.; Emmett, B.


    A method to determine the stable isotope ratio of a plant's water source using the plant's transpired water is proposed as an alternative to standard xylem extraction methods. The method consists of periodically sampling transpired waters from shoots or leaves enclosed in sealed, transparent bags which create a saturated environment, preclude further evaporation and allow the progressive mixing of evaporated transpired water and un-evaporated xylem water. The method was applied on trees and shrubs coexisting in a non-irrigated area where stable isotope ratios of local environmental waters are well characterized. The results show Eucalyptus globulus (tree) and Genista monspessulana (shrub) using water sources of different isotopic ratios congruent with groundwater and soil water respectively. In addition, tritium concentrations indicate that pine trees (Pinus sylvestris) switch water source from soil water in the winter to groundwater in the summer. The method proposed is particularly useful in remote or protected areas and in large scale studies related to water management, environmental compliance and surveillance, because it eliminates the need for destructive sampling and greatly reduces costs associated with laboratory extraction of xylem waters from plant tissues for isotopic analyses.

  3. Transpiration and biomass production of the bioenergy crop Giant Knotweed Igniscum under various supplies of water and nutrients

    Directory of Open Access Journals (Sweden)

    Mantovani Dario


    Full Text Available Soil water availability, nutrient supply and climatic conditions are key factors for plant production. For a sustainable integration of bioenergy plants into agricultural systems, detailed studies on their water uses and growth performances are needed. The new bioenergy plant Igniscum Candy is a cultivar of the Sakhalin Knotweed (Fallopia sachalinensis, which is characterized by a high annual biomass production. For the determination of transpiration-yield relations at the whole plant level we used wicked lysimeters at multiple irrigation levels associated with the soil water availability (25, 35, 70, 100% and nitrogen fertilization (0, 50, 100, 150 kg N ha-1. Leaf transpiration and net photosynthesis were determined with a portable minicuvette system. The maximum mean transpiration rate was 10.6 mmol m-2 s-1 for well-watered plants, while the mean net photosynthesis was 9.1 μmol m-2 s-1. The cumulative transpiration of the plants during the growing seasons varied between 49 l (drought stressed and 141 l (well-watered per plant. The calculated transpiration coefficient for Fallopia over all of the treatments applied was 485.6 l kg-1. The transpiration-yield relation of Igniscum is comparable to rye and barley. Its growth performance making Fallopia a potentially good second generation bioenergy crop.



    Cho, Tosio; Eguchi, Hiromi; Kuroda, Masaharu; Tanaka, Akira; Koutaki, Masahiro; Ng, Ah Lek; Matsui, Tsuyoshi


    In an attempt to examine the effect of soil water potential (pF) on transpiration rate, leaf temperature of cucumber plants was measured under various conditions of soil water potential, and transpiration rate was calculated from heat balance of the leaf. Transpiration rate decreased with reduction in soil water potential; transpiration rate dropped at soil water potentials lower than pF 3.0. This fact suggests that the reduction in soil water potential restricts water uptake in roots and cau...

  5. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M


    Full Text Available Is it possible to develop a building that uses a net zero amount of water? In recent years it has become evident that it is possible to have buildings that use a net zero amount of electricity. This is possible when the building is taken off...

  6. Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees. (United States)

    Frederick C. Meinzer; Shelley A. James; Guillermo. Goldstein


    In large trees the daily onset of transpiration causes water to be withdrawn from internal storage compartments resulting in lags between changes in transpiration and sap flow at the base of the tree. We measured time courses of sap flow, hydraulic resistance, plant water potential and stomatal resistance in co-occuring tropical forest canopy trees with trunk diameters...

  7. Water stable isotope shifts of surface waters as proxies to quantify evaporation, transpiration and carbon uptake on catchment scales (United States)

    Barth, Johannes; van Geldern, Robert; Veizer, Jan; Karim, Ajaz; Freitag, Heiko; Fowlwer, Hayley


    Comparison of water stable isotopes of rivers to those of precipitation enables separation of evaporation from transpiration on the catchment scale. The method exploits isotope ratio changes that are caused exclusively by evaporation over longer time periods of at least one hydrological year. When interception is quantified by mapping plant types in catchments, the amount of water lost by transpiration can be determined. When in turn pairing transpiration with the water use efficiency (WUE i.e. water loss by transpiration per uptake of CO2) and subtracting heterotrophic soil respiration fluxes (Rh), catchment-wide carbon balances can be established. This method was applied to several regions including the Great Lakes and the Clyde River Catchments ...(Barth, et al., 2007, Karim, et al., 2008). In these studies evaporation loss was 24 % and 1.3 % and transpiration loss was 47 % and 22 % when compared to incoming precipitation for the Great Lakes and the Clyde Catchment, respectively. Applying WUE values for typical plant covers and using area-typical Rh values led to estimates of CO2 uptake of 251 g C m-2 a-1 for the Great Lakes Catchment and CO2 loss of 21 g C m2 a-1 for the Clyde Catchment. These discrepancies are most likely due to different vegetation covers. The method applies to scales of several thousand km2 and has good potential for improvement via calibration on smaller scales. This can for instance be achieved by separate treatment of sub-catchments with more detailed mapping of interception as a major unknown. These previous studies have shown that better uncertainty analyses are necessary in order to estimate errors in water and carbon balances. The stable isotope method is also a good basis for comparison to other landscape carbon balances for instance by eddy covariance techniques. This independent method and its up-scaling combined with the stable isotope and area-integrating methods can provide cross validation of large-scale carbon budgets

  8. Effects of altitude on transpiration, leaf vapor pressure deficit and leaf water potential in oriental beech

    Directory of Open Access Journals (Sweden)

    Fatih Bayraktar


    Full Text Available This study was designed to determine the effect of altitude on transpiration, leaf vapor pressure deficit and leaf water potential in oriental beech (Fagus orientalis Lipsky. The study area was located in Ortaköy, Artvin, and the experimental area had the same soil structure and aspect. The study showed that transpiration and leaf vapor pressure deficit increased but leaf water potential decreased by altitudinal gradient

  9. Transpiration by trees under seasonal water logging and drought in monsoon central Cambodia (United States)

    Miyazawa, Y.; Tateishi, M.; Kajisa, T.; Ma, V.; Heng, S.; Kumagai, T.; Mizoue, N.


    Cambodia is situated in the center of Indochina Peninsula and experiences severe drought for 5 months of dry season and subsequent rainy season. Around the Tonlesap Lake where both natural and secondary forests exist without intensive destruction by human activity, forest hydrology is characterized by seasonal water logging in mid rainy season. Tree- and stand-scale transpiration is thought to be influenced by the changing soil water conditions and trees' site-specific adaptation to the environment, but less is measured about transpiration and leaf ecophysiological traits in this region. The objectives of this study is to reveal the ecophysiology of the two native (Dipterocarpus obtusifolius and Shorea roxburghii) and two exotic species (Acacia auriculiformis and Eucalyptus camaldulensis) and to detect the effects of soil water conditions on day to week scale transpiration in mid rainy and dry season. Seasonal leaf-level photosynthesis measurements suggested that photosynthetic capacity (Vcmax25) showed no clear seasonal change in each species without clear interspecific variation. Two native species had stomatal control in response to the environment different from previous studies and showed stomatal conductance higher than most woody species in other seasonal tropical forests, suggesting the species- and site-specific adaptation to the easy access to the ground water. Sap flow rate per leaf area was expressed in two parameters: measured transpiration rate based on the continuous sap flow measurements (Esap) and modeled transpiration rate (Emod) using a multilayer model based on the measured data of atmospheric environments, radiation and the leaf ecophysiological traits. Esap was lower in rainy season than those in dry season, with short but pronounced drop near the end of the dry season, although Emod was higher in rainy season than in dry season. In dry season, Emod well fit the diurnal and day to day trend of Esap, suggesting that soil drought did not limit

  10. A whole-plant hydraulic capacitance approach to modeling distributed root water uptake and actual transpiration (United States)

    Vogel, Tomas; Votrubova, Jana; Dohnal, Michal; Dusek, Jaromir


    In the present study, we propose a simple transpiration stream model, based on the concept of whole-plant hydraulic capacitance. The suggested algorithm is implemented in a one-dimensional soil water flow model involving vertically distributed macroscopic root water uptake. The proposed transient plant water storage approach is compared with the more conventionally used quasi- steady-state approach. Both approaches are used to simulate soil water flow and diurnal variations of transpiration at a forest site covered with Norway spruce. The key parameter of the transient storage approach - plant hydraulic capacitance - is estimated by comparing the variations of potential transpiration rate, derived from micrometeorological measurements, with observed sap flow intensities. The application of the proposed model leads to improved predictions of root water uptake and actual transpiration rates. The algorithm can be easily implemented into existing soil water flow models and used to simulate transpiration stream responses to varying atmospheric and soil moisture conditions including isohydric and anisohydric plant responses to drought stress.

  11. Estimation of Transpiration and Water Use Efficiency Using Satellite and Field Observations (United States)

    Choudhury, Bhaskar J.; Quick, B. E.


    Structure and function of terrestrial plant communities bring about intimate relations between water, energy, and carbon exchange between land surface and atmosphere. Total evaporation, which is the sum of transpiration, soil evaporation and evaporation of intercepted water, couples water and energy balance equations. The rate of transpiration, which is the major fraction of total evaporation over most of the terrestrial land surface, is linked to the rate of carbon accumulation because functioning of stomata is optimized by both of these processes. Thus, quantifying the spatial and temporal variations of the transpiration efficiency (which is defined as the ratio of the rate of carbon accumulation and transpiration), and water use efficiency (defined as the ratio of the rate of carbon accumulation and total evaporation), and evaluation of modeling results against observations, are of significant importance in developing a better understanding of land surface processes. An approach has been developed for quantifying spatial and temporal variations of transpiration, and water-use efficiency based on biophysical process-based models, satellite and field observations. Calculations have been done using concurrent meteorological data derived from satellite observations and four dimensional data assimilation for four consecutive years (1987-1990) over an agricultural area in the Northern Great Plains of the US, and compared with field observations within and outside the study area. The paper provides substantive new information about interannual variation, particularly the effect of drought, on the efficiency values at a regional scale.

  12. Coupling gross primary production and transpiration for a consistent estimate of canopy water use efficiency (United States)

    Yebra, Marta; van Dijk, Albert


    Water use efficiency (WUE, the amount of transpiration or evapotranspiration per unit gross (GPP) or net CO2 uptake) is key in all areas of plant production and forest management applications. Therefore, mutually consistent estimates of GPP and transpiration are needed to analysed WUE without introducing any artefacts that might arise by combining independently derived GPP and ET estimates. GPP and transpiration are physiologically linked at ecosystem level by the canopy conductance (Gc). Estimates of Gc can be obtained by scaling stomatal conductance (Kelliher et al. 1995) or inferred from ecosystem level measurements of gas exchange (Baldocchi et al., 2008). To derive large-scale or indeed global estimates of Gc, satellite remote sensing based methods are needed. In a previous study, we used water vapour flux estimates derived from eddy covariance flux tower measurements at 16 Fluxnet sites world-wide to develop a method to estimate Gc using MODIS reflectance observations (Yebra et al. 2013). We combined those estimates with the Penman-Monteith combination equation to derive transpiration (T). The resulting T estimates compared favourably with flux tower estimates (R2=0.82, RMSE=29.8 W m-2). Moreover, the method allowed a single parameterisation for all land cover types, which avoids artefacts resulting from land cover classification. In subsequent research (Yebra et al, in preparation) we used the same satellite-derived Gc values within a process-based but simple canopy GPP model to constrain GPP predictions. The developed model uses a 'big-leaf' description of the plant canopy to estimate the mean GPP flux as the lesser of a conductance-limited and radiation-limited GPP rate. The conductance-limited rate was derived assuming that transport of CO2 from the bulk air to the intercellular leaf space is limited by molecular diffusion through the stomata. The radiation-limited rate was estimated assuming that it is proportional to the absorbed photosynthetically

  13. Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize (United States)

    Research was conducted in northern Colorado in 2011 to estimate the Crop Water Stress Index (CWSI) and actual water transpiration (Ta) of maize under a range of irrigation regimes. The main goal was to obtain these parameters with minimum instrumentation and measurements. The results confirmed that ...

  14. Effect of heavy metals on plants. II. Net photosynthesis and transpiration of whole corn and sunflower plants treated with Pb, Cd, Ni, and Tl

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R.W.; Bazzaz, F.A.; Rolfe, G.L.


    Corn and sunflower plants were grown in hydroponic culture and treated with various levels of Pb, Cd, Ni, and Tl salts. Net photosynthesis, transpiration and toxic metal ion concentration of leaf material and total plant biomass was measured. Tl was found to be the most toxic to new photosynthesis and growth of both species followed in order by Cd, Ni, and Pb. (auth)

  15. Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar

    Directory of Open Access Journals (Sweden)

    Rogério Gomes Pereira


    Full Text Available The objective of this work was to evaluate the effect of eucalyptus biochar on the transpiration rate of upland rice 'BRSMG Curinga' as an alternative means to decrease the effect of water stress on plant growth and development. Two-pot experiments were carried out using a completely randomized block design, in a split-plot arrangement, with six replicates. Main plots were water stress (WS and no-water stress (NWS, and the subplots were biochar doses at 0, 6, 12 and 24% in growing medium (sand. Total transpirable soil water (TTSW, the p factor - defined as the average fraction of TTSW which can be depleted from the root zone before water stress limits growth -, and the normalized transpiration rate (NTR were determined. Biochar addition increased TTSW and the p factor, and reduced NTR. Consequently, biochar addition was able to change the moisture threshold (p factor of the growing medium, up to 12% maximum concentration, delaying the point where transpiration declines and affects yield.

  16. Photosynthesis, Transpiration, Leaf Temperature, and Stomatal Activity of Cotton Plants under Varying Water Potentials. (United States)

    Pallas, J E; Michel, B E; Harris, D G


    Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg.Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential.Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4 degrees above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects.Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels.Apparent photosynthesis

  17. Soil moisture and wild olive tree transpiration relationship in a water-limited Mediterranean ecosystem. (United States)

    Curreli, M.; Montaldo, N.; Oren, R.


    Typically, during the dry summers, Mediterranean ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. In these conditions the combined use of sap flow measurements, based on Granier's thermo-dissipative probes, eddy covariance technique and soil water content measurements provides a robust estimation of evapotranspiration (ET). An eddy covariance micrometeorological tower, thermo-dissipative probes based on the Granier technique and TDR sensors have been installed in the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. 33 sap flow sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics (tree size, exposition to wind, solar radiation and soil depth). Sap flow measurements show the significantly impacts on transpiration of soil moisture, radiation and vapor pressure deficit (VPD). In addition ET is strongly influenced by the tree position into the clump. Results show a significant difference in sap flow rate for the south exposed trees compared to inside clump and north exposed trees. Using an innovative scaling procedure, the transpiration calculated from sap flow measurements have been compared to the eddy covariance ET. Sap flow measurements show night time uptake allows the recharge of the stem capacity, depleted during the day before due to transpiration. The night uptake increases with increasing VPD and transpiration but surprisingly it is independent to soil water content. Soil moisture probes allow monitoring spatial and temporal dynamics of water content at different soil depth and distance to the trees, and estimating its correlation with hydraulic lift. During the light hours soil moisture is depleted by roots to provide the water for transpiration and during night time the lateral roots

  18. Forcing variables in simulation of transpiration of water stressed plants determined by principal component analysis (United States)

    Durigon, Angelica; Lier, Quirijn de Jong van; Metselaar, Klaas


    To date, measuring plant transpiration at canopy scale is laborious and its estimation by numerical modelling can be used to assess high time frequency data. When using the model by Jacobs (1994) to simulate transpiration of water stressed plants it needs to be reparametrized. We compare the importance of model variables affecting simulated transpiration of water stressed plants. A systematic literature review was performed to recover existing parameterizations to be tested in the model. Data from a field experiment with common bean under full and deficit irrigation were used to correlate estimations to forcing variables applying principal component analysis. New parameterizations resulted in a moderate reduction of prediction errors and in an increase in model performance. Ags model was sensitive to changes in the mesophyll conductance and leaf angle distribution parameterizations, allowing model improvement. Simulated transpiration could be separated in temporal components. Daily, afternoon depression and long-term components for the fully irrigated treatment were more related to atmospheric forcing variables (specific humidity deficit between stomata and air, relative air humidity and canopy temperature). Daily and afternoon depression components for the deficit-irrigated treatment were related to both atmospheric and soil dryness, and long-term component was related to soil dryness.

  19. Modelling of root ABA synthesis, stomatal conductance, transpiration and potato production under water saving irrigation regimes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Abrahamsen, Per; Gjettermann, Birgitte


    Application of water saving irrigation strategies in agriculture has become increasingly important. Both modelling and experimental work are needed to gain more insights into the biological and physical mechanisms in the soil-plant system, which regulates water flow in the system and plays...... a central role in reducing crop transpiration. This paper presented a mechanistic model (Daisy) developed based on data obtained in the SAFIR project on measured leaf gas exchange and soil water dynamics in irrigated potato crops grown in a semi-field environment subjected to different irrigation regimes....... Experimental data was compared to simulated results from the new enhanced Daisy model which include modelling 2D soil water flow, abscisic acid (ABA) signalling and its effect on stomatal conductance and hence on transpiration and assimilation, and finally crop yield. The results demonstrated that the enhanced...

  20. Transpiration and leaf growth of potato clones in response to soil water deficit

    Directory of Open Access Journals (Sweden)

    André Trevisan de Souza


    Full Text Available Potato (Solanum tuberosum ssp. Tuberosum crop is particularly susceptible to water deficit because of its small and shallow root system. The fraction of transpirable soil water (FTSW approach has been widely used in the evaluation of plant responses to water deficit in different crops. The FTSW 34 threshold (when stomatal closure starts is a trait of particular interest because it is an indicator of tolerance to water deficit. The FTSW threshold for decline in transpiration and leaf growth was evaluated in a drying soil to identify potato clones tolerant to water deficit. Two greenhouse experiments were carried out in pots, with three advanced clones and the cultivar Asterix. The FTSW, transpiration and leaf growth were measured on a daily basis, during the period of soil drying. FTSW was an efficient method to separate potato clones with regard to their response to water deficit. The advancedclones SMINIA 02106-11 and SMINIA 00017-6 are more tolerant to soil water deficit than the cultivar Asterix, and the clone SMINIA 793101-3 is more tolerant only under high solar radiation.

  1. Development of a simplified plant stomatal resistance model and its validation for potentially transpiring and water-stressed water hyacinths (United States)

    Idso, Sherwood B.

    A simple model of upper-canopy plant stomatal resistance ( ruC) was developed which requires but four input parameters: canopy aerodynamic resistance, upper-canopy foliage temperature, and air vapor pressure deficit and temperature. The model was tested against upper-canopy sunlit leaf stomatal resistance ( r l) measurements of both potentially and non-potentially transpiring water hyacinth plants over the upper-canopy-intercepted net radiation range of 300-450 W m -2 and over a 10-fold range of r l. In all instances, and indicative of the model's good performance, the ratio of r uC/r l consistently averaged about 1.25, due to partial self-shading of the upper-canopy foliage. The significance of this finding to air pollution studies arises from the facts that (1) contemporary knowledge of a plant canopy's leaf area index would allow the transformation of ruC to rC, the total canopy diffusive resistance, and (2) the proper accounting for different trace gas diffusivities would allow the transformation of rc for water vapor to the variety of rC values required to infer the gaseous deposition of important pollutant gas species at vegetated surfaces.

  2. Effect of different soil water potential on leaf transpiration and on stomatal conductance in poinsettia

    Directory of Open Access Journals (Sweden)

    Jacek S. Nowak


    Full Text Available Euphorbia pulcherrima Wild.'Lilo' was grown in containers in 60% peat, 30% perlite and 10% clay (v/v mixture, with different irrigation treatments based on soil water potential. Plants were watered at two levels of drought stress: -50kPa or wilting. The treatments were applied at different stages of plant development for a month or soil was brought to the moisture stress only twice. Additionally, some plants were watered at -50 kPa during the entire cultivation period while the control plants were watered at -5kPa. Plants were also kept at maximum possible moisture level (watering at -0,5kPa or close to it (-1.OkPa through the entire growing period. Soil water potential was measured with tensiometer. Drought stress applied during entire cultivation period or during the flushing stage caused significant reduction in transpiration and conductance of leaves. Stress applied during bract coloration stage had not as great effect on the stomatal conductance and transpiration of leaves as the similar stress applied during the flushing stage. High soil moisture increased stomatal conductance and transpiration rate, respectively by 130% and 52% (flushing stage, and 72% and 150% (bract coloration stage at maximum, compared to the control.

  3. Assessing HYDRUS-2D model to estimate soil water contents and olive tree transpiration fluxes under different water distribution systems (United States)

    Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe


    In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the

  4. Fluorometric Measurement of Individual Stomata Activity and Transpiration via a “Brush-on”, Water-Responsive Polymer (United States)

    Seo, Minjeong; Park, Dong-Hoon; Lee, Chan Woo; Jaworski, Justyn; Kim, Jong-Man


    Much of atmospheric water originates from transpiration, the process by which plants release H2O from pores, known as stomata, that simultaneously intake CO2 for photosynthesis. Controlling stomatal aperture can regulate the extent of water transport in response to dynamic environmental factors including osmotic stress, temperature, light, and wind. While larger leaf regions are often examined, the extent of water vapor release from individual stomata remains unexplored. Using a “brush-on” sensing material, we can now assess transpiration using a water-responsive, polydiacetylene-based coating on the leaves surfaces. By eliciting a fluorometric signal to passing water vapor, we obtained information regarding the activity of individual stomata. In this demonstration, our results prove that this coating can identify the proportion of active stomata and the extent of transpirational diffusion of water in response to different conditions.

  5. Real-Time Determination of Photosynthesis, Transpiration, Water-Use Efficiency and Gene Expression of Two Sorghum bicolor (Moench Genotypes Subjected to Dry-Down

    Directory of Open Access Journals (Sweden)

    Alessandra Fracasso


    Full Text Available Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE. This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum.

  6. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil (United States)

    Sulman, Benjamin N.; Roman, D. Tyler; Yi, Koong; Wang, Lixin; Phillips, Richard P.; Novick, Kimberly A.


    When stressed by low soil water content (SWC) or high vapor pressure deficit (VPD), plants close stomata, reducing transpiration and photosynthesis. However, it has historically been difficult to disentangle the magnitudes of VPD compared to SWC limitations on ecosystem-scale fluxes. We used a 13 year record of eddy covariance measurements from a forest in south central Indiana, USA, to quantify how transpiration and photosynthesis respond to fluctuations in VPD versus SWC. High VPD and low SWC both explained reductions in photosynthesis relative to its long-term mean, as well as reductions in transpiration relative to potential transpiration estimated with the Penman-Monteith equation. Flux responses to typical fluctuations in SWC and VPD had similar magnitudes. Integrated over the year, VPD fluctuations accounted for significant reductions of GPP in both nondrought and drought years. Our results suggest that increasing VPD under climatic warming could reduce forest CO2 uptake regardless of changes in SWC.

  7. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency. (United States)

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J


    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Measurement of transpiration in Pinus taeda L. and Liquidambar styraciflua L. in an environmental chamber using tritiated water (United States)

    Levy, G. F.; Sonenshine, D. E.; Czoch, J. K.


    Transpiration rates of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.) were measured at two different atmospheric water vapor pressure deficits (V.P.D.) in a controlled environment growth chamber using tritiated water as a tracer. The trees were maintained in a sealed plant bed containing a hydroponic nutrient solution into which labeled water (spike) was introduced. Samples of leaves, chamber air, spiked nutrient solution and control water were assayed for ratio-activity using liquid scintillation techniques to determine transpiration rates. The transpiration rate of sweetgum in ml./hr./gm. (4.95) was found to be 5 times greater than that of loblolly pine (1.03) at 1.84 V.P.D. and 8 times greater at 6.74 V.P.D. (15.99 for sweetgum vs. 2.19 for pine). Transpiration (based on measurements of leaf radioactivity) in both species rose with increasing deficit; however sweetgum increased its output by 3 times while pine only doubled its rate. Cyclical changes in transpiration rates were noted in both species; the sweetgum cycle required a 6 hour interval whereas the pine cycle required a 9 hour interval.

  9. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments (United States)

    Truong, Sandra K.; McCormick, Ryan F.; Mullet, John E.


    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  10. Plant water relations as affected by osmotic potential of the nutrient solution and potential transpiration in tomato (Lycopersicon esculentum Mill.)

    NARCIS (Netherlands)

    Li, Y.L.; Marcelis, L.F.M.; Stanghellini, C.


    The hypothesis that water flow into tomato fruits is affected similarly by osmotic potential of the nutrient solution and potential transpiration (shoot environment) via their effects on stem water potential, was tested through experiments carried out in two glasshouses where climate was controlled

  11. Nutrient and water addition effects on day- and night-time conductance and transpiration in a C3 desert annual

    NARCIS (Netherlands)

    Ludwig, F.; Jewitt, R.A.; Donovan, L.A.


    Recent research has shown that many C3 plant species have significant stomatal opening and transpire water at night even in desert habitats. Day-time stomatal regulation is expected to maximize carbon gain and prevent runaway cavitation, but little is known about the effect of soil resource

  12. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil (United States)

    Benjamin N. Sulman; Daniel Tyler Roman; Koong Yi; Lixin Wang; Richard P. Phillips; Kimberly A. Novick


    When stressed by low soil water content (SWC) or high vapor pressure deficit (VPD), plants close stomata, reducing transpiration and photosynthesis. However, it has historically been difficult to disentangle the magnitudes of VPD compared to SWC limitations on ecosystem-scale fluxes. We used a 13 year record of eddy covariance measurements from a forest in south...

  13. Quantification of transpirable soil water explains tree water use dynamics in a semi-arid pine forest (United States)

    Klein, T.; Cohen Hilaleh, E.; Raz Yaseef, N.; Rotenberg, E.; Preisler, Y.; Cohen, S.; Yakir, D.


    The relationships between soil water dynamics and tree water use is essential for understanding the controls over forest productivity and sustainability. This, in turn, often relies on measurements of soil water content (SWC), and calculated 'fraction' of water availability (above a fixed minimum). This approach has some limitations because plant water use seems to correspond better with changes in water potential and absolute moisture quantity. Using data from a semi-arid Pinus halepensis forest site, a soil water potential threshold for tree transpiration (Tt, measured as sap flow) of -2.0 MPa is obtained. Using this threshold value and layer-specific water retention curves allows the calculation of the total soil column water content available for tree transpiration, the transpirable water content (tSWC), as well as its distribution with depth. Simultaneous examination of the seasonal changes in tSWC and Tt showed that initially Tt was 0.2-0.4 mm d-1 when tSWC > 0 only above 20 cm. Maximal Tt values reached 1.3 mm d-1 in spring, when tSWC > 0 was calculated only below 20 cm. The results indicated that onset of the productive season rely on shallow tSWC and peak activity on tSWC in deeper layers. Root density profiles showed maximum values (334 fine roots m-2) at the 20-40 cm soil layer, and ^18O measurements of tree sap water confirmed that this layer is the source of Tt in the dry season. Limited water infiltration to depth below 40 cm was associated with high water retention (51% clay, maintaining tSWC near zero at all time). The above analysis using the tSWC terms provided a basis to explain the observations of above 90% recovery of annual precipitation in the ecosystem evapotranspiration, and ~60% in Tt. This approach also allows the estimation of the onset and termination of the productive season associated with gross primary productivity (GPP), which depends on tSWC > 0.

  14. The shape of the transpiration reduction function under plant water stress

    NARCIS (Netherlands)

    Metselaar, K.; Jong van Lier, de Q.


    Assuming transpiration to be reduced after a critical pressure head (usually chosen as −1.5 MPa or −150 m) at the root surface has been reached, transpiration rates in this so-called falling-rate phase were analyzed numerically for soils described by the van Genuchten–Mualem equations (numerical

  15. Light-induced transpiration alters cell water relations in figleaf gourd (Cucurbita ficifolia) seedlings exposed to low root temperatures. (United States)

    Lee, Seong Hee; Zwiazek, Janusz J; Chung, Gap Chae


    Water relation parameters including elastic modulus (epsilon), half-times of water exchange (T(w)(1/2)), hydraulic conductivity and turgor pressure (P) were measured in individual root cortical and cotyledon midrib cells in intact figleaf gourd (Cucurbita ficifolia) seedlings, using a cell pressure probe. Transpiration rates (E) of cotyledons were also measured using a steady-state porometer. The seedlings were exposed to low ambient (approximately 10 micromol m(-2) s(-1)) or high supplemental irradiance (approximately 300 micromol m(-2) s(-1) PPF density) at low (8 degrees C) or warm (22 degrees C) root temperatures. When exposed to low irradiance, all the water relation parameters of cortical cells remained similar at both root temperatures. The exposure of cotyledons to supplemental light at warm root temperatures, however, resulted in a two- to three-fold increase in T(w)(1/2) values accompanied with the reduced hydraulic conductivity in both root cortical (Lp) and cotyledon midrib cells (Lp(c)). Low root temperature (LRT) further reduced Lp(c) and E, whether it was measured under low or high irradiance levels. The reductions of Lp as the result of respective light and LRT treatments were prevented by the application of 1 microM ABA. Midrib cells required higher concentrations of ABA (2 microM) in order to prevent the reduction in Lp(c). When the exposure of cotyledons to light was accompanied by LRT, however, ABA proved ineffective in reversing the inhibition of Lp. LRT combined with high irradiance triggered a drastic 10-fold reduction in water permeability of cortical and midrib cells and increased epsilon and T(w)(1/2) values. Measurement of E indicated that the increased water demand by the transpiring plants was fulfilled by an increase in the apoplastic pathway as principal water flow route. The importance of water transport regulation by transpiration affecting the hydraulic conductivity of the roots is discussed.

  16. Photosynthesis, transpiration and water use efficiencies of a plant canopy and plant leaves under restricted air current conditions (United States)

    Kitaya, Yoshiaki; Shibuya, Toshio; Tsuruyama, Joshin

    A fundamental study was conducted to obtain the knowledge for culturing plants and exchanging gases with plants under restricted air circulation conditions in space agriculture. The effects of air velocities less than 1.3 m s-1 on net photosynthetic rates (Pn), transpiration rates (Tr) and Pn/Tr, water use efficiencies (WUE), of a canopy of cucumber seedlings and of single leaves of cucumber, sweet potato and barley were assessed with assimilation chamber methods in ground based experiments. The cucumber seedling canopy, which had a LAI of 1.4 and height of 0.1 m, was set in a wind tunnel installed in a plant canopy assimilation chamber. Each of the attached single leaves was set in a leaf assimilation chamber. The Pn and Tr of the plant canopy increased to 1.2 and 2.8 times, respectively, and WUE decreased to 0.4 times with increasing the air velocity from 0.02 to 1.3 m s-1. The Pn and Tr of the single leaves of all the species increased by 1.3-1.7 and 1.9-2.2 times, respectively, and WUE decreased to 0.6-0.8 times as the air velocity increased from 0.05 to 0.8 m s-1. The effect of air velocity was more significant on Tr than on Pn and thus WUE decreased with increasing air velocity in both the plant canopy and the individual leaves. The leaf boundary layer resistance was approximately proportional to the minus 1/3 power of the air velocity. Stomatal resistance was almost constant during the experiment. The CO2 concentrations in the sub-stomatal cavity in leaves of cucumber, sweet potato and barley, respectively, were 43, 31 and 58 mmol mol-1 lower at the air velocity of 0.05 m s-1 than at the air velocity of 0.8 m s-1, while the water vapor pressure in the sub-stomatal cavity was constant. We concluded that the change in the CO2 concentration in the sub-stomatal cavity was a cause of the different effect of the air velocity on Pn and Tr, and thus on WUE. The phenomenon will be more remarkable under restricted air convection conditions at lower gravity in space.

  17. Transpiration and water use efficiency in native chilean and exotic species, a usefull tool for catchment management? (United States)

    Hervé-Fernández, P.; Oyarzun, C. E.


    Land-use and forest cover change play important roles in socio-economic processes and have been linked with water supply and other ecosystem services in various regions of the world. Water yield from watersheds is a major ecosystem service for human activities but has been altered by landscape management superimposed on climatic variability and change. Sustaining ecosystem services important to humans, while providing a dependable water supply for agriculture and urban needs is a major challenge faced by managers of human-dominated or increased antropical effect over watersheds. Since water is mostly consumed by vegetation (i.e: transpiration), which strongly depends on trees physiological characteristics (i.e: foliar area, transpiration capacity) are very important. The quantity of water consumed by plantations is influenced mainly by forest characteristics (species physiology, age and management), catchment water retention capacity and meteorological characteristics. Eventhough in Chile, the forest sector accounts for 3.6% of the gross domestic product (GDP) and 12.5% of total exports (INFOR, 2003), afforestation with fast growing exotic species has ended up being socially and politically questionable because of the supposed impact on the environment and water resources. We present data of trees transpiration and water use efficiency from three headwater catchments: (a) second growth native evergreen forest (Aetoxicon punctatum, Drimys winterii, Gevuina avellana, Laureliopsis philippiana); (b) Eucalyptus globulus plantation, and (c) a mixed native deciduous (Nothofagus obliqua and some evergreen species) forest and Eucalyptus globulus and Acacia melanoxylon plantation located at the Coastal Mountain Range in southern Chile (40°S). Annual transpiration rates ranged from 1.24 ± 0.41 mol•m-2•s-1 (0.022 ± 0.009 L•m-2•s-1) for E. globulus, while the lowest observed was for L. philippiana 0.44 ± 0.31 mol•m-2•s-1 (0.008 ± 0.006 L•m-2•s-1). However

  18. Measuring and Modeling Tree Stand Level Transpiration (United States)

    J.M. Vose; G.J. Harvey; K.J. Elliott; B.D. Clinton


    Transpiration is a key process in the application of phytoremediation to soil or groundwater pollutants. To be successful, vegetation must transpire enough water from the soil or groundwater to control or take up the contaminant. Transpiration is driven by a combination of abiotic (climate, soil water availability, and groundwater depth) and biotic (leaf area, stomatal...

  19. Soil water and transpirable soil water fraction variability within vineyards of the Penedès DO (NE Spain) affected by management practices (United States)

    Concepción Ramos, Maria


    This work investigated the variability in soil water recorded within the vineyard plots related to soil properties and management practices and its influence on the transpirable sol water fraction. The study was carried out in vineyards in the Penedès Designation of Origin, planted with Chardonnay, with different disturbance degree and with compost treated and untreated areas within the plots. The response in years with different rainfall distributions, included years with extreme situations were evaluated. The main soil types are Typic Xerorthent and Calcixerollic Xerorthent and soil is bare most of the time. Soil water content was measured at different depths using TDR probes. The transpirable soil water fraction was estimated as the ratio between available soil water (ASW) at a given date and the total transpirable soil water (TTSW). TTSW was estimated as the soil water reserve held between an upper and lower limit (respectively, the soil water content near field capacity and soil water content at the end of a dry summer) and integrated over the estimated effective rooting depth. Both minimum and maximum soil water values varied within the plot at all depths. On the surface the minimum values ranged between 4.45 to about 10%, while on deeper layers it ranged between 7.8 and 17.8%. Regarding the maximum value varied between 17.45 and 24.8%. The transpirable soil water fraction for a given year varied significantly within the plot, with differences greater than 20% between the treated and untreated areas. The results were more exacerbated in the driest years an in those with more irregular distribution. Water available has a significant effect on yield. The results indicate the need of using different strategies for water management within the plots.

  20. Effects of increased atmospheric CO{sub 2} concentrations on transpiration of a wheat field in consideration of water and nitrogen limitation; Die Wirkung von erhoehten atmosphaerischen CO{sub 2}-Konzentrationen auf die Transpiration eines Weizenbestandes unter Beruecksichtigung von Wasser- und Stickstofflimitierung

    Energy Technology Data Exchange (ETDEWEB)

    Grossman-Clarke, S.


    Primary responses of C{sub 3}-plants to elevated atmospheric CO{sub 2} concentrations are an increase in the net assimilation rate, leading to greater biomass, and an associated decrease in the transpiration rate per unit leaf area due to CO{sub 2}-induced stomatal closure. The question has therefore arisen: does canopy transpiration increase because of the greater biomass, or decrease because of the stomatal closure? The direct impact of an elevated atmospheric CO{sub 2} concentration of 550 {mu}mol mol{sup -1} on the seasonal course of canopy transpiration of a spring wheat crop was investigated by means of the simulation model DEMETER for production under unlimited water and nutrient supply, production under limited water but unlimited nutrient supply and the production under unlimited water but limited nitrogen supply. Independent data of the free-air carbon dioxide enrichment wheat experiments in Arizona, USA (1993-96) were used to test if the model is able to make reasonable predictions of water use and productivity of the spring wheat crop using only parameters derived from the literature. A model integrating leaf photosynthesis, stomatal conductance and energy fluxes between the plant and the atmosphere was scaled to a canopy level in order to be used in the wheat crop growth model. Temporal changes of the model parameters were considered by describing them as dependent on the changing leaf nitrogen content. Comparison of the simulation and experimental results showed that the applicability of the model approach was limited after anthesis by asynchronous changes in mesophyll and stomatal conductance. Therefore a new model approach was developed describing the interaction between assimilation rate and stomatal conductance during grain filling. The simulation results revealed only small differences in the cumulative sum of canopy transpiration and soil evaporation between elevated CO{sub 2} and control conditions. For potential growth conditions the model

  1. Using stable water isotopes in a two-layer soil moisture conceptual framework to understand transpiration dynamics in a semiarid shrubland (United States)

    Szutu, D. J.; Papuga, S. A.; Wehr, R.


    Semiarid shrublands and other dryland ecosystems are highly sensitive to precipitation pulses. Because the frequency and magnitude of precipitation events have been projected to change for these ecosystems, the nature of these pulses and how they are distributed as moisture in the soil profile are also expected to change. Previous research has suggested that transpiration dynamics in drylands are associated with deep soil moisture, which accumulates after large rainfall events. Because transpiration is the productive component of evapotranspiration in that it is water used toward biomass accumulation, a hypothetical decrease in large rainfall events would have major consequences for the health and functioning of dryland ecosystems. Furthermore, as drylands account for nearly 40% of terrestrial biomes, these cascading changes have the potential to impact global water and carbon budgets. Still, in pulse-dependent dryland ecosystems, the relative contribution of transpiration to evapotranspiration and the temporal dynamics of this contribution are not well understood. The objective of this research is to better characterize the temporal dynamics of transpiration in dryland ecosystems. We present the relative contribution of transpiration to evapotranspiration over the course of a year from eddy covariance and sap flow measurements taken at a creosotebush-dominated shrubland ecosystem in southern Arizona. We analyze soil moisture and stable water isotopes within the context of a two-layer soil moisture conceptual framework in an attempt to identify the source water for transpiration. We use these results to explain the temporal dynamics of transpiration in this semiarid shrubland. Finally, we put our results in the context of regional climate projections to suggest how this dryland ecosystem might be impacted in the future. We expect our study will contribute to understanding where precipitation pulses are distributed in the soil moisture profile and when these pulses

  2. Do Reductions in Dry Season Transpiration Allow Shallow Soil Water Uptake to Persist in a Tropical Lower Montane Cloud Forest? (United States)

    Munoz Villers, L. E.; Holwerda, F.; Alvarado-Barrientos, M. S.; Goldsmith, G. R.; Geissert Kientz, D. R.; González Martínez, T. M.; Dawson, T. E.


    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF water cycling remain poorly understood. To investigate the plant functional response to reduced water availability, we conducted a study during the mid to late dry season (2014) in the lower limit (1,325 m asl) of the TMCF belt (1200-2500 m asl) in central Veracruz, Mexico. The temporal variation of transpiration rates of dominant upper canopy and mid-story tree species, depth of water uptake, as well as tree water sources were examined using micrometeorological, sapflow and soil moisture measurements, in combination with data on stable isotope (δ18O and δ2H) composition of rain, tree xylem, soil (bulk and low suction-lysimeter) and stream water. The sapflow data suggest that crown conductances decreased as temperature and vapor pressure deficit increased, and soil moisture decreased from the mid to late dry season. Across all samplings (January 21, April 12 and 26), upper canopy species (Quercus spp.) showed more depleted (negative) isotope values compared to mid-story trees (Carpinus tropicalis). Overall, we found that the evaporated soil water pool was the main source for the trees. Furthermore, our MixSIAR Bayesian mixing model results showed that the depth of tree water uptake changed over the course of the dry season. Unexpectedly, a shift in water uptake from deeper (60-120 cm depth) to shallower soil water (0-30 cm) sources was observed, coinciding with the decreases in transpiration rates towards the end of the dry season. A larger reduction in deep soil water contributions was observed for upper canopy trees (from 70±14 to 22±15%) than for mid-story species (from 10±13 to 7±10%). The use of shallow soil water by trees during the dry season seems consistent with the greater root biomass and higher macronutrient concentrations found in the first 10 cm of the soil profiles. These findings are an

  3. Embolized Stems Recover Overnight in Zea mays: The Role of Soil Water, Root Pressure, and Nighttime Transpiration

    Directory of Open Access Journals (Sweden)

    Sean M. Gleason


    Full Text Available It is not currently well-understood how much xylem conductance is lost in maize plants during the day, if conductance is recovered during the night, or what soil water conditions are required for recovery to take place. To answer these questions we designed a greenhouse experiment whereby two genetically dissimilar maize genotypes were subjected to a level of water stress commonly experienced in the field (Ψxylem ∼-2 MPa. We then measured the loss of stem-specific conductivity associated with this level of stress, as well as the overnight recovery following three re-watering treatments: Ψsoil ∼ 0 MPa, Ψsoil ∼-0.40 MPa, and Ψsoil ∼-1.70 MPa. Mid-day leaf water potentials of -1.98 MPa resulted in stem-specific conductivity (KS values that were 31.5% of maximal (i.e., 68% loss. Returning soils to field capacity (Ψsoil ∼ 0 MPa overnight allowed for the significant recovery of KS (76% of maximal, whereas partial watering (Ψsoil ∼-0.40 MPa resulted KS values that were 51.7% of maximal values, whereas not watering resulted in no recovery (35.4% of maximal; Ψsoil ∼-1.7 MPa. Recovery of KS was facilitated by the generation of root pressure and low rates of nighttime transpiration.

  4. Transpirative Deficit Index (TDI) for the management of water scarcity in irrigated areas: development and application in northern Italy (United States)

    Borghi, Anna; Facchi, Arianna; Rienzner, Michele; Gandolfi, Claudio


    In Europe, the monitoring and assessment of drought is entrusted to the European Drought Observatory (EDO). EDO indicators are calculated considering rainfed agriculture and delivered on a 5 km grid. However, in southern Europe, irrigation may compensate for potentially severe agricultural droughts and specific water scarcity indicators that explicitly consider irrigation are needed. In the Po River Plain, irrigated crops cover more than 70% of the agricultural land, massive amounts of water are diverted from rivers for irrigation, and surface irrigation methods are largely applied. Nowadays, the region is not a water scarce basin, but irrigation water shortages have occurred with increased frequency during the last two decades. Moreover, a recent EU report shows that the Po River Plain is included among areas in Europe that by 2030 shall be affected by water scarcity. In this context, a study was started to select and develop indicators for the management and prevention of Water Scarcity and Drought (WS&D) based on the synergic use of hydrological modelling and Earth Observation data applied at a spatial scale of interest for end-users (250m grid). These indicators shall be better suited for the assessment of WS&D in Italy as well as in other southern European countries. This work presents the development and the application of the TDI (Transpirative Deficit Index) to a study area, within the Po River Plain. TDI is an agricultural drought index based on the transpiration deficit (TDx, calculated as the difference between potential and actual transpiration), computed by the spatially distributed hydrological model IDRAGRA and cumulated over a period of x days. TDx for each day of a specific year is compared to the long-term TDx probability distribution (e.g., over 20-30 years), which is transformed into a standardized normal distribution. The non-exceedance probability of TDx is finally expressed in terms of unit of standard deviation (TDI), following the approach

  5. Response of the physiological parameters of mango fruit (transpiration, water relations and antioxidant system) to its light and temperature environment. (United States)

    Léchaudel, Mathieu; Lopez-Lauri, Félicie; Vidal, Véronique; Sallanon, Huguette; Joas, Jacques


    Depending on the position of the fruit in the tree, mango fruit may be exposed to high temperature and intense light conditions that may lead to metabolic and physiological disorders and affect yield and quality. The present study aimed to determine how mango fruit adapted its functioning in terms of fruit water relations, epicarp characteristics and the antioxidant defence system in peel, to environmental conditions. The effect of contrasted temperature and light conditions was evaluated under natural solar radiation and temperature by comparing well-exposed and shaded fruit at three stages of fruit development. The sun-exposed and shaded peels of the two sides of the well-exposed fruit were also compared. Depending on fruit position within the canopy and on the side of a well-exposed fruit, the temperature gradient over a day affected fruit characteristics such as transpiration, as revealed by the water potential gradient as a function of the treatments, and led to a significant decrease in water conductance for well-exposed fruits compared to fruits within the canopy. Changes in cuticle thickness according to fruit position were consistent with those of fruit water conductance. Osmotic potential was also affected by climatic environment and harvest stage. Environmental conditions that induced water stress and greater light exposure, like on the sunny side of well-exposed fruit, increased the hydrogen peroxide, malondialdehyde and total and reduced ascorbate contents, as well as SOD, APX and MDHAR activities, regardless of the maturity stage. The lowest values were measured in the peel of the shaded fruit, that of the shaded side of well-exposed fruit being intermediate. Mango fruits exposed to water-stress-induced conditions during growth adapt their functioning by reducing their transpiration. Moreover, oxidative stress was limited as a consequence of the increase in antioxidant content and enzyme activities. This adaptive response of mango fruit to its

  6. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture. (United States)

    Locke, Anna M; Ort, Donald R


    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K(leaf)), a measure of the leaf's water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K(leaf) would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K(leaf) was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K(leaf) were further correlated with decreases in g(s), although the relationship was not as strong as that with A. Separate experiments investigating the response of K(leaf) to drought demonstrated no acclimation of K(leaf) to drought conditions to protect against cavitation or loss of g(s) during drought and confirmed the effect of leaf age in K(leaf) observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K(leaf)becoming limiting to transpiration water flux. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture (United States)

    Locke, Anna M.; Ort, Donald R.


    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701

  8. Modelling maximum canopy conductance and transpiration in ...

    African Journals Online (AJOL)

    There is much current interest in predicting the maximum amount of water that can be transpired by Eucalyptus trees. It is possible that industrial waste water may be applied as irrigation water to eucalypts and it is important to predict the maximum transpiration rates of these plantations in an attempt to dispose of this ...

  9. The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones

    DEFF Research Database (Denmark)

    Linderson, Maj-Lena; Iritz, Z.; Lindroth, A.


    The effect of water availability on stand-level productivity, transpiration, water use efficiency (WUE) and radiation use efficiency (RUE) is evaluated for different willow clones at stand level. The measurements were made during the growing season 2000 in a 3-year-old plantation in Scania...... low compared to other results. Generally, all clones, except for Jorunn, seem to be better off concerning biomass production, WUE and RUE than the reference clone. Jorr, Jorunn and Loden also seem to be able to cope with the reduced water availability with increase in the water use efficiency. Tora...... performs significantly better than the other clones concerning both growth and efficiency in light and water use, but the effect of the dry treatment on stem growth shows sensitivity to water availability. The reduced stem growth could be due to a change in allocation patterns. (C) 2007 Elsevier Ltd. All...

  10. [Water recharge through nighttime stem sap flow of Schima superba in Guangzhou region of Guangdong Province, South China: affecting factors and contribution to transpiration]. (United States)

    Zhou, Cui-Ming; Zhao, Ping; Ni, Guang-Yan; Wang, Quan; Zeng, Xiao-Ping; Zhu, Li-Wei; Cai, Xi-An


    To understand the nighttime water recharge of tree through its sap flow is beneficial to the precise estimation of total transpiration and canopy stomatal conductance, and to the further understanding of the time lag between canopy transpiration and stem sap flow. By using Granier's thermal dissipation probe, this paper measured the stem sap flow of Schima superba, and synchronously measured the main environmental factors including air temperature, relative humidity, photosynthetically active radiation, and soil moisture content, and also analyzed the water recharge through nighttime stem flow of S. superba at daily and seasonal scales. The sap flow density of S. superba was lower at night than at daytime, and the nighttime sap flow density had a larger variation in dry season than in wet season. The water recharge at night generally started from sunset when radiation was approaching zero, and lasted up to midnight (18:00-22:00). No significant difference was observed in the nighttime water recharge among seasons, and no significant correlations were found between the nighttime water recharge and environmental factors, but the nighttime water recharge was well regressed with the diameter at breast height, tree height, tree canopy size, stem biomass, and canopy biomass, suggesting that tree form features and biomass could better explain the nighttime water recharge. The contribution of nighttime water recharge to the total transpiration varied significantly with seasons, and was obviously higher in dry season than in wet season.

  11. Genetic Variation of Morphological Traits and Transpiration in an Apple Core Collection under Well-Watered Conditions: Towards the Identification of Morphotypes with High Water Use Efficiency.

    Directory of Open Access Journals (Sweden)

    Gerardo Lopez

    Full Text Available Water use efficiency (WUE is a quantitative measurement which improvement is a major issue in the context of global warming and restrictions in water availability for agriculture. In this study, we aimed at studying the variation and genetic control of WUE and the respective role of its components (plant biomass and transpiration in a perennial fruit crop. We explored an INRA apple core collection grown in a phenotyping platform to screen one-year-old scions for their accumulated biomass, transpiration and WUE under optimal growing conditions. Plant biomass was decompose into morphological components related to either growth or organ expansion. For each trait, nine mixed models were evaluated to account for the genetic effect and spatial heterogeneity inside the platform. The Best Linear Unbiased Predictors of genetic values were estimated after model selection. Mean broad-sense heritabilities were calculated from variance estimates. Heritability values indicated that biomass (0.76 and WUE (0.73 were under genetic control. This genetic control was lower in plant transpiration with an heritability of 0.54. Across the collection, biomass accounted for 70% of the WUE variability. A Hierarchical Ascendant Classification of the core collection indicated the existence of six groups of genotypes with contrasting morphology and WUE. Differences between morphotypes were interpreted as resulting from differences in the main processes responsible for plant growth: cell division leading to the generation of new organs and cell elongation leading to organ dimension. Although further studies will be necessary on mature trees with more complex architecture and multiple sinks such as fruits, this study is a first step for improving apple plant material for the use of water.

  12. Plant water resource partitioning and isotopic fractionation during transpiration in a seasonally dry tropical climate (United States)

    De Wispelaere, Lien; Bodé, Samuel; Hervé-Fernández, Pedro; Hemp, Andreas; Verschuren, Dirk; Boeckx, Pascal


    Lake Chala (3°19' S, 37°42' E) is a steep-sided crater lake situated in equatorial East Africa, a tropical semiarid area with a bimodal rainfall pattern. Plants in this region are exposed to a prolonged dry season, and we investigated if (1) these plants show spatial variability and temporal shifts in their water source use; (2) seasonal differences in the isotopic composition of precipitation are reflected in xylem water; and (3) plant family, growth form, leaf phenology, habitat and season influence the xylem-to-leaf water deuterium enrichment. In this study, the δ2H and δ18O of precipitation, lake water, groundwater, plant xylem water and plant leaf water were measured across different plant species, seasons and plant habitats in the vicinity of Lake Chala. We found that plants rely mostly on water from the short rains falling from October to December (northeastern monsoon), as these recharge the soil after the long dry season. This plant-available, static water pool is only slightly replenished by the long rains falling from February to May (southeastern monsoon), in agreement with the two water worlds hypothesis, according to which plants rely on a static water pool while a mobile water pool recharges the groundwater. Spatial variability in water resource use exists in the study region, with plants at the lakeshore relying on a water source admixed with lake water. Leaf phenology does not affect water resource use. According to our results, plant species and their associated leaf phenology are the primary factors influencing the enrichment in deuterium from xylem water to leaf water (ɛl/x), with deciduous species giving the highest enrichment, while growth form and season have negligible effects. Our observations have important implications for the interpretation of δ2H of plant leaf wax n-alkanes (δ2Hwax) from paleohydrological records in tropical East Africa, given that the temporal variability in the isotopic composition of precipitation is not

  13. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure (United States)

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu


    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of −2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange

  14. Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations. (United States)

    Domec, Jean-Christophe; Ogée, Jérôme; Noormets, Asko; Jouangy, Julien; Gavazzi, Michael; Treasure, Emrys; Sun, Ge; McNulty, Steve G; King, John S


    Deep root water uptake and hydraulic redistribution (HR) have been shown to play a major role in forest ecosystems during drought, but little is known about the impact of climate change, fertilization and soil characteristics on HR and its consequences on water and carbon fluxes. Using data from three mid-rotation loblolly pine plantations, and simulations with the process-based model MuSICA, this study indicated that HR can mitigate the effects of soil drying and had important implications for carbon uptake potential and net ecosystem exchange (NEE), especially when N fertilization is considered. At the coastal site (C), characterized by deep organic soil, HR increased dry season tree transpiration (T) by up to 40%, and such an increase affected NEE through major changes in gross primary productivity (GPP). Deep-rooted trees did not necessarily translate into a large volume of HR unless soil texture allowed large water potential gradients to occur, as was the case at the sandy site (S). At the Piedmont site (P) characterized by a shallow clay-loam soil, HR was low but not negligible, representing up to 10% of T. In the absence of HR, it was predicted that at the C, S and P sites, annual GPP would have been diminished by 19, 7 and 9%, respectively. Under future climate conditions HR was predicted to be reduced by up to 25% at the C site, reducing the resilience of trees to precipitation deficits. The effect of HR on T and GPP was predicted to diminish under future conditions by 12 and 6% at the C and P sites, respectively. Under future conditions, T was predicted to stay the same at the P site, but to be marginally reduced at the C site and slightly increased at the S site. Future conditions and N fertilization would decrease T by 25% at the C site, by 15% at the P site and by 8% at the S site. At the C and S sites, GPP was estimated to increase by 18% and by >70% under future conditions, respectively, with little effect of N fertilization. At the P site, future

  15. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit. (United States)

    Paudel, Indira; Naor, Amos; Gal, Yoni; Cohen, Shabtai


    For isohydric trees mid-day water uptake is stable and depends on soil water status, reflected in pre-dawn leaf water potential (Ψpd) and mid-day stem water potential (Ψmd), tree hydraulic conductance and a more-or-less constant leaf water potential (Ψl) for much of the day, maintained by the stomata. Stabilization of Ψl can be represented by a linear relationship between canopy resistance (Rc) and vapor pressure deficit (D), and the slope (BD) is proportional to the steady-state water uptake. By analyzing sap flow (SF), meteorological and Ψmd measurements during a series of wetting and drying (D/W) cycles in a nectarine orchard, we found that for the range of Ψmd relevant for irrigated orchards the slope of the relationship of Rc to D, BD is a linear function of Ψmd. Rc was simulated using the above relationships, and its changes in the morning and evening were simulated using a rectangular hyperbolic relationship between leaf conductance and photosynthetic irradiance, fitted to leaf-level measurements. The latter was integrated with one-leaf, two-leaf and integrative radiation models, and the latter gave the best results. Simulated Rc was used in the Penman-Monteith equation to simulate tree transpiration, which was validated by comparing with SF from a separate data set. The model gave accurate estimates of diurnal and daily total tree transpiration for the range of Ψmds used in regular and deficit irrigation. Diurnal changes in tree water content were determined from the difference between simulated transpiration and measured SF. Changes in water content caused a time lag of 90-105 min between transpiration and SF for Ψmd between -0.8 and -1.55 MPa, and water depletion reached 3 l h(-1) before noon. Estimated mean diurnal changes in water content were 5.5 l day(-1) tree(-1) at Ψmd of -0.9 MPa and increased to 12.5 l day(-1) tree(-1) at -1.45 MPa, equivalent to 6.5 and 16.5% of daily tree water use, respectively. Sixteen percent

  16. Water use efficiency of net primary production in global terrestrial ...

    Indian Academy of Sciences (India)

    Water use efficiency; global terrestrial ecosystems; MODIS; net primary production; evapotranspiration;. Köppen–Geiger climate classification. ... Terrestrial plants fix or trap carbon dioxide via photosynthesis to produce the material ...... S W 2007 Evaluating water stress controls on primary production in biogeochemical and ...

  17. A Laboratory Exercise to Assess Transpiration. (United States)

    Schrock, Gould F.


    Procedures are outlined for a laboratory exercise in which students use a gravimetric method to determine the rate of transpiration in sunflower seedlings. Discusses the data in terms of the effectiveness of stomatal openings, mechanisms for water movement in plants, and the role of transpiration in the environment. (DC)

  18. Comparison of Transpiration Models in Tomato Soilless Culture


    Gabrijel Ondrašek; Davor Romić; Josip Borošić; Marija Romić; Ivo Stričević


    A two-year greenhouse study was performed to determine the possibility of estimating the transpiration rate in hydroponically grown tomato on the basis of climate parameters. Transpiration rate, determined by the water balance method on different substrates, was compared to the transpiration rate calculated using the Penman Monteith equation. Regression analysis of the comparison of two different approaches to water consumption determination confirmed that the transpiration rate of greenhouse...

  19. Microclimate, Water Potential, Transpiration, and Bole Dielectric Constant of Coniferous and Deciduous Tree Species in the Continental Boreal Ecotone of Central Alaska (United States)

    Zimmermann, R.; McDonald, K.; Way, J.; Oren, R.


    Tree canopy microclimate, xylem water flux and xylem dielectric constant have been monitored in situ since June 1993 in two adjacent natural forest stands in central Alaska. The deciduous stand represents a mature balsam poplar site on the Tanana River floodplain, while the coniferous stand consists of mature white spruce with some black spruce mixed in. During solstice in June and later in summer, diurnal changes of xylem water potential were measured to investigate the occurrence and magnitude of tree transpiration and dielectric constant changes in stems.

  20. Community level offset of rain use- and transpiration efficiency for a heavily grazed ecosystem in inner Mongolia grassland.

    Directory of Open Access Journals (Sweden)

    Ying Z Gao

    Full Text Available Water use efficiency (WUE is a key indicator to assess ecosystem adaptation to water stress. Rain use efficiency (RUE is usually used as a proxy for WUE due to lack of transpiration data. Furthermore, RUE based on aboveground primary productivity (RUEANPP is used to evaluate whole plant water use because root production data is often missing as well. However, it is controversial as to whether RUE is a reliable parameter to elucidate transpiration efficiency (TE, and whether RUEANPP is a suitable proxy for RUE of the whole plant basis. The experiment was conducted at three differently managed sites in the Inner Mongolia steppe: a site fenced since 1979 (UG79, a winter grazing site (WG and a heavily grazed site (HG. Site HG had consistent lowest RUEANPP and RUE based on total net primary productivity (RUENPP. RUEANPP is a relatively good proxy at sites UG79 and WG, but less reliable for site HG. Similarly, RUEANPP is good predictor of transpiration efficiency based on aboveground net primary productivity (TEANPP at sites UG79 and WG but not for site HG. However, if total net primary productivity is considered, RUENPP is good predictor of transpiration efficiency based on total net primary productivity (TENPP for all sites. Although our measurements indicate decreased plant transpiration and consequentially decreasing RUE under heavy grazing, productivity was relatively compensated for with a higher TE. This offset between RUE and TE was even enhanced under water limited conditions and more evident when belowground net primary productivity (BNNP was included. These findings suggest that BNPP should be considered when studies fucus on WUE of more intensively used grasslands. The consideration of the whole plant perspective and "real" WUE would partially revise our picture of system performance and therefore might affect the discussion on the C-sequestration and resilience potential of ecosystems.

  1. Isotopic tracers for net primary productivity for a terrestrial esocystem ...

    African Journals Online (AJOL)

    The coupling effect of vapour release and CO2 uptake during photosynthesis plays an important role in the carbon and hydrologic cycles. The water use efficiency (WUE) for transpiration was used in calculating the net primary productivity (NPP) for terrestrial ecosystem. Three parameters were used in calculating the water ...

  2. Seasonal, synoptic and diurnal variation of atmospheric water-isotopologues in the boundary layer of Southwestern Germany caused by plant transpiration, cold-front passages and dewfall. (United States)

    Christner, Emanuel; Dyroff, Christoph; Kohler, Martin; Zahn, Andreas; Gonzales, Yenny; Schneider, Matthias


    Atmospheric water is an enormously crucial trace gas. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010) and carries huge amounts of latent heat. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. As H216O, H218O and HDO differ in vapor pressure and mass, isotope fractionation occurs due to condensation, evaporation and diffusion processes. In contrast to that, plants are able to transpire water with almost no isotope fractionation. For that reason the ratio of isotopologue concentrations in the boundary layer (BL) provides, compared to humidity measurements alone, independent and additional constraints for quantifying the strength of evaporation and transpiration. Furthermore the isotope ratios contain information about transport history of an air mass and microphysical processes, that is not accessible by humidity measurements. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) a commercial Picarro Analyzer L2120-i is operated at Karlsruhe in Southwestern Germany, which is continuously measuring the isotopologues H216O, HDO and H218O of atmospheric water vapor since January 2012. A one year record of H216O, HDO and H218O shows clear seasonal, synoptic and diurnal characteristics and reveals the main driving processes affecting the isotopic composition of water vapor in the Middle European BL. Changes in continental plant transpiration and evaporation throughout the year lead to a slow seasonal HDO/H216O-variation, that cannot be explained by pure Rayleigh condensation. Furthermore, cold-front passages from NW lead to fast and pronounced depletion of the HDO/H216O-ratio within

  3. Water Sustainability Assessments for Four Net Zero Water Installations (United States)


    Infrastructure Development and Evaluation PVC Polyvinyl Chloride PX Post Exchange QAP Quality Assurance Plan REMIS Real Estate Management Information System...2010. Standard geospatial data layer quality assurance plan ( QAP ): Water line. SDSFIE 2. 6. 1: water_ling. Version 1. 0. 1, September 2010

  4. Mineralizing urban net-zero water treatment: Phase II field ... (United States)

    Net-zero water (NZW) systems, or water management systems achieving high recycling rates and low residuals generation so as to avoid water import and export, can also conserve energy used to heat and convey water, while economically restoring local eco-hydrology. However, design and operating experience are extremely limited. The objective of this paper is to present the results of the second phase of operation of an advanced oxidation-based NZW pilot system designed, constructed, and operated for a period of two years, serving an occupied four-person apartment. System water was monitored, either continuously or thrice daily, for routine water quality parameters, minerals, and MicroTox® in-vitro toxicity, and intermittently for somatic and male-specific coliphage, adenovirus, Cryptosporidium, Giardia, emerging organic constituents (non-quantitative), and the Florida drinking water standards. All 115 drinking water standards with the exception of bromate were met in this phase. Neither virus nor protozoa were detected in the treated water, with the exception of measurement of adenovirus genome copies attributed to accumulation of inactive genetic material in hydraulic dead zones. Chemical oxygen demand was mineralized to 90% in treatment. Total dissolved solids were maintained at ∼500 mg/L at steady state, partially through aerated aluminum electrocoagulation. Bromate accumulation is projected to be controlled by aluminum electrocoagulation with separate dispo

  5. WaterNet: The NASA water cycle solutions network - Danubian regional applications (United States)

    Matthews, Dave; Brilly, Mitja; Kobold, Mira; Zagar, Mark; Houser, Paul


    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate remotely sensed and in

  6. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Dave [Hydromet DSS, LLC, Silverthorne, CO 80498-1848 (United States); Brilly, Mitja [FGG University of Ljubljana (Slovenia); Kobold, Mira; Zagar, Mark [Environmental Agency of the Republic of Slovenia, Ljubljana (Slovenia); Houser, Paul [Center for Research on Environment and Water and George Mason University, Calverton, MD 20705 (United States)], E-mail:


    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an 'actionable database' that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate

  7. Using the right slope of the 970 nm absorption feature for estimating canopy water content

    NARCIS (Netherlands)

    Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E.


    Canopy water content (CWC) is important for understanding the functioning of terrestrial ecosystems. Biogeochemical processes like photosynthesis, transpiration and net primary production are related to foliar water. The first derivative of the reflectance spectrum at wavelengths corresponding to

  8. Selection of black poplars for water use efficiency

    Directory of Open Access Journals (Sweden)

    Orlović Saša S.


    Full Text Available Photosynthesis, transpiration, water use efficiency (WUE and biomass production have been investigated in nine black poplar clones (section Aigeiros in three field experiments. Eastern cottonwood clones (Populus deltoides had the highest net photosynthesis and water use efficiency. European black poplar clones had the highest transpiration intensity. Correlation analysis showed that net photosynthesis was in a high positive correlation with biomass. Medium negative correlations existed between WUE and net photosynthesis, transpiration and biomass and WUE and biomass. The study showed a pronounced interclonal variability of the physiological and growth characters under study.

  9. Kinetic investigation of the oxidation of naval excess hazardous materials in supercritical water for the design of a transpiration-wall reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rice, S.F.; Hanush, R.G.; Hunter, T.B. [and others


    Experiments were conducted in Sandia`s supercritical fluids reactor (SFR) to generate data for the design of a transpiration-wall supercritical water oxidation (SCWO) reactor. The reactor is intended for the disposal of hazardous material generated on naval vessels. The design parameters for the system require an accurate knowledge of destruction efficiency vs. time and temperature. Three candidate materials were selected for testing. The experiments consisted of oxidizing these materials in the SFR at isothermal conditions over the temperature range of 400-550C at 24.1 MPa. A small extrapolation of the results shows that these materials can be adequately destroyed (to 99.9% destruction removal efficiency, DRE, based on total organic carbon (TOC) in the effluent) in approximately 5 seconds at 600C. The results vary smoothly and predictably with temperature such that extrapolation to higher temperatures beyond the experimental capabilities of the SFR can be made with reasonable confidence. The preliminary design of the transpiration-wall reactor has a rapid heat-up section within the reactor vessel that requires the addition of a fuel capable of quickly reacting with oxygen at temperatures below 500C. Candidate alcohols and JP-5 jet fuel were evaluated in this context. Oxidation rates for the alcohols were examined using in situ Raman spectroscopy. In addition, the potential utility of supplying the oxidizer line with hydrogen peroxide as an additive to enhance rapid initiation of the feed at unusually low temperatures was investigated. Experiments were conducted in the Supercritical Constant Volume Reactor (SCVR) using hydrogen peroxide as the initial oxidizing species. The results show that this concept as a method of enhancing low temperature reactivity appears to fail because thermal decomposition of the hydrogen peroxide is more rapid than the fuel oxidation rate at low temperatures. 8 refs., 16 figs., 5 tabs.

  10. Hydraulic Limits on Maximum Plant Transpiration (United States)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.


    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water

  11. Fotossíntese, condutância estomática e transpiração em pupunheira sob deficiência hídrica Photosynthesis, stomatal conductance and transpiration in peach palm under water stress

    Directory of Open Access Journals (Sweden)

    Maria Aparecida José de Oliveira


    . Data were collected daily in a laboratory, under a photosynthetic photon flux (PPF of 1200 mum-2 s-1, and studied by variance and regression analysis. Significant decreases of leaf water potential values and gas exchange rates were verified when water was withhold for more than six days. The smallest values were found at the tenth day without water replacement, with a reduction of 92% of the net photosynthetic rate, 87% of the stomatal conductance and 70% of the transpiration. By that time, the smallest measured leaf water potential was --1.9 MPa. Recovering from water stress was accomplished two days after rewatering, except for stomatal conductance. The partial closing of the stomata (decrease in stomatal conductance and the reduction of photosynthesis, suggest the existence of an acclimation mechanism of the peach palm, diminishing water loss under moderate stress.

  12. Modelling Interception and Transpiration at Monthly Time Steps Introducing Daily Variability through Markov Chains

    NARCIS (Netherlands)

    De Groen, M.M.


    This dissertation presents improved equations for monthly water resources models, in particular for interception and transpiration. Most ofthe existing monthly models do not make a distinction between interception and transpiration, while this distinction is very important for management purposes.

  13. Community of Practice Applications from WaterNet: The NASA Water Cycle Solutions Network (United States)

    Matthews, D.; Brilly, M.; Gregoric, G.; Polajnar, J.; Houser, P.; Rodell, M.; Lehning, M.


    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. It addresses a means for enhancing the social and economic developments of nations by increased use of practical research products from the terrestrial water cycle for making informed decisions. This paper provides a summary of the Water Cycle Community of Practice (CoP) plans and examples of Land Surface Model (LSM) applications for extreme events - floods, droughts, and heavy snowstorms in Europe. It discusses the concept of NASA's solutions networks focusing on the WaterNet. It invites EGU teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team is developing WaterNet by engaging relevant NASA water cycle research and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base. Recognizing the many existing highly valuable water-related science and application networks in the US and EU, we focus the balance of our efforts on enabling their interoperability - facilitating access and communications among decision-makers and scientists. We present results of our initial focus on identification, collection, and analysis of the two end points, these being the NWRs and EWRs and water related DSTs. We

  14. Biophysical control of whole tree transpiration under an urban environment in Northern China (United States)

    Lixin Chen; Zhiqiang Zhang; Zhandong Li; Jianwu Tang; Peter Caldwell; et al


    Urban reforestation in China has led to increasing debate about the impact of urban trees and forests on water resources. Although transpiration is the largest water flux leaving terrestrial ecosystems, little is known regarding whole tree transpiration in urban environments. In this study, we quantified urban tree transpiration at various temporal scales and examined...

  15. respiration and transpiration characteristics of selected fresh fruits

    African Journals Online (AJOL)


    Respiration and transpiration characteristics of mushrooms, strawberries, broccoli and tomatoes were determined under different ...... (L.) Gauthier and (A.) Gosselin. 1995. Stomatal and cuticular transpiration of greenhouse tomato plants in response to high solution electrical conductivity and low soil water content. J. AMER.

  16. Predicting Maize Transpiration, Water Use and Productivity for Developing Improved Supplemental Irrigation Schedules in Western Uruguay to Cope with Climate Variability

    Directory of Open Access Journals (Sweden)

    Luis Giménez


    Full Text Available Various maize irrigation treatments including full and deficit irrigation were used to calibrate and validate the soil water balance and irrigation scheduling model SIMDualKc at Paysandú, western Uruguay. The model adopts the dual crop coefficient approach to partition actual evapotranspiration (ETc act into actual transpiration (Tc act and soil evaporation (Es. Low errors of estimation were obtained for simulating soil water content (Root mean square errors (RMSE ≤ 0.014 cm3·cm−3 with calibrated parameters, and RMSE ≤ 0.023 cm3·cm−3 with default parameters. The ratio Es/Tc act ranged from 26% to 33% and Es/ETc act varied from 20% to 25%, with higher values when the crop was stressed offering less soil coverage. Due to rainfall regime, runoff and deep percolation were quite large. The Stewarts phasic model was tested and used to predict maize yield from Tc act with acceptable errors, in the range of those reported in literature. Water productivity values were high, ranging 1.39 to 2.17 kg·m−3 and 1.75 to 2.55 kg·m−3 when considering total water use and crop ET, respectively. Using a 22-year climatic data series, rainfed maize was assessed with poor results for nearly 40% of the years. Differently, alternative supplemental irrigation schedules assessed for the dry and very dry years have shown good results, particularly for mild deficit irrigation. Overall, results show appropriateness for using SIMDualKc to support the irrigation practice.

  17. Fruit load governs transpiration of olive trees (United States)

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon


    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. PMID:26802540

  18. Mineralizing urban net-zero water treatment: Phase II field results and design recommendations (United States)

    Net-zero water (NZW) systems, or water management systems achieving high recycling rates and low residuals generation so as to avoid water import and export, can also conserve energy used to heat and convey water, while economically restoring local eco-hydrology. However, design ...

  19. Irrigation Alternatives to Meet Army Net Zero Water Goals (United States)


    water requirements and natural precipitation.  Use native or “climate-appropriate” material  Can reduce irrigation water by 50%, stands up better...Design plant groupings based on similar water requirements and rooting depths (hydrozoning)  Design with water use efficiency, potential for water

  20. The influence of fish culture in floating net cages on microbial indicators of water quality

    National Research Council Canada - National Science Library

    Gorlach-Lira, K; Pacheco, C; Carvalho, L C T; Melo Júnior, H N; Crispim, M C


    ... (Oreochromis niloticus) in floating net cages. The physico-chemical parameters, counts of mesophilic total aerobic bacteria, total and thermotolerant coliforms and fecal streptococci, and the presence of Escherichia coli in samples of water...

  1. Net infiltration of the Death Valley regional ground-water flow system, Nevada and California (United States)

    U.S. Geological Survey, Department of the Interior — Recharge in the Death Valley regional ground-water flow system (DVRFS) was estimated from net infiltration simulated by Hevesi and others (2003) using a...

  2. Water use efficiency of net primary production in global terrestrial ...

    Indian Academy of Sciences (India)

    The carbon and water cycles of terrestrial ecosystems, which are strongly coupled via water use efficiency (WUE), are influenced by global climate change. To explore the relationship between the carbon and water cycles and predict the effect of climate change on terrestrial ecosystems, it is necessary to study the WUE in ...

  3. Sap flow measurements to determine the transpiration of facade greenings (United States)

    Hölscher, Marie-Therese; Nehls, Thomas; Wessolek, Gerd


    Facade greening is expected to make a major contribution to the mitigation of the urban heat-island effect through transpiration cooling, thermal insulation and shading of vertical built structures. However, no studies are available on water demand and the transpiration of urban vertical green. Such knowledge is needed as the plants must be sufficiently watered, otherwise the posited positive effects of vertical green can turn into disadvantages when compared to a white wall. Within the framework of the German Research Group DFG FOR 1736 "Urban Climate and Heat Stress" this study aims to test the practicability of the sap flow technique for transpiration measurements of climbing plants and to obtain potential transpiration rates for the most commonly used species. Using sap flow measurements we determined the transpiration of Fallopia baldschuanica, Parthenocissus tricuspidata and Hedera helix in pot experiments (about 1 m high) during the hot summer period from August 17th to August 30th 2012 under indoor conditions. Sap flow measurements corresponded well to simultaneous weight measurement on a daily base (factor 1.19). Fallopia baldschuanica has the highest daily transpiration rate based on leaf area (1.6 mm d-1) and per base area (5.0 mm d-1). Parthenocissus tricuspidata and Hedera helix show transpiration rates of 3.5 and 0.4 mm d-1 (per base area). Through water shortage, transpiration strongly decreased and leaf temperature measured by infrared thermography increased by 1 K compared to a well watered plant. We transferred the technique to outdoor conditions and will present first results for facade greenings in the inner-city of Berlin for the hottest period in summer 2013.

  4. Biophysical control of whole tree transpiration under an urban environment in Northern China (United States)

    Chen, Lixin; Zhang, Zhiqiang; Li, Zhandong; Tang, Jianwu; Caldwell, Peter; Zhang, Wenjuan


    SummaryUrban reforestation in China has led to increasing debate about the impact of urban trees and forests on water resources. Although transpiration is the largest water flux leaving terrestrial ecosystems, little is known regarding whole tree transpiration in urban environments. In this study, we quantified urban tree transpiration at various temporal scales and examined the biophysical control of the transpiration pattern under different water conditions to understand how trees survive in an urban environment. Concurrent with microclimate and soil moisture measurements, transpiration from C edrus deodara(Roxb)Loud ., Zelkova schneideriana Hend.-Mazz., Euonymus bungeanus Maxim., and Metasequoia glyptostroboides Hu et cheng was measured over a 2-year period using thermal dissipation probe (TDP) techniques. The average monthly transpiration rates reached 12.78 ± 0.73 (S.E.) mm, 1.79 ± 0.16 mm, 10.18 ± 0.55 mm and 19.28 ± 2.24 mm for C. deodara, Z.schneideriana, E. bungeanus and M. glyptostroboides, respectively. Transpiration rates from M. glyptostroboides reported here may need further study as this species showed much higher sap flows and greater transpiration fluctuation under different environmental conditions than other species. Because of deep soil moisture supply, summer dry spells did not reduce transpiration rates even when tree transpiration exceeded rainfall. While vapor pressure deficit ( VPD) was the dominant environmental factor on transpiration, trees controlled canopy conductance effectively to limit transpiration in times of water stress. Our results provide evidence that urban trees could adopt strong physiological control over transpiration under high evaporative demands to avoid dehydration and can make use of water in deeper soil layers to survive summer dry spells. Moreover, urban trees have the ability to make the best use of precipitation when it is limited, and are sensitive to soil and air dryness.

  5. Net ecosystem productivity, net primary productivity and ecosystem carbon sequestration in a Pinus radiata plantation subject to soil water deficit

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A.; Kelleher, F. M. [Lincoln Univ., Soil Sience Dept., Lincoln, (New Zealand); McSeveny, T. M. [Manaaki Whenua-Landcare Research, Lincoln, (New Zealand); Byers, J. N. [Almuth Arneth Landcare Research, Lincoln (New Zealand)


    Tree carbon uptake (net primary productivity excluding fine root turnover, NPP`) in pine trees growing in a region of New Zealand subject to summer soil water deficit was investigated jointly with canopy assimilation (A{sub c}) and ecosystem-atmosphere carbon exchange rate (net ecosystem productivity, NEP). Canopy assimilation and NEP were used to drive a biochemically-based and environmentally constrained model validated by seasonal eddy covariance measurements. Over a three year period with variable rainfall annual NPP` and NEP showed significant variations. At the end of the growing season, carbon was mostly allocated to wood, with nearly half to stems and about a quarter to coarse roots. On a biweekly basis NPP` lagged behind A{sub c}, suggesting the occurrence of intermediate carbon storage. On an annual basis, however the NPP`/A{sub c} ratio indicated a conservative allocation of carbon to autotrophic respiration. The combination of data from measurements with canopy and ecosystem carbon fluxes yielded an estimate of heterotrophic respiration (NPP`-NEP) of approximately 30 per cent of NPP` and 50 per cent NEP. The annual values of NEP and NPP` can also be used to derive a `best guess` estimate of the annual below-ground carbon turnover rate, assuming that the annual changes in the soil carbon content is negligible. 46 refs., 7 figs.

  6. Can net photosynthesis and water relations provide a clue on the ...

    African Journals Online (AJOL)

    Net photosynthesis, sap flow density (SFD) and water use efficiency (WUE) were measured in a Quercus suber forest in north Tunisia in an attempt to explain the forest decline. In general, sap flow was positively related to light intensity and water loss, indicating that high light intensities can increase the SFD up to the ...

  7. TIGER-NET – enabling an Earth Observation capacity for Integrated Water Resource Management in Africa

    DEFF Research Database (Denmark)

    Walli, A.; Tøttrup, C.; Naeimi, V.

    As part of the TIGER initiative [1] the TIGER-NET project aims to support the assessment and monitoring of water resources from watershed to transboundary basin level delivering indispensable information for Integrated Water Resource Management in Africa through: 1. Development of an open-source ...

  8. A regional and multi-faceted approach to postgraduate water education - the WaterNet experience in Southern Africa (United States)

    Jonker, L.; van der Zaag, P.; Gumbo, B.; Rockström, J.; Love, D.; Savenije, H. H. G.


    This paper reports the experience of a regional network of academic departments involved in water education that started as a project and evolved, over a period of 12 yr, into an independent network organisation. The paper pursues three objectives. First, it argues that it makes good sense to organise postgraduate education and research on water resources on a regional scale and presents the WaterNet experience as an example that a regional approach can work. Second, it presents preliminary findings and conclusions that the regional approach presented by WaterNet did make a contribution to the capacity needs of the region both in terms of management and research capacity. Third, it draws two generalised lessons from the WaterNet experience. Lesson one pertains to the importance of legitimate ownership and an accountability structure for network effectiveness. Lesson two is related to the financial and intellectual resources required to jointly developing educational programmes through shared experience.

  9. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. (United States)

    Moshelion, Menachem; Halperin, Ofer; Wallach, Rony; Oren, Ram; Way, Danielle A


    The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions. © 2014 John Wiley & Sons Ltd.

  10. UV sensitivity of planktonic net community production in ocean surface waters


    Regaudie de Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.


    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we tes...

  11. UV sensitivity of planktonic net community production in ocean surface waters (United States)

    Regaudie-de-Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.


    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we test the sensitivity of net community production (NCP) to UVB of planktonic communities in surface waters across contrasting regions of the ocean. We observed here that UVB radiation affects net plankton community production at the ocean surface, imposing a shift in NCP by, on average, 50% relative to the values measured when excluding partly UVB. Our results show that under full solar radiation, the metabolic balance shows the prevalence of net heterotrophic community production. The demonstration of an important effect of UVB radiation on NCP in surface waters presented here is of particular relevance in relation to the increased UVB radiation derived from the erosion of the stratospheric ozone layer. Our results encourage design future research to further our understanding of UVB effects on the metabolic balance of plankton communities.

  12. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake (United States)

    Wehr, Richard; Commane, Róisín; Munger, J. William; McManus, J. Barry; Nelson, David D.; Zahniser, Mark S.; Saleska, Scott R.; Wofsy, Steven C.


    Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface-atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem-atmosphere exchange of OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further

  13. TIGER-NET- Enabling An Earth Observation Capacity For Integrated Water Resource Management In Africa (United States)

    Walli, A.; Tøttrup, C.; Naeimi, V.; Bauer-Gottwein, P.; Bila, M.; Mufeti, P.; Tumbulto, J. W.; Rajah, C.; Moloele, LS.; Koetz, B.


    As part of the TIGER initiative [1] the TIGER-NET project aims to support the assessment and monitoring of water resources from watershed to transboundary basin level delivering indispensable information for Integrated Water Resource Management in Africa through: 1. Development of an open-source Water Observation and Information Systems (WOIS) for monitoring, assessing and inventorying water resources in a cost- effective manner; 2. Capacity building and training of African water authorities and technical centers to fully exploit the increasing observation capacity offered by current and upcoming generations of satellites, including the Sentinel missions. Dedicated application case studies have been developed and demonstrated covering all EO products required by and developed with the participating African water authorities for their water resource management tasks, such as water reservoir inventory, water quality monitoring, water demand planning as well as flood forecasting and monitoring.

  14. Seasonal and Topographic Variation in Net Primary Productivity and Water Use Efficiency in a Southwest Sky Island Fores (United States)

    Murphy, P.; Minor, R. L.; Sanchez-Canete, E. P.; Potts, D. L.; Barron-Gafford, G.


    Western North American Forests represent an uncertain sink for atmospheric carbon. While understanding of the physical drivers of productivity in these forests has grown in the last decade, the relative influence of topographic position in the complex terrain of montane systems remains understudied. The high-latitude mixed conifer forest ecosystems of the southern Arizona Madrean Sky Islands are characterized by low precipitation, high annual variation in temperature, and heterogeneous topography. Eddy covariance measurements these forests show distinct seasonal trends due to temperature and bi-modal precipitation patterns, but these measurements are unable to resolve potential differences in physiological function on opposing north and south aspects within the footprint of the tower. Most of the year, north aspects receive less energy input due to the oblique angle of incoming solar radiation, leading to a divergence in soil moistures and temperatures. However, overall movement of energy and material is much higher on these north aspects on an annual basis. The implications of these differences for net primary productivity (NPP) and water use efficiency (WUE) are poorly addressed in the literature. We evaluated the relative control that topography has on the physical environment (soil moisture and temperature) and how these factors affect water stress, NPP, and WUE. We combined leaf-level measurements of photosynthesis and transpiration with other physiological and meteorological measurements to determine how the dominant vegetation functions as a result of microclimatic conditions. Initial results from the spring and summer measurement periods suggest topographical differences in microclimate, resulting in differences in NPP in the spring, but not the summer. Also, each of the three species on the same aspect responded differently to the same microclimatic conditions, underscoring interspecific variation at the site. How might these patterns change throughout an

  15. Transpiration of oak trees in the oak savannas of the Southwestern Borderlands region (United States)

    Peter F. Ffolliott; Cody L. Stropki; Aaron T. Kauffman; Gerald J. Gottfried


    Transpiration of oak trees on the Cascabel watersheds in the savannas on the eastern slope of the Peloncillo Mountains in southwestern New Mexico has been estimated by the sap-flow method. Transpiration represents the largest loss of gross precipitation falling on a watershed in approximations of water budgets for the more densely stocked oak woodlands of the...

  16. Why a regional approach to postgraduate water education makes sense - the WaterNet experience in Southern Africa (United States)

    Jonker, L.; van der Zaag, P.; Gumbo, B.; Rockström, J.; Love, D.; Savenije, H. H. G.


    This paper reports the experience of a regional network of academic departments involved in water education that started as a project and evolved, over a period of 12 yr, into an independent network organisation. The paper pursues three objectives. First, it argues that it makes good sense to organise postgraduate education and research on water resources on a regional scale. This is because water has a transboundary dimension that poses delicate sharing questions, an approach that promotes a common understanding of what the real water-related issues are, results in future water specialists speaking a common (water) language, enhances mutual respect, and can thus be considered an investment in future peace. Second, it presents the WaterNet experience as an example that a regional approach can work and has an impact. Third, it draws three generalised lessons from the WaterNet experience. Lesson 1: For a regional capacity building network to be effective, it must have a legitimate ownership structure and a clear mandate. Lesson 2: Organising water-related training opportunities at a regional and transboundary scale makes sense - not only because knowledge resources are scattered, but also because the topic - water - has a regional and transboundary scope. Lesson 3: Jointly developing educational programmes by sharing expertise and resources requires intense intellectual management and sufficient financial means.

  17. Motionless heat pump - A new application of thermal transpiration (United States)

    Kugimoto, K.; Hirota, Y.; Kizaki, Y.


    A motionless heat pump system using a combination of thermal transpiration flow of a rarefied gas and a phase change of water has been proposed. This system consists primarily of a thermal transpiration pump, referred to as a Knudsen pump, and two chambers filled with water and water vapor, respectively. The Knudsen pump moves water vapor from one chamber to the other. The pressure drop in the outflow chamber promotes the evaporation of water and heat absorption, whereas the pressure increase in the inflow chamber promotes vapor condensation and heat generation. The maximum pressure difference and mass flow rate obtained by a Knudsen pump composed of a glass fiber filter were 57.6 Pa and 0.0484 mg/s/cm2, respectively, at a temperature difference across the filter of 120 K between the two chambers. The vapor delivery capacity of this pump was also measured experimentally.

  18. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period]. (United States)

    Schulze, E -D; Lange, O L; Koch, W


    The influence of climatic factors on net photosynthesis, dark respiration and transpiration was investigated in the Negev Desert at the end of the dry summer period when plant water stress was at a maximum. Species studied included: dominant species of the natural vegetation (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), cultivated plants receiving rainfall and run-off water during the winter season in the run-off farm Avdat (Prunus armeniaca, Vitis vinifera), and irrigated cultivated plants receiving additional water during the summer season (Citrullus colocynthis, Datura metel). 1. Light saturation of net photosynthesis was reached at 60-90 klx conforming to the high solar radiation intensities of the desert. 2. Maximum rates of CO2 uptake per unit of dry weight for the irrigated mesomorphic plants was ten times that of the wild plants. However, in comparison to the other species, maximal rates of CO2 uptake for wild plants were higher when calculated on a leaf area basis than when represented on a dry weight basis. Maximum rates of net photosynthesis per unit chlorophyll content for some of the wild plants (Salsola and Noaea) were comparable to those of the cultivated Vitis and irrigated Citrullus and Datura, Hammada exhibited even higher rates than Prunus. This demonstrates the great photosynthetic capacity of the wild plants even at the end of the dry season. 3. The upper temperature compensation point for net photosynthesis of the wild plants was unusually high as an adaptation to the temperatures of the habitat. Compensation points higher than 49°C exceed the maxima known so far for other flowering species. Maximum rates of net photosynthesis of Hammada were measured when the temperature of the photosynthetic organs was 37°C; at 49°C photosynthesis was only reduced by 50%. 4. Leaf temperature affects plant gas exchange by influencing stomatal aperture. Diffusion resistance of leaves

  19. Net Zero Fort Carson: Integrating Energy, Water, and Waste Strategies to Lower the Environmental Impact of a Military Base (United States)

    Military bases resemble small cities and face similar sustainability challenges. As pilot studies in the U.S. Army Net Zero program, 17 locations are moving to 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases target net z...

  20. Measuring Transpiration to Regulate Winter Irrigation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa [Auburn University


    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  1. How Reliable Are Heat Pulse Velocity Methods for Estimating Tree Transpiration?

    Directory of Open Access Journals (Sweden)

    Michael A. Forster


    Full Text Available Transpiration is a significant component of the hydrologic cycle and its accurate quantification is critical for modelling, industry, and policy decisions. Sap flow sensors provide a low cost and practical method to measure transpiration. Various methods to measure sap flow are available and a popular family of methods is known as heat pulse velocity (HPV. Theory on thermal conductance and convection, that underpins HPV methods, suggests transpiration can be directly estimated from sensor measurements without the need for laborious calibrations. To test this accuracy, transpiration estimated from HPV sensors is compared with an independent measure of plant water use such as a weighing lysimeter. A meta-analysis of the literature that explicitly tested the accuracy of a HPV sensors against an independent measure of transpiration was conducted. Data from linear regression analysis was collated where an R2 of 1 indicates perfect precision and a slope of 1 of the linear regression curve indicates perfect accuracy. The average R2 and slope from all studies was 0.822 and 0.860, respectively. However, the overall error, or deviation from real transpiration values, was 34.706%. The results indicate that HPV sensors are precise in correlating heat velocity with rates of transpiration, but poor in quantifying transpiration. Various sources of error in converting heat velocity into sap velocity and sap flow are discussed including probe misalignment, wound corrections, thermal diffusivity, stem water content, placement of sensors in sapwood, and scaling of point measurements to whole plants. Where whole plant water use or transpiration is required in a study, it is recommended that all sap flow sensors are calibrated against an independent measure of transpiration.

  2. Transpiration in an oil palm landscape: effects of palm age (United States)

    Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.


    Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25-year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12-year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of 2 years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2-year old to 2.5 mm day-1 in a 12-year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Comparing sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2-year old stand and 53 % in the 12-year old stand, indicating variable and substantial additional sources of evaporation, e.g., from the soil, the ground vegetation and from trunk

  3. Wind effects on leaf transpiration challenge the concept of "potential evaporation" (United States)

    Schymanski, S. J.; Or, D.


    Transpiration is commonly conceptualised as a fraction of some potential rate, driven by so-called "atmospheric evaporative demand". Therefore, atmospheric evaporative demand or "potential evaporation" is generally used alongside with precipitation and soil moisture to characterise the environmental conditions that affect plant water use. Consequently, an increase in potential evaporation (e.g. due to climate change) is believed to cause increased transpiration and/or vegetation water stress. In the present study, we investigated the question whether potential evaporation constitutes a meaningful reference for transpiration and compared sensitivity of potential evaporation and leaf transpiration to atmospheric forcing. A physically-based leaf energy balance model was used, considering the dependence of feedbacks between leaf temperature and exchange rates of radiative, sensible and latent heat on stomatal resistance. Based on modelling results and supporting experimental evidence, we conclude that stomatal resistance cannot be parameterised as a factor relating transpiration to potential evaporation, as the ratio between transpiration and potential evaporation not only varies with stomatal resistance, but also with wind speed, air temperature, irradiance and relative humidity. Furthermore, the effect of wind speed in particular implies increase in potential evaporation, which is commonly interpreted as increased "water stress", but at the same time can reduce leaf transpiration, implying a decrease in water demand at leaf scale.

  4. Ecophysiological variation of transpiration of pine forests: synthesis of new and published results (United States)

    Pantana Tor-ngern; Ram Oren; Andrew C. Oishi; Joshua M. Uebelherr; Sari Palmroth; Lasse Tarvainen; Mikaell Ottosson-Löfvenius; Sune Linder; Jean-Christophe Domec; Torgny Näsholm


    Canopy transpiration (EC) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water, and carbon cycles of forests. Quantifying EC is of both scientific and practical importance, providing information relevant to...

  5. Mass transfer relations for transpiration evaporation experiments

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.; Lankhorst, A.M.; Habraken, A.


    Transpiration evaporation experiments are often used to study evaporation kinetics from liquids or melts. The mass transport of volatile species in a transpiration experiment depends among others on the flow conditions of the carrier gas in the tube and on the geometrical configuration. For a

  6. Species differences in evergreen tree transpiration at daily, seasonal, and interannual timescales (United States)

    Link, P.; Simonin, K. A.; Oshun, J.; Dietrich, W.; Dawson, T. E.; Fung, I.


    Mediterranean climates have rainy winter and dry summer seasons, so the season of water availability (winter) is out of phase with the season of light availability and atmospheric demand (summer). In this study, we investigate the seasonality of tree transpiration in a Mediterranean climate, using observations from a small (8000 m2), forested, steep (~35 degree) hillslope at the UC Angelo Reserve, in the northern California Coast Range. The site is instrumented with over 850 sensors transmitting hydrologic and meteorological data at less than 30-minute intervals. Here, we analyze four years of high-frequency measurements from 45 sap flow sensors in 30 trees, six depth profiles of soil moisture measured by TDR, and spatially distributed measurements of air temperature, relative humidity, solar radiation, and other meteorological variables. The sap flow measurements show a difference in transpiration seasonality between common California Coast Range evergreen tree species. Douglas firs (Pseudotsuga menziesii) maintain significant transpiration through the winter rainy season and transpire maximally in the spring, but Douglas fir transpiration declines sharply in the summer dry season. Madrones (Arbutus menziesii), in contrast, transpire maximally in the summer dry season. The seasonal patterns are quantified using principal component analysis. Nonlinear regressions against environmental variables show that the difference in transpiration seasonality arises from different sensitivities to atmospheric demand (VPD) and root-zone moisture. The different sensitivities to VPD and root-zone moisture cause species differences not just in seasonal patterns, but also in high temporal frequency (daily to weekly) variability of transpiration. We also contrast the interannual variability of dry season transpiration among the different species, and show that precipitation above a threshold triggers a Douglas fir response. Finally, we use a simple 1-D model of the atmospheric

  7. Climatic and oceanic forcing of new, net, and diatom production in the North Water (United States)

    Tremblay, Jean-Eric; Gratton, Yves; Fauchot, Juliette; Price, Neil M.

    New, net, and diatom production in the North Water were estimated during May to July 1998 from in vitro measurements of nitrate uptake and mesoscale temporal changes in the inventories of nitrate, silicate, oxygen, and inorganic carbon (DIC). Sampling stations were divided into two domains according to the position of the dominant water types: the silicate-rich Arctic water (SRAW) and Baffin Bay Water (BBW). BBW dominated in the southeast and was associated with relatively shallow upper mixed layers (UMLs) and weak horizontal advection. A phytoplankton bloom started in late April in BBW and grew slowly over 7 weeks, during which time the build-up of particulate organic nitrogen and carbon accounted for ca. 80% of the nitrate and DIC deficit, respectively. Over half of the new production (1.37 g C m -2 d -1) during this period was attributed to wind-driven replenishment of nitrate in the euphotic zone. The bloom culminated when seasonally declining winds and rising temperatures severed the UML from the deep nutrient reservoir. The same change in weather induced ice melt, stratification, and bloom development in northern SRAW, which had previously been characterized by deep UMLs. Collectively, the results imply that the timing and magnitude of blooms in the North Water are controlled by a succession of oceanic and climatic forcings. New C production in the North Water during April to July (1.11 g C m -2 d -1) was an order of magnitude higher than in adjacent waters and up to 8 times higher than in the Northeast Water polynya. As much as 80% of this production was mediated by diatoms >5 μm, suggesting potentially high and efficient C transfer to the herbivorous food web and deep waters.

  8. Multispectral airborne imagery in the field reveals genetic determinisms of morphological and transpiration traits of an apple tree hybrid population in response to water deficit. (United States)

    Virlet, Nicolas; Costes, Evelyne; Martinez, Sébastien; Kelner, Jean-Jacques; Regnard, Jean-Luc


    Genetic studies of response to water deficit in adult trees are limited by low throughput of the usual phenotyping methods in the field. Here, we aimed at overcoming this bottleneck, applying a new methodology using airborne multispectral imagery and in planta measurements to compare a high number of individuals.An apple tree population, grafted on the same rootstock, was submitted to contrasting summer water regimes over two years. Aerial images acquired in visible, near- and thermal-infrared at three dates each year allowed calculation of vegetation and water stress indices. Tree vigour and fruit production were also assessed. Linear mixed models were built accounting for date and year effects on several variables and including the differential response of genotypes between control and drought conditions.Broad-sense heritability of most variables was high and 18 quantitative trait loci (QTLs) independent of the dates were detected on nine linkage groups of the consensus apple genetic map. For vegetation and stress indices, QTLs were related to the means, the intra-crown heterogeneity, and differences induced by water regimes. Most QTLs explained 15-20% of variance.Airborne multispectral imaging proved relevant to acquire simultaneous information on a whole tree population and to decipher genetic determinisms involved in response to water deficit. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Bending in cut Gerbera jamesonii flowers relates to adverse water relations and lack of stem sclerenchyma development, not to expansion of the stem central cavity or stem elongation

    NARCIS (Netherlands)

    Perik, R.R.J.; Raze, D.; Harkema, H.; Zhong, Y.; Doorn, van W.G.


    We studied stem bending in cut Gerbera flowers (Gerbera jamesonii cv. Tamara). Bending might be due to turgor loss. During vase life water uptake decreased more rapidly than transpiration, hence the flowers lost water. Net water loss did not occur in the floral head, but was found in the stem. It

  10. Structural adjustments in resprouting trees drive differences in post-fire transpiration. (United States)

    Nolan, Rachael H; Mitchell, Patrick J; Bradstock, Ross A; Lane, Patrick N J


    Following disturbance many woody species are capable of resprouting new foliage, resulting in a reduced leaf-to-sapwood area ratio and altered canopy structure. We hypothesized that such changes would promote adjustments in leaf physiology, resulting in higher rates of transpiration per unit leaf area, consistent with the mechanistic framework proposed by Whitehead et al. (Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692-700). We tested this in Eucalyptus obliqua L'Hér following a wildfire by comparing trees with unburnt canopies with trees that had been subject to 100% canopy scorch and were recovering their leaf area via resprouting. In resprouting trees, foliage was distributed along the trunk and on lateral branches, resulting in shorter hydraulic path lengths. We evaluated measurements of whole-tree transpiration and structural and physiological traits expected to drive any changes in transpiration. We used these structural and physiological measurements to parameterize the Whitehead et al. equation, and found that the expected ratio of transpiration per unit leaf area between resprouting and unburnt trees was 3.41. This is similar to the observed ratio of transpiration per unit leaf area, measured from sapflow observations, which was 2.89 (i.e., resprouting trees had 188% higher transpiration per unit leaf area). Foliage at low heights (tree crown (14-18 m) in a number of traits, including higher specific leaf area, midday leaf water potential and higher rates of stomatal conductance and photosynthesis. We conclude that these post-fire adjustments in resprouting trees help to drive increased stomatal conductance and hydraulic efficiency, promoting the rapid return of tree-scale transpiration towards pre-disturbance levels. These transient patterns in canopy transpiration have important implications for modelling stand-level water fluxes

  11. Heart rate and heart rate variability response to the transpiration of vortex-water by Begonia Eliator plants to the air in an office during visual display terminal work. (United States)

    Johansson, Benny


    This study explores the effects of vortex-water transpired from indoor greenery to office air, in relation to heart rate and heart rate variability during exposure to an electromagnetic field (EMF) from a visual display terminal (VDT). The study followed a randomized prospective single group cross-over design. Fifty (50) healthy volunteers, seated in any ordinary working posture in front of a VDT. Electrocardiography was measured in five 10-minute sequential tests. The VDT was turned off during the first test and switched on for the subsequent four tests. During tests 3 and 4, one of two Begonia Eliator plants, irrigated with either tap water or vortex-rotated (active) tap water during growth, was placed adjacent to the VDT. Heart rate, heart rate variability (HRV) and power spectral density (PSD) were analyzed. The heart rate was unchanged at the start of EMF exposure. The time domain measurements indicated a significant decrease in heart rate and a significant increase in HRV, accompanied by higher vagal tone in the presence, and finally in the absence, of the active plant. PSD parameters revealed significantly higher total power, as well as an increase in low frequencies (LF) and high frequencies (HF) in the condition induced by the active plant as well as after its removal. Very low frequencies (VLF) increased at EMF exposure whereas normally HF power decreased, accompanied by a rise in LF power and LF/HF ratio. HF power was higher at exposure to the active compared to the control plant. Spectral power density diagrams revealed an intensified spectral power band at frequencies of around 0.1 Hz at the condition of both plants, indicating systemic autonomic stability. The findings suggest that the parasympathetic response was associated with reduced heart rate, implicating restoration and maintenance of metabolic energy resources mediated by an involuntary adaptation to active plant-related stimuli.

  12. Model estimates of net primary productivity, evaportranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States (United States)

    Hanqin Tian; Guangsheng Chen; Mingliang Liu; Chi Zhang; Ge Sun; Chaoqun Lu; Xiaofeng Xu; Wei Ren; Shufen Pan; Arthur. Chappelka


    The effects of global change on ecosystem productivity and water resources in the southern United States (SUS), a traditionally ‘water-rich’ region and the ‘timber basket’ of the country, are not well quantified. We carried out several simulation experiments to quantify ecosystem net primary productivity (NPP), evapotranspiration (ET)...

  13. How soil moisture mediates the influence of transpiration on streamflow at hourly to interannual scales in a forested catchment (United States)

    G.W. Moore; J.A. Jones; B.J. Bond


    The water balance equation dictates that streamflow may be reduced by transpiration. Yet temporal disequilibrium weakens the relationship between transpiration and streamflow in many cases where inputs and outputs are unbalanced. We address two critical knowledge barriers in ecohydrology with respect to time, scale dependence and lags. Study objectives were to...

  14. The effects of environmental factors on the transpiration of leaves, with special reference to stomatal light response

    NARCIS (Netherlands)

    Kuiper, P.J.C.


    The transpiration of cut leaves (bean, tomato, Hyoscyamus ) in potometers was studied as affected by light intensity, leaf temperature and air humidity, with special attention to stomatal light response. Fick's diffusion law could be applied to evaporation of water and to transpiration of

  15. Numerical Analysis of Convection/Transpiration Cooling (United States)

    Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale


    An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary, layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.

  16. Transpiration, potassium uptake and flow in tobacco as affected by nitrogen forms and nutrient levels. (United States)

    Lu, Y X; Li, C J; Zhang, F S


    Ammonium can result in toxicity symptoms in many plants when it is supplied as the sole source of N. In this work, influences of different nitrogen forms at two levels (2 and 15 mm N) on growth, water relations and uptake and flow of potassium were studied in plants of Nicotiana tabacum 'K 326'. Xylem sap from different leaves was collected from 106-d-old tobacco plants cultured in quartz sand by application of pressure to the root system. Whole-shoot transpiration for each of the treatments was measured on a daily basis by weight determination. Total replacement of NO(3)(-)N by NH(4)(+)-N caused a substantial decrease in dry weight gain, even when plants grew under nutrient deficiency. Increasing nutrient concentration resulted in a greater net dry weight gain when nitrogen was supplied as NO(3)(-) or NH(4)NO(3), but resulted in little change when nitrogen was supplied as NH(4)(+). NH(4)(+)-N as the sole N-source also caused reduction in transpiration rate, changes in plant WUE (which depended on the nutrient levels) and a decrease in potassium uptake. However, the amount of xylem-transported potassium in the plants fed with NH(4)(+) was not reduced: it was 457 % or 596 % of the potassium currently taken up at low or high nutrient level, respectively, indicating a massive export from leaves and cycling of potassium in the phloem. Ammonium reduces leaf stomatal conductance of tobacco plants. The flow and partitioning of potassium in tobacco plants can be changed, depending on the nitrogen forms and nutrient levels.

  17. Reduced atmospheric pressure in Radish: Alteration of NCER and transpiration at decreased oxygen partial pressures (United States)

    Wehkamp, Cara Ann; Stasiak, Michael; Wheeler, Raymond; Dixon, Mike

    Fundamental to the future of space exploration is the development of advanced life support systems capable of maintaining crews for significant periods without re-supply from Earth. Significant research is focused on the development of bioregenerative life support systems to be used in conjunction with the current physico-chemical methods. These bioregenerative life support systems harness natural ecosystem processes and employ plant photosynthesis and transpiration to produce food, oxygen and regenerate water while consuming carbon dioxide. The forthcoming exploration of the Moon and Mars has prompted interest into the effects of hypobaria on plant development. Reduced atmospheric pressures will lessen the pressure gradient between the structure and the local environment thereby decreasing gas leakage and possibly the structural mass of the plant growth facility. In order to establish the optimal specifications for reduced pressure plant growth structures it is essential to determine the atmospheric pressure limits required for conventional plant development and growth. Due to its physiological importance, oxygen will compose a significant portion of these minimal environments. The objective of this study was to test the hypothesis that reduced atmospheric pressure and decreased oxygen partial pressures had no effect on radish productivity. Radishes (Raphanus sativa L. cv. Cherry Bomb II) were grown from seed in the University of Guelph's Hypobaric Plant Growth Chambers for a period of 21 days. Treatments included total pressures of 10, 33, 66 and 96 kPa and oxygen partial pressures of 2, 7, 14 and 20 kPa. Experiments demonstrated that reduced partial pressures of oxygen had a greater effect on radish growth than hypobaria. Results showed a reduction in net carbon exchange rate and transpiration with decreasing oxygen partial pressures leading to diminished productivity. Keywords: hypobaric, radish, oxygen partial pressure, variable pressure chamber

  18. Evaluating the Life Cycle Environmental Benefits and Trade-Offs of Water Reuse Systems for Net-Zero Buildings. (United States)

    Hasik, Vaclav; Anderson, Naomi E; Collinge, William O; Thiel, Cassandra L; Khanna, Vikas; Wirick, Jason; Piacentini, Richard; Landis, Amy E; Bilec, Melissa M


    Aging water infrastructure and increased water scarcity have resulted in higher interest in water reuse and decentralization. Rating systems for high-performance buildings implicitly promote the use of building-scale, decentralized water supply and treatment technologies. It is important to recognize the potential benefits and trade-offs of decentralized and centralized water systems in the context of high-performance buildings. For this reason and to fill a gap in the current literature, we completed a life cycle assessment (LCA) of the decentralized water system of a high-performance, net-zero energy, net-zero water building (NZB) that received multiple green building certifications and compared the results with two modeled buildings (conventional and water efficient) using centralized water systems. We investigated the NZB's impacts over varying lifetimes, conducted a break-even analysis, and included Monte Carlo uncertainty analysis. The results show that, although the NZB performs better in most categories than the conventional building, the water efficient building generally outperforms the NZB. The lifetime of the NZB, septic tank aeration, and use of solar energy have been found to be important factors in the NZB's impacts. While these findings are specific to the case study building, location, and treatment technologies, the framework for comparison of water and wastewater impacts of various buildings can be applied during building design to aid decision making. As we design and operate high-performance buildings, the potential trade-offs of advanced decentralized water treatment systems should be considered.

  19. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration (United States)

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur


    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr-1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.

  20. Effect of cholera toxin on glucose absorption and net movements of water and electrolytes in the intestinal loop of sheep. (United States)

    Hyun, H S; Onaga, T; Mineo, H; Kim, J T; Kato, S


    This study was designed to evaluate the effect of cholera toxin on glucose absorption and net movement of water and electrolytes in the jejunal loop of sheep. Intraluminal perfusion was performed at the rate of 1 ml/min with isotonic 10 mM glucose solution. Osmolality was adjusted by adding NaCl, and the outflow solution was collected every 10 min. After a 30 min control period, cholera toxin was applied intraluminally for 30 min at doses of 30, 60, and 120 micrograms/loop. In the control period, water, sodium and chloride were absorbed, while potassium and bicarbonate were secreted. Cholera toxin reversed the net absorption of water, sodium and chloride to net secretions, and this secretory response to cholera toxin was dose-dependent. Bicarbonate secretion was stimulated dose-dependently by cholera toxin. Potassium secretion was also increased at all doses, though this response was not dose-dependent. The net glucose absorption was decreased dose-dependently by cholera toxin. In conclusion, these results indicate that cholera toxin stimulates water and electrolyte secretion, and inhibits glucose absorption in the jejunal loop of sheep.

  1. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint. (United States)

    Novotny, V


    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  2. Effects of anti-transpirants on transpiration and energy use in greenhouse cultivation

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Kempkes, F.L.K.; Stanghellini, C.; Grashoff, C.


    Greenhouse production in North-West Europe consumes a lot of energy. The energy is needed for heating the greenhouse and controlling air humidity. Transpiration of a crop increases the energy use. The aim of this study was to explore the possibilities for the application of anti-transpirants to save

  3. An Integrated Model to Compare Net Electricity Generation for Carbon Dioxide- and Water-Based Geothermal Systems (United States)

    Agarwal, Vikas

    Utilization of supercritical CO2 as a geothermal fluid instead of water has been proposed by Brown in 2000 and its advantages have been discussed by him and other researchers such as Karsten Pruess and Fouillac. This work assesses the net electricity that could be generated by using supercritical CO2 as a geothermal working fluid and compares it with water under the same temperature and pressure reservoir conditions. This procedure provides a method of direct comparison of water and CO2 as geothermal working fluids, in terms of net electricity generation over time given a constant geothermal fluid flow rate. An integrated three-part model has been developed to determine net electricity generation for CO2- and water-based geothermal reservoirs. This model consists of a wellbore model, reservoir simulation, and surface plant simulation. To determine the bottomhole pressure and temperature of the geothermal fluid (either water or CO2) in the injection well, a wellbore model was developed using fluid-phase, thermodynamic equations of state, fluid dynamics, and heat transfer models. A computer program was developed that solves for the temperature and pressure of the working fluid (either water or CO 2) down the wellbore by simultaneously solving for the fluid thermophysical properties, heat transfer, and frictional losses. For the reservoir simulation, TOUGH2, a general purpose numerical simulator has been used to model the temperature and pressure characteristics of the working fluid in the reservoir. The EOS1 module of TOUGH2 has been used for the water system and the EOS2 module of the TOUGH2 code has been employed for the CO2 case. The surface plant is simulated using CHEMCAD, a chemical process simulator, to determine the net electricity generated. A binary organic (iso-pentane) Rankine cycle is simulated. The calculated net electricity generated for the optimized water and CO2 systems are compared over the working time of the reservoir. Based on the theoretical

  4. Sapwood Area as a Scaling Factor for Transpiration Rates (United States)

    Quinonez-Pinon, R.; Valeo, C.


    The process of transpiration in forested areas is a function of the spatial and temporal variations in vegetation structural attributes. Therefore, it is possible to scale up the transpiration of a single tree to multi-tree scales using vegetation structural patterns. The main goal of this research is to generate, apply and verify a procedure for scaling up the process of transpiration in forested areas over a range of three spatial scales {tree, plot, and catchment} and within daily/monthly/seasonal scale. In order to accomplish this goal, it is necessary to identify vegetation characteristics that are appropriate scaling factors. Sapwood is the active part of the xylem for water and nutrients transport towards the leaves. Thus, sapwood area is an effective scaling factor for transpiration rates from a single point in a tree to the whole tree. Also, sapwood area establishes the limit on the quantity of foliage for a tree, and thus its vigour. The study area for this research is in the Montane eco-region of southern Alberta which includes species of Jack Pine, Lodgepole Pine, Black Spruce and Trembling Aspen. Sapwood area is estimated as the cross-sectional area of the outer vascular tissue responsible for transporting water in the acropetal way. As sapwood depth does not form a perfect ring around the tree trunk, it was measured in the four cardinal compass points and then an average value for the estimation of sapwood area was obtained. Two methods were used to estimate sapwood depth: dye infusion and microscopic identification of sapwood tissue. While the former method is widely used, it was deemed unsuccessful in our study area due to damage that vessels/tracheids suffered during the coring/extraction process. The latter is a laborious method, due to the detailed scale at which the analysis is performed. However, it assures accuracies of roughly 98%\\ for determining sapwood depth. A more detailed comparison of both methods is presented. Results demonstrate a

  5. Effect of aerosols on evapo-transpiration (United States)

    Murthy, B. S.; Latha, R.; Manoj, Kumar; Mahanti, N. C.


    Aerosol direct radiative forcing (ARF) at surface is estimated from instantaneous, simultaneous observations of global radiation and aerosol optical depth (AOD) during winter, pre-monsoon and monsoon seasons over a tropical Indian station at the south-eastern end of Indo Gangetic basin. A comparison of observed and model derived ARFs is made and possible reasons for mismatch are discussed. Aerosol-induced reduction in solar visible (0.4-0.7 μm) spectrum energy (SWvis), contributing 44% to total broad band (0.3-3.0 μm) energy (SW), and its effect on surface energy fluxes are discussed in this study. Aerosols on an average reduce SWvis at surface by ˜27%. SWvis reduces by 14.5 W m-2 for a 0.1 increase in AOD when single scattering albedo (SSA) is 0.979 where as it reduces by 67.5 W m-2 when SSA is 0.867 indicating the significant effect of absorbing aerosols. Effect of ARF on net radiation, Rn, sensible heat flux, H and latent heat flux/evapo-transpiration, LE are estimated using the observed ratios of Rn/SW, H/Rn and LE/Rn, having reasonably good correlation. Observed Rn/SW varies between 0.59 and 0.75 with a correlation of 0.99 between them. LE, calculated by energy balance method, varies from 56% to 74% of Rn but with a lesser correlation, the possible reasons are discussed. For a given ARF, LE decreases by ˜14% and Rn by ˜15% with respect to observed LE and Rn respectively. The reduction in LE increases from 37% to 54% of ARF when LE increases from 220 W m-2 to 440 W m-2, suggesting that wet soil induces relatively larger reduction in evaporation. The results agree with earlier model sensitivity studies that Rn reduces more with increase in aerosol absorption which is compensated by proportionate reductions in H and LE depending on soil and atmospheric conditions.

  6. The effects of CO2 on growth and transpiration of radish (Raphanus sativus) in hypobaria (United States)

    Gohil, H. L.; Bucklin, R. A.; Correll, M. J.


    Plants grown on long-term space missions will likely be grown in low pressure environments (i.e., hypobaria). However, in hypobaria the transpiration rates of plants can increase and may result in wilting if the water is not readily replaced. It is possible to reduce transpiration by increasing the partial pressure of CO2 (pCO2), but the effects of pCO2 at high levels (>120 Pa) on the growth and transpiration of plants in hypobaria are not known. Therefore, the effects of pCO2 on the growth and transpiration of radish (Raphanus sativus var. Cherry Bomb II) in hypobaria were studied. The fresh weight (FW), leaf area, dry weight (DW), CO2 assimilation rates (CA), dark respiration rates (DR), and transpiration rates from 26 day-old radish plants that were grown for an additional seven days at different total pressures (33, 66 or 101 kPa) and pCO2 (40 Pa, 100 Pa and 180 Pa) were measured. In general, the dry weight of plants increased with CO2 enrichment and with lower total pressure. In limiting pCO2 (40 Pa) conditions, the transpiration for plants grown at 33 kPa was approximately twice that of controls (101 kPa total pressure with 40 Pa pCO2). Increasing the pCO2 from 40 Pa to 180 Pa reduced the transpiration rates for plants grown in hypobaria and in standard atmospheric pressures. However, for plants grown in hypobaria and high pCO2 (180 Pa) leaf damage was evident. Radish growth can be enhanced and transpiration reduced in hypobaria by enriching the gas phase with CO2 although at high levels leaf damage may occur.

  7. Transpiration by two poplar varieties grown as coppice for biomass production. (United States)

    Allen, Simon J.; Hall, Robin L.; Rosier, Paul T. W.


    Fast-growing tree clones selected for biomass plantations are highly productive and therefore likely to use more water than the agricultural crops they replace. We report field measurements of transpiration through the summer of 1994 from two poplar clones, Beaupré (Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh.) and Dorschkamp (P. deltoides x P. nigra L.), grown as unirrigated short-rotation coppice in southern England. Stand transpiration was quantified by scaling up from sap flow measurements made with the heat balance method in a sample of stems. Leaf conductances, leaf area development, meteorological variables and soil water deficit were also measured to investigate the response of the trees to the environment. High rates of transpiration were found for Beaupré. In June, when soil water was plentiful, the mean (+/- SD) transpiration rate over an 18-day period was 5.0 +/- 1.8 mm day(-1), reaching a maximum of 7.9 mm day(-1). Transpiration rates from Dorschkamp were lower, as a result of its lower leaf area index. High total leaf conductances were measured for both Beaupré (0.34 +/- 0.17 mol m(-2) s(-1)) and Dorschkamp (0.39 +/- 0.16 mol m(-2) s(-1)). Leaf conductance declined slightly with increasing atmospheric vapor pressure deficit in both clones, but only in Beaupré did leaf conductance decrease as soil water deficit increased.

  8. Mapping dry-season tree transpiration of an oak woodland at the catchment scale, using object-attributes derived from satellite imagery and sap flow measurements

    NARCIS (Netherlands)

    Reyes-Acosta, J.L.; Lubczynski, M.


    Tree transpiration is an important plant-physiological process that influences the water cycle, thereby influencing ecosystems and even the quantity of available water resources. However, direct tree-transpiration measurements, particularly at large spatial scales, are still rare, due to the

  9. Near-optimal response of instantaneous transpiration efficiency to vapour pressure deficit, temperature and [CO2] in cotton (Gossypium hirsutum L.). (United States)

    The instantaneous transpiration efficiency (ITE, the ratio of photosynthesis rate to transpiration) is an important variable for crops, because it ultimately affects dry mass production per unit of plant water lost to the atmosphere. The theory that stomata optimize carbon uptake per unit water used...

  10. Responses of canopy transpiration and canopy conductance of peach (Prunus persica) trees to alternate partial root zone drip irrigation (United States)

    Gong, Daozhi; Kang, Shaozhong; Zhang, Jianhua


    We investigated canopy transpiration and canopy conductance of peach trees under three irrigation patterns: fixed 1/2 partial root zone drip irrigation (FPRDI), alternate 1/2 partial root zone drip irrigation (APRDI) and full root zone drip irrigation (FDI). Canopy transpiration was measured using heat pulse sensors, and canopy conductance was calculated using the Jarvis model and the inversion of the Penman-Monteith equation. Results showed that the transpiration rate and canopy conductance in FPRDI and APRDI were smaller than those in FDI. More significantly, the total irrigation amount was greatly reduced, by 34.7% and 39.6%, respectively for APRDI and FPRDI in the PRDI (partial root zone drip irrigation) treatment period. The daily transpiration was linearly related to the reference evapotranspiration in the three treatments, but daily transpiration of FDI is more than that of APRDI and FPRDI under the same evaporation demand, suggesting a restriction of transpiration water loss in the APRDI and FPRDI trees. FDI needed a higher soil water content to carry the same amount of transpiration as the APRDI and FPRDI trees, suggesting the hydraulic conductance of roots of APRDI and FPRDI trees was enhanced, and the roots had a greater water uptake than in FDI when the average soil water content in the root zone was the same. By a comparison between the transpiration rates predicted by the Penman-Monteith equation and the measured canopy transpiration rates for 60 days during the experimental period, an excellent correlation along the 1:1 line was found for all the treatments (R2 > 0.80), proving the reliability of the methodology.

  11. Relating xylem cavitation to transpiration in cotton (United States)

    Acoustic emmisions (AEs) from xylem cavitation events are characteristic of transpiration processes. Even though a body of work employing AE exists with a large number of species, cotton and other agronomically important crops have either not been investigated, or limited information exists. A few s...

  12. Net heterotrophy in Faroe Islands clear-water lakes: causes and consequences for bacterioplankton and phytoplankton

    DEFF Research Database (Denmark)

    Pålsson, C.; Kritzberg, E. S.; Christoffersen, K.


    ) and measured the grazing pressure exerted by common mixotrophic species on bacteria. 2. High respiration to primary production (6.6-33.2) and supersaturation of CO2 (830-2140 µatm) implied that the lakes were net heterotrophic and that the pelagic heterotrophic plankton were subsidised by allochthonous organic...... conditions and hence low primary production in combination with an input of allochthonous C with a relatively high availability. 4. Mixotrophic phytoplankton (Cryptomonas spp., Dinobryon spp. and flagellates cf. Ochromonas spp.) constituted a large percentage of the plankton community (17-83%), possibly...... carbon. However, in spite of the apparent high level of net heterotrophy, primary production exceeded bacterial production and the food base for higher trophic levels appeared to be mainly autotrophic. 3. We suggest that the observed net heterotrophy in these lakes was a result of the oligotrophic...

  13. Effects of Fe-chlorosis on the stomatal behaviour and water relations of field-grown peach leaves


    Eichert, Thomas; Peguero-Pina, Jose J.; Gil-Pelegrin, Eustaquio; Fernández, Victoria


    We investigated the effects of Fe nutrition on the stomatal behaviour and water relations of peach leaves (Prunus persica (L.) Batsch, cv. Miraflores), under field conditions. Transpiration rates, net photosynthesis and water use efficiency were significantly lower in chlorotic leaves than in healthy green leaves. In the course of the day, the water potentials in healthy leaves strongly declined to –2.0 MPa, whereas in chlorotic leaves the minimum water potential was only -1.0 MPa. The hydrau...

  14. Effect of twine diameter on fishing power of experimental gill nets used in Greenland waters

    DEFF Research Database (Denmark)

    Hovgård, Holger


    The relative fishing powers of experimental gill nets were estimated for shorthorn sculpin (Myoxocephalus scorpius), Greenland cod (Gadus ogac), and Atlantic cod (Gadus morhua). The results suggested that fishing power was negatively correlated to the ratio between twine diameter and mesh size...

  15. Water, bound and mobile (United States)

    Resolving the global transpiration flux is critical to constraining global carbon cycle models because carbon uptake by photosynthesis in terrestrial plants (Gross Primary Productivity, GPP) is directly related to water lost through transpiration. Quantifying GPP globally is cha...

  16. Remote sensing as a tool for watershed-wide estimation of net solar radiation and water loss to the atmosphere (United States)

    Khorram, S.; Thomas, R. W.


    Results are presented for a study intended to develop a general remote sensing-aided cost-effective procedure to estimate watershed-wide water loss to the atmosphere via evapotranspiration and to estimate net solar radiation over the watershed. Evapotranspiration estimation employs a basic two-stage two-phase sample of three information resolution levels. Net solar radiation is taken as one of the variables at each level of evapotranspiration modeling. The input information for models requiring spatial information will be provided by Landsat digital data, environmental satellite data, ground meteorological data, ground sample unit information, and topographic data. The outputs of the sampling-estimation/data bank system will be in-place maps of evapotranspiration on a data resolution element basis, watershed-wide evapotranspiration isopleths, and estimates of watershed and subbasin total evapotranspiration with associated statistical confidence bounds. The methodology developed is being tested primarily on the Spanish Creek Watershed Plumas County, California.

  17. Applicability of energy-positive net-zero water management in Alaska: technology status and case study. (United States)

    Wu, Tingting; Englehardt, James D; Guo, Tianjiao; Gassie, Lucien; Dotson, Aaron


    Challenges of water and wastewater management in Alaska include the potential need for above-grade and freeze-protected piping, high unit energy costs and, in many rural areas, low population density and median annual income. However, recently developed net-zero water (NZW), i.e., nearly closed-loop, direct potable water reuse systems, can retain the thermal energy in municipal wastewater, producing warm treated potable water without the need for substantial water re-heating, heat pumping or transfer, or additional energy conversion. Consequently, these systems are projected to be capable of saving more energy than they use in water treatment and conveyance, in the temperate USA. In this paper, NZW technology is reviewed in terms of potential applicability in Alaska by performing a hypothetical case study for the city of Fairbanks, Alaska. Results of this paper study indicate that in municipalities of Alaska with local engineering and road access, the use of NZW systems may provide an energy-efficient water service option. In particular, case study modeling suggests hot water energy savings are equivalent to five times the energy used for treatment, much greater savings than in mid-latitudes, due largely to the substantially higher energy needed for heating water from a conventional treatment system and lack of need for freeze-protected piping. Further study of the applicability of NZW technology in cold regions, with expanded evaluation in terms of system-wide lifecycle cost, is recommended.

  18. Northern pike bycatch in an inland commercial hoop net fishery: effects of water temperature and net tending frequency on injury, physiology, and survival

    Energy Technology Data Exchange (ETDEWEB)

    Colotelo, Alison HA; Raby, Graham D.; Hasler, Caleb T.; Haxton, Tim; Smokorowski, Karen; Blouin-Demers, Gabriel; Cooke, Steven J.


    In lakes and rivers of eastern Ontario (Canada) commercial fishers use hoop nets to target a variety of fishes, but incidentally capture non-target (i.e., bycatch) gamefish species such as northern pike (Esox lucius). Little is known about the consequences of bycatch in inland commercial fisheries, making it difficult to identify regulatory options. Regulations that limit fishing during warmer periods and that require frequent net tending have been proposed as possible strategies to reduce bycatch mortality. Using northern pike as a model, we conducted experiments during two thermal periods (mid-April: 14.45 ± 0.32 °C, and late May: 17.17 ± 0.08 °C) where fish were retained in nets for 2 d and 6 d. A ‘0 d’ control group consisted of northern pike that were angled, immediately sampled and released. We evaluated injury, physiological status and mortality after the prescribed net retention period and for the surviving fish used radio telemetry with manual tracking to monitor delayed post-release mortality. Our experiments revealed that injury levels, in-net mortality, and post-release mortality tended to increase with net set duration and at higher temperatures. Pike exhibited signs of chronic stress and starvation following retention, particularly at higher temperatures. Total mortality rates were negligible for the 2 d holding period at 14 °C, 14% for 6 d holding at 14 °C, 21% for 2 d holding at 17 °C, and 58% for 6 d holding at 17 °C. No mortality was observed in control fish. Collectively, these data reveal that frequent net tending, particularly at warmer temperatures, may be useful for conserving gamefish populations captured as bycatch in inland hoop net fisheries.

  19. Zooplankton data collected from zooplankton net casts in Coastal Waters of Washington / Oregon; 01 January 1969 to 31 December 1972 (NODC Accession 9800078) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton data were collected using zooplankton net casts in Coastal Waters of Washington / Oregon. Data were collected from 01 January 1969 to 31 December 1972 by...

  20. Improvements to water use and water stress estimates with the addition of IR and net radiometers to weather stations (United States)

    Evapotranspiration (ET) is often estimated with the Penman-Monteith (P-M) equation. Net radiation (Rn) is a major component of the surface energy balance and an input to the P-M equation, but it is challenging and expensive to measure accurately. For these reasons, most weather stations do not inclu...

  1. Spatial Variation in Transpiration Within a Small Forest Patch in Hoa Binh, Northern Vietnam (United States)

    Giambelluca, T. W.; Ziegler, A. D.; Nullet, M. A.; Dao, T. M.


    We conducted measurements of small-scale variations in microclimate and sapflow within and near a small forest patch in Ban Tat Hamlet, Hoa Binh, northern Vietnam. Our observations provide evidence of the influences of surrounding clearings on forest patch microclimate and transpiration. The effects of proximity to the forest edge can be seen in the gradients in temperature, humidity, wind, and soil moisture content. Sapflow measurements in sample trees strongly indicate that transpiration rates are higher near the edge of the patch (edge effect). This effect is seen in the averages for the whole study period, despite infrequent wind flow into the instrumented edge of the patch. Edge effect is observed during both dry and wet periods, but is most apparent on days when solar and net radiation are high, relative humidity is low, or wind direction is from the clearing into the forest edge. These conditions are conducive to high positive heat advection from the clearing to the forest edge. Transpiration in both edge and interior trees is highly correlated with conditions in the clearing. Our results suggest that greater land-cover fragmentation tends to increase regional evaporative flux, i.e. fragmentation of remaining forested areas partly reverses the reduction in regional evaporation due to deforestation. We can infer from the distance-to-edge dependency of transpiration that the magnitude of this regional effect depends on the size, shape, and spatial distribution of landscape patches. It is also likely that the replacement land cover and moisture status of the clearings affect this process. Although we found slightly greater edge effect during the dry period of our observations, it is possible that under more prolonged or severe dry conditions, the soil moisture storage at the forest edge would become depleted leading to a reversal the transpiration pattern. >

  2. Seasonal Shift in Climatic Limiting Factors on Tree Transpiration: Evidence from Sap Flow Observations at Alpine Treelines in Southeast Tibet (United States)

    Liu, Xinsheng; Nie, Yuqin; Luo, Tianxiang; Yu, Jiehui; Shen, Wei; Zhang, Lin


    Alpine and northern treelines are primarily controlled by low temperatures. However, little is known about the impact of low soil temperature on tree transpiration at treelines. We aim to test the hypothesis that in cold-limited forests, the main limiting factors for tree transpiration switch from low soil temperature before summer solstice to atmospheric evaporative demand after summer solstice, which generally results in low transpiration in the early growing season. Sap flow, meteorological factors and predawn needle water potential were continuously monitored throughout one growing season across Smith fir (Abies georgei var. smithii) and juniper (Juniperus saltuaria) treelines in southeast Tibet. Sap flow started in early May and corresponded to a threshold mean air-temperature of 0°C. Across tree species, transpiration was mainly limited by low soil temperature prior to the summer solstice but by vapor pressure deficit and solar radiation post-summer solstice, which was further confirmed on a daily scale. As a result, tree transpiration for both tree species was significantly reduced in the pre-summer solstice period as compared to post-summer solstice, resulting in a lower predawn needle water potential for Smith fir trees in the early growing season. Our data supported the hypothesis, suggesting that tree transpiration mainly responds to soil temperature variations in the early growing season. The results are important for understanding the hydrological response of cold-limited forest ecosystems to climate change. PMID:27468289

  3. Seasonal shift in climatic limiting factors on tree transpiration: evidence from sap flow observations at alpine treelines in southeast Tibet

    Directory of Open Access Journals (Sweden)

    Liu Xinsheng


    Full Text Available Alpine and northern treelines are primarily controlled by low temperatures. However, little is known about the impact of low soil temperature on tree transpiration at treelines. We aim to test the hypothesis that in cold-limited forests, the main limiting factors for tree transpiration switch from low soil temperature before summer solstice to atmospheric evaporative demand after summer solstice, which generally results in low transpiration in the early growing season. Sap flow, meteorological factors and predawn needle water potential were continuously monitored throughout one growing season across Smith fir (Abies georgei var. smithii and juniper (Juniperus saltuaria treelines in southeast Tibet. Sap flow started in early May and corresponded to a threshold mean air-temperature of 0 oC. Across tree species, transpiration was mainly limited by low soil temperature prior to the summer solstice but by vapor pressure deficit and solar radiation post-summer solstice, which was further confirmed on a daily scale. As a result, tree transpiration for both tree species was significantly reduced in the pre-summer solstice period as compared to post-summer solstice, resulting in a lower predawn needle water potential for Smith fir trees in the early growing season. Our data supported the hypothesis, suggesting that tree transpiration mainly responds to soil temperature variations in the early growing season. The results are important for understanding the hydrological response of cold-limited forest ecosystems to climate change.

  4. Seasonal Shift in Climatic Limiting Factors on Tree Transpiration: Evidence from Sap Flow Observations at Alpine Treelines in Southeast Tibet. (United States)

    Liu, Xinsheng; Nie, Yuqin; Luo, Tianxiang; Yu, Jiehui; Shen, Wei; Zhang, Lin


    Alpine and northern treelines are primarily controlled by low temperatures. However, little is known about the impact of low soil temperature on tree transpiration at treelines. We aim to test the hypothesis that in cold-limited forests, the main limiting factors for tree transpiration switch from low soil temperature before summer solstice to atmospheric evaporative demand after summer solstice, which generally results in low transpiration in the early growing season. Sap flow, meteorological factors and predawn needle water potential were continuously monitored throughout one growing season across Smith fir (Abies georgei var. smithii) and juniper (Juniperus saltuaria) treelines in southeast Tibet. Sap flow started in early May and corresponded to a threshold mean air-temperature of 0°C. Across tree species, transpiration was mainly limited by low soil temperature prior to the summer solstice but by vapor pressure deficit and solar radiation post-summer solstice, which was further confirmed on a daily scale. As a result, tree transpiration for both tree species was significantly reduced in the pre-summer solstice period as compared to post-summer solstice, resulting in a lower predawn needle water potential for Smith fir trees in the early growing season. Our data supported the hypothesis, suggesting that tree transpiration mainly responds to soil temperature variations in the early growing season. The results are important for understanding the hydrological response of cold-limited forest ecosystems to climate change.

  5. Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development.

    Directory of Open Access Journals (Sweden)

    Thibault Nordey

    Full Text Available Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.

  6. Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits (United States)

    Renner, Maik; Hassler, Sibylle K.; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stanislaus J.; Kleidon, Axel


    We combine ecohydrological observations of sap flow and soil moisture with thermodynamically constrained estimates of atmospheric evaporative demand to infer the dominant controls of forest transpiration in complex terrain. We hypothesize that daily variations in transpiration are dominated by variations in atmospheric demand, while site-specific controls, including limiting soil moisture, act on longer timescales. We test these hypotheses with data of a measurement setup consisting of five sites along a valley cross section in Luxembourg. Both hillslopes are covered by forest dominated by European beech (Fagus sylvatica L.). Two independent measurements are used to estimate stand transpiration: (i) sap flow and (ii) diurnal variations in soil moisture, which were used to estimate the daily root water uptake. Atmospheric evaporative demand is estimated through thermodynamically constrained evaporation, which only requires absorbed solar radiation and temperature as input data without any empirical parameters. Both transpiration estimates are strongly correlated to atmospheric demand at the daily timescale. We find that neither vapor pressure deficit nor wind speed add to the explained variance, supporting the idea that they are dependent variables on land-atmosphere exchange and the surface energy budget. Estimated stand transpiration was in a similar range at the north-facing and the south-facing hillslopes despite the different aspect and the largely different stand composition. We identified an inverse relationship between sap flux density and the site-average sapwood area per tree as estimated by the site forest inventories. This suggests that tree hydraulic adaptation can compensate for heterogeneous conditions. However, during dry summer periods differences in topographic factors and stand structure can cause spatially variable transpiration rates. We conclude that absorption of solar radiation at the surface forms a dominant control for turbulent heat and

  7. Thermal transpiration: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    T, Joe Francis [Computational Nanotechnology Laboratory, School of Nano Science and Technology, National Institute of Technology Calicut, Kozhikode (India); Sathian, Sarith P. [Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai (India)


    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  8. A phytotoxicity test using transpiration of willows

    DEFF Research Database (Denmark)

    Trapp, Stefan; Zambrano, Kim Cecilia; Kusk, Kresten Ole


    A short-term acute toxicity assay for willow trees growing in contaminated solution or in polluted soil was developed and tested. The test apparatus consists of an Erlenmeyer flask with a prerooted tree cutting growing in it. Growth and reduction of transpiration are used to determine toxicity. T.......8 and 9.6 mg/L were found. This is similar to the results from algal growth rate tests. The willow tree toxicity test may be useful for determining the site-specific toxicity of polluted soils and for terrestrial risk assessment of new chemicals and pesticides....

  9. Transpiration of irrigated apple trees and citrus from a water potential gradient approach in the leaf-atmosphere system Transpiração de macieiras e citros irrigados a partir do gradiente de potencial água no sistema folha-atmosfera

    Directory of Open Access Journals (Sweden)

    André Belmont Pereira


    Full Text Available The uptake of water from the roots of crops comes to being a physiological response of the plant to the water loss process through its stomata. Getting to know the daily transpiration rates throughout the phenological cycle allows for the application of the ideal amount of irrigation water at the right moment to maximize production with environmental protection. Since transpiration direct measurements at the field, mainly for trees in general, are to be of operational difficulty and relatively high cost we came up with a methodology that allows one to calculate the daily transpiration rates of apple trees and citrus orchards from variables of both the physical environment and the crop. The input data of the proposed model are air temperature, air relative humidity, photoperiod duration, and leaf area. Estimated transpiration rates based on the water potential gradient between the air and leaf approach were comparable in apple trees and citrus orchards. Sap flow daily values were obtained by means of the heat balance method at Bordeaux, France, and Piracicaba, SP, Brazil. All the coefficients of determination of the regression equations obtained herein were higher than 0.93. This allows one to calculate the amount of irrigation water to be applied throughout the crop growing seasons with a high precision as a function of meteorological data and crop covering density at the sites in the study.A tomada de água pelas raízes de espécies vegetais cultivadas vem a ser uma resposta fisiológica da planta ao processo de perda de água através de seus estômatos. Conhecer a transpiração possibilita a determinação da quantidade ideal de água a ser aplicada no momento certo com vistas à maximização da produção com proteção ambiental. Como a medida direta da transpiração no campo, principalmente em árvores, constitui procedimento que envolve dificuldade operacional e custo relativamente elevado, propôs-se neste estudo uma metodologia de c

  10. Genotype differences in 13C discrimination between atmosphere and leaf matter match differences in transpiration efficiency at leaf and whole-plant levels in hybrid Populus deltoides x nigra. (United States)

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Montpied, Pierre; Le Thiec, Didier


    (13) C discrimination between atmosphere and bulk leaf matter (Δ(13) C(lb) ) is frequently used as a proxy for transpiration efficiency (TE). Nevertheless, its relevance is challenged due to: (1) potential deviations from the theoretical discrimination model, and (2) complex time integration and upscaling from leaf to whole plant. Six hybrid genotypes of Populus deltoides×nigra genotypes were grown in climate chambers and tested for whole-plant TE (i.e. accumulated biomass/water transpired). Net CO(2) assimilation rates (A) and stomatal conductance (g(s) ) were recorded in parallel to: (1) (13) C in leaf bulk material (δ(13) C(lb) ) and in soluble sugars (δ(13) C(ss) ) and (2) (18) O in leaf water and bulk leaf material. Genotypic means of δ(13) C(lb) and δ(13) C(ss) were tightly correlated. Discrimination between atmosphere and soluble sugars was correlated with daily intrinsic TE at leaf level (daily mean A/g(s) ), and with whole-plant TE. Finally, g(s) was positively correlated to (18) O enrichment of bulk matter or water of leaves at individual level, but not at genotype level. We conclude that Δ(13) C(lb) captures efficiently the genetic variability of whole-plant TE in poplar. Nevertheless, scaling from leaf level to whole-plant TE requires to take into account water losses and respiration independent of photosynthesis, which remain poorly documented. © 2012 Blackwell Publishing Ltd.

  11. Do hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition in Aspalathus linearis? (United States)

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D


    The significance of soil water redistribution by roots and nocturnal transpiration for nutrient acquisition were assessed for deep-rooted 3-year-old leguminous Aspalathus linearis shrubs of the Cape Floristic Region (South Africa). We hypothesised that hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition by releasing moisture in shallow soil to enable acquisition of shallow-soil nutrients during the summer drought periods and by driving water fluxes from deep to shallow soil powering mass-flow nutrient acquisition, respectively. A. linearis was supplied with sub-surface (1-m-deep) irrigation rates of 0, 2 or 4 L day(-1 )plant(-1). Some plants were unfertilized, whilst others were surface- or deep-fertilized (1 m depth) with Na(15)NO3 and CaP/FePO4. We also supplied deuterium oxide ((2)H2O) at 1 m depth at dusk and measured its predawn redistribution to shallow soil and plant stems. Hydraulic redistribution of deep water was substantial across all treatments, accounting for 34-72 % of surface-soil predawn moisture. Fourteen days after fertilization, the surface-fertilized plants exhibited increased hydraulic redistribution and increased (15)N and P acquisition with higher rates of deep-irrigation. Deep-fertilization also increased hydraulic redistribution to surface soils, although these plants additionally accumulated (2)H2O in their stem tissue overnight, probably due to nocturnal transpiration. Plants engaged in nocturnal transpiration also increased (15)N and P acquisition from deep fertilizer sources. Thus, both nocturnal transpiration and hydraulic redistribution increased acquisition of shallow soil N and P, possibly through a combination of increased nutrient availability and mobility.

  12. Environmental and biological controls of urban tree transpiration in the Upper Midwest (United States)

    Peters, E. B.; McFadden, J.; Montgomery, R.


    Urban trees provide a variety of ecosystem services to urban and suburban areas, including carbon uptake, climate amelioration, energy reduction, and stormwater management. Tree transpiration, in particular, modifies urban water budgets by providing an alternative pathway for water after rain events. The relative importance of environmental and biological controls on transpiration are poorly understood in urban areas, yet these controls are important for quantifying and scaling up the ecosystem services that urban trees provide at landscape and regional scales and predicting how urban ecosystems will respond to climate changes. The objectives of our study were to quantify the annual cycle of tree transpiration in an urban ecosystem and to determine how different urban tree species and plant functional types respond to environmental drivers. We continuously measured whole-tree transpiration using thermal dissipation sap flow at four urban forest stands that were broadly representative of the species composition and tree sizes found in a suburban residential neighborhood of Minneapolis-Saint Paul, Minnesota. A total of 40 trees, representing different species, plant functional types, successional stages, and xylem anatomy, were sampled throughout the 2007 and 2008 growing seasons (April-November). At each site we monitored soil moisture, air temperature, and relative humidity continuously, and we measured leaf area index weekly. Urban tree transpiration was strongly correlated with diurnal changes in vapor pressure deficit and photosynthetically active radiation and with seasonal changes in leaf area index. We found that plant functional type better explained species differences in transpiration per canopy area than either successional stage or xylem anatomy, largely due to differences in canopy structure between conifer and broad-leaf deciduous trees. We also observed inter-annual differences in transpiration rates due to a mid-season drought and longer growing

  13. Growth CO2 concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit. (United States)

    Engel, Victor C; Griffin, Kevin L; Murthy, Ramesh; Patterson, Lane; Klimas, Christie; Potosnak, Mark


    Cottonwood (Populus deltoides Bartr. ex Marsh.) trees grown for 9 months in elevated carbon dioxide concentration ([CO2]) showed significant increases in height, leaf area and basal diameter relative to trees in a near-ambient [CO2] control treatment. Sample trees in the CO2 treatments were subjected to high and low atmospheric vapor pressure deficits (VPD) over a 5-week period at both high and low soil water contents (SWC). During these periods, transpiration rates at both the leaf and canopy levels were calculated based on sap flow measurements and leaf-to-sapwood area ratios. Leaf-level transpiration rates were approximately equivalent across [CO2] treatments when soil water was not limiting. In contrast, during drought stress, canopy-level transpiration rates were approximately equivalent across [CO2] treatments, indicating that leaf-level fluxes during drought stress were reduced in elevated [CO2] by a factor equal to the leaf area ratio of the two canopies. The shift from equivalent leaf-level transpiration to equivalent canopy-level transpiration with increasing drought stress suggests maximum water use rates were controlled primarily by atmospheric demand at high SWC and by soil water availability at low SWC. Changes in VPD had less effect on transpiration than changes in SWC for trees in both CO2 treatments. Transpiration rates of trees in both CO2 treatments reached maximum values at a VPD of about 2.0 kPa at high SWC, but leveled off and decreased slightly in both canopies as VPD increased above this value. At low SWC, increasing VPD from approximately 1.4 to 2.5 kPa caused transpiration rates to decline slightly in the canopies of trees in both treatments, with significant (P = 0.004) decreases occurring in trees in the near-ambient [CO2] treatment. The transpiration responses at high VPD in the presence of high SWC and throughout the low SWC treatment suggest some hydraulic limitations to water use occurred. Comparisons of midday leaf water potentials

  14. Transpiration of Eucalyptus woodlands across a natural gradient of depth-to-groundwater. (United States)

    Zolfaghar, Sepideh; Villalobos-Vega, Randol; Zeppel, Melanie; Cleverly, James; Rumman, Rizwana; Hingee, Matthew; Boulain, Nicolas; Li, Zheng; Eamus, Derek


    Water resources and their management present social, economic and environmental challenges, with demand for human consumptive, industrial and environmental uses increasing globally. However, environmental water requirements, that is, the allocation of water to the maintenance of ecosystem health, are often neglected or poorly quantified. Further, transpiration by trees is commonly a major determinant of the hydrological balance of woodlands but recognition of the role of groundwater in hydrological balances of woodlands remains inadequate, particularly in mesic climates. In this study, we measured rates of tree water-use and sapwood 13C isotopic ratio in a mesic, temperate Eucalypt woodland along a naturally occurring gradient of depth-to-groundwater (DGW), to examine daily, seasonal and annual patterns of transpiration. We found that: (i) the maximum rate of stand transpiration was observed at the second shallowest site (4.3 m) rather than the shallowest (2.4 m); (ii) as DGW increased from 4.3 to 37.5 m, stand transpiration declined; (iii) the smallest rate of stand transpiration was observed at the deepest (37.5 m) site; (iv) intrinsic water-use efficiency was smallest at the two intermediate DGW sites as reflected in the Δ13C of the most recently formed sapwood and largest at the deepest and shallowest DGW sites, reflecting the imposition of flooding at the shallowest site and the inaccessibility of groundwater at the deepest site; and (v) there was no evidence of convergence in rates of water-use for co-occurring species at any site. We conclude that even in mesic environments groundwater can be utilized by trees. We further conclude that these forests are facultatively groundwater-dependent when groundwater depth is <9 m and suggest that during drier-than-average years the contribution of groundwater to stand transpiration is likely to increase significantly at the three shallowest DGW sites. © The Author 2017. Published by Oxford University Press. All

  15. Net removal of dissolved organic carbon in the anoxic waters of the Black Sea

    NARCIS (Netherlands)

    Margolin, A.R.; Gerringa, L.J.A.; Hansell, D.A.; Rijkenberg, M.J.A.


    Dissolved organic carbon (DOC) concentrations in the deep Black Sea are ~2.5 times higher than found in the globalocean. The two major external sources of DOC are rivers and the Sea of Marmara, a transit point for waters from theMediterranean Sea. In addition, expansive phytoplankton blooms

  16. Transpiration of greenhouse crops : an aid to climate management

    NARCIS (Netherlands)

    Stanghellini, C.


    In this book some physical aspects of greenhouse climate are analyzed to show the direct interrelation between microclimate and crop transpiration. The energy balance of a greenhouse crop is shown to provide a sound physical framework to quantify the impact of microclimate on transpiration

  17. Evaluating potential impacts of species conversion on transpiration in the Piedmont of North Carolina (United States)

    Boggs, J.; Treasure, E.; Simpson, G.; Domec, J.; Sun, G.; McNulty, S.


    Land management practices that include species conversion or vegetation manipulation can have consequences to surface water availability, groundwater recharge, streamflow generation, and water quality through altering the transpiration processes in forested watersheds. Our objective in this study is to compare stand water use or transpiration in a piedmont mixed hardwood stand (i.e., present stand) to five hypothetical single species stands (i.e., management scenarios), [Quercus spp. (oak), Acer Rubrum (red maple), Liquidambar styraciflua (sweetgum), Liriodendron tulipifera (tulip poplar), and Pinus Taeda (loblolly pine]. Since October 2007, six watersheds with a flume or v-notch weir installed at the watershed outlet have been monitored for baseline streamflow rates (mm d-1). In the summer of 2010, five trees from each of the above species were instrumented with sap flow sensors in the riparian upland of one watershed to develop linkages between stand stream runoff and transpiration. The sap flow or thermal heat dissipation method was used to calculate tree sap flux density for the mixed hardwood stand. Tree sapwood area and stand tree density were then used to compute stand transpiration rates, mm d-1, from June - August 2010. The parameters of the hypothetical single species stands were based on values determined from mixed hardwood stand conditions (e.g., the same stand sapwood area and stand tree density were applied to each option). The diameter at beast height of the monitored trees ranged from 10 cm to 38 cm with a water use range of 1.8 kg d-1 to 104 kg d-1. From our preliminary data, we found daily transpiration from the mixed hardwood stand (2.8 mm d-1 ± 0.06) was significantly (p < 0.05) lower than daily transpiration from the red maple (3.7 mm d-1 ± 0.14) and tulip poplar (3.5 mm d-1 ± 0.12) single species stand management option and significantly (p < 0.05) higher than the loblolly pine (2.3 mm d-1 ± 0.08), sweetgum (2.1 mm d-1 ± 0.08) and oak

  18. Steady streamwise transpiration control in turbulent pipe flow

    CERN Document Server

    Gómez, F; Rudman, M; Sharma, AS; McKeon, BJ


    A study of the the main features of low- and high amplitude steady streamwise wall transpiration applied to pipe flow is presented. The effect of the two transpiration parameters, amplitude and wavenumber, on the flow have been investigated by means of direct numerical simulation at a moderate turbulent Reynolds number. The behaviour of the three identified mechanisms that act in the flow: modification of Reynolds shear stress, steady streaming and generation of non-zero mean streamwise gradients, have been linked to the transpiration parameters. The observed trends have permitted the identification of wall transpiration configurations able to reduce or increase the overall flow rate in -36.1% and 19.3% respectively. A resolvent analysis has been carried out to obtain a description of the reorganization of the flow structures induced by the transpiration.

  19. Fiscal Year 2013 Net Zero Energy-Water-Waste Portfolio for Fort Leonard Wood (United States)


    Stormwater Management Implement and achieve objectives from USEPA Army Policy Army Sustainable Design and Development Policy, December 2013...facilities with follow-up projects, ERDC/CERL SR-14-11 54 and established stormwater management requirements. EO 13514 extend- ed water reduction...EnEff Stadt (a comprehen- sive approach to urban areas with local and district heating networks), the World Bank Energy Sector Management Assistance

  20. Modelling effects of seasonal variation in water table depth on net ecosystem CO2 exchange of a tropical peatland (United States)

    Mezbahuddin, M.; Grant, R. F.; Hirano, T.


    Seasonal variation in water table depth (WTD) determines the balance between aggradation and degradation of tropical peatlands. Longer dry seasons together with human interventions (e.g. drainage) can cause WTD drawdowns making tropical peatland C storage highly vulnerable. Better predictive capacity for effects of WTD on net CO2 exchange is thus essential to guide conservation of tropical peat deposits. Mathematical modelling of basic eco-hydrological processes under site-specific conditions can provide such predictive capacity. We hereby deploy a process-based mathematical model ecosys to study effects of seasonal variation in WTD on net ecosystem productivity (NEP) of a drainage affected tropical peat swamp forest at Palangkaraya, Indonesia. Simulated NEP suggested that the peatland was a C source (NEP ~ -2 g C m-2 d-1, where a negative sign represents a C source and a positive sign a C sink) during rainy seasons with shallow WTD, C neutral or a small sink (NEP ~ +1 g C m-2 d-1) during early dry seasons with intermediate WTD and a substantial C source (NEP ~ -4 g C m-2 d-1) during late dry seasons with deep WTD from 2002 to 2005. These values were corroborated by regressions (P 0.8, intercepts approaching 0 and slopes approaching 1. We also simulated a gradual increase in annual NEP from 2002 (-609 g C m-2) to 2005 (-373 g C m-2) with decreasing WTD which was attributed to declines in duration and intensity of dry seasons following the El Niño event of 2002. This increase in modelled NEP was corroborated by EC-gap filled annual NEP estimates. Our modelling hypotheses suggested that (1) poor aeration in wet soils during shallow WTD caused slow nutrient (predominantly phosphorus) mineralization and consequent slow plant nutrient uptake that suppressed gross primary productivity (GPP) and hence NEP (2) better soil aeration during intermediate WTD enhanced nutrient mineralization and hence plant nutrient uptake, GPP and NEP and (3) deep WTD suppressed NEP through a

  1. Effect of water stress on photosynthesis and related parameters in Pinus halepensis

    Energy Technology Data Exchange (ETDEWEB)

    Melzack, R.N.; Bravdo, B.; Riov, J.


    Net photosynthesis, transpiration, dark respiration rates and stomatal and mesophyll resistances were studied in young potted seedlings of Pinus halepensis Mill. under gradually decreasing soil and leaf water potentials. Stomatal resistance under non-limiting xylem water potentials was 6-7 times higher than mesophyll resistance. Stomata started to close at threshold xylem water potentials of -0.8 MPa, whereas mesophyll resistance started to increase at about -1.4 MPa. Decreasing xylem water potentials increased the CO/sub 2/ compensation point and decreased the water use efficiency (expressed by the photosynthesis to transpiration ratio) and dark respiration rate. It is concluded that at least part of the drought resistance characteristics of P. halepensis are associated with a sensitive stomatal mechanism which enables an efficient control of water loss.

  2. Effects of pruning intensity on jujube transpiration and soil moisture of plantation in the Loess Plateau (United States)

    Nie, Zhenyi; Wang, Xing; Wang, Youke; Ma, Jianpeng; Wei, Xinguang; Chen, Dianyu


    In order to ease soil desiccation and prevent ecological deterioration in the Loess Plateau, where jujube (Zizyphus jujube MIll) is widely cultivated as a drought tolerant plant, four pruning intensities (PI), from PI-1 (light) to PI-4 (heavy) were set up based on total length of secondary branches to study the effects of pruning on transpiration and soil moisture in jujube plantations. Furthermore, growth indexes were regularly monitored to estimate jujubes biomass. Sap flow, meteorological and soil moisture conditions were monitored using thermal dissipation probes (TDP), weather station (RR-9100) and the combination of time domain transmission (TDT) technology and neutron moisture gauges (CNC503B), respectively. The results showed that daily actual transpiration of jujube was positively correlated with leaf biomass. Compared with PI-1, jujube transpiration during growth period under PI-2, PI-3, and PI-4 dropped by 11.1%, 29.2%, and 47.9%, respectively. On the contrary, annual water storage under PI-2, PI-3, and PI-4 increased by 6.29 mm, 25.78 mm and 34.74 mm while water use efficiency increased by 5.1%, 15.7% and 24.2%, respectively. Overall, increase in pruning intensity could significantly reduce water consumption of jujube and improve soil moisture in jujube plantations.

  3. Canopy Transpiration and Stomatal Responses to Prolonged Drought by a Dominant Desert Species in Central Asia

    Directory of Open Access Journals (Sweden)

    Daxing Gu


    Full Text Available In arid and semiarid lands, canopy transpiration and its dynamics depend largely on stomatal sensitivity to drought. In this study, the sap flow of a dominant species, Haloxylon ammodendron growing in Central Asian deserts, was monitored using Granier-type sensors, from which the canopy stomatal conductance was derived. The responses of canopy transpiration and stomatal conductance to environmental variables during the second half of the growing season, when annual prolonged drought occurred, was analyzed for four continuous years, from 2013 to 2016. A soil water content (SWC of 3% was identified as the lower soil water threshold for this species, below which the plant lost the ability for stomatal regulation on water loss and suffered the risk of mortality. Above this threshold, the sensitivity of canopy transpiration to vapor pressure deficit, VPD (K, was linearly correlated with SWC, which mainly resulted from different stomatal behaviors at varying drought intensities. Stomatal sensitivity to VPD (m/Gsref increased linearly with soil moisture deficit, inducing a shift from more anisohydric to a more isohydric stomatal behavior. The flexibility of stomatal behavior regarding soil drought was one key element facilitating the survival of H. ammodendron in such an extreme dry environment.

  4. [Effects of tree diameter at breast height and soil moisture on transpiration of Schima superba based on sap flow pattern and normalization]. (United States)

    Mei, Ting-ting; Zhao, Ping; Wang, Quan; Cai, Xi-an; Yu, Meng-hao; Zhu, Li-wei; Zou, Lü-liu; Zeng, Xiao-ping


    The eigenvalues of continuous sap flow pattern, i. e. , skewness and kurtosis, were used to investigate the water usage of Schima superba with different diameter at breast height (DBH), and the method of normalization was firstly applied to eliminate the effects of strong affecting factor (photosynthetic active radiation, PAR) to explore the possible relationship between weak affecting factor (soil moisture) and sap flow. Generally, the trees with larger DBH had smaller skewness of sap flux density and later-appeared but larger peak values, suggesting that much more water was transpired, and the larger trees showed smaller skewness and later-appeared larger peak values in wet season than in dry season, suggesting that more water was transpired in wet season. On the other hand, smaller trees had lesser differences in the skewness between dry and wet seasons, suggesting that there was no significant difference in the transpiration between the two seasons. The relationship between individual tree's transpiration and soil moisture was significant and positive after the two parameters being normalized with PAR peak values. When the soil moisture content was higher, the transpiration of the trees with larger DBH was steadily increasing with soil moisture, while that of the trees with moderate or smaller DBH had opposite trend, presumably due to their transpiration and water absorption were approached to the limit.

  5. Seasonal trends of light-saturated net photosynthesis and stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and carbon dioxide (United States)

    Ramesh Murthy; Stanley J. Zarnoch; P.M. Dougherty


    Repeated measures analysis was used to evaluate the effect of long-term CO2 enhancement on seasonal trends of light-saturated rates of net photosynthesis (Asat) and stomatal conductance to water vapour (gsat) of 9-year-old loblolly pine (Pinus taeda L.; trees grown in a 2x2...

  6. Vascular functioning and the water balance of ripening kiwifruit (Actinidia chinensis) berries. (United States)

    Clearwater, Michael J; Luo, Zhiwei; Ong, Sam Eng Chye; Blattmann, Peter; Thorp, T Grant


    Indirect evidence suggests that water supply to fleshy fruits during the final stages of development occurs through the phloem, with the xylem providing little water, or acting as a pathway for water loss back to the plant. This inference was tested by examining the water balance and vascular functioning of ripening kiwifruit berries (Actinidia chinensis var. chinensis 'Hort16A') exhibiting a pre-harvest 'shrivel' disorder in California, and normal development in New Zealand. Dye labelling and mass balance experiments indicated that the xylem and phloem were both functional and contributed approximately equally to the fruit water supply during this stage of development. The modelled fruit water balance was dominated by transpiration, with net water loss under high vapour pressure deficit (D(a)) conditions in California, but a net gain under cooler New Zealand conditions. Direct measurement of pedicel sap flow under controlled conditions confirmed inward flows in both the phloem and xylem under conditions of both low and high D(a). Phloem flows were required for growth, with gradual recovery after a step increase in D(a). Xylem flows alone were unable to support growth, but did supply transpiration and were responsive to D(a)-induced pressure fluctuations. The results suggest that the shrivel disorder was a consequence of a high fruit transpiration rate, and that the perception of complete loss or reversal of inward xylem flows in ripening fruits should be re-examined.

  7. Transpiration as landfill leachate phytotoxicity indicator. (United States)

    Białowiec, Andrzej


    An important aspect of constructed wetlands design for landfill leachate treatment is the assessment of landfill leachate phytotoxicity. Intravital methods of plants response observation are required both for lab scale toxicity testing and field examination of plants state. The study examined the toxic influence of two types of landfill leachate from landfill in Zakurzewo (L1) and landfill in Wola Pawłowska (L2) on five plant species: reed Phragmites australis (Cav.) Trin. ex Steud, manna grass Glyceria maxima (Hartm.) Holmb., bulrush Schoenoplectus lacustris (L.) Palla, sweet flag Acorus calamus L., and miscanthus Miscanthus floridulus (Labill) Warb. Transpiration measurement was used as indicator of plants response. The lowest effective concentration causing the toxic effect (LOEC) for each leachate type and plant species was estimated. Plants with the highest resistance to toxic factors found in landfill leachate were: sweet flag, bulrush, and reed. The LOEC values for these plants were, respectively, 17%, 16%, 9% in case of leachate L1 and 21%, 18%, 14% in case of L2. Leachate L1 was more toxic than L2 due to a higher pH value under similar ammonia nitrogen content, i.e. pH 8.74 vs. pH 8.00. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Groundwater and unsaturated zone evaporation and transpiration in a semi-arid open woodland (United States)

    Balugani, E.; Lubczynski, M. W.; Reyes-Acosta, L.; van der Tol, C.; Francés, A. P.; Metselaar, K.


    Studies on evapotranspiration partitioning under eddy covariance (EC) towers rarely address the separate effects of transpiration and evaporation on groundwater resources. Such partitioning is important to accurately assess groundwater resources, especially in arid and semi-arid areas. The main objective of this study was to partition (evaluate separately) the evaporation and transpiration components of evapotranspiration, originated either from saturated or unsaturated zone, and estimate their contributions in a semi-arid area characterized by relatively shallow groundwater Table (0-10 m deep). Evapotranspiration, tree transpiration and subsurface evaporation were estimated with EC tower, using sap flow methods and HYDRUS1D model, respectively. To set up the HYDRUS1D model, soil material properties, soil moisture, soil temperature, soil matric potential and water table depth were measured in the area. The tree transpiration was sourced into groundwater and unsaturated zone components (∼0.017 mm d-1 for both) and accounted for only ∼6% of the evapotranspiration measured by the EC tower (∼0.565 mm d-1), due to the low canopy coverage in the study area (7%). The subsurface evaporation fluxes were also sourced into groundwater and unsaturated zone components using the SOURCE package, and their relative relevance in total evapotranspiration was assessed. Subsurface evaporation was the main flux year-round (∼0.526 mm d-1). During late autumn, winter and early spring time, the unsaturated zone evaporation was dominant, while in dry summer the relevance of groundwater evaporation increased, reaching one third of evapotranspiration, although errors in the water balance closure point still at its possible underestimation. The results show that, in arid and semi-arid areas with sparse vegetation, the often neglected groundwater evaporation is a relevant contribution to evapotranspiration, and that water vapor flow should be taken into account in the calculation of

  9. Effects of thinning intensities on transpiration and productivity of 50-year-old Pinus koraeinsis stands (United States)

    Park, J.; Kim, T.; Cho, S.; Ryu, D.; Moon, M.; Kim, H. S.


    This study investigated the effects of thinning intensities on stand transpiration and productivity of 50-year-old Korean pine forests for three years. Forest thinning, which remove some fraction of trees from stand, alters the microclimatic conditions such as radiation distribution within canopy, vapor pressure deficit, and amount of available soil water. These changes influence on the tree water use, and related tree growth. Thinning was conducted on March, 2012 with two intensities (Control, Light-thinning, and Heavy-thinning). Transpiration was estimated from sap flux density, which was measured with Granier-type thermal dissipation sensors. Tree diameter growth was measured with dendrometer, and converted to tree productivity using allometric equations developed specifically in our study sites.The climatic conditions showed remarkable differences among three years. In 2012, total precipitation was highest but spring was dry. 2013 was normal year with frequent rain events. In contrast, 2014 was hot and extremely dry. Stand transpiration was initially decreased ca. 20% and 42% on light-thinning and heavy-thinning stand, respectively. In second year, it gradually recovered in both thinning intensities, and was 19% and 37% lower on light-thinning and heavy-thinning stand, respectively. However, the recovery trends were different between two thinning intensities. Transpiration of heavy-thinning stand was recovered slowly than that of light thinning stand. In 2014, heavy-thinning stand transpired ca. 5% more than control plot in early growing season, but severe drought had negative effects that caused reduction of stand transpiration in thinned stand on late growing season. The tree-level productivity was increased initially ca. 24% and 28% on light-thinning and heavy-thinning stand, respectively. During the following growing seasons, this thinning-induced enhancement of productivity was diminished in light-thinning stand (21% in 2013 and 20% in 2014), but was

  10. Hydrogen isotope composition of leaf wax n-alkanes in Arabidopsis lines with different transpiration rates (United States)

    Pedentchouk, N.; Lawson, T.; Eley, Y.; McAusland, L.


    Stable isotopic compositions of oxygen and hydrogen are used widely to investigate modern and ancient water cycles. The D/H composition of organic compounds derived from terrestrial plants has recently attracted significant attention as a proxy for palaeohydrology. However, the role of various plant physiological and biochemical factors in controlling the D/H signature of leaf wax lipids in extant plants remains unclear. The focus of this study is to investigate the effect of plant transpiration on the D/H composition of n-alkanes in terrestrial plants. This experiment includes 4 varieties of Arabidopsis thaliana that differ with respect to stomatal density and stomatal geometry. All 4 varieties were grown indoors under identical temperature, relative humidity, light and watering regimes and then sampled for leaf wax and leaf water stable isotopic measurements. During growth, stomatal conductance to carbon dioxide and water vapour were also determined. We found that the plants varied significantly in terms of their transpiration rates. Transpiration rates were significantly higher in Arabidopsis ost1 and ost1-1 varieties (2.4 and 3.2 mmol m-2 s-1, respectively) than in Arabidopsis RbohD and Col-0 (1.5 and 1.4). However, hydrogen isotope measurements of n-alkanes extracted from leaf waxes revealed a very different pattern. Varieties ost1, ost1-1, and RbohD have very similar deltaD values of n-C29 alkane (-125, -128, and -127 per mil), whereas the deltaD value of Col-0 is more negative (-137 per mil). The initial results of this work suggest that plant transpiration is decoupled from the D/H composition of n-alkanes. In other words, physical processes that affect water vapour movement between the plant and its environment apparently cannot account for the stable hydrogen isotope composition of organic compounds that comprise leaf waxes. Additional, perhaps biochemical, processes that affect hydrogen isotope fractionation during photosynthesis might need to be invoked

  11. Wetland Surface Water Processes

    National Research Council Canada - National Science Library


    .... Temporary storage includes channel, overbank, basin, and groundwater storage. Water is removed from the wetland through evaporation, plant transpiration, channel, overland and tidal flow, and groundwater recharge...

  12. [The study of transpiration influence on plant infrared radiation character]. (United States)

    Ling, Jun; Zhang, Shuan-Qin; Pan, Jia-Liang; Lian, Chang-Chun; Yang, Hui


    Studying vegetation infrared radiation character is the base of developing infrared camouflage and concealment technology of ground military target. Accurate fusion of target and background can be achieved by simulating formation mechanism of vegetation infrared radiation character. Leaf transpiration is characteristic physiological mechanism of vegetation and one of the main factors that influence its infrared radiation character. In the present paper, physical model of leaf energy balance is set up. Based on this model the influence of plant transpiration on leaf temperature is analyzed and calculated. The daily periodic variation of transpiration, leaf temperature and infrared radiation character of typical plants such as camphor tree and holly is actually measured with porometer and infrared thermal imaging system. By contrasting plant leaf with dryness leaf, experimental data indicates that plant transpiration can regulate leaf energy balance effectively and control leaf temperature in a reasonable range and suppress deep range variation of leaf infrared radiation character.

  13. Sound Propagation in Saturated Gas-Vapor-Droplet Suspensions Considering the Effect of Transpiration on Droplet Evaporation (United States)

    Kandula, Max


    The Sound attenuation and dispersion in saturated gas-vapor-droplet mixtures with evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson (1975) to accommodate the effects of transpiration on the linear particle relaxation processes of mass, momentum and energy transfer. It is shown that the inclusion of transpiration in the presence of mass transfer improves the agreement between the theory and the experimental data of Cole and Dobbins (1971) for sound attenuation in air-water fogs at low droplet mass concentrations. The results suggest that transpiration has an appreciable effect on both sound absorption and dispersion for both low and high droplet mass concentrations.

  14. Impacts of climate and land use change on ecosystem hydrology and net primary productivity: Linking water availability to food security in Asia (United States)

    Dangal, S. R. S.; Tian, H.; Pan, S.; Zhang, B.; Yang, J.


    The nexus approach to food, water and energy security in Asia is extremely important and relevant as the region has to feed two-third of the world's population and accounts for 59% of the global water consumption. The distribution pattern of food, water and energy resources have been shaped by the legacy effect of both natural and anthropogenic disturbances and therefore are vulnerable to climate change and human activities including land use/cover change (LUCC) and land management (irrigation and nitrogen fertilization). In this study, we used the Dynamic Land Ecosystem Model (DLEM) to examine the effects of climate change, land use/cover change, and land management practices (irrigation and nitrogen fertilization) on the spatiotemporal trends and variability in water availability and its role in limiting net primary productivity (NPP) and food security in the 20th and early 21st centuries. Our specific objectives are to quantify how climate change, LUCC and other environmental changes have interactively affected carbon and water dynamics across the Asian region. In particular, we separated the Asian region into several sub-region based on the primary limiting factor - water, food and energy. We then quantified how changes in environmental factors have altered the water and food resources during the past century. We particularly focused on Net Primary Productivity (NPP) and water cycle (Evapotranspiration, discharge, and runoff) as a measure of available food and water resources, respectively while understanding the linkage between food and water resources in Asia.

  15. Transpiration Rate for Chile Peppers Irrigated with Brackish Groundwater and ro Concentrate (United States)

    Shukla, M. K.; Baath, G.


    Fresh water availability is declining in most of the semi-arid and arid regions across the world including southwestern United States. Use of marginal quality groundwater has been increasing for sustaining agriculture in these arid regions. Reverse Osmosis (RO) can treat brackish groundwater but the possibility of using RO concentrate for irrigation needs further exploration. This greenhouse study evaluates the transpiration rate, water use, leaching fraction and yield responses of five selected chile pepper (Capsicum annuum) cultivars irrigated with natural brackish groundwater and RO concentrate. The four saline water treatments used for irrigation were tap water of EC 0.6 (control), ground water of EC 3 and 5 dS/m and RO concentrate of EC 8 dS/m. The transpiration of all chile peppers cultivars decreased and leaching fraction increased with increasing irrigation water salinity. Based on the water use efficiency (WUEY) of selected chile pepper cultivars, brackish water of EC ≤ 3 dS/m can be used for irrigation. The average yield of chile peppers was stable up to a saturated soil paste extract electrical conductivity (ECe) of about 2 dS/m, although further increases in ECe resulted in an exponential yield decline. This study showed that yield reductions in chile peppers irrigated with Ca rich brackish groundwater were less than those reported using NaCl dominant saline solution studies. Environmentally safe reuse of RO concentrate could stimulate implementation of inland desalination in water scarce areas and increase greenhouse chile pepper cultivation.

  16. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  17. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej


    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  18. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    Directory of Open Access Journals (Sweden)

    D. Lombardozzi


    Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3 concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O3 concentration of 100 parts per billion (ppb. Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  19. Impact of soil drought on leaf growth of a teak plantation in a dry tropical region and the subsequent impact of leaf area on both canopy net assimilation and evapotranspiration (United States)

    Tanaka, Katsunori


    The current study demonstrated the interannual variations from the beginning of leaf expansion to the peak at a stand level in a dry tropical climate of northern Thailand. Radiative transmittance was measured from March-July in 2001-2008, and seasonal changes in leaf area were qualitatively estimated based on this time series. Soil moisture was also measured, and its influence on leaf growth was shown. Next, a soil-plant-air (SPAC) continuum multilayer model was used to numerically simulate net canopy assimilation (An) and evapotranspiration (ET) for 8 years, to examine the seasonal changes in LAI on An and ET. Two numerical experiments with different seasonal patterns of LAI were carried out using above-canopy hydro-meteorological data as input data. The first experiment involved seasonally varying LAI estimated based on time-series of radiative transmittance through the canopy, and the second experiment applied a constant LAI (or the peak values of LAI) after the flushing. In the first simulation, the simulated transpiration agreed with seasonal changes in heat pulse velocity, corresponding to the water use of individual trees. In the second numerical simulations, the constant LAI increased transpiration at small LAI, particularly immediately after leaf flush. But, the seasonal changes in simulated transpiration were apparently similar to those in observed heat pulse velocity. This implies that soil water, which is balanced in SPAC systems by precipitation, canopy interception, soil evaporation, soil water uptake by transpiration, and discharge, can mainly control the seasonal changes in transpiration. The simulated An became negative under soil drought during the leaf expansion stage in the second simulation, while it became positive or slightly negative even under soil drought in the first simulation. Thus, the limitation of leaf expansion rate caused by soil drought can be favorable for carbon gain.

  20. Mathematical Modeling of Dual Intake Transparent Transpired Solar Collector


    Thomas Semenou; Rousse, Daniel R.; Brice Le Lostec; Hervé F. Nouanegue; Pierre-Luc Paradis


    Nowadays, in several types of commercial or institutional buildings, a significant rise of transpired solar collectors used to preheat the fresh air of the building can be observed. Nevertheless, when the air mass flow rate is low, the collector efficiency collapses and a large amount of energy remains unused. This paper presents a simple yet effective mathematical model of a transparent transpired solar collector (TTC) with dual intake in order to remove stagnation problems in the plenum and...

  1. A process to estimate net infiltration using a site-scale water-budget approach, Rainier Mesa, Nevada National Security Site, Nevada, 2002–05 (United States)

    Smith, David W.; Moreo, Michael T.; Garcia, C. Amanda; Halford, Keith J.; Fenelon, Joseph M.


    This report documents a process used to estimate net infiltration from precipitation, evapotranspiration (ET), and soil data acquired at two sites on Rainier Mesa. Rainier Mesa is a groundwater recharge area within the Nevada National Security Site where recharged water flows through bedrock fractures to a deep (450 meters) water table. The U.S. Geological Survey operated two ET stations on Rainier Mesa from 2002 to 2005 at sites characterized by pinyon-juniper and scrub-brush vegetative cover. Precipitation and ET data were corrected to remove measurement biases and gap-filled to develop continuous datasets. Net infiltration (percolation below the root zone) and changes in root-zone water storage were estimated using a monthly water-balance model.Site-scale water-budget results indicate that the heavily-fractured welded-tuff bedrock underlying thin (<40 centimeters) topsoil is a critical water source for vegetation during dry periods. Annual precipitation during the study period ranged from fourth lowest (182 millimeters [mm]) to second highest (708 mm) on record (record = 55 years). Annual ET exceeded precipitation during dry years, indicating that the fractured-bedrock reservoir capacity is sufficient to meet atmospheric-evaporative demands and to sustain vegetation through extended dry periods. Net infiltration (82 mm) was simulated during the wet year after the reservoir was rapidly filled to capacity. These results support previous conclusions that preferential fracture flow was induced, resulting in an episodic recharge pulse that was detected in nearby monitoring wells. The occurrence of net infiltration only during the wet year is consistent with detections of water-level rises in nearby monitoring wells that occur only following wet years.

  2. Biophysical controls on canopy transpiration in a black locust ( Robinia pseudoacacia ) plantation on the semi-arid Loess Plateau, China (United States)

    Lei Jiao; Nan Lu; Ge Sun; Eric J. Ward; Bojie Fu


    In the semi-arid Loess Plateau of China, black locust (Robinia pseudoacacia) was widely planted for soil conservation and afforestation purposes during the past three decades. Investigating biophysical controls on canopy transpiration (Ec) of the plantations is essential to understanding the effects of afforestation on watershed hydrology and regional water resources....

  3. Response of tomato plants to a step-change in root zone salinity, under two different transpiration regimes

    NARCIS (Netherlands)

    Li, Y.; Stanghellini, C.; Challa, H.


    The response of a tomato crop to a step-change in salinity was investigated under different potential transpiration conditions. A crop growing for 5 months under saline irrigation water (EC 9 dS m−1) was given thereafter a standard nutrient solution with an EC of 2 dS m−1. The previous effects of

  4. Modelled hydraulic redistribution by sunflower (Helianthus annuus L.) matches observed data only after including night-time transpiration. (United States)

    Neumann, Rebecca B; Cardon, Zoe G; Teshera-Levye, Jennifer; Rockwell, Fulton E; Zwieniecki, Maciej A; Holbrook, N Michele


    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical and ecological consequences of HR depend on the amount of redistributed water, whereas the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two ecotypes of sunflower (Helianthus annuus L.) in split-pot experiments, we examined how well the widely used HR modelling formulation developed by Ryel et al. matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive night-time transpiration, and although over the last decade it has become more widely recognized that night-time transpiration occurs in multiple species and many ecosystems, the original Ryel et al. formulation does not include the effect of night-time transpiration on HR. We developed and added a representation of night-time transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and night-time stomatal behaviour changed, both influencing HR. © 2013 John Wiley & Sons Ltd.

  5. Inter-species comparisons in Water use with Different water Irrigation Regimes in a Semi-arid area of Korea-Mongolia Greenbelt Plantation (United States)

    Cho, S.; Ser-Oddamba, B.; Batkhuu, N. O.; Kim, H. S.


    As an effort to mitigate desertification and to restore desert areas in Mongolia, Korea-Mongolia Green Belt was established to develop a 3000 ha plantation in 2006. Two native tree species, Populus sibirica and Ulmus pumila L., have been planted under different irrigation regimes (control, control+2L, control +4L and control +8L) since 2008. To investigate the responses of different tree species to different treatment and the effect of plantation on water balance, intensive field experiments have been carried out in 2013-2014 in Mongolia. The objectives of our study are 1) to investigate whether different irrigation regimes changed the physiological characteristics of tree species, 2) to quantify transpirations and water balance under different irrigation regimes, and 3) to compare the water-use-efficiencies among species and irrigation regimes. We used Granier type thermal dissipation sensor, portable photosynthesis analyzer (Li-Cor 6400) and species and site specific allometric equations for transpiration, photosynthetic characteristics and net primary production, respectively. Our preliminary results show that the transpiration rates of P. sibirica increased with the increase of irrigation amount. For examples, the average water consumption of P. sibirica was 1.87kg/tree under control+2L irrigation and 2.97kg/tree at controal+4L irrigation. However, the transpiration rates of U. pumila were not different among different irrigation regimes; the average transpiration of U. pumila at control+2L was 1.1kg/tree compared to 0.89kg/tree at control+4L. But, photosynthetic characteristic showed similar results, which no apparent response under high irrigation regimes. The water use and carbon assimilation of P. sibirica responded to the water irrigation, however, U. pumila did not show any significant response to added water. Our results show different species respond differently to irrigation regimes, and this would lead to different effects on water balance. Therefore

  6. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. (United States)

    Katul, Gabriel; Manzoni, Stefano; Palmroth, Sari; Oren, Ram


    Global climate models predict decreases in leaf stomatal conductance and transpiration due to increases in atmospheric CO2. The consequences of these reductions are increases in soil moisture availability and continental scale run-off at decadal time-scales. Thus, a theory explaining the differential sensitivity of stomata to changing atmospheric CO2 and other environmental conditions must be identified. Here, these responses are investigated using optimality theory applied to stomatal conductance. An analytical model for stomatal conductance is proposed based on: (a) Fickian mass transfer of CO2 and H2O through stomata; (b) a biochemical photosynthesis model that relates intercellular CO2 to net photosynthesis; and (c) a stomatal model based on optimization for maximizing carbon gains when water losses represent a cost. Comparisons between the optimization-based model and empirical relationships widely used in climate models were made using an extensive gas exchange dataset collected in a maturing pine (Pinus taeda) forest under ambient and enriched atmospheric CO2. Key Results and Conclusion In this interpretation, it is proposed that an individual leaf optimally and autonomously regulates stomatal opening on short-term (approx. 10-min time-scale) rather than on daily or longer time-scales. The derived equations are analytical with explicit expressions for conductance, photosynthesis and intercellular CO2, thereby making the approach useful for climate models. Using a gas exchange dataset collected in a pine forest, it is shown that (a) the cost of unit water loss lambda (a measure of marginal water-use efficiency) increases with atmospheric CO2; (b) the new formulation correctly predicts the condition under which CO2-enriched atmosphere will cause increasing assimilation and decreasing stomatal conductance.

  7. Biological and environmental controls on tree transpiration in a suburban landscape (United States)

    Peters, Emily B.; McFadden, Joseph P.; Montgomery, Rebecca A.


    Tree transpiration provides a variety of ecosystem services in urban areas, including amelioration of urban heat island effects and storm water management. Tree species vary in the magnitude and seasonality of transpiration owing to differences in physiology, response to climate, and biophysical characteristics, thereby complicating efforts to manage evapotranspiration at city scales. We report sap flux measurements during the 2007 and 2008 growing seasons for dominant tree species in a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. Evergreen needleleaf trees had significantly higher growing season means and annual transpiration per unit canopy area (1.90 kg H2O m-2 d-1 and 307 kg H2O m-2 yr-1, respectively) than deciduous broadleaf trees (1.11 kg H2O m-2 d-1 and 153 kg H2O m-2 yr-1, respectively) because of a smaller projected canopy area (31.1 and 73.6 m2, respectively), a higher leaf area index (8.8 and 5.5 m2 m-2, respectively), and a longer growth season (8 and 4 months, respectively). Measurements also showed patterns consistent with the species' differences in xylem anatomy (conifer, ring porous, and diffuse porous). As the growing season progressed, conifer and diffuse porous genera had increased stomatal regulation to high vapor pressure deficit, while ring porous genera maintained greater and more constant stomatal regulation. These results suggest that evaporative responses to climate change in urban ecosystems will depend in part on species composition. Overall, plant functional type differences in canopy structure and growing season length were most important in explaining species' differences in midsummer and annual transpiration, offering an approach to predicting the evapotranspiration component of urban water budgets.

  8. Comparing efficacy of a sweep net and a dip method for collection of mosquito larvae in large bodies of water in South Africa [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Katherine K. Brisco


    Full Text Available In this study we tested an alternative method for collecting mosquito larvae called the sweep net catch method and compared its efficiency to that of the traditional dip method. The two methods were compared in various water bodies within Kruger National Park and Lapalala Wilderness area, South Africa. The sweep net catch method performed 5 times better in the collection of Anopheles larvae and equally as well as the dip method in the collection of Culex larvae (p =8.58 x 10-5. Based on 15 replicates the collector’s experience level did not play a significant role in the relative numbers of larvae collected using either method. This simple and effective sweep net catch method will greatly improve the mosquito larval sampling capacity in the field setting.

  9. Relative contribution of groundwater to plant transpiration estimated with stable isotopes. (United States)

    Barbeta, Adrià; Peñuelas, Josep


    Water stored underground in the saturated and subsurface zones below the soil are important sources of water for plants in water-limited ecosystems. The presence of deep-rooted plants worldwide, however, suggests that the use of groundwater is not restricted to arid and seasonally dry ecosystems. We compiled the available data (71 species) on the relative contribution of groundwater to plant water estimated using stable isotopes and mixing models, which provided information about relative groundwater use, and analyzed their variation across different climates, seasons, plant types, edaphic conditions, and landscape positions. Plant use of groundwater was more likely at sites with a pronounced dry season, and represented on average 49 per cent of transpired water in dry seasons and 28 per cent in wet seasons. The relative contribution of groundwater to plant-water uptake was higher on rocky substrates (saprolite, fractured bedrock), which had reduced groundwater uptake when this source was deep belowground. In addition, we found that the connectivity between groundwater pools and plant water may be quantitatively larger and more widespread than reported by recent global estimations based on isotopic averaged values. Earth System Models should account for the feedbacks between transpiration and groundwater recharge.

  10. Expression of Arabidopsis hexokinase in citrus guard cells controls stomatal aperture and reduces transpiration

    Directory of Open Access Journals (Sweden)

    Nitsan eLugassi


    Full Text Available Hexokinase (HXK is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1 under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  11. Effects of some chemically inert dusts upon the transpiration rate of yellow coleus plants

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, E.W.


    In an attempt to obtain critical evidence as to whether inert dusts affect cuticular or stomatal transpiration or both, investigations were conducted with coleus plants, which have stomata on only the lower leaf surfaces. Chemically inert dusts (silica, talc, and Bancroft clay) were applied to one leaf surface or the other, and the relative effects on the daytime and night water losses were measured. The results of these experiments show that for dusts to cause an increase in water loss the dust particles must be small, and the dust must be applied to the stomata-bearing side of the leaf when the stomata are open.

  12. Transpiration and root development of urban trees in structural soil stormwater reservoirs. (United States)

    Bartens, Julia; Day, Susan D; Harris, J Roger; Wynn, Theresa M; Dove, Joseph E


    Stormwater management that relies on ecosystem processes, such as tree canopy interception and rhizosphere biology, can be difficult to achieve in built environments because urban land is costly and urban soil inhospitable to vegetation. Yet such systems offer a potentially valuable tool for achieving both sustainable urban forests and stormwater management. We evaluated tree water uptake and root distribution in a novel stormwater mitigation facility that integrates trees directly into detention reservoirs under pavement. The system relies on structural soils: highly porous engineered mixes designed to support tree root growth and pavement. To evaluate tree performance under the peculiar conditions of such a stormwater detention reservoir (i.e., periodically inundated), we grew green ash (Fraxinus pennsylvanica Marsh.) and swamp white oak (Quercus bicolor Willd.) in either CUSoil or a Carolina Stalite-based mix subjected to three simulated below-system infiltration rates for two growing seasons. Infiltration rate affected both transpiration and rooting depth. In a factorial experiment with ash, rooting depth always increased with infiltration rate for Stalite, but this relation was less consistent for CUSoil. Slow-drainage rates reduced transpiration and restricted rooting depth for both species and soils, and trunk growth was restricted for oak, which grew the most in moderate infiltration. Transpiration rates under slow infiltration were 55% (oak) and 70% (ash) of the most rapidly transpiring treatment (moderate for oak and rapid for ash). We conclude this system is feasible and provides another tool to address runoff that integrates the function of urban green spaces with other urban needs.

  13. Interacting effects of elevated temperature and additional water on plant physiology and net ecosystem carbon fluxes in a high Arctic ecosystem (United States)

    Maseyk, Kadmiel; Seibt, Ulrike; Lett, Céline; Lupascu, Massimo; Czimczik, Claudia; Sullivan, Patrick; Welker, Jeff


    Arctic ecosystems are experiencing temperature increases more strongly than the global average, and increases in precipitation are also expected amongst the climate impacts on this region in the future. These changes are expected to strongly influence plant physiology and soil biogeochemistry with subsequent implications for system carbon balance. We have investigated the effects of a long-term (10 years) increase in temperature, soil water and the combination of both on a tundra ecosystem at a field manipulation experiment in NW Greenland. Leaf gas exchange, chlorophyll fluorescence, carbon (C) and nitrogen (N) content and leaf isotopic composition, and leaf morphology were measured on Salix arctica plants in treatment and control plots in June-July 2011, and continuous measurements of net plant and soil fluxes of CO2 and water were made using automatic chambers coupled to a trace gas laser analyzer. Plants in the elevated temperature (T2) treatment had the highest photosynthetic capacity in terms of net CO2 assimilation rates and photosystem II efficiencies, and lowest rates of non-photochemical energy dissipation during photosynthesis. T2 plants also had the highest leaf N content, specific leaf area (SLA) and saturation light level of photosynthesis. It appears that warming increases soil N availability, which the plants direct towards increasing photosynthetic capacity and producing larger thinner leaves. On the other hand, the plants in the plots with both elevated temperatures and additional water (T2W) had the lowest photosystem II efficiencies and the highest rates of non-photochemical energy dissipation, due more to higher levels of constitutive energy dissipation than regulated thermal quenching. Watering, both in combination with higher temperatures and alone (W treatment), also reduced leaf SLA and leaf N relative to control plots. However, net photosynthetic rates remained similar to control plants, due in part to higher stomatal conductance (W) and

  14. Comparing three models to estimate transpiration of desert shrubs (United States)

    Xu, Shiqin; Yu, Zhongbo; Ji, Xibin; Sudicky, Edward A.


    The role of environmental variables in controlling transpiration (Ec) is an important, but not well-understood, aspect of transpiration modeling in arid desert regions. Taking three dominant desert shrubs, Haloxylon ammodendron, Nitraria tangutorum, and Calligonum mongolicum, as examples, we aim to evaluate the applicability of three transpiration models, i.e. the modified Jarvis-Stewart model (MJS), the simplified process-based model (BTA), and the artificial neural network model (ANN) at different temporal scales. The stem sap flow of each species was monitored using the stem heat balance approach over both the 2014 and 2015 main growing seasons. Concurrent environmental variables were also measured with an automatic weather station. The ANN model generally produced better simulations of Ec than the MJS and BTA models at both hourly and daily scales, indicating its advantage in solving complicated, nonlinear problems between transpiration rate and environmental driving forces. The solar radiation and vapor pressure deficit were crucial variables in modeling Ec for all three species. The performance of the MJS and ANN models was significantly improved by incorporating root-zone soil moisture. We also found that the difference between hourly and daily fitted parameter values was considerable for the MJS and BTA models. Therefore, these models need to be recalibrated when applied at different temporal scales. This study provides insights regarding the application and performance of current transpiration models in arid desert regions, and thus provides a deeper understanding of eco-hydrological processes and sustainable ecosystem management at the study site.

  15. Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration (United States)

    Hassler, Sibylle; Markus, Weiler; Theresa, Blume


    Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions as well as for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. For individual trees, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status control sap flow amounts of individual trees. Within forest stands, properties such as species composition, basal area or stand density additionally affect sap flow, for example via competition mechanisms. Finally, sap flow patterns might also be influenced by landscape-scale characteristics such as geology, slope position or aspect because they affect water and energy availability; however, little is known about the dynamic interplay of these controls. We studied the relative importance of various tree-, stand- and site-specific characteristics with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km2-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we modelled the daily sap velocities of these 61 trees and determined the importance of the different predictors. Results indicate that a combination of tree-, stand- and site-specific factors controls sap velocity patterns in the landscape, namely tree species, tree diameter, the stand density, geology and aspect. Compared to these predictors, spatial variability of atmospheric demand and soil moisture explains only a small fraction of the variability in the daily datasets. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, are correlated to the temporal dynamics of potential evaporation. Thus, transpiration estimates at the

  16. Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration (United States)

    Kathrin Hassler, Sibylle; Weiler, Markus; Blume, Theresa


    Transpiration is a key process in the hydrological cycle, and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions as well as for improving the parameterisation and evaluation of hydrological and soil-vegetation-atmosphere transfer models. For individual trees, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status control sap flow amounts of individual trees. Within forest stands, properties such as species composition, basal area or stand density additionally affect sap flow, for example via competition mechanisms. Finally, sap flow patterns might also be influenced by landscape-scale characteristics such as geology and soils, slope position or aspect because they affect water and energy availability; however, little is known about the dynamic interplay of these controls.We studied the relative importance of various tree-, stand- and site-specific characteristics with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites across a 290 km2 catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we modelled the daily sap velocity and derived sap flow patterns of these 61 trees, and we determined the importance of the different controls.Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in the landscape, namely tree species, tree diameter, geology and aspect. For sap flow we included only the stand- and site-specific predictors in the models to ensure variable independence. Of those, geology and aspect were most important. Compared to these predictors, spatial variability of atmospheric demand and soil moisture explains only a small fraction of the variability in the daily datasets. However, the temporal

  17. From experiments to simulations: tracing Na+ distribution around roots under different transpiration rates and salinity levels (United States)

    Perelman, Adi; Jorda, Helena; Vanderborght, Jan; Pohlmeier, Andreas; Lazarovitch, Naftali


    When salinity increases beyond a certain threshold it will result in reduced crop yield at a fixed rate, according to Maas and Hoffman model (1976). Thus, there is a great importance of predicting salinization and its impact on crops. Current models do not consider the impact of environmental conditions on plants salt tolerance, even though these conditions are affecting plant water uptake and therefore salt accumulation around the roots. Different factors, such as transpiration rates, can influence the plant sensitivity to salinity by influencing salt concentrations around the roots. Better parametrization of a model can help improving predicting the real effects of salinity on crop growth and yield. The aim of this research is to study Na+ distribution around roots at different scales using different non-invasive methods, and study how this distribution is being affected by transpiration rate and plant water uptake. Results from tomato plants growing on Rhizoslides (capillary paper growth system), show that Na+ concentration is higher at the root- substrate interface, compared with the bulk. Also, Na+ accumulation around the roots decreased under low transpiration rate, which is supporting our hypothesis. Additionally, Rhizoslides enable to study roots' growth rate and architecture under different salinity levels. Root system architecture was retrieved from photos taken during the experiment and enabled us to incorporate real root systems into a simulation. To observe the correlation of root system architectures and Na+ distribution in three dimensions, we used magnetic resonance imaging (MRI). MRI provides fine resolution of Na+ accumulation around a single root without disturbing the root system. With time, Na+ was accumulating only where roots were found in the soil and later on around specific roots. These data are being used for model calibration, which is expected to predict root water uptake in saline soils for different climatic conditions and different

  18. Africa-wide monitoring of small surface water bodies using multisource satellite data: a monitoring system for FEWS NET: chapter 5 (United States)

    Velpuri, Naga Manohar; Senay, Gabriel B.; Rowland, James; Verdin, James P.; Alemu, Henok; Melesse, Assefa M.; Abtew, Wossenu; Setegn, Shimelis G.


    Continental Africa has the highest volume of water stored in wetlands, large lakes, reservoirs, and rivers, yet it suffers from problems such as water availability and access. With climate change intensifying the hydrologic cycle and altering the distribution and frequency of rainfall, the problem of water availability and access will increase further. Famine Early Warning Systems Network (FEWS NET) funded by the United States Agency for International Development (USAID) has initiated a large-scale project to monitor small to medium surface water points in Africa. Under this project, multisource satellite data and hydrologic modeling techniques are integrated to monitor several hundreds of small to medium surface water points in Africa. This approach has been already tested to operationally monitor 41 water points in East Africa. The validation of modeled scaled depths with field-installed gauge data demonstrated the ability of the model to capture both the spatial patterns and seasonal variations. Modeled scaled estimates captured up to 60 % of the observed gauge variability with a mean root-mean-square error (RMSE) of 22 %. The data on relative water level, precipitation, and evapotranspiration (ETo) for water points in East and West Africa were modeled since 1998 and current information is being made available in near-real time. This chapter presents the approach, results from the East African study, and the first phase of expansion activities in the West Africa region. The water point monitoring network will be further expanded to cover much of sub-Saharan Africa. The goal of this study is to provide timely information on the water availability that would support already established FEWS NET activities in Africa. This chapter also presents the potential improvements in modeling approach to be implemented during future expansion in Africa.

  19. RESTful NET

    CERN Document Server

    Flanders, Jon


    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  20. Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape (United States)

    Hernandez-Santana, V.; Asbjornsen, H.; Sauer, T.; Isenhart, T.; Schilling, K.; Schultz, Ronald


    Riparian buffers are designed as management practices to increase infiltration and reduce surface runoff and transport of sediment and nonpoint source pollutants from crop fields to adjacent streams. Achieving these ecosystem service goals depends, in part, on their ability to remove water from the soil via transpiration. In these systems, edges between crop fields and trees of the buffer systems can create advection processes, which could influence water use by trees. We conducted a field study in a riparian buffer system established in 1994 under a humid temperate climate, located in the Corn Belt region of the Midwestern U.S. (Iowa). The goals were to estimate stand level transpiration by the riparian buffer, quantify the controls on water use by the buffer system, and determine to what extent advective energy and tree position within the buffer system influence individual tree transpiration rates. We primarily focused on the water use response (determined with the Heat Ratio Method) of one of the dominant species (Acer saccharinum) and a subdominant (Juglans nigra). A few individuals of three additional species (Quercus bicolor, Betula nigra, Platanus occidentalis) were monitored over a shorter time period to assess the generality of responses. Meteorological stations were installed along a transect across the riparian buffer to determine the microclimate conditions. The differences found among individuals were attributed to differences in species sap velocities and sapwood depths, location relative to the forest edge and prevailing winds and canopy exposure and dominance. Sapflow rates for A. saccharinum trees growing at the SE edge (prevailing winds) were 39% greater than SE interior trees and 30% and 69% greater than NW interior and edge trees, respectively. No transpiration enhancement due to edge effect was detected in the subdominant J. nigra. The results were interpreted as indicative of advection effects from the surrounding crops. Further, significant

  1. Petri Nets

    Indian Academy of Sciences (India)

    Associate Professor of. Computer Science and. Automation at the Indian. Institute of Science,. Bangalore. His research interests are broadly in the areas of stochastic modeling and scheduling methodologies for future factories; and object oriented modeling. GENERAL I ARTICLE. Petri Nets. 1. Overview and Foundations.

  2. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Petri Nets - Overview and Foundations. Y Narahari. General Article Volume 4 Issue 8 August 1999 pp ... Author Affiliations. Y Narahari1. Department ot Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  3. Roles of forest bioproductivity, transpiration and fire in a nine-year record of cave dripwater chemistry from southwest Australia (United States)

    Treble, P. C.; Fairchild, I. J.; Baker, A.; Meredith, K. T.; Andersen, M. S.; Salmon, S. U.; Bradley, C.; Wynn, P. M.; Hankin, S. I.; Wood, A.; McGuire, E.


    Forest biomass has the potential to significantly impact the chemistry and volume of diffuse recharge to cave dripwater via the processes of nutrient uptake, transpiration and forest fire. Yet to-date, this role has been under-appreciated in the interpretation of speleothem trace element records from forested catchments. In this study, the impact of vegetation is examined and quantified in a long-term monitoring program from Golgotha Cave, SW Australia. The contribution of salts from rain and dry-deposition of aerosols and dissolved elements from soil mineral and bedrock dissolution to dripwater chemistry are also examined. This study is an essential pre-requisite for the future interpretation of trace element data from SW Australian stalagmite records, whose record of past environmental change will include alterations in these biogeochemical fluxes. Solute concentrations in dripwater vary spatially, supporting the existence of distinct flow paths governed by varying amounts of transpiration as well as nutrient uptake by deeply-rooted biomass. Applying principal components analysis, we identify a common pattern of variation in dripwater Cl, Mg, K, Ca, Sr and Si, interpreted as reflecting increasing transpiration, due to forest growth. Mass-balance calculations show that increasing elemental sequestration into biomass has the largest impact on SO4, providing an explanation for the overall falling dripwater SO4 concentrations through time, in contrast to the transpiration-driven rising trend dominating other ions. The long-term rise in transpiration and nutrient uptake driven by increased forest bioproductivity and its impact on our dripwater chemistry is attributed to (i) the post-fire recovery of the forest understorey after fire impacted the site in 2006 CE; (ii) and/or increased water and nutrient demand as trees in the overlying forest mature. The impact of climate-driven changes on the water balance is also examined. Finally, the implications for interpreting

  4. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    Directory of Open Access Journals (Sweden)

    Juan Rodríguez-Gamir

    Full Text Available Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L. Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.. The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy.

  5. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration? (United States)

    Rodríguez-Gamir, Juan; Primo-Millo, Eduardo; Forner-Giner, María Ángeles


    Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L.) Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.). The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy.

  6. Responses of transpiration and hydraulic conductance to root temperature in nitrogen- and phosphorus-deficient cotton seedlings. (United States)

    Radin, J W


    Suboptimal N or P availability and cool temperatures all decrease apparent hydraulic conductance (L) of cotton (Gossypium hirsutum L.) roots. The interaction between nutrient status and root temperature was tested in seedlings grown in nutrient solutions. The depression of L (calculated as the ratio of transpiration rate to absolute value of leaf water potential [Psi(w)]) by nutrient stress depended strongly on root temperature, and was minimized at high temperatures. In fully nourished plants, L was high at all temperatures >/=20 degrees C, but it decreased greatly as root temperature approached the chilling threshold of 15 degrees C. Decreasing temperature lowered Psi(w) first, followed by transpiration rate. In N- or P-deficient plants, L approached the value for fully nourished plants at root temperatures >/=30 degrees C, but it decreased almost linearly with temperature as roots were cooled. Nutrient effects on L were mediated only by differences in transpiration, and Psi(w) was unaffected. The responses of Psi(w) and transpiration to root cooling and nutrient stress imply that if a messenger is transmitted from cooled roots to stomata, the messenger is effective only in nutrient-stressed plants.

  7. Effects of air current speed, light intensity and co2 concentration on photosynthesis and transpiration of plant leaves (United States)

    Kitaya, Y.; Tsuruyama, J.; Shibuya, T.; Kiyota, M.

    To obtain basic data for adequate air circulation to promote gas exchange and growth of plants in closed plant culture modules in bioregenerative life support systems in space, the effects of air current speeds less than 0.8 m s-1 on transpiration (Tr) and net photosynthetic rates (Pn) of sweetpotato and barley leaves were determined using a leaf chamber method under different photosynthetic photon flux densities (PPFDs) and CO_2 concentrations. The air current speed inside the leaf chamber was controlled by controlling the input voltages for an air circulation fan. The leaf surface boundary layer resistance was determined by the evaporation rate of wet paper and the water vapor pressure difference between the paper and surrounding air in the leaf chamber. The Tr and Pn of leaves rapidly increased as the air current speed increased from 0.01 to 0.1 m s-1 and gradually increased from 0.1 to 0.8 m s-1. These changes are correspondent to the change of the leaf surface boundary layer resistance. The depression of Tr by low air current speeds was greater than that of Pn. Tr and Pn decreased by 0.5 and 0.7 times, respectively, as the air current speed decreased from 0.8 to 0.01 m s-1. The depressions of Tr and Pn by low air current speeds were most notable at PPFDs of 500 and 250 μmol m-2 s-1, respectively. The air current speeds affected Tr and Pn at a CO_2 concentration of 700 μmol mol-1 as well as at 400 μmol mol-1. The results confirmed the importance of controlling air movement for enhancing Tr and Pn under the relatively high PPFD and elevated CO_2 levels likely in plant culture systems in space.

  8. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange (United States)

    Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Lawrence B.


    Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation-reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May-October WTD drawdown of ˜ 0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re) by 0.26 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects on modeled

  9. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Directory of Open Access Journals (Sweden)

    M. Mezbahuddin


    Full Text Available Water table depth (WTD effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1 oxygen transport, which controls energy yields from microbial and root oxidation–reduction reactions, and (2 vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May–October WTD drawdown of  ∼  0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re by 0.26 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. Similar increases in

  10. Respiration and transpiration characteristics of selected fresh fruits ...

    African Journals Online (AJOL)

    Respiration and transpiration characteristics of mushrooms, strawberries, broccoli and tomatoes were determined under different temperature, atmospheric and humidity conditions in order to get information for modified humidity atmosphere conception. The respiration rate was determined using a static method (scanning ...

  11. Effects of storage conditions on transpiration rate of pomegranate ...

    African Journals Online (AJOL)

    This study investigated the effects of temperature (5, 10, 15 and 22 °C) and relative humidity (RH) (76%, 86% and 96%) on the transpiration rate (TR) of pomegranate (Punica granatum L.) cv. Bhagwa fruit fractions, namely arils and aril-sac. Both temperature and RH had significant effects on the TR of fruit fractions. The TR ...

  12. Water stress detection using radar

    NARCIS (Netherlands)

    van Emmerik, T.H.M.


    Vegetation is a crucial part of the water and carbon cycle. Through photosynthesis carbon is assimilated for biomass production, and oxygen is released into the atmosphere. During this process, water is transpired through the stomata, and is redistributed in the plant. Transpired water is refilled

  13. Fruit load governs transpiration of olive trees

    NARCIS (Netherlands)

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon


    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from

  14. Transpirational water loss in invaded and restored semiarid riparian forests (United States)

    Georgianne W. Moore; M. Keith Owens


    The invasive tree, Tamarix sp., was introduced to the United States in the 1800s to stabilize stream banks. The riparian ecosystem adjacent to the middle Rio Grande River in central NewMexico consists of mature cottonwood (Populus fremontii ) gallery forests with a dense Tamarix understory. We hypothesized that Populus would compensate for reduced competition by...

  15. Quantifying the net benefit impacts of the Troy Waste Water Treatment Plant on Steelhead Habitat in the West Fork Little Bear Creek drainage (United States)

    Sanchez-Murillo, R.; Brooks, E. S.; Boll, J.


    Discharge of waste water treatment plants (WWTPs) typically is viewed to result in water quality impairment. However, WWTPs can also be a source of nutrients to enhance the salmonid food web as well as an efficient way to maintain acceptable water temperature regimes and flow conditions during summer. We observed this paradox in West Fork Little Bear Creek (WFLB) in the City of Troy, Idaho. Despite the nutrient load, the WFLB had the highest Steelhead trout density in the watershed, with a mean density of 13.2 fish/100 m2. The objective of this project was to utilize a water quality model, QUAL2kw, and an ecology assessment to examine how the nutrient load from the WWTP affects: a) habitat conditions for steelhead juveniles, and b) physic-chemical parameters. Four monitoring stations were installed from May through November in 2009 and 2010. An undisturbed creek was used as a control site in 2010. Dissolved oxygen (DO), electrical conductivity, temperature, and discharge were measured continuously at each monitoring station. Weekly samples were collected at each monitoring station and analyzed for nitrate, nitrite, ammonia, total Kjeldahl nitrogen, total phosphorous, and orthophosphates. In 2010, Chlorophyll a was analyzed weekly, while bottom algae biomass was determined monthly. Results show that during summer months, the WWTP provides the majority of the flow (0.1 cfs) in the creek. Water samples and DO measurements taken 200 m downstream of the plant during late summer months indicate that nitrification process leads to low DO level well below the state standard of 6 mg/L for cold water biota. However dissolved oxygen levels recover within 1 km downstream. Discharge data suggest that without the flow from the treatment most of the creek would dry during late summer months. Abundance of macroinverbrates, high primary productivity, and sustained flow during summer suggests that the effluent from the WWTP is a net benefit to the Steelhead habitat in the basin

  16. Methylmercury and other chemical constituents in Pacific coastal fog water from seven sites in Central/Northern California (FogNet) during the summer of 2014 (United States)

    Weiss-Penzias, P. S.; Heim, W. A.; Fernandez, D.; Coale, K. H.; Oliphant, A. J.; Dann, D.; Porter, M.; Hoskins, D.; Dodge, C.


    This project investigates the mercury content in summertime Pacific coastal fog in California and whether fog could be an important vector for ocean emissions of mercury to be deposited via fog drip to upland coastal ecosystems. Efforts began in early 2014 with the building of 7 active-strand fog collectors based on the Colorado State University Caltech CASCC design. The new UCSC CASCC includes doors sealing the collector which open under microcomputer control based on environmental sensing (relative humidity). Seven sites spanning from Trinidad in the north to Marina in the south have collected samples June-August 2014 under a project called FogNet. Fog conditions were favorable for collecting large water volumes (> 250 mL) at many sites. Fog samplers were cleaned with soap and deionized water daily and field blanks taken immediately following cleaning. Fog water samples were collected overnight, split into an aliquot for anion and DOC/DIC analysis and the remaining sample was acidified. Monomethyl mercury (MMHg) concentrations in samples and field blanks for 3 sites in FogNet are shown in the accompanying figure. The range of MMHg concentrations from 10 fog water samples > 100 mL in volume was 0.9-9.3 ng/L (4.5-46.4 pM). Elevated MMHg concentrations (> 5 ng/L, 25 pM) were observed at 2 sites: UC Santa Cruz and Bodega Bay. The field blanks produced MMHg concentrations of 0.08-0.4 ng/L (0.4-2.0 pM), which was on average < 10% of the sample concentration and suggests the artifact due to sampling was small. The observed MMHg concentrations in fog water observed is this study are 1-2 orders of magnitude greater than MMHg concentrations seen previously in rain water samples from the California coast suggesting an additional source of MMHg to fog. Shipboard measurements of dimethyl mercury (DMHg) in coastal California seawater during the time period of FogNet operations (summer 2014) reveal surface waters that were supersaturated in DMHg which represents a potential

  17. Estimation of net ecosystem metabolism of seagrass meadows in the coastal waters of the East Sea and Black Sea using the noninvasive eddy covariance technique (United States)

    Lee, Jae Seong; Kang, Dong-Jin; Hineva, Elitsa; Slabakova, Violeta; Todorova, Valentina; Park, Jiyoung; Cho, Jin-Hyung


    We measured the community-scale metabolism of seagrass meadows in Bulgaria (Byala [BY]) and Korea (Hoopo Bay [HP]) to understand their ecosystem function in coastal waters. A noninvasive in situ eddy covariance technique was applied to estimate net O2 flux in the seagrass meadows. From the high-quality and high-resolution time series O2 data acquired over > 24 h, the O2 flux driven by turbulence was extracted at 15-min intervals. The spectrum analysis of vertical flow velocity and O2 concentration clearly showed well-developed turbulence characteristics in the inertial subrange region. The hourly averaged net O2 fluxes per day ranged from -474 to 326 mmol O2 m-2 d-1 (-19 ± 41 mmol O2 m-2 d-1) at BY and from -74 to 482 mmol O2 m-2 d-1 (31 ± 17 mmol O2 m-2 d-1) at HP. The net O2 production rapidly responded to photosynthetically available radiation (PAR) and showed a good relationship between production and irradiance (P-I curve). The hysteresis pattern of P-I relationships during daytime also suggested increasing heterotrophic respiration in the afternoon. With the flow velocity between 3.30 and 6.70 cm s-1, the community metabolism during daytime and nighttime was significantly increased by 20 times and 5 times, respectively. The local hydrodynamic characteristics may be vital to determining the efficiency of community photosynthesis. The net ecosystem metabolism at BY was estimated to be -17 mmol O2 m-2 d-1, which was assessed as heterotrophy. However, that at HP was 36 mmol O2 m-2 d-1, which suggested an autotrophic state.

  18. A two-step approach to estimating selectivity and fishing power of research gill nets used in Greenland waters

    DEFF Research Database (Denmark)

    Hovgård, Holger


    Catches of Atlantic cod (Gadus morhua) from Greenland gill-net surveys were analyzed by a two-step approach. In the initial step the form of the selection curve was identified as binormal, which was caused by fish being gilled or caught by the maxillae. Both capture processes could be described...... by normal distributions and could be related to mesh size in accordance with the principle of geometrical similarity. In the second step the selection parameters were estimated by a nonlinear least squares fit. The model also estimated the relative efficiency of the two capture processes and the fishing...

  19. Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment. (United States)

    Song, Xin; Simonin, Kevin A; Loucos, Karen E; Barbour, Margaret M


    The combined use of a gas-exchange system and laser-based isotope measurement is a tool of growing interest in plant ecophysiological studies, owing to its relevance for assessing isotopic variability in leaf water and/or transpiration under non-steady-state (NSS) conditions. However, the current Farquhar & Cernusak (F&C) NSS leaf water model, originally developed for open-field scenarios, is unsuited for use in a gas-exchange cuvette environment where isotope composition of water vapour (δv ) is intrinsically linked to that of transpiration (δE ). Here, we modified the F&C model to make it directly compatible with the δv -δE dynamic characteristic of a typical cuvette setting. The resultant new model suggests a role of 'net-flux' (rather than 'gross-flux' as suggested by the original F&C model)-based leaf water turnover rate in controlling the time constant (τ) for the approach to steady sate. The validity of the new model was subsequently confirmed in a cuvette experiment involving cotton leaves, for which we demonstrated close agreement between τ values predicted from the model and those measured from NSS variations in isotope enrichment of transpiration. Hence, we recommend that our new model be incorporated into future isotope studies involving a cuvette condition where the transpiration flux directly influences δv . There is an increasing popularity among plant ecophysiologists to use a gas-exchange system coupled to laser-based isotope measurement for investigating non-steady state (NSS) isotopic variability in leaf water (and/or transpiration); however, the current Farquhar & Cernusak (F&C) NSS leaf water model is unsuited for use in a gas-exchange cuvette environment due to its implicit assumption of isotope composition of water vapor (δv ) being constant and independent of that of transpiration (δE ). In the present study, we modified the F&C model to make it compatible with the dynamic relationship between δv and δE as is typically associated

  20. A microfluidic pump/valve inspired by xylem embolism and transpiration in plants.

    Directory of Open Access Journals (Sweden)

    Li Jingmin

    Full Text Available In plants, transpiration draws the water upward from the roots to the leaves. However, this flow can be blocked by air bubbles in the xylem conduits, which is called xylem embolism. In this research, we present the design of a biomimetic microfluidic pump/valve based on water transpiration and xylem embolism. This micropump/valve is mainly composed of three parts: the first is a silicon sheet with an array of slit-like micropores to mimic the stomata in a plant leaf; the second is a piece of agarose gel to mimic the mesophyll cells in the sub-cavities of a stoma; the third is a micro-heater which is used to mimic the xylem embolism and its self-repairing. The solution in the microchannels of a microfluidic chip can be driven by the biomimetic "leaf" composed of the silicon sheet and the agarose gel. The halting and flowing of the solution is controlled by the micro-heater. Results have shown that a steady flow rate of 1.12 µl/min can be obtained by using this micropump/valve. The time interval between the turning on/off of the micro-heater and the halt (or flow of the fluid is only 2∼3 s. This micropump/valve can be used as a "plug and play" fluid-driven unit. It has the potential to be used in many application fields.

  1. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds (United States)

    Bearup, Lindsay A.; Maxwell, Reed M.; Clow, David W.; McCray, John E.


    The recent climate-exacerbated mountain pine beetle infestation in the Rocky Mountains of North America has resulted in tree death that is unprecedented in recorded history. The spatial and temporal heterogeneity inherent in insect infestation creates a complex and often unpredictable watershed response, influencing the primary storage and flow components of the hydrologic cycle. Despite the increased vulnerability of forested ecosystems under changing climate1, watershed-scale implications of interception, ground evaporation, and transpiration changes remain relatively unknown, with conflicting reports of streamflow perturbations across regions. Here, contributions to streamflow are analysed through time and space to investigate the potential for increased groundwater inputs resulting from hydrologic change after infestation. Results demonstrate that fractional late-summer groundwater contributions from impacted watersheds are 30 ± 15% greater after infestation and when compared with a neighbouring watershed that experienced earlier and less-severe attack, albeit uncertainty propagations through time and space are considerable. Water budget analysis confirms that transpiration loss resulting from beetle kill can account for the relative increase in groundwater contributions to streams, often considered the sustainable flow fraction and critical to mountain water supplies and ecosystems.

  2. KM3NeT

    CERN Multimedia

    KM3NeT is a large scale next-generation neutrino telescope located in the deep waters of the Mediterranean Sea, optimized for the discovery of galactic neutrino sources emitting in the TeV energy region.

  3. eWaterCycle visualisation. combining the strength of NetCDF and Web Map Service: ncWMS (United States)

    Hut, R.; van Meersbergen, M.; Drost, N.; Van De Giesen, N.


    As a result of the eWatercycle global hydrological forecast we have created Cesium-ncWMS, a web application based on ncWMS and Cesium. ncWMS is a server side application capable of reading any NetCDF file written using the Climate and Forecasting (CF) conventions, and making the data available as a Web Map Service(WMS). ncWMS automatically determines available variables in a file, and creates maps colored according to map data and a user selected color scale. Cesium is a Javascript 3D virtual Globe library. It uses WebGL for rendering, which makes it very fast, and it is capable of displaying a wide variety of data types such as vectors, 3D models, and 2D maps. The forecast results are automatically uploaded to our web server running ncWMS. In turn, the web application can be used to change the settings for color maps and displayed data. The server uses the settings provided by the web application, together with the data in NetCDF to provide WMS image tiles, time series data and legend graphics to the Cesium-NcWMS web application. The user can simultaneously zoom in to the very high resolution forecast results anywhere on the world, and get time series data for any point on the globe. The Cesium-ncWMS visualisation combines a global overview with local relevant information in any browser. See the visualisation live at

  4. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides.

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa, J.; Stokes, Thomas, A.; Coleman, Mark, D.


    Summary Long-term hydraulic acclimation to resource availability was explored in 3-year-bld Populus deltoides Bartr. ex Marsh. clones by examining transpiration. leaf-specific hydraulic conductance (GL), canopy stomatal conductance (Gs) and leaf to sapwood area ratio (AL:Asi)n response to imgation (13 and 551 mm year in addition to ambient precipitation) and fertilization (0 and 120 kg N ha-' year-'). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than imgation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day-', and increased 66% and 90% in response to imgation and fertilization, respectively. Increases in GL, Gs at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf areain response to increases in resource availability were associated with reductions in AL:As and consequently a minimal change in the water potential gradient from soil to leaf. Imgation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m ha-' by irrigation and from 3.7 to 6.7 m2 ha-' by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides.

  5. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides. (United States)

    Samuelson, Lisa J; Stokes, Thomas A; Coleman, Mark D


    Long-term hydraulic acclimation to resource availability was explored in 3-year-old Populus deltoides Bartr. ex Marsh. clones by examining transpiration, leaf-specific hydraulic conductance (G(L)), canopy stomatal conductance (G(S)) and leaf to sapwood area ratio (A(L):A(S)) in response to irrigation (13 and 551 mm year(-1) in addition to ambient precipitation) and fertilization (0 and 120 kg N ha(-1) year(-1)). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than irrigation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day(-1), and increased 66% and 90% in response to irrigation and fertilization, respectively. Increases in G(L), G(S) at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf area in response to increases in resource availability were associated with reductions in A(L):A(S) and consequently a minimal change in the water potential gradient from soil to leaf. Irrigation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m(2) ha(-1) by irrigation and from 3.7 to 6.7 m(2) ha(-1) by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides.

  6. Measuring diurnal cycles of plant transpiration fluxes in the Arctic with an automated clear chamber (United States)

    Cohen, L. R.; Raz Yaseef, N.; Curtis, J. B.; Rahn, T. A.; Young, J. M.; Newman, B. D.


    Evapotranspiration is an important greenhouse gas and a major component of the hydrological cycle, but methodological challenges still limit our knowledge of this flux. Measuring evapotranspiration is even more difficult when aiming to partition plant transpiration and soil evaporation. Information on this process for arctic systems is very limited. In order to decrease this gap, our objective was to directly measure plant transpiration in Barrow, Alaska (71.3°N 156.7°W). A commercial system allows measuring carbon soil respiration fluxes with an automated clear chamber connected to an infrared gas-analyzer (Licor 8100), and while it simultaneously measures water concentrations, it is not calibrated to measure vapor fluxes. We calibrated the clear chamber against a previously established method based on a Licor 6400 soil chamber, and we developed a code to calculate fluxes. We performed laboratory comparisons in New Mexico and field comparisons in the Arctic, suggesting that this is a valid tool for a large range of climates. In the field we found a strong correlation between the two instruments with R2 of 0.79. Even with 24 hours of daylight in the Arctic, the system captures a clear diurnal transpiration flux, peaking at 0.9 mmol m-2 s-1 and showing no flux at the lowest points. This new method should be a powerful approach for long term measurements of specific vegetation types or surface features. Such Data can also be used to help understand controls on larger scale eddy covariance tower measurements of evapotranspiration.

  7. Mathematical Modeling of Dual Intake Transparent Transpired Solar Collector

    Directory of Open Access Journals (Sweden)

    Thomas Semenou


    Full Text Available Nowadays, in several types of commercial or institutional buildings, a significant rise of transpired solar collectors used to preheat the fresh air of the building can be observed. Nevertheless, when the air mass flow rate is low, the collector efficiency collapses and a large amount of energy remains unused. This paper presents a simple yet effective mathematical model of a transparent transpired solar collector (TTC with dual intake in order to remove stagnation problems in the plenum and ensure a better thermal efficiency and more heat recovery. A thermal model and a pressure loss model were developed. Then, the combined model was validated with experimental data from the Solar Rating and Certification Corporation (SRCC. The results show that the collector efficiency can be up to 70% and even 80% regardless of operating conditions. The temperature gain is able to reach 20°K when the solar irradiation is high.

  8. Transpiration cooled electrodes and insulators for MHD generators (United States)

    Hoover, Jr., Delmer Q.


    Systems for cooling the inner duct walls in a magnetohydrodynamic (MHD) generator. The inner face components, adjacent the plasma, are formed of a porous material known as a transpiration material. Selected cooling gases are transpired through the duct walls, including electrically insulating and electrode segments, and into the plasma. A wide variety of structural materials and coolant gases at selected temperatures and pressures can be utilized and the gases can be drawn from the generation system compressor, the surrounding environment, and combustion and seed treatment products otherwise discharged, among many other sources. The conduits conducting the cooling gas are electrically insulated through low pressure bushings and connectors so as to electrically isolate the generator duct from the ground.

  9. Signal classification and event reconstruction for acoustic neutrino detection in sea water with KM3NeT (United States)

    Kießling, Dominik


    The research infrastructure KM3NeT will comprise a multi cubic kilometer neutrino telescope that is currently being constructed in the Mediterranean Sea. Modules with optical and acoustic sensors are used in the detector. While the main purpose of the acoustic sensors is the position calibration of the detection units, they can be used as instruments for studies on acoustic neutrino detection, too. In this article, methods for signal classification and event reconstruction for acoustic neutrino detectors will be presented, which were developed using Monte Carlo simulations. For the signal classification the disk-like emission pattern of the acoustic neutrino signal is used. This approach improves the suppression of transient background by several orders of magnitude. Additionally, an event reconstruction is developed based on the signal classification. An overview of these algorithms will be presented and the efficiency of the classification will be discussed. The quality of the event reconstruction will also be presented.

  10. Signal classification and event reconstruction for acoustic neutrino detection in sea water with KM3NeT

    Directory of Open Access Journals (Sweden)

    Kießling Dominik


    Full Text Available The research infrastructure KM3NeT will comprise a multi cubic kilometer neutrino telescope that is currently being constructed in the Mediterranean Sea. Modules with optical and acoustic sensors are used in the detector. While the main purpose of the acoustic sensors is the position calibration of the detection units, they can be used as instruments for studies on acoustic neutrino detection, too. In this article, methods for signal classification and event reconstruction for acoustic neutrino detectors will be presented, which were developed using Monte Carlo simulations. For the signal classification the disk–like emission pattern of the acoustic neutrino signal is used. This approach improves the suppression of transient background by several orders of magnitude. Additionally, an event reconstruction is developed based on the signal classification. An overview of these algorithms will be presented and the efficiency of the classification will be discussed. The quality of the event reconstruction will also be presented.

  11. Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin

    Directory of Open Access Journals (Sweden)

    K. Mallick


    Full Text Available Canopy and aerodynamic conductances (gC and gA are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET and evaporation (λEE flux components of the terrestrial latent heat flux (λE, which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR into an integrated framework of the Penman–Monteith and Shuttleworth–Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA, without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy seasons where λET becomes predominantly radiation driven and net radiation (RN determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy–atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to

  12. Temperature and water relations for sun and shade leaves of a desert broadleaf, Hyptis emoryi

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.K.; Nobel, P.S.


    The temperature and water relations of sun versus shade leaves of Hyptis emoryi Torr. were evaluated from field measurements made in late summer. Throughout most of the day sun leaves had higher temperatures and higher resistances to water vapor diffusion, but lower transpiration rates and lower stem water potentials, than did shade leaves. Leaf absorptivity to solar irradiation was less for 1.5-cm-long sun leaves (0.44) than for 4.0-cm shade leaves (0.56). For both leaf types the stomatal resistance increased as the water vapor concentration drop from the leaf to the air increased. Energy balance equations were used together with the measured temperature dependence of photosynthesis to predict the effect of variations in leaf absorptivity, length, and resistance on net photosynthesis. The influence of leaf dimorphism on whole plants was determined by calculating daily photosynthesis and transpiration for plants with various percentages of sun and shade leaves. A hypothetical plant with all sun leaves in the sun had about twice the photosynthesis and half the transpiration ratio as did plants with sun leaves in the shade or shade leaves in the sun or shade. Plants with both sun and shade leaves had the highest predicted photosynthesis per unit ground area. The possible adaptive significance of the seasonal variation in sun and shade leaf percentages observed for individual H. emoryi bushes is discussed in terms of water economy and photosynthesis.

  13. Carbon-Water-Energy Relations for Selected River Basins (United States)

    Choudhury, B. J.


    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  14. Connections between groundwater flow and transpiration partitioning: using integrated continental-scale simulations at high resolution to diagnose hydrologic process interaction (United States)

    Maxwell, Reed; Condon, Laura


    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. These high resolution, transient simulations encompass the major watersheds of the United States and demonstrate great complexity in hydrologic and land energy states. Two simulations were used to study the role lateral groundwater flow plays in transpiration partitioning. Results show that both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47±13% to 62±12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in earth system models, may provide a missing link to reconciling observations and global models of terrestrial water fluxes.

  15. Microclimatological and Physiological Controls of Stomatal Conductance and Transpiration of Co-Occurring Seedlings with Varying Shade Tolerance (United States)

    Siegert, C. M.; Levia, D. F.


    Forest ecosystems provide a significant portion of fresh water to the hydrologic cycle through transpiration, the majority of which is supplied by saplings and mature trees. However, a smaller, yet measurable, proportion is also supplied by seedlings. The contribution of seedlings is dependent upon physiological characteristics of the species, whose range of habitat is ultimately controlled by microclimate. The objectives of this study were to (1) observe meteorological conditions of two forest microlimates and (2) assess the intra- and interspecific stomatal conductance and transpiration responses of naturally occurring seedlings of varying shade tolerance. Naturally established seedlings in a deciduous forest understory and an adjacent clearing were monitored throughout the 2008 growing season in southeastern Pennsylvania (39°49'N, 75°43'W). Clear spatial and temporal trends of stomatal conductance and transpiration were observed throughout this study. The understory microclimate conditions overall had a lower degree of variability and had consistently lower mean quantum flux density, air temperature, vapor pressure deficit, volumetric water content, and soil temperature than the clearing plot. Shade tolerant understory seedlings (Fagus grandifolia Ehrh. (American beech) and Prunus serotina L. (black cherry)) had significantly lower mean monthly rates of water loss (p = 0.05) than shade intolerant clearing seedlings (P. serotina and Liriodendron tulipifera L. (yellow poplar)). Additionally, water loss by shade grown P. serotina was significantly lower (p = 0.05) than by sun grown P. serotina. Significant intraspecific responses (p = 0.05) were also observed on a monthly basis, with the exception of L. tulipifera. These findings indicate that physiological differences, specifically shade tolerance, play an important role in determining rates of stomatal conductance and transpiration in tree seedlings. To a lesser degree, microclimate variability was also shown

  16. Sapfluxnet: a global database of sap flow measurements to unravel the ecological factors of transpiration regulation in woody plants (United States)

    Poyatos, Rafael; Martínez-Vilalta, Jordi; Molowny-Horas, Roberto; Steppe, Kathy; Oren, Ram; Katul, Gabriel; Mahecha, Miguel


    Plant transpiration is one of the main components of the global water cycle, it controls land energy balance, determines catchment hydrological responses and exerts strong feedbacks on regional and global climate. At the same time, plant productivity, growth and survival are severely constrained by water availability, which is expected to decline in many areas of the world because of global-change driven increases in drought conditions. While global surveys of drought tolerance traits at the organ level are rapidly increasing our knowledge of the diversity in plant functional strategies to cope with drought stress, a whole-plant perspective of drought vulnerability is still lacking. Sap flow measurements using thermal methods have now been applied to measure seasonal patterns in water use and the response of transpiration to environmental drivers across hundreds of species of woody plants worldwide, covering a wide range of climates, soils and stand structural characteristics. Here, we present the first effort to build a global database of sub-daily, tree-level sap flow (SAPFLUXNET) that will be used to improve our understanding of physiological and structural determinants of plant transpiration and to further investigate the role of vegetation in controlling global water balance. We already have the expression of interest of data contributors representing >115 globally distributed sites, > 185 species and > 700 trees, measured over at least one growing season. However, the potential number of available sites and species is probably much higher given that > 2500 sap flow-related papers have been identified in a Scopus literature search conducted in November 2015. We will give an overview of how data collection, harmonisation and quality control procedures are implemented within the project. We will also discuss potential analytical strategies to synthesize hydroclimatic controls on sap flow into biologically meaningful traits related to whole-plant transpiration

  17. Transpiration and Groundwater Uptake Dynamics of Pinus Brutia on a Fractured Mediterranean Mountain Slope during Two Hydrologically Contrasting Years (United States)

    Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek; Christou, Andreas; Camera, Corrado; Djuma, Hakan


    Semi-arid environments tend to have extreme temporal variability in rainfall, resulting in extended periods with little to no precipitation. The mountainous topography is characterized by steep slopes, often leading to shallow soil layers with limited water storage capacity. Tree species survive in these environments by developing various adaptation mechanisms to access water. The main objective of this study is to examine the differences of two hydrologically contrasting years on the transpiration and groundwater uptake dynamics of Pinus brutia trees. We selected four trees for sap flow monitoring in an 8966-m2 fenced area of Pinus brutia forest. The site is located at 620 m elevation, on the northern foothills of the Troodos mountains in Cyprus. The slope of the site ranges between 0 and 82%. The average daily minimum temperature is 5 0C in January and the average daily maximum temperature is 35 oC in August. The mean annual rainfall is 425 mm. Monitoring started on 1 January 2015 and is ongoing. We measured soil depth in a 1-m grid around each of the selected trees for monitoring. We processed soil depths in ArcGIS software (ESRI) to create a soil depth map. We used a Total Station and a differential GPS for the creation of a high resolution DEM of the area covering the selected trees. We installed seventeen soil moisture sensors at 12-cm depth and two at 30-cm depth, where the soil was deeper than 24 cm. We randomly installed 28 metric manual rain gauges under the trees' canopy to measure throughfall. For stemflow we installed a plastic tube around each tree trunk and connected it to a manual rain gauge. We used sap flow heat ratio method (HRM) instruments to determine sap flow rates of the Pinus brutia. Hourly meteorological conditions were observed by an automatic meteorological station. Here we present the results of the January to October periods, in order to have comparable results for the two contrasting years. During the wet year of 2015, we measured 439

  18. Sensitivity of boreal forest regional water flux and net primary production simulations to sub-grid-scale land cover complexity (United States)

    Kimball, J. S.; Running, S. W.; Saatchi, S. S.


    We use a general ecosystem process model (BIOME-BGC) coupled with remote sensing information to evaluate the sensitivity of boreal forest regional evapotranspiration (ET) and net primary production (NPP) to land cover spatial scale. Simulations were conducted over a 3 year period (1994-1996) at spatial scales ranging from 30 to 50 km within the BOREAS southern modeling subarea. Simulated fluxes were spatially complex, ranging from 0.1 to 3.9 Mg C ha-1 yr-1 and from 18 to 29 cm yr-1. Biomass and leaf area index heterogeneity predominantly controlled this complexity, while biophysical differences between deciduous and coniferous vegetation were of secondary importance. Spatial aggregation of land cover characteristics resulted in mean monthly NPP estimation bias from 25 to 48% (0.11-0.20 g C m-2 d-1) and annual estimation errors from 2 to 14% (0.04-0.31 Mg C ha-1 yr-1). Error was reduced at longer time intervals because coarse scale overestimation errors during spring were partially offset by underestimation of fine scale results during summer and winter. ET was relatively insensitive to land cover spatial scale with an average bias of less than 5% (0.04 kg m-2 d-1). Factors responsible for differences in scaling behavior between ET and NPP included compensating errors for ET calculations and boreal forest spatial and temporal NPP complexity. Careful consideration of landscape spatial and temporal heterogeneity is necessary to identify and mitigate potential error sources when using plot scale information to understand regional scale patterns. Remote sensing data integrated within an ecological process model framework provides an efficient mechanism to evaluate scaling behavior, interpret patterns in coarse resolution data, and identify appropriate scales of operation for various processes.


    Directory of Open Access Journals (Sweden)

    Hernán Alonso Moreno


    Full Text Available Understanding biogeochemical cycles and especially carbon budgets is clue to validate global change models in the present and near future. As a consequence, sinks and sources of carbon in the world are being studied. One of those sinks is the non-well known behavior of the planet vegetation which involves the processes of photosynthesis and respiration. Carbon sequestration rates are highly related to the transpiration through a molecular diffusion process occurring at the stomatal level which can be recorded by an eddy covariance micrometeorological station. This paper explores annual and diurnal cycles of latent heat (LE and CO2 net (FC fluxes over 6 different ecosystems. Based on the physics of the transpiration process, different time-scale analysis are performed, finding a near-linear relation between LE and CO2 net fluxes, which is stronger at the more vegetated areas. The North American monsoon season increases carbon up taking and LE-CO2 flux relation preserves at different time scales analysis (hours to days to months.El conocimiento de los ciclos biogeoquímicos y, en especial, de los balances de carbono es clave para la validación de los modelos de cambio global para el presente y el futuro cercano. Como consecuencia, en el mundo se estudian las fuentes y los sumideros de carbono. Uno de esos sumideros es la vegetación del planeta, que involucra los procesos de respiración y fotosíntesis y cuyo comportamiento se empieza a estudiar. Las tasas de captura del carbono están muy ligadas a la transpiración mediante un proceso de difusión molecular en los estomas, que puede registrarse por un sistema micrometeorológico de eddy covarianza. Este artículo explora los ciclos anuales y diurnos de los flujos netos de CO2 y calor latente de seis ecosistemas diferentes. Se desarrollan diversos análisis de escala temporal, basados en la física de la transpiración, y se halla una relación cuasilineal entre los flujos netos de calor

  20. Quantitative description of the relation between protein net charge and protein adsorption to air-water interfaces

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, A.G.J.; Jongh,


    In this study a set of chemically engineered variants of ovalbumin was produced to study the effects of electrostatic charge on the adsorption kinetics and resulting surface pressure at the air-water interface. The modification itself was based on the coupling of succinic anhydride to lysine

  1. Confronting a Process-based Model of Temperate Tree Transpiration with Data from Forests in Central Panama Exposed to Drought (United States)

    Ewers, B. E.; Bretfeld, M.; Millar, D.; Hall, J. S.; Beverly, D.; Hall, J. S.; Ogden, F. L.; Mackay, D. S.


    Process-based models of tree impacts on the hydrologic cycle must include not only plant hydraulic limitations but also photosynthetic controls because plants lose water to gain carbon. The Terrestrial Regional Ecosystem Exchange Simulator (TREES) is one such model. TREES includes a Bayesian model-data fusion approach that provides rigorous tests of patterns in tree transpiration data against biophysical processes in the model. TREES has been extensively tested against many temperate tree data sets including those experiencing severe and lethal drought. We test TREES against data from sap flow-scaled transpiration in 76 tropical trees (representing 42 different species) in secondary forests of three different ages (8, 25, and 80+ years) located in the Panama Canal Watershed. These data were collected during the third driest El Niño-Southern Oscillation (ENSO) event on record in Panama during 2015/2016. Tree transpiration response to vapor pressure deficit and solar radiation was the same in the two older forests, but showed an additional response to limited soil moisture in the youngest forest. Volumetric water content at 30 and 50 cm depths was 8% lower in the 8 year old forest than in the 80+ year old forest. TREES could not simulate this difference in soil moisture without increasing simulated root area. TREES simulations were improved by including light response curves of leaf photosynthesis, root vulnerability to cavitation and canopy position impacts on light. TREES was able to simulate the anisohydric (loose stomatal regulation of leaf water potential) and isohydric (tight stomatal regulation) of the 73 trees species a priori indicating that species level information is not required. Analyses of posterior probability distributions indicates TREES model predictions of individual tree transpiration would likely be improved with more detailed root and soil moisture in all forest ages data with the most improvement likely in the 8 year old forest. Our results

  2. First testing of an AUV mission planning and guidance system for water quality monitoring and fish behavior observation in net cage fish farming

    Directory of Open Access Journals (Sweden)

    D. Karimanzira


    Full Text Available Recently, underwater vehicles have become low cost, reliable and affordable platforms for performing various underwater tasks. While many aquaculture systems are closed with no harmful output, open net cage fish farms and land-based fish farms can discharge significant amounts of wastewater containing nutrients, chemicals, and pharmaceuticals that impact on the surrounding environment. Although aquaculture development has often occurred outside a regulatory framework, government oversight is increasingly common at both the seafood quality control level, and at baseline initiatives addressing the basic problem of pollution generated by culture operations, e.g. the European marine and maritime directives. This requires regular, sustainable and cost-effective monitoring of the water quality. Such monitoring needs devices to detect the water quality in a large sea area at different depths in real time. This paper presents a concept for a guidance system for a carrier (an autonomous underwater vehicle of such devices for the automated detection and analysis of water quality parameters.

  3. On Transpiration and Soil Moisture Content Sensitivity to Soil Hydrophysical Data (United States)

    Ács, Ferenc

    Sensitivity of evapotranspiration E and root zone soil moisture content θ to the parameterization of soil water retention Ψ(θ) and soil water conductivity K(Ψ), as well as to the definition of field capacity soil moisture content, is investigated by comparing Psi1-PMSURF and Theta-PMSURF models. The core of PMSURF (Penman-Monteith Surface Fluxes) consists of a 3-layer soil moisture prediction module based on Richard’s equation in combination with the Penman-Monteith concept for estimating turbulent heat fluxes. Psi1- PMSURF and Theta-PMSURF differ only in the parameterization of the moisture availability function Fma. In Psi1,Fma is parameterized by using Ψ(θ) and K(Ψ) hydrophysical functions; in Theta, Fma is parameterized by using hydrophysical parameters: the field capacity θf and wilting point θw soil moisture contents. Both Psi1 and Theta are based on using soil hydrophysical data, that is, there is no conceptual difference between them in the parameterization of E even if in Psi1Fma depends on 12 parameters, while in Theta only on two soil/vegetation parameters. Sensitivity tests are performed using the Cabauw dataset. Three soil datasets are used: the vG (van Genuchten), CH/vG (Clapp and Hornberger/van Genuchten) and CH/PILPS (Clapp and Hornberger/Project for Intercomparison of Land-surface Parameterization Schemes) datasets. The vG dataset is used in van Genuchten’s parameterization, while in Clapp and Hornberger’s the CH/vG and CH/PILPS datasets are used. It is found that the consistency of soil hydrophysical data in the simulation of transpiration is quite important. The annual sum of E obtained by Psi1EPsi1, differs from the annual sum of E obtained by Theta, ETheta, because of the inconsistency between the fitting parameters of Ψ(θ) and K(Ψ) and the θf, and not because of the differencies in the parameterization of Fma. Further, θf can be estimated not only on the basis of using soil hydrophysical functions (the θf so obtained is

  4. The effects of lead on photosynthesis, 14C distribution among photoassimilates and transpiration of maize seedlings

    Directory of Open Access Journals (Sweden)

    Jerzy W. Poskuta


    Full Text Available Roots of whole 3 week-old seedlings of maize were exposed for 24 h to a solution of PbCl2. The concentrations of Pb were: 0, 200, 400, 800, 1200, 2400 mg dm-3. The amount of Pb taken up by roots was independent of the concentration of this element in the medium. The Pb taken up by shoots increased linearly with increasing treatment concentration. Pb caused: concentration-dependent inhibition of photosynthesis (PS, transpiration (T, 14CO2 uptake and incorporation of label into photosynthetic products. The largest limitation by Pb of the flow of photoassimilated carbon occurred into starch and sugar phosphates. Among the water-soluble photoassimilates, the largest limitation of carbon flow occurred into organic acids and sugars and the smallest into amino acids.

  5. Flexible Transpiration Cooled Thermal Protection System for Inflatable Atmospheric Capture and Entry Systems Project (United States)

    National Aeronautics and Space Administration — Andrews Space, Inc. proposes an innovative transpiration cooled aerobrake TPS design that is thermally protective, structurally flexible, and lightweight. This...

  6. Analysis of the response of soil water to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lauenroth, W.K.I.; Burke, K.I.C.; Coffin, D.P. (Colorado State Univ., Fort Collins, CO (United States))


    We used a daily time step soil water model to investigate the potential effects of changes in temperature and precipitation on soil water dynamics in the central grassland region of the U.S.. We collected 20-years of driving variable data from each of 300 USGS weather stations throughout the region. Simulations were run for each station and the results were entered into a GIS database for analysis and display. Soil water patterns under current climatic conditions reflected the large scale west-east precipitation and south-north temperature gradients. Bare soil evaporation accounted for a large proportion of water loss in the driest areas and was replaced by canopy interception in the wettest areas. Transpiration water loss reflected the regional pattern of net primary production, highest in the warm and wet areas and lowest in the warm and dry areas. Increased temperature affected both evaporation and transpiration losses largely by increasing the length of time when evaporative demand of the atmospheric was high. Increases and decreases in precipitation affected water supply directly. Interactions between changes in elevated temperature and increased or decreased precipitation depended upon the balance of changes in water supply and demand.

  7. Environmental constraints on plant transpiration and the hydrological implications in a northern high latitude upland headwater catchment (United States)

    Wang, H.; Tetzlaff, D.; Soulsby, C.


    Vegetation affects water, carbon and energy transfer in the soil-plant-atmosphere system and mediates land-atmosphere interactions by altering surface albedo, roughness and soil macro-porosity, intercepting rainfall and transpiring water from soil layers. Vegetation water use (Ec) is regulated by stomata behaviour which is constrained by environmental variables including radiation, temperature, vapour pressure deficit, and soil water content. The relative influences of these variables on Ec are usually site specific reflecting climate and species differences. At a catchment scale, Ec can account for a large proportion of total evapotranspiration, and hence regulates water storage and fluxes in the soils, groundwater reservoirs and streams. In this study, we estimated transpiration from short vegetation (Calluna vulgaris) using the Maximum Entropy Production model (MEP), and measured sap flow of two forest plantations, together with meteorological variables, soil moisture and streamflow in an upland headwater catchment in northern Scotland. Our objectives were to investigate the environmental constraints on Ec in this wet humid and cool summer climate, and the hydrological responses and regulations of Ec in terms of rainfall and streamflow. Results will assist the assessment of hydrological implications of land management in terms of afforestation/deforestation.

  8. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone (United States)

    Bachand, P.A.M.; S. Bachand,; Fleck, Jacob A.; Anderson, Frank E.; Windham-Myers, Lisamarie


    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flowrates and tracer concentrations atwetland inflows and outflows. We used two ideal reactormodel solutions, a continuous flowstirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these nonideal agricultural wetlands in which check ponds are in series. Using a fluxmodel, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemicalmechanisms affecting dissolved constituent cycling in the root zone. In addition,our understanding of internal

  9. Development and assessment of Transpirative Deficit Index (D-TDI) for agricultural drought monitoring (United States)

    Borghi, Anna; Rienzner, Michele; Gandolfi, Claudio; Facchi, Arianna


    Drought is a major cause of crop yield loss, both in rainfed and irrigated agroecosystems. In past decades, many approaches have been developed to assess agricultural drought, usually based on the monitoring or modelling of the soil water content condition. All these indices show weaknesses when applied for a real time drought monitoring and management at the local scale, since they do not consider explicitly crops and soil properties at an adequate spatial resolution. This work describes a newly developed agricultural drought index, called Transpirative Deficit Index (D-TDI), and assesses the results of its application over a study area of about 210 km2 within the Po River Plain (northern Italy). The index is based on transforming the interannual distribution of the transpirative deficit (potential crop transpiration minus actual transpiration), calculated daily by means of a spatially distributed conceptual hydrological model and cumulated over user-selected time-steps, to a standard normal distribution (following the approach proposed by the meteorological index SPI - Standard Precipitation Index). For the application to the study area a uniform maize crop cover (maize is the most widespread crop in the area) and 22-year (1993-2014) meteorological data series were considered. Simulation results consist in maps of the index cumulated over 10-day time steps over a mesh with cells of 250 m. A correlation analysis was carried out (1) to study the characteristics and the memory of D-TDI and to assess its intra- and inter-annual variability, (2) to assess the response of the agricultural drought (i.e., the information provided by D-TDI) to the meteorological drought computed through the SPI over different temporal steps. The D-TDI is positively auto-correlated with a persistence of 30 days, and positively cross-correlated to the SPI with a persistence of 40 days, demonstrating that D-TDI responds to meteorological forcing. Correlation analyses demonstrate that soils

  10. Stomatal and Aerodynamic Controls of Transpiration and Evaporation over Amazonian Landscapes (United States)

    Trebs, I.; Mallick, K.; Boegh, E.; Giustarini, L.; Schlerf, M.; von Randow, C.; Kruijt, B.; De Araujo, A. C.; Hayek, M.; Wofsy, S. C.; Munger, J. W.; Saleska, S. R.; Ehleringer, J. R.; Domingues, T. F.; Ometto, J. P. H. B.; Leal de Moraes, O. L.; Hoffmann, L.; Jarvis, A.


    The dominant physical and ecophysiological state variables regulating the terrestrial latent heat flux (λE) are the aerodynamic conductance exerted by the boundary layer (gB) and the stomatal conductance (gS) exerted by the vegetation, and the Penman-Monteith (PM) model is a physically based method to directly quantify λE. However, the large scale application of the PM model suffers from the unavailability of any physical approach that explains the behaviour of gB and gSwithin the soil-plant-atmosphere-continuum. Here, we present a novel method to directly estimate gB and gS, and quantify their control on canopy scale transpiration (λET) and evaporation (λEE) using a Surface Temperature Initiated Closure (STIC) approach. STIC is driven with radiometric surface temperature (TR), air temperature (TA), relative humidity (RH), net radiation (RN), and ground heat flux (G). It physically integrates TR into the PM formulation to directly retrieve gB and gS and the conductances are physically constrained by near surface wetness, atmospheric vapour pressure deficit (DA) and radiative fluxes. Measurements from six ecohydrologically contrasting sites of the LBA (Large Scale Biosphere Atmosphere Transfer in Amazonia) eddy covariance network were used for estimating the conductances and quantifying their control on λET and λEE. The predicted λE from STIC based gB and gS retrievals revealed substantial correlation (R2 from 0.92 to 0.98), and mean absolute percent deviation (MAPD) of 14% to 20% with the observed fluxes. The 'decoupling coefficient' (Ω) indicated critical canopy control on λET and λEE for Tropical Moist Forest (TMF), Tropical Dry Forest (TDF) and pasture (PAS). On the contrary, for the Tropical Rain Forest (TRF) site, a non-significant relationship was found between Ω and λET (λEE) (p = 0.20 - 0.42), indicating no canopy control on λET (λEE) for this particular plant functional type. However, significant canopy control for the TRF was found in the

  11. The sensitivity of regional transpiration to land-surface characteristics: significance of feedback.

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Bruin, de H.A.R.


    Several authors have determined the sensitivity of transpiration to different environmental parameters using the Penman-Monteith equation. In their studies the interaction between transpiration and, for example, the humidity of the air is ignored: the feedback with the planetary boundary layer (PBL)

  12. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest (United States)

    Dohyoung Kim; Ram Oren; A. Christopher Oishi; Cheng-I Hsieh; Nathan Phillips; Kimberly A. Novick; Paul C. Stoy


    Wind velocity (U) within and above forest canopies can alter the coupling between the vapor-saturated sub-stomatal airspace and the drier atmosphere aloft, thereby influencing transpiration rates. In practice, however, the actual increase in transpiration with increasing U depends on the aerodynamic resistance (RA) to vapor transfer compared to canopy resistance to...

  13. Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods. (United States)

    Bowden, Joseph D; Bauerle, William L


    We investigated which parameters required by the MAESTRA model were most important in predicting leaf-area-based transpiration in 5-year-old trees of five deciduous hardwood species-yoshino cherry (Prunus x yedoensis Matsum.), red maple (Acer rubrum L. 'Autumn Flame'), trident maple (Acer buergeranum Miq.), Japanese flowering cherry (Prunus serrulata Lindl. 'Kwanzan') and London plane-tree (Platanus x acerifolia (Ait.) Willd.). Transpiration estimated from sap flow measured by the heat balance method in branches and trunks was compared with estimates predicted by the three-dimensional transpiration, photosynthesis and absorbed radiation model, MAESTRA. MAESTRA predicted species-specific transpiration from the interactions of leaf-level physiology and spatially explicit micro-scale weather patterns in a mixed deciduous hardwood plantation on a 15-min time step. The monthly differences between modeled mean daily transpiration estimates and measured mean daily sap flow ranged from a 35% underestimation for Acer buergeranum in June to a 25% overestimation for A. rubrum in July. The sensitivity of the modeled transpiration estimates was examined across a 30% error range for seven physiological input parameters. The minimum value of stomatal conductance as incident solar radiation tends to zero was determined to be eight times more influential than all other physiological model input parameters. This work quantified the major factors that influence modeled species-specific transpiration and confirmed the ability to scale leaf-level physiological attributes to whole-crown transpiration on a species-specific basis.

  14. Benefits of increasing transpiration efficiency in wheat under elevated CO2for rainfed regions. (United States)

    Christy, Brendan; Tausz-Posch, Sabine; Tausz, Michael; Richards, Richard; Rebetzke, Greg; Condon, Anthony; Mclean, Terry; Fitzgerald, Glenn; Bourgault, Maryse; O'Leary, Garry


    Higher transpiration efficiency (TE) has been proposed as a mechanism to increase crop yields in dry environments where water availability usually limits yield. The application of a coupled radiation and transpiration efficiency simulation model shows wheat yield advantage of a high TE cultivar (cv. Drysdale) over its almost identical low TE parent line (Hartog), from about -7 to 558 kg ha -1 (mean 187 kg ha -1 ) over the rainfed cropping region in Australia (221 to 1351 mm annual rainfall), under the present-day climate. The smallest absolute yield response occurred in the more extreme drier and wetter areas of the wheat belt. However, under elevated CO 2 conditions, the response of Drysdale was much greater overall, ranging from 51 to 886 kg ha -1 (mean 284 kg ha -1 ) with the greatest response in the higher rainfall areas. Changes in simulated TE under elevated CO 2 conditions are seen across Australia with notable increased areas of higher TE under a drier climate in Western Australia, Queensland and parts of New South Wales and Victoria. This improved efficiency is subtly deceptive, with highest yields not necessarily directly correlated with highest TE. Nevertheless, the advantage of Drysdale over Hartog is clear with the benefit of the trait advantage attributed to TE ranging from 102 to 118% (mean 109%). The potential annual cost-benefits of this increased genetic TE trait across the wheat growing areas of Australia (5 year average of area planted to wheat) totaled AUD 631 MIL (5 year average wheat price of AUD 260 t -1 ) with an average of 187 kg ha -1 under the present climate. The benefit to an individual farmer will depend on location but elevated CO 2 raises this nation-wide benefit to AUD 796 MIL in a 2°C warmer climate, slightly lower (AUD 715 MIL) if rainfall is also reduced by 20%. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Tree sap flow and stand transpiration of two Acacia mangium plantations in Sabah, Borneo (United States)

    Cienciala, E.; Kučera, J.; Malmer, A.


    Water use of Acacia mangium trees grown in plantations was measured by a heat balance method in two stands that largely differed in tree density. Tree sap flow was closely coupled to climatic drivers and responded with minimal time delay. Using no time shift, sap flow rate could be tightly fitted to a simple equation that combined a parabolic response to radiation and an inverse linear response to air humidity. On the contrary, the analysis of canopy conductance showed no meaningful response to either individual or combined microclimatic variables. No indication of water deficit was observed, though the measurement period was during the dry period of the year. The measurements indicate a minimal diurnal use of water stored in plant tissues. The difference in tree water use from the two studied stands was effectively scaled by tree sapwood area. Canopy transpiration of the densest stand reached in average 3.9 mm d -1 compared with 2.7 mm d -1 for the stand representing the average conditions in the catchment.

  16. Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table

    NARCIS (Netherlands)

    Robroek, B.J.M.; Schouten, M.G.C.; Limpens, J.; Berendse, F.; Poorter, H.


    Sphagnum cuspidatum, S. magellanicum and S. rubellum are three co-occurring peat mosses, which naturally have a different distribution along the microtopographical gradient of the surface of peatlands. We set out an experiment to assess the interactive effects of water table (low: -10 cm and high:

  17. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer. (United States)

    Guo, Ruqing; Sun, Shucun; Liu, Biao


    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  18. Influence of a net cage tilapia culture on the water quality of the Nova Avanhandava reservoir, São Paulo State, Brazil - doi: 10.4025/actascibiolsci.v34i3.7298

    Directory of Open Access Journals (Sweden)

    André Luiz Scarano Camargo


    Full Text Available In order to understand the influence of a net cage tilapia culture on the environment, water quality parameters were investigated during the period between December, 2005 and November, 2007. Three sampling stations were established in the reservoir of Nova Avanhandava (Zacarias, São Paulo State as follows: upstream of net cage area (P1, in the rearing place (P2 and downstream of net cage area (P3. The mean values of the parameters examined in the water sampling stations were within the standards of water quality recommended by resolution no. 357/2005 of the Conselho Nacional do Meio Ambiente for class 2 freshwater bodies. A significantly higher mean concentration of total phosphorus (p -1 was the result of the uneaten feed and feces of fish. The average concentration of total phosphorus in P3 was lower (0.015 mg L-1, which was assimilated by the aquatic ecosystem. The frequent monitoring of the water parameters is fundamental, so the producer can adjust the management according to environmental conditions, by reducing fish density or changing feeding rates for example, to mitigate or avoid water quality deterioration. 

  19. Effects of Water Stress on Photosynthesis and Chlorophyll Fluorescence of the Sugar Beet

    Directory of Open Access Journals (Sweden)

    HAN Kai-hong


    Full Text Available To investigate the effect of water stress and rewatering on sugar beet yield and its corresponding photosynthetic parameters, and to provide the basis of water management for the sugar beet fields, pool experiments in an artificial proof canopy were set up to observe changes of beet net photosynthetic rate(Pn, transpiration rate(Tr, water use efficiency(WUE and stomatal limitation (Ls, intercellular CO2 oncentration(Ci, and PSⅡ maximum quantum yield(Fv/Fm. The results indicated that the diurnal variation of Tr and Pn in CK treatment (whole growth period replenishment at different times near "unimodal" type; and water shortage treatments presented "twin peaks" change. Diurnal transpiration capacity(DTC under water stress at sugar accumulation stage reduced by 70.16%~74.81% and diurnal photosynthetic capacity(DPC was 63.48%~69.96% lower than that of CK, while diurnal water use efficiency(WUEd increased by 19.28%~22.39%. Rehydration helped Tr and Pn recovery, but did not reach unstressed levels. Ls changes under extremely dry environment had a midday trough "twin peaks" feature, and Ci was at "double-dip" in consistent with the timing of Ls; Water stress inhibited and inactivated photochemical reaction center of midday PSⅡ. Water stress led to irreversible decrease in the Pn and Tr, and prolonged the Pn inefficient period, which become the important factor of influencing the sugar beet yield.

  20. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Rosener, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science


    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ```` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at} The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  1. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science Oak Ridge National Lab., TN (United States)); Rosener, B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)


    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at} The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  2. Eddy covariance measurements of net C exchange in the CAM bioenergy crop, Agave tequiliana (United States)

    Owen, Nick A.; Choncubhair, Órlaith Ní; Males, Jamie; del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary


    Bioenergy crop cultivation may focus more on low grade and marginal lands in order to avoid competition with food production for land and water resources. However, in many regions, this would require improvements in plant water-use efficiency that are beyond the physiological capacity of most C3 and C4 bioenergy crop candidates. Crassulacean acid metabolism (CAM) plants, such as Agave tequiliana, can combine high above-ground productivity with as little as 20% of the water demand of C3 and C4 crops. This is achieved through temporal separation of carboxylase activities, with stomata opening at night to allow gas exchange and minimise transpirational losses. Previous studies have employed 'bottom-up' methodologies to investigate carbon (C) accumulation and productivity in Agave, by scaling leaf-level gas exchange and titratable acidity (TA) with leaf area index or maximum productivity. We used the eddy covariance (EC) technique to quantify ecosystem-scale gas exchange over an Agave plantation in Mexico ('top-down' approach). Measurements were made over 252 days, including the transition from wet to dry periods. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Net ecosystem exchange of CO2 displayed a CAM rhythm that alternated from a net C sink at night to a net C source during the day and partitioned canopy fluxes (gross C assimilation, FA,EC) showed a characteristic four-phase CO2 exchange pattern. The projected ecosystem C balance indicated that the site was a net sink of -333 ± 24 g C m-2 y-1, comprising cumulative soil respiration of 692 ± 7 g C m-2 y-1 and FA,EC of -1025 ± 25 g C m-2 y-1. EC-estimated biomass yield was 20.1 Mg ha-1 y-1. Average integrated daily FA,EC was -234 ± 5 mmol CO2 m-2 d-1 and persisted almost unchanged after 70 days of drought conditions. Our results suggest that the carbon acquisition strategy of drought avoidance employed by Agave

  3. Net primary productivity (NPP) and associated parameters for the U.S. outer continental shelf waters, 1998-2009 (NODC Accession 0071184) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession consists of monthly net primary productivity (NPP) estimates for 1998-2009 derived from the Vertically Generalized Production Model (VGPM) for the 26...

  4. Diagnosing the Role of Transpiration in the Transition from Dry to Wet Season Over the Amazon Using Satellite Observations (United States)

    Wright, J. S.; Fu, R.; Yin, L.; Chae, J.


    Reanalysis data indicates that land surface evapotranspiration plays a key role in determining the timing of wet season onset over the Amazon. Here, we use satellite observations of water vapor and its stable isotopes, carbon dioxide, leaf area index, and precipitation together with reanalysis data to explore the importance of transpiration in initiating the transition from dry season to wet season over the Amazon. The growth of vegetation in this region is primarily limited by the availability of sunlight rather than the availability of soil moisture, so that the increase of solar radiation during the dry season coincides with dramatic increases in leaf area index within forested ecosystems. This period of plant growth is accompanied by uptake of carbon dioxide and enrichment of heavy isotopes in water vapor, particularly near the land surface. Reanalysis data indicate that this pre-wet season enrichment of HDO is accompanied by sharp increases in the surface latent heat flux, which eventually triggers sporadic moist convection. The transport of transpiration-enriched near-surface air by this convection causes a dramatic increase in free-tropospheric HDO in late August and September. September also marks transition points in the annual cycles of leaf area index (maximum) and carbon dioxide (minimum). The increase in convective activity during this period creates convergence, enhancing moisture transport into the region and initiating the wet season.

  5. Quantitative imaging of water flow in soil and roots using neutron radiography and deuterated water

    Energy Technology Data Exchange (ETDEWEB)

    Zarebanadkouki, Mohsen


    Where and how fast do roots take up water? Despite its importance in plant and soil sciences, there is limited experimental information on the location of water uptake along the roots of transpiring plants growing in soil. The answer to this question requires direct and in-situ measurement of the local flow of water into the roots. The aim of this study was to develop and apply a new method to quantify the local fluxes of water into different segments of the roots of intact plants. To this end, neutron radiography was used to trace the transport of deuterated water (D{sub 2}O) into the roots of lupines. Lupines were grown in aluminum containers filled with sandy soil. The soil was partitioned into different compartments using 1 cm-thick layers of coarse sand as capillary barriers. These barriers limited the diffusion of D{sub 2}O within the soil compartments. D{sub 2}O was locally injected into the selected soil compartments during the day (transpiring plants) and night (non-transpiring plants). Transport of D{sub 2}O into roots was then monitored by neutron radiography with spatial resolution of 100 μm and time intervals of 10 seconds. Neutron radiographs showed that: i) transport of D{sub 2}O into roots was faster during the day than during the night; 2) D{sub 2}O quickly moved along the roots towards the shoots during the day, while at night this axial transport was negligible. The differences between day and night measurements were explained by convective transport of D{sub 2}O into the roots. To quantify the net flow of water into roots, a simple convection-diffusion model was developed, where the increase rate of D{sub 2}O concentration in roots depended on the convective transport (net root water uptake) and the diffusion of D{sub 2}O into roots. The results showed that water uptake was not uniform along the roots. Water uptake was higher in the upper soil layers than in the deeper ones. Along an individual roots, the water uptake rate was higher in the

  6. RadNet Air Data From Little Rock, AR (United States)

    This page presents radiation air monitoring and air filter analysis data for Little Rock, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  7. RadNet Air Data From Pittsburgh, PA (United States)

    This page presents radiation air monitoring and air filter analysis data for Pittsburgh, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  8. RadNet Air Data From Montgomery, AL (United States)

    This page presents radiation air monitoring and air filter analysis data for Montgomery, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  9. RadNet Air Data From Toledo, OH (United States)

    This page presents radiation air monitoring and air filter analysis data for Toledo, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  10. RadNet Air Data From Honolulu, HI (United States)

    This page presents radiation air monitoring and air filter analysis data for Honolulu, HI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. Net Ecosystem Carbon Flux (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  12. Cultivar Differences in Plant Transpiration Rate at High Relative Air Humidity Are Not Related to Genotypic Variation in Stomatal Responsiveness

    DEFF Research Database (Denmark)

    Gebraegziabher, Habtamu Giday; Kjær, Katrine Heinsvig; Ottosen, Carl-Otto


    decline in plant transpiration by high RH, and that the variation in plant transpiration rate can be reflected by differences in leaf temperature (Tleaf). Plant leaf area, stomatal responsiveness to desiccation, together with plant transpiration and leaf temperature at growth conditions were analyzed...... in ten rose cultivars grown at moderate (60%) or high (85%) RH. Plants grown at high RH had a larger (9%) leaf area, and transpired less (45-50%) during the light period. At nighttime, plant transpiration decreased (28-49%) by high RH in three or four cultivars, depending on the light conditions. Within...

  13. The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate

    Directory of Open Access Journals (Sweden)

    B. Kruijt


    Full Text Available The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2], temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong. Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.

  14. Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem

    Directory of Open Access Journals (Sweden)

    S. H. Wu


    Full Text Available Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta and soil temperature (Ts influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel together with eddy covariance (EC data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo-based uncertainty method (GLUE provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described by the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.

  15. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation) (United States)

    Marshall, Michael T.; Thenkabail, Prasad S.; Biggs, Trent; Post, Kirk


    Evapotranspiration (ET) is an important component of micro- and macro-scale climatic processes. In agriculture, estimates of ET are frequently used to monitor droughts, schedule irrigation, and assess crop water productivity over large areas. Currently, in situ measurements of ET are difficult to scale up for regional applications, so remote sensing technology has been increasingly used to estimate crop ET. Ratio-based vegetation indices retrieved from optical remote sensing, like the Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index, and Enhanced Vegetation Index are critical components of these models, particularly for the partitioning of ET into transpiration and soil evaporation. These indices have their limitations, however, and can induce large model bias and error. In this study, micrometeorological and spectroradiometric data collected over two growing seasons in cotton, maize, and rice fields in the Central Valley of California were used to identify spectral wavelengths from 428 to 2295 nm that produced the highest correlation to and lowest error with ET, transpiration, and soil evaporation. The analysis was performed with hyperspectral narrowbands (HNBs) at 10 nm intervals and multispectral broadbands (MSBBs) commonly retrieved by Earth observation platforms. The study revealed that (1) HNB indices consistently explained more variability in ET (ΔR2 = 0.12), transpiration (ΔR2 = 0.17), and soil evaporation (ΔR2 = 0.14) than MSBB indices; (2) the relationship between transpiration using the ratio-based index most commonly used for ET modeling, NDVI, was strong (R2 = 0.51), but the hyperspectral equivalent was superior (R2 = 0.68); and (3) soil evaporation was not estimated well using ratio-based indices from the literature (highest R2 = 0.37), but could be after further evaluation, using ratio-based indices centered on 743 and 953 nm (R2 = 0.72) or 428 and 1518 nm (R2 = 0.69).

  16. Low-Cost and Light-Weight Transpiration-Cooled Thrust Chambers Project (United States)

    National Aeronautics and Space Administration — The proposed effort aims to evaluate the feasibility of using transpiration-cooled Titanium as the primary material in small-scale thrust chambers for in-space...

  17. Professional Enterprise NET

    CERN Document Server

    Arking, Jon


    Comprehensive coverage to help experienced .NET developers create flexible, extensible enterprise application code If you're an experienced Microsoft .NET developer, you'll find in this book a road map to the latest enterprise development methodologies. It covers the tools you will use in addition to Visual Studio, including Spring.NET and nUnit, and applies to development with ASP.NET, C#, VB, Office (VBA), and database. You will find comprehensive coverage of the tools and practices that professional .NET developers need to master in order to build enterprise more flexible, testable, and ext

  18. Differential Atmospheric Controls on Transpiration of Boreal Trees: A Potential Factor in Pre-mature Tree Mortality in Green-Tree Retention Strategies (United States)

    Bladon, K. D.; Silins, U.; Lieffers, V. J.


    Green-tree retention, a harvesting strategy that involves the preservation of isolated and interconnected patches of live trees within the boundaries of harvested areas, is assumed to emulate natural disturbance, while preserving forest canopy continuity for wildlife habitat, maintaining forest biodiversity, and many other landscape level objectives. Unfortunately, many of the retention trees die within a few years after harvesting, thus much of the desired function of these trees is lost. This research focuses on understanding the relationship between changes in micro-climate following harvesting and transpiration, potentially leading to drought-induced mortality of aspen, balsam poplar, white spruce, and white birch. Continuous measurements of whole-tree water use (sap flow) and micro-climate were taken before and after harvesting of two adjacent boreal mixedwood stands in west-central Alberta in the summer of 2003. Differences in micro-climate including radiation, air temperature, relative humidity and wind penetration into the canopy produced large differences in atmospheric moisture demand (PET) between partially harvested (green-tree retention) and undisturbed forest canopies. The variability in atmospheric conditions created large differences in sap flow velocity and transpiration rates among these four boreal species. Differential transpiration rates among species will be discussed in context of atmospheric controls on water use and drought tolerance of boreal trees with differing autecology and/or hydraulic architecture.

  19. Transpiration and CO2 fluxes of a pine forest: modelling the undergrowth effect

    Directory of Open Access Journals (Sweden)

    V. Rivalland


    Full Text Available A modelling study is performed in order to quantify the relative effect of allowing for the physiological properties of an undergrowth grass sward on total canopy water and carbon fluxes of the Le-Bray forest (Les-Landes, South-western France. The Le-Bray forest consists of maritime pine and an herbaceous undergrowth (purple moor-grass, which is characterised by a low stomatal control of transpiration, in contrast to maritime pine. A CO2-responsive land surface model is used that includes responses of woody and herbaceous species to water stress. An attempt is made to represent the properties of the undergrowth vegetation in the land surface model Interactions between Soil, Biosphere, and Atmosphere, CO2-responsive, ISBA-A-gs. The new adjustment allows for a fairly different environmental response between the forest canopy and the understory in a simple manner. The model's simulations are compared with long term (1997 and 1998 micro-meteorological measurements over the Le-Bray site. The fluxes of energy, water and CO2, are simulated with and without the improved representation of the undergrowth vegetation, and the two simulations are compared with the observations. Accounting for the undergrowth permits one to improve the model's scores. A simple sensitivity experiment shows the behaviour of the model in response to climate change conditions, and the understory effect on the water balance and carbon storage of the forest. Accounting for the distinct characteristics of the undergrowth has a substantial and positive effect on the model accuracy and leads to a different response to climate change scenarios.

  20. [Greenhouse tomato transpiration and its affecting factors: correlation analysis and model simulation]. (United States)

    Yao, Yong-Zhe; Li, Jian-Ming; Zhang, Rong; Sun, San-Jie; Chen, Kai-Li


    A pot experiment was conducted to study the correlations between the daily transpiration of greenhouse tomato and the related affecting factors such as total leaf area per plant, soil relative moisture content, air temperature, relative humidity, and solar radiation under different treatments of supplementary irrigation. A regression model for the daily transpiration of greenhouse tomato was established. There existed significant linear correlations between the daily transpiration and the test affecting factors, and the affecting factors had complicated mutual effects. Soil relative moisture content was the main decision factor of the transpiration, with the decision coefficient being 27.4%, and daily minimum relative humidity was the main limiting factor, with the decision coefficient being -119.7%. The square value of the regression coefficient (R2) between the predicted and measured tomato daily transpiration was 0.81, root mean squared error (RMSE) was 68.52 g, and relative prediction error (RE) was 19.4%, suggesting that the regression model established by using the main affecting factors selected through path analysis could better simulate the daily transpiration of greenhouse tomato.

  1. Army Net Zero Prove Out. Army Net Zero Training Report (United States)


    sensors were strategically placed throughout the installation by magnetically attaching them to water main valve stems. The sensors check sound...Recycle Wrap  Substitutes for Packaging Materials  Re-Use of Textiles and Linens  Setting Printers to Double-Sided Printing Net Zero Waste...can effectively achieve source reduction. Clean and Re-Use Shop Rags - Shop rags represent a large textile waste stream at many installations. As a

  2. Steady state or non-steady state? Identifying driving mechanisms of oxygen isotope signatures of leaf transpiration in functionally distinct plant species (United States)

    Dubbert, Maren; Kübert, Angelika; Cuntz, Matthias; Werner, Christiane


    Isotope techniques are widely applied in ecosystem studies. For example, isoflux models are used to separate soil evaporation from transpiration in ecosystems. These models often assume that plant transpiration occurs at isotopic steady state, i.e. that the transpired water shows the same isotopic signature as the source water. Yet, several studies found that transpiration did not occur at isotopic steady state, under both controlled and field conditions. Here we focused on identifying the internal and external factors which drive the isotopic signature of leaf transpiration. Using cavity ring-down spectroscopy (CRDS), the effect of both environmental variables and leaf physiological traits on δ18OT was investigated under controlled conditions. Six plant species with distinct leaf physiological traits were exposed to step changes in relative air humidity (RH), their response in δ18OT and gas exchange parameters and their leaf physiological traits were assessed. Moreover, two functionally distinct plant types (tree, i.e. Quercus suber, and grassland) of a semi-arid Mediterranean oak-woodland where observed under natural conditions throughout an entire growth period in the field. The species differed substantially in their leaf physiological traits and their turn-over times of leaf water. They could be grouped in species with fast (240 min.) turn-over times, mostly due to differences in stomatal conductance, leaf water content or a combination of both. Changes in RH caused an immediate response in δ18OT, which were similarly strong in all species, while leaf physiological traits affected the subsequent response in δ18OT. The turn-over time of leaf water determined the speed of return to the isotopic steady or a stable δ18OT value (Dubbert & Kübert et al., in prep.). Under natural conditions, changes in environmental conditions over the diurnal cycle had a huge impact on the diurnal development of δ18OT in both observed plant functional types. However, in

  3. Constraining Ecosystem Gross Primary Production and Transpiration with Measurements of Photosynthetic 13CO2 Discrimination (United States)

    Blonquist, J. M.; Wingate, L.; Ogeé, J.; Bowling, D. R.


    The stable carbon isotope composition of atmospheric CO2 (δ13Ca) can provide useful information on water use efficiency (WUE) dynamics of terrestrial ecosystems and potentially constrain models of CO2 and water fluxes at the land surface. This is due to the leaf-level relationship between photosynthetic 13CO2 discrimination (Δ), which influences δ13Ca, and the ratio of leaf intercellular to atmospheric CO2 mole fractions (Ci / Ca), which is related to WUE and is determined by the balance between C assimilation (CO2 demand) and stomatal conductance (CO2 supply). We used branch-scale Δ derived from tunable diode laser absorption spectroscopy measurements collected in a Maritime pine forest to estimate Ci / Ca variations over an entire growing season. We combined Ci / Ca estimates with rates of gross primary production (GPP) derived from eddy covariance (EC) to estimate canopy-scale stomatal conductance (Gs) and transpiration (T). Estimates of T were highly correlated to T estimates derived from sapflow data (y = 1.22x + 0.08; r2 = 0.61; slope P MuSICA) (y = 0.88x - 0.05; r2 = 0.64; slope P MuSICA (y = 1.10 + 0.42; r2 = 0.50; slope P < 0.001). Results demonstrate that the leaf-level relationship between Δ and Ci / Ca can be extended to the canopy-scale and that Δ measurements have utility for partitioning ecosystem-scale CO2 and water fluxes.

  4. WaveNet (United States)


    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  5. Effects of Planting Density on Transpiration, Stem Flow and Interception for Two Clones Differing in Drought Tolerance in a High Productivity Eucalyptus Plantation in Brazil (United States)

    Hubbard, R. M.; Hakemada, R.; Ferraz, S.


    Eucalypt plantations cover about 20 M hectares worldwide and expansion is expected to mainly occur in marginal growing areas where dry conditions may lead to water conflicts. One of the principal reasons for the expansion of Eucalyptus plantations is rapid wood growth but these forests also transpire large amounts of water. Genotype selection and planting density, are key factors regulating carbon and water tradeoffs at a stand scale, but few studies have examined these simultaneously especially in highly productive clonal plantations. Our goal in this study was to examine the effects of planting density on carbon and water interactions using a drought tolerant and drought sensitive eucalyptus clone. This work is part of a larger study (TECHS project - Tolerance of Eucalyptus Clones to Hydric and Thermal Stresses) and is located in a flat Oxisol in southeast of Brazil. A drought tolerant (E. grandis x E. camaldulensis (Grancam) and drought sensitive clone E. grandis x E. urophylla (Urograndis) were planted at four densities ranging from 600 to 3.000 stem ha-1. We measured transpiration using thermal heat dissipation probes, wood growth, canopy interception and stemflow during a full year (21 to 33 months old). Precipitation during the study period was 738 mm. Independently of genetics, growth increased with increasing density. Transpiration also increased with planting density and ranged from 515-595 mm at wider spacing to 735-978 mm at tighter spacing. Interception increased with planting density representing 18-22% of precipitation versus 13-14% in wider spacing while stem flow represented 2-5% in denser spacing and 1-2% at broader spacing. When density was higher than 1.250 and 1.750 stems ha-1 in Urograndis and Grancam clones, respectively, the water balance were negative. On a stand scale, results show both genetics and spacing can be used as silvicultural tools to better manage the tradeoff between wood growth and water consumption.

  6. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt


    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...... use of CP-nets — because it means that the function representation and the translations (which are a bit mathematically complex) no longer are parts of the basic definition of CP-nets. Instead they are parts of the invariant method (which anyway demands considerable mathematical skills...

  7. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael


    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  8. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex


    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  9. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie


    -net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...

  10. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris


    SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...

  11. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette


    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  12. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    Directory of Open Access Journals (Sweden)

    Irineo Torres-Pacheco


    Full Text Available Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities.

  13. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation (United States)

    Millan-Almaraz, Jesus Roberto; de Jesus Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon Gerardo; Contreras-Medina, Luis Miguel; Carrillo-Serrano, Roberto Valentin; Osornio-Rios, Roque Alfredo; Duarte-Galvan, Carlos; Rios-Alcaraz, Miguel Angel; Torres-Pacheco, Irineo


    Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities. PMID:22163656

  14. Role of permanent host association with the Madagascar hissing-cockroach, Gromphadorhina portentosa, on the developmental water requirements of the mite, Gromphadorholaelaps schaeferi. (United States)

    Yoder, J A; Hedges, B Z; Benoit, J B; Keeney, G D


    We provide the first complete description of the water requirements for the hissing-cockroach mite, Gromphadorholaelaps schaeferi, focusing on characteristics that result from the restriction of all stages to the Madagascar hissing-cockroach (Gromphadorhina portentosa). Particularly, we determine how G. schaeferi spends its entire life on the same individual cockroach. This mite is not parasitic, rather they feed on cockroach saliva and other moist organic debris that accumulates between the cockroach's legs. Water balance characteristics of this mite show that it is extremely hydrophilic and that it must maintain a high percentage body water content to function properly despite being very porous (high net transpiration rate) and sensitive to water loss, tolerating only 20% loss of their water content before death. This hydrophilic trend starts with the larva and is retained into adulthood. Developmentally, a shift occurs during postlarval development from an emphasis on water gain (low critical equilibrium activity for water vapor absorption from drier air) in the protonymph to an emphasis on water retention (reduced net transpiration rate for water conservation) in the adult. The minute-sized larva is prevented from replenishing water stores by water vapor absorption or feeding because it lacks functional mouthparts, thus dries up rapidly. To avoid dehydration and survive, the larval stage utilizes a quick shoot-through molt to the protonymph that can feed and grow. Our conclusion is that the hissing-cockroach creates an ideal, stable moisture-rich microhabitat that satisfies the high water demand for G. schaeferi during all stages, fixing this mite to a single cockroach as an ecological niche.

  15. Summer extreme climatic event in the future: impact on the net CO2 and water fluxes of an upland grassland and buffering impact of elevated atmospheric CO2 (United States)

    Roy, Jacques; Ravel, Olivier; Landais, Damien; Piel, Clément; Defossez, Marc; Escape, Christophe; Devidal, Sébastien; Didier, Philippe; Bahn, Michael; Volaire, Florence; Augusti, Angela; Soussana, Jean-François; Picon-Cochard, Catherine


    Extreme climatic events are expected to be more frequent and intense in a few decades, but they will also occur in a climatic context different from the current one. In the Montpellier Ecotron, we studied the response of intact grassland monoliths (1m², 60 cm deep) sampled in an upland grassland of the French Massif Central. The first year the grasslands were acclimated to the average climatic conditions of the years around 2050 (+ 4 °C and - 56 mm for summer precipitations). The second year, the same climate was maintained but in half of the experimental units we imposed a summer drought and heat wave (50 % reduction of precipitations for a month and then 100 % precipitation reduction combined with a 3,4 °C increase in temperature for two weeks). A CO2 treatment (520 vs 380 µmol/mol) was crossed with the climatic treatment. Net CO2 fluxes were measured continuously during the second year of the experiment. The extreme climatic event induced a total senescence of the canopy whatever the CO2 treatment. The interactive effect of elevated CO2 with the drought treatment was significant at the onset of the drought and particularly large in the fall after the recovery period, with a net photosynthesis twice as high in the (extreme climate+ CO2) treatment compared to the control. Integrated over the year, elevated CO2 totally buffered the impact of the extreme climatic event on net CO2 exchanges. These results are discussed together with the evapotranspiration and soil humidity data.

  16. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D


    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  17. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)


    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  18. Instant Lucene.NET

    CERN Document Server

    Heydt, Michael


    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A step-by-step guide that helps you to index, search, and retrieve unstructured data with the help of Lucene.NET.Instant Lucene.NET How-to is essential for developers new to Lucene and Lucene.NET who are looking to get an immediate foundational understanding of how to use the library in their application. It's assumed you have programming experience in C# already, but not that you have experience with search techniques such as information retrieval theory (although there will be a l

  19. Photochemical Reflectance Index (PRI) as a proxy of Light Use Efficiency (LUE) and transpiration in Mediterranean crop sites (United States)

    LE Dantec, V.; Chebbi, W.; Boulet, G.; Merlin, O.; Lili-Chabaane, Z.; Er Raki, S.; Ceschia, E.; Khabba, S.; Fanise, P.; Zawilski, B.; Simonneaux, V.; Jarlan, L.


    The Photochemical Reflectance Index (PRI) is based on the short term reversible xanthophyll pigment changes accompanying plant stress and therefore of the associated photosynthetic activities. Strong relationships between PRI and Light Use Efficiency (LUE) were shown at leaf and canopy scales and over a wide range of species (Garbulsky et al., 2011). But very few previous works have explored the potential link with plant water status. In this study, we have first analyzed the link between PRI and LUE at canopy scale on two different crops in terms of canopy structure and crop management: olive grove (Tunisia) and wheat grown under different water regimes (irrigated or rainfed) and climate zones (France, Morocco). We have investigated the daily and seasonal dynamics of PRI; linking its variations to meteorological factors (global radiation and sun angle effects, soil water content, relative air humidity …) and plant processes. The highest correlations were mainly observed in clear skies conditions. We have found, whatever site, linear negative relationships between PRI and LUE using data acquired in midday (i.e. in solar zenithal angle condition). Linear link between PRI and sapflow measurements was also revealed. This correlation was obtained over periods characterized by a moderate soil water deficit, i.e. by when transpiration rate was mainly control by Vapor Pressure Deficit. We will then briefly presented alternative and complementary approaches to this index, to detect different level of water stress using thermal infrared emissions.

  20. The failure of the Penman-Monteith equation in explaining leaf transpiration (United States)

    Schymanski, Stanislaus J.; Or, Dani


    The vast majority of current global land surface models, hydrological models and inverse approaches to deduce evaporation from remote sensing data employ an analytical solution for the latent heat flux from plant leaves derived by Monteith (1965), based on an earlier formulation for a wet surface by Penman (1948). This so-called Penman-Monteith (PM) equation was most commonly evaluated at the canopy scale, where aerodynamic and canopy resistance to water vapour are difficult to estimate, leading to various empirical corrections when scaling from leaf to canopy. Here we evaluated the PM equation directly at the leaf scale, using a controlled, insulated wind tunnel and artificial leaves with pre-defined stomatal conductance. Experimental results were consistent with a detailed leaf energy balance model, but we measured consistent deviations from PM-predicted fluxes, which pointed to fundamental problems with the PM equation. Detailed analysis of the derivation by Monteith (1965) and later amendments revealed inconsistencies concerning the effect of stomata and the two-sided exchange of sensible heat. A corrected set of analytical solutions for leaf temperature as well as latent and sensible heat flux is presented and comparison with the original PM equation indicates a major improvement in reproducing experimental results at the leaf scale. The inconsistencies in the original PM equation and its failure to reproduce experimental results at the leaf scale (for which it was originally derived) lets us conclude that the PM equation does not constitute an accurate representation of atmospheric forcing on transpiration and should be regarded as a semi-empirical equation.

  1. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike


    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  2. PhysioNet (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  3. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R


    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  4. TideNet (United States)


    query tide data sources in a desired geographic region of USA and its territories (Figure 1). Users can select a tide data source through the Google Map data sources according to the desired geographic region. It uses the Google Map interface to display data from different sources. Recent...Coastal Inlets Research Program TideNet The TideNet is a web-based Graphical User Interface (GUI) that provides users with GIS mapping tools to

  5. Building Neural Net Software


    Neto, João Pedro; Costa, José Félix


    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  6. Interaction Nets in Russian


    Salikhmetov, Anton


    Draft translation to Russian of Chapter 7, Interaction-Based Models of Computation, from Models of Computation: An Introduction to Computability Theory by Maribel Fernandez. "In this chapter, we study interaction nets, a model of computation that can be seen as a representative of a class of models based on the notion of 'computation as interaction'. Interaction nets are a graphical model of computation devised by Yves Lafont in 1990 as a generalisation of the proof structures of linear logic...

  7. Programming NET 35

    CERN Document Server

    Liberty, Jesse


    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  8. Net Zero Ft. Carson: making a greener Army base (United States)

    The US Army Net Zero program seeks to reduce the energy, water, and waste footprint of bases. Seventeen pilot bases aim to achieve 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases are pursuing Net Zero in a single secto...

  9. HESS Opinions "a perspective on isotope versus non-isotope approaches to determine the contribution of transpiration to total evaporation"

    NARCIS (Netherlands)

    Sutanto, S. J.; Van Den Hurk, B.; Dirmeyer, P. A.; Seneviratne, S. I.; Röckmann, T.; Trenberth, K. E.; Blyth, E. M.; Wenninger, J.; Hoffmann, G.


    Current techniques to disentangle the evaporative fluxes from the continental surface into a contribution evaporated from soils and canopy, or transpired by plants, are under debate. Many isotope-based studies show that transpiration contributes generally more than 70% to the total evaporation,

  10. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides (United States)

    Lisa J. Samuelson; Thomas A. Stokes; Mark D. Coleman


    Long-term hydraulic acclimation to resource availability was explored in 3-year-old Populus deltoides Bartr. ex Marsh. clones by examining transpiration. leaf-specific hydraulic conductance (GL), canopy stomatal conductance (Gs) and leaf to sapwood area ratio (AL:Asi)n response to irrigation (13 and 551 mm in addition to ambient precipitation) and...

  11. Athletic field paint color impacts transpiration and canopy temperature in bermudagrass (United States)

    Athletic field paints have varying impacts on turfgrass health which have been linked to their ability to alter photosynthetically active radiation (PAR) and photosynthesis based on color. It was further hypothesized they may also alter transpiration and canopy temperature by disrupting gas exchange...

  12. Differential effect of transpiration and Ca supply on growth and Ca concentration of tomato plants

    NARCIS (Netherlands)

    Amor, del F.M.; Marcelis, L.F.M.


    To determine the extent to which transpiration and Ca concentration in the nutrient solution affect the regulation of growth, two independent experiments with young tomato plants were carried out under fully controlled climate conditions and grown hydroponically. The first experiment consisted of

  13. Effect of solar loading on greenhouse containers used in transpiration efficiency screening (United States)

    Earlier we described a simple high throughput method of screening sorghum for transpiration efficiency (TE). Subsequently it was observed that while results were consistent between lines exhibiting high and low TE, ranking between lines with similar TE was variable. We hypothesized that variable mic...

  14. Predicting of regional transpiration at elevated atmospheric CO2: influence of the PBL vegetation interaction.

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Bruin, de H.A.R.


    A coupled planetary boundary layer (PBL)-vegetation model is used to study the influence of the PBL-vegetation interaction and the ambient CO2 concentration on surface resistance rs and regional transpiration E. Vegetation is described using the big-leaf model in which rs is modeled by means of a

  15. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit. (United States)

    Kholová, Jana; Hash, C T; Kumar, P Lava; Yadav, Rattan S; Kocová, Marie; Vadez, Vincent


    It was previously shown that pearl millet genotypes carrying a terminal drought tolerance quantitative trait locus (QTL) had a lower transpiration rate (Tr; g cm(-2) d(-1)) under well-watered conditions than sensitive lines. Here experiments were carried out to test whether this relates to leaf abscisic acid (ABA) and Tr concentration at high vapour pressure deficit (VPD), and whether that leads to transpiration efficiency (TE) differences. These traits were measured in tolerant/sensitive pearl millet genotypes, including near-isogenic lines introgressed with a terminal drought tolerance QTL (NIL-QTLs). Most genotypic differences were found under well-watered conditions. ABA levels under well-watered conditions were higher in tolerant genotypes, including NIL-QTLs, than in sensitive genotypes, and ABA did not increase under water stress. Well-watered Tr was lower in tolerant than in sensitive genotypes at all VPD levels. Except for one line, Tr slowed down in tolerant lines above a breakpoint at 1.40-1.90 kPa, with the slope decreasing >50%, whereas sensitive lines showed no change in that Tr response across the whole VPD range. It is concluded that two water-saving (avoidance) mechanisms may operate under well-watered conditions in tolerant pearl millet: (i) a low Tr even at low VPD conditions, which may relate to leaf ABA; and (ii) a sensitivity to higher VPD that further restricts Tr, which suggests the involvement of hydraulic signals. Both traits, which did not lead to TE differences, could contribute to absolute water saving seen in part due to dry weight increase differences. This water saved would become critical for grain filling and deserves consideration in the breeding of terminal drought-tolerant lines.

  16. Effects of overcast and foggy conditions on transpiration rates of Pinus patula trees along a chronosequence within the cloud belt of the Sierra Madre Oriental, central Veracruz, Mexico (United States)

    Alvarado-Barrientos, M. S.; Holwerda, F.; Asbjornsen, H.; Sauer, T.; Dawson, T. E.; Bruijnzeel, L. A.


    Pinus patula is a native tree species of the montane cloud belt of central Veracruz, Mexico, and one of the most popular species for regional reforestation efforts, both within and outside its natural range of occurrence. Projected regional climate change is likely to cause a rise in the average cloud condensation level by several hundred meters, thereby reducing fog occurrence, whilst overcast conditions are likely to remain similar. To improve our understanding of how water use of P. patula plantations is affected by changes in climatic conditions, we analyzed the response of transpiration rates to fine-scale variations in microclimate, particularly fog immersion and the occurrence of high clouds. We conducted measurements of micrometeorological parameters and transpiration (Et, using the heat ratio sap flow technique) of 15 pine trees representing a range of ages (10-34 years) and sizes (7-60 cm of dbh) during one and a half years (Nov 2008 - May 2010), covering two dry seasons and one wet season. Foggy days were defined using daytime “M-of-N” constructs (at least 4 hours with visibility 1000 m and a maximum incoming solar radiation (Sin) < 700 W m-2. Precipitation and leaf wetness data were used to distinguish between (partly) wet and dry canopy conditions. Daily transpiration rates were normalized for climatic conditions using the FAO reference evaporation ETo to allow determination of the proportional contributions to Et suppression by reductions in Sin and VPD relative to leaf wetness. We found that both foggy and overcast conditions without rainfall produced similar % of Et reduction compared to sunny conditions (60-70%). The strongest Et suppression effects occurred when foggy or overcast conditions were associated with rainfall. However, there was just a slight and non significant difference between the average Et/ETo ratio for foggy days with rainfall (i.e. partially wetted canopy) and fog-only days, suggesting that the suppression of Et was mainly

  17. Steering of fogging: control of humidity: temperature or transpiration

    NARCIS (Netherlands)

    Stanghellini, C.; Kempkes, F.L.K.


    Fogging systems are increasingly used to cool greenhouses and prevent water stress. More recently, fogging systems are applied also in relatively low radiation environments (such as The Netherlands), for a better control of product quality than whitewashing and to reduce need for natural ventilation

  18. Less transpiration and good quality thanks to NIR-screen

    NARCIS (Netherlands)

    Stanghellini, C.; Kempkes, F.L.K.; Hemming, S.; Jianfeng, D.


    Materials or additives for greenhouse cover that reflect or absorb a part of the NIR radiation can decrease the cooling requirement for the greenhouse and increase water use efficiency of the crop. By reducing the ventilation requirement, it might even decrease emissions of carbon dioxide from


    Energy Technology Data Exchange (ETDEWEB)



    The seasonal course of canopy transpiration and the diurnal courses of latent heat flux of a spring wheat crop were simulated for atmospheric CO{sub 2} concentrations of 370 {micro}mol mol{sup {minus}1} and 550 {micro}mol mol{sup {minus}1}. The hourly weather data, soil parameters and the irrigation and fertilizer treatments of the Free-Air Carbon Dioxide Enrichment wheat experiment in Arizona (1992/93) were used to drive the model. The simulation results were tested against field measurements with special emphasis on the period between anthesis and maturity. A model integrating leaf photosynthesis and stomatal conductance was scaled to a canopy level in order to be used in the wheat growth model. The simulated intercellular CO{sub 2} concentration, C{sub i} was determined from the ratio of C{sub i} to the CO{sub 2} concentration at the leaf surface, C{sub s} the leaf to air specific humidity deficit and a possibly unfulfilled transpiration demand. After anthesis, the measured assimilation rates of the flag leaves decreased more rapidly than their stomatal conductances, leading to a rise in the C{sub i}/C{sub s} ratio. In order to describe this observation, an empirical model approach was developed which took into account the leaf nitrogen content for the calculation of the C{sub i}/C{sub s} ratio. Simulation results obtained with the new model version were in good agreement with the measurements. If changes in the C{sub i}/C{sub s} ratio accorded to the decrease in leaf nitrogen content during leaf senescence were not considered in the model, simulations revealed an underestimation of the daily canopy transpiration of up to 20% and a decrease in simulated seasonal canopy transpiration by 10%. The measured reduction in the seasonal sum of canopy transpiration and soil evaporation owing to CO{sub 2} enrichment, in comparison, was only about 5%.

  20. Deriving Daily Time Series Evapotranspiration, Evaporation and Transpiration Maps With Landsat Data (United States)

    Paul, G.; Gowda, P. H.; Marek, T.; Xiao, X.; Basara, J. B.


    Mapping high resolution evapotranspiration (ET) over large region at daily time step is complex and computationally intensive. Utility of high resolution daily ET maps are large ranging from crop water management to watershed management. The aim of this work is to generate daily time series (10 years) ET and its components vegetation transpiration (T) and soil water evaporation (E) maps using Landsat 5 satellite data for Southern Great Plains forage-rangeland-winter wheat production system in Oklahoma (OK). Framework for generating these products included the two source energy balance (TSEB) algorithm and other important features were: (a) atmospheric correction algorithm; (b) spatially interpolated weather inputs; (c) functions for varying Priestley-Taylor coefficient; and (d) ET, E and T extrapolating algorithm utilizing reference ET. An extensive network of 140 weather stations managed by Oklahoma Mesonet was utilized to generate spatially interpolated inputs of air temperature, relative humidity, wind speed, solar radiation, pressure, and reference ET. Validation of the ET maps were done against eddy covariance data from two grassland sites at El Reno, OK suggested good performance (Table 1). Figure 1 illustrates a daily ET map for a very small subset of 18thJuly 2006 ET map, where difference in ET among different land uses such as the irrigated cropland, vegetation along drainage, and grassland is very distinct. Results indicated that the proposed ET mapping framework is suitable for deriving high resolution time series daily ET maps at regional scale with Landsat Thematic Mapper data. . Table 1: Daily actual ET performance statistics for two grassland locations at El Reno OK for year 2005 . Management Type Mean (obs) (mm d-1) Mean (est) (mm d-1) MBE (mm d-1) % MBE (%) RMSE (mm d-1) RMSE (%) MAE (mm d-1) MAPD (%) NSE R2 Control 2.2 1.8 -0.43 -19.4 0.87 38.9 0.65 29.5 0.71 0.79 Burnt 2.0 1.8 -0.15 -7.7 0.80 39.8 0.62 30.7 0.73 0.77

  1. Modelling of water potential and water uptake rate of tomato plants in the greenhouse: preliminary results.

    NARCIS (Netherlands)

    Bruggink, G.T.; Schouwink, H.E.; Gieling, Th.H.


    A dynamic model is presented which predicts water potential and water uptake rate of greenhouse tomato plants using transpiration rate as input. The model assumes that water uptake is the resultant of water potential and hydraulic resistance, and that water potential is linearly related to water

  2. Why size matters: the interactive influences of tree diameter distribution and sap flow parameters on upscaled transpiration. (United States)

    Berry, Z Carter; Looker, Nathaniel; Holwerda, Friso; Gómez Aguilar, León Rodrigo; Ortiz Colin, Perla; González Martínez, Teresa; Asbjornsen, Heidi


    In stands with a broad range of diameters, a small number of very large trees can disproportionately influence stand basal area and transpiration (Et). Sap flow-based Et estimates may be particularly sensitive to large trees due to nonlinear relationships between tree-level water use (Q) and tree diameter at breast height (DBH). Because Q is typically predicted on the basis of DBH and sap flow rates measured in a subset of trees and then summed to obtain Et, we assessed the relative importance of DBH and sap flow variables (sap velocity, Vs, and sapwood depth, Rs) in determining the magnitude of Et and its dependence on large trees in a tropical montane forest ecosystem. Specifically, we developed a data-driven simulation framework to vary the relationship between DBH and Vs and stand DBH distribution and then calculate Q, Et and the proportion of Et contributed by the largest tree in each stand. Our results demonstrate that variation in how Rs is determined in the largest trees can alter estimates up to 26% of Et while variation in how Vs is determined can vary results by up to 132%. Taken together, these results highlight a great need to expand our understanding of water transport in large trees as this hinders our ability to predict water fluxes accurately from stand to catchment scales. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  3. La plataforma .NET


    Fornas Estrada, Miquel


    L'aparició de la plataforma .NET Framework ha suposat un canvi molt important en la forma de crear i distribuir aplicacions, degut a que incorpora una sèrie d'innovacions tècniques i productives que simplifiquen molt les tasques necessàries per desenvolupar un projecte. La aparición de la plataforma. NET Framework ha supuesto un cambio muy importante en la forma de crear y distribuir aplicaciones, debido a que incorpora una serie de innovaciones técnicas y productivas que simplifican mucho...

  4. Biological Petri Nets

    CERN Document Server

    Wingender, E


    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  5. Modelling Transpiration and Growth of Salinity and Drought Stressed Tomatoes


    Karlberg, Louise


    Irrigation with saline waters is an agricultural practicethat is becoming increasingly common as competition for freshwater increases. In this thesis the mechanisms behind salinityand drought stress has been studied using data from fieldexperiments in combination with a modelling tool, theCoupModel. Measurements from field experiments on salinity,boron toxicity and drought stressed tomatoes grown during twoclimatically different seasons in the Arava desert, Israel,showed a linear relationship...

  6. Separate Estimation of Evaporation and Transpiration by ENWATBAL Model

    National Research Council Canada - National Science Library

    邱, 国玉; 籾井, 和朗; 矢野, 友久; 佐瀬, 勘紀


    ENWATBAL (ENergy and WATer BALance)は, 土壌蒸発量(E)と植物蒸散量(T)を計算する数値モデルである。本研究では, このモデルの裸地圃場とソルガム群落圃場への適用性について検討した。裸地におけるEの実測値と計算値を比較した結果, ENWATBALモデルは十分な精度でEを推定すること...

  7. Petri Nets-Applications

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52. Fulltext. Click here to view fulltext PDF. Permanent link: Author Affiliations. Y Narahari ...

  8. Safety nets or straitjackets?

    DEFF Research Database (Denmark)

    Ilsøe, Anna


    Does regulation of working hours at national and sector level impose straitjackets, or offer safety nets to employees seeking working time flexibility? This article compares legislation and collective agreements in the metal industries of Denmark, Germany and the USA. The industry has historically...

  9. Coloured Petri Nets

    CERN Document Server

    Jensen, Kurt


    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. This book introduces the constructs of the CPN modelling language and presents the related analysis methods. It provides a comprehensive road map for the practical use of CPN.

  10. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian


    of an existing Internet radio station; Boom Booom Net Radio. Whilst necessity dictates some use of technology-related terminology, wherever possible we have endeavoured to keep such jargon to a minimum and to either explain it in the text or to provide further explanation in the appended glossary....

  11. Game Theory .net. (United States)

    Shor, Mikhael


    States making game theory relevant and accessible to students is challenging. Describes the primary goal of is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  12. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...

  13. Glycine Betaine and Salicylic Acid Induced Modification in Water Relations and Productivity of Drought Wheat Plants


    Heshmat S. Aldesuquy


    A study of parameters associated with adjustments in internal water balance, namely: diurnal variation in transpiration rate, stomatal opening area, relative water content, water use efficiency, hormonal level of wheat flag leaves in relation to grain yield is presented. Drought induced marked decreases in diurnal and mean daily values of transpiration rate, stomatal pore areas (on upper and lower sides), relative water content, water use efficiency, indole-3-acetic acid (IAA), gibberellic ac...

  14. Responses of soil CO2 efflux to changes in plant CO2 uptake and transpiration (United States)

    Balogh, János; de Luca, Giulia; Mészáros, Ádám; Trieber, Júlia; Gecse, Bernadett; Fóti, Szilvia; Pintér, Krisztina; Nagy, Zoltán


    Biotic drivers of soil respiration represent a significant supply-side (plant) control of the process. Those biotic drivers that integrate over longer time periods are useful in describing the phenological changes and physiological state of the vegetation, but they are not suitable to explain the diel variability of soil respiration. Two plant physiological processes, acting in opposite directions, could be relevant at diel timescale: (1) photosynthesis, and (2) transpiration. Firstly, it was recently found that photosynthesis has a time-lagged (a few hours) positive effect on the respiration of roots and root-associated microbes. This can be explainedby an increase in easily accessible non-structural hydrocarbon sources for the roots and root-associated organisms within this period. Secondly, it was found that the effect of transpiration could reduce root respiration due to CO2 transport through the transpiration stream, and this effect is expected to be immediate. Removing the effect of the abiotic drivers from the soil efflux signal could help to clarify the role of other driving variables. In the present study, we conducted manipulation measurements in lab environment to be able to detect the effects of the plant physiological variables (CO2 uptake, transpiration) on soil CO2 efflux. Plant individuals were planted into field soil samples in small pots. Transpiration manipulation was done by regulating vapour pressure of the air around the plant canopy and by inhibitors. Photosynthesis manipulation consisted of programmed absence of light. Isotopic signatures of soil respiration were used for estimating the contribution of the autotrophic and heterotrophic soil respiration components. 13CO2 concentration of the CO2 efflux of the different soil components was measured continuously in open system by cavity ring-down spectroscopy (Picarro G1101-i gas analyser). Keeling-plot approach was also used to calculate the isotopic signals of the sources. According to the

  15. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. (United States)

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena


    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  16. Water-deficit tolerant classification in mutant lines of indica rice

    Directory of Open Access Journals (Sweden)

    Suriyan Cha-um


    Full Text Available Water shortage is a major abiotic stress for crop production worldwide, limiting the productivity of crop species, especially in dry-land agricultural areas. This investigation aimed to classify the water-deficit tolerance in mutant rice (Oryza sativa L. spp. indica genotypes during the reproductive stage. Proline content in the flag leaf of mutant lines increased when plants were subjected to water deficit. Relative water content (RWC in the flag leaf of different mutant lines dropped in relation to water deficit stress. A decrease RWC was positively related to chlorophyll a degradation. Chlorophyll a , chlorophyll b , total chlorophyll , total carotenoids , maximum quantum yield of PSII , stomatal conductance , transpiration rate and water use efficiency in mutant lines grown under water deficit conditions declined in comparison to the well-watered, leading to a reduction in net-photosynthetic rate. In addition, when exposed to water deficit, panicle traits, including panicle length and fertile grains were dropped. The biochemical and physiological data were subjected to classify the water deficit tolerance. NSG19 (positive control and DD14 were identified as water deficit tolerant, and AA11, AA12, AA16, BB13, BB16, CC12, CC15, EE12, FF15, FF17, G11 and IR20 (negative control as water deficit sensitive, using Ward's method.

  17. Mesoporous Silica Molecular Sieve based Nanocarriers: Transpiring Drug Dissolution Research. (United States)

    Pattnaik, Satyanarayan; Pathak, Kamla


    Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed. Copyright© Bentham Science Publishers; For any queries, please email at

  18. Reconciling catch differences from multiple fishery independent gill net surveys (United States)

    Kraus, Richard T.; Vandergoot, Christopher; Kocovsky, Patrick M.; Rogers, Mark W.; Cook, H. Andrew; Brenden, Travis O.


    Fishery independent gill net surveys provide valuable demographic information for population assessment and resource management, but relative to net construction, the effects of ancillary species, and environmental variables on focal species catch rates are poorly understood. In response, we conducted comparative deployments with three unique, inter-agency, survey gill nets used to assess walleye Sander vitreus in Lake Erie. We used an information-theoretic approach with Akaike’s second-order information criterion (AICc) to evaluate linear mixed models of walleye catch as a function of net type (multifilament and two types of monofilament netting), mesh size (categorical), Secchi depth, temperature, water depth, catch of ancillary species, and interactions among selected variables. The model with the greatest weight of evidence showed that walleye catches were positively associated with potential prey and intra-guild predators and negatively associated with water depth and temperature. In addition, the multifilament net had higher average walleye catches than either of the two monofilament nets. Results from this study both help inform decisions about proposed gear changes to stock assessment surveys in Lake Erie, and advance our understanding of how multispecies associations explain variation in gill net catches. Of broader interest to fishery-independent gill net studies, effects of abiotic variables and ancillary species on focal specie’s catch rates were small in comparison with net characteristics of mesh size or twine type.

  19. Roles of Transpiration, Forest Bioproductivity and Fire on a Long-Term Dripwater Hydrochemistry Dataset from Golgotha Cave, SW Australia (United States)

    Treble, P. C.; Baker, A.; Fairchild, I. J.; Bradley, C.; Mahmud, K.; Andersen, M. S.; Meredith, K.; Mariethoz, G.


    Golgotha Cave is located in a forested catchment in SW Australia where evapotranspiration losses from the vadose-zone are high and forest biomass has been disturbed by fire. The cave has been continuously monitored since 2005 and this extensive dataset has been used to quantify key processes determining dripwater hydrology and chemistry (Mahmud et al., 2015; Treble et al., 2013; 2015). In this paper we present a synthesis of these findings and derive a conceptual model to illustrate the main hydrochemical processes that will impact cave dripwater in similar environments. We applied mass-balance techniques to quantify sources (water/rock interactions and aerosol) and sinks (prior calcite precipitation and biomass uptake). Mass-balance results suggest that transpiration and elemental sequestration into biomass modifies dripwater ion concentrations. The vegetation uptake impacts dripwater Mg, K and SO4, with the largest impact on SO4, estimated to be up to 60% at some drip sites. Overall, our findings suggest that varying amounts of transpiration by deeply-rooted trees contribute significantly to spatial and temporal variability in dripwater solute concentrations. This is in addition to the partitioning of infiltrating water between characteristic flow pathways. Applying principal components analysis, we identify a common long-term rising trend in dripwater Cl, Mg, K, Ca, Sr and Si. We assess whether the long-term trends in dripwater solutes are driven by post-fire biomass recovery and/or the impacts of a drying climate in SW Australia.ReferencesMahmud et al. (2015), Terrestrial Lidar Survey and Morphological Analysis to Identify Infiltration Properties in the Tamala Limestone, Western Australia, doi:10.1109/JSTARS.2015.2451088. Treble et al. (2013), An isotopic and modelling study of flow paths and storage in Quaternary calcarenite, doi:10.1016/J.Quascirev.2012.12.015. Treble et al. (2015), Impacts of cave air ventilation and in-cave prior calcite precipitation on

  20. Unglazed transpired solar collector having a low thermal-conductance absorber (United States)

    Christensen, Craig B.; Kutscher, Charles F.; Gawlik, Keith M.


    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

  1. Food Safety Nets:


    Haggblade, Steven; Diallo, Boubacar; Staatz, John; Theriault, Veronique; Traoré, Abdramane


    Food and social safety nets have a history as long as human civilization. In hunter gatherer societies, food sharing is pervasive. Group members who prove unlucky in the short run, hunting or foraging, receive food from other households in anticipation of reciprocal consideration at a later time (Smith 1988). With the emergence of the first large sedentary civilizations in the Middle East, administrative systems developed specifically around food storage and distribution. The ancient Egyptian...

  2. Net technical assessment


    Wegmann, David G.


    Approved for public release; distribution is unlimited. The present and near term military balance of power between the U.S. and the Soviet Union can be expressed in a variety of net assessments. One can examine the strategic nuclear balance, the conventional balance in Europe, the maritime balance, and many others. Such assessments are essential not only for policy making but for arms control purposes and future force structure planning. However, to project the future military balance, on...

  3. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. (United States)

    Urban, Josef; Ingwers, Miles W; McGuire, Mary Anne; Teskey, Robert O


    The effect of temperature on stomatal conductance (gs) and corresponding gas exchange parameters was studied in two tree species with contrasting leaf anatomy and ecophysiology-a broadleaf angiosperm, Populus deltoides x nigra (poplar), and a needle-leaf gymnosperm, Pinus taeda (loblolly pine). Experiments were conducted in growth chambers across a leaf temperature range of 19-48°C. Manipulations of temperature were done in well-watered and drought soil conditions and under ambient (400 ppm) and elevated (800 ppm) air CO2 concentrations. Increases in leaf temperature caused stomatal opening at both ambient and elevated [CO2]. The gs increased by 42% in poplar and by 40% in loblolly pine when leaf temperature increased from 30°C to 40°C at a vapour pressure difference of 1 kPa. Stomatal limitation to photosynthesis decreased in elevated temperature in loblolly pine but not in poplar. The ratio of net photosynthesis to gs depended on leaf temperature, especially at high temperatures. Evaporative cooling of transpiring leaves resulted in reductions in leaf temperature up to 9°C in well-watered poplar but only 1°C in drought-stressed poplar and in loblolly pine. As global mean temperatures rise and temperature extremes become more frequent and severe, understanding the effect of temperature on gs, and modelling that relationship, will become increasingly important. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Using WordNet for Building WordNets

    CERN Document Server

    Farreres, X; Farreres, Xavier; Rodriguez, Horacio; Rigau, German


    This paper summarises a set of methodologies and techniques for the fast construction of multilingual WordNets. The English WordNet is used in this approach as a backbone for Catalan and Spanish WordNets and as a lexical knowledge resource for several subtasks.

  5. A simple model for simulating heat induced sterility in rice as a function of flowering time and transpirational cooling

    NARCIS (Netherlands)

    Oort, van P.A.J.; Saito, K.; Zwart, S.J.; Shrestha, S.


    Rice spikelets become sterile when exposed to high temperatures during flowering. Recent experimental studies have shown that transpirational cooling and flowering time (within the day) are important factors determining sterility. Extrapolation of the results from these experimental studies to other

  6. RadNet Air Data From Salt Lake City, UT (United States)

    This page presents radiation air monitoring and air filter analysis data for Salt Lake City, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  7. Effects of elevated atmospheric CO{sub 2} on canopy transpiration in senescent spring wheat

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, S.; Kimball, B.A.; Hunsaker, D.J.; Long, S.P. et al


    The seasonal course of canopy transpiration and the diurnal courses of latent heat flux of a spring wheat crop were simulated for atmospheric CO{sub 2} concentrations of 370 {micro}mol mol{sup {minus}1} and 550 {micro}mol mol{sup {minus}1}. The hourly weather data, soil parameters and the irrigation and fertilizer treatments of the Free-Air Carbon Dioxide Enrichment wheat experiment in Arizona (1992/93) were used to drive the model. The simulation results were tested against field measurements with special emphasis on the period between anthesis and maturity. A model integrating leaf photosynthesis and stomatal conductance was scaled to a canopy level in order to be used in the wheat growth model. The simulated intercellular CO{sub 2} concentration, C{sub i} was determined from the ratio of C{sub i} to the CO{sub 2} concentration at the leaf surface, C{sub s}, the leaf to air specific humidity deficit and a possibly unfulfilled transpiration demand. After anthesis, the measured assimilation rates of the flag leaves decreased more rapidly than their stomatal conductances, leading to a rise in the C{sub i}/C{sub s} ratio. In order to describe this observation, an empirical model approach was developed which took into account the leaf nitrogen content for the calculation of the C{sub i}/C{sub s} ratio. Simulation results obtained with the new model version were in good agreement with the measurements. If changes in the C{sub i}/C{sub s} ratio accorded to the decrease in leaf nitrogen content during leaf senescence were not considered in the model, simulations revealed an underestimation of the daily canopy transpiration of up to twenty percent and a decrease in simulated seasonal canopy transpiration by ten percent. The measured reduction in the seasonal sum of canopy transpiration and soil evaporation owing to CO{sub 2} enrichment, in comparison, was only about five percent.

  8. Water use characteristics of black mangrove (Avicennia germinans) communities along an ecotone with marsh at a northern geographical limit (United States)

    Krauss, Ken W.; McKee, Karen L.; Hester, Mark W.


    Mangroves are expanding into warm temperate-zone salt marsh communities in several locations globally. Although scientists have discovered that expansion might have modest effects on ecosystem functioning, water use characteristics have not been assessed relative to this transition. We measured early growing season sapflow (Js) and leaf transpiration (Tr) in Avicennia germinans at a latitudinal limit along the northern Gulf of Mexico (Louisiana, United States) under both flooded and drained states and used these data to scale vegetation water use responses in comparison with Spartina alterniflora. We discovered strong convergence when using either Js or Tr for determining individual tree water use, indicating tight connection between transpiration and xylem water movement in small Avicennia trees. When Tr data were combined with leaf area indices for the region with the use of three separate approaches, we determined that Avicennia stands use approximately 1·0–1·3 mm d–1 less water than Spartina marsh. Differences were only significant with the use of two of the three approaches, but are suggestive of net conservation of water as Avicennia expands into Spartina marshes at this location. Average Js for Avicennia trees was not influenced by flooding, but maximum Js was greater when sites were flooded. Avicennia and Spartina closest to open water (shoreline) used more water than interior locations of the same assemblages by an average of 1·3 mm d−1. Lower water use by Avicennia may indicate a greater overall resilience to drought relative to Spartina, such that aperiodic drought may interact with warmer winter temperatures to facilitate expansion of Avicennia in some years.

  9. Proof nets for lingusitic analysis

    NARCIS (Netherlands)

    Moot, R.C.A.


    This book investigates the possible linguistic applications of proof nets, redundancy free representations of proofs, which were introduced by Girard for linear logic. We will adapt the notion of proof net to allow the formulation of a proof net calculus which is soundand complete for the

  10. Teaching Tennis for Net Success. (United States)

    Young, Bryce


    A program for teaching tennis to beginners, NET (Net Easy Teaching) is described. The program addresses three common needs shared by tennis students: active involvement in hitting the ball, clearing the net, and positive reinforcement. A sample lesson plan is included. (IAH)

  11. Net4Care Ecosystem Website

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius; Rasmussen, Morten


    is a tele-monitoring scenario in which Net4Care clients are deployed in a gateway in private homes. Medical devices then connect to these gateways and transmit their observations to a Net4Care server. In turn the Net4Care server creates valid clinical HL7 documents, stores them in a national XDS repository...

  12. Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation (United States)

    Couder, Eléonore; Mattielli, Nadine; Drouet, Thomas; Smolders, Erik; Delvaux, Bruno; Iserentant, Anne; Meeus, Coralie; Maerschalk, Claude; Opfergelt, Sophie; Houben, David


    Stable zinc (Zn) isotope fractionation between soil and plant has been used to suggest the mechanisms affecting Zn uptake under toxic conditions. Here, changes in Zn isotope composition in soil, soil solution, root and shoot were studied for ryegrass (Lolium multiflorum L.) and rape (Brassica napus L.) grown on three distinct metal-contaminated soils collected near Zn smelters (total Zn 0.7-7.5%, pH 4.8-7.3). The Zn concentrations in plants reflected a toxic Zn supply. The Zn isotopic fingerprint of total soil Zn varied from -0.05‰ to +0.26 ± 0.02‰ (δ66Zn values relative to the JMC 3-0749L standard) among soils, but the soil solution Zn was depleted in 66Zn, with a constant Zn isotope fractionation of about -0.1‰ δ66Zn unit compared to the bulk soil. Roots were enriched with 66Zn relative to soil solution (δ66Znroot - δ66Znsoil solution = Δ66Znroot-soil solution = +0.05 to +0.2 ‰) and shoots were strongly depleted in 66Zn relative to roots (Δ66Znshoot-root = -0.40 to -0.04 ‰). The overall δ66Zn values in shoots reflected that of the bulk soil, but were lowered by 0.1-0.3 ‰ units as compared to the latter. The isotope fractionation between root and shoot exhibited a markedly strong negative correlation (R2 = 0.83) with transpiration per unit of plant weight. Thus, the enrichment with light Zn isotopes in shoot progressed with increasing water flux per unit plant biomass dry weight, showing a passive mode of Zn transport by transpiration. Besides, the light isotope enrichment in shoots compared to roots was larger for rape than for rye grass, which may be related to the higher Zn retention in rape roots. This in turn may be related to the higher cation exchange capacity of rape roots. Our finding can be of use to trace the biogeochemical cycles of Zn and evidence the tolerance strategies developed by plants in Zn-excess conditions.

  13. Master Robotic Net

    Directory of Open Access Journals (Sweden)

    Vladimir Lipunov


    Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.

  14. Art/Net/Work

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik; Lindstrøm, Hanne


    The seminar Art|Net|Work deals with two important changes in our culture. On one side, the network has become essential in the latest technological development. The Internet has entered a new phase, Web 2.0, including the occurrence of as ‘Wiki’s’, ‘Peer-2-Peer’ distribution, user controlled...... the praxis of the artist. We see different kinds of interventions and activism (including ‘hacktivism’) using the network as a way of questioning the invisible rules that govern public and semi-public spaces. Who ‘owns’ them? What kind of social relationships do they generate? On what principle...

  15. Ecohydrology of dry regions: storage versus pulse soil water dynamics (United States)

    Lauenroth, William K.; Schlaepfer, Daniel R.; Bradford, John B.


    Although arid and semiarid regions are defined by low precipitation, the seasonal timing of temperature and precipitation can influence net primary production and plant functional type composition. The importance of precipitation seasonality is evident in semiarid areas of the western U.S., which comprise the Intermountain (IM) zone, a region that receives important winter precipitation and is dominated by woody plants and the Great Plains (GP), a region that receives primarily summer precipitation and is dominated by perennial grasses. Although these general relationships are well recognized, specific differences in water cycling between these regions have not been well characterized. We used a daily time step soil water simulation model and twenty sites from each region to analyze differences in soil water dynamics and ecosystem water balance. IM soil water patterns are characterized by storage of water during fall, winter, and spring resulting in relatively reliable available water during spring and early summer, particularly in deep soil layers. By contrast, GP soil water patterns are driven by pulse precipitation events during the warm season, resulting in fluctuating water availability in all soil layers. These contrasting patterns of soil water—storage versus pulse dynamics—explain important differences between the two regions. Notably, the storage dynamics of the IN sites increases water availability in deep soil layers, favoring the deeper rooted woody plants in that region, whereas the pulse dynamics of the Great Plains sites provide water primarily in surface layers, favoring the shallow-rooted grasses in that region. In addition, because water received when plants are either not active or only partially so is more vulnerable to evaporation and sublimation than water delivered during the growing season, IM ecosystems use a smaller fraction of precipitation for transpiration (47%) than GP ecosystems (49%). Recognizing the pulse-storage dichotomy in

  16. Environmental impact analysis of aquaculture in net cages in a ...

    African Journals Online (AJOL)

    Environmental impact analysis of aquaculture in net cages in a Brazilian water reservoir, based in zooplankton communities. Maria Cristina Crispim, Karla Patrícia Ponte Araújo, Hênio do Nascimento Melo Júnior ...

  17. expansions to and an introduction to (United States)

    Martin, John; Rosa, Bruce A.; Ozersky, Philip; Hallsworth-Pepin, Kymberlie; Zhang, Xu; Bhonagiri-Palsikar, Veena; Tyagi, Rahul; Wang, Qi; Choi, Young-Jun; Gao, Xin; McNulty, Samantha N.; Brindley, Paul J.; Mitreva, Makedonka

    2015-01-01 ( is the new moniker for a collection of databases: and Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site ( In this article, (i) we provide an update on the expansions of that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. is an independent component of and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases’ interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species’ omics properties. This report describes updates to since its last description in NAR, 2012, and also introduces and presents its new sibling site, PMID:25392426

  18. Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2 (United States)

    Cammarano, Davide; Roetter, Reimund P.; Asseng, Senthold; Ewert, Frank; Wallach, Daniel; Martre, Pierre; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia E.; Ruane, Alex C.; hide


    Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50 of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.


    Directory of Open Access Journals (Sweden)

    Evelia Schettini


    Full Text Available The aim of this paper was to investigate the radiometric properties of coloured nets used to protect a peach cultivation. The modifications of the solar spectral distribution, mainly in the R and FR wavelength band, influence plant photomorphogenesis by means of the phytochrome and cryptochrome. The phytochrome response is characterized in terms of radiation rate in the red wavelengths (R, 600-700 nm to that in the farred radiation (FR, 700-800 nm, i.e. the R/FR ratio. The effects of the blue radiation (B, 400-500 nm is investigated by the ratio between the blue radiation and the far-red radiation, i.e. the B/FR ratio. A BLUE net, a RED net, a YELLOW net, a PEARL net, a GREY net and a NEUTRAL net were tested in Bari (Italy, latitude 41° 05’ N. Peach trees were located in pots inside the greenhouses and in open field. The growth of the trees cultivated in open field was lower in comparison to the growth of the trees grown under the nets. The RED, PEARL, YELLOW and GREY nets increased the growth of the trees more than the other nets. The nets positively influenced the fruit characteristics, such as fruit weight and flesh firmness.

  20. Leaf water relations and sapflow in eastern cottonwood (Populus deltoides Bartr.) trees planted for phytoremediation of a groundwater pollutant (United States)

    James M. Vose; Wayne T. Swank; Gregory J. Harvey; Barton D. Clinton; Christine Sobek


    Plants that remediate groundwater pollutants may offer a feasible alternative to the traditional and more expensive practices. Because its success depends on water use, this approach requires a complete understanding of species-specific transpiration patterns. The objectives of this study were (1) to quantify tree and stand-level transpiration in two age classes (whips...

  1. Transpiration response of 'slow-wilting' and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors. (United States)

    Sadok, Walid; Sinclair, Thomas R


    The slow-wilting soybean [Glycine max (L.) Merr.] genotype, PI 416937, exhibits a limiting leaf hydraulic conductance for transpiration rate (TR) under high vapour pressure deficit (VPD). This genotype has a constant TR at VPD greater than 2 kPa, which may be responsible for its drought tolerance as a result of soil water conservation. However, the exact source of the hydraulic limitation between symplastic and apoplastic water flow in the leaf under high VPD conditions are not known for PI 416937. A comparison was made in the TR response to aquaporin (AQP) inhibitors between PI 416937 and N01-11136, a commercial genotype that has a linear TR response to VPD in the 1-3.5 kPa range. Three AQP inhibitors were tested: cycloheximide (CHX, a de novo synthesis inhibitor), HgCl(2), and AgNO(3). Dose-response curves for the decrease in TR following exposure to each inhibitor were developed. Decreases in TR of N01-11136 following treatment with inhibitors were up to 60% for CHX, 82% for HgCl(2), and 42% for AgNO(3). These results indicate that the symplastic pathway terminating in the guard cells of these soybean leaves may be at least as important as the apoplastic pathway for water flow in the leaf under high VPD. While the decrease in TR for PI 416937 was similar to that of N01-11136 following exposure to CHX and HgCl(2), TR of PI 416937 was insensitive to AgNO(3) exposure. These results indicate the possibility of a lack of a Ag-sensitive leaf AQP population in the slow-wilting line, PI 416937, and the presence of such a population in the commercial line, N01-11136.

  2. Diurnal variations in water relations of deficit irrigated lemon trees during fruit growth period

    Directory of Open Access Journals (Sweden)

    Y. García-Orellana


    Full Text Available Field-grown lemon trees (Citrus limon (L. Burm. fil. cv. Fino were subjected to different drip irrigation treatments: a control treatment, irrigated daily above crop water requirements in order to obtain non-limiting soil water conditions and two deficit irrigation treatments, reducing the water applied according to the maximum daily trunk shrinkage (MDS signal intensity (actual MDS/control treatment MDS threshold values of 1.25 (T1 treatment and 1.35 (T2 treatment, which induced two different drought stress levels. Daily variations in leaf (Yleaf and stem (Ystem water potentials, leaf conductance, net photosynthesis, sap flow (SF and trunk diameter fluctuations were studied on four occasions during the lemon fruit growth period. Ystem and Yleaf revealed a diurnal pattern in response to changes in evaporative demand of the atmosphere. Both water potentials decreased in response to water deficits, which were more pronounced in the T2 treatment. Ystem was seen to be a better plant water status indicator than Yleaf. The difference between the two values of Y (Ystem - Yleaf  = DY was closely correlated with sap flow, making it a suitable measure of leaf transpiration. Using the slope of this relationship, the canopy hydraulic conductance (KC was estimated. When other continuously recorded plant-based indicators are not accessible, the concurrent measurement of leaf and stem water potentials at midday, which are relatively inexpensive to measure and user-friendly, act as sufficiently good indicators of the plant water status in field grown Fino lemon trees.

  3. NETS - Danish participation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alsen, S. (Grontmij - Carl Bro, Glostrup (Denmark)); Theel, C. (Baltic Sea Solutions, Holeby (Denmark))


    Within the NICe-funded project 'Nordic Environmental Technology Solutions (NETS)' a new type of networking at the Nordic level was organized in order to jointly exploit the rapidly growing market potential in the environmental technology sector. The project aimed at increased and professionalized commercialization of Nordic Cleantech in energy and water business segments through 1) closer cooperation and joint marketing activities, 2) a website, 3) cleantech product information via brochures and publications 4) and participating in relevant trade fairs and other industry events. Facilitating business-to-business activities was another core task for the NETS project partners from Norway, Sweden, Finland and Denmark with the aim to encourage total solutions for combined Cleantech system offers. The project has achieved to establish a Cleantech register of 600 Nordic Cleantech companies, a network of 86 member enterprises, produced several publications and brochures for direct technology promotion and a website for direct access to company profiles and contact data. The project partners have attended 14 relevant international Cleantech trade fairs and conferences and facilitated business-to-business contacts added by capacity building offers through two company workshops. The future challenge for the project partners and Nordic Cleantech will be to coordinate the numerous efforts within the Nordic countries in order to reach concerted action and binding of member companies for reliable services, an improved visibility and knowledge exchange. With Cleantech's growing market influence and public awareness, the need to develop total solutions is increasing likewise. Marketing efforts should be encouraged cross-sectional and cross-border among the various levels of involved actors from both the public and the private sector. (au)

  4. Water Relations and Transpiration of Quinoa (Chenopodium quinoa Willd.) Under Salinity and Soil Drying

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Ahmadi, Seyed Hamid; Adolf, Verena Isabelle


    Drought and salinity are the two major factors limiting crop growth and production in arid and semi-arid regions. The separate and combined effects of salinity and progressive drought in quinoa (Chenopodium quinoa Willd.) were studied in a greenhouse experiment. Stomatal conductance (gs), leaf...

  5. The equivalency between logic Petri workflow nets and workflow nets. (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue


    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  6. Transpiração e temperatura foliar da cana-de-açúcar sob diferentes valores de potencial matricial Transpiration and leaf temperature of sugarcane under different matric potential values

    Directory of Open Access Journals (Sweden)

    Roberto Trentin


    Full Text Available O objetivo deste trabalho foi avaliar a variação diurna da transpiração e da temperatura foliar da cana-de-açúcar, cv. RB867515, sob diferentes potenciais matriciais de água no substrato de cultivo e as condições meteorológicas em ambiente protegido. O efeito do estresse hídrico na transpiração e temperatura foliar foi determinado a partir da suspensão da irrigação, quando foram realizadas três campanhas de medições, iniciadas aos 122; 150 e 185 dias após o plantio (DAP até que o potencial matricial de água no substrato (Ψ alcançasse -1.500 kPa, aproximadamente. Sob ausência de estresse hídrico (Ψ>-50 kPa, a transpiração das plantas atingiu o valor máximo entre 10 e 13 h, próximo de 60; 70 e 100 g planta-1 h-1 para 122; 150 e 185 DAP, respectivamente. Sob condições de estresse hídrico severo (ΨThe objective of this study was to evaluate the diurnal behaviour of transpiration and leaf temperature of sugarcane (cv. RB867515 under different water matrix potential in the cultivation substrate and greenhouse meteorological conditions. The water stress effect on transpiration and leaf temperature was determined after irrigation suspension, when three measurement campaigns were initiated at 122; 150 and 185 days after planting (DAP until the matrix water potential in the substrate (Ψ reached -1,500 kPa, approximately. Under the absence of water stress (Ψ>-50 kPa, plant transpiration reached the maximum value between 10:00 AM and 13:00 PM, near to 60; 70 e 100 gplant-1h-1, for 122; 150 and 185 DAP, respectively. Under severe water stress (Ψ<-1,100 kPa, there was daily transpiration reduction of approximately 73%, compared to measurements performed without water stress and under similar meteorological conditions. Under the absence of water stress and overcast sky conditions, the average value of the difference between leaf temperature and air temperature was -2.9 ºC. In contrast, under severe water stress and high

  7. a Novel Investigation of the Oscillatory Field Over a Transpiring Surface (United States)



    The flowfield character is investigated inside a long rectangular chamber in the presence of time-harmonic pressure waves. The chamber is designed with multiple interchangeable sections for the purpose of controlling the length and therefore the system's natural frequency. Pressure waves are induced externally at variable frequencies by means of a Scotch-yoke mechanism theoretically capable of imparting pure oscillatory motions. In characterizing the internal flowfield, velocity measurements are acquired inside a principal test section that can accommodate flat blocks of solid carbon dioxide (i.e., dry ice). As solid CO2sublimates, a flow of gaseous carbon dioxide is generated at the bottom of the principal section and enters the chamber in the transverse direction. The resulting generalized Stokes layer formed above the transpiring surface exhibits several features associated with oscillatory flows over impermeable surfaces, including an overshoot in the velocity amplitude in the vicinity of the transpiring wall known as Richardson's annular effect. Quantitative pressure and velocity measurements are in agreement with theoretical predictions obtained from recent models of the oscillatory field over transpiring surfaces. The acoustic Reynolds number based on the Stokes layer thickness increases linearly with increasing Scotch-yoke frequency except in the neighborhood of the system's natural frequency. Near resonance, a sharp non-linear increase in the acoustic Reynolds number is noted. Furthermore, both acoustic pressure and velocity amplitudes increase with the driving frequency in a manner that is consistent with current theories. Since the sublimation rate of dry ice can be expressed in a similar mathematical form to the regression rate at the burning surface of solid propellants, this experiment constitutes a cold flow simulation of the internal flowfield in solid rocket motors.

  8. Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants. (United States)

    Macho-Rivero, Miguel Ángel; Camacho-Cristóbal, Juan José; Herrera-Rodríguez, María Begoña; Müller, Maren; Munné-Bosch, Sergi; González-Fontes, Agustín


    Boron (B) is an essential microelement for vascular plant development, but its toxicity is a major problem affecting crop yields in arid and semi-arid areas of the world. In the literature, several genes involved in abscisic acid (ABA) signalling and responses are upregulated in Arabidopsis roots after treatment with excess B. It is known that the AtNCED3 gene, which encodes a crucial enzyme for ABA biosynthesis, plays a key role in the plant response to drought stress. In this study, root AtNCED3 expression and shoot ABA content were rapidly increased in wild-type plants upon B-toxicity treatment. The Arabidopsis ABA-deficient nced3-2 mutant had higher transpiration rate, stomatal conductance and accumulated more B in their shoots than wild-type plants, facts that were associated with the lower levels of ABA in this mutant. However, in wild-type plants, B toxicity caused a significant reduction in stomatal conductance, resulting in a decreased transpiration rate. This response could be a mechanism to limit the transport of excess B from the roots to the leaves under B toxicity. In agreement with the higher transpiration rate of the nced3-2 mutant, this genotype showed an increased leaf B concentration and damage upon exposure to 5 mM B. Under B toxicity, ABA application decreased B accumulation in wild-type and nced3-2 plants. In summary, this work shows that excess B applied to the roots leads to rapid changes in AtNCED3 expression and gas exchange parameters that would contribute to restrain the B entry into the leaves, this effect being mediated by ABA. © 2016 Scandinavian Plant Physiology Society.

  9. A metered intake of milk following exercise and thermal dehydration restores whole-body net fluid balance better than a carbohydrate-electrolyte solution or water in healthy young men. (United States)

    Seery, Suzanne; Jakeman, Philip


    Appropriate rehydration and nutrient intake in recovery is a key component of exercise performance. This study investigated whether the recovery of body net fluid balance (NFB) following exercise and thermal dehydration to -2 % of body mass (BM) was enhanced by a metered rate of ingestion of milk (M) compared with a carbohydrate-electrolyte solution (CE) or water (W). In randomised order, seven active men (aged 26·2 (sd 6·1) years) undertook exercise and thermal dehydration to -2 % of BM on three occasions. A metered replacement volume of M, CE or W equivalent to 150 % of the BM loss was then consumed within 2-3 h. NFB was subsequently measured for 5 h from commencement of rehydration. A higher overall NFB in M than CE (P=0·001) and W (P=0·006) was observed, with no difference between CE and W (P=0·69). After 5 h, NFB in M remained positive (+117 (sd 122) ml) compared with basal, and it was greater than W (-539 (sd 390) ml, P=0·011) but not CE (-381 (sd 460) ml, P=0·077, d=1·6). Plasma osmolality (Posm) and K remained elevated above basal in M compared with CE and W. The change in Posm was associated with circulating pre-provasopressin (r s 0·348, Pfluid ingestion acts in synergy with the nutrient composition of M in the restoration of NFB following exercise and thermal dehydration.

  10. Water use pattern of Pinus tabulaeformis in the semiarid region of Loess Plateau, China

    Energy Technology Data Exchange (ETDEWEB)

    Jian, S.; Zhang, X.; Wu, Z.; Hu, C.


    Aim of the study: We analyzed the water-use strategy of P. tabulaeformis and determine the relationships between environmental factors and transpiration rates in the P. tabulaeformis woodlands. Area of study: Loess Plateau region of Northwest China. Material and Methods: Sap flow density of the P. tabulaeformis trees was measured with Granier-type sensors. Stand transpiration was extrapolated from the sap flow measurements of individual trees using the following Granier equation. Main results: The mean sap flow rates of individual P. tabulaeformis trees ranged from 9 L day−1 to 54 L day−1. Photosynthetically active radiation and vapor pressure deficit were the dominant driving factors of transpiration when soil water content was sufficient (soil water content>16%), considering that soil water content is the primary factor of influencing transpiration at the driest month of the year. During the entire growing season, the maximum and minimum daily stand transpiration rates were 2.93 and 0.78 mm day−1, respectively. The mean stand transpiration rate was 1.9 mm day−1, and the total stand transpiration from May to September was 294.1 mm. Research highlights: This study can serve as a basis for detailed analyses of the water physiology and growth of P. tabulaeformis plantation trees for the later application of a climate-driven process model. (Author)

  11. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    studies that illustrate the practical use of CPN modelling and validation for design, specification, simulation, verification and implementation in various application domains. Their presentation primarily aims at readers interested in the practical use of CPN. Thus all concepts and constructs are first......Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...... and the immense number of possible execution sequences. In this textbook, Jensen and Kristensen introduce the constructs of the CPN modelling language and present the related analysis methods in detail. They also provide a comprehensive road map for the practical use of CPN by showcasing selected industrial case...

  12. Human alterations of the terrestrial water cycle through land management

    Directory of Open Access Journals (Sweden)

    S. Rost


    Full Text Available This study quantifies current and potential future changes in transpiration, evaporation, interception loss and river discharge in response to land use change, irrigation and climate change, by performing several distinct simulations within the consistent hydrology and biosphere modeling framework LPJmL (Lund-Potsdam-Jena managed Land. We distinguished two irrigation simulations: a water limited one in which irrigation was restricted by local renewable water resources (ILIM, and a potential one in which no such limitation was assumed but withdrawals from deep groundwater or remote rivers allowed (IPOT. We found that the effect of historical land use change as compared to potential natural vegetation was pronounced, including a reduction in interception loss and transpiration by 25.9% and 10.6%, respectively, whereas river discharge increased by 6.6% (climate conditions of 1991–2000. Furthermore, we estimated that about 1170 km3yr−1 of irrigation water could be withdrawn from local renewable water resources (in ILIM, which resulted in a reduction of river discharge by 1.5%. However, up to 1660 km3yr−1 of water withdrawals were required in addition under the assumption that optimal growth of irrigated crops was sustained (IPOT, which resulted in a slight net increase in global river discharge by 2.0% due to return flows. Under the HadCM3 A2 climate and emission scenario, climate change alone will decrease total evapotranspiration by 1.5% and river discharge by 0.9% in 2046–2055 compared to 1991–2000 average due to changes in precipitation patterns, a decrease in global precipitation amount, and the net effect of CO2 fertilization. A doubling of agricultural land in 2046–2055 compared to 1991–2000 average as proposed by the IMAGE land use change scenario will result in a decrease in total evapotranspiration by 2.5% and in an increase in river discharge by 3.9%. That is, the

  13. The importance of micrometeorological variations for photosynthesis and transpiration in a boreal coniferous forest

    DEFF Research Database (Denmark)

    Schurgers, Guy; Lagergren, F.; Molder, M.


    the importance of vertical variations in light, temperature, CO2 concentration and humidity within the canopy for fluxes of photosynthesis and transpiration of a boreal coniferous forest in central Sweden. A leaf-level photosynthesis-stomatal conductance model was used for aggregating these processes to canopy...... fluxes, where discrepancies are largely attributable to a lack of forest floor evaporation in the model. Simulations in which vertical heterogeneity was artificially suppressed revealed that the vertical distribution of light is the driver of vertical heterogeneity. Despite large differences between...

  14. Selectivity of penaeid trap nets used in south eastern Australia

    Directory of Open Access Journals (Sweden)

    Matt K. Broadhurst


    Full Text Available Two experiments were done to estimate the selectivity of commercial and modified trap-net configurations in New South Wales (NSW, southeastern Australia. In the first experiment, a commercial trap net made entirely from 25 mm mesh and designed for use in shallow water was alternatively fished with a fine-meshed (9.5 mm netting trap net (used as a control. In the second experiment, two trap-net configurations designed for use in deeper water and comprising the same anterior section (made from 25 mm mesh, but with different bunts made from (i the conventional 25 mm mesh and (ii 31 mm mesh were alternately fished against the control. Both of the conventional trap nets (comprising 25 mm mesh throughout had low amounts of bycatch and similarly selected eastern king Penaeus plebejus, greasyback Metapenaeus bennettae and school prawns Metapenaeus macleayi across narrow selection ranges (< 3.4 mm and at 50% retention lengths (between 18.53 and 21.50 mm that were larger than the average commercially-accepted sizes (15-17 mm CL. Analyses of the selectivities and relative efficiencies of the trap-net configurations comprising the 25 and 31 mm bunts showed no benefit, in terms of maintaining prawn catches and reducing unwanted bycatch, associated with increasing mesh size in these gears. The utility of trap nets for selectively harvesting penaeids is discussed. We conclude that this type of fishing gear appears to have few deleterious impacts.

  15. Sap flow based transpiration estimates in species-rich secondary forests of different ages in central Panama during a wet-season drought (United States)

    Bretfeld, M.; Ewers, B. E.; Hall, J. S.; Ogden, F. L.


    Many landscapes that were previously covered by mature tropical forests in central Panama today comprise of a mosaic of mature forest fragments, pastures and agricultural land, and regrowing secondary forests. An increasing demand for water due to urbanization and the expansion of the Panama Canal, along with a predicted transition into a dryer climatic period necessitate a better understanding regarding the effects of land use and land use history on hydrological processes. Such knowledge, including water storage, residence times, and fluxes is essential to develop effective land management strategies and propose incentives to alter land use practices to enhance hydrological services. To quantify transpiration rates at different stages of secondary forest succession, we measured sap flow in forests growing for 8, ~25, and 80+ years since last known land use in the 15 km2 "Agua Salud" study area, located in central Panama. In each forest, we selected a subset of at least 15 individuals, representing the local tree size distribution, and recorded data from heat-ratio sap flow sensors every 30 minutes starting in February 2015. All instrumented trees were identified to species and compared to local species distributions. Basal area in the three forest types was 9.1, 10.8, and 50.2 m2 ha-1 for 8, ~25, and 80+ year old forests, respectively. Average daily transpiration was highly correlated to forest age, with highest rates in the oldest forest (3.0 to 18.2 mm ha-1 day-1), followed by intermediate (1.2 to 6.7 mm ha-1 day-1) and youngest forests (0.2 to 2.7 mm ha-1 day-1), suggesting roughly a doubling in transpiration from 8 to ~25 year old forests, despite similar basal area, and again from ~25 to 80+ year old forests. Flow rates in individual trees generally reflected the dry-to-wet season transition but behaved differently in response to the unprecedentedly dry conditions during the first half of 2015 in central Panama.

  16. Fishing with bed nets on Lake Tanganyika: a randomized survey. (United States)

    McLean, Kate A; Byanaku, Aisha; Kubikonse, Augustine; Tshowe, Vincent; Katensi, Said; Lehman, Amy G


    Malaria is among the most common causes of death along Lake Tanganyika, a problem which many aid organizations have attempted to combat through the distribution of free mosquito bed nets to high-risk communities. The Lake Tanganyika Floating Health Clinic (LTFHC), a health-based non-governmental organization (NGO), has observed residents of the Lake Tanganyika basin using bed nets to fish small fry near the shoreline, despite a series of laws that prohibit bed net use and other fine-gauge nets for fishing, implemented to protect the near-shore fish ecology. The LTFHC sought to quantify the sources of bed nets and whether they were being used for fishing. The LTFHC conducted a survey of seven lakeside villages in Lagosa Ward, Tanzania. The government has divided each village into two to six pre-existing geographic sub-villages depending on population size. Seven households per sub-village were chosen at random for survey administration. The survey consisted of 23 questions regarding mosquito bed net practices, including the use of bed nets for fishing, as well as questions pertaining to any perceived changes to the fish supply. A total of 196 surveys were administered over a four-week period with a 100% response rate. Over 87% of households surveyed have used a mosquito bed net for fishing at some point. The majority of respondents reported receiving their bed net for free (96.4%), observing "many" residents of their village using bed nets for fishing (97.4%), and noticing a subjective decrease in the fish supply over time (64.9%). The findings of this study raise concerns that the use of free malaria bed nets for fishing is widespread along Lake Tanganyika, and that this dynamic will have an adverse effect on fish ecology. Further studies are indicated to fully define the scope of bed net misuse and the effects of alternative vector control strategies in water-based communities.

  17. Changes in transpiration and photosynthetic rates of various leaves during treatment with ozonated hexene or ozone gas

    Energy Technology Data Exchange (ETDEWEB)

    Todd, G.W.; Propst, B.


    Measurements were made on the rates of photosynthesis and transpiration of bean, tomato and coleus leaves during and immediately following fumigation with either ozone or ozonated hexene gas. Both fumigants caused marked decreases in the rate of photosynthesis in all 3 species although in tomato and coleus leaves, the reduction in photosynthesis took place only during the fumigation with ozonated hexene gas and afterwards the rate returned to normal. Ozone fumigation caused decreases in transpiration but the decrease was not as large as that obtained for photosynthesis. Transpiration in tomato and coleus leaves showed little response to ozonated hexene gas although bean leaves responsed in much the same way as they did when they were treated with ozone alone. The white portions of coleus leaves (where the green outer portion had been removed) were used for similar fumigations and an increase in respiration and a decrease in transpiration with ozonated hexene was noted. There were no changes in transpiration from these leaves following ozone fumigations. Increases in respiration after ozone and ozonated hexene fumigations were obtained for bean, tomato and intact coleus leaves as had been reported previously for bean leaves. It was postulated that part of the decrease in growth (not accompanied by visible injury) obtained when plants were treated with ozonated hexene gas might be due directly to the reduction in photosynthesis. It would not appear in the species tested that the more resistant species close their stomates and thereby prevent the fumigant from entering.

  18. Effects of CO[sub 2] concentration on photosynthesis, transpiration and production of greenhouse fruit vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Nederhoff, E.M.


    The effect of the CO[sub 2] concentration of the greenhouse air (C) in the range 200 to 1100 [mu]mol mol[sup -1] was investigated in tomato (Lycopersicon esculentum Mill.), cucumber (Cucumis sativus L.), sweet pepper (Capsicum annuum L.) and eggplant (Solanum melongena L.), grown in greenhouses. The effect of C on canopy net photosynthetic CO[sub 2] assimilation rate (or photosynthesis, P) was expressed by a set of regression equations, relating P to PAR, C and LAI. A rule of thumb ('CO[sub 2]-rule') was derived, approximating the relative increase of P caused by additional CO[sub 2] at a certain C. This CO[sub 2]-rule is: X = (1000/C)[sup 2] * 1.5 (X in % per 100 [mu]mol[sup -1], and C in [mu]mol mol[sup -1]). Two models for canopy photosynthesis were examined by comparing them with the experimental photosynthesis data. No 'midday depression' in P was observed. The effects of C on leaf conductance (g) and on rate of crop transpiration (E) were investigated. An increase of 100 I[mu]mol mol[sup -1] ' in C reduced g by about 3-4% in sweet pepper, tomato and cucumber and by about 11% in eggplant. The effect of C on E was analyzed by combining the regression equation for g with the Penman-Monteith equation for E. C had only a relatively small effect on E, owing to thermal and hydrological feedback effects. The decoupling of g and E was quantified. No time-dependent variation or 'midday depression' in E was observed, and no significant effect of C on average leaf temperature was established. In five experiments, the effect of C on growth and production and on specific features were analyzed; fruit production (dry weight) was most affected by C in sweet pepper; fresh weight fruit production per unit CO[sub 2] was highest in cucumber; fruit quality was not influenced by C. High C promoted the 'short leaves syndrome' in tomato and 'leaf tip chlorosis' in eggplant, probably related to calcium and boron translocation

  19. 76 FR 12941 - Proposed Information Collection; Comment Request; Virginia Modified Pound Net Leader Inspection... (United States)


    ... Modified Pound Net Leader Inspection Program AGENCY: National Oceanic and Atmospheric Administration (NOAA... program for modified pound net leaders in the Virginia waters of the mainstem Chesapeake Bay. Pound net..., they must allow for the inspection of gear to ensure the modified leader meets the definition of a...

  20. Effect of Injecting Hydrogen Peroxide into Heavy Clay Loam Soil on Plant Water Status, NET CO2 Assimilation, Biomass, and Vascular Anatomy of Avocado Trees Efecto de la Inyección de Peróxido de Hidrógeno en Suelo Franco Arcilloso Pesado, sobre el Estado Hídrico, Asimilación Neta de CO2, Biomasa y Anatomía Vascular de Paltos

    Directory of Open Access Journals (Sweden)

    Pilar M Gil M


    Full Text Available In Chile, avocado (Persea americana Mill. orchards are often located in poorly drained, low-oxygen soils, situation which limits fruit production and quality. The objective of this study was to evaluate the effect of injecting soil with hydrogen peroxide (H2O2 as a source of molecular oxygen, on plant water status, net CO2 assimilation, biomass and anatomy of avocado trees set in clay loam soil with water content maintained at field capacity. Three-year-old ‘Hass’ avocado trees were planted outdoors in containers filled with heavy loam clay soil with moisture content sustained at field capacity. Plants were divided into two treatments, (a H2O2 injected into the soil through subsurface drip irrigation and (b soil with no H2O2 added (control. Stem and root vascular anatomical characteristics were determined for plants in each treatment in addition to physical soil characteristics, net CO2 assimilation (A, transpiration (T, stomatal conductance (gs, stem water potential (SWP, shoot and root biomass, water use efficiency (plant biomass per water applied [WUEb]. Injecting H2O2 into the soil significantly increased the biomass of the aerial portions of the plant and WUEb, but had no significant effect on measured A, T, gs, or SWP. Xylem vessel diameter and xylem/phloem ratio tended to be greater for trees in soil injected with H2O2 than for controls. The increased biomass of the aerial portions of plants in treated soil indicates that injecting H2O2 into heavy loam clay soils may be a useful management tool in poorly aerated soil.En Chile, los huertos de palto (Persea americana Mill. se ubican comúnmente en suelos pobremente drenados con bajo contenido de oxígeno, lo que limita producción y calidad de fruta. El objetivo de este estudio fue evaluar el efecto de la inyección de peróxido de hidrógeno (H2O2 al suelo como fuente de O2, sobre el estado hídrico, asimilación de CO2, biomasa y anatomía de paltos en suelo franco arcilloso con

  1. Soil water effect on crop growth, leaf gas exchange, water and radiation use efficiency of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel in semi-arid Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Danilo Scordia


    Full Text Available Great effort has been placed to identify the most suited bioenergy crop under different environments and management practices, however, there is still need to find new genetic resources for constrained areas. For instance, South Mediterranean area is strongly affected by prolonged drought, high vapour pressure deficit (VPD and extremely high temperatures during summertime. In the present work we investigated the soil water effect on crop growth and leaf gas exchange of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel, a perennial, rhizomatous, herbaceous grass. Furthermore, the net increase of biomass production per unit light intercepted [radiation use efficiency (RUE] and per unit water transpired [water use efficiency (WUE] was also studied. To this end a field trial was carried out imposing three levels of soil water availability (I100, I50 and I0, corresponding to 100%, 50% and 0% of ETm restutition under a semi-arid Mediterranean environment. Leaf area index (LAI, stem height, biomass dry matter yield, CO2 assimilation rate, and transpiration rate resulted significantly affected by measurement time and irrigation treatment, with the highest values in I100 and the lowest in I0. RUE was the highest in I100 followed by I50 and I0; on the other hand, WUE was higher in I0 than I50 and I100. At LAI values greater than 2.0, 85% photosynthetically active radiation was intercepted by the Saccharum stand, irrespective of the irrigation treatment. Saccharum spontaneum spp. aegyptiacum is a potential species for biomass production in environment characterized by drought stress, high temperatures and high VPD, as those of Southern Europe and similar semi-arid areas.

  2. Revisiting the Lie-group symmetry method for turbulent channel flow with wall transpiration

    CERN Document Server

    Khujadze, George


    The Lie-group-based symmetry analysis, as first proposed in Avsarkisov et al. (2014) and then later modified in Oberlack et al. (2015), to generate invariant solutions in order to predict the scaling behavior of a channel flow with uniform wall transpiration, is revisited. By focusing first on the results obtained in Avsarkisov et al. (2014), we failed to reproduce two key results: (i) For different transpiration rates at a constant Reynolds number, the mean velocity profiles (in deficit form) do not universally collapse onto a single curve as claimed. (ii) The universally proposed logarithmic scaling law in the center of the channel does not match the direct numerical simulation (DNS) data for the presented parameter values. In fact, no universal scaling behavior in the center of the channel can be detected from their DNS data, as it is misleadingly claimed in Avsarkisov et al. (2014). Moreover, we will demonstrate that the assumption of a Reynolds-number independent symmetry analysis is not justified for th...

  3. The unexpected effects of wind speeds on plant water use efficiency (United States)

    Schymanski, S. J.; Or, D.


    Transpiration and heat exchange by plant leaves are coupled physiological processes of significant ecohydrological importance. The common practice of modelling transpiration as an isothermal process (assuming equal leaf and air temperatures) may introduce significant bias into estimates of transpiration rates and water use efficiency (WUE, the amount of carbon gained by photosynthesis per unit of water lost by transpiration). In a recent study (Schymanski et al., 2013), we investigated effects of fluctuating irradiance (sunflecks) on leaf thermal regime and transpiration rates using a physically-based leaf model. Results suggest that leaf temperatures may deviate substantially from air temperature, leading to greatly modified transpiration rates compared to isothermal conditions. This presentation reports a systematic study of the effects of wind speed on leaf heat and gas exchange rates. Surprisingly, under certain conditions, an increase in wind speed can suppress transpiration rates. This is due to feedbacks between sensible heat flux, leaf temperature, leaf-to-air vapour pressure deficit and latent heat flux. The model predicts that for high wind velocities, the same leaf conductance (for water vapour and carbon dioxide) can be maintained with less evaporative losses. If this leaf-scale effect is consistent across most leaves, it may have profound implications for canopy-scale water use efficiency under globally decreasing wind speeds. Experimental verification of the modelling study is under way and first results will be presented.

  4. Elevated CO2 decreases both transpiration flow and concentrations of Ca and Mg in the xylem sap of wheat. (United States)

    Houshmandfar, Alireza; Fitzgerald, Glenn J; Tausz, Michael


    The impact of elevated atmospheric [CO2] (e[CO2]) on plants often includes a decrease in their nutrient status, including Ca and Mg, but the reasons for this decline have not been clearly identified. One of the proposed hypotheses is a decrease in transpiration-driven mass flow of nutrients due to decreased stomatal conductance. We used glasshouse and Free Air CO2 Enrichment (FACE) experiments with wheat to show that, in addition to decrease in transpiration rate, e[CO2] decreased the concentrations of Ca and Mg in the xylem sap. This result suggests that uptake of nutrients is not only decreased by reduced transpiration-driven mass flow, but also by as yet unidentified mechanisms that lead to reduced concentrations in the xylem sap. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  6. Reference Guide Microsoft.NET

    NARCIS (Netherlands)

    Zee M van der; Verspaij GJ; Rosbergen S; IMP; NMD


    Developers, administrators and managers can get more understanding of the .NET technology with this report. They can also make better choices how to use this technology. The report describes the results and conclusions of a study of the usability for the RIVM of this new generation .NET development

  7. Net neutrality and audiovisual services

    NARCIS (Netherlands)

    van Eijk, N.; Nikoltchev, S.


    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication

  8. A Small Universal Petri Net

    Directory of Open Access Journals (Sweden)

    Dmitry A. Zaitsev


    Full Text Available A universal deterministic inhibitor Petri net with 14 places, 29 transitions and 138 arcs was constructed via simulation of Neary and Woods' weakly universal Turing machine with 2 states and 4 symbols; the total time complexity is exponential in the running time of their weak machine. To simulate the blank words of the weakly universal Turing machine, a couple of dedicated transitions insert their codes when reaching edges of the working zone. To complete a chain of a given Petri net encoding to be executed by the universal Petri net, a translation of a bi-tag system into a Turing machine was constructed. The constructed Petri net is universal in the standard sense; a weaker form of universality for Petri nets was not introduced in this work.

  9. Water relations and photosynthesis as criteria for adequate irrigation management in 'Tahiti' lime trees

    Directory of Open Access Journals (Sweden)

    Silva Cláudio Ricardo da


    Full Text Available Irrigation scheduling based on soil moisture status is one of the most useful methods because of its practicality and low cost. The effects of available soil water depletion on evapotranspiration (ETc, transpiration (E, leaf water potential at predawn (psiP and midday (psiM, stomatal conductance (gs and net CO2 assimilation (A in lime 'Tahiti' trees (Citrus latifolia were evaluated to improve irrigation schedule and minimize water use without causing water stress. The trees were spaced 7 4 m and drip-irrigated by four drippers with the available soil water content (AWC depleted by suspension of irrigation (40 days. Leaf water potential was measured on a pressure chamber (psiP and psiM and leaf gas exchange was measured by infrared gas analyzer (E, gs and A. Evapotranspiration was determined with the aid of weighing lysimeter. Water soil content and potential (psiS were monitored with TDR probes and tensiometers, respectively, installed at 0.3, 0.6 and 0.9 m depths. Meteorological variables were monitored with an automatic weather station in the experimental area. The threshold AWC level for the onset of ETc decline was 43%, and 60% for gs, A, E and Y P. Also, psiP was more sensitive to AWC than psiM, and is therefore a better tool for irrigation. When AWC was around 60%, values of psiP and psis were -0.62 MPa and -48.8 kPa, respectively.

  10. PnET Models: Carbon, Nitrogen, Water Dynamics in Forest Ecosystems (Vers. 4 and 5) (United States)

    National Aeronautics and Space Administration — PnET (Photosynthetic / EvapoTranspiration model) is a nested series of models of carbon, water, and nitrogen dynamics in forest ecosystems. The models can be used to...

  11. PnET Models: Carbon, Nitrogen, Water Dynamics in Forest Ecosystems (Vers. 4 and 5) (United States)

    National Aeronautics and Space Administration — ABSTRACT: PnET (Photosynthetic / EvapoTranspiration model) is a nested series of models of carbon, water, and nitrogen dynamics in forest ecosystems. The models can...

  12. Water use of grasslands, agroforestry systems and indigenous forests

    African Journals Online (AJOL)

    production (energy) and water use efficiency (biomass produced per unit of water transpired, termed productive green-water use). For example, measurements of evapotranspiration (ETa) from different vegetation types showed that annual water use is strongly related to the proportion of the year in which a dense canopy of ...

  13. The Amazon forest-rainfall feedback: the roles of transpiration and interception (United States)

    Dekker, Stefan; Staal, Arie; Tuinenburg, Obbe


    In the Amazon, deep-rooted trees increase local transpiration and high tree cover increase local interception evaporation. These increased local evapotranspiration fluxes to the atmosphere have both positive effects on forests down-wind, as they stimulate rainfall. Although important for the functioning of the Amazon, we have an inadequate assessment on the strength and the timing of these forest-rainfall feedbacks. In this study we (i) estimate local forest transpiration and local interception evaporation, (ii) simulate the trajectories of these moisture flows through the atmosphere and (iii) quantify their contributions to the forest-rainfall feedback for the whole Amazon basin. To determine the atmospheric moisture flows in tropical South America we use a Lagrangian moisture tracking algorithm on 0.25° (c. 25 km) resolution with eight atmospheric layers on a monthly basis for the period 2003-2015. With our approach we account for multiple re-evaporation cycles of this moisture. We also calculate for each month the potential effects of forest loss on evapotranspiration. Combined, these calculations allow us to simulate the effects of land-cover changes on rainfall in downwind areas and estimate the effect on the forest. We found large regional and temporal differences in the importance how forest contribute to rainfall. The transpiration-rainfall feedback is highly important during the dry season. Between September-November, when large parts of the Amazon are at the end of the dry season, more than 50% of the rainfall is caused by the forests upstream. This means that droughts in the Amazon are alleviated by the forest. Furthermore, we found that much moisture cycles several times during its trajectory over the Amazon. After one evapotranspiration-rainfall cycle, more than 40% of the moisture is re-evaporated again. The interception-evaporation feedback is less important during droughts. Finally from our analysis, we show that the forest-rainfall feedback is

  14. Cross-scale modelling of transpiration from stomata via the leaf boundary layer (United States)

    Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart


    Background and Aims Leaf transpiration is a key parameter for understanding land surface–climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2–5 %). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. Methods An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10−5–10−1 m), which implies explicitly modelling individual stomata. Key Results BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100 %). Nevertheless, these conventional BLCs (CR of 100 %), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. Conclusions The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be

  15. Ultraviolet radiation in the rhône river lenses of low salinity and in marine waters of the northwestern mediterranean sea: attenuation and effects on bacterial activities and net community production. (United States)

    Joux, Fabien; Jeffrey, Wade H; Abboudi, Maher; Neveux, Jacques; Pujo-Pay, Mireille; Oriol, Louise; Naudin, Jean-Jacques


    The high content in nutrients of freshwater outflows induces highly productive and buoyant plumes spreading over marine waters (MW). As a consequence, the growth of organisms developing in these low-salinity waters (LSW) might be potentially affected by UV-R (280-400 nm). This study investigated the penetration of UV-R and its impact on net community production (NCP) and bacterial protein (B(PROT)S) and DNA (B(DNA)S) synthesis in mesotrophic-LSW formed from the Rhône River and in oligotrophic MW of the Northwestern Mediterranean Sea (Gulf of Lions) in May 2006. High concentrations of chlorophyll a (up to 8 microg L(-1)) measured in the LSW (<37.8 psu, 0-10 m) were the main factor influencing the diffuse attenuation coefficients (K(d)) of both UV-R and photosynthetically active radiation (PAR). The mean ratio of the K(d) measured between the LSW and the MW increased with wavelength from 2.4 at 305 nm to 2.9 at 380 nm and 3.1 for PAR indicating more similarity in the UV region. NCP was severely inhibited by UV-R at the surface of the LSW, whereas no effect was measured in the surrounding MW. In contrast, B(PROT)S and B(DNA)S were affected deeper by UV-R in the MW (up to 8 m depth) compared to the LSW where inhibition was only observed at the surface. Differences in response of bacteria in LSW and MW are largely explained by differences in UV-R transparency; however, transplant experiments indicate that bacterial assemblages from the MW were also more sensitive to UV-R than those present in the LSW. We also observed that higher activity of bacteria after nutrient additions increased their sensitivity to UV-R during the day, but favored their recovery during the night incubation period for both LSW and MW. Results suggest that riverine and nutrient inputs may alter the effects of UV-R on microbial activity by attenuating the UV-R penetration and by modifying the physiology of bacteria.

  16. Northern Forest DroughtNet: Initial results from a multi-year throughfall manipulation experiment in New Hampshire (United States)

    McIntire, C.; Vadeboncoeur, M. A.; Coble, A.; Jennings, K.; Asbjornsen, H.


    Climate change is likely to affect the Northern Forest region through the increased frequency and severity of drought events. However, our understanding of how the Northern Forest, which is adapted to humid temperate conditions, will respond to moderate to extreme droughts is limited. Given the important role that these forests play in protecting ecosystem services and in supplying forest products, enhancing our knowledge about impacts of drought is critical to ensuring effective forest management and adaptation to climate change. The Northern Forest DroughtNet project aims to simulate a four-year severe drought by removing 55% of the incoming throughfall; thus representing the 99th percentile of annual precipitation based on historic precipitation data in Durham, NH. This is accomplished using two replicated 900 m2 throughfall removal structures consisting of a network of gutters that capture and divert incoming precipitation away from the established treatment area. Data presented here will address the ecosystem response to the drought treatment over the course of the first year of the experiment as well as validate the effectiveness and artifacts of the throughfall removal structure. Response variables of interest include soil moisture content, above and below ground biomass production, litterfall, decomposition rates, leaf water potential, foliar gas exchange, and whole tree transpiration rates. Preliminary findings provide insight into the effectiveness of using throughfall manipulation experiments in a temperate forest ecosystem to simulate an extreme drought event, as well as initial tree physiological and growth responses in relation to soil moisture availability and the implications for future climate change impacts.

  17. A vegetation sensitivity approximation for gross primary production in water limited conditions. (United States)

    Claesson, Jonas; Nycander, Jonas


    The most severe impact of climate change on vegetation growth and agriculture is likely to occur under water-limited conditions. Under such conditions the plants optimize the inward flux of CO2 and the outward flux of water vapor (the transpiration) by regulating the size of the stomata openings. Higher temperature increases water loss through transpiration, forcing the plants to diminish the stomata openings, which decreases photosynthesis. This is counteracted by higher CO2 concentration, which allows plants to maintain the inward flux of CO2 through the smaller openings. These two counteracting effects, combined with the change in precipitation, determine the net change of biological productivity in a changed climate. Here, a vegetation sensitivity approximation (VSA) is introduced, in order to understand and estimate the combined effect of changed temperature, CO2-concentration and precipitation on gross primary production (GPP) to first order. According to the VSA, we have: ( ) ?CO2atm ν GP P = ?0 P Here ?CO2atm is the atmospheric CO2 concentration, ?0 is the baseline for atmospheric CO2 concentration, P is precipitation and ν is defined by: -s- ν = 1 - 11°C where s is the climate sensitivity i.e. the increase in temperature when atmospheric CO2 is doubled. The VSA is based on the physical laws of gas flux through the stomata openings, and is only valid under water-limited conditions. It assumes that the temperature depends logarithmically on the CO2 concentration with a given climate sensitivity. Transpiration is assumed to be a constant fraction of precipitation, which is reasonable under water-limited conditions. The VSA is compared to simulations with the dynamic vegetation model LPJ. The agreement is reasonable, and the deviations can be understood by comparison with Köppen's definition of arid climate: in an arid climate growth increases more according to LPJ than according to the VSA, and in non-arid conditions the reverse is true. Both the VSA and

  18. HESS Opinions “A perspective on isotope versus non-isotope approaches to determine the contribution of transpiration to total evaporation”

    NARCIS (Netherlands)

    Sutanto, S.J.; Van den Hurk, B.; Dirmeyer, P.A.; Seneviratne, S.I.; Röckmann, T.; Trenberth, K.E.; Blyth, E.M.; Wenninger, J.; Hoffmann, G.


    Current techniques to disentangle the evaporative fluxes from the continental surface into a contribution evaporated from soils and canopy, or transpired by plants, are under debate. Many isotope-based studies show that transpiration contributes generally more than 70% to the total evaporation,

  19. High-level Petri Nets

    DEFF Research Database (Denmark)

    High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...... of low-level Petri nets - while, on the other hand, they still offer a wide range of analysis methods and tools. The step from low-level nets to high-level nets can be compared to the step from assembly languages to modern programming languages with an elaborated type concept. In low-level nets...... there is only one kind of token and this means that the state of a place is described by an integer (and in many cases even by a boolean). In high-level nets each token can carry a complex information/data - which, e.g., may describe the entire state of a process or a data base. Today most practical...

  20. Photochemical and antioxidant responses in the leaves of Xerophyta viscosa Baker and Digitaria sanguinalis L. under water deficit. (United States)

    Ekmekci, Yasemin; Bohms, Andreas; Thomson, Jennifer A; Mundree, Sagadevan G


    In this study, photochemical and antioxidant responses of the monocotyledonous resurrection plant Xerophyta viscosa Baker and the crab grass Digitaria sanguinalis L. under water deficit were investigated as a function of time. Water deficit was imposed by withholding irrigation for 21 d. Gas exchange and chlorophyll a fluorescence analyses indicated that the dehydration treatment caused photoinhibition in both species. The reduction in the photosynthesis rate in both species during water deficit probably contributed to the decline in the photochemical efficiency of PSII and electron transport rate. However, the stomatal conductance of both species did not change during treatment whereas the intercellular CO2 pressure increased after 10 d of water deficit treatment. These observations could be related to nonstomatal limitations. The increasing net transpiration rate of both species may have contributed to leaf cooling because of water limitations. Prolonged water deficit resulted in photosynthetic pigment chlorophyll (a + b) and carotenoids content loss in only D. sanguinalis. Both species especially D. sanguinalis had increased the level of anthocyanin after 15 d of treatment, possibly to prevent the damaging effect of photooxidation. The total SOD activity of D. sanguinalis was significantly different from X. viscosa during the treatment. The total peroxidase activity in D. sanguinalis was significantly higher than in X. viscosa. X. viscosa acclimated to water deficit with no ultimate apparent oxidative damage due to endogenous protective mechanisms of resurrection. In case of D. sanguinalis, water deficit induced considerable stress and possibly caused some oxidative damage, despite the upregulation of protection mechanisms.

  1. Etude des relations entre photosynthese respiration, transpiration et nutrition minerale chez le ble (United States)

    André, M.; Ducloux, H.; Richaud, C.; Massimino, D.; Daguenet, A.; Massimino, J.; Gerbaud, A.

    La croissance du Blé Triticum aestivum a été étudiée en environnement contrôlé et fermé pendant une période de 70 jours. Les échanges gazeux (Photosynthèse, Respiration) hydriques (Transpiration) et la consommation en éléments minéraux (Azote, Phosphore, Potassium) ont été mesurés en continu. On présentera les relations dynamiques observées entre les différentes fonctions physiologiques, d'une part sous l'influence de la croissance et d'autre part en réponse à des modifications de l'environnement. L'influence de la teneur en CO2 pendant la croissance (teneur normale ou doublée) sera mise en évidence.

  2. Pro asynchronous programming with .NET

    CERN Document Server

    Blewett, Richard; Ltd, Rock Solid Knowledge


    Pro Asynchronous Programming with .NET teaches the essential skill of asynchronous programming in .NET. It answers critical questions in .NET application development, such as: how do I keep my program responding at all times to keep my users happy how do I make the most of the available hardware how can I improve performanceIn the modern world, users expect more and more from their applications and devices, and multi-core hardware has the potential to provide it. But it takes carefully crafted code to turn that potential into responsive, scalable applications.With Pro Asynchronous Programming

  3. Conformal Nets II: Conformal Blocks (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André


    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  4. Microbial activity in district cooling nets; Mikrobiell Aktivitet i Fjaerrkylenaet

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus [Swedish Corrosion Inst., Stockholm (Sweden)


    Four district cooling nets with varying water quality have been investigated according to presence of microbially related problems. The aim has been to formulate recommendations regarding the water quality and regarding other procedures that might reduce the risk for biofilm formation and microbial corrosion. The method has consisted of using so called exposure containers, connected to each net. The water has been allowed to flow through the exposure containers where coupons of carbon steel have been exposed. The coupons have been withdrawn at different times, and analysed regarding the presence of biofilm and corrosion attack. Analyses have also been made regarding the amount of a number of different types of micro-organisms in the biofilm and in the district cooling water. The project has been divided in two phases. During the first phase of the project only two nets were investigated, one with municipal water and one with water of district heating quality, i.e. degassed and deionised. Biofilms could be seen on the coupons from both nets, even though the exposure time only had been 1.5 month. Considerable concentrations of micro-organisms were found in the biofilms and in the water for both nets, however much larger amounts for the net with municipal water. During the second phase of the project four nets were investigated, two with mainly municipal water and two with water of district heating quality. Here, on the other hand, it could be seen that the two nets with municipal water had micro-organisms of equivalent or lower concentrations compared to the two nets with water of district heating quality. One explanation to this is that the colouring substance pyranine is added to these two nets. Pyranine is added for the purpose of easily detecting a leakage but is at the same time a carbon compound, and as such a possible nutrient for the micro-organisms. This illustrates the importance of having the district cooling water as free from additives as possible. Other

  5. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L (United States)

    Anna M. Jensen; Magnus Lof; Emile S. Gardiner


    For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings....

  6. Comparative measurements of transpiration an canopy conductance in two mixed deciduous woodlands differing in structure and species composition

    DEFF Research Database (Denmark)

    Herbst, Mathias; Rosier, Paul T.W.; Morecroft, Michael D.


    a continuous hazel (Corylus avellana L.) understory. Wytham Woods, which had an LAI of 3.6, was dominated by ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.) and had only a sparse understory. Annual canopy transpiration was 367 mm for Grimsbury Wood and 397 mm for Wytham Woods. These values...

  7. Quantifying structural and physiological controls on variation in canopy transpiration among planted pine and hardwood species in the southern Appalachians (United States)

    Chelcy R. Ford; Robert M. Hubbard; James M. Vose


    Recent studies have shown that planted pine stands exhibit higher evapotranspiration (ET) and are more sensitive to climatic conditions compared with hardwood stands. Whether this is due to management and stand effects, biological effects or their interaction is poorly understood. We estimated growing season canopy- and sap flux-scaled leaf-level transpiration (Ec and...

  8. Waterscape determinants of net mercury methylation in a tropical wetland. (United States)

    Lázaro, Wilkinson L; Díez, Sergi; da Silva, Carolina J; Ignácio, Áurea R A; Guimarães, Jean R D


    The periphyton associated with freshwater macrophyte roots is the main site of Hg methylation in different wetland environments in the world. The aim of this study was to test the use of connectivity metrics of water bodies, in the context of patches, in a tropical waterscape wetland (Guapore River, Amazonia, Brazil) as a predictor of potential net methylmercury (MeHg) production by periphyton communities. We sampled 15 lakes with different patterns of lateral connectivity with the main river channel, performing net mercury methylation potential tests in incubations with local water and Eichhornia crassipes root-periphyton samples, using (203)HgCl2 as a tracer. Physico-chemical variables, landscape data (morphological characteristics, land use, and lateral connection type of water bodies) using GIS resources and field data were analyzed with Generalized Additive Models (GAM). The net Me(203)Hg production (as % of total added (203)Hg) was expressive (6.2-25.6%) showing that periphyton is an important matrix in MeHg production. The model that best explained the variation in the net Me(203)Hg production (76%) was built by the variables: connection type, total phosphorus and dissolved organic carbon (DOC) in water (AICc=48.324, p=0.001). Connection type factor was the best factor to model fit (r(2)=0.32; p=0.008) and temporarily connected lakes had higher rates of net mercury methylation. Both DOC and total phosphorus showed positive significant covariation with the net methylation rates (r(2)=0.26; p=0.008 and r(2)=0.21; p=0.012 respectively). Our study suggests a strong relationship between rates of net MeHg production in this tropical area and the type of water body and its hydrological connectivity within the waterscape. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Latent/sensible heat and water stress retrieval performances of the SPARSE dual-source energy balance model over irrigated and rainfed agricultural crops using eddy covariance, sap flow and extra-large aperture scintillometer data (United States)

    Boulet, G.; Bahir, M.; Delogu, E.; Mougenot, B.; Bousbih, S.; Raimbault, B.; Fanise, P.; Saadi, S.; Chebbi, W.; Lili-Chabaane, Z.; Rivalland, V.; Lagouarde, J. P.; Olioso, A.


    Evapotranspiration is an important component of the water cycle, especially in semi-arid lands. Its quantification is crucial for a sustainable management of scarce water resources. Evapotranspiration at large scales is often estimated through integrated water balance models forced by distributed meteorological forcing. This forcing includes irrigation inputs from surface and groundwater uptakes. Those amounts are largely unknown at most scales, including the regional scale, i.e. the working scale of institutional stakeholders. An alternative way to quantify evapotranspiration is to exploit the available surface temperature data from remote sensing as a signature of the surface energy balance. This work evaluates the SPARSE model ( forced by in-situ or MODIS surface temperatures. SPARSE is built on the same rationale as the widely used TSEB model. Its new features involve state-of-the art resistance formulations as well as the possibility to run the model in two modes: a retrieval mode to simulate evaporation and transpiration from TIR data, and a prescribed mode which simulates potential evaporation and transpiration rates. This enables to simulate not only actual fluxes but also surface and plant water stress. It ensures also an increased robustness through bounding the actual fluxes by the corresponding potential rates. A wide range of flux datasets acquired over rainfed and irrigated crops in temperate, Mediterranean and semi-arid regions are used to check the robustness of both stress levels and evapotranspiration retrievals. Two flux datasets are relevant for assessing the performance of the MODIS scale retrievals. One is an extensive rainfed oliveyard with very low (7%) vegetation cover. For this site, evapotranspiration from eddy covariance (EC) as well as transpiration from sapflow measurements are available to check the accuracy of evaporation and transpiration components computed by SPARSE. A second

  10. Petri Net Tool Overview 1986

    DEFF Research Database (Denmark)

    Jensen, Kurt; Feldbrugge, Frits


    This paper provides an overview of the characteristics of all currently available net based tools. It is a compilation of information provided by tool authors or contact persons. A concise one page overview is provided as well....

  11. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José


    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid....... This paper presents and categorizes quantitative indicators suitable to describe both aspects of the building’s performance. These indicators, named LMGI - Load Matching and Grid Interaction indicators, are easily quantifiable and could complement the output variables of existing building simulation tools...

  12. PolicyNet Publication System (United States)

    Social Security Administration — The PolicyNet Publication System project will merge the Oracle-based Policy Repository (POMS) and the SQL-Server CAMP system (MSOM) into a new system with an Oracle...

  13. Net Neutrality: Background and Issues

    National Research Council Canada - National Science Library

    Gilroy, Angele A


    .... The move to place restrictions on the owners of the networks that compose and provide access to the Internet, to ensure equal access and nondiscriminatory treatment, is referred to as "net neutrality...

  14. Petri Nets in Cryptographic Protocols

    DEFF Research Database (Denmark)

    Crazzolara, Federico; Winskel, Glynn


    A process language for security protocols is presented together with a semantics in terms of sets of events. The denotation of process is a set of events, and as each event specifies a set of pre and postconditions, this denotation can be viewed as a Petri net. By means of an example we illustrate...... how the Petri-net semantics can be used to prove security properties....

  15. The Economics of Net Neutrality


    Hahn, Robert W.; Wallsten, Scott


    This essay examines the economics of "net neutrality" and broadband Internet access. We argue that mandating net neutrality would be likely to reduce economic welfare. Instead, the government should focus on creating competition in the broadband market by liberalizing more spectrum and reducing entry barriers created by certain local regulations. In cases where a broadband provider can exercise market power the government should use its antitrust enforcement authority to police anticompetitiv...

  16. Effects of temperature and light intensity on growth and physiology in purple root water hyacinth and common water hyacinth (Eichhornia crassipes). (United States)

    Shu, Xiao; Zhang, QuanFa; Wang, WeiBo


    In this study, the interaction between temperature and light intensity was investigated in common water hyacinth (CWH) and purple root water hyacinth (PRWH). Effects of different temperatures (11/5, 18/11, 25/18, and 32/25 °C day/night) simultaneously applied at various light intensities (100, 300, and 600 μmol m(-2) s(-1)) to the plants were detected by measuring changes in the root lengths, protein content, sugar content, malondialdehyde (MDA) content, photosynthesis, and dissolved oxygen (DO). Temperature and light intensity significantly influence the growth of water hyacinths, and there was significant interaction among these environmental factors. The results suggest that several environmental factors act synergistically on the growth and physiology of water hyacinths. The higher new root length (NRL) in PRWH indicated that its root growth capacity is higher than in CWH. The soluble sugar content in leaves of CWH was higher than PRWH, indicating that relatively higher sugar content in CWH to low-temperature stress may support its tolerant nature. Lower temperature and light intensity can stimulate the accumulation of MDA content. The net photosynthetic rate (Pn) in leaves of CWH was higher than PRWH. In low temperature, increase light intensity can stimulate the Pn of PRWH and CWH. In CWH and PRWH, Pn showed a similar trend as noted for stomatal conductance (Cond) and transpiration rate (Tr). The capacity of PRWH in adding oxygen to the water column is better than those of CWH.

  17. Changes in the chloroplast proteome following water deficit and subsequent watering in a high- and a low-drought-tolerant genotype of Festuca arundinacea. (United States)

    Kosmala, Arkadiusz; Perlikowski, Dawid; Pawłowicz, Izabela; Rapacz, Marcin


    Festuca arundinacea is one of the most drought-tolerant species within the Lolium-Festuca complex and was used as a model for research aimed at identifying the chloroplast components involved in the proteomic response for drought stress in forage grasses. Individual F. arundinacea genotypes with contrasting levels of drought tolerance, the high-drought-tolerant (HDT) and the low-drought-tolerant (LDT) genotypes, were selected for comparative physiological and proteomic work. Measurements of water uptake, chlorophyll fluorescence, relative water content, electrolyte leakage, and gas exchange during drought and rewatering periods were followed by investigations on accumulation levels of chloroplast proteins before drought conditions, on d 3 and 11 of drought treatment, and after 10 d of subsequent watering, using two-dimensional gel electrophoresis. The proteins that were accumulated differentially between the selected plants were then identified by mass spectrometry. The LDT genotype revealed lower levels of water uptake and relative water content as drought progressed, and this was accompanied by lower levels of transpiration and net photosynthesis, and a higher level of electrolyte leakage observed in this genotype. Eighty-two protein accumulation profiles were compared between the HDT and LDT genotypes and ten proteins were shown to be differentially accumulated between them. The functions of the selected proteins in plant cells and their probable influence on the process of recovery after drought treatment in F. arundinacea are discussed.

  18. Measuring Soil Water Potential for Water Management in Agriculture: A Review


    Marco Bittelli


    Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for ...

  19. Water (United States)

    ... Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  20. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. (United States)

    Zandalinas, Sara I; Rivero, Rosa M; Martínez, Vicente; Gómez-Cadenas, Aurelio; Arbona, Vicent


    In natural environments, several adverse environmental conditions occur simultaneously constituting a unique stress factor. In this work, physiological parameters and the hormonal regulation of Carrizo citrange and Cleopatra mandarin, two citrus genotypes, in response to the combined action of high temperatures and water deprivation were studied. The objective was to characterize particular responses to the stress combination. Experiments indicated that Carrizo citrange is more tolerant to the stress combination than Cleopatra mandarin. Furthermore, an experimental design spanning 24 h stress duration, heat stress applied alone induced higher stomatal conductance and transpiration in both genotypes whereas combined water deprivation partially counteracted this response. Comparing both genotypes, Carrizo citrange showed higher phostosystem-II efficiency and lower oxidative damage than Cleopatra mandarin. Hormonal profiling in leaves revealed that salicylic acid (SA) accumulated in response to individual stresses but to a higher extent in samples subjected to the combination of heat and drought (showing an additive response). SA accumulation correlated with the up-regulation of pathogenesis-related gene 2 (CsPR2), as a downstream response. On the contrary, abscisic acid (ABA) accumulation was higher in water-stressed plants followed by that observed in plants under stress combination. ABA signaling in these plants was confirmed by the expression of responsive to ABA-related gene 18 (CsRAB18). Modulation of ABA levels was likely carried out by the induction of 9-neoxanthin cis-epoxicarotenoid dioxygenase (CsNCED) and ABA 8'-hydroxylase (CsCYP707A) while conversion to ABA-glycosyl ester (ABAGE) was a less prominent process despite the strong induction of ABA O-glycosyl transferase (CsAOG). Cleopatra mandarin is more susceptible to the combination of high temperatures and water deprivation than Carrizo citrange. This is likely a result of a higher transpiration rate in

  1. 26 CFR 1.904(f)-3 - Allocation of net operating losses and net capital losses. (United States)


    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Allocation of net operating losses and net....904(f)-3 Allocation of net operating losses and net capital losses. For rules relating to the allocation of net operating losses and net capital losses, see § 1.904(g)-3T. ...

  2. 29 CFR 4204.13 - Net income and net tangible assets tests. (United States)


    ... 29 Labor 9 2010-07-01 2010-07-01 false Net income and net tangible assets tests. 4204.13 Section....13 Net income and net tangible assets tests. (a) General. The criteria under this section are that either— (1) Net income test. The purchaser's average net income after taxes for its three most recent...

  3. The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in dessication damage at the alpine treeline. (United States)

    Baig, M N; Tranquillini, W


    The importance of high winter winds and plant temperatures as causes of winter desiccation damage at the alpine treeline were studied in the Austrian Alps. Samples of 1- and 2-year twigs of Picea abies and Pinus cembra were collected from the valley bottom (1,000 m a.s.l.), forestline (1,940 m a.s.l.), kampfzone (2.090 m a.s.l.), wind-protected treeline (2,140 m a.s.l.), and wind-exposed treeline (2,140 m a.s.l.). Cuticular transpiration was measured at three different levels of wind speed (4, 10, and 15 ms-1) and temperature (15°, 20°, and 25° C). At elevated wind speeds slight increases in water loss were observed, whereas at higher temperatures much greater increases occurred. Studies on winter water relations show a significant decline in the actual moisture content and osmotic potentials of twigs, especially in the kampfzone and at treeline. The roles of high winds and temperatures in depleting the winter water economy and causing desiccation damage in the alpine treeline environment are discussed.

  4. Silicon Application Increases Drought Tolerance of Kentucky Bluegrass by Improving Plant Water Relations and Morphophysiological Functions (United States)

    Saud, Shah; Chen, Yang; Zhang, Lu; Sadiq, Arooj; Chen, Yajun


    Drought stress encumbers the growth of turfgrass principally by disrupting the plant-water relations and physiological functions. The present study was carried out to appraise the role of silicon (Si) in improving the drought tolerance in Kentucky bluegrass (Poa pratensis L.). Drought stress and four levels (0, 200, 400, and 800 mg L−1) of Si (Na2SiO3·9H2O) were imposed after 2 months old plants cultured under glasshouse conditions. Drought stress was found to decrease the photosynthesis, transpiration rate, stomatal conductance, leaf water content, relative growth rate, water use efficiency, and turf quality, but to increase in the root/shoot and leaf carbon/nitrogen ratio. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Kentucky bluegrass were significantly alleviated by the addition of Si after drought stress. For example, Si application at 400 mg L−1 significantly increased the net photosynthesis by 44%, leaf water contents by 33%, leaf green color by 42%, and turf quality by 44% after 20 days of drought stress. Si application proved beneficial in improving the performance of Kentucky bluegrass in the present study suggesting that manipulation of endogenous Si through genetic or biotechnological means may result in the development of drought resistance in grasses. PMID:25054178

  5. Peach water relations, gas exchange, growth and shoot mortality under water deficit in semi-arid weather conditions. (United States)

    Rahmati, Mitra; Davarynejad, Gholam Hossein; Génard, Michel; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles


    In this study the sensitivity of peach tree (Prunus persica L.) to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration) as well as carbon (C) storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The C source was estimated through the leaf area dynamics and leaf photosynthesis rate along the season. The C sink was estimated for maintenance respiration and growth of shoots and fruits. Water stress significantly reduced gas exchange, and fruit, and shoot growth, but increased fruit dry matter concentration. Growth was more affected by water deficit than photosynthesis, and shoot growth was more sensitive to water deficit than fruit growth. Reduction of shoot growth was associated with a decrease of shoot elongation, emergence, and high shoot mortality. Water scarcity affected tree C assimilation due to two interacting factors: (i) reduction in leaf photosynthesis (-23% and -50% under moderate (MS) and severe (SS) water stress compared to low (LS) stress during growth season) and (ii) reduction in total leaf area (-57% and -79% under MS and SS compared to LS at harvest). Our field data analysis suggested a Ψstem threshold of -1.5 MPa below which daily net C gain became negative, i.e. C assimilation became lower than C needed for respiration and growth. Negative C balance under MS and SS associated with decline of trunk carbohydrate reserves--may have led to drought-induced vegetative mortality.

  6. TimeNET Optimization Environment

    Directory of Open Access Journals (Sweden)

    Christoph Bodenstein


    Full Text Available In this paper a novel tool for simulation-based optimization and design-space exploration of Stochastic Colored Petri nets (SCPN is introduced. The working title of this tool is TimeNET Optimization Environment (TOE. Targeted users of this tool are people modeling complex systems with SCPNs in TimeNET who want to find parameter sets that are optimal for a certain performance measure (fitness function. It allows users to create and simulate sets of SCPNs and to run different optimization algorithms based on parameter variation. The development of this tool was motivated by the need to automate and speed up tests of heuristic optimization algorithms to be applied for SCPN optimization. A result caching mechanism is used to avoid recalculations.

  7. Photosynthetic characteristics of pineapple: Effects of CO{sub 2} enrichment, temperature variation and soil water deficit

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Goldstein, G.H.; Bartholomew, D.P. [Univ. of Hawaii, Honolulu, HI (United States)


    A six-month study of leaf gas exchange (GE; CO{sub 2} fixation, transpiration, conductance) and biomass of pineapple (Ananas Comosus (L.) Merr.), a plant with Crassulacean Acid Metabolism, was made using plants grown at 350 and 700 {mu}L L{sup -1} CO{sub 2} and day/night temperatures of 35/25, 30/25 and 30/20{degrees}C. After six months, a soil water deficit was imposed for two months. GE was monitored diurnally and leaf titratable acidity (TA), chlorophyll content, carbon isotope composition, chlorophyll fluorescence, and plant biomass were measured bimonthly. GE, TA, relative water content, and leaf osmotic and water potentials were measured every ten days during water stress. Daily carbon assimilation, water use efficiency, plant relative growth rate and net assimilation rate were significantly higher at 700 than at 350 {mu}L L{sup -1} CO{sub 2}. Total GE was greater during the day at 700 than at 350 {mu}L L{sup -1} CO{sub 2}. CO{sub 2} dark fixation was greater for plants in environments with a 10 {degrees}C diurnal temperature change (35/25 and 30/20{degrees}C). After imposing water stress, GE and TA declined substantially, and daytime GE decreased more than nocturnal values.

  8. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. (United States)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto; Rosenqvist, Eva


    The chlorophyll fluorescence parameter Fv /Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three-tiered approach of phenotyping by Fv /Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv /Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North-Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv /Fm . The high Fv /Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN ) than the low group, accompanied by higher stomatal conductance (gs ), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv /Fm and intracellular CO2 (Ci ) was non-significant under the given heat stress. This study validated that our three-tiered approach of phenotyping by Fv /Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis. © 2014 Scandinavian Plant Physiology Society.

  9. Implementing NetScaler VPX

    CERN Document Server

    Sandbu, Marius


    An easy-to-follow guide with detailed step-by step-instructions on how to implement the different key components in NetScaler, with real-world examples and sample scenarios.If you are a Citrix or network administrator who needs to implement NetScaler in your virtual environment to gain an insight on its functionality, this book is ideal for you. A basic understanding of networking and familiarity with some of the different Citrix products such as XenApp or XenDesktop is a prerequisite.

  10. Net4Care PHMR Library

    DEFF Research Database (Denmark)


    The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the SimpleClinicalDocument......The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the Simple...

  11. Pro DLR in NET 4

    CERN Document Server

    Wu, Chaur


    Microsoft's Dynamic Language Runtime (DLR) is a platform for running dynamic languages such as Ruby and Python on an equal footing with compiled languages such as C#. Furthermore, the runtime is the foundation for many useful software design and architecture techniques you can apply as you develop your .NET applications. Pro DLR in .NET 4 introduces you to the DLR, showing how you can use it to write software that combines dynamic and static languages, letting you choose the right tool for the job. You will learn the core DLR components such as LINQ expressions, call sites, binders, and dynami

  12. Hierarchies in Coloured Petri Nets

    DEFF Research Database (Denmark)

    Huber, Peter; Jensen, Kurt; Shapiro, Robert M.


    The paper shows how to extend Coloured Petri Nets with a hierarchy concept. The paper proposes five different hierarchy constructs, which allow the analyst to structure large CP-nets as a set of interrelated subnets (called pages). The paper discusses the properties of the proposed hierarchy...... constructs, and it illustrates them by means of two examples. The hierarchy constructs can be used for theoretical considerations, but their main use is to describe and analyse large real-world systems. All of the hierarchy constructs are supported by the editing and analysis facilities in the CPN Palette...

  13. Stand-level variation in evapotranspiration in non-water-limited eucalypt forests (United States)

    Benyon, Richard G.; Nolan, Rachael H.; Hawthorn, Sandra N. D.; Lane, Patrick N. J.


    To better understand water and energy cycles in forests over years to decades, measurements of spatial and long-term temporal variability in evapotranspiration (Ea) are needed. In mountainous terrain, plot-level measurements are important to achieving this. Forest inventory data including tree density and size measurements, often collected repeatedly over decades, sample the variability occurring within the geographic and topographic range of specific forest types. Using simple allometric relationships, tree stocking and size data can be used to estimate variables including sapwood area index (SAI), which may be strongly correlated with annual Ea. This study analysed plot-level variability in SAI and its relationship with overstorey and understorey transpiration, interception and evaporation over a 670 m elevation gradient, in non-water-limited, even-aged stands of Eucalyptus regnans F. Muell. to determine how well spatial variation in annual Ea from forests can be mapped using SAI. Over the 3 year study, mean sap velocity in five E. regnans stands was uncorrelated with overstorey sapwood area index (SAI) or elevation: annual transpiration was predicted well by SAI (R2 0.98). Overstorey and total annual interception were positively correlated with SAI (R2 0.90 and 0.75). Ea from the understorey was strongly correlated with vapour pressure deficit (VPD) and net radiation (Rn) measured just above the understorey, but relationships between understorey Ea and VPD and Rn differed between understorey types and understorey annual Ea was not correlated with SAI. Annual total Ea was also strongly correlated with SAI: the relationship being similar to two previous studies in the same region, despite differences in stand age and species. Thus, spatial variation in annual Ea can be reliably mapped using measurements of SAI.

  14. Interactive Effects of CO2 Concentration and Water Regime on Stable Isotope Signatures, Nitrogen Assimilation and Growth in Sweet Pepper (United States)

    Serret, María D.; Yousfi, Salima; Vicente, Rubén; Piñero, María C.; Otálora-Alcón, Ginés; del Amor, Francisco M.; Araus, José L.


    Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO2] (400 and 800 μmol mol−1), three water regimes (control and mild and moderate water stress) and four genotypes were assayed. For each combination of genotype, [CO2] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO2], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO2], while the lower N concentration caused by rising [CO2] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ13C, δ18O, and δ15N) in plant matter are affected not only by water regime but also by rising [CO2]. Thus, δ18O increased probably as response to decreases in transpiration, while the increase in δ15N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ13C explains differences in plant growth across water regimes within a given [CO2], seems to be mediated through its direct relationship with N

  15. Interactive Effects of CO2 Concentration and Water Regime on Stable Isotope Signatures, Nitrogen Assimilation and Growth in Sweet Pepper

    Directory of Open Access Journals (Sweden)

    María D. Serret


    Full Text Available Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO2] (400 and 800 μmol mol−1, three water regimes (control and mild and moderate water stress and four genotypes were assayed. For each combination of genotype, [CO2] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO2], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO2], while the lower N concentration caused by rising [CO2] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ13C, δ18O, and δ15N in plant matter are affected not only by water regime but also by rising [CO2]. Thus, δ18O increased probably as response to decreases in transpiration, while the increase in δ15N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ13C explains differences in plant growth across water regimes within a given [CO2], seems to be mediated through its direct

  16. Chemiluminescent imaging of transpired ethanol from the palm for evaluation of alcohol metabolism. (United States)

    Arakawa, Takahiro; Kita, Kazutaka; Wang, Xin; Miyajima, Kumiko; Toma, Koji; Mitsubayashi, Kohji


    A 2-dimensional imaging system was constructed and applied in measurements of gaseous ethanol emissions from the human palm. This imaging system measures gaseous ethanol concentrations as intensities of chemiluminescence by luminol reaction induced by alcohol oxidase and luminol-hydrogen peroxide-horseradish peroxidase system. Conversions of ethanol distributions and concentrations to 2-dimensional chemiluminescence were conducted on an enzyme-immobilized mesh substrate in a dark box, which contained a luminol solution. In order to visualize ethanol emissions from human palm skin, we developed highly sensitive and selective imaging system for transpired gaseous ethanol at sub ppm-levels. Thus, a mixture of a high-purity luminol solution of luminol sodium salt HG solution instead of standard luminol solution and an enhancer of eosin Y solution was adapted to refine the chemiluminescent intensity of the imaging system, and improved the detection limit to 3 ppm gaseous ethanol. The highly sensitive imaging allows us to successfully visualize the emissions dynamics of transdermal gaseous ethanol. The intensity of each site on the palm shows the reflection of ethanol concentrations distributions corresponding to the amount of alcohol metabolized upon consumption. This imaging system is significant and useful for the assessment of ethanol measurement of the palmar skin. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Evaluation of a low cost wireless heat ratio method system for measuring transpiration (United States)

    Eiriksson, D.; Boyer, B.; Aishlin, P. S.; Bowling, D. R.


    For decades, environmental measurements in remote locations have consisted of sensors hard wired to loggers that send data to central servers via radio, satellite, or cellular telemetry. This model of data collection is effective when all sensors are located in close proximity to the central data logger, such as on a weather station. Frequently, however, in order to adequately capture the spatial heterogeneity associated with environmental processes (e.g., transpiration, soil moisture, or snow depth), it is necessary to install many sensors 10's to 100's of meters from a central data logging station. This presents a practical and financial obstacle when considering the cost of cabling and conduit, in addition to the potential data collection and data quality problems associated with long cable runs. We offer a solution to this persistent challenge with a hybrid datalogging system that combines the power and reliability of Campbell Scientific logging and telemetry equipment with low cost Xbee radios and Arduino based data logging platforms. To evaluate the promise of this hybrid datalogging concept we developed a new generation of low cost, homemade heat ratio sapflux sensors and tested them at a forested site in the Wasatch Mountains, near Salt Lake City, Utah. We present data from this test site, heat ratio method sensor construction details, and example code that merges the capabilities of Arduino and Campbell Scientific datalogging systems.

  18. Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles (United States)

    Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.


    Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.

  19. The absorption and transpiration of plants lead to a typical chaotic eco-hydrological process (United States)

    Lin, M.; Tian, F.; Hu, H.; Liu, D.; Tang, Y.


    In the past several decades, abundant complex dynamic characters shown in hydrological system are revealed, such as multiple stationary states, bifurcation and chaos. However, the mechanism of the dynamic character is usually unclear, for the main research method is based on nonlinear data analysis. In order to demonstrate the influence of plants on the dynamic behavior, a conceptual model with idealized and tractable mathematical form is established in this paper. A simple scheme of automatic irrigation is introduced to replace the stochastic rainfall mechanism. The simplification also can be generalized to real rainfall process, for rainfall time series can be considered as special kind of stochastic irrigation with given complicated rules. By nonlinear analysis and numerical simulation, a bundle of dynamic behaviors such as multiple stationary sates, bifurcation, jump and chaos are found in this deterministic eco-hydrological model. Notice that these complex dynamic behaviors are derived from a deterministic model without any stochastic processes. Further more, comparing with the bare soil model, one can see that the absorption and transpiration of plants play an important part in the eco-hydrological dynamic process. Briefly speaking, under some parameters, they lead a trivial dynamic behavior into a chaotic one.

  20. Impact of water use efficiency on eddy covariance flux partitioning using correlation structure analysis (United States)

    Anderson, Ray; Skaggs, Todd; Alfieri, Joseph; Kustas, William; Wang, Dong; Ayars, James


    Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes, Eddy Covariance (EC), can directly measure net, combined water and carbon fluxes (evapotranspiration and net ecosystem exchange/productivity). Analysis of the correlation structure of high frequency EC time series (hereafter flux partitioning or FP) has been proposed to directly partition net EC fluxes into their constituent components using leaf-level water use efficiency (WUE) data to separate stomatal and non-stomatal transport processes. FP has significant logistical and spatial representativeness advantages over other partitioning approaches (e.g. isotopic fluxes, sap flow, microlysimeters), but the performance of the FP algorithm is reliant on the accuracy of the intercellular CO2 (ci) concentration used to parameterize WUE for each flux averaging interval. In this study, we tested several parameterizations for ci as a function of atmospheric CO2 (ca), including (1) a constant ci/ca ratio for C3 and C4 photosynthetic pathway plants, (2) species-specific ci/ca-Vapor Pressure Deficit (VPD) relationships (quadratic and linear), and (3) generalized C3 and C4 photosynthetic pathway ci/ca-VPD relationships. We tested these ci parameterizations at three agricultural EC towers from 2011-present in C4 and C3 crops (sugarcane - Saccharum officinarum L. and peach - Prunus persica), and validated again sap-flow sensors installed at the peach site. The peach results show that the species-specific parameterizations driven FP algorithm came to convergence significantly more frequently (~20% more frequently) than the constant ci/ca ratio or generic C3-VPD relationship. The FP algorithm parameterizations with a generic VPD relationship also had slightly higher transpiration (5 Wm-2

  1. D.NET case study

    International Development Research Centre (IDRC) Digital Library (Canada)


    developing products, marketing tools and building capacity of the grass root telecentre workers. D.Net recognized that it had several ideas worth developing into small interventions that would make big differences, but resource constraints were a barrier for scaling-up these initiatives. More demands, limited resources.

  2. Surgery for GEP-NETs

    DEFF Research Database (Denmark)

    Knigge, Ulrich; Hansen, Carsten Palnæs


    Surgery is the only treatment that may cure the patient with gastroentero-pancreatic (GEP) neuroendocrine tumours (NET) and neuroendocrine carcinomas (NEC) and should always be considered as first line treatment if R0/R1 resection can be achieved. The surgical and interventional procedures for GEP...

  3. Net Neutrality in the Netherlands

    NARCIS (Netherlands)

    van Eijk, N.


    The Netherlands is among the first countries that have put specific net neutrality standards in place. The decision to implement specific regulation was influenced by at least three factors. The first was the prevailing social and academic debate, partly due to developments in the United States. The

  4. Complexity Metrics for Workflow Nets

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; van der Aalst, Wil M.P.


    Process modeling languages such as EPCs, BPMN, flow charts, UML activity diagrams, Petri nets, etc.\\ are used to model business processes and to configure process-aware information systems. It is known that users have problems understanding these diagrams. In fact, even process engineers and system...

  5. Photosynthesis and Transpiration Rates of Rice Cultivated Under the System of Rice Intensification and the Effects on Growth and Yield

    Directory of Open Access Journals (Sweden)

    Nurul Hidayati


    Full Text Available The system of rice intensification (SRI crop management method has been reported by many authors to significantly increase rice yield with lower inputs, but physiological bases of yielding improvement has not been studied. In this research we assessed some physiological parameters and the mechanism of rice yield improvement of rice plants under SRI cultivation method during both vegetative and generative phases compared to conventional rice cultivation methods. We measured photosynthetic rate, transpiration rate, leaf temperature, chlorophyll content, N and P uptake, plant growth parameters and yield for those comparison. SRI methods significantly increased both vegetative and reproductive (generative parameters of rice plants compared to conventional cultivation methods. Photosynthetic rate, chlorophyll content, N and P uptake under SRI cultivation were significantly higher compared to those of the conventional rice cultivation, but no differences were found in transpiration rate and leaf temperature. With SRI method, plants in their generative phase (especially in the grain-filling phase had the highest photosynthetic and the lowest transpiration rates. Grain yield under SRI method was significantly higher (ca. 24% than that of conventional method.

  6. Performance comparison between transpiration air cooled turbine 3000 F (1649 C) stator vanes and solid uncooled vanes (United States)

    Manning, G. B.; Moskowitz, S.; Cole, R.


    Testing was conducted to compare the aerodynamic performance of a turbine vane using transpiration air-cooling capable of operation at 3000 F (1649 C) gas temperature with a vane of identical profile with no cooling provisions to determine the effect of cooling on vane kinetic energy efficiency and loss coefficient. The test configuration was a 10-vane section of full scale first stagae turbien stator annulus designed for 1.6 pressure ratio, cooling air flow equal to 6.1 percent of primary flow, 3000 F (1649 C) turbine inlet temperature and primary-to-coolant temperature ratio of 2.7. To enable comparison with other investigations, tests were conducted at three pressure ratios from 1.4 to 1.6, three coolant flows from 75 to 120 percent of design, and three primary-to-coolant temperature ratios from 2.70 to 1.15. Efficiency, loss coefficent and flow capacity test results were in good agreement with predicted values for both the transpiration air cooled and uncooled vanes. The testing demonstrated that it is necessary to conduct test evaluations of transpiration air-cooled components at or near design coolant-to-gas stream temperature ratio in order to achieve correct results.

  7. Elevated atmospheric CO2 increases water use efficiency in Florida scrub oak (United States)

    Drake, B. G.; Hayek, L. C.; Johnson, D. P.; Li, J.; Powell, T. L.


    Plants are expected to have higher rates of photosynthesis and reduced transpiration as atmospheric CO2 (Ca) continues to rise. But will higher Ca reduce water loss, and increase water use efficiency and soil water in native ecosystems? We tested this question using large (3.0m by 2.8m) open top chambers to expose Florida scrub oak on Merritt Island Wildlife Refuge, Kennedy Space Center, FL, from May 1996 to June 2007 to elevated levels of atmospheric CO2, (Ce = Ca + 350ppm) compared to ambient Ca. Although Ce stimulated total shoot biomass 68% by the end of the study, the effect of Ce on annual growth declined each year (Seiler et al. 2009, Global Change Biology15, 356-367). Compared with the effects of Ca, Ce increased net ecosystem CO2 exchange approximately 70% on average for the entire study, increased leaf area index (LAI) seasonally, reduced evapotranspiration except during mid-summer of some years, and, depending on the relative effect of Ce on LAI, increased volumetric soil water content.. These results are consistent with the observation that continental river discharge has increased as Ca has risen throughout the past 50 years (Gedney et al., Nature, Vol. 439, 16 February 2006).

  8. A comparison of productive and non-productive green water-use efficiency of Podocarpus henkelii and Pinus patula in the KwaZulu-Natal Midlands

    CSIR Research Space (South Africa)

    Bulcock, HH


    Full Text Available from the original grasslands or fynbos that were replaced by afforestation. Green water can be categorised into productive (transpiration) and non-productive (canopy and litter interception and soil evaporation) fluxes. There is a widespread perception...

  9. Impact of plant water uptake strategy on soil moisture and evaporation dynamics during drydown

    NARCIS (Netherlands)

    Teuling, A.J.; Uijlenhoet, R.; Hupet, F.; Troch, P.A.A.


    Experiments have shown that plants can compensate for water stress in the upper, more densely rooted, soil layers by increasing the water uptake from deeper layers. By adapting root water uptake to water availability, plants are able to extend the period of unstressed transpiration. This strategy

  10. within plant resistance to water flow in tomato and sweet melons ...

    African Journals Online (AJOL)


    In the evaporative flux method, measure- ments of transpiration flux and leaf water potential were used to calculate the total resistance to water flow using .... Plant resistance is modulated by changes in the status of water conducting system, ... The understanding of plant water relations in crop species have implications for ...

  11. Caught in the Net: Perineuronal Nets and Addiction

    Directory of Open Access Journals (Sweden)

    Megan Slaker


    Full Text Available Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM. Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs. This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.

  12. Army Net Zero Prove Out. Net Zero Waste Best Practices (United States)


    Anaerobic Digesters – Although anaerobic digestion is not a new technology and has been used on a large-scale basis in wastewater treatment , and has been used on a large-scale basis in wastewater treatment , the use of the technology should be demonstrated with other...approaches can be used for cardboard and cellulose -based packaging materials. This approach is in line with the Net Zero Waste hierarchy in terms of

  13. Net transport of suspended matter due to tidal straining (United States)

    Jones, S. E.; Jago, C. F.; Simpson, J. H.; Rippeth, T. P.


    Net transport of suspended particulate matter (SPM) is well-known in tidal regions where there is time-velocity asymmetry due to frictional modification of the tide in shallow water. We present here observations which show a new mechanism for net flux of SPM in response to tidal straining in a region of freshwater influence (ROFI). In situ measurements of the particle size of suspended particulate matter (SPM) and turbulent energy dissipation have been made at a site in Liverpool Bay (Irish Sea) where there is significant resuspension of particles from the muddy sand substrate during spring tides. This is a ROFI where tidal straining dominates the temporal development of turbulence. On a spring tide the water column tries to stratify on the ebb and destratify on the flood, but these tendencies are masked by mixing due to tidal stirring. Nevertheless, there is a marked excess of TKE dissipation rate E on the flood, especially in the upper part of the water column. Resuspension occurs on both flood and ebb, but SPM flux is strongly asymmetric with a net shorewards component. Asymmetry is most pronounced for the larger particles which comprise most of the mass. Enhanced ? on the flood mixes large particles upwards into faster flowing water, which increases the flux. Comparable upwards mixing of large particles does not occur on the ebb where enhanced E is confined to slower bottom waters. The net flux is not seen on neap tides because, although there is more stratification due to tidal straining, there is essentially no resuspension. The net flux on springs is undoubtedly an important component of SPM transport (and any comparable particulates) in coastal regions.

  14. Sensitivity of forces to wall transpiration in flow past an aerofoil. (United States)

    Mao, X


    The adjoint-based sensitivity analyses well explored in hydrodynamic stability studies are extended to calculate the sensitivity of forces acting on an aerofoil with respect to wall transpiration. The magnitude of the sensitivity quantifies the controllability of the force, and the distribution of the sensitivity represents a most effective control when the control magnitude is small enough. Since the sensitivity to streamwise control is one order smaller than that to the surface-normal one, the work is concentrated on the normal control. In direct numerical simulations of flow around a NACA0024 aerofoil, the unsteady controls are far less effective than the steady control owing to the lock-in effect. At a momentum coefficient of 0.0008 and a maximum control velocity of 3.6% of the free-stream velocity, the steady surface-normal control reduces drag by 20% or enhances lift by up to 140% at Re =1000. A suction around the low-pressure region on the upper surface upstream of the separation point is found to reduce drag and enhance lift. At higher Reynolds numbers, the uncontrolled flow becomes three dimensional and the sensitivity diverges owing to the chaotic dynamics of the flow. Then the mechanism identified at lower Reynolds numbers is exploited to obtain the control, which is localized and can be generated by a limited number of actuators. The control to reduce drag or enhance lift is found to suppress unsteadiness, e.g. vortex shedding and three-dimensional developments. For example, at Re =2000 and α =10°, the control with a momentum coefficient of 0.0001 reduces drag by 20%, enhances lift by up to 200% and leads to a steady controlled flow.

  15. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary...

  16. Hydrodynamic characteristics of plane netting used for aquaculture net cages in uniform current

    National Research Council Canada - National Science Library



      The hydrodynamic characteristics of polyethylene (PE) netting and chain link wire netting with different types of twine diameter and mesh size for aquaculture net cages were examined by experiments in a flume tank...

  17. CO2 and water vapour exchange in four alpine herbs at two altitudes and under varying light and temperature conditions. (United States)

    Rawat, A S; Purohit, A N


    CO2 and water vapour exchange rates of four alpine herbs namely: Rheum emodi, R. moorcroftianum, Megacarpaea polyandra and Rumex nepalensis were studied under field conditions at 3600 m (natural habitat) and 550 m altitudes. The effect of light and temperature on CO2 and water vapour exchange was studied in the plants grown at lower altitude. In R. moorcroftianum and R. nepalensis, the average photosynthesis rates were found to be about three times higher at 550 m as compared to that under their natural habitat. However, in M. polyandra, the CO2 exchange rates were two times higher at 3600 m than at 550 m but in R. emodi, there were virtually no differences at the two altitudes. These results indicate the variations in the CO2 exchange rates are species specific. The change in growth altitude does not affect this process uniformly.The transpiration rates in R. emodi and M. polyandra were found to be very high at 3600 m compared to 550 m and are attributed to overall higher stomatal conductance in plants of these species, grown at higher altitude. The mid-day closure of stomata and therefore, restriction of transpirational losses of water were observed in all the species at 550 m altitude. In addition to the effect of temperature and relative humidity, the data also indicate some endogenous rhythmic control of stomatal conductance.The temperature optima for photosynthesis was close to 30°C in M. polyandra and around 20°C in the rest of the three species. High temperature and high light intensity, as well as low temperature and high light intensity, adversely affect the net rate of photosynthesis in these species.Both light compensation point and dark respiration rate increased with increasing temperature.The effect of light was more prominent on photosynthesis than the effect of temperature, however, on transpiration the effect of temperature was more prominent than the effect of light intensity.No definite trends were found in stomatal conductance with respect to

  18. Isolated unit tests in .Net


    Haukilehto, Tero


    In this thesis isolation in unit testing is studied to get a precise picture of the isolation frameworks available for .Net environment. At the beginning testing is discussed in theory with the benefits and the problems it may have been linked with. The theory includes software development in general in connection with testing. Theory of isolation is also described before the actual isolation frameworks are represented. Common frameworks are described in more detail and comparable informa...

  19. The role of plant cuticle in water loss protection


    MACKOVÁ, Jana


    A central aim of this thesis was studying plant regulation of transpiration water loss. I focused first on changes in cuticular water permeability and second, on changes in cuticular chemical composition under simulated drought stress. Finally, the obtained findings were capitalized on in a case study of altitudinal distribution of congeneric treeline species.

  20. A note on India's water budget and evapotranspiration

    Indian Academy of Sciences (India)

    Some recent analyses of India's water budget are based on information attributed to the Ministry of Water Resources. An examination of the budget components indicates that they imply an evapo- transpiration estimate that is significantly lower than what one may expect based on information from other sources. If such is the ...

  1. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies (United States)

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez


    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  2. Stem heat balance method to estimate transpiration of young orange and mango plants Balanço de calor caulinar para estimativa da transpiração de plantas jovens de laranja e manga

    Directory of Open Access Journals (Sweden)

    Lucas M. Vellame


    Full Text Available The present study had as its main objective the evaluation of the heat balance method in young orange and mango plants under protected environment. The work was carried out at Embrapa Cassava and Tropical Fruits, Cruz das Almas, BA. Later on, estimates of sap flow were conducted for two mango plants cultivated in pots of 15 and 50 L installed on weighting platforms of 45 and 140 kg; sap flow was determined in three orange plants, two of which were also installed on weighing platforms. The values of sap flow were compared to the transpiration measured by lysimeters at integrated intervals of 1, 2, 4 and 24 h. The heat balance method showed good precision for estimating daily transpiration (R² = 0.95 and R² = 0.90, accompaning the availability of energy in the system, underestimating on average 4.6% of the daily transpiration in orange plants and overestimating in about 0.3% the daily transpiration of mango plants under conditions of good water supply. The heat balance method underestimated by 16% the transpiration in orange under conditions of water deficit.Com o presente estudo se objetivou avaliar o método de balanço de calor em plantas jovens de laranja e manga em ambiente protegido. O trabalho foi conduzido na Embrapa Mandioca e Fruticultura, Cruz das Almas, BA. Realizaram-se estimativas de fluxo de seiva em duas plantas de manga plantadas em vasos de 15 e 50 L, instalados sobre plataformas de pesagem de 45 e 140 kg; posteriormente, o fluxo de seiva foi determinado em três plantas de laranja, duas também instaladas em lisímetros de pesagem. Os valores de fluxo de seiva obtidos foram comparados com a transpiração medida pelos lisímetros em intervalos de integração de 1, 2, 4 e 24 h. O método do balanço de calor mostrou-se preciso na estimativa da transpiração diária (R² = 0,95 e R² = 0,90, que acompanhou a disponibilidade de energia do sistema, subestimando em média, 4,6% a transpiração diária em plantas de laranja e

  3. Water (United States)

    ... environment and your health: Green living Sun Water Health effects of water pollution How to protect yourself from water pollution Air Chemicals Noise Quizzes Links to more information girlshealth glossary girlshealth. ...

  4. Event hierarchies in DanNet

    DEFF Research Database (Denmark)

    Pedersen, Bolette Sandford; Nimb, Sanni


    Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet.......Artiklen omhandler udarbejdelsen af et verbumshierarki i det leksikalsk-semantiske ordnet, DanNet....

  5. The Uniframe .Net Web Service Discovery Service

    National Research Council Canada - National Science Library

    Berbeco, Robert W


    Microsoft .NET allows the creation of distributed systems in a seamless manner Within NET small, discrete applications, referred to as Web services, are utilized to connect to each other or larger applications...

  6. Long Term RadNet Quality Data (United States)

    U.S. Environmental Protection Agency — This RadNet Quality Data Asset includes all data since initiation and when ERAMS was expanded to become RadNet, name changed to reflect new mission. This includes...

  7. Continuous In-situ Measurements of Carbonyl Sulfide to Constrain Ecosystem Carbon and Water Exchange (United States)

    Rastogi, B.; Kim, Y.; Berkelhammer, M. B.; Noone, D. C.; Lai, C. T.; Hollinger, D. Y.; Bible, K.; Leen, J. B.; Gupta, M.; Still, C. J.


    Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf-level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from three heights to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.

  8. Simulating land surface energy fluxes using a microscopic root water uptake approach in a northern temperate forest (United States)

    He, L.; Ivanov, V. Y.; Schneider, C.


    The predictive accuracy of current land surface models has been limited by uncertainties in modeling transpiration and its sensitivity to the plant-available water in the root zone. Models usually distribute vegetation transpiration demand as sink terms in one-dimensional soil-water accounting model, according to the vertical root density profile. During water-limited situations, the sink terms are constrained using a heuristic "Feddes-type" water stress function. This approach significantly simplifies the actual three-dimensional physical process of root water uptake and may predict an early onset of water-limited transpiration. Recently, a microscopic root water uptake approach was proposed to simulate the three-dimensional radial moisture fluxes from the soil to roots, and water flux transfer processes along the root systems. During dry conditions, this approach permits the compensation of decreased root water uptake in water-stressed regions by increasing uptake density in moister regions. This effect cannot be captured by the Feddes heuristic function. This study "loosely" incorporates the microscopic root water uptake approach based on aRoot model into an ecohydrological model tRIBS+VEGGIE. The ecohydrological model provides boundary conditions for the microscopic root water uptake model (e.g., potential transpiration, soil evaporation, and precipitation influx), and the latter computes the actual transpiration and profiles of sink terms. Based on the departure of the actual latent heat flux from the potential value, the other energy budget components are adjusted. The study is conducted for a northern temperate mixed forest near the University of Michigan Biological Station. Observational evidence for this site suggests little-to-no control of transpiration by soil moisture yet the commonly used Feddes-type approach implies severe water limitation on transpiration during dry episodes. The study addresses two species: oak and aspen. The effects of differences

  9. PsychoNet: a psycholinguistc commonsense ontology


    Mohtasseb, Haytham; Ahmed, Amr


    Ontologies have been widely accepted as the most advanced knowledge representation model. This paper introduces PsychoNet, a new knowledgebase that forms the link between psycholinguistic taxonomy, existing in LIWC, and its semantic textual representation in the form of commonsense semantic ontology, represented by ConceptNet. The integration of LIWC and ConceptNet and the added functionalities facilitate employing ConceptNet in psycholinguistic studies. Furthermore, it simplifies utilization...

  10. Leaf gas exchange in cowpea and CO2 efflux in soil irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Wanderson J. de Oliveira

    Full Text Available ABSTRACT Leaf gas exchanges in plants and soil respiration are important tools for assessing the effects of salinity on the soil-plant system. An experiment was conducted with cowpea irrigated with saline water (0, 2.5, 5.0, 7.5, 10.0 and 12.5 dS m-1 prepared with two sources: NaCl and a mixture of Ca, Mg, Na, K and Cl ions in a randomized block design and a 6 x 2 factorial scheme, with four replicates, totaling 48 experimental plots. At 20 days after planting (DAP, plants were evaluated for net photosynthesis (A, stomatal conductance (gs and transpiration (E using the Infra-Red Gas Analyzer (Model XT6400- LICOR, and water use efficiency, intrinsic water use efficiency and instantaneous efficiency of carboxylation were calculated. At 60 DAP, the soil CO2 efflux (soil respiration was determined with a camera (Model 6400-09- LICOR. Salinity caused reductions in A, gs and E. However, the salt source did not have significant effect on these variables. Soil CO2 efflux was reduced with the increase in the electrical conductivity, especially in the mixture of ions.

  11. Diurnal variations in water relations of deficit irrigated lemon trees during fruit growth period

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Orellana, Y.; Ortuno, M. F.; Conejero, W.; Ruiz-Sanchez, M. C.


    Field-grown lemon trees (Citrus limon (L.) Burm. fil. cv. Fino) were subjected to different drip irrigation treatments: a control treatment, irrigated daily above crop water requirements in order to obtain non-limiting soil water conditions and two deficit irrigation treatments, reducing the water applied according to the maximum daily trunk shrinkage (MDS) signal intensity (actual MDS/control treatment MDS) threshold values of 1.25 (T1 treatment) and 1.35 (T2 treatment), which induced two different drought stress levels. Daily variations in leaf (Y{sub l}eaf) and stem (Y{sub s}tem) water potentials, leaf conductance, net photosynthesis, sap flow (SF) and trunk diameter fluctuations were studied on four occasions during the lemon fruit growth period. Ystem and Y{sub l}eaf revealed a diurnal pattern in response to changes in evaporative demand of the atmosphere. Both water potentials decreased in response to water deficits, which were more pronounced in the T2 treatment. Y{sub s}tem was seen to be a better plant water status indicator than Y{sub l}eaf. The difference between the two values of Y (Y{sub s}tem - Y{sub l}eaf {Delta}{Psi}) was closely correlated with sap flow, making it a suitable measure of leaf transpiration. Using the slope of this relationship, the canopy hydraulic conductance (KC) was estimated. When other continuously recorded plant-based indicators are not accessible, the concurrent measurement of leaf and stem water potentials at midday, which are relatively inexpensive to measure and user-friendly, act as sufficiently good indicators of the plant water status in field grown Fino lemon trees. (Author) 40 refs.

  12. 78 FR 72451 - Net Investment Income Tax (United States)


    ... Revenue Service 26 CFR Part 1 RIN 1545-BL74 Net Investment Income Tax AGENCY: Internal Revenue Service...). These regulations provide guidance on the computation of net investment income. The regulations affect... lesser of: (A) The individual's net investment income for such taxable year, or (B) the excess (if any...

  13. 47 CFR 69.302 - Net investment. (United States)


    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net investment. 69.302 Section 69.302... Apportionment of Net Investment § 69.302 Net investment. (a) Investment in Accounts 2001, 1220 and Class B Rural...) Investment in Accounts 2002, 2003 and to the extent such inclusions are allowed by this Commission, Account...

  14. 47 CFR 65.450 - Net income. (United States)


    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.450 Section 65.450... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Exchange Carriers § 65.450 Net income. (a) Net income shall consist of all revenues derived from the provision of interstate telecommunications services...

  15. 47 CFR 65.500 - Net income. (United States)


    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.500 Section 65.500... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Interexchange Carriers § 65.500 Net income. The net income methodology specified in § 65.450 shall be utilized by all interexchange carriers that are...

  16. NetBeans IDE 8 cookbook

    CERN Document Server

    Salter, David


    If you're a Java developer of any level using NetBeans and want to learn how to get the most out of NetBeans, then this book is for you. Learning how to utilize NetBeans will provide a firm foundation for your Java application development.

  17. Characterizing behavioural congruences for Petri nets

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Priese, Lutz; Sassone, Vladimiro


    We exploit a notion of interface for Petri nets in order to design a set of net combinators. For such a calculus of nets, we focus on the behavioural congruences arising from four simple notions of behaviour, viz., traces, maximal traces, step, and maximal step traces, and from the corresponding...

  18. 27 CFR 4.37 - Net contents. (United States)


    ... the volume of wine within the container, except that the following tolerances shall be allowed: (1... THE TREASURY LIQUORS LABELING AND ADVERTISING OF WINE Labeling Requirements for Wine § 4.37 Net contents. (a) Statement of net contents. The net contents of wine for which a standard of fill is...

  19. Plant hydraulic traits govern forest water use and growth (United States)

    Matheny, Ashley; Bohrer, Gil; Fiorella, Rich; Mirfenderesgi, Golnazalsadat


    Biophysical controls at the leaf, stem, and root levels govern plant water acquisition and use. Suites of sometimes co-varying traits afford plants the ability to manage water stress at each of these three levels. We studied the contrasting hydraulic strategies of red oaks (Q. rubra) and red maples (A. rubrum) in northern Michigan, USA. These two species differ in stomatal regulation strategy and xylem architecture, and are thought to root at different depths. Water use was monitored through sap flux, stem water storage, and leaf water potential measurements. Depth of water acquisition was determined on the basis of stable oxygen and hydrogen isotopes from xylem water samples taken from both species. Fifteen years of bole growth records were used to compare the influence of the trees' opposing hydraulic strategies on carbon acquisition and growth. During non-limiting soil moisture conditions, transpiration from red maples typically exceeded that of red oak. However, during a 20% soil dry down, transpiration from red maples decreased by more than 80%, while transpiration from red oaks only fell by 31%. Stem water storage in red maple also declined sharply, while storage in red oaks remained nearly constant. The more consistent isotopic compositions of xylem water samples indicated that oaks can draw upon a steady, deep supply of water which red maples cannot access. Additionally, red maple bole growth correlated strongly with mean annual soil moisture, while red oak bole growth did not. These results indicate that the deeper rooting strategy of red oaks allowed the species to continue transpiration and carbon uptake during periods of intense soil water limitation, when the shallow-rooted red maples ceased transpiration. The ability to root deeply could provide an additional buffer against drought-induced mortality, which may permit some anisohydric species, like red oak, to survive hydrologic conditions that would be expected to favor survival of more isohydric

  20. Drought Response in Wheat: Key Genes and Regulatory Mechanisms Controlling Root System Architecture and Transpiration Efficiency

    Directory of Open Access Journals (Sweden)

    Manoj Kulkarni


    Full Text Available Abiotic stresses such as, drought, heat, salinity, and flooding threaten global food security. Crop genetic improvement with increased resilience to abiotic stresses is a critical component of crop breeding strategies. Wheat is an important cereal crop and a staple food source globally. Enhanced drought tolerance in wheat is critical for sustainable food production and global food security. Recent advances in drought tolerance research have uncovered many key genes and transcription regulators governing morpho-physiological traits. Genes controlling root architecture and stomatal development play an important role in soil moisture extraction and its retention, and therefore have been targets of molecular breeding strategies for improving drought tolerance. In this systematic review, we have summarized evidence of beneficial contributions of root and stomatal traits to plant adaptation to drought stress. Specifically, we discuss a few key genes such as, DRO1 in rice and ERECTA in Arabidopsis and rice that were identified to be the enhancers of drought tolerance via regulation of root traits and transpiration efficiency. Additionally, we highlight several transcription factor families, such as, ERF (ethylene response factors, DREB (dehydration responsive element binding, ZFP (zinc finger proteins, WRKY, and MYB that were identified to be both positive and negative regulators of drought responses in wheat, rice, maize, and/or Arabidopsis. The overall aim of this review is to provide an overview of candidate genes that have been identified as regulators of drought response in plants. The lack of a reference genome sequence for wheat and non-transgenic approaches for manipulation of gene functions in wheat in the past had impeded high-resolution interrogation of functional elements, including genes and QTLs, and their application in cultivar improvement. The recent developments in wheat genomics and reverse genetics, including the availability of a

  1. Artisanal fishing net float loss and a proposal for a float design solution

    Directory of Open Access Journals (Sweden)

    Paulo de Tarso Chaves


    Full Text Available Abstract Plastic floats from fishing nets are commonly found washed up on beaches in southern Brazil. They are usually broken and show signs of having been repaired. Characteristics of floats and interviews with fishermen suggest two main causes of float loss. First, collisions between active gear, bottom trawl nets for shrimp, and passive gear, drift nets for fish, destroy nets and release fragments of them, including floats. Second, the difficulty with which floats are inserted on the float rope of the nets when they are used near the surface. Floats are inserted to replace damaged or lost floats, or they may be removed if it is desired that the nets be used in deeper waters. Floats may thus be poorly fixed to the cables and lost. Here a new float design that offers greater safety in use and for the replacement of floats is described and tested.

  2. Price of Water (United States)

    Survilo, Josifs; Boreiko, Dmitrijs


    There are watercourses on the globe which as yet do not deliver up their energy to the needs of the people. How much energy their waters bear, is it worth to take away this energy? Those and alike questions must be (and they are) answered before start to build hydro power station. Similar problems must be solved to control hydro power plants in most gainful way which is known as hydrothermal coordination. The notion of price of water can be met lately in technical literature as one of numerical indices of these issues. The gross price of water and net price of water are considered in this paper. Gross price of 1 t water is the price of electric energy obtained by conversion of potential energy of 1 t of water, lifted to a height of power station water head. Net price of water is the difference between gross price and total expenses determined by hydro power station building and its exploitation costs in a year related to 1 m3 of water. If net price of water is positive, it is worth building power station. The greater net price is, the more urgent is the building. Net price of water grows with water head but it continues only to some height of the dam because further increase of head sharply increases capital outlay and other exploitation expenses. To maximize net price of water, optimization of net price function can be done. Net price of water diminishes when some amount of water is diverted for other needs. When amount of diverted water is out of discussion, no controversy can emerge. However when by diverted water some goods with some monetary worth can be obtained, the task must be solved how much water can be diverted so that the water of watercourse be used to the maximum benefit. The environmental issues must be taken into account as well.

  3. Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks. (United States)

    Rodríguez-Gamir, Juan; Intrigliolo, Diego S; Primo-Millo, Eduardo; Forner-Giner, M Angeles


    The aim of the study was to determine the extent in which leaf and whole plant transpiration (Tp) were influenced by root hydraulic conductance (K(r)), leaf to root ratio and leaf mass. Also, the relationships between the anatomic characteristics of roots and K(r) were investigated. To this end, 9-month-old seedlings of the citrus rootstocks Cleopatra mandarin (CM), Poncirus trifoliata (PT), and their hybrids Forner-Alcaide no 5 (FA-5) and Forner-Alcaide no 13 (FA-13) and 15-month-old trees of Valencia orange budded on these four rootstocks were tested. The hybrid FA-13 and PT had higher values of K(r) and leaf transpiration rates (E) than FA-5 and CM. There was a positive curvilinear correlation between E and K(r). Furthermore, E levels in the different types of plants decreased with increased leaf/root (L/R) ratios. Pruning of the roots and defoliation confirmed that transpiration rates were strongly influenced by the L/R ratio. However, variations in E because of differences in L/R ratios were less pronounced in trees budded on FA-13 and PT than on the other two rootstocks. In addition, there was a positive correlation between Tp and leaf biomass, although differences between rootstocks may be attributed to differences in K(r). The average lumen diameter of xylem vessels was greater in rootstocks with high K(r). Size of epidermal and hypodermal cells of fibrous roots may also restrict K(r).

  4. Thermal transpiration of a slightly rarefied gas through a horizontal straight pipe in the presence of weak gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Toshiyuki, E-mail: [Department of Applied Mathematics and Physics, Graduate School of Engineering, Tottori University, Tottori 680-8552 (Japan)


    Thermal transpiration of a slightly rarefied gas through a horizontal straight pipe in the presence of weak gravitation is studied on the basis of kinetic theory. We consider the situation in which the Knudsen number (the mean free path divided by the characteristic length of the cross section) is small and the dimensionless gravity (the characteristic length divided by the ascent height of the molecules against gravity) is of the order of the square of the Knudsen number. The behavior of the gas is studied analytically on the basis of the fluid-dynamic-type equation and the slip-type boundary condition derived from the Boltzmann equation for small Knudsen numbers. Extending the analysis of the two-dimensional channel problem, the solution for a pipe with an arbitrary cross section is obtained in a semianalytical form. When the temperature gradient is imposed along the pipe, the pressure gradient is produced not only in the vertical direction but also in the horizontal direction due to the effect of gravity. Although this pressure gradient is of the order of the square of the Knudsen number, it induces a flow of the order of the Knudsen number. As a result, the apparently higher order effect of gravity produces a relatively finite effect on thermal transpiration. This phenomenon, first observed in plane thermal transpiration, is clarified for a pipe with a general cross section. The explicit solution is obtained for the pipe with the cross section of an annulus between eccentric circular cylinders. Based on the solution, the effect of weak gravitation on the mass flow rate of the gas, as well as on the flow velocity, is clarified over a wide range of the radii ratio and the eccentricity of the cylinders. (paper)

  5. Growth and wall-transpiration control of nonlinear unsteady Görtler vortices forced by free-stream vortical disturbances (United States)

    Marensi, Elena; Ricco, Pierre


    The generation, nonlinear evolution, and wall-transpiration control of unsteady Görtler vortices in an incompressible boundary layer over a concave plate is studied theoretically and numerically. Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-frequency components are considered because they penetrate the most into the boundary layer. The formation and development of the disturbances are governed by the nonlinear unsteady boundary-region equations with the centrifugal force included. These equations are subject to appropriate initial and outer boundary conditions, which account for the influence of the upstream and free-stream forcing in a rigorous and mutually consistent manner. Numerical solutions show that the stabilizing effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly enhanced in the presence of centrifugal forces. Sufficiently downstream, the nonlinear vortices excited at different free-stream turbulence intensities Tu saturate at the same level, proving that the initial amplitude of the forcing becomes unimportant. At low Tu, the disturbance exhibits a quasi-exponential growth with the growth rate being intensified for more curved plates and for lower frequencies. At higher Tu, in the typical range of turbomachinery applications, the Görtler vortices do not undergo a modal stage as nonlinearity saturates rapidly, and the wall curvature does not affect the boundary-layer response. Good quantitative agreement with data from direct numerical simulations and experiments is obtained. Steady spanwise-uniform and spanwise-modulated zero-mass-flow-rate wall transpiration is shown to attenuate the growth of the Görtler vortices significantly. A novel modified version of the Fukagata-Iwamoto-Kasagi identity, used for the first time to study a transitional flow, reveals which terms in the streamwise momentum balance are mostly affected by the wall transpiration, thus

  6. NET 40 Generics Beginner's Guide

    CERN Document Server

    Mukherjee, Sudipta


    This is a concise, practical guide that will help you learn Generics in .NET, with lots of real world and fun-to-build examples and clear explanations. It is packed with screenshots to aid your understanding of the process. This book is aimed at beginners in Generics. It assumes some working knowledge of C# , but it isn't mandatory. The following would get the most use out of the book: Newbie C# developers struggling with Generics. Experienced C++ and Java Programmers who are migrating to C# and looking for an alternative to other generic frameworks like STL and JCF would find this book handy.

  7. The Net Reclassification Index (NRI)

    DEFF Research Database (Denmark)

    Pepe, Margaret S.; Fan, Jing; Feng, Ziding


    The Net Reclassification Index (NRI) is a very popular measure for evaluating the improvement in prediction performance gained by adding a marker to a set of baseline predictors. However, the statistical properties of this novel measure have not been explored in depth. We demonstrate the alarming...... marker is proven to erroneously yield a positive NRI. Some insight into this phenomenon is provided. Since large values for the NRI statistic may simply be due to use of poorly fitting risk models, we suggest caution in using the NRI as the basis for marker evaluation. Other measures of prediction...

  8. Chemical signals and their interactions change transpiration processes in tomato wild-type and flacca mutant

    DEFF Research Database (Denmark)

    Prokic, Ljiljana; Wollenweber, Bernd; Stikic, Radmila


    After the exposure to soil drying treatments, plants alkalize xylem sap. Xylem sap alkalization is not one a chemical signal per se, but it also facilitates the mobilization and redistribution of the phytohormone abscisic acid (ABA). Therefore, the objective of this paper was to investigate...... the effects of chemicalsignals on the mechanism of transpiration of isolated leaves of L. esculentum Mill. cv. Ailsa Craig (WT) and mutant flacca. In bioassays, exogenic activity of different ABA concentrations and pH were tested in both genotype of tomato in order to stimulate chemical signals occurring...

  9. RadNet Map Interface for Near-Real-Time Radiation Monitoring Data (United States)

    U.S. Environmental Protection Agency — RadNet is a national network of monitoring stations that regularly collect air, precipitation, drinking water, and milk samples for analysis of radioactivity. The...

  10. Water-Deficit Tolerance in Sweet Potato [Ipomoea batatas (L.) Lam.] by Foliar Application of Paclobutrazol: Role of Soluble Sugar and Free Proline (United States)

    Yooyongwech, Suravoot; Samphumphuang, Thapanee; Tisarum, Rujira; Theerawitaya, Cattarin; Cha-um, Suriyan


    The objective of this study was to elevate water deficit tolerance by improving soluble sugar and free proline accumulation, photosynthetic pigment stabilization, photosynthetic abilities, growth performance and storage root yield in sweet potato cv. ‘Tainung 57’ using a foliar application of paclobutrazol (PBZ). The experiment followed a Completely Randomized Block Design with four concentrations of PBZ: 0 (control), 17, 34, and 51 μM before exposure to 47.5% (well irrigation), 32.3% (mild water deficit) or 17.5% (severe water deficit) soil water content. A sweet potato cultivar, ‘Japanese Yellow’, with water deficit tolerance attributes was the positive check in this study. Total soluble sugar content (sucrose, glucose, and fructose) increased by 3.96-folds in ‘Tainung 57’ plants treated with 34 μM PBZ grown under 32.3% soil water content (SWC) compared to the untreated plants, adjusting osmotic potential in the leaves and controlling stomatal closure (represented by stomatal conductance and transpiration rate). In addition, under the same treatment, free proline content (2.15 μmol g-1 FW) increased by 3.84-folds when exposed to 17.5% SWC. PBZ had an improved effect on leaf size, vine length, photosynthetic pigment stability, chlorophyll fluorescence, and net photosynthetic rate; hence, delaying wilting symptoms and maintaining storage root yield (26.93 g plant-1) at the harvesting stage. A positive relationship between photon yield of PSII (ΦPSII) and net photosynthetic rate was demonstrated (r2 = 0.73). The study concludes that soluble sugar and free proline enrichment in PBZ-pretreated plants may play a critical role as major osmoprotectant to control leaf osmotic potential and stomatal closure when plants were subjected to low soil water content, therefore, maintaining the physiological and morphological characters as well as storage root yield. PMID:28848596

  11. Water-Deficit Tolerance in Sweet Potato [Ipomoea batatas (L. Lam.] by Foliar Application of Paclobutrazol: Role of Soluble Sugar and Free Proline

    Directory of Open Access Journals (Sweden)

    Suravoot Yooyongwech


    Full Text Available The objective of this study was to elevate water deficit tolerance by improving soluble sugar and free proline accumulation, photosynthetic pigment stabilization, photosynthetic abilities, growth performance and storage root yield in sweet potato cv. ‘Tainung 57’ using a foliar application of paclobutrazol (PBZ. The experiment followed a Completely Randomized Block Design with four concentrations of PBZ: 0 (control, 17, 34, and 51 μM before exposure to 47.5% (well irrigation, 32.3% (mild water deficit or 17.5% (severe water deficit soil water content. A sweet potato cultivar, ‘Japanese Yellow’, with water deficit tolerance attributes was the positive check in this study. Total soluble sugar content (sucrose, glucose, and fructose increased by 3.96-folds in ‘Tainung 57’ plants treated with 34 μM PBZ grown under 32.3% soil water content (SWC compared to the untreated plants, adjusting osmotic potential in the leaves and controlling stomatal closure (represented by stomatal conductance and transpiration rate. In addition, under the same treatment, free proline content (2.15 μmol g-1 FW increased by 3.84-folds when exposed to 17.5% SWC. PBZ had an improved effect on leaf size, vine length, photosynthetic pigment stability, chlorophyll fluorescence, and net photosynthetic rate; hence, delaying wilting symptoms and maintaining storage root yield (26.93 g plant-1 at the harvesting stage. A positive relationship between photon yield of PSII (ΦPSII and net photosynthetic rate was demonstrated (r2 = 0.73. The study concludes that soluble sugar and free proline enrichment in PBZ-pretreated plants may play a critical role as major osmoprotectant to control leaf osmotic potential and stomatal closure when plants were subjected to low soil water content, therefore, maintaining the physiological and morphological characters as well as storage root yield.

  12. The role of plant water relations in achieving and maintaining the target seedling (United States)

    John G. Mexal; Nabil Khadduri


    Water management is one of the most important factors in achieving the target seedling. Water is required for cell growth, nutrient transport, cooling through transpiration, and in small amounts for the photosynthetic reaction. Furthermore, judicious use of limiting water availability during the hardening phase can induce budset and increase seedling cold hardiness....

  13. Effects of iron chlorosis and iron resupply on leaf xylem architecture, water relations, gas exchange and stomatal performance of field-grown peach (Prunus persica). (United States)

    Eichert, Thomas; Peguero-Pina, José Javier; Gil-Pelegrín, Eustaquio; Heredia, Antonio; Fernández, Victoria


    There is increasing evidence suggesting that iron (Fe) deficiency induces not only leaf chlorosis and a decline of photosynthesis, but also structural changes in leaf morphology, which might affect the functionality of leaves. In this study, we investigated the effects of Fe deficiency on the water relations of peach (Prunus persica (L.) Batsch.) leaves and the responses of previously chlorotic leaves to Fe resupply via the root or the leaf. Iron deficiency induced a decline of maximum potential photosystem II (PSII) efficiency (F(V)/F(M)), of rates of net photosynthesis and transpiration and of water use efficiency. Iron chlorosis was associated with a reduction of leaf xylem vessel size and of leaf hydraulic conductance. In the course of the day, water potentials in chlorotic leaves remained higher (less negative) than in green leaves. In chlorotic leaves, normal stomatal functioning was disturbed, as evidenced by the lack of opening upon withdrawal of external CO(2) and stomatal closure after sudden illumination of previously darkened leaves. We conclude that the Fe deficiency induced limitations of xylem conductivity elicited a water saving strategy, which poses an additional challenge to plant growth on high pH, calcareous soils. Fertilisation with Fe improved photosynthetic performance but the proper xylem structure and water relations of leaves were not fully restored, indicating that Fe must be available at the first stages of leaf growth and development.

  14. Water (United States)

    Leopold, Luna Bergere; Baldwin, Helene L.


    What do you use water for?If someone asked you this question you would probably think right away of water for drinking. Then you would think of water for bathing, brushing teeth, flushing the toilet. Your list would get longer as you thought of water for cooking, washing the dishes, running the garbage grinder. Water for lawn watering, for play pools, for swimming pools, for washing the car and the dog. Water for washing machines and for air conditioning. You can hardly do without water for fun and pleasure—water for swimming, boating, fishing, water-skiing, and skin diving. In school or the public library, you need water to wash your hands, or to have a drink. If your home or school bursts into flames, quantities of water are needed to put it out.In fact, life to Americans is unthinkable without large supplies of fresh, clean water. If you give the matter a little thought, you will realize that people in many countries, even in our own, may suffer from disease and dirt simply because their homes are not equipped with running water. Imagine your own town if for some reason - an explosion, perhaps - water service were cut off for a week or several weeks. You would have to drive or walk to a neighboring town and bring water back in pails. Certainly if people had to carry water themselves they might not be inclined to bathe very often; washing clothes would be a real chore.Nothing can live without water. The earth is covered by water over three-fourths of its surface - water as a liquid in rivers, lakes and oceans, and water as ice and snow on the tops of high mountains and in the polar regions. Only one-quarter of our bodies is bone and muscle; the other three-fourths is made of water. We need water to live, and so do plants and animals. People and animals can live a long time without food, but without water they die in a few days. Without water, everything would die, and the world would turn into a huge desert.

  15. Army Net Zero Prove Out. Net Zero Waster Best Practices (United States)


    low flow urinals are examples of water-saving equipment. This can be also accomplished when buildings are empty due to deployments; this as an...meadows, or to reduce the number of acres at an installation considered “High Visibility” – thus requiring more water and fertilizer – to “Low Visibility...low flow urinals are examples of water-saving equipment. This can be also accomplished when buildings are empty due to deployments; this as an

  16. Potential migration of organic pollutants in pipes of polyethylene. Study in pipelines of distribution net of drinkable water; Migracion potential de contaminantes organicos en tubos de polietileno. Estudio en tuberias de red de distribuciond e agua potable

    Energy Technology Data Exchange (ETDEWEB)

    Ballel, X.; Ciurana de, C.; Caixach, J.; Cortina, M.; Om, M.


    Polyethylene pipes and connections are being widely used in treated water distribution services. Migration of low molecular weight compounds from the polyethylene into the water can change its final quality. This paper is about the concentrations and identification of the migration compounds found in treated water after staying in contact with low and high-density polyethylene. Identification and quantification were carried out using CLSA (Closed Loop Stripping Analysis) extraction technique and gas chromatography coupled to mass spectrometry (HRGC/HRMS). (Author) 12 refs.

  17. Water (United States)

    ... the tap as described). 3. In all situations, drink or cook only with water that comes out of the tap cold. Water that comes out of the tap warm or hot can contain much higher levels of lead. Boiling ...

  18. Net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire: field measurements and model simulations (United States)

    Olchev, Alexander; Volkova, Elena; Karataeva, Tatiana; Zatsarinnaya, Dina; Novenko, Elena


    The spatial and temporal variability of net ecosystem exchange of CO2 (NEE) and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest-steppe zones in the central part of European Russia (54.06N, 37.59E, 260 m a.s.l.) was described using results of field measurements and simulations with Mixfor-3D model. The area of the mire is about 1.2 ha and it is surrounded by a broadleaved forest stand. It is a typical peat mire according to water and mineral supply as well as to vegetation composition. The vegetation of the peripheral parts of the mire is typical eutrophic whereas the vegetation in its central part is represented by meso-oligothrophic plant communities. To describe the spatial variability of NEE and ET within the mire a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO2 and H2O analyzer LI-840A (Li-Cor, USA) was used. The measurements were provided along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and from May 2013 to October 2013. The chamber method was used for measurements of NEE and ET fluxes because of small size of the mire, a very uniform surrounding forest stand and the mosaic mire vegetation. All these factors promote very heterogeneous exchange conditions within the mire and make it difficult to apply, for example, an eddy covariance method that is widely used for flux measurements in the field. The results of the field measurements showed a significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation, air temperature and ground water level. During the entire growing season the central part of the mire was a sink of CO2 for the atmosphere (up to 6.8±4.2 µmol m-2 s-1 in June) whereas its peripheral part, due to strong shading by the surrounding forest, was mainly a source of

  19. -Net Approach to Sensor -Coverage

    Directory of Open Access Journals (Sweden)

    Fusco Giordano


    Full Text Available Wireless sensors rely on battery power, and in many applications it is difficult or prohibitive to replace them. Hence, in order to prolongate the system's lifetime, some sensors can be kept inactive while others perform all the tasks. In this paper, we study the -coverage problem of activating the minimum number of sensors to ensure that every point in the area is covered by at least sensors. This ensures higher fault tolerance, robustness, and improves many operations, among which position detection and intrusion detection. The -coverage problem is trivially NP-complete, and hence we can only provide approximation algorithms. In this paper, we present an algorithm based on an extension of the classical -net technique. This method gives an -approximation, where is the number of sensors in an optimal solution. We do not make any particular assumption on the shape of the areas covered by each sensor, besides that they must be closed, connected, and without holes.

  20. Thermophoretically enhanced mass transport rates to solid and transpiration-cooled walls across turbulent (law-of-the-wall) boundary layers (United States)

    Gokoglu, Suleyman A.; Rosner, Daniel E.


    Convective-diffusion mass transfer rate predictions are made for both solid wall and transpiration-cooled 'law-of-the-wall' nonisothermal turbulent boundary layers (TBLs), including the mechanism of thermophoresis, i.e., small particle mass transport 'down a temperature gradient'. The present calculations are confined to low mass-loading situations but span the entire particle size range from vapor molecules to particles near the onset of inertial ('eddy') impaction. It is shown that, when Sc is much greater than 1, thermophoresis greatly increases particle deposition rates to internally cooled solid walls, but only partially offsets the appreciable reduction in deposition rates associated with dust-free gas-transpiration-cooled surfaces. Thus, efficient particle sampling from hot dusty gases can be carried out using transpiration 'shielded' probe surfaces.