WorldWideScience

Sample records for net radiation soil

  1. Spectral estimates of net radiation and soil heat flux

    International Nuclear Information System (INIS)

    Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P.J. Jr.; Jackson, R.D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under non advective conditions

  2. Assessment of the methods for determining net radiation at different time-scales of meteorological variables

    Directory of Open Access Journals (Sweden)

    Ni An

    2017-04-01

    Full Text Available When modeling the soil/atmosphere interaction, it is of paramount importance to determine the net radiation flux. There are two common calculation methods for this purpose. Method 1 relies on use of air temperature, while Method 2 relies on use of both air and soil temperatures. Nowadays, there has been no consensus on the application of these two methods. In this study, the half-hourly data of solar radiation recorded at an experimental embankment are used to calculate the net radiation and long-wave radiation at different time-scales (half-hourly, hourly, and daily using the two methods. The results show that, compared with Method 2 which has been widely adopted in agronomical, geotechnical and geo-environmental applications, Method 1 is more feasible for its simplicity and accuracy at shorter time-scale. Moreover, in case of longer time-scale, daily for instance, less variations of net radiation and long-wave radiation are obtained, suggesting that no detailed soil temperature variations can be obtained. In other words, shorter time-scales are preferred in determining net radiation flux.

  3. Estimation of the soil heat flux/net radiation ratio based on spectral vegetation indexes in high-latitude Arctic areas

    International Nuclear Information System (INIS)

    Jacobsen, A.; Hansen, B.U.

    1999-01-01

    The vegetation communities in the Arctic environment are very sensitive to even minor climatic variations and therefore the estimation of surface energy fluxes from high-latitude vegetated areas is an important subject to be pursued. This study was carried out in July-August and used micro meteorological data, spectral reflectance signatures, and vegetation biomass to establish the relation between the soil heat flux/net radiation (G / Rn) ratio and spectral vegetation indices (SVIs). Continuous measurements of soil temperature and soil heat flux were used to calculate the surface ground heat flux by use of conventional methods, and the relation to surface temperature was investigated. Twenty-seven locations were established, and six samples per location, including the measurement of the surface temperature and net radiation to establish the G/Rn ratio and simultaneous spectral reflectance signatures and wet biomass estimates, were registered. To obtain regional reliability, the locations were chosen in order to represent the different Arctic vegetation communities in the study area; ranging from dry tundra vegetation communities (fell fields and dry dwarf scrubs) to moist/wet tundra vegetation communities (snowbeds, grasslands and fens). Spectral vegetation indices, including the simple ratio vegetation index (RVI) and the normalized difference vegetation index (NDVI), were calculated. A comparison of SVIs to biomass proved that RVI gave the best linear expression, and NDVI the best exponential expression. A comparison of SVIs and the surface energy flux ratio G / Rn proved that NDVI gave the best linear expression. SPOT HRV images from July 1989 and 1992 were used to map NDVI and G / Rn at a regional scale. (author)

  4. Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices

    International Nuclear Information System (INIS)

    Kustas, W.P.; Daughtry, C.S.T.; Oevelen, P.J. van

    1993-01-01

    Relationships between leaf area index (LAI) and midday soil heat flux/net radiation ratio (G/R n ) and two more commonly used vegetation indices (VIs) were used to analytically derive formulas describing the relationship between G/R n and VI. Use of VI for estimating G/R n may be useful in operational remote sensing models that evaluate the spatial variation in the surface energy balance over large areas. While previous experimental data have shown that linear equations can adequately describe the relationship between G/Rn and VI, this analytical treatment indicated that nonlinear relationships are more appropriate. Data over bare soil and soybeans under a range of canopy cover conditions from a humid climate and data collected over bare soil, alfalfa, and cotton fields in an arid climate were used to evaluate model formulations derived for LAI and G/R n , LAI and VI, and VI and G/R n . In general, equations describing LAI-G/R n and LAI-VI relationships agreed with the data and supported the analytical result of a nonlinear relationship between VI and G/R n . With the simple ratio (NIR/Red) as the VI, the nonlinear relationship with G/R n was confirmed qualitatively. But with the normalized difference vegetation index (NDVI), a nonlinear relationship did not appear to fit the data. (author)

  5. Simulated Seasonal Spatio-Temporal Patterns of Soil Moisture, Temperature, and Net Radiation in a Deciduous Forest

    Science.gov (United States)

    Ballard, Jerrell R., Jr.; Howington, Stacy E.; Cinnella, Pasquale; Smith, James A.

    2011-01-01

    The temperature and moisture regimes in a forest are key components in the forest ecosystem dynamics. Observations and studies indicate that the internal temperature distribution and moisture content of the tree influence not only growth and development, but onset and cessation of cambial activity [1], resistance to insect predation[2], and even affect the population dynamics of the insects [3]. Moreover, temperature directly affects the uptake and metabolism of population from the soil into the tree tissue [4]. Additional studies show that soil and atmospheric temperatures are significant parameters that limit the growth of trees and impose treeline elevation limitation [5]. Directional thermal infrared radiance effects have long been observed in natural backgrounds [6]. In earlier work, we illustrated the use of physically-based models to simulate directional effects in thermal imaging [7-8]. In this paper, we illustrated the use of physically-based models to simulate directional effects in thermal, and net radiation in a adeciduous forest using our recently developed three-dimensional, macro-scale computational tool that simulates the heat and mass transfer interaction in a soil-root-stem systems (SRSS). The SRSS model includes the coupling of existing heat and mass transport tools to stimulate the diurnal internal and external temperatures, internal fluid flow and moisture distribution, and heat flow in the system.

  6. Global Surface Net-Radiation at 5 km from MODIS Terra

    Directory of Open Access Journals (Sweden)

    Manish Verma

    2016-09-01

    Full Text Available Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years from the FLUXNET and Surface Radiation budget network (SURFRAD showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged from 0.74 for boreal to 0.63 for Mediterranean sites. Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W∙m−2 in boreal to 72.0 ± 4.1 W∙m−2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° × 1° but high temporal resolution gridded net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES. Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W·m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the

  7. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.

    2009-01-01

    . The long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from......Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily...... values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models...

  8. Refining surface net radiation estimates in arid and semi-arid climates of Iran

    Science.gov (United States)

    Golkar, Foroogh; Rossow, William B.; Sabziparvar, Ali Akbar

    2018-06-01

    Although the downwelling fluxes exhibit space-time scales of dependency on characteristic of atmospheric variations, especially clouds, the upward fluxes and, hence the net radiation, depends on the variation of surface properties, particularly surface skin temperature and albedo. Evapotranspiration at the land surface depends on the properties of that surface and is determined primarily by the net surface radiation, mostly absorbed solar radiation. Thus, relatively high spatial resolution net radiation data are needed for evapotranspiration studies. Moreover, in more arid environments, the diurnal variations of surface (air and skin) temperature can be large so relatively high (sub-daily) time resolution net radiation is also needed. There are a variety of radiation and surface property products available but they differ in accuracy, space-time resolution and information content. This situation motivated the current study to evaluate multiple sources of information to obtain the best net radiation estimate with the highest space-time resolution from ISCCP FD dataset. This study investigates the accuracy of the ISCCP FD and AIRS surface air and skin temperatures, as well as the ISCCP FD and MODIS surface albedos and aerosol optical depths as the leading source of uncertainty in ISCCP FD dataset. The surface air temperatures, 10-cm soil temperatures and surface solar insolation from a number of surface sites are used to judge the best combinations of data products, especially on clear days. The corresponding surface skin temperatures in ISCCP FD, although they are known to be biased somewhat high, disagreed more with AIRS measurements because of the mismatch of spatial resolutions. The effect of spatial resolution on the comparisons was confirmed using the even higher resolution MODIS surface skin temperature values. The agreement of ISCCP FD surface solar insolation with surface measurements is good (within 2.4-9.1%), but the use of MODIS aerosol optical depths as

  9. Data error effects on net radiation and evapotranspiration estimation

    International Nuclear Information System (INIS)

    Llasat, M.C.; Snyder, R.L.

    1998-01-01

    The objective of this paper is to evaluate the potential error in estimating the net radiation and reference evapotranspiration resulting from errors in the measurement or estimation of weather parameters. A methodology for estimating the net radiation using hourly weather variables measured at a typical agrometeorological station (e.g., solar radiation, temperature and relative humidity) is presented. Then the error propagation analysis is made for net radiation and for reference evapotranspiration. Data from the Raimat weather station, which is located in the Catalonia region of Spain, are used to illustrate the error relationships. The results show that temperature, relative humidity and cloud cover errors have little effect on the net radiation or reference evapotranspiration. A 5°C error in estimating surface temperature leads to errors as big as 30 W m −2 at high temperature. A 4% solar radiation (R s ) error can cause a net radiation error as big as 26 W m −2 when R s ≈ 1000 W m −2 . However, the error is less when cloud cover is calculated as a function of the solar radiation. The absolute error in reference evapotranspiration (ET o ) equals the product of the net radiation error and the radiation term weighting factor [W = Δ(Δ1+γ)] in the ET o equation. Therefore, the ET o error varies between 65 and 85% of the R n error as air temperature increases from about 20° to 40°C. (author)

  10. Progress towards GlobalSoilMap.net soil database of Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mogens Humlekrog

    2012-01-01

    Denmark is an agriculture-based country where intensive mechanized cultivation has been practiced continuously for years leading to serious threats to the soils. Proper use and management of Danish soil resources, modeling and soil research activities need very detailed soil information. This study...... presents recent advancements in Digital Soil Mapping (DSM) activities in Denmark with an example of soil clay mapping using regression-based DSM techniques. Several environmental covariates were used to build regression rules and national scale soil prediction was made at 30 m resolution. Spatial...... content mapping, the plans for future soil mapping activities in support to GlobalSoilMap.net project initiatives are also included in this paper. Our study thought to enrich and update Danish soil database and Soil information system with new fine resolution soil property maps....

  11. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor

    Science.gov (United States)

    Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun

    2016-06-01

    A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.

  12. Comparisons of solar radiation interception, albedo and net radiation as influenced by row orientations of crops

    International Nuclear Information System (INIS)

    Baten, Md.A.; Kon, H.

    1997-01-01

    Field experiments were conducted on soybean (Glycin max L.) in summer and potato (Solanum tuberosum L.) in autumn to evaluate the effect of row orientations of crops on some selected micro meteorological factors during 1994 and 1995. The intercepted solar radiation was the largest in the plants growing in bidirection in summer and it exhibited intermediate trend in autumn as compared to E-W or N-S row orientations. In summer, penetrated solar radiation between two plants and near the stem base of a N-S row was larger than that of E-W row. While in autumn, the observed solar radiation between two plants and near the stem base of a E-W row was markedly larger than that of N-S row. The area weighted mean of penetrated solar radiation was larger in E-W soybean rows but lower in potato rows as compared to N-S row orientations. Soil surface temperature between N-S potato rows was larger than that of E-W potato rows and the upper canopy surface temperature of potato was larger in E-W rows as compared to N-S rows. Net radiation observed over E-W potato rows was larger as compared to N-S potato rows but net radiation measured under canopy of E-W potato rows was smaller than that of in N-S rows. Net radiation measured over N-S soybean rows was larger than that of E-W soybean rows and it was smaller between N-S soybean rows when measured under canopy as compared to E-W rows. The albedo observed over potato was larger over E-W rows as compared to N-S rows. Albedos over soybean canopy showed opposite trend with the albedos observed over potato canopy. It was larger over N-S rows as compared to E-W rows. High harvest index was associated with larger interception of radiation. (author)

  13. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.

    Science.gov (United States)

    Helbig, Manuel; Chasmer, Laura E; Kljun, NatasCha; Quinton, William L; Treat, Claire C; Sonnentag, Oliver

    2017-06-01

    At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus ('forest') lead to expansion of permafrost-free wetlands ('wetland'). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH 4 ) emissions. Here, we quantify the thaw-induced increase in CH 4 emissions for a boreal forest-wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long-term net carbon dioxide (CO 2 ) exchange. Using nested wetland and landscape eddy covariance net CH 4 flux measurements in combination with flux footprint modeling, we find that landscape CH 4 emissions increase with increasing wetland-to-forest ratio. Landscape CH 4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May-October) wetland CH 4 emission of ~13 g CH 4  m -2 is the dominating contribution to the landscape CH 4 emission of ~7 g CH 4  m -2 . In contrast, forest contributions to landscape CH 4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr -1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH 4  m -2  yr -1 in landscape CH 4 emissions. A long-term net CO 2 uptake of >200 g CO 2  m -2  yr -1 is required to offset the positive radiative forcing of increasing CH 4 emissions until the end of the 21st century as indicated by an atmospheric CH 4 and CO 2 concentration model. However, long-term apparent carbon accumulation rates in similar boreal forest-wetland landscapes and eddy covariance landscape net CO 2 flux measurements suggest a long-term net CO 2 uptake between 49 and 157 g CO 2  m -2  yr -1 . Thus, thaw-induced CH 4 emission increases likely exert a positive net radiative greenhouse gas

  14. Net sulfur mineralization potential in Swedish arable soils in relation to long-term treatment history and soil properties

    DEFF Research Database (Denmark)

    Boye, Kristin; Nilsson, S Ingvar; Eriksen, Jørgen

    2009-01-01

    accumulated net S mineralization (SAccMin) and a number of soil physical and chemical properties were determined. Treatments and soil differences in SAccMin, as well as correlations with soil variables, were tested with single and multivariate analyses. Long-term FYM application resulted in a significantly (p......The long-term treatment effect (since 1957-1966) of farmyard manure (FYM) application compared with crop residue incorporation was investigated in five soils (sandy loam to silty clay) with regards to the net sulfur (S) mineralization potential. An open incubation technique was used to determine...... = 0.012) higher net S mineralization potential, although total amounts of C, N, and S were not significantly (p soils within this treatment. The measured soil variables were not significantly correlated...

  15. Estimation of daily net radiation from synoptic meteorological data

    International Nuclear Information System (INIS)

    Lee, B.W.; Myung, E.J.; Kim, B.C.

    1991-01-01

    Five models for net radiation estimation reported by Linacre (1968), Berljand(1956), Nakayama et al. (1983), Chang (1970) and Doorenbos et al. (1977) were tested for the adaptability to Korea. A new model with effective longwave radiation term parameterized by air temperature, solar radiation and vapor pressure was formulated and tested for its accuracy. Above five models with original parameter values showed large absolute mean deviations ranging from 0.86 to 1.64 MJ/m 2 /day. The parameters of the above five models were reestimated by using net radiation and meteorological elements measured in Suwon, Korea

  16. RadNet: Open network protocol for radiation data

    International Nuclear Information System (INIS)

    Rees, B.; Olson, K.; Beckes-Talcott, J.; Kadner, S.; Wenderlich, T.; Hoy, M.; Doyle, W.; Koskelo, M.

    1998-01-01

    Safeguards instrumentation is increasingly being incorporated into remote monitoring applications. In the past, vendors of radiation monitoring instruments typically provided the tools for uploading the monitoring data to a host. However, the proprietary nature of communication protocols lends itself to increased computer support needs and increased installation expenses. As a result, a working group of suppliers and customers of radiation monitoring instruments defined an open network protocol for transferring packets on a local area network from radiation monitoring equipment to network hosts. The protocol was termed RadNet. While it is now primarily used for health physics instruments, RadNet's flexibility and strength make it ideal for remote monitoring of nuclear materials. The incorporation of standard, open protocols ensures that future work will not render present work obsolete; because RadNet utilizes standard Internet protocols, and is itself a non-proprietary standard. The use of industry standards also simplifies the development and implementation of ancillary services, e.g. E-main generation or even pager systems

  17. RadNet (Environmental Radiation Ambient Monitoring System)

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet, formerly Environmental Radiation Ambient Monitoring System (ERAMS), is a national network of monitoring stations that regularly collect air, precipitation,...

  18. Estimation of Net Rice Production through Improved CASA Model by Addition of Soil Suitability Constant (ħα

    Directory of Open Access Journals (Sweden)

    Syed Muhammad Hassan Raza

    2018-05-01

    Full Text Available Net primary production (NPP is an important indicator of the supply of food and wood. We used a hierarchy model and real time field observations to estimate NPP using satellite imagery. Net radiation received by rice crop canopies was estimated as 27,428 Wm−2 (215.4 Wm−2 as averaged throughout the rice cultivation period (RCP, including 23,168 Wm−2 (118.3 Wm−2 as averaged as shortwave and 4260 Wm−2 (34.63 Wm−2 as averaged as longwave radiation. Soil, sensible and latent heat fluxes were approximated as 3324 Wm−2, 16,549 Wm−2, and 7554 Wm−2, respectively. Water stress on rice crops varied between 0.5838 and 0.1218 from the start until the end of the RCP. Biomass generation declined from 6.09–1.03 g/m2 in the tillering and ripening stages, respectively. We added a soil suitability constant (ħα into the Carnegie-Ames-Stanford Approach (CASA model to achieve a more precise estimate of yield. Classification results suggest that the total area under rice cultivation was 8861 km2. The spatial distribution of rice cultivation as per suitability zone was: 1674 km2 was not suitable (NS, 592 km2 was less suitable (LS, 2210 km2 was moderately suitable (MS and 4385 km2 was highly suitable (HS soil type with ħα ranges of 0.05–0.25, 0.4–0.6, 0.7–0.75 and 0.85–0.95 of the CASA based yield, respectively. We estimated net production as 1.63 million tons, as per 0.46 ton/ha, 1.2 ton/ha 1.9 ton/ha and 2.4 ton/ha from NS, LS, MS and HS soil types, respectively. The results obtained through this improved CASA model, by addition of the constant ħα, are likely to be useful for agronomists by providing more accurate estimates of NPP.

  19. Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Görres, C.-M.; Hoffmann, Carl Christian

    2012-01-01

    This study presents the first annual estimates of net ecosystem exchange (NEE) of CO2 and net ecosystem carbon balances (NECB) of contrasting Danish agricultural peatlands. Studies were done at eight sites representing permanent grasslands (PG) and rotational (RT) arable soils cropped to barley......, potato or forage grasses in three geo-regional settings. Using an advanced flux-chamber technique, NEE was derived from modelling of ecosystem respiration (ER) and gross primary production (GPP) with temperature and photosynthetically active radiation as driving variables. At PG (n = 3) and RT (n = 5......) sites, NEE (mean ± standard error, SE) was 5.1 ± 0.9 and 8.6 ± 2.0 Mg C ha−1 yr−1, respectively, but with the overall lowest value observed for potato cropping (3.5 Mg C ha−1 yr−1). This was partly attributed to a short-duration vegetation period and drying of the soil especially in potato ridges. NECB...

  20. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies

    Science.gov (United States)

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez

    2000-01-01

    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  1. Radiative warming of the air observed near a bare-soil surface on calm clear nights

    International Nuclear Information System (INIS)

    Sang, N.; Kobayahsi, T.

    1999-01-01

    The radiative flux in the lowest three meters above a bare-soil surface was directly measured on calm nights with little cloud cover. Although divergence of upward radiative flux occurred above 1m, convergence was often observed between 0.2m and 1m all through the night. Almost the same results were obtained for the net flux except that the transitional height between divergence and convergence was some tens of centimeters, which means that radiative warming occurred just above the bare-soil surface during the night. This phenomenon can be explained by postulating that cold air is produced by conduction at the surface of small heat-insulated projections (HIPs) such as soil grains on the ground surface, while the ground releases the heat stored during the day by radiation through the pores between HIPs and warms the air immediately above the surface at night. This “HIP hypothesis” can also account for the so-called “raised minimum (RM)” phenomenon. (author)

  2. Analysis of solar radiation transfer: A method to estimate the porosity of a plastic shading net

    International Nuclear Information System (INIS)

    Abdel-Ghany, A.M.; Al-Helal, I.M.

    2011-01-01

    Plastic nets with opaque threads are frequently used for shading agricultural structures under high solar radiation conditions. A parameter that is often used to define a net is the net porosity (Π). Value of Π is usually estimated by one of three methods: image processing, direct beam transmittance, or solar radiation balance (hereafter radiation balance). Image processing is a rather slow process because it requires scanning the net sample at high resolution. The direct beam transmittance and radiation balance methods greatly overestimate Π because some of the solar radiation incident on the thread surfaces is forward scattered and add a considerable amount of radiation to that transmitted from the net pores directly. In this study, the radiation balance method was modified to estimate Π precisely. The amount of solar radiation scattered forward on the thread surfaces was estimated separately. Thus, the un-scattered solar radiation transmitted from the net pores directly, which describes the net porosity, Π could be estimated. This method, in addition to the image processing and the direct beam transmittance methods were used to estimate Π for different types of nets that are commonly used for shading structures in summer. Values of Π estimated by using the proposed method were in good accordance with those measured by the image processing method at a resolution of 4800 dpi. The direct beam transmittance and the radiation balance methods resulted in overestimation errors in the values of Π. This error strongly depends on the color of the net. The estimated errors were +14% for a green net and +37% for a white net when using the radiation balance method, and were +16% and +38%, respectively, when using the direct beam transmittance method. In the image processing method, a resolution of 2400 dpi is sufficient to estimate Π precisely and the higher resolutions showed no significant effect on the value of Π.

  3. Do evergreen and deciduous trees have different effects on net N mineralization in soil?

    Science.gov (United States)

    Mueller, Kevin E; Hobbie, Sarah E; Oleksyn, Jacek; Reich, Peter B; Eissenstat, David M

    2012-06-01

    Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type.

  4. On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: Analysis of radiation and convection heat transfer

    International Nuclear Information System (INIS)

    Abdel-Ghany, Ahmed M.; Kozai, Toyoki

    2006-01-01

    A physical model for analyzing the radiative and convective heat transfer in a fog cooled, naturally ventilated greenhouse was developed for estimating the overall heat transmission coefficient based on the conduction, convection and thermal radiation heat transfer coefficients and for predicting the soil heat flux. The contribution of the water vapor of the inside air to the emission and absorption of thermal radiation was determined. Measurements of the outside and inside greenhouse environments to be used in the analysis were conducted around solar noon (12:19-13:00) on a hot sunny day to provide the maximum solar radiation transmission into the greenhouse. The net solar radiation flux measured at the greenhouse floor showed a reasonable agreement with the predicted value. The net fluxes were estimated around noon. The average net radiation (solar and thermal) at the soil surface was 220.0 W m -2 , the average soil heat flux was 155.0 W m -2 and the average contribution of the water vapor of the inside air to the thermal radiation was 22.0 W m -2 . The average overall heat transmission coefficient was 4.0 W m -2 C -1 and was in the range between 3.0 W m -2 C -1 and 6.0 W m -2 C -1 under the different hot summer conditions between the inside and outside of the naturally ventilated, fog cooled greenhouse

  5. Soil respiration and net N mineralization along a climate gradient in Maine

    Science.gov (United States)

    Jeffery A. Simmons; Ivan J. Fernandez; Russell D. Briggs

    1996-01-01

    Our objective was to determine the influence of temperature and moisture on soil respiration and net N mineralization in northeastern forests. The study consisted of sixteen deciduous stands located along a regional climate gradient within Maine. A significant portion of the variance in net N mineralization (41 percent) and respiration (33 percent) was predicted by...

  6. HYPERION NET - a distributed measurement system for monitoring background ionizing radiation

    International Nuclear Information System (INIS)

    Saponjic, Dj.; Zigic, A.; Arandjelovic, V.

    2003-01-01

    The distributed measurement system - HYPERION NET, based on the concept of FieldBus technology, has been developed, implemented, and tested as a pilot project, the first WEB enabled on-line networked ionizing radiation monitoring and measurement system. The Net has layered the structure, tree topology, and is based on the Internet infrastructure and TCP/IP communication protocol. The Net's core element is an intelligent GM transmitter, based on GM tube, used for measuring the absorbed dose in air, in the range of 0.087 to 720 μGy/h. The transmitter makes use of an advanced count rate measurement algorithm capable of suppressing the statistical fluctuations of the measured quantity, which significantly improves its measurement performance mailing it suitable for environmental radiation measurements. (author)

  7. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation.

    Science.gov (United States)

    Yang, Shihong; Xiao, Ya Nan; Xu, Junzeng

    2018-04-01

    Quantifying carbon sequestration in paddy soil is necessary to understand the effect of agricultural practices on carbon cycles. The objective of this study was to assess the effect of organic fertilizer addition (MF) on the soil respiration and net ecosystem carbon dioxide (CO 2 ) absorption of paddy fields under water-saving irrigation (CI) in the Taihu Lake Region of China during the 2014 and 2015 rice-growing seasons. Compared with the traditional fertilizer and water management (FC), the joint regulation of CI and MF (CM) significantly increased the rice yields and irrigation water use efficiencies of paddy fields by 4.02~5.08 and 83.54~109.97% (p < 0.05). The effects of organic fertilizer addition on soil respiration and net ecosystem CO 2 absorption rates showed inter-annual differences. CM paddy fields showed a higher soil respiration and net CO 2 absorption rates during some periods of the rice growth stage in the first year and during most periods of the rice growth stage in the second year. These fields also had significantly higher total CO 2 emission through soil respiration (total R soil ) and total net CO 2 absorption compared with FC paddy fields (p < 0.05). The total R soil and net ecosystem CO 2 absorption of CM paddy fields were 67.39~91.55 and 129.41~113.75 mol m -2 , which were 27.66~135.52 and 12.96~31.66% higher than those of FC paddy fields. The interaction between water and fertilizer management had significant effects on total net ecosystem CO 2 absorption. The frequent alternate wet-dry cycles of CI paddy fields increased the soil respiration and reduced the net CO 2 absorption. Organic fertilizer promoted the soil respiration of paddy soil but also increased its net CO 2 absorption and organic carbon content. Therefore, the joint regulation of water-saving irrigation and organic fertilizer is an effective measure for maintaining yield, increasing irrigation water use efficiency, mitigating CO 2 emission, and promoting paddy

  8. Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest

    International Nuclear Information System (INIS)

    Tamai, K.; Abe, T.; Araki, M.; Ito, H.

    1998-01-01

    Seasonal changes in the radiation budget and soil heat flux of a forest floor were measured in a mixed forest located in Kyoto, Japan. The basal area at breast height in the survey forest was about 15·82 m 2 ha −1 , for evergreen trees, and 12·46 m 2 ha −1 , for deciduous trees. The sky view factor was 16 and 22% at the survey site in the foliate and defoliate seasons, respectively. The small difference between the sky view factor in the two seasons was reflected in the seasonal change in the radiation budget of the forest floor. Namely, the net long-wave radiation changed rapidly in leafing and falling days, and the rate of net short-wave radiation was highest in April. The distinctive characteristic of the radiation budget was that the rates of available radiation in the daytime and at night were almost equal in September and October. Latent heat flux at the forest floor was estimated to be around 94 MJ m −2 annually, from our measurement with the simulation model. (author)

  9. Long-term changes in net radiation and its components above a pine forest and a grass surface in Germany

    International Nuclear Information System (INIS)

    Kessler, A.; Jaeger, L.

    1999-01-01

    Long-term measurements (1974–1993 and 1996, respectively) of the net radiation (Q), global radiation (G), reflected global radiation (R), long-wave atmospheric radiation (A) and thermal radiation (E) of a pine forest in Southern Germany (index p) and of a grass surface in Northern Germany (index g) are compared. The influence of changes in surface properties is discussed. There are, in the case of the pine stand, forest growth and forest management and in the case of the grass surface, the shifting of the site from a climatic garden to a horizontal roof. Both series of radiant fluxes are analyzed with respect to the influences of the weather (cloudiness, heat advection). To eliminate the different influence of the solar radiation of the two sites, it is necessary to normalize by means of the global radiation G, yielding the radiation efficiency Q/G, the albedo R/G=α and the normalized long-wave net radiation (A+E)/G. Furthermore, the long-term mean values and the long-term trend of yearly mean values are discussed and, moreover, a comparison is made of individual monthly values. Q p is twice as large as Q g . The reason for this is the higher values of G and A above the pine forest and half values of α p compared to α g . E p is only a little greater than E g . The time series of the radiation fluxes show the following trends: Q p declines continuously despite a slight increase of G p . This is mainly due to the long-wave radiation fluxes. The net radiation of the grass surface Q g shows noticeably lower values after the merging of the site. This phenomenon is also dominated by the long-wave radiation processes. Although the properties of both site surfaces alter, E p and E g remain relatively stable. A p and A g show a remarkable decrease however. The reason for this is to be found in a modification of the heat advection, showing a more pronounced impact on the more continentally exposed site (pine forest). Compared to α g , α p shows only a small

  10. A soil moisture-rainfall feedback mechanism. 1. Theory and observations

    International Nuclear Information System (INIS)

    Eltahir, E.A.B.

    1998-01-01

    This paper presents a hypothesis regarding the fundamental role of soil moisture conditions in land-atmosphere interactions. We propose that wet soil moisture conditions over any large region should be associated with relatively large boundary layer moist static energy, which favors the occurrence of more rainfall. Since soil moisture conditions themselves reflect past occurrence of rainfall, the proposed hypothesis implies a positive feedback mechanism between soil moisture and rainfall. This mechanism is based on considerations of the energy balance at the land-atmosphere boundary, in contrast to similar mechanisms that were proposed in the past and that were based on the concepts of water balance and precipitation recycling. The control of soil moisture on surface albedo and Bowen ratio is the fundamental basis of the proposed soil moisture-rainfall feedback mechanism. The water content in the upper soil layer affects these two important properties of the land surface such that both variables decrease with any increase in the water content of the top soil layer. The direct effect of soil moisture on surface albedo implies that wet soil moisture conditions enhance net solar radiation. The direct effect of soil moisture on Bowen ratio dictates that wet soil moisture conditions would tend to enhance net terrestrial radiation at the surface through cooling of surface temperature, reduction of upwards emissions of terrestrial radiation, and simultaneous increase in atmospheric water vapor content and downwards flux of terrestrial radiation. Thus, under wet soil moisture conditions, both components of net radiation are enhanced, resulting in a larger total flux of heat from the surface into the boundary layer. This total flux represents the sum of the corresponding sensible and latent heat fluxes. Simultaneously, cooling of surface temperature should be associated with a smaller sensible heat flux and a smaller depth of the boundary layer

  11. Cost-effective sampling of 137Cs-derived net soil redistribution: part 1 – estimating the spatial mean across scales of variation

    International Nuclear Information System (INIS)

    Li, Y.; Chappell, A.; Nyamdavaa, B.; Yu, H.; Davaasuren, D.; Zoljargal, K.

    2015-01-01

    The 137 Cs technique for estimating net time-integrated soil redistribution is valuable for understanding the factors controlling soil redistribution by all processes. The literature on this technique is dominated by studies of individual fields and describes its typically time-consuming nature. We contend that the community making these studies has inappropriately assumed that many 137 Cs measurements are required and hence estimates of net soil redistribution can only be made at the field scale. Here, we support future studies of 137 Cs-derived net soil redistribution to apply their often limited resources across scales of variation (field, catchment, region etc.) without compromising the quality of the estimates at any scale. We describe a hybrid, design-based and model-based, stratified random sampling design with composites to estimate the sampling variance and a cost model for fieldwork and laboratory measurements. Geostatistical mapping of net (1954–2012) soil redistribution as a case study on the Chinese Loess Plateau is compared with estimates for several other sampling designs popular in the literature. We demonstrate the cost-effectiveness of the hybrid design for spatial estimation of net soil redistribution. To demonstrate the limitations of current sampling approaches to cut across scales of variation, we extrapolate our estimate of net soil redistribution across the region, show that for the same resources, estimates from many fields could have been provided and would elucidate the cause of differences within and between regional estimates. We recommend that future studies evaluate carefully the sampling design to consider the opportunity to investigate 137 Cs-derived net soil redistribution across scales of variation. - Highlights: • The 137 Cs technique estimates net time-integrated soil redistribution by all processes. • It is time-consuming and dominated by studies of individual fields. • We use limited resources to estimate soil

  12. Estimation of absorbed photosynthetically active radiation and vegetation net production efficiency using satellite data

    International Nuclear Information System (INIS)

    Hanan, N.P.; Prince, S.D.; Begue, A.

    1995-01-01

    The amount of photosynthetically active radiation (PAR) absorbed by green vegetation is an important determinant of photosynthesis and growth. Methods for the estimation of fractional absorption of PAR (iff PAR ) for areas greater than 1 km 2 using satellite data are discussed, and are applied to sites in the Sahel that have a sparse herb layer and tree cover of less than 5%. Using harvest measurements of seasonal net production, net production efficiencies are calculated. Variation in estimates of seasonal PAR absorption (APAR) caused by the atmospheric correction method and relationship between surface reflectances and iff PAR is considered. The use of maximum value composites of satellite NDVI to reduce the effect of the atmosphere is shown to produce inaccurate APAR estimates. In this data set, however, atmospheric correction using average optical depths was found to give good approximations of the fully corrected data. A simulation of canopy radiative transfer using the SAIL model was used to derive a relationship between canopy NDVI and iff PAR . Seasonal APAR estimates assuming a 1:1 relationship between iff PAR and NDVI overestimated the SAIL modeled results by up to 260%. The use of a modified 1:1 relationship, where iff PAR was assumed to be linearly related to NDVI scaled between minimum (soil) and maximum (infinite canopy) values, underestimated the SAIL modeled results by up to 35%. Estimated net production efficiencies (ϵ n , dry matter per unit APAR) fell in the range 0.12–1.61 g MJ −1 for above ground production, and in the range 0.16–1.88 g MJ −1 for total production. Sites with lower rainfall had reduced efficiencies, probably caused by physiological constraints on photosynthesis during dry conditions. (author)

  13. Net Surface Shortwave Radiation from GOES Imagery—Product Evaluation Using Ground-Based Measurements from SURFRAD

    Directory of Open Access Journals (Sweden)

    Anand K. Inamdar

    2015-08-01

    Full Text Available The Earth’s surface net radiation controls the energy and water exchanges between the Earth’s surface and the atmosphere, and can be derived from satellite observations. The ability to monitor the net surface radiation over large areas at high spatial and temporal resolution is essential for many applications, such as weather forecasting, short-term climate prediction or water resources management. The objective of this paper is to derive the net surface radiation in the shortwave domain at high temporal (half-hourly and spatial resolution (~1 km using visible imagery from Geostationary Operational Environmental Satellite (GOES. The retrieval algorithm represents an adaptation to GOES data of a standard algorithm initially developed for the NASA-operated Clouds and Earth’s Radiant Energy System (CERES scanner. The methodology relies on: (1 the estimation of top of atmosphere shortwave radiation from GOES spectral measurements; and (2 the calculation of net surface shortwave (SW radiation accounting for atmospheric effects. Comparison of GOES-retrieved net surface shortwave radiation with ground-measurements at the National Oceanic and Atmospheric Administration’s (NOAA Surface Radiation (SURFRAD stations yields very good agreement with average bias lower than 5 W·m−2 and root mean square difference around 70 W·m−2. The algorithm performance is usually higher over areas characterized by low spatial variability in term of land cover type and surface biophysical properties. The technique does not involve retrieval and assessment of cloud properties and can be easily adapted to other meteorological satellites around the globe.

  14. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China

    Science.gov (United States)

    Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei

    2015-10-01

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl-, SO42- and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type.

  15. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China.

    Science.gov (United States)

    Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei

    2015-10-09

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl(-), SO4(2-) and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type.

  16. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance

    DEFF Research Database (Denmark)

    Kindler, Reimo; Siemens, Jan; Kaiser, Klaus

    2011-01-01

    ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small...... solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems....

  17. Estimating net short-wave radiation with the Bellani pyranometer

    International Nuclear Information System (INIS)

    Bernier, Y.; Plamondon, A.P.

    1983-01-01

    Two methods were developed by which daily net short-wave radiation (K∗) can be evaluated from Bellani pyranometer readings. The first method involves a simple regression equation. The second method uses a physical approach taking into account the effect of the Bellani's geometry on its response to direct and diffuse radiation throughout the day. Both methods, when tested on experimental data, tended to underestimate the measured K∗, the regression approach exhibiting a higher variance of the error [fr

  18. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Marland, Gregg; West, Tristram O.; Schlamadinger, Bernhard; Canella, Lorenza

    2003-01-01

    A change in agricultural practice can increase carbon sequestration in agricultural soils. To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO 2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield. We also consider how these factors will evolve over time. A change from conventional tillage to no-till agriculture, based on data for average practice in the U.S.; will result in net carbon sequestration in the soil that averages 337 kg C/ha/yr for the initial 20 yr with a decline to near zero in the following 20 yr, and continuing savings in CO 2 emissions because of reduced use of fossil fuels. The long-term results, considering all factors, can generally be expected to show decreased net greenhouse gas emissions. The quantitative details, however, depend on the site-specific impact of the conversion from conventional to no-till agriculture on agricultural yield and N 2 O emissions from nitrogen fertilizer

  19. Measurement of net nitrogen and phosphorus mineralization in wetland soils using a modification of the resin-core technique

    Science.gov (United States)

    Noe, Gregory B.

    2011-01-01

    A modification of the resin-core method was developed and tested for measuring in situ soil N and P net mineralization rates in wetland soils where temporal variation in bidirectional vertical water movement and saturation can complicate measurement. The modified design includes three mixed-bed ion-exchange resin bags located above and three resin bags located below soil incubating inside a core tube. The two inner resin bags adjacent to the soil capture NH4+, NO3-, and soluble reactive phosphorus (SRP) transported out of the soil during incubation; the two outer resin bags remove inorganic nutrients transported into the modified resin core; and the two middle resin bags serve as quality-control checks on the function of the inner and outer resin bags. Modified resin cores were incubated monthly for a year along the hydrogeomorphic gradient through a floodplain wetland. Only small amounts of NH4+, NO3-, and SRP were found in the two middle resin bags, indicating that the modified resin-core design was effective. Soil moisture and pH inside the modified resin cores typically tracked changes in the surrounding soil abiotic environment. In contrast, use of the closed polyethylene bag method provided substantially different net P and N mineralization rates than modified resin cores and did not track changes in soil moisture or pH. Net ammonification, nitrifi cation, N mineralization, and P mineralization rates measured using modified resin cores varied through space and time associated with hydrologic, geomorphic, and climatic gradients in the floodplain wetland. The modified resin-core technique successfully characterized spatiotemporal variation of net mineralization fluxes in situ and is a viable technique for assessing soil nutrient availability and developing ecosystem budgets.

  20. The influence of cockchafer larvae on net soil methane fluxes under different vegetation types - a mesocosm study

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Chesmore, David; Müller, Christoph

    2017-04-01

    The influence of land-use associated pest insects on net soil CH4 fluxes has received little attention thus far, although e.g. soil-dwelling Scarabaeidae larvae are qualitatively known to emit CH4. The project "CH4ScarabDetect" aims to provide the first quantitative estimate of the importance of soil-dwelling larvae of two important European agricultural and forest pest insect species - the common cockchafer (Melolontha melolontha) and the forest cockchafer (M. hippocastani) - for net soil CH4 fluxes. Here we present a mesocosm study within "CH4ScarabDetect" which tests the influence of different abundances of common cockchafer larvae on net soil CH4 fluxes under different vegetation types. In August 2016, 27 PVC boxes with a base area of 50 cm x 50 cm and a height of 40 cm were buried in planting beds previously used for cultivating vegetables. The bottom of each box was filled with a 10 cm thick layer of loam which was then covered with a 25 cm thick layer of loamy sand. The soil was hand-sieved prior to filling the boxes to remove any macrofauna. The mesocosms were planted with either turf, carrots or a combination of both. Of the resulting nine replicates per vegetation type, six were infested with one cockchafer larvae each in November 2016. In three of these infested mesocosms, the larvae abundance will be further increased to three in May 2017. This mesocosm study will continue until October 2017 during which measurements of net soil CH4 fluxes will be conducted with the chamber flux method twice per month. For the in situ separation of gross CH4 production and gross CH4 oxidation, the chamber method will be combined with a 13CH4 isotope pool dilution technique. Methane concentrations and their isotopic signatures in the collected gas samples will be analysed with a state-of-the-art CRDS analyzer (cavity ring-down spectroscopy, G2201-i) equipped with the Small Sample Isotope Module 2 - A0314 (Picarro Inc., USA). Different combinations of larvae abundance and

  1. Soil thermal properties at Kalpakkam in coastal south India

    Indian Academy of Sciences (India)

    Time series of soil surface and subsurface temperatures, soil heat ux, net radiation, air temperature and wind speed were measured at two locations in Kalpakkam, coastal southeast India. The data were analysed to estimate soil thermal di usivity, thermal conductivity, volumetric heat capacity and soil heat ux. This paper ...

  2. Albedo and estimates of net radiation for green beans under polyethylene cover and field conditions

    International Nuclear Information System (INIS)

    Souza, J.L. de; Escobedo, J.F.; Tornero, M.T.T.

    1999-01-01

    This paper describes the albedo (r) and estimates of net radiation and global solar irradiance for green beans crop (Phaseolus vulgaris L.), cultivated in greenhouse with cover of polyethylene and field conditions, in Botucatu, SP, Brazil (22° 54' S; 48° 27' W; 850 m). The solar global irradiance (R g ) and solar reflected radiation (R r ) were used to estimate the albedo through the ratio between R r and R g . The diurnal curves of albedo were obtained for days with clear sky and partially cloudy conditions, for different phenological stages of the crop. The albedo ranged with the solar elevation, the environment and the phenological stages. The cloudiness range have almost no influence on the albedo diurnal amount. The estimation of radiation were made by linear regression, using the global solar irradiance (R g ) and net short-waves radiation (R c ) as independent variables. All estimates of radiation showed better adjustment for specific phenological periods compared to the entire crop growing cycle. The net radiation in the greenhouse has been estimated by the global solar irradiance measured at field conditions. (author) [pt

  3. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    International Nuclear Information System (INIS)

    Verheijen, Frank G A; Bastos, Ana Catarina; Keizer, Jan Jacob; Jeffery, Simon; Van der Velde, Marijn; Penížek, Vít; Beland, Martin

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO 2 -C e over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO 2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha −1 , we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha −1 ), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  4. Development of a New Zealand SedNet model for assessment of catchment-wide soil-conservation works

    Science.gov (United States)

    Dymond, John R.; Herzig, Alexander; Basher, Les; Betts, Harley D.; Marden, Mike; Phillips, Chris J.; Ausseil, Anne-Gaelle E.; Palmer, David J.; Clark, Maree; Roygard, Jon

    2016-03-01

    Much hill country in New Zealand has been converted from indigenous forest to pastoral agriculture, resulting in increased soil erosion. Following a severe storm that hit the Manawatu-Wanaganui region in 2004 and caused 62,000 landslides, the Horizons Regional Council have implemented the Sustainable Land Use Initiative (SLUI), a programme of widespread soil conservation. We have developed a New Zealand version (SedNetNZ) of the Australian SedNet model to evaluate the impact of the SLUI programme in the 5850 km2 Manawatu catchment. SedNetNZ spatially distributes budgets of fine sediment in the landscape. It incorporates landslide, gully, earthflow erosion, surficial erosion, bank erosion, and flood-plain deposition, the important forms of soil erosion in New Zealand. Modelled suspended sediment loads compared well with measured suspended sediment loads with an R2 value of 0.85 after log transformation. A sensitivity analysis gave the uncertainty of estimated suspended sediment loads to be approximately plus or minus 50% (at the 95% confidence level). It is expected that by 2040, suspended sediment loads in targeted water management zones will decrease by about 40%. The expected decrease for the whole catchment is 34%. The expected reduction is due to maturity of tree planting on land at risk to soil erosion. The 34% reduction represents an annual rate of return of 20% on 20 million NZ of investment on soil conservation works through avoided damage to property and infrastructure and avoided clean-up costs.

  5. Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation, China.

    Science.gov (United States)

    Wang, Yongsheng; Liu, Yansui; Liu, Ruliang; Zhang, Aiping; Yang, Shiqi; Liu, Hongyuan; Zhou, Yang; Yang, Zhengli

    2017-05-09

    The efficacy of biochar as an environmentally friendly agent for non-point source and climate change mitigation remains uncertain. Our goal was to test the impact of biochar amendment on paddy rice nitrogen (N) uptake, soil N leaching, and soil CH 4 and N 2 O fluxes in northwest China. Biochar was applied at four rates (0, 4.5, 9 and13.5 t ha -1 yr -1 ). Biochar amendment significantly increased rice N uptake, soil total N concentration and the abundance of soil ammonia-oxidizing archaea (AOA), but it significantly reduced the soil NO 3 - -N concentration and soil bulk density. Biochar significantly reduced NO 3 - -N and NH 4 + -N leaching. The C2 and C3 treatments significantly increased the soil CH 4 flux and reduced the soil N 2 O flux, leading to significantly increased net global warming potential (GWP). Soil NO 3 - -N rather than NH 4 + -N was the key integrator of the soil CH 4 and N 2 O fluxes. Our results indicate that a shift in abundance of the AOA community and increased rice N uptake are closely linked to the reduced soil NO 3 - -N concentration under biochar amendment. Furthermore, soil NO 3 - -N availability plays an important role in regulating soil inorganic N leaching and net GWP in rice paddies in northwest China.

  6. Soil thermal properties at Kalpakkam in coastal south India

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    2012-02-01

    Feb 1, 2012 ... K Anandakumar1, R Venkatesan2, Thara V. Prabha1. 1Crop and ... Time series of soil surface and subsurface temperatures, soil heat flux, net radiation, air temperature and wind ... measured directly using thermal conductivity.

  7. Lunar soil as shielding against space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. [Lawrence Berkeley National Laboratory, MS 83R0101, 1 Cyclotron Road, Berkeley, CA 94720 (United States)], E-mail: miller@lbl.gov; Taylor, L. [Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 (United States); Zeitlin, C. [Southwest Research Institute, Boulder, CO 80302 (United States); Heilbronn, L. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Guetersloh, S. [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); DiGiuseppe, M. [Northrop Grumman Corporation, Bethpage, NY 11714 (United States); Iwata, Y.; Murakami, T. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2009-02-15

    We have measured the radiation transport and dose reduction properties of lunar soil with respect to selected heavy ion beams with charges and energies comparable to some components of the galactic cosmic radiation (GCR), using soil samples returned by the Apollo missions and several types of synthetic soil glasses and lunar soil simulants. The suitability for shielding studies of synthetic soil and soil simulants as surrogates for lunar soil was established, and the energy deposition as a function of depth for a particular heavy ion beam passing through a new type of lunar highland simulant was measured. A fragmentation and energy loss model was used to extend the results over a range of heavy ion charges and energies, including protons at solar particle event (SPE) energies. The measurements and model calculations indicate that a modest amount of lunar soil affords substantial protection against primary GCR nuclei and SPE, with only modest residual dose from surviving charged fragments of the heavy beams.

  8. Radiation and energy balance of lettuce culture inside a polyethylene greenhouse

    International Nuclear Information System (INIS)

    Frisina, V. de A.; Escobedo, J.F.

    1999-01-01

    The objective of this paper was to describe the radiation and energy balance, during the lettuce (Lactuca sativa, L. cv. Verônica) crop cycle inside a polyethylene greenhouse. The radiation and energy balance was made inside a tunnel greenhouse with polyethylene cover (100 mm) and in an external area, both areas with 35 m 2 . Global, reflected and net radiation, soil heat flux and air temperature (dry and humid) were measured during the crop cycle. A Datalogger, which operated at 1 Hz frequency, storing 5 minutes averages was utilized. The global (K↓) and reflected (K) radiations showed that the average transmission of global radiation (K↓in / K↓ex) was almost constant, near to 79.59%, while the average ratio of reflected radiation (Kin / Kex) was 69.21% with 8.47% standard-deviation. The normalized curves of short-wave net radiation, in relation to the global radiation (K*/ K↓), found for both environments, were almost constant at the beginning of cycle; this relation decreased in the final stage of culture. The normalized relation (Rn/ K↓) was bigger in the external area, about 12%, when the green culture covered the soil surface. The long-wave radiation balance average (L*) was bigger outside, about 50%. The energy balance, estimated in terms of vertical fluxes, showed that, for the external area, in average, 83.07% of total net radiation was converted in latent heat evaporation (LE), and 18% in soil heat flux (G), and 9.96% in sensible heat (H), while inside of the greenhouse, 58.71% of total net radiation was converted in LE, 42.68% in H, and 28.79% in G. (author) [pt

  9. Net carbon allocation in soybean seedlings as influenced by soil water stress at two soil temperatures

    International Nuclear Information System (INIS)

    McCoy, E.L.; Boersma, L.; Ekasingh, M.

    1990-01-01

    The influence of water stress at two soil temperatures on allocation of net photoassimilated carbon in soybean (Glycine max [L.] Merr.) was investigated using compartmental analysis. The experimental phase employed classical 14 C labeling methodology with plants equilibrated at soil water potentials of -0.04, -0.25 and -0.50 MPa; and soil temperatures of 25 and 10C. Carbon immobilization in the shoot apex generally followed leaf elongation rates with decreases in both parameters at increasing water stress at both soil temperatures. However, where moderate water stress resulted in dramatic declines in leaf elongation rates, carbon immobilization rates were sharply decreased only at severe water stress levels. Carbon immobilization was decreased in the roots and nodules of the nonwater stressed treatment by the lower soil temperature. This relation was reversed with severe water stress, and carbon immobilization in the roots and nodules was increased at the lower soil temperature. Apparently, the increased demand for growth and/or carbon storage in these tissues with increased water stress overcame the low soil temperature limitations. Both carbon pool sizes and partitioning of carbon to the sink tissues increased with moderate water stress at 25C soil temperature. Increased pool sizes were consistent with whole plant osmotic adjustment at moderate water stress. Increased partitioning to the sinks was consistent with carbon translocation processes being less severely influenced by water stress than is photosynthesis

  10. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    Science.gov (United States)

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  11. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 2000-present, Net Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Net Longwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  12. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 1991-present, Net Shortwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Net Shortwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  13. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 2000-present, Net Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Net Longwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  14. Flood effects on efflux and net production of nitrous oxide in river floodplain soils

    Science.gov (United States)

    Riaz, Muhammad; Bruderer, Christian; Niklaus, Pascal A.; Luster, Jörg

    2016-04-01

    Floodplain soils are often rich in nutrients and exhibit high spatial heterogeneity in terms of geomorphology, soil environmental conditions and substrate availability for processes involved in carbon and nutrient cycling. In addition, fluctuating water tables lead to temporally changing redox conditions. In such systems, there are ideal conditions for the occurrence of hot spots and moments of nitrous oxide emissions, a potent greenhouse gas. The factors that govern the spatial heterogeneity and dynamics of N2O formation in floodplain soils and the surface efflux of this gas are not fully understood. A particular issue is the contribution of N2O formation in the subsoil to surface efflux. We studied this question in the floodplain of a restored section of the Thur river (NE Switzerland) which is characterized by a flashy flow regime. As a consequence, the floodplain soils are unsaturated most of the time. We showed earlier that saturation during flood pulses leads to short phases of generally anoxic conditions followed by a drying phase with anoxic conditions within aggregates and oxic conditions in larger soil pores. The latter conditions are conducive for spatially closely-coupled nitrification-denitrification and related hot moments of nitrous oxide formation. In a floodplain zone characterized by about one meter of young, sandy sediments, that are mostly covered by the tall grass Phalaris arundinacea, we measured at several time points before and after a small flood event N2O surface efflux with the closed-chamber method, and assessed N2O concentrations in the soil air at four different depths using gas-permeable tubings. In addition, we calculated the N2O diffusivity in the soil from Radon diffusivity. The latter was estimated in-situ from the recovery of Radon concentration in the gas-permeable tubings after purging with ambient air. All these data were then used to calculate net N2O production rates at different soil depths with the gradient method. In

  15. Model and calculations for net infiltration

    International Nuclear Information System (INIS)

    Childs, S.W.; Long, A.

    1992-01-01

    In this paper a conceptual model for calculating net infiltration is developed and implemented. It incorporates the following important factors: viability of climate for the next 10,000 years, areal viability of net infiltration, and important soil/plant factors that affect the soil water budget of desert soils. Model results are expressed in terms of occurrence probabilities for time periods. In addition the variability of net infiltration is demonstrated both for change with time and differences among three soil/hydrologic units present at the site modeled

  16. Determining Daily Radiation Interception in a Semiarid Inter ...

    African Journals Online (AJOL)

    ... in soil-plant-atmosphere continuum, as net radiation is a major part of the energy balance. ... Africa, where solar radiation is not a limiting factor for plant growth. The results suggested that ... Metrics Loading ... Metrics powered by PLOS ALM

  17. Micrometeorological, evapotranspiration, and soil-moisture data at the Amargosa Desert Research site in Nye County near Beatty, Nevada, 2006-11

    Science.gov (United States)

    Arthur, Jonathan M.; Johnson, Michael J.; Mayers, C. Justin; Andraski, Brian J.

    2012-01-01

    This report describes micrometeorological, evapotranspiration, and soil-moisture data collected since 2006 at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada. Micrometeorological data include precipitation, solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, near-surface soil temperature, soil-heat flux, and soil-water content. Evapotranspiration (ET) data include latent-heat flux, sensible-heat flux, net radiation, soil-heat flux, soil temperature, air temperature, vapor pressure, and other principal energy-budget data. Soil-moisture data include periodic measurements of volumetric water-content at experimental sites that represent vegetated native soil, devegetated native soil, and simulated waste disposal trenches - maximum measurement depths range from 5.25 to 29.25 meters. All data are compiled in electronic spreadsheets that are included with this report.

  18. Confirmation of soil radiation damping from test versus analysis

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Mukhim, G.S.; Desmond, T.P.

    1987-01-01

    The work was performed to demonstrate that soil-structure interaction effects for nuclear plant structures can be accurately (and conservatively) predicted using the finite element or soil spring methods of soil-structure interaction analysis. Further, the work was done to investigate the relative importance of soil radiation versus soil material damping in the total soil damping analytical treatment. The analytical work was benchmarked with forced vibration tests of a concrete circular slab resting on the soil surface. The applied loading was in the form of a suddenly applied pulse load, or snapback. The measured responses of the slap represent the free vibration of the slab after the pulse load has been applied. This simplifies the interpretation of soil damping, by the use of the logarithmic decay formulation. To make comparisons with the test results, the damping data calculated from the analytical models is also based on the logarithmic decay formulation. An attempt is made to differentiate the observed damped behavior of the concrete slab as being caused by soil radiation versus soil material damping. It is concluded that both the traditional soil radiation and material damping analytical simplifications are validated by the observed responses. It is concluded that arbitrary 'conservative' assumptions traditionally made in nuclear plant soil-structure interaction analyses are indeed arbitrary, and not born out by physical evidence. The amount of conservatism introduced by limiting total soil damping to values like 5% to 10% can be large. For the test slab sizes investigated, total soil damping is about 25%. For full size nuclear plant foundations, total soil damping is commonly in the 35% to 70% range. The authors suggest that full soil damping values (the combined radiation and material damping) should be used in the design, backfit and margin assessment of nuclear plants. (orig./HP)

  19. Changes in soil organic matter and net nitrogen mineralization in heathland soils, after removal, addition or replacement of litter from Erica tetralix or Molinia caerulea.

    NARCIS (Netherlands)

    Vuuren, van M.M.I.; Berendse, F.

    1993-01-01

    The effects of different litter input rates and of different types of litter on soil organic matter accumulation and net N mineralization were investigated in plant communities dominated by Erica tetralix L. or Molinia caerulea (L.) Moench. Plots in which the litter on the soil had repeatedly been

  20. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, 2000-present, Net Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Net Longwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  1. Seasonal reversal of temperature-moisture response of net carbon exchange of biocrusted soils in a cool desert ecosystem.

    Science.gov (United States)

    Tucker, C.; Reed, S.; Howell, A.

    2017-12-01

    Carbon cycling associated with biological soil crusts, which occur in interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the `mantle of fertility'), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report data collected in a cool desert ecosystem over one year using a multi-sensor approach to simultaneously measuring temperature and moisture of the biocrust surface layer (0-2 mm), and the deeper soil profile (5-20 cm), concurrent with automated measurement of surface soil CO2 effluxes. Our results illuminate robust relationships between microclimate and field CO2 pulses that have previously been difficult to detect and explain. The temperature of the biocrust surface layer was highly variable, ranging from minimum of -9 °C in winter to maximum of 77 °C in summer with a maximum diurnal range of 61 °C. Temperature cycles were muted deeper in the soil profile. During summer, biocrust and soils were usually hot and dry and CO2 fluxes were tightly coupled to pulse wetting events experienced at the biocrust surface, which consistently resulted in net CO2 efflux (i.e., respiration). In contrast, during the winter, biocrust and soils were usually cold and moist, and there was sustained net CO2 uptake via photosynthesis by biocrust organisms, although during cold dry periods CO2 fluxes were minimal. During the milder spring and fall seasons, short wetting events drove CO2 loss, while sustained wetting events resulted in net CO2 uptake. Thus, the upper and lower bounds of net CO2 exchange at a point in time were functions of the seasonal temperature regime, while the actual flux within those bounds was determined by the magnitude and duration of biocrust

  2. Estimating net rainfall, evaporation and water storage of a bare soil from sequential L-band emissivities

    Science.gov (United States)

    Stroosnijder, L.; Lascano, R. J.; Newton, R. W.; Vanbavel, C. H. M.

    1984-01-01

    A general method to use a time series of L-band emissivities as an input to a hydrological model for continuously monitoring the net rainfall and evaporation as well as the water content over the entire soil profile is proposed. The model requires a sufficiently accurate and general relation between soil emissivity and surface moisture content. A model which requires the soil hydraulic properties as an additional input, but does not need any weather data was developed. The method is shown to be numerically consistent.

  3. Measurement of radiation levels in soil samples by γ-ray spectrometry

    International Nuclear Information System (INIS)

    Sontakke, C.V.; Thamke, A.N.; Devika, K.; Srikanth, S.; Jayachandran, N.; Chander, Harish

    2016-01-01

    The natural terrestrial gamma radiation dose rate is an important contribution to the average dose rate received by the world's population. Estimation of the radiation dose distribution is important in assessing the health risk to a population and serve as the reference in documenting changes to environmental radioactivity in soil due to anthropogenic activities. Human beings are exposed outdoors to the natural terrestrial radiation that originates predominantly from the upper 30 cm of the soil. Only radionuclides with half-lives comparable with the age of the earth or their corresponding decay products existing in terrestrial material such as 238 U, 232 Th and 40 K are of great interest. Since these radionuclides are not uniformly distributed, the knowledge of their distribution in soil and rock play an important role in radiation protection and measurement. Gamma radiation from these represents the main external source of irradiation to the human body and the concentrations of these radionuclides in soil are determined by the radioactivity of the rock and also nature of the process of the formation of the soils. Therefore, radionuclides in soil generate a significant component of the background radiation exposure to the population

  4. Inconsistencies in net radiation estimates from use of several models of instruments in a desert environment

    International Nuclear Information System (INIS)

    Kustas, W.P.; Prueger, J.H.; Hipps, L.E.; Hatfield, J.L.; Meek, D.

    1998-01-01

    Studies of surface energy and water balance generally require an accurate estimate of net radiation and its spatial distribution. A project quantifying both short term and seasonal water use of shrub and grass vegetation in the Jornada Experimental Range in New Mexico prompted a study to compare net radiation observations using two types of net radiometers currently being used in research. A set of 12 REBS net radiometers were compared with each other and one Swissteco, over wet and dry surfaces in an arid landscape under clear skies. The set of REBS exhibited significant differences in output over both surfaces. However, they could be cross calibrated to yield values within 10 W m −2 , on average. There was also a significant bias between the REBS and Swissteco over a dry surface, but not over a wet one. The two makes of instrument could be made to agree under the dry conditions by using regression or autoregression techniques. However, the resulting equations would induce bias for the wet surface condition. Thus, it is not possible to cross calibrate these two makes of radiometer over the range of environmental conditions observed. This result indicates that determination of spatial distribution of net radiation over a variable surface should be made with identical instruments which have been cross calibrated. The need still exists for development of a radiometer and calibration procedures which will produce accurate and consistent measurements over a range of surface conditions. (author)

  5. Effect of gamma radiation on chlorophylls contents, net photosynthesis and respiration of chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.; Martin Moreno, C.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first 'b' chlorophyll affected to a greater extent than 'a' chlorophyll. Net photosynthesis and respiration decline throughout the time of the observations after irradiation, this depressing effect being much more remarkable for the first one. Net photosynthesis inhibition levels of about 30% have got only five hours post irradiation at a dose of 5000 Gy. (author)

  6. The relative-intensity method of X-ray fluorescence analysis and its application to soils and rocks

    International Nuclear Information System (INIS)

    Childs, C.W.; Furkert, R.J.

    1974-01-01

    The relative-intensity X-ray fluorescence method of analysis of rock and soil samples has been investigated and compared with the net-intensity method. Strong, coherently scattered radiation originating from the X-ray tube is shown to be preferable to background radiation as an internal standard, and scattered radiation measured at one wavelength can usefully be applied in the determination of several elements. When the concentrations of an element in two soil samples of different composition (for example concretions and the soil adjacent to them) are compared, the ratio of the relative intensities may be different from the ratio of net intensities by a factor of about two. The concentrations of manganese in thirteen standard rock samples determined by the relative-intensity method are within or very close to the ranges of values reported previously

  7. Prescribed burning impact on forest soil properties--a Fuzzy Boolean Nets approach.

    Science.gov (United States)

    Castro, Ana C Meira; Paulo Carvalho, Joao; Ribeiro, S

    2011-02-01

    The Portuguese northern forests are often and severely affected by wildfires during the Summer season. These occurrences significantly affect and negatively impact all ecosystems, namely soil, fauna and flora. In order to reduce the occurrences of natural wildfires, some measures to control the availability of fuel mass are regularly implemented. Those preventive actions concern mainly prescribed burnings and vegetation pruning. This work reports on the impact of a prescribed burning on several forest soil properties, namely pH, soil moisture, organic matter content and iron content, by monitoring the soil self-recovery capabilities during a one year span. The experiments were carried out in soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, Portugal, which was kept intact from prescribed burnings during a period of four years. Soil samples were collected from five plots at three different layers (0-3, 3-6 and 6-18) 1 day before prescribed fire and at regular intervals after the prescribed fire. This paper presents an approach where Fuzzy Boolean Nets (FBN) and Fuzzy reasoning are used to extract qualitative knowledge regarding the effect of prescribed fire burning on soil properties. FBN were chosen due to the scarcity on available quantitative data. The results showed that soil properties were affected by prescribed burning practice and were unable to recover their initial values after one year. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Regional scale net radiation estimation by means of Landsat and TERRA/AQUA imagery and GIS modeling

    Science.gov (United States)

    Cristóbal, J.; Ninyerola, M.; Pons, X.; Llorens, P.; Poyatos, R.

    2009-04-01

    Net radiation (Rn) is one of the most important variables for the estimation of surface energy budget and is used for various applications including agricultural meteorology, climate monitoring and weather prediction. Moreover, net radiation is an essential input variable for potential as well as actual evapotranspiration modeling. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute net radiation at regional scales in a feasible way. In this study we present a regional scale estimation of the daily Rn on clear days, (Catalonia, NE of the Iberian Peninsula), using a set of 22 Landsat images (17 Landsat-5 TM and 5 Landsat-7 ETM+) and 171 TERRA/AQUA images MODIS from 2000 to 2007 period. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected three different types of products which contain the remote sensing data we have used to model daily Rn: daily LST product, daily calibrated reflectances product and daily atmospheric water vapour product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital Elevation Model, obtaining an RMS less than 30 m. Radiometric correction of Landsat non-thermal bands has been done following the methodology proposed by Pons and Solé (1994), which allows to reduce the number of undesired artifacts that are due to the effects of the atmosphere or to the differential illumination which is, in turn, due to the time of the day, the location in the Earth and the relief (zones being more illuminated than others, shadows, etc). Atmospheric correction of Landsat thermal band has been carried out by means of a single-channel algorithm improvement developed by Cristóbal et al. (2009) and the land surface emissivity computed by means of the methodology proposed by Sobrino and Raissouni (2000). Rn has been estimated through the

  9. Total carbon and nitrogen in the soils of the world

    NARCIS (Netherlands)

    Batjes, N.H.

    2014-01-01

    The soil is important in sequestering atmospheric CO2 and in emitting trace gases (e.g. CO2, CH4 and N2O) that are radiatively active and enhance the ‘greenhouse’ effect. Land use changes and predicted global warming, through their effects on net primary productivity, the plant community and soil

  10. Climatic Forecasting of Net Infiltration at Yucca Mountain Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    2005-01-01

    At Yucca Mountain, NV, future changes in climatic conditions will probably alter net infiltration, drainage below the bottom of the evapotranspiration zone within the soil profile, or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this study were to: (1) develop a semiempirical model and forecast average net infiltration rates, using the limited meteorological data from analog meteorological stations, for interglacial(present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region; and (2) corroborate the computed net infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. This study approached calculations of net infiltration, aridity, and precipitation effectiveness indices using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate, following a power law relationship between net infiltration and precipitation. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. Forecasting of net infiltration for different climate states is subject to numerous uncertainties associated with selecting climate analog sites, using relatively short analog meteorological records, neglecting the effects of vegetation and surface runoff and run-on on a local scale, as well as possible anthropogenically induced climate changes

  11. Climatic Forecasting of Net Infiltration at Yucca Mountain Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    B. Faybishenko

    2006-01-01

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes

  12. A simulation model for the actual, long wave and net solar radiation computing

    International Nuclear Information System (INIS)

    Kolev, B.; Stoilov, A.; Lyubomirov, L.

    2004-01-01

    The main purpose of this study is to present a calculating procedure for the components of the radiation balance - actual, long-wave and net radiation calculation, using the sunshine duration and the standard meteorological information, through a previously prepared program product.To calculate the actual solar radiation using the total cloudiness only, an empirical regression model has been developed. The results of the coefficient of correlation R(0.75-0.88), respectively for the spring and summer periods (March-May; June-August) show the adequacy of the chosen model. The verification of the model on the independent experimental material prove that the approach that authors suggested, can be successfully applied to the calculation of the actual radiation of the current place

  13. Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field

    Science.gov (United States)

    This study attempted to test whether switchgrass aboveground net primary production (ANPP) responds to precipitation (PPT) changes in a double asymmetry pattern as framed by Knapp et al. (2016), and whether it is held true for other ecosystem processes such as soil respiration (SR). Data were colle...

  14. Performance study and influence of radiation emission energy and soil contamination level on γ-radiation shielding of stabilised/solidified radionuclide-polluted soils

    International Nuclear Information System (INIS)

    Falciglia, Pietro P.; Puccio, Valentina; Romano, Stefano; Vagliasindi, Federico G.A.

    2015-01-01

    This work focuses on the stabilisation/solidification (S/S) of radionuclide-polluted soils at different 232 Th levels using Portland cement alone and with barite aggregates. The potential of S/S was assessed applying a full testing protocol and calculating γ-radiation shielding (γRS) index, that included the measurement of soil radioactivity before and after the S/S as a function of the emission energy and soil contamination level. The results indicate that setting processes are strongly dependent on the contaminant concentration, and for contamination level higher than 5%, setting time values longer than 72 h. The addition of barite aggregates to the cement gout leads to a slight improvement of the S/S performance in terms of durability and contaminant leaching but reduces the mechanical resistance of the treated soils samples. Barite addition also causes an increase in the γ-rays shielding properties of the S/S treatment up to about 20%. Gamma-ray measurements show that γRS strongly depends on the energy, and that the radioactivity with the contamination level was governed by a linear trend, while, γRS index does not depend on the radionuclide concentration. Results allow the calculated γRS values and those available from other experiments to be applied to hazard radioactive soil contaminations. - Highlights: • We assess the effects of 232 Th contamination on performance of S/S treated soil. • We assess the γ-radiation shielding of the S/S materials as a function of energy. • We report a full testing protocol for assessing S/S resistance performance. • Emission energy influences the γ radiation shielding of the S/S. • Barite gives high γ-radiation shielding and low contaminant leaching

  15. Net radiative forcing and air quality responses to regional CO emission reductions

    Directory of Open Access Journals (Sweden)

    M. M. Fry

    2013-05-01

    Full Text Available Carbon monoxide (CO emissions influence global and regional air quality and global climate change by affecting atmospheric oxidants and secondary species. We simulate the influence of halving anthropogenic CO emissions globally and individually from 10 regions on surface and tropospheric ozone, methane, and aerosol concentrations using a global chemical transport model (MOZART-4 for the year 2005. Net radiative forcing (RF is then estimated using the GFDL (Geophysical Fluid Dynamics Laboratory standalone radiative transfer model. We estimate that halving global CO emissions decreases global annual average concentrations of surface ozone by 0.45 ppbv, tropospheric methane by 73 ppbv, and global annual net RF by 36.1 mW m−2, nearly equal to the sum of changes from the 10 regional reductions. Global annual net RF per unit change in emissions and the 100 yr global warming potential (GWP100 are estimated as −0.124 mW m−2 (Tg CO−1 and 1.34, respectively, for the global CO reduction, and ranging from −0.115 to −0.131 mW m−2 (Tg CO−1 and 1.26 to 1.44 across 10 regions, with the greatest sensitivities for regions in the tropics. The net RF distributions show widespread cooling corresponding to the O3 and CH4 decreases, and localized positive and negative net RFs due to changes in aerosols. The strongest annual net RF impacts occur within the tropics (28° S–28° N followed by the northern midlatitudes (28° N–60° N, independent of reduction region, while the greatest changes in surface CO and ozone concentrations occur within the reduction region. Some regional reductions strongly influence the air quality in other regions, such as East Asia, which has an impact on US surface ozone that is 93% of that from North America. Changes in the transport of CO and downwind ozone production clearly exceed the direct export of ozone from each reduction region. The small variation in CO GWPs among world regions suggests that future international

  16. Transmission coefficients of radiation dose equivalents in soil

    International Nuclear Information System (INIS)

    Simovic, R.; Marinkovic, N.

    1993-01-01

    In this paper an exponential formula wa proposed for calculating transmission of neutron and secondary gamma radiation through soil slabs. Parameters α and A of the transmission formula are given as rational functions dependent on the percent of water in the soil. Results are compared to those obtained by SABINE-3 code and a satisfactory agreement is shown for soil slab thicknesses for 50 - 500 cm (author) [sr

  17. Radiation safety of soil moisture neutron probes

    International Nuclear Information System (INIS)

    Oresegun, M.O.

    2000-01-01

    The neutron probe measures sub-surface moisture in soil and other materials by means of high energy neutrons and a slow (thermal) neutron detector. Exposure to radiation, including neutrons, especially at high doses, can cause detrimental health effects. In order to achieve operational radiation safety, there must be compliance with protection and safety standards. The design and manufacture of commercially available neutron moisture gauges are such that risks to the health of the user have been greatly reduced. The major concern is radiation escape from the soil during measurement, especially under dry conditions and when the radius of influence is large. With appropriate work practices as well as good design and manufacture of gauges, recorded occupational doses have been well below recommended annual limits. It can be concluded that the use of neutron gauges poses not only acceptable health and safety risks but, in fact, the risks are negligible. Neutron gauges should not be classified as posing high potential health hazards. (author)

  18. Energy and carbon balances in cheatgrass, an essay in autecology. [Shortwave radiation, radiowave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, W.T.

    1975-01-01

    An experiment to determine the fates of energy and carbon in cheatgrass (Bromus tectorum L.) was carried out on steep (40/sup 0/) north- and south-facing slopes on a small earth mound, using many small lysimeters to emulate swards of cheatgrass. Meteorological conditions and energy fluxes that were measured included air and soil temperatures, relative humidity, wind speed, incoming shortwave radiation, net all-wave radiation, heat flux to the soil, and evaporation and transpiration separately. The fate of photosynthetically fixed carbon during spring growth was determined by analysis of the plant tissues into mineral nutrients, crude protein, crude fat, crude fiber, and nitrogen-free extract (NFE) for roots, shoots, and seeds separately. (auth)

  19. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils

    Science.gov (United States)

    Sainju, Upendra M.

    2016-01-01

    Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for individual and combined effects of tillage, cropping systems, and N fertilization rates on GWP and GHGI which accounted for CO2 equivalents from N2O and CH4 emissions with or without equivalents from soil C sequestration rate (ΔSOC), farm operations, and N fertilization. The GWP and GHGI were 66 to 71% lower with no-till than conventional till and 168 to 215% lower with perennial than annual cropping systems, but 41 to 46% greater with crop rotation than monocroppping. With no-till vs. conventional till, GWP and GHGI were 2.6- to 7.4-fold lower when partial than full accounting of all sources and sinks of greenhouse gases (GHGs) were considered. With 100 kg N ha-1, GWP and GHGI were 3.2 to 11.4 times greater with partial than full accounting. Both GWP and GHGI increased curvilinearly with increased N fertilization rate. Net GWP and GHGI were 70 to 87% lower in the improved combined management that included no-till, crop rotation/perennial crop, and reduced N rate than the traditional combined management that included conventional till, monocopping/annual crop, and recommended N rate. An alternative soil respiration method, which replaces ΔSOC by soil respiration and crop residue returned to soil in the previous year, similarly reduced GWP and GHGI by 133 to 158% in the improved vs. the traditional combined management. Changes in GWP and GHGI due to improved vs. traditional management varied with the duration of the experiment and inclusion of soil and climatic factors in multiple linear regressions improved their relationships. Improved management practices reduced GWP and GHGI compared with traditional management

  20. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils.

    Science.gov (United States)

    Sainju, Upendra M

    2016-01-01

    Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for individual and combined effects of tillage, cropping systems, and N fertilization rates on GWP and GHGI which accounted for CO2 equivalents from N2O and CH4 emissions with or without equivalents from soil C sequestration rate (ΔSOC), farm operations, and N fertilization. The GWP and GHGI were 66 to 71% lower with no-till than conventional till and 168 to 215% lower with perennial than annual cropping systems, but 41 to 46% greater with crop rotation than monocroppping. With no-till vs. conventional till, GWP and GHGI were 2.6- to 7.4-fold lower when partial than full accounting of all sources and sinks of greenhouse gases (GHGs) were considered. With 100 kg N ha-1, GWP and GHGI were 3.2 to 11.4 times greater with partial than full accounting. Both GWP and GHGI increased curvilinearly with increased N fertilization rate. Net GWP and GHGI were 70 to 87% lower in the improved combined management that included no-till, crop rotation/perennial crop, and reduced N rate than the traditional combined management that included conventional till, monocopping/annual crop, and recommended N rate. An alternative soil respiration method, which replaces ΔSOC by soil respiration and crop residue returned to soil in the previous year, similarly reduced GWP and GHGI by 133 to 158% in the improved vs. the traditional combined management. Changes in GWP and GHGI due to improved vs. traditional management varied with the duration of the experiment and inclusion of soil and climatic factors in multiple linear regressions improved their relationships. Improved management practices reduced GWP and GHGI compared with traditional management

  1. Partitioning of radiation and energy balance components in an inhomogeneous desert valley

    International Nuclear Information System (INIS)

    Malek, E.; Bingham, G.E.

    1997-01-01

    Radiation and energy balance components are required to validate global, regional, and local scale models representing surface heat flux relationships in the heterogeneous surfaces of the world's arid and desert regions. Research was conducted in north-eastern Nevada, U.S.A., in a Great Basin inhomogeneous semi-arid desert valley located at 40° 44′ N, 114° 26′ W, with an elevation of 1707 m above mean sea level, to study the daily, monthly, and annual mesoscale radiation and energy balance components. We established five radiation stations along with five Bowen ratio systems to measure the incoming (R si ) and outgoing (R so ) solar (shortwave) radiation, net (R n ) radiation, air temperatures and moisture at 1 and 2 m above-ground, the aggregated (soil + vegetation) surface temperature, soil heat flux at 8 cm (three locations at each station), soil temperatures at 2 and 6 cm above each soil flux plate, wind speed and direction at 10 m, and precipitation (if any) every 5 s averaged into 20 min throughout the valley during the 93–94 water year (beginning 1 October). Our study during the 93–94 water year showed that albedo (R so /R si ) ranged from 85% (snow-covered surface) to 10% (cloudy skies with wet surface) among stations. The water year total incoming solar radiation (averaged among stations) amounted to 6·33 × 10 3 MJ·m −2 and about 24% of that was reflected back to the atmosphere. The net longwave radiation (R ln = R lo − R li ) was about 32% of R si , where R lo and R li are the terrestrial (outgoing) and atmospheric (incoming) longwave radiation, respectively. The 93–94 water year average net radiation (R n ) among stations amounted to 2·68 × 10 3 MJ·m −2 (about 44% of R si ). Approximately 85·3% and 14·6% of R n were used for the processes of sensible (H) and latent (LE) heat fluxes, respectively. The annual R n contribution to surface soil heat flux (G surf ) was almost 0·1%. Monthly and annual relationships among

  2. Evaluation of a combined modelling-remote sensing method for estimating net radiation in a wetland: a case study in the Nebraska Sand Hills, USA

    International Nuclear Information System (INIS)

    Goodin, D.G.

    1995-01-01

    Close-range measurement combined with modelling of incoming radiation is used to evaluate the prospect of remotely-measuring net radiation of a wetland environment located in the Sand Hills of Nebraska. Results indicate that net radiation can be measured with an accuracy comparable to that of conventional instruments. Sources of error are identified and discussed. Possible application of the methodology to satellite remote sensing is considered. (author)

  3. Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf Savannah, Queensland, Australia

    Science.gov (United States)

    Büdel, Burkhard; Williams, Wendy J.; Reichenberger, Hans

    2018-01-01

    photosynthetic active radiation. The Boodjamulla biocrust exhibited high seasonal variability in CO2 gas exchange pattern, clearly divided into metabolically inactive winter months and active summer months. The metabolic active period commences with a period (of up to 3 months) of carbon loss, likely due to reestablishment of the crust structure and restoration of NP prior to about a 4-month period of net carbon gain. In the Gulf Savannah biocrust system, seasonality over the year investigated showed that only a minority of the year is actually suitable for biocrust growth and thus has a small window for potential contribution to soil organic matter.

  4. Effect of elevated CO2, O3, and UV radiation on soils.

    Science.gov (United States)

    Formánek, Pavel; Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  5. RadNet Air Data From Sacramento, CA

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Sacramento, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  6. RadNet Air Data From Honolulu, HI

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Honolulu, HI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  7. RadNet Air Data From Houston, TX

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Houston, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  8. RadNet Air Data From Austin, TX

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Austin, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  9. RadNet Air Data From Orlando, FL

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Orlando, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  10. Net mineralization nitrogen and soil chemical changes with application of organic wastes with ‘Fermented Bokashi Compost’ - doi: 10.4025/actasciagron.v35i2.15133

    Directory of Open Access Journals (Sweden)

    Cácio Luiz Boechat

    2012-12-01

    Full Text Available The use of organic wastes in agricultural soils is one of the possible ways to employ these materials. The aims of this study were to evaluate the effectiveness of organic wastes and Fermented Bokashi Compost (FBC, to establish the most efficient use of organic wastes for a soil, changing the net nitrogen mineralization and soil chemical properties. The experimental design was completely randomized in a 6 x 2 x 5 factorial, being five organic wastes plus an control (soil without waste, with or without FBC, evaluated at 0, 7, 42, 70 and 91 days of incubation, with three replicates, under laboratory conditions. The organic wastes enhanced the soil chemical properties and increased nitrogen concentration in soil. However, the net nitrogen mineralization was affected by C/N ratio of wastes and incubation time. The FBC mixed with the wastes accelerated and enhanced organic matter degradation, resulting in quickly available quantity of net nitrogen. The wastes can be considered potentially useful as organic fertilizer but their usefulness appears to depend on knowing the C/N ratio of each one. The FBC can be used when one wants a more accelerated degradation, resulting in a quicker quantity of available nutrients to the plants.

  11. Estimation of net greenhouse gas balance using crop- and soil-based approaches: Two case studies

    International Nuclear Information System (INIS)

    Huang, Jianxiong; Chen, Yuanquan; Sui, Peng; Gao, Wansheng

    2013-01-01

    The net greenhouse gas balance (NGHGB), estimated by combining direct and indirect greenhouse gas (GHG) emissions, can reveal whether an agricultural system is a sink or source of GHGs. Currently, two types of methods, referred to here as crop-based and soil-based approaches, are widely used to estimate the NGHGB of agricultural systems on annual and seasonal crop timescales. However, the two approaches may produce contradictory results, and few studies have tested which approach is more reliable. In this study, we examined the two approaches using experimental data from an intercropping trial with straw removal and a tillage trial with straw return. The results of the two approaches provided different views of the two trials. In the intercropping trial, NGHGB estimated by the crop-based approach indicated that monocultured maize (M) was a source of GHGs (− 1315 kg CO 2 −eq ha −1 ), whereas maize–soybean intercropping (MS) was a sink (107 kg CO 2 −eq ha −1 ). When estimated by the soil-based approach, both cropping systems were sources (− 3410 for M and − 2638 kg CO 2 −eq ha −1 for MS). In the tillage trial, mouldboard ploughing (MP) and rotary tillage (RT) mitigated GHG emissions by 22,451 and 21,500 kg CO 2 −eq ha −1 , respectively, as estimated by the crop-based approach. However, by the soil-based approach, both tillage methods were sources of GHGs: − 3533 for MP and − 2241 kg CO 2 −eq ha −1 for RT. The crop-based approach calculates a GHG sink on the basis of the returned crop biomass (and other organic matter input) and estimates considerably more GHG mitigation potential than that calculated from the variations in soil organic carbon storage by the soil-based approach. These results indicate that the crop-based approach estimates higher GHG mitigation benefits compared to the soil-based approach and may overestimate the potential of GHG mitigation in agricultural systems. - Highlights: • Net greenhouse gas balance (NGHGB) of

  12. Effect of Elevated CO2, O3, and UV Radiation on Soils

    Directory of Open Access Journals (Sweden)

    Pavel Formánek

    2014-01-01

    Full Text Available In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  13. Effect of Elevated CO2, O3, and UV Radiation on Soils

    Science.gov (United States)

    Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research. PMID:24688424

  14. Evaluation of three semi-empirical approaches to estimate the net radiation over a drip-irrigated olive orchard

    Directory of Open Access Journals (Sweden)

    Rafael López-Olivari

    2015-09-01

    Full Text Available The use of actual evapotranspiration (ETα models requires an appropriate parameterization of the available energy, where the net radiation (Rn is the most important component. Thus, a study was carried out to calibrate and evaluate three semi-empirical approaches to estimate net radiation (Rn over a drip-irrigated olive (Olea europaea L. 'Arbequina' orchard during 2009/2010 and 2010/2011 seasons. The orchard was planted in 2005 at high density in the Pencahue Valley, Maule Region, Chile. The evaluated models were calculated using the balance between long and short wave radiation. To achieve this objective it was assumed that Ts = Tα for Model 1, Ts = Tv for Model 2 and Ts = Tr for Model 3 (Ts is surface temperature; Tα is air temperature; and Tv is temperature inside of the tree canopy; Tr is radiometric temperature. For the three models, the Brutsaert's empirical coefficient (Φ was calibrated using incoming long wave radiation equation with the database of 2009/2010 season. Thus, the calibration indicated that Φ was equal to 1.75. Using the database from 2010/2011 season, the validation indicated that the three models were able to predict the Rn at a 30-min interval with errors lower than 6%, root mean square error (RMSE between 26 and 39 W m-2 and mean absolute error (MAE between 20 and 31 W m-2. On daily time intervals, validation indicated that models presented errors, RMSE and MAE between 2% and 3%, 1.22-1.54 and 1.04-1.35 MJ m-2 d-1, respectively. The three R„-Models would be evaluated and used in others Mediterranean conditions according to the availability of data to estimate net radiation over a drip-irrigated olive orchard planted at high density.

  15. Estimativa do balanço de radiação por sensoriamento remoto de diferentes usos de solo no sudoeste da Amazônia brasileira / Estimative of radiation balance by remote sensing of different soil uses in the brazilian southern Amazon

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Da Silva

    2015-08-01

    Full Text Available Changes in land use have motivated research on the dynamics of radiative and energy exchange in the Brazilian Amazon, which in turn cause demand for such data on the surface in spatial and temporal scales. While measuring these changes in micrometeorological towers provides punctual results, remote sensing provides accurate and low cost results to estimate them on a regional scale. This study aimed to evaluate the spatial and temporal distribution of estimates of net radiation and biophysical parameters from remote sensing in different land uses in southwestern Brazilian Amazon. Four sites were selected with soil covers by natural Amazon forest, Amazon managed forest, pasture and silvopastoral system. The net radiation and biophysical parameters (NDVI, leaf area index, albedo and radiometric temperature were estimated by the SEBAL algorithm, using images from the Landsat TM sensor 5 in July of 2009, 2010 and 2011. The NDVI, LAI, albedo and net radiation were higher in natural forest, followed by managed forest, grassland and silvopastoral system. Radiometric surface temperature were higher in the silvopastoral system followed by pasture, natural forest and managed forest.

  16. Accuracy assessment of a net radiation and temperature index snowmelt model using ground observations of snow water equivalent in an alpine basin

    Science.gov (United States)

    Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.

    2003-04-01

    In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation

  17. Effects of Biochar on the Net Greenhouse Gas Emissions under Continuous Flooding and Water-Saving Irrigation Conditions in Paddy Soils

    Directory of Open Access Journals (Sweden)

    Le Qi

    2018-05-01

    Full Text Available In this study, we investigated the greenhouse gas emission under different application of biochar in the conditions of continuous flooding and water-saving irrigation in paddy fields, whereas, plant and soil carbon sequestration were considered in the calculation of net greenhouse gas emissions. The emission rates of methane (CH4, carbon dioxide (CO2, and nitrous oxide (N2O gases were simultaneously monitored once every 7–10 days using the closed-chamber method. As a whole, the net greenhouse gas emission in the water-saving irrigation was more than that of the continuous flooding irrigation conditions. Compared with the water-saving irrigation, the continuous flooding irrigation significantly increased the CH4 in the control (CK and chemical fertilizer treatments (NPK. The CO2 emissions increased in each treatment of the water-saving irrigation condition, especially in the chemical fertilizer treatments (NPKFW. Similarly, the soil N2O emission was very sensitive to the water-saving irrigation condition. An interesting finding is that the biochar application in soils cut down the soil N2O emission more significantly than NPKFW in the water-saving irrigation condition while the effect of biochar increased under the continuous flooding irrigation condition.

  18. Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia

    Science.gov (United States)

    de Oliveira, Gabriel; Brunsell, Nathaniel A.; Moraes, Elisabete C.; Bertani, Gabriel; dos Santos, Thiago V.; Shimabukuro, Yosio E.; Aragão, Luiz E. O. C.

    2016-01-01

    In the Amazon region, the estimation of radiation fluxes through remote sensing techniques is hindered by the lack of ground measurements required as input in the models, as well as the difficulty to obtain cloud-free images. Here, we assess an approach to estimate net radiation (Rn) and its components under all-sky conditions for the Amazon region through the Surface Energy Balance Algorithm for Land (SEBAL) model utilizing only remote sensing and reanalysis data. The study period comprised six years, between January 2001–December 2006, and images from MODIS sensor aboard the Terra satellite and GLDAS reanalysis products were utilized. The estimates were evaluated with flux tower measurements within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project. Comparison between estimates obtained by the proposed method and observations from LBA towers showed errors between 12.5% and 16.4% and 11.3% and 15.9% for instantaneous and daily Rn, respectively. Our approach was adequate to minimize the problem related to strong cloudiness over the region and allowed to map consistently the spatial distribution of net radiation components in Amazonia. We conclude that the integration of reanalysis products and satellite data, eliminating the need for surface measurements as input model, was a useful proposition for the spatialization of the radiation fluxes in the Amazon region, which may serve as input information needed by algorithms that aim to determine evapotranspiration, the most important component of the Amazon hydrological balance. PMID:27347957

  19. Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia.

    Science.gov (United States)

    de Oliveira, Gabriel; Brunsell, Nathaniel A; Moraes, Elisabete C; Bertani, Gabriel; Dos Santos, Thiago V; Shimabukuro, Yosio E; Aragão, Luiz E O C

    2016-06-24

    In the Amazon region, the estimation of radiation fluxes through remote sensing techniques is hindered by the lack of ground measurements required as input in the models, as well as the difficulty to obtain cloud-free images. Here, we assess an approach to estimate net radiation (Rn) and its components under all-sky conditions for the Amazon region through the Surface Energy Balance Algorithm for Land (SEBAL) model utilizing only remote sensing and reanalysis data. The study period comprised six years, between January 2001-December 2006, and images from MODIS sensor aboard the Terra satellite and GLDAS reanalysis products were utilized. The estimates were evaluated with flux tower measurements within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project. Comparison between estimates obtained by the proposed method and observations from LBA towers showed errors between 12.5% and 16.4% and 11.3% and 15.9% for instantaneous and daily Rn, respectively. Our approach was adequate to minimize the problem related to strong cloudiness over the region and allowed to map consistently the spatial distribution of net radiation components in Amazonia. We conclude that the integration of reanalysis products and satellite data, eliminating the need for surface measurements as input model, was a useful proposition for the spatialization of the radiation fluxes in the Amazon region, which may serve as input information needed by algorithms that aim to determine evapotranspiration, the most important component of the Amazon hydrological balance.

  20. Invited Review Terahertz Transmission, Scattering, Reflection, and Absorption—the Interaction of THz Radiation with Soils

    Science.gov (United States)

    Lewis, R. A.

    2017-07-01

    Terahertz radiation has been proposed as a useful tool in the study of soils and related materials from such diverse perspectives as detection of non-metallic landmines to improving soil fertility by agricultural charcoals produced by pyrolysis of organic material. The main barrier to such applications is that soils are rather opaque at terahertz frequencies. In this article, the main findings to date on the interaction of terahertz radiation with soils are reviewed, organized around the four phenomena of terahertz: transmission, scattering, reflection, and absorption. Terahertz transmission through soils is generally low and decreases with frequency. Terahertz scattering is evident in many THz-soil interactions, as the wavelength of the radiation is of the order of the particle size. Terahertz reflection is important to communications as these develop from the GHz into the THz band. Terahertz absorption on diluted soil samples has been demonstrated to be effective in identifying soil constituents, such as aromatic compounds, and soil contaminants, such as pesticides.

  1. RadNet Air Data From Fort Smith, AR

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Fort Smith, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  2. RadNet Air Data From Little Rock, AR

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Little Rock, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  3. RadNet Air Data From Mason City, IA

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Mason City, IA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  4. Effects of Recent Regional Soil Moisture Variability on Global Net Ecosystem CO2 Exchange

    Science.gov (United States)

    Jones, L. A.; Madani, N.; Kimball, J. S.; Reichle, R. H.; Colliander, A.

    2017-12-01

    Soil moisture exerts a major regional control on the inter-annual variability of the global land sink for atmospheric CO2. In semi-arid regions, annual biomass production is closely coupled to variability in soil moisture availability, while in cold-season-affected regions, summer drought offsets the effects of advancing spring phenology. Availability of satellite solar-induced fluorescence (SIF) observations and improvements in atmospheric inversions has led to unprecedented ability to monitor atmospheric sink strength. However, discrepancies still exist between such top-down estimates as atmospheric inversion and bottom-up process and satellite driven models, indicating that relative strength, mechanisms, and interaction of driving factors remain poorly understood. We use soil moisture fields informed by Soil Moisture Active Passive Mission (SMAP) observations to compare recent (2015-2017) and historic (2000-2014) variability in net ecosystem land-atmosphere CO2 exchange (NEE). The operational SMAP Level 4 Carbon (L4C) product relates ground-based flux tower measurements to other bottom-up and global top-down estimates to underlying soil moisture and other driving conditions using data-assimilation-based SMAP Level 4 Soil Moisture (L4SM). Droughts in coastal Brazil, South Africa, Eastern Africa, and an anomalous wet period in Eastern Australia were observed by L4C. A seasonal seesaw pattern of below-normal sink strength at high latitudes relative to slightly above-normal sink strength for mid-latitudes was also observed. Whereas SMAP-based soil moisture is relatively informative for short-term temporal variability, soil moisture biases that vary in space and with season constrain the ability of the L4C estimates to accurately resolve NEE. Such biases might be caused by irrigation and plant-accessible ground-water. Nevertheless, SMAP L4C daily NEE estimates connect top-down estimates to variability of effective driving factors for accurate estimates of regional

  5. Quantifying the Contributions of Environmental Parameters to Ceres Surface Net Radiation Error in China

    Science.gov (United States)

    Pan, X.; Yang, Y.; Liu, Y.; Fan, X.; Shan, L.; Zhang, X.

    2018-04-01

    Error source analyses are critical for the satellite-retrieved surface net radiation (Rn) products. In this study, we evaluate the Rn error sources in the Clouds and the Earth's Radiant Energy System (CERES) project at 43 sites from July in 2007 to December in 2007 in China. The results show that cloud fraction (CF), land surface temperature (LST), atmospheric temperature (AT) and algorithm error dominate the Rn error, with error contributions of -20, 15, 10 and 10 W/m2 (net shortwave (NSW)/longwave (NLW) radiation), respectively. For NSW, the dominant error source is algorithm error (more than 10 W/m2), particularly in spring and summer with abundant cloud. For NLW, due to the high sensitivity of algorithm and large LST/CF error, LST and CF are the largest error sources, especially in northern China. The AT influences the NLW error large in southern China because of the large AT error in there. The total precipitable water has weak influence on Rn error even with the high sensitivity of algorithm. In order to improve Rn quality, CF and LST (AT) error in northern (southern) China should be decreased.

  6. Effect of gamma radiation on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Martin Moreno, C.; Fernandez Gonzalez, J.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first b chlorophyll affected to a greater extent than a chlorophyll. Net photosynthesis and respiration decline throughout the time of the observation after irradiation, this depressing effect being much more remarkable for the first one. Met photosynthesis inhibition levels of about 30% are got only five hours post irradiation at a dose of 5000 Gy. Radio estimation by low doses, although obtained in some cases for tho 10 Gy dose, has not been statistically confirmed. (Author) 23 refs

  7. Can climate sensitivity be estimated from short-term relationships of top-of-atmosphere net radiation and surface temperature?

    International Nuclear Information System (INIS)

    Lin Bing; Min Qilong; Sun Wenbo; Hu Yongxiang; Fan, Tai-Fang

    2011-01-01

    Increasing the knowledge in climate radiative feedbacks is critical for current climate studies. This work focuses on short-term relationships between global mean surface temperature and top-of-atmosphere (TOA) net radiation. The relationships may be used to characterize the climate feedback as suggested by some recent studies. As those recent studies, an energy balance model with ocean mixed layer and both radiative and non-radiative heat sources is used here. The significant improvement of current model is that climate system memories are considered. Based on model simulations, short-term relationship between global mean surface temperature and TOA net radiation (or the linear striation feature as suggested by previous studies) might represent climate feedbacks when the system had no memories. However, climate systems with the same short-term feedbacks but different memories would have a similar linear striation feature. This linear striation feature reflects only fast components of climate feedbacks and may not represent the total climate feedback even when the memory length of climate systems is minimal. The potential errors in the use of short-term relationships in estimations of climate sensitivity could be big. In short time scales, fast climate processes may overwhelm long-term climate feedbacks. Thus, the climate radiative feedback parameter obtained from short-term data may not provide a reliable estimate of climate sensitivity. This result also suggests that long-term observations of global surface temperature and TOA radiation are critical in the understanding of climate feedbacks and sensitivities.

  8. Observing and modeling links between soil moisture, microbes and CH4 fluxes from forest soils

    Science.gov (United States)

    Christiansen, Jesper; Levy-Booth, David; Barker, Jason; Prescott, Cindy; Grayston, Sue

    2017-04-01

    Soil moisture is a key driver of methane (CH4) fluxes in forest soils, both of the net uptake of atmospheric CH4 and emission from the soil. Climate and land use change will alter spatial patterns of soil moisture as well as temporal variability impacting the net CH4 exchange. The impact on the resultant net CH4 exchange however is linked to the underlying spatial and temporal distribution of the soil microbial communities involved in CH4 cycling as well as the response of the soil microbial community to environmental changes. Significant progress has been made to target specific CH4 consuming and producing soil organisms, which is invaluable in order to understand the microbial regulation of the CH4 cycle in forest soils. However, it is not clear as to which extent soil moisture shapes the structure, function and abundance of CH4 specific microorganisms and how this is linked to observed net CH4 exchange under contrasting soil moisture regimes. Here we report on the results from a research project aiming to understand how the CH4 net exchange is shaped by the interactive effects soil moisture and the spatial distribution CH4 consuming (methanotrophs) and producing (methanogens). We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs and methanogens, soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient in a temperate rainforest on the Canadian Pacific coast. Furthermore, we conducted laboratory experiments to determine whether the net CH4 exchange from hydrologically contrasting forest soils responded differently to changes in soil moisture. Lastly, we modelled the microbial mediation of net CH4 exchange along the soil moisture gradient using structural equation modeling. Our study shows that it is possible to link spatial patterns of in situ net exchange of CH4 to microbial abundance of CH4 consuming and producing organisms. We also show that the microbial

  9. Application of Terahertz Radiation to Soil Measurements: Initial Results

    Science.gov (United States)

    Dworak, Volker; Augustin, Sven; Gebbers, Robin

    2011-01-01

    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future. PMID:22163737

  10. Estimating Net Photosynthesis of Biological Soil Crusts in the Atacama Using Hyperspectral Remote Sensing

    Directory of Open Access Journals (Sweden)

    Lukas W. Lehnert

    2018-06-01

    Full Text Available Biological soil crusts (BSC encompassing green algae, cyanobacteria, lichens, bryophytes, heterotrophic bacteria and microfungi are keystone species in arid environments because of their role in nitrogen- and carbon-fixation, weathering and soil stabilization, all depending on the photosynthesis of the BSC. Despite their importance, little is known about the BSCs of the Atacama Desert, although especially crustose chlorolichens account for a large proportion of biomass in the arid coastal zone, where photosynthesis is mainly limited due to low water availability. Here, we present the first hyperspectral reflectance data for the most wide-spread BSC species of the southern Atacama Desert. Combining laboratory and field measurements, we establish transfer functions that allow us to estimate net photosynthesis rates for the most common BSC species. We found that spectral differences among species are high, and differences between the background soil and the BSC at inactive stages are low. Additionally, we found that the water absorption feature at 1420 nm is a more robust indicator for photosynthetic activity than the chlorophyll absorption bands. Therefore, we conclude that common vegetation indices must be taken with care to analyze the photosynthesis of BSC with multispectral data.

  11. Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xi, E-mail: icy124@hotmail.com [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan); Toma, Yo [Faculty of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama 790-8566, Ehime (Japan); Yeluripati, Jagadeesh [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland (United Kingdom); Iwasaki, Shinya [Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan); Bellingrath-Kimura, Sonoko D. [Leibniz Centre for Agricultural Landscape Research, Institute of Land Use Systems (Germany); Jones, Edward O. [Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London (United Kingdom); Hatano, Ryusuke [Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan)

    2016-06-01

    Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for agriculture. We have used crop-level yields, modeled heterotrophic respiration (Rh) and land use data to estimate spatio-temporal changes in regional scale net primary productivity (NPP), plant C inputs, and net biome productivity (NBP) in northern Japan's arable croplands and grasslands for the period of 1959–2011. We compared the changes in C stocks derived from estimated NBP and using repeated inventory datasets for each individual land use type from 2005 to 2011. For the entire study region of 2193 ha, overall annual plant C inputs to the soil constituted 37% of total region NPP. Plant C inputs in upland areas (excluding bush/fallow) could be predicted by climate variables. Overall NBP for all land use types increased from − 1.26 Mg C ha{sup −1} yr{sup −1} in 1959–0.26 Mg C ha{sup −1} yr{sup −1} in 2011. However, upland and paddy fields showed a decreased in NBP over the period of 1959–2011, under the current C input scenario. From 1988, an increase in agricultural abandonment (bush/fallow) and grassland cover caused a slow increase in the regional C pools. The comparison of carbon budgets using the NBP estimation method and the soil inventory method indicated no significant difference between the two methods. Our results showed C loss in upland crops, paddy fields and sites that underwent land use change from paddy field to upland sites. We also show C gain in grassland from 2005 to 2011. An underestimation of NBP or an overestimation of repeated C inventories cannot be excluded, but either method may be suitable for tracking absolute changes in soil C, considering the uncertainty associated with these methods. - Highlights: • We compared C stocks change by two methods: (i) net biome productivity (NBP) and (ii) soil inventory. • Variation in net primary productivity (NPP), plant C input, NBP can be predicted by climate

  12. Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity

    International Nuclear Information System (INIS)

    Li, Xi; Toma, Yo; Yeluripati, Jagadeesh; Iwasaki, Shinya; Bellingrath-Kimura, Sonoko D.; Jones, Edward O.; Hatano, Ryusuke

    2016-01-01

    Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for agriculture. We have used crop-level yields, modeled heterotrophic respiration (Rh) and land use data to estimate spatio-temporal changes in regional scale net primary productivity (NPP), plant C inputs, and net biome productivity (NBP) in northern Japan's arable croplands and grasslands for the period of 1959–2011. We compared the changes in C stocks derived from estimated NBP and using repeated inventory datasets for each individual land use type from 2005 to 2011. For the entire study region of 2193 ha, overall annual plant C inputs to the soil constituted 37% of total region NPP. Plant C inputs in upland areas (excluding bush/fallow) could be predicted by climate variables. Overall NBP for all land use types increased from − 1.26 Mg C ha"−"1 yr"−"1 in 1959–0.26 Mg C ha"−"1 yr"−"1 in 2011. However, upland and paddy fields showed a decreased in NBP over the period of 1959–2011, under the current C input scenario. From 1988, an increase in agricultural abandonment (bush/fallow) and grassland cover caused a slow increase in the regional C pools. The comparison of carbon budgets using the NBP estimation method and the soil inventory method indicated no significant difference between the two methods. Our results showed C loss in upland crops, paddy fields and sites that underwent land use change from paddy field to upland sites. We also show C gain in grassland from 2005 to 2011. An underestimation of NBP or an overestimation of repeated C inventories cannot be excluded, but either method may be suitable for tracking absolute changes in soil C, considering the uncertainty associated with these methods. - Highlights: • We compared C stocks change by two methods: (i) net biome productivity (NBP) and (ii) soil inventory. • Variation in net primary productivity (NPP), plant C input, NBP can be predicted by climate conditions. • NBP

  13. Solar radiation and energy balance in polyethylene covered greenhouse; Balancos de radiacao solar e de energia em estufa com cobertura de polietileno

    Energy Technology Data Exchange (ETDEWEB)

    Frisina, Valeria de Almeida; Escobedo, Joao Francisco [UNESP, Botucatu, SP (Brazil). Faculdade de Ciencias Agronomicas. Dept. de Ciencias Ambientais

    1998-07-01

    The objective of this paper is describe the radiation and energy balance, during the lettuce (Lactuca sativa, L, var Veronica) crop cycle inside a polyethylene greenhouse. The radiation and energy balance was made inside of a tunnel greenhouse with polyethylene cover (100 {mu} m) and in an external area, both area with 35 m{sup 2}. Global (R{sub G}), reflected (R{sub r}) and net radiation (SR), soil heat flux and air temperature (dry and humid) were measured during crop cycle, in this two environment. In the data acquisition it was utilized a DATALOGGER, which operated at 1 Hz frequency, storing 5 minutes averages. The global and reflected radiations (MJ/m{sup 2}) allowed the verification that the average transmission of global radiation (R-G{sub in}/R{sub Gex}) was almost constant, near 79,59% while the average ratio of reflected radiation (R{sub rin}/R{sub rex}) was 69,21% with 8,47% standard-deviation. The short-wave radiation average (SRoc) was bigger in the external area. The normalized relation (SR/R{sub G}) was bigger in the external area, about 12%, when the green culture covered (SRol) was bigger outside, about 50%. The energy balance, estimated in terms of vertical fluxes, showed that, for the external area, in average, 83,07% of total net radiation was converted in latent heat evaporation; 18% in soil heat flux and 9,96% in sensible heat, while, inside of the greenhouse, 58,71% of total net radiation was converted in latent heat evaporation:; 42,68% in sensible heat and 28,79% in soil heat flux. (author)

  14. Dynamic response of the thermometric net radiometer

    Science.gov (United States)

    J. D. Wilson; W. J. Massman; G. E. Swaters

    2009-01-01

    We computed the dynamic response of an idealized thermometric net radiometer, when driven by an oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative environment such as might be expected during field use of such devices. The study was motivated by curiosity as to whether non-linearity of the surface boundary conditions...

  15. Organochlorine pesticides in soils of Mexico and the potential for soil-air exchange

    International Nuclear Information System (INIS)

    Wong, Fiona; Alegria, Henry A.; Bidleman, Terry F.

    2010-01-01

    The spatial distribution of organochlorine pesticides (OCs) in soils and their potential for soil-air exchange was examined. The most prominent OCs were the DDTs (Geometric Mean, GM = 1.6 ng g -1 ), endosulfans (0.16 ng g -1 ), and toxaphenes (0.64 ng g -1 ). DDTs in soils of southern Mexico showed fresher signatures with higher F DDTe = p,p'-DDT/(p,p'-DDT + p,p'-DDE) and more racemic o,p'-DDT, while the signatures in the central and northern part of Mexico were more indicative of aged residues. Soil-air fugacity fractions showed that some soils are net recipients of DDTs from the atmosphere, while other soils are net sources. Toxaphene profiles in soils and air showed depletion of Parlar 39 and 42 which suggests that soil is the source to the atmosphere. Endosulfan was undergoing net deposition at most sites as it is a currently used pesticide. Other OCs showed wide variability in fugacity, suggesting a mix of net deposition and volatilization. - Chemical profiles of residues and soil-air fugacities are used to assess the potential of soil as a source of organochlorine pesticides to the air of Mexico.

  16. Organochlorine pesticides in soils of Mexico and the potential for soil-air exchange.

    Science.gov (United States)

    Wong, Fiona; Alegria, Henry A; Bidleman, Terry F

    2010-03-01

    The spatial distribution of organochlorine pesticides (OCs) in soils and their potential for soil-air exchange was examined. The most prominent OCs were the DDTs (Geometric Mean, GM=1.6 ng g(-1)), endosulfans (0.16 ng g(-1)), and toxaphenes (0.64 ng g(-1)). DDTs in soils of southern Mexico showed fresher signatures with higher FDDTe=p,p'-DDT/(p,p'-DDT+p,p'-DDE) and more racemic o,p'-DDT, while the signatures in the central and northern part of Mexico were more indicative of aged residues. Soil-air fugacity fractions showed that some soils are net recipients of DDTs from the atmosphere, while other soils are net sources. Toxaphene profiles in soils and air showed depletion of Parlar 39 and 42 which suggests that soil is the source to the atmosphere. Endosulfan was undergoing net deposition at most sites as it is a currently used pesticide. Other OCs showed wide variability in fugacity, suggesting a mix of net deposition and volatilization. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  17. Improved netting

    International Nuclear Information System (INIS)

    Bramley, A.; Clabburn, R.J.T.

    1976-01-01

    A method is described for producing netting composed of longitudinal and transverse threads of irradiation cross linked thermoplastic material, the threads being joined together at their crossings by moulded masses of cross linked thermoplastic material. The thread may be formed of polyethylene filaments, subjected to a radiation dose of 15 to 25 MR. The moulding can be conducted at 245 0 to 260 0 C or higher. The product is claimed to be an improved quality of netting, with bonds of increased strength between crossing threads. (U.K.)

  18. Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing

    Czech Academy of Sciences Publication Activity Database

    Geleyn, J.- F.; Mašek, Jan; Brožková, Radmila; Kuma, P.; Degrauwe, D.; Hello, G.; Pristov, N.

    2017-01-01

    Roč. 143, č. 704 (2017), s. 1313-1335 ISSN 0035-9009 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : numerical weather prediction * climate models * clouds * parameterization * atmospheres * formulation * absorption * scattering * accurate * database * longwave radiative transfer * broadband approach * idealized optical paths * net exchanged rate decomposition * bracketing * selective intermittency Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.444, year: 2016

  19. Fractal characteristics correlation between the solar total radiation and net radiation on the apple tree canopy

    International Nuclear Information System (INIS)

    Meng Ping; Zhang Jingsong

    2005-01-01

    The characteristics correlation between solar total radiations(Q) and net radiation(R n) on the apple tree canopy at mainly growth stage in the hilly of Taihang Mountain are analyzed with fractal theory based on regression analysis. The results showed that:1)Q and R n had good liner correlation. The regression function was as the following:R n=0.740 8Q-32.436, which coefficient r is 0.981 1(n=26 279), F cal= 343 665.2 F 0.01 36 277=6.63; 2)The fractal dimension curves of Q and R n both had two no s caling regions, which circumscription time value of the inflexion was 453 and 441 minutes respectively.In the first region, fractal dimensions of Q and R n was 1.112 6, 1.131 9 respectively,and 1.913 6@@@ 1.883 4 in the second region.Those information showed that fractal characteristics of Q and R n is similar. So R n can be calculated with Q on the apple tree canopy

  20. Natural radiation dose estimates from soils

    International Nuclear Information System (INIS)

    Silveira, M.A.G.R.; Moreira, H.; Medina, N.H.

    2009-01-01

    In this work the natural radiation from soils of southeastern Brazil has been studied. Soil samples from Interlagos, Sao Paulo; parks and Billings dam, in Sao Bernardo do Campo city; Santos, Sao Vicente and Sao Sebastiao beaches, Sao Paulo and sands from Ilha Grande beaches, Rio de Janeiro, were analyzed. The results show that the main contribution to the effective dose is due to elements of the 232 Th decay chain, with a smaller contribution from the radionuclide 40 K and the elements of the series of 238 U. The obtained values found in the studied regions, are around the average international dose due to external exposure to gamma rays (0.48 mSv/yr), except in Praia Preta, Ilha Grande, where the effective dose exceeds the average value. (author)

  1. A radiosity-based model to compute the radiation transfer of soil surface

    Science.gov (United States)

    Zhao, Feng; Li, Yuguang

    2011-11-01

    A good understanding of interactions of electromagnetic radiation with soil surface is important for a further improvement of remote sensing methods. In this paper, a radiosity-based analytical model for soil Directional Reflectance Factor's (DRF) distributions was developed and evaluated. The model was specifically dedicated to the study of radiation transfer for the soil surface under tillage practices. The soil was abstracted as two dimensional U-shaped or V-shaped geometric structures with periodic macroscopic variations. The roughness of the simulated surfaces was expressed as a ratio of the height to the width for the U and V-shaped structures. The assumption was made that the shadowing of soil surface, simulated by U or V-shaped grooves, has a greater influence on the soil reflectance distribution than the scattering properties of basic soil particles of silt and clay. Another assumption was that the soil is a perfectly diffuse reflector at a microscopic level, which is a prerequisite for the application of the radiosity method. This radiosity-based analytical model was evaluated by a forward Monte Carlo ray-tracing model under the same structural scenes and identical spectral parameters. The statistics of these two models' BRF fitting results for several soil structures under the same conditions showed the good agreements. By using the model, the physical mechanism of the soil bidirectional reflectance pattern was revealed.

  2. Effects of UVB radiation on net community production in the upper global ocean

    KAUST Repository

    Garcia-Corral, Lara S.

    2016-08-31

    Aim Erosion of the stratospheric ozone layer together with oligotrophication of the subtropical ocean is leading to enhanced exposure to ultraviolet B (UVB) radiation in ocean surface waters. The impact of increased exposure to UVB on planktonic primary producers and heterotrophs is uncertain. Here we test the null hypothesis that net community production (NCP) of plankton communities in surface waters of the tropical and subtropical ocean is not affected by ambient UVB radiation and extend this test to the global ocean, including the polar oceans and the Mediterranean Sea using previous results. Location We conducted experiments with 131 surface communities sampled during a circumnavigation cruise along the tropical and subtropical ocean and combined these results with 89 previous reports encompassing the Atlantic, Pacific, Arctic and Southern Oceans and the Mediterranean Sea. Methods The use of quartz (transparent to UVB radiation) and borosilicate glass materials (opaque to most UVB) for incubations allowed us to compare NCP between communities where UVB is excluded and those receiving natural UVB radiation. Results We found that NCP varies when exposed to natural UVB radiation compared to those where UVB was removed. NCP of autotrophic communities tended to decrease under natural UVB radiation, whereas the NCP of heterotrophic communities tended to increase. However, these variations showed the opposite trend under higher levels of UVB radiation. Main conclusions Our results suggest that earlier estimates of NCP for surface communities, which were hitherto derived using materials blocking UVB radiation were biased, with the direction and magnitude of this bias depending on the metabolic status of the communities and the underwater penetration of UVB radiation.

  3. RadNet Radiological Air Monitoring Network

    International Nuclear Information System (INIS)

    Scott Telofski, J.; Askren, D.R.; Petko, Ch.M.; Fraass, R.G.

    2010-01-01

    The United States Environmental Protection Agency operates a national environmental radiation monitoring program called RadNet. RadNet monitors airborne particulates, precipitation, milk, and drinking water for radiation levels. The primary purpose of the original program in the 1950's and 1960's was to collect and analyze samples in various media to assess the effects of radioactive fallout from above-ground nuclear weapon testing. As above-ground testing diminished in the 1970's, the program, especially the air network, became critical in evaluating effects of other types of nuclear incidents, such as the nuclear reactor accident at Chernobyl, as well as monitoring trends in environmental radioactive contamination. The value of rapid data collection subsequent to such incidents led to the consideration of developing air monitors with radiation detectors and telecommunication equipment for real-time radiation measurement. The strengthened United States homeland security posture after 2001 led to production and installation of the current real-time RadNet air monitors. There are now 118 stationary, continuously operating air monitoring stations and 40 mobile air monitors for site specific monitoring. The stationary air monitors include radiation detectors, meteorological sensors, a high-volume air sampler, and communication devices for hourly data transfers. When unusual levels are detected, scientists download a full sodium iodide detector spectrum for analysis. The real-time data collected by RadNet stationary systems permit rapid identification and quantification of airborne nuclides with sufficient sensitivity to provide critical information to help determine protective actions. The data also may help to rapidly refine long-range radioactive plume models and estimate exposure to the population. This paper provides an overview of the airborne particulate monitoring conducted during above-ground nuclear weapon testing, summarizes the uses of data from the program

  4. Organochlorine pesticides in soils of Mexico and the potential for soil-air exchange

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Fiona [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario L01 1N0 (Canada); Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4 (Canada); Alegria, Henry A. [Department of Environmental Science, Policy and Geography, University of South Florida St. Petersburg, 140 7th Ave. S., St. Petersburg, FL 33701 (United States); Bidleman, Terry F., E-mail: terry.bidleman@ec.gc.c [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario L01 1N0 (Canada)

    2010-03-15

    The spatial distribution of organochlorine pesticides (OCs) in soils and their potential for soil-air exchange was examined. The most prominent OCs were the DDTs (Geometric Mean, GM = 1.6 ng g{sup -1}), endosulfans (0.16 ng g{sup -1}), and toxaphenes (0.64 ng g{sup -1}). DDTs in soils of southern Mexico showed fresher signatures with higher F{sub DDTe} = p,p'-DDT/(p,p'-DDT + p,p'-DDE) and more racemic o,p'-DDT, while the signatures in the central and northern part of Mexico were more indicative of aged residues. Soil-air fugacity fractions showed that some soils are net recipients of DDTs from the atmosphere, while other soils are net sources. Toxaphene profiles in soils and air showed depletion of Parlar 39 and 42 which suggests that soil is the source to the atmosphere. Endosulfan was undergoing net deposition at most sites as it is a currently used pesticide. Other OCs showed wide variability in fugacity, suggesting a mix of net deposition and volatilization. - Chemical profiles of residues and soil-air fugacities are used to assess the potential of soil as a source of organochlorine pesticides to the air of Mexico.

  5. Simply obtained global radiation, soil temperature and soil moisture in an alley cropping system in semi-arid Kenya

    NARCIS (Netherlands)

    Mungai, D.N.; Stigter, C.J.; Coulson, C.L.; Ng'ang'a, J.K.

    2000-01-01

    Global radiation, soil temperature and soil moisture data were obtained from a 4-6 year old Cassia siamea/maize (CM) alley cropping (or hedgerow intercropping) system, at a semi-arid site at Machakos, Kenya, in the late eighties. With the growing need to explore and manage variations in

  6. Environmental radiation in coal and soil samples from Savannah area (Chatham County, GA)

    International Nuclear Information System (INIS)

    Hongo, D.; Ghuman, G.S.; Chandra, K.

    1997-01-01

    Radiation measurements were made in coal and fly ash samples from Savannah Electric ampersand Power Company (SEPCO) plant on the Savannah River and the soil core samples from three sites along the flow gradient of Savannah State University Campus Creek. The objective of this study was to determine the magnitude of natural radiation due to radon and potassium in the Savannah area and possible effect of external factors such as the operations at Savannah River Site (SRS). The instrument used for this purpose was Geiger Counter Model 500 (Tennelec/Nucleus, Inc.) which was standardized with known samples of Sr-90 (0.1 μCi t 1/2 = 28.6 yrs., beta radiation) and Co-60 (1.0 μCi t 1/2 = 5.27 yrs., gamma radiation). Beta and gamma radiations in the samples were differentiated with the help of polyethylene and lead absorbers. Results showed quite low radioactivity in bituminous coal from SEPCO plant and it reduced by a factor of 0.5 and 0.25 in fly ash and weathered fly ash, respectively. Radioactivity of soil samples was slightly greater in the top soil (0-3 cm) of two sites and it decreased markedly with depth (20 cm). Site III soil samples containing lime shells had a negligible radioactivity because carbonate rocks developed from calcareous skeletal matter have low radioactivity from their beginning. Radioactivity appeared to be mainly associated with the fine textured top soil of two sites (high clay content) and it exhibited very little leaching downward into lower layers. Clay particles with greater radioactivity, are formed from the decomposition of feldspars and micas which contain a large fraction of earth's potassium fraction. Measurements with the use of absorbers indicated that the observed radiation in all the samples was mainly due to the gamma rays. A comparison with the radioactivity in coal dust and fly ash samples from SRS revealed that the Savannah samples contained extremely low radiation, which may be due only to the natural sources

  7. [Effects of drip irrigation with plastic mulching on the net primary productivity, soil heterotrophic respiration, and net CO2 exchange flux of cotton field ecosystem in Xinjiang, Northwest China].

    Science.gov (United States)

    Li, Zhi-Guo; Zhang, Run-Hua; Lai, Dong-Mei; Yan, Zheng-Yue; Jiang, Li; Tian, Chang-Yan

    2012-04-01

    In April-October, 2009, a field experiment was conducted to study the effects of drip irrigation with plastic mulching (MD) on the net primary productivity (NPP), soil heterotrophic respiration (Rh) , and net CO2 exchange flux (NEF(CO2)) of cotton field ecosystem in Xinjiang, taking the traditional flood irrigation with no mulching (NF) as the control. With the increasing time, the NPP, Rh, and NEF(CO2) in treatments MD and NF all presented a trend of increasing first and decreased then. As compared with NF, MD increased the aboveground and belowground biomass and the NPP of cotton, and decreased the Rh. Over the whole growth period, the Rh in treatment MD (214 g C x m(-2)) was smaller than that in treatment NF (317 g C x m(-2)), but the NEF(CO2) in treatment MD (1030 g C x m(-2)) was higher than that in treatment NF (649 g C x m(-2)). Treatment MD could fix the atmospheric CO2 approximately 479 g C x m(-2) higher than treatment NF. Drip irrigation with plastic mulching could promote crop productivity while decreasing soil CO2 emission, being an important agricultural measure for the carbon sequestration and emission reduction of cropland ecosystems in arid area.

  8. Optimal sample size of signs for classification of radiational and oily soils

    International Nuclear Information System (INIS)

    Babayev, M.P.; Iskenderov, S.M.; Aghayev, R.A.

    2012-01-01

    Full text : This article tells about classification of radiational and oily soils that should be in essence a compact intelligence system which contains maximum information on classes of soil objects in the accepted feature space. The stored experience shows that the volume of the most informative soil signs can make up maximum 7-8 indexes. More correct approach to our opinion for a sample of the most informative (most important) indexes is the method of testing and mistakes, that is the experimental method, allowing to make use a wide experience and intuition of the researcher, or group of the researchers, engaged for many years in the field of soil science. At this operational stage of the formal device of soils classification, to say more concrete, the assessment section of selfdescriptiveness of soil signs of this formal device, in our opinion, is purely mathematized and in some cases even not reflect the true picture. In this case it will be calculated 21 pair of correlative elements between the selected soil signs as a measure of the linear communication. The volume of the correlative row will be equal to 6, as the increase in volume of the correlative row can sharply increase the volume calculation. Pertinently to note that, it is the first time an attempt is made to create correlative matrixes of the most important signs of radiation and oily soils

  9. Gamma radiation for the decontamination of soil containing dioxin

    International Nuclear Information System (INIS)

    Chhor, M.P.; Wethington, J.A. Jr.

    1986-01-01

    Dioxin-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) contamination poses an environmental danger. Different methods for the cleanup of contaminated sites have been proposed. The G value for dioxin dispersed in soil wetted with ethanol is much greater than G values for typical aromatic hydrocarbons. Doses > 6.24 x 10 23 eV/kg lead to decreasing rates of destruction of TCDD, and doses > 24.97 x 10 23 eV/kg are not very effective. Gamma irradiation of contaminated soil apparently will not result in large (powers of 10) decontamination factor. The concept of using gamma radiation for the degradation of TCDD in contaminated soil is about as good or as bad as other methods being tested

  10. Estimation of Net Radiation in Three Different Plant Functional Types in Korea

    International Nuclear Information System (INIS)

    Kwon, H.J.

    2009-01-01

    Net Radiation (R N ) is the major driving force for biophysical and biogeochemical processes in the terrestrial ecosystems, which is one of the most critical variables in both measurement and modeling. Despite its importance, there are only 10 weather stations conducting R N measurements among the 544 stations operated by Korea Meteorological Administration (KMA; KMA, 2008). The measurement of incoming shortwave radiation (R S ↓) is, however, conducted at 22 stations while that of sunshine duration is conducted at all the manned stations. In this context, the recent research for estimating R N using R S ↓ in Korean peninsula by Kwon (2009) is of great worth. The author used a linear regression and the radiation balance methods. We generally agree with the author that, in terms of simplicity and practicality, both methods show reliable applicability for estimating R N . We noted, however, that the author’s experimental method and analysis need some clarification and improvement, that are addressed in the following perspectives: (1) the use of daily integrated data for regression, (2) the use of measured albedo, (3) the use of linear coefficients for whole year data, (4) methodological improvement, (5) the use of sunshine duration, and (6) the error assessment. (author)

  11. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    Science.gov (United States)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  12. Net ecosystem exchange in a sedge-sphagnum fen at the South of West Siberia, Russia

    Science.gov (United States)

    Dyukarev, Egor

    2017-04-01

    The model of net ecosystem exchange was used to study the influence of different environmental factors and to calculate daily and growing season carbon budget for minerotrophic fen at South of West Siberia, Russia. Minerotrophic sedge-sphagnum fen occupies the central part of the Bakcharskoe bog. The model uses air and soil temperature, incoming photosynthetically active radiation, and leaf area index as the explanatory factors for gross primary production, heterotrophic and autotrophic respiration. The model coefficients were calibrated using data collected by automated soil CO2 flux system with clear long-term chamber. The studied ecosystem is a sink of carbon according to modelling and observation results. This study was supported by Russian Foundation for Basic Researches (grant numbers 16-07-01205 and 16-45-700562.

  13. Competition partition of soil and solar radiation resources between soybean cultivars and concurrent genotypes

    International Nuclear Information System (INIS)

    Bianchi, M.A.; Fleck, N.G.; Dillenburg, L.R.

    2006-01-01

    Plants compete for environmental resources located below and over soil surface. Physical separation of competition allows understanding the relative importance of each fraction, as well as identifying possible differences among species. The aim of this research was to separate the individual effects resulting from competition for soil or solar radiation resources, between soybean and concurrent plants. Thus, experiments using pots were carried out at UFRGS, in Porto Alegre-RS, in 2001 and 2002. The treatments tested resulted from the combinations of two concurrent genotypes (crop and competitor) and four competition conditions (absence of competition, competition for soil and solar radiation, competition for soil resources, and competition for solar radiation). Soybean cultivars IAS 5 and FEPAGRO RS 10 represented the crop, whereas radish forage and the soybean cultivar FUNDACEP 33 were the competitors tested. Morpho-physiological variables were evaluated in the soybean plants and radish forage. Growth of the soybean plants was most affected by soil resources competition, with RS 10 cultivar being more competitive than IAS 5.Radish forage did not interfere in the growth of soybean cultivars but it benefited from soybean presence. (author) 6

  14. Long-term influence of tillage and fertilization on net carbon dioxide exchange rate on two soils with different textures.

    Science.gov (United States)

    Feiziene, Dalia; Feiza, Virginijus; Slepetiene, Alvyra; Liaudanskiene, Inga; Kadziene, Grazina; Deveikyte, Irena; Vaideliene, Asta

    2011-01-01

    The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. A simple formula for the net long-wave radiation flux in the southern Baltic Sea

    Directory of Open Access Journals (Sweden)

    Tomasz Zapadka

    2001-09-01

    Full Text Available This paper discusses problems of estimating the net long-wave radiation flux at the sea surface on the basis of easily measurable meteorological quantities (air and sea surface temperatures, near-surface water vapour pressure, cloudiness. Empirical data and existing formulae are compared. Additionally, an improved formula for the southern Baltic region is introduced, with a systematic error of less than 1 W -2 and a statistical error of less than 20 W -2.

  16. A database on tritium behavior in the chronic HT release experiment. 1. Meteorological data and tritium concentrations in air and soil

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hiroshi; Yokoyama, Sumi; Kinouchi, Nobuyuki; Murata, Mikio; Amano, Hikaru; Ando, Mariko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukutani, Satoshi

    1999-03-01

    This report comprises a database that can be used to develop and validate tritium models to assess doses to the general public due to HT continuously released from fusion facilities into the atmosphere. The data was collected in the 1994 chronic HT release experiment carried out at the Chalk River Laboratories in Canada. The data set include meteorological conditions such as solar radiation, net solar radiation, wind speed, air temperature and humidity, soil temperature and soil heat flux; soil conditions such as bulk density, water content and free pore volume fraction; HT and HTO concentrations in air, HTO concentrations in soil moisture and HTO deposition to water surface. Evapo-transpiration rates and turbulent diffusivity are estimated and tabulated. The report also contains experimental methods to observe meteorological conditions and take air and soil samples. (author)

  17. A comparison of radiative transfer models for predicting the microwave emission from soils

    Science.gov (United States)

    Schmugge, T. J.; Choudhury, B. J.

    1981-01-01

    Noncoherent and coherent numerical models for predicting emission from soils are compared. Coherent models use the boundary conditions on the electric fields across the layer boundaries to calculate the radiation intensity, and noncoherent models consider radiation intensities directly. Interference may cause different results in the two approaches when coupling between soil layers in coherent models causes greater soil moisture sampling depths. Calculations performed at frequencies of 1.4 and 19.4 GHz show little difference between the models at 19.4 GHz, although differences are apparent at the lower frequency. A definition for an effective emissivity is also given for when a nonuniform temperature profile is present, and measurements made from a tower show good agreement with calculations from the coherent model.

  18. Elevated uptake of Th and U by netted chain fern (Woodwardia areolata)

    International Nuclear Information System (INIS)

    Knox, A.S.; Kaplan, D.I.; Hinton, T.G.

    2008-01-01

    We assessed the ability of netted chain fern (Woodwardia areolata) to uptake U and Th from wetland soils on the U.S. Department of Energy's Savannah River Site in South Carolina. Netted chain fern had the highest Th and U concentrations of all plants collected from the wetland. Ferns grown in contaminated soil (329 mg x kg -1 Th, 44 mg x kg -1 U) in a greenhouse contained 6.4 mg x kg -1 Th and 5.3 mg x kg -1 U compared with 0.13 mg x kg -1 Th and 0.035 mg x kg -1 U in Bermuda grass (Cynodon dactylon). Netted chain fern has potential for the phytoremediation of soils contaminated with Th and U. (author)

  19. Foliage litter quality and annual net N mineralization: comparison across North American forest sites.

    Science.gov (United States)

    Scott, Neal A; Binkley, Dan

    1997-07-01

    The feedback between plant litterfall and nutrient cycling processes plays a major role in the regulation of nutrient availability and net primary production in terrestrial ecosystems. While several studies have examined site-specific feedbacks between litter chemistry and nitrogen (N) availability, little is known about the interaction between climate, litter chemistry, and N availability across different ecosystems. We assembled data from several studies spanning a wide range of vegetation, soils, and climatic regimes to examine the relationship between aboveground litter chemistry and annual net N mineralization. Net N mineralization declined strongly and non-linearly as the litter lignin:N ratio increased in forest ecosystems (r 2  = 0.74, P mineralization decreased linearly as litter lignin concentration increased, but the relationship was significant (r 2  = 0.63, P mineralization across this range of sites (r 2  litter lignin:N ratio and net N mineralization from forest floor and mineral soil was similar. The litter lignin:N ratio explained more of the variation in net N mineralization than climatic factors over a wide range of forest age classes, suggesting that litter quality (lignin:N ratio) may exert more than a proximal control over net N mineralization by influencing soil organic matter quality throughout the soil profile independent of climate.

  20. Radiation monitoring of soil cover of natural uranium in the Issyk-Kul province

    International Nuclear Information System (INIS)

    Djenbaev, B.M.; Toktoeva, T.E.; Kaldibaev, B.K.; Zholbolduev, B.T.

    2015-01-01

    This article presents the current state in the radioecological soil Issyk-Kul province of natural uranium. Found that the background radiation - exposure dose and artificial radionuclides in the soil of the coastal zone of the lake as a whole at the level of the background and the acceptance of lower standards except for natural technogenic and some natural areas. Radioecological this province is mild natural and industrial uranium province.We have previously established 10 experimental plots around Issyk-Kul and the measurement showed that the power of natural background radiation in the gamma radiation of the coastal lake zone is an average of 17 to 25 mR/h in some areas up to 40 mR/h. As the distance from the lake to the side slopes of its level in some places rises to 40 mR/h, especially in some mountainous areas, canyons, which are based on the rocks, granites and their fragments are small, red sand, with a slightly increased radioactivity. For small areas with high natural background radiation can be attributed to the beaches of the coastal zone v. Jenish, v. Ak-Terek, located on the southern shore of Issyk-Kul Lake. The radioactivity of 30 - 60 mR/h, and in areas with a high content of iron in the sand inclusions level exposure dose increases up to 400 mR/h. Small areas of the coastal zone of Issyk-Kul Lake, mostly mud deposits with characteristic brilliance giving high radiation background. These areas include: the beach v.Tosor - 40-50 mR/h, 10 km west of the coast v.Kaji-Sai - 32-40 mR/h, the shore around with. Toru-Aigyr - 30 mR/h, the coast around v.Tamchi - 40-50 mR/h. In general, cities in the Issyk-Kul basin Kara-Kol, Cholpon-Ata and Balykchy radiation situation quite well, the average exposure dose of gamma radiation does not exceed 20 - 22 mR/h, but in some places the use of crushed granite, as filler and construction material, the level of background radiation increases to 40-50 mR/h This indicates that these natural resources, without first

  1. On the effect of the ionizing radiation of soil and 15N-labelled slurry of respiration and N-dynamic of soils

    International Nuclear Information System (INIS)

    Peschke, H.; Markgraf, G.; Feist, A.; Kiok, K.

    1991-01-01

    Ionizing radiation on a sandy soil with a dose of 25 kGy shows no effect opposite untreated soil in view to the soil respiration. Besides, the nitrifying bacteria has been inpaired for a long time and the nitrificid efficiency has kept for 44 days. There was no influences of slurry of cow treated with γ-rays (25 and 10 kGy) on the CO 2 exhalation, ammonification and nitrification in 3 tested soils. (orig.) [de

  2. Radiation exposure parameters resulting from the radionuclides in soil collected from Manavalakurichi

    International Nuclear Information System (INIS)

    Jose, Reeba Maria; Ben Byju, S.; Arunima, S.; Jojo, P.J.

    2014-01-01

    Naturally occurring radioactive materials (NORMS) are and have always been a part of our environment. Exposure to ionizing radiation film natural sources is a continuous and unavoidable feature of life on earth. Human beings are exposed outdoors to the natural terrestrial radiation that originates predominantly from the upper 30 cm of the soil. Only radionuclides with half-lives comparable with the age of the earth or their corresponding decay products existing in terrestrial material such as 232 Th, 238 U and 40 K are of great interest. The radiological implication of these radionuclides is due to the gamma ray exposure of the body and irradiation of lung tissue from inhalation of radon and its daughters. Therefore the assessment of gamma radiation dose from natural source is of particular importance as natural radiation is the largest contributor to the external dose of the world population. The natural environmental radioactivity and the external exposure due to gamma radiation depend primarily on the geology and geographical condition and appear at different levels in the soils of each region in the world. A systematic radiological survey has been carried out in the region of high level natural radioactive area in South West India to assess the natural gamma radiation level

  3. Net soil respiration and greenhouse gas balance along a sequence of forest disturbance to smallholder rubber and oil palm plantations in Sumatra

    Science.gov (United States)

    Khusyu Aini, Fitri; Hergoualc'h, Kristell; Smith, Jo; Verchot, Louis; Martius, Christopher

    2017-04-01

    The rapid increase in demand for land to establish oil palm and rubber plantations has led to the conversion of forests, with potential impacts on greenhouse gas emissions and on climate change. This study evaluates the net greenhouse gas balance following forest change to other land uses, i.e. one year rubber plantation, twenty-year rubber plantation and eight year oil palm plantation on Sumatran mineral soils. None of the plantations had ever been fertilized previously. During this study they were fertilized to provide nitrogen at the recommended rate used by farmers (33.3 kg N ha-1 y-1). The ecosystem stores carbon in litterfall, standing litter biomass (undergrowth vegetation, leaves, twigs, litter on the soil surface), soil organic matter, root biomass, and standing tree biomass. It releases carbon to the atmosphere through soil respiration fluxes, negative values indicating that carbon is stored by the land use change and positive values indicating emissions to the atmosphere. Net soil respiration was assessed using a mass balance approach: standing litter and tree biomass were measured once; the rate of carbon accumulation from standing litter and tree biomass was calculated by dividing the stock by the age of plantation or the time since logging started in the disturbed forest. The carbon accumulation in standing litter, tree biomass in the forest and soil organic matter for all land-uses was estimated from available in the literature. Root biomass for each land-use system was calculated using the root:shoot ratio. The net soil respiration of carbon dioxide from the forest, disturbed forest, one year rubber plantation, twenty-year rubber plantation and oil palm plantation were calculated to be -6 (± 5), 12 (± 6), 11 (± 15), 10 (± 5), 39 (± 7) Mg ha-1 y-1, respectively. Soil nitrous oxide, methane and litterfall were measured for 14 months and respiration fluxes were measured for 5 months across land uses and different seasons. The measured emissions of

  4. Comparison of 37 months global net radiation flux derived from PICARD-BOS over the same period observations of CERES and ARGO

    Science.gov (United States)

    Zhu, Ping; Wild, Martin

    2016-04-01

    The absolute level of the global net radiation flux (NRF) is fixed at the level of [0.5-1.0] Wm-2 based on the ocean heat content measurements [1]. The space derived global NRF is at the same order of magnitude than the ocean [2]. Considering the atmosphere has a negligible effects on the global NRF determination, the surface global NRF is consistent with the values determined from space [3]. Instead of studying the absolute level of the global NRF, we focus on the interannual variation of global net radiation flux, which were derived from the PICARD-BOS experiment and its comparison with values over the same period but obtained from the NASA-CERES system and inferred from the ocean heat content survey by ARGO network. [1] Allan, Richard P., Chunlei Liu, Norman G. Loeb, Matthew D. Palmer, Malcolm Roberts, Doug Smith, and Pier-Luigi Vidale (2014), Changes in global net radiative imbalance 1985-2012, Geophysical Research Letters, 41 (no.15), 5588-5597. [2] Loeb, Norman G., John M. Lyman, Gregory C. Johnson, Richard P. Allan, David R. Doelling, Takmeng Wong, Brian J. Soden, and Graeme L. Stephens (2012), Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty, Nature Geoscience, 5 (no.2), 110-113. [3] Wild, Martin, Doris Folini, Maria Z. Hakuba, Christoph Schar, Sonia I. Seneviratne, Seiji Kato, David Rutan, Christof Ammann, Eric F. Wood, and Gert Konig-Langlo (2015), the energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 44 (no.11-12), 3393-3429.

  5. Digital radiation monitor system

    International Nuclear Information System (INIS)

    Quan Jinhu; Zhai Yongchun; Guan Junfeng; Ren Dangpei; Ma Zhiyuan

    2003-01-01

    The article introduced digital radiation monitor system. The contents include: how to use advanced computer net technology to establish equipment net for nuclear facility, how to control and manage measuring instruments on field equipment net by local area net, how to manage and issue radiation monitoring data by internet

  6. Application of a three-dimensional model for assessing effects of small clear-cuttings on radiation and soil temperature

    DEFF Research Database (Denmark)

    Olchev, A.; Radler, K.; Sogachev, Andrey

    2009-01-01

    , solar radiation, wind speed and direction, soil temperatures at 10 and 20 cm depth were measured by five automatic stations within the clear-cut area. One reference station was placed about 100 m from the clear-cut inside the forest stand. Comparisons of modelled and measured solar radiation fluxes...... and soil temperature profiles showed that the model adequately describes the spatial heterogeneity and dynamics of these variables under different weather conditions. The model can be used to explore solar radiation and soil temperature patterns within heterogeneous forest plots, with applications......A three-dimensional model Mixfor-3D of soil–vegetation–atmosphere transfer (SVAT) was developed and applied to estimate possible effects of tree clear-cutting on radiation and soil temperature regimes of a forest ecosystem. The Mixfor-3D model consists of several closely coupled 3D sub...

  7. Gamma radiation dose from radionuclides in Kong Kong soil

    International Nuclear Information System (INIS)

    Leung, K.C.

    1990-01-01

    Calculations have been made of the γ dose rate at one metre above ground from the results of measurements of radionuclide concentrations in soil at various locations in Hong Kong and prior to the Chernobyl accident. The average dose rate is found to be 0.076 μGy h -1 , or 0.67 mGy year -1 . The contribution from fallout nuclides to the annual dose is shown to be small, at about 0.4% of the total. The calculated dose rate in this work is about 80% higher than the world average given by the United Nations Scientific Committee on the Effects of Atomic Radiation, in Ionizing Radiation: Sources and Biological Effects, Annex B (Exposure to natural radiation sources). A United Nations Publication, 1982. (author)

  8. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  9. Net-infiltration map of the Navajo Sandstone outcrop area in western Washington County, Utah

    Science.gov (United States)

    Heilweil, Victor M.; McKinney, Tim S.

    2007-01-01

    As populations grow in the arid southwestern United States and desert bedrock aquifers are increasingly targeted for future development, understanding and quantifying the spatial variability of net infiltration and recharge becomes critically important for inventorying groundwater resources and mapping contamination vulnerability. A Geographic Information System (GIS)-based model utilizing readily available soils, topographic, precipitation, and outcrop data has been developed for predicting net infiltration to exposed and soil-covered areas of the Navajo Sandstone outcrop of southwestern Utah. The Navajo Sandstone is an important regional bedrock aquifer. The GIS model determines the net-infiltration percentage of precipitation by using an empirical equation. This relation is derived from least squares linear regression between three surficial parameters (soil coarseness, topographic slope, and downgradient distance from outcrop) and the percentage of estimated net infiltration based on environmental tracer data from excavations and boreholes at Sand Hollow Reservoir in the southeastern part of the study area.Processed GIS raster layers are applied as parameters in the empirical equation for determining net infiltration for soil-covered areas as a percentage of precipitation. This net-infiltration percentage is multiplied by average annual Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation data to obtain an infiltration rate for each model cell. Additionally, net infiltration on exposed outcrop areas is set to 10 percent of precipitation on the basis of borehole net-infiltration estimates. Soils and outcrop net-infiltration rates are merged to form a final map.Areas of low, medium, and high potential for ground-water recharge have been identified, and estimates of net infiltration range from 0.1 to 66 millimeters per year (mm/yr). Estimated net-infiltration rates of less than 10 mm/yr are considered low, rates of 10 to 50 mm/yr are

  10. Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact

    Science.gov (United States)

    Zhou, Guixiang; Zhang, Jiabao; Mao, Jingdong; Zhang, Congzhi; Chen, Lin; Xin, Xiuli; Zhao, Bingzi

    2015-01-01

    The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14–19% and the ambient radiation by 9–16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems. PMID:26423726

  11. Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact.

    Science.gov (United States)

    Zhou, Guixiang; Zhang, Jiabao; Mao, Jingdong; Zhang, Congzhi; Chen, Lin; Xin, Xiuli; Zhao, Bingzi

    2015-10-01

    The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14-19% and the ambient radiation by 9-16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems.

  12. Influence of soybean pubescence type on radiation balance

    International Nuclear Information System (INIS)

    Nielsen, D.C.; Blad, B.I.; Verma, S.B.; Rosenberg, N.J.; Specht, J.E.

    1984-01-01

    Increasing the density of pubescence on the leaves and stems of soybeans (Glycine max L.) should influence the radiation balance of the soybean canopy and affect the evapotranspiration and photosynthetic rates. This study was undertaken to evaluate the influence of increased pubescence density on various components of the radiation balance. Near-isogenic lines of two soybean cultivars (Clark and Harosoy) were grown in four adjacent small plots (18 m · 18 m) during the 1980, 1981, and 1982 growing seasons near Mead, Nebr. The soil at this site is classified as a Typic Argiudoll. The isolines of each cultivar varied only in the amount of pubescence (dense vs. normal pubescence). Measurements of albedo, reflected photosynthetically active radiation (PAR), emitted longwave radiation, and net radiation were made over the crop surfaces with instruments mounted on a rotating boom located at the intersection of the four plots. Radiative canopy temperatures were measured with a handheld infrared thermometer (IRT). Results show that dense pubescence increased reflection of shortwave radiation and PAR by 3 to 5% and 8 to 11%, respectively. Emitted longwave radiation and radiative canopy temperature were not significantly affected by increased pubescence, although there was a slight tendency for the dense pubescent canopy to be cooler. Increased pubescence decreased net radiation over the canopy by 0.5 to 1.5%. These results suggest that soybeans with dense pubescence may be slightly better adapted to the high radiation, high temperature, and limited moisture conditions of the eastern Great Plains than are those with normal pubescence

  13. UV sensitivity of planktonic net community production in ocean surface waters

    Science.gov (United States)

    Regaudie-de-Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-05-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we test the sensitivity of net community production (NCP) to UVB of planktonic communities in surface waters across contrasting regions of the ocean. We observed here that UVB radiation affects net plankton community production at the ocean surface, imposing a shift in NCP by, on average, 50% relative to the values measured when excluding partly UVB. Our results show that under full solar radiation, the metabolic balance shows the prevalence of net heterotrophic community production. The demonstration of an important effect of UVB radiation on NCP in surface waters presented here is of particular relevance in relation to the increased UVB radiation derived from the erosion of the stratospheric ozone layer. Our results encourage design future research to further our understanding of UVB effects on the metabolic balance of plankton communities.

  14. Release of bound residues of atrazine from soils through autoclaving and gamma radiation sterilization

    International Nuclear Information System (INIS)

    Nakagawa, L.E.; Andréa, M.M.

    1997-01-01

    The sterilization methods are particularly important to study the influence of microorganisms on the pesticide dissipation in soils. This study, conducted in the laboratories of the Instituto Biológico of São Paulo in august 1996, tested the influence of two methods of soil sterilization - moist heat (autoclaving) and γ radiation - on the release of nonextractable or bound residues. It was studied, as example, bound residues of the herbicide atrazine in two types of soil (gley humic and dark red latosol). In the soil samples submitted to the moist heat sterilization, the recovery of the previously bound residues as reextractable residues was 5.6 and 5.9 times higher than in the control soils, not submitted to any sterilization process. Therefore, the method itself released the residues, indicating that the autoclaving is not the most appropriate method for studies on the influence of microorganisms on the release of bound residues. Otherwise, the γ radiation did not modify the residues recovery when compared to the controls. (author) [pt

  15. Selected micrometeorological, soil-moisture, and evapotranspiration data at Amargosa Desert Research Site in Nye County near Beatty, Nevada, 2001-05

    Science.gov (United States)

    Johnson, Michael J.; Mayers, C. Justin; Garcia, C. Amanda; Andraski, Brian J.

    2007-01-01

    Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada, 2001-05. Evapotranspiration data were collected from February 2002 through the end of December 2005. Data were col-lected in support of ongoing research to improve the understanding of hydrologic and contaminant-transport processes in arid environments. Micrometeorological data include solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, precipitation, near-surface soil temperature, soil-heat flux and soil-water content. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily and hourly mean values. Daily maximum and minimum values are based on hourly mean values. Precipitation data output includes daily and hourly totals. Selected soil-moisture profiles at depth include periodic measurements of soil volumetric water-content measurements at nine neutron-probe access tubes to depths ranging from 5.25 to 29.25 meters. Evapotranspiration data include measurement of daily evapotranspiration and 15-minute fluxes of the four principal energy budget components of latent-heat flux, sensible-heat flux, soil-heat flux, and net radiation. Other data collected and used in equations to determine evapotranspiration include temperature and water content of soil, temperature and vapor pressure of air, and covariance values. Evapotranspiration and flux estimates during 15-minute intervals were calculated at a 0.1-second execution interval using the eddy covariance method. Data files included in this report contain the complete micrometeorological, soil-moisture, and evapotranspiration field data sets. These data files are presented in tabular Excel spreadsheet format. This report highlights selected data contained in the

  16. Effects of nitrogen fertilizer application and solar radiation on the growth response of sorghum [Sorghum bicolor] seedlings to soil moisture

    International Nuclear Information System (INIS)

    Sumi, A.; Katayama, T.C.

    2000-01-01

    The effects of nitrogen fertilizer application and solar radiation on the growth response to soil moisture were examined in sorghum seedlings grown in culture boxes. The effects of soil moisture (f) and amount of nitrogen fertilizer application (g) on the increment of total dry matter weight of sorghum seedling (ΔW) were represented satisfactorily by the following reciprocal equation, 1/ΔW = A/(f - f 0 ) + B(g + g 0 )/(f - f 0 ) + C/[(f - f 0 ) (g + g 0 )] + D/(g + g 0 ) + E, where f 0 and g 0 were the uppermost value of unavailable soil moisture and the amount of nitrogen supplied from soil and seeds. A, B, C, D and E were coefficients. The effects of soil moisture (f) and solar radiation (S) on ΔW were expressed approximately by the following reciprocal equation, 1/ΔW = A/(S - S 0 ) + B/(f - f 0 ) + C(f - f 0 ) + D, where S 0 was the daily compensation point. These results indicated that the effects of solar radiation and soil moisture are additive, but the interaction between soil moisture and nitrogen fertilizer is not negligible. The transpiration efficiency was unaffected by soil moisture, nitrogen fertilizer and solar radiation

  17. Grazing alters net ecosystem C fluxes and the global warming potential of a subtropical pasture.

    Science.gov (United States)

    Gomez-Casanovas, Nuria; DeLucia, Nicholas J; Bernacchi, Carl J; Boughton, Elizabeth H; Sparks, Jed P; Chamberlain, Samuel D; DeLucia, Evan H

    2018-03-01

    The impact of grazing on C fluxes from pastures in subtropical and tropical regions and on the environment is uncertain, although these systems account for a substantial portion of global C storage. We investigated how cattle grazing influences net ecosystem CO 2 and CH 4 exchange in subtropical pastures using the eddy covariance technique. Measurements were made over several wet-dry seasonal cycles in a grazed pasture, and in an adjacent pasture during the first three years of grazer exclusion. Grazing increased soil wetness but did not affect soil temperature. By removing aboveground biomass, grazing decreased ecosystem respiration (R eco ) and gross primary productivity (GPP). As the decrease in R eco was larger than the reduction in GPP, grazing consistently increased the net CO 2 sink strength of subtropical pastures (55, 219 and 187 more C/m 2 in 2013, 2014, and 2015). Enteric ruminant fermentation and increased soil wetness due to grazers, increased total net ecosystem CH 4 emissions in grazed relative to ungrazed pasture (27-80%). Unlike temperate, arid, and semiarid pastures, where differences in CH 4 emissions between grazed and ungrazed pastures are mainly driven by enteric ruminant fermentation, our results showed that the effect of grazing on soil CH 4 emissions can be greater than CH 4 produced by cattle. Thus, our results suggest that the interactions between grazers and soil hydrology affecting soil CH 4 emissions play an important role in determining the environmental impacts of this management practice in a subtropical pasture. Although grazing increased total net ecosystem CH 4 emissions and removed aboveground biomass, it increased the net storage of C and decreased the global warming potential associated with C fluxes of pasture by increasing its net CO 2 sink strength. © 2017 by the Ecological Society of America.

  18. Fungal mycelia in soils - a new method for quantification of their biomass

    Science.gov (United States)

    Drabløs Eldhuset, Toril; Lange, Holger; Svetlik, Jan; Børja, Isabella

    2013-04-01

    All plant-bearing soils are interwoven with fungal hyphae. Their structure and function are affected by environmental factors like drought, which might be a stress factor of increasing importance in many world regions due to climate change. The fungal mycelium in soil is important both for mycorrhizal symbiosis with plant roots and for litter decomposition, and thereby also for carbon turnover in soils. However, the mycelium biomass has been difficult to assess. Here we describe a simple and feasible method to quantify the biomass of fungal mycelium. We report on a manipulation study in the field where drought stress has been induced. The experiment was performed in a Norway spruce (Picea abies) 20 years old stand planted on former agricultural land, with a control plot and a roofed plot where precipitation was excluded. To investigate the fungal mycelium, nylon nets (mesh size 1 mm, width 7 cm and length 25 cm), were inserted vertically into the soil down to 20 cm depth. The nets were left in the soil from October to June, removed and replaced by new nets that were left in the soil from June to October. After removal, by cutting a block of soil around each net, the nets were cleaned from residual soil and scanned using the image scanner CanoScan 9000F. The resulting images were analyzed using the image processing software ImageJ. The image analysis was based on the distribution of grey values in the individual pixels which characterize the different components in the image (voids, hyphae, the nylon net, and soil). Based on the repeated visual evaluation of hyphal coverage in the net segments, we obtained an exponential equation allowing us to determine automatically the coverage of net windows by hyphae in percentage for each net scanned. In this way we can compare the hyphal coverage in the control and the drought-exposed plots. Based on the hyphal coverage scans together with hyphal dry weight on clean nets, we account for the soil particles adhering to the nets

  19. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002-2010

    Science.gov (United States)

    Sinnhuber, Miriam; Berger, Uwe; Funke, Bernd; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan

    2018-01-01

    We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top.Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument for the years 2002-2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1-2 Gmol (109 mol) NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5-1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by the models in nearly every polar

  20. RadNet Air Quality (Deployable) Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet Deployable Monitoring is designed to collect radiological and meteorological information and data asset needed to establish the impact of radiation levels on...

  1. Lessons from simultaneous measurements of soil respiration and net ecosystem exchange of CO2 in temperate forests

    Science.gov (United States)

    Renchon, A.; Pendall, E.

    2017-12-01

    Land-surface exchanges of CO2 play a key role in ameliorating or exacerbating climate change. The eddy-covariance method allows direct measurement of net ecosystem-atmosphere exchange of CO2 (NEE), but partitioning daytime NEE into its components - gross primary productivity (GPP) and ecosystem respiration (RE) - remains challenging. Continuous measurements of soil respiration (RS), along with flux towers, have the potential to better constrain data and models of RE and GPP. We use simultaneous half-hourly NEE and RS data to: (1) compare the short-term (fortnightly) apparent temperature sensitivity (Q10) of nighttime RS and RE; (2) assess whether daytime RS can be estimated using nighttime response functions; and (3) compare the long-term (annual) responses of nighttime RS and nighttime RE to interacting soil moisture and soil temperature. We found that nighttime RS has a lower short-term Q10 than nighttime RE. This suggests that the Q10 of nighttime RE is strongly influenced by the Q10 of nighttime above-ground respiration, or possibly by a bias in RE measurements. The short-term Q10 of RS and RE decreased with increasing temperature. In general, daytime RS could be estimated using nighttime RS temperature and soil moisture (r2 = 0.9). However, this results from little to no diurnal variation in RS, and estimating daytime RS as the average of nighttime RS gave similar results (r2 = 0.9). Furthermore, we observed a day-night hysteresis of RS response to temperature, especially when using air temperature and sometimes when using soil temperature at 5cm depth. In fact, during some months, soil respiration observations were lower during daytime compared to nighttime, despite higher temperature in daytime. Therefore, daytime RS modelled from nighttime RS temperature response was overestimated during these periods. RS and RE responses to the combination of soil moisture and soil temperature were similar, and consistent with the DAMM model of soil-C decomposition. These

  2. Remediation of soil contaminated with pesticides by treatment with gamma radiation

    International Nuclear Information System (INIS)

    Santos, Janilson Silva

    2009-01-01

    The discharge of empty plastic packaging of pesticides can be an environmental concern mainly by soil contamination. Nowadays, Brazil figures in third place among the leading world pesticide markets. An understanding of the processes that affect the transport and fate of pesticides is crucial to assess their potential for contamination of soil and groundwater, and to develop efficient and cost-effective site management and soil remediation strategies. Due to its impact on soil remediation has made sorption a major topic of research on soil-pesticide interactions. The main objective of this study is the evaluation of the pesticides transferring from contaminated mixture of commercial polymeric packing of high-density polyethylene, HDPE, used in agriculture to soil and their removal by gamma irradiation. Two soil samples of argyles compositions and media composition were exposed to a mixture of commercial polymeric packing contaminated with the pesticides methomyl, dimethoate, carbofuran, methidathion, triazine, thiophos, atrazine, ametryne, endosulfan, chloropyrifos, thriazophos and trifluralin. The pesticides leaching from packaging to soil was homogeneous considering a experimental research. The radiation treatment presented high efficiency on removal pesticides from both soil, but it depends on the physical-chemical characteristics of the contaminated soil. The higher efficiency was obtained in soils with higher organic material and humidity. The higher efficiency was obtained for the medium texture soil, with 20 kGy all present pesticides were removed in all layers. In the case of argyles texture soil, it was necessary a 30 kGy to remove the totality of present pesticides. (author)

  3. Application of Spanish legislation on radiation protection in contaminated soils

    International Nuclear Information System (INIS)

    Trueba Alonso, C.; Robles Atienza, B.

    2013-01-01

    As the developments that have led the regulations on contaminated soils conventional pollutants are more advanced than those due to radioactive contaminants, this work is a state of the art of the current situation and is framed within the developments in R and D for radiation protection of the public and the environment. (Author)

  4. [Temperature sensitivity of wheat plant respiration and soil respiration influenced by increased UV-B radiation from elongation to flowering periods].

    Science.gov (United States)

    Chen, Shu-Tao; Hu, Zheng-Hua; Li, Han-Mao; Ji, Yu-Hong; Yang, Yan-Ping

    2009-05-15

    Field experiment was carried out in the spring of 2008 in order to investigate the effects of increased UV-B radiation on the temperature sensitivity of wheat plant respiration and soil respiration from elongation to flowering periods. Static chamber-gas chromatography method was used to measure ecosystem respiration and soil respiration under 20% UV-B radiation increase and control. Environmental factors such as temperature and moisture were also measured. Results indicated that supplemental UV-B radiation inhibited the ecosystem respiration and soil respiration from wheat elongation to flowering periods, and the inhibition effect was more obvious for soil respiration than for ecosystem respiration. Ecosystem respiration rates, on daily average, were 9%, 9%, 3%, 16% and 30% higher for control than for UV-B treatment forthe five measurement days, while soil respiration rates were 99%, 93%, 106%, 38% and 10% higher for control than for UV-B treatment. The Q10s (temperature sensitivity coefficients) for plant respiration under control and UV-B treatments were 1.79 and 1.59, respectively, while the Q10s for soil respiration were 1.38 and 1.76, respectively. The Q10s for ecosystem respiration were 1.65 and 1.63 under CK and UV-B treatments, respectively. Supplemental UV-B radiation caused a lower Q10 for plant respiration and a higher Q10 for soil respiration, although no significant effect of supplemental UV-B radiation on the Q10 for ecosystem respiration was found.

  5. Net energy value of maize ethanol as a response to different climate and soil conditions in the southeastern USA

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tomas; Garcia y Garcia, Axel; Paz, Joel O.; Hoogenboom, Gerrit [Department of Biological and Agricultural Engineering, 1109 Experiment Street, The University of Georgia, Griffin, GA 30223 (United States); Jones, James W. [Department of Agricultural and Biological Engineering, Frazier Rogers Hall, University of Florida, Gainesville, FL 32611 (United States)

    2009-08-15

    A recent increase in the demand for bio-ethanol has sparked maize production in the USA and other countries across the world. The net energy value (NEV), i.e. the energy output in ethanol and co-products after accounting for energy input requirements in the production chain of ethanol, is a measure of its sustainability. Grain yield of maize, which varies substantially across different climate and soil conditions, greatly impacts the ethanol NEV. The objectives of this study were to determine i) the NEV of ethanol produced from maize grown in four production regions in the southeastern USA and, ii) the specific impact of local soil variability under the same climate conditions within the four regions on the NEV of maize-ethanol. Maize yield was simulated with the Cropping System Model (CSM)-CERES-Maize model for soil and weather conditions, and management practices representing Bulloch, Floyd, Laurens and Mitchell counties, Georgia, USA. The calculation of ethanol NEV took into account the energy inputs and outputs of the entire ethanol production chain, and was based on the crop simulations. There were statistically significant differences in ethanol NEV among the counties, and within counties due to local soil variability. Differences in ethanol NEV among counties were partially due to different transportation distances. Based on the results of this study, it was concluded that maize-ethanol NEV can be increased by accounting for the soil and climate factors in the feedstock production and by locating ethanol-processing facilities in regions with soil and climate conditions that are favorable for ethanol-maize production. (author)

  6. Boron Application Improves Growth, Yield and Net Economic Return of Rice

    Directory of Open Access Journals (Sweden)

    Mubshar HUSSAIN

    2012-09-01

    Full Text Available A field trial was conducted to evaluate the role of boron (B application at different growth stages in improving the growth, yield and net economic return of rice at farmer's fields during summer season, 2009. Boron was soil applied (1.5 kg/hm2 at the transplanting, tillering, flowering and grain formation stages of rice; foliar applied (1.5% B solution at the tillering, flowering and grain formation stages of rice, and dipped seedling roots in 1.5% B solution before transplanting; while control plots did not apply any B. Boron application (except dipping of seedling roots in B solution, which caused toxicity and reduced the number of tillers and straw yield than control substantially improved the rice growth and yield. However, soil application was better in improving the number of grains per panicle, 1000-grain weight, grain yield, harvest index, net economic income and ratio of benefit to cost compared with the rest of treatments. Overall, for improving rice performance and maximizing the net economic returns, B might be applied as soil application at flowering.

  7. Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity.

    Science.gov (United States)

    Li, Xi; Toma, Yo; Yeluripati, Jagadeesh; Iwasaki, Shinya; Bellingrath-Kimura, Sonoko D; Jones, Edward O; Hatano, Ryusuke

    2016-06-01

    Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for agriculture. We have used crop-level yields, modeled heterotrophic respiration (Rh) and land use data to estimate spatio-temporal changes in regional scale net primary productivity (NPP), plant C inputs, and net biome productivity (NBP) in northern Japan's arable croplands and grasslands for the period of 1959-2011. We compared the changes in C stocks derived from estimated NBP and using repeated inventory datasets for each individual land use type from 2005 to 2011. For the entire study region of 2193 ha, overall annual plant C inputs to the soil constituted 37% of total region NPP. Plant C inputs in upland areas (excluding bush/fallow) could be predicted by climate variables. Overall NBP for all land use types increased from -1.26MgCha(-1)yr(-1) in 1959-0.26 Mg Cha(-1)yr(-1) in 2011. However, upland and paddy fields showed a decreased in NBP over the period of 1959-2011, under the current C input scenario. From 1988, an increase in agricultural abandonment (bush/fallow) and grassland cover caused a slow increase in the regional C pools. The comparison of carbon budgets using the NBP estimation method and the soil inventory method indicated no significant difference between the two methods. Our results showed C loss in upland crops, paddy fields and sites that underwent land use change from paddy field to upland sites. We also show C gain in grassland from 2005 to 2011. An underestimation of NBP or an overestimation of repeated C inventories cannot be excluded, but either method may be suitable for tracking absolute changes in soil C, considering the uncertainty associated with these methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Control of Eucryptorrhynchus scrobiculatus (Coleoptera: Cuculionidae), a Major Pest of Ailanthus altissima (Sapindales: Simaroubaceae), Using a Modified Square Trap Net.

    Science.gov (United States)

    Yang, Kailang; Wen, Xiaojian; Ren, Yuan; Wen, Junbao

    2018-04-19

    Eucryptorrhynchus scrobiculatus (Motschulsky) (Coleoptera: Cuculionidae) is a borer that mainly attacks the tree of heaven, Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae), and is one of the most damaging forestry pests in China. We developed a trap net for entangling and immobilizing soil-emerging weevils in order to reduce their impact. Recapture rates of weevils in the laboratory was significantly higher with nylon netting of 9, 10, or 11 mm mesh sizes than larger sizes, and these sizes were used to make trial nets for preventing weevil emergence from the soil around impacted trees in the field. Nets were 2 × 2 m with a reinforced border and Velcro-closable, radial slit which allowed the net to be arranged around the base of the tree while producing an unbroken barrier beneath the soil surface (i.e., a modified square trap net, MSTN). Recapture rates of weevils released in the soil did not differ among the MSTNs of 9, 10, or 11 mm mesh sizes. MSTN treatments significantly reduced emergence by naturally-occurring weevils from the soil surrounding trees and reduced numbers of weevils caught in population monitoring traps deployed in treated stands. The results demonstrated that MSTNs might be used to manage of E. scrobiculatus.

  9. Spring hydrology determines summer net carbon uptake in northern ecosystems

    International Nuclear Information System (INIS)

    Yi, Yonghong; Kimball, John S; Reichle, Rolf H

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO 2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the normalized difference vegetation index; NDVI) and atmospheric CO 2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (⩾50° N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO 2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO 2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends. (letters)

  10. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    Science.gov (United States)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  11. The integrated water balance and soil data set of the Rollesbroich hydrological observatory

    Science.gov (United States)

    Qu, Wei; Bogena, Heye R.; Huisman, Johan A.; Schmidt, Marius; Kunkel, Ralf; Weuthen, Ansgar; Schiedung, Henning; Schilling, Bernd; Sorg, Jürgen; Vereecken, Harry

    2016-10-01

    The Rollesbroich headwater catchment located in western Germany is a densely instrumented hydrological observatory and part of the TERENO (Terrestrial Environmental Observatories) initiative. The measurements acquired in this observatory present a comprehensive data set that contains key hydrological fluxes in addition to important hydrological states and properties. Meteorological data (i.e., precipitation, air temperature, air humidity, radiation components, and wind speed) are continuously recorded and actual evapotranspiration is measured using the eddy covariance technique. Runoff is measured at the catchment outlet with a gauging station. In addition, spatiotemporal variations in soil water content and temperature are measured at high resolution with a wireless sensor network (SoilNet). Soil physical properties were determined using standard laboratory procedures from samples taken at a large number of locations in the catchment. This comprehensive data set can be used to validate remote sensing retrievals and hydrological models, to improve the understanding of spatial temporal dynamics of soil water content, to optimize data assimilation and inverse techniques for hydrological models, and to develop upscaling and downscaling procedures of soil water content information. The complete data set is freely available online (http://www.tereno.net, doi:10.5880/TERENO.2016.001, doi:10.5880/TERENO.2016.004, doi:10.5880/TERENO.2016.003) and additionally referenced by three persistent identifiers securing the long-term data and metadata availability.

  12. Under which climate and soil conditions the plant productivity-precipitation relationship is linear or nonlinear?

    Science.gov (United States)

    Ye, Jian-Sheng; Pei, Jiu-Ying; Fang, Chao

    2018-03-01

    Understanding under which climate and soil conditions the plant productivity-precipitation relationship is linear or nonlinear is useful for accurately predicting the response of ecosystem function to global environmental change. Using long-term (2000-2016) net primary productivity (NPP)-precipitation datasets derived from satellite observations, we identify >5600pixels in the North Hemisphere landmass that fit either linear or nonlinear temporal NPP-precipitation relationships. Differences in climate (precipitation, radiation, ratio of actual to potential evapotranspiration, temperature) and soil factors (nitrogen, phosphorous, organic carbon, field capacity) between the linear and nonlinear types are evaluated. Our analysis shows that both linear and nonlinear types exhibit similar interannual precipitation variabilities and occurrences of extreme precipitation. Permutational multivariate analysis of variance suggests that linear and nonlinear types differ significantly regarding to radiation, ratio of actual to potential evapotranspiration, and soil factors. The nonlinear type possesses lower radiation and/or less soil nutrients than the linear type, thereby suggesting that nonlinear type features higher degree of limitation from resources other than precipitation. This study suggests several factors limiting the responses of plant productivity to changes in precipitation, thus causing nonlinear NPP-precipitation pattern. Precipitation manipulation and modeling experiments should combine with changes in other climate and soil factors to better predict the response of plant productivity under future climate. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Aboveground net primary productivity and rainfall use efficiency of grassland on three soils after two years of exposure to a subambient to superambient CO2 gradient.

    Science.gov (United States)

    Fay, P. A.; Polley, H. W.; Jin, V. L.

    2008-12-01

    Atmospheric CO2 concentrations (CA) have increased by about 100 μL L-1 over the last 250 years to ~ 380 μL L-1, the highest values in the last half-million years, and CA is expected to continue to increase to greater than 500 μL L-1 by 2100. CO2 enrichment has been shown to affect many ecosystem processes, but experiments typically examine only two or a few levels of CA, and are typically constrained to one soil type. However, soil hydrologic properties differ across the landscape. Therefore, variation in the impacts of increasing CA on ecosystem function on different soil types must be understood to model and forecast ecosystem function under future CA and climate scenarios. Here we evaluate the aboveground net primary productivity (ANPP) of grassland plots receiving equal rainfall inputs (from irrigation) and exposed to a continuous gradient (250 to 500 μL L-1) of CA in the Lysimeter CO2 Gradient Experiment in central Texas, USA. Sixty intact soil monoliths (1 m2 x 1.5 m deep) taken from three soil types (Austin silty clay, Bastrop sandy loam, Houston clay) and planted to seven native tallgrass prairie grasses and forbs were exposed to the CA gradient beginning in 2006. Aboveground net primary productivity was assessed by end of season (November) harvest of each species in each monolith. Total ANPP of all species was 35 to 50% greater on Bastrop and Houston soils compared to Austin soils in both years (p Solidago canadensis strongly increased with increasing CA, with S. nutans responding more strongly on Bastrop and Houston soils (p = 0.053), indicating that increased greater rainfall use efficiency at high CA on these productive soils was associated with increased dominance by these species. In contrast, the grass Bouteloua curtipendula decreased in biomass with increasing CA, especially on Austin and Bastrop soils. The least productive species were the grass Tridens albescens, the legume Desmanthus illinoensis, and the forb Salvia azurea, and these showed

  14. Preliminary estimates of spatially distributed net infiltration and recharge for the Death Valley region, Nevada-California

    International Nuclear Information System (INIS)

    Hevesi, J.A.; Flint, A.L.; Flint, L.E.

    2002-01-01

    A three-dimensional ground-water flow model has been developed to evaluate the Death Valley regional flow system, which includes ground water beneath the Nevada Test Site. Estimates of spatially distributed net infiltration and recharge are needed to define upper boundary conditions. This study presents a preliminary application of a conceptual and numerical model of net infiltration. The model was developed in studies at Yucca Mountain, Nevada, which is located in the approximate center of the Death Valley ground-water flow system. The conceptual model describes the effects of precipitation, runoff, evapotranspiration, and redistribution of water in the shallow unsaturated zone on predicted rates of net infiltration; precipitation and soil depth are the two most significant variables. The conceptual model was tested using a preliminary numerical model based on energy- and water-balance calculations. Daily precipitation for 1980 through 1995, averaging 202 millimeters per year over the 39,556 square kilometers area of the ground-water flow model, was input to the numerical model to simulate net infiltration ranging from zero for a soil thickness greater than 6 meters to over 350 millimeters per year for thin soils at high elevations in the Spring Mountains overlying permeable bedrock. Estimated average net infiltration over the entire ground-water flow model domain is 7.8 millimeters per year. To evaluate the application of the net-infiltration model developed on a local scale at Yucca Mountain, to net-infiltration estimates representing the magnitude and distribution of recharge on a regional scale, the net-infiltration results were compared with recharge estimates obtained using empirical methods. Comparison of model results with previous estimates of basinwide recharge suggests that the net-infiltration estimates obtained using this model may overestimate recharge because of uncertainty in modeled precipitation, bedrock permeability, and soil properties for

  15. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    Science.gov (United States)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an

  16. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    Science.gov (United States)

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  17. Preparation of Sandy Soil Stabilizer for Roads Based on Radiation Modified Polymer Composite

    International Nuclear Information System (INIS)

    Elnahas, H.H.

    2016-01-01

    Radiation modified polymer composite (RMPC) was studied to build an extremely durable sandy road, construct a trail or bath, or control dust and erosion. A dilute solution of composite binds sandy soil fines through a coagulation bonding process. The result is a dense soil structure that has superior resistance to cracks and water penetration and can also solve erosion control problems. In erosion control applications, diluted composite is merely sprayed into sandy soil without compaction, effectively sealing the surface to prevent air-born dust or deterioration from erosion. The prepared composite has an elastic and melt-able film formation that imparts thermal compacting to the stabilized sandy soil after full dryness for sandy road leveling, repairing and restoration processes. The prepared composite is environmentally economical when compared with traditional sandy soil stabilizing (SSS) or sealing methods.

  18. The structure of the radiation balance on a sandy surface: case the Błędów desert, Silesian Upland

    Directory of Open Access Journals (Sweden)

    Caputa Zbigniew

    2016-06-01

    Full Text Available Comprehensive environmental studies taking under consideration the structure of the radiation balance during the vegetation growing seasons of 2001 and 2002 were carried out on the open sandy surface of the area called the Błędów ‘desert’ located on Silesian Upland. The research in each site covered the composition of plant species, their age and height, the condition of the substratum, the composition and structure of the soil and the meteorological conditions with elements of the radiation balance. The article presents some part of the research on meteorological elements and their impact on ecosystem. Special attention was devoted to radiation conditions on the open sandy surface in the context of the formation of BSC (biological soil crust. Having presumed that the values obtained on the grassy surface constituted 100%, the values of radiation reflection measured on the open sandy surface were 185% higher and the values of net longwave radiation were 105% higher in day time and 137% in night time. Values of net radiation of about 63% lower were observed on the sandy surface during a typical sunny summer day. It was found that a strong irradiation of the sandy surface (26 MJ·m–2d–1 creates extremely difficult conditions for the initiation of the process of ecosystem formation (including BSC or plant succession. The elements of the radiation balance, net radiation, albedo and temperature of the open sandy surface were represented quantitatively. The test surfaces were classified based on the value of the albedo: group I with low albedo values, up to 0.15 (spore-bearing plants on a dark surface, including BSC; group II with mean values of the albedo from 0.16 to 0.24 (spore-bearing plants and seed on a dark grey surface; and group III with high albedo values, above 0.25 (plants growing on bare or loose sands.

  19. Effects of soil tillage on the energy budget of soybean (Glycine max (L.) Merr.)

    International Nuclear Information System (INIS)

    Casa, R.; Cascio, B. lo

    1997-01-01

    The different terms of the energy budget were measured by the Bowen ratio method on soybean (Glycine max (L.) Merr.) grown on a conventional tillage and a direct drilling system. The differences found in the energy budgets varied according to the degree of fractional ground cover and of soil water availability. Soil heat flux was greater for the direct drilling treatment, although soil heating was slower as compared to the conventional tillage. Comparisons for well watered and dry conditions revealed that the conventional tillage system used as latent heat a fraction of net radiation greater than the direct drilling treatment only in well watered conditions. In dry conditions the differences in latent heat fluxes and canopy resistances between the two tillage systems were smaller [it

  20. Soil water management

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Cassel, D.K.

    1984-01-01

    The use of radiation and tracer techniques in investigations into soil water management in agriculture, hydrology etc. is described. These techniques include 1) neutron moisture gauges to monitor soil water content and soil water properties, 2) gamma radiation attenuation for measuring the total density of soil and soil water content, 3) beta radiation attenuation for measuring changes in the water status of crop plants and 4) radioactive and stable tracers for identifying pathways, reactions and retention times of the constituents in soils and groundwater aquifers. The number and spacing of soil observations that should be taken to represent the management unit are also considered. (U.K.)

  1. Health problems in connection with radiation from radioactive matter in fertilizers, soils and rocks

    International Nuclear Information System (INIS)

    Laag, J.

    1988-01-01

    Under the last world congress of the International Society of Soil Science in Hamburg in August 1986, the working group ''Soil and Geomedicine'' was set up. The symposium on health problems in connection with radiation from radioactive matter in fertilizers, soils and rocks was a joint arrangement of this working group and a permanent committe of The Norwegian Academy of Science and Letters. The book presents the full text of 13 of the papers presented at the symposium. Separate abstacts have been submitted for 12 of these papers

  2. Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100

    International Nuclear Information System (INIS)

    Jin, Zhenong; Zhuang, Qianlai; Zhu, Xudong; He, Jin-Sheng; Song, Weimin

    2015-01-01

    Methane (CH 4 ) is a potent greenhouse gas (GHG) that affects the global climate system. Knowledge about land–atmospheric CH 4 exchanges on the Qinghai-Tibetan Plateau (QTP) is insufficient. Using a coupled biogeochemistry model, this study analyzes the net exchanges of CH 4 and CO 2 over the QTP for the period of 1979–2100. Our simulations show that the region currently acts as a net CH 4 source with 0.95 Tg CH 4 y −1 emissions and 0.19 Tg CH 4 y −1 soil uptake, and a photosynthesis C sink of 14.1 Tg C y −1 . By accounting for the net CH 4 emission and the net CO 2 sequestration since 1979, the region was found to be initially a warming source until the 2010s with a positive instantaneous radiative forcing peak in the 1990s. In response to future climate change projected by multiple global climate models (GCMs) under four representative concentration pathway (RCP) scenarios, the regional source of CH 4 to the atmosphere will increase by 15–77% at the end of this century. Net ecosystem production (NEP) will continually increase from the near neutral state to around 40 Tg C y −1 under all RCPs except RCP8.5. Spatially, CH 4 emission or uptake will be noticeably enhanced under all RCPs over most of the QTP, while statistically significant NEP changes over a large-scale will only appear under RCP4.5 and RCP4.6 scenarios. The cumulative GHG fluxes since 1979 will exert a slight warming effect on the climate system until the 2030s, and will switch to a cooling effect thereafter. Overall, the total radiative forcing at the end of the 21st century is 0.25–0.35 W m −2 , depending on the RCP scenario. Our study highlights the importance of accounting for both CH 4 and CO 2 in quantifying the regional GHG budget. (paper)

  3. Estimating shortwave solar radiation using net radiation and meteorological measurements

    Science.gov (United States)

    Shortwave radiation has a wide variety of uses in land-atmosphere interactions research. Actual evapotranspiration estimation that involves stomatal conductance models like Jarvis and Ball-Berry require shortwave radiation to estimate photon flux density. However, in most weather stations, shortwave...

  4. Risk assessment of intake of foods and soil, and air radiation dose after Fukushima Daiichi nuclear disaster

    International Nuclear Information System (INIS)

    Fujinaga, Aiichiro; Yoneda, Minoru; Ikegami, Maiko

    2012-01-01

    Risk assessment of soil contaminated with radionuclides, due to the accident of Fukushima nuclear power plant after the earthquake on March 11, 2011, was carried out by considering consumption of the contaminated food. The exposure routes were set as food intake, ingestion and inhalation of soil particles, and external radiation from the ground. As a result, exposures by ingestion, and inhalation of soil particles were negligible, and exposure by food intake and external exposure from the ground were comparatively large. This study shows air dose by the accident should be under 0.2 μSv/hour in order to control the radiation dose with consumption of food under 1 μSv/year. (author)

  5. Remote sensing of soil radionuclide fluxes in a tropical ecosystem

    International Nuclear Information System (INIS)

    Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.

    1980-01-01

    We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant 137 Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose

  6. Nuclides.net: An integrated environment for computations on radionuclides and their radiation

    International Nuclear Information System (INIS)

    Galy, J.; Magill, J.

    2002-01-01

    Full text: The Nuclides.net computational package is of direct interest in the fields of environment monitoring and nuclear forensics. The 'integrated environment' is a suite of computer programs ranging from a powerful user-friendly interface, which allows the user to navigate the nuclide chart and explore the properties of nuclides, to various computational modules for decay calculations, dosimetry and shielding calculations, etc. The main emphasis in Nuclides.net is on nuclear science applications, such as health physics, radioprotection and radiochemistry, rather than nuclear data for which excellent sources already exist. In contrast to the CD-based Nuclides 2000 predecessor, Nuclides.net applications run over the internet on a web server. The user interface to these applications is via a web browser. Information submitted by the user is sent to the appropriate applications resident on the web server. The results of the calculations are returned to the user, again via the browser. The product is aimed at both students and professionals for reference data on radionuclides and computations based on this data using the latest internet technology. It is particularly suitable for educational purposes in the nuclear industry, health physics and radiation protection, nuclear and radiochemistry, nuclear physics, astrophysics, etc. The Nuclides.net software suite contains the following modules/features: a) A new user interface to view the nuclide charts (with zoom features). Additional nuclide charts are based on spin, parity, binding energy etc. b) There are five main applications: (1) 'Decay Engine' for decay calculations of numbers, masses, activities, dose rates, etc. of parent and daughters. (2) 'Dosimetry and Shielding' module allows the calculation of dose rates from both unshielded and shielded point sources. A choice of 10 shield materials is available. (3) 'Virtual Nuclides' allows the user to do decay and dosimetry and shielding calculations on mixtures of

  7. Modification of Sunlight Radiation through Colored Photo-Selective Nets Affects Anthocyanin Profile in Vaccinium spp. Berries.

    Science.gov (United States)

    Zoratti, Laura; Jaakola, Laura; Häggman, Hely; Giongo, Lara

    2015-01-01

    In recent years, the interest on the effects of the specific wavelengths of the light spectrum on growth and metabolism of plants has been increasing markedly. The present study covers the effect of modified sunlight conditions on the accumulation of anthocyanin pigments in two Vaccinium species: the European wild bilberry (V. myrtillus L.) and the cultivated highbush blueberry (V. corymbosum L.). The two Vaccinium species were grown in the same test field in the Alps of Trentino (Northern Italy) under modified light environment. The modification of sunlight radiation was carried out in field, through the use of colored photo-selective nets throughout the berry ripening during two consecutive growing seasons. The anthocyanin profile was then assessed in berries at ripeness. The results indicated that the light responses of the two Vaccinium species studied were different. Although both studied species are shade-adapted plants, 90% shading of sunlight radiation was beneficial only for bilberry plants, which accumulated the highest content of anthocyanins in both seasons. The same condition, instead, was not favorable for blueberries, whose maturation was delayed for at least two weeks, and anthocyanin accumulation was significantly decreased compared to berries grown under sunlight conditions. Moreover, the growing season had strong influence on the anthocyanin accumulation in both species, in relation to temperature flow and sunlight spectra composition during the berry ripening period. Our results suggest that the use of colored photo-selective nets may be a complementary agricultural practice for cultivation of Vaccinium species. However, further studies are needed to analyze the effect of the light spectra modifications to other nutritional properties, and to elucidate the molecular mechanisms behind the detected differences between the two relative Vaccinium species.

  8. Climate response of the soil nitrogen cycle in three forest types of a headwater Mediterranean catchment

    Science.gov (United States)

    Lupon, Anna; Gerber, Stefan; Sabater, Francesc; Bernal, Susana

    2015-05-01

    Future changes in climate may affect soil nitrogen (N) transformations, and consequently, plant nutrition and N losses from terrestrial to stream ecosystems. We investigated the response of soil N cycling to changes in soil moisture, soil temperature, and precipitation across three Mediterranean forest types (evergreen oak, beech, and riparian) by fusing a simple process-based model (which included climate modifiers for key soil N processes) with measurements of soil organic N content, mineralization, nitrification, and concentration of ammonium and nitrate. The model describes sources (atmospheric deposition and net N mineralization) and sinks (plant uptake and hydrological losses) of inorganic N from and to the 0-10 cm soil pool as well as net nitrification. For the three forest types, the model successfully recreated the magnitude and temporal pattern of soil N processes and N concentrations (Nash-Sutcliffe coefficient = 0.49-0.96). Changes in soil water availability drove net N mineralization and net nitrification at the oak and beech forests, while temperature and precipitation were the strongest climatic factors for riparian soil N processes. In most cases, net N mineralization and net nitrification showed a different sensitivity to climatic drivers (temperature, soil moisture, and precipitation). Our model suggests that future climate change may have a minimal effect on the soil N cycle of these forests (warming and negative drying effects on the soil N cycle may counterbalance each other.

  9. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010

    Directory of Open Access Journals (Sweden)

    M. Sinnhuber

    2018-01-01

    Full Text Available We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top.Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS instrument for the years 2002–2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1–2 Gmol (109 mol NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5–1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by

  10. GlobalSoilMap.net – a new digital soil map of the world

    NARCIS (Netherlands)

    Hartemink, A.E.; Hempel, J.; Lagacherie, P.; McBratney, A.B.; MacMillan, R.A.; Montanarella, L.; Sanchez, P.A.; Walsh, M.; Zhang, G.L.

    2010-01-01

    Knowledge of the world soil resources is fragmented and dated. There is a need for accurate, up-to-date and spatially referenced soil information as frequently expressed by the modelling community, farmers and land users, and policy and decision makers. This need coincides with an enormous leap in

  11. Radiation dosage

    Energy Technology Data Exchange (ETDEWEB)

    Finston, Roland [Health Physics, Stanford University, Stanford, CA (United States)

    1986-07-01

    Radiation dosage at Bikini Atoll is the result of current soil contamination, a relic of the nuclear weapons testing program of some 30 years ago. The principal contaminants today and some of their physical properties are listed: cesium-137, strontium-90, plutonium -239, 240 and americium-241. Cobalt-60 contributes less than 1 to the dose and is not considered significant. A resident of the atoll would accumulate radiation dose (rem) in two ways -- by exposure to radiation emanating from the ground and vegetation, and by exposure to radiation released in the spontaneous decay of radionuclides that have entered his body during the ingestion of locally grown foods. The latter process would account for some 90% of the dose; cesium-137 would be responsible for 0 90% of it. Since BARC's method of estimating dosage differs in some respects from that employed by the Lawrence Livermore National Laboratory (LLNL), (Ref.1, LLNL 1982) we are presenting our method in detail. The differences have two sources. First, the numbers used by BARC for the daily ingestion of radionuclides via the diet are higher than LLNL's. Second, BARC's calculation of dose from radionuclide intake utilizes the ICRP system. The net result is that BARC doses are consistently higher than LLNL doses, and in this respect are more conservative.

  12. Radiation dosage

    International Nuclear Information System (INIS)

    Finston, Roland

    1986-01-01

    Radiation dosage at Bikini Atoll is the result of current soil contamination, a relic of the nuclear weapons testing program of some 30 years ago. The principal contaminants today and some of their physical properties are listed: cesium-137, strontium-90, plutonium -239, 240 and americium-241. Cobalt-60 contributes less than 1 to the dose and is not considered significant. A resident of the atoll would accumulate radiation dose (rem) in two ways -- by exposure to radiation emanating from the ground and vegetation, and by exposure to radiation released in the spontaneous decay of radionuclides that have entered his body during the ingestion of locally grown foods. The latter process would account for some 90% of the dose; cesium-137 would be responsible for 0 90% of it. Since BARC's method of estimating dosage differs in some respects from that employed by the Lawrence Livermore National Laboratory (LLNL), (Ref.1, LLNL 1982) we are presenting our method in detail. The differences have two sources. First, the numbers used by BARC for the daily ingestion of radionuclides via the diet are higher than LLNL's. Second, BARC's calculation of dose from radionuclide intake utilizes the ICRP system. The net result is that BARC doses are consistently higher than LLNL doses, and in this respect are more conservative

  13. Critical analysis of soil hydraulic conductivity determination using monoenergetic gamma radiation attenuation

    International Nuclear Information System (INIS)

    Portezan Filho, Otavio

    1997-01-01

    Three soil samples of different textures: LVA (red yellow latosol), LVE (dark red latosol) and LRd (dystrophic dark red latosol) were utilized for unsaturated hydraulic conductivity K(θ) measurements. Soil bulk densities and water contents during internal water drainage were measured by monoenergetic gamma radiation attenuation, using homogeneous soil columns assembled in the laboratory. The measurements were made with a collimated gamma beam of 0.003 m in diameter using a Nal(Tl) (3'' x 3 '') detector and a 137 Cs gamma source of 74 X 10 8 Bq and 661.6 KeV. Soil columns were scanned with the gamma beam from 0.01 to 0.20 m depth, in 0.01m steps, for several soil water redistribution times. The results show a great variability of the unsaturated hydraulic conductivity relation K(θ), even though homogeneous soils were used. The variability among methods is significantly smaller in relation to variability in space. The assumption of unit hydraulic gradient during redistribution of soil water utilized in the methods of Hillel, Libardi and Sisson leads to hydraulic conductivity values that increase in depth. The exponential character of the K(θ) relationship, is responsible for the difficulty of estimating soil hydraulic conductivity, which is a consequence of small variations in the porous arrangement, even in samples supposed to be homogeneous. (author)

  14. [Characteristics of water and heat fluxes and its footprint climatology on farmland in low hilly region of red soil].

    Science.gov (United States)

    Li, Yang; Jing, Yuan Shu; Qin, Ben Ben

    2017-01-01

    The analysis of the characteristics and footprint climatology of farmland water and heat fluxes has great significance to strengthen regional climate resource management and improve the hydrothermal resource utilization in the region of red soil. Based on quality controlled data from large aperture scintillometer and automatic meteorological station in hilly region of red soil, this paper analyzed in detail the characteristics of farmland water and heat fluxes at different temporal scales and the corresponding source area distribution of flux measurement in the non-rainy season and crop growth period in hilly region of red soil. The results showed that the diurnal variation of water and heat fluxes showed a unimodal trend, but compared with the sunny day, the diurnal variation curves fluctuated more complicatedly on cloudy day. In the whole, either ten-day periods or month scale, the water and heat fluxes were greater in August than in September, while the net radiation flux was more distributed to latent heat exchange. The proportion of net radiation to latent heat flux decreased in September compared to August, but the sensible heat flux was vice versa. With combined effects of weather conditions (particularly wind), stability, and surface condition, the source areas of flux measurement at different temporal scales showed different distribution characteristics. Combined with the underlying surface crops, the source areas at different temporal scales also had different contribution sources.

  15. Modelling the impact of soil Carbonic Anhydrase on the net ecosystem exchange of OCS at Harvard forest using the MuSICA model

    Science.gov (United States)

    Launois, Thomas; Ogée, Jérôme; Commane, Roisin; Wehr, Rchard; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Wofsy, Steve; Zahniser, Mark; Wingate, Lisa

    2016-04-01

    The exchange of CO2 between the terrestrial biosphere and the atmosphere is driven by photosynthetic uptake and respiratory loss, two fluxes currently estimated with considerable uncertainty at large scales. Model predictions indicate that these biosphere fluxes will be modified in the future as CO2 concentrations and temperatures increase; however, it still unclear to what extent. To address this challenge there is a need for better constraints on land surface model parameterisations. Additional atmospheric tracers of large-scale CO2 fluxes have been identified as potential candidates for this task. In particular carbonyl sulphide (OCS) has been proposed as a complementary tracer of gross photosynthesis over land, since OCS uptake by plants is dominated by carbonic anhydrase (CA) activity, an enzyme abundant in leaves that catalyses CO2 hydration during photosynthesis. However, although the mass budget at the ecosystem is dominated by the flux of OCS into leaves, some OCS is also exchanged between the atmosphere and the soil and this component of the budget requires constraining. In this study, we adapted the process-based isotope-enabled model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of OCS within a forested ecosystem. This model was combined with 3 years (2011-2013) of in situ measurements of OCS atmospheric concentration profiles and fluxes at the Harvard Forest (Massachussets, USA) to test hypotheses on the mechanisms responsible for CA-driven uptake by leaves and soils as well as possible OCS emissions during litter decomposition. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem OCS flux. A sensitivity analysis on soil CA activity and soil OCS emission rates was also performed to quantify their impact on the vertical profiles of OCS inside the

  16. Radiation risk of tissue late effects, a net consequence of probabilities of various cellular responses

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    1991-01-01

    Late effects from the exposure to low doses of ionizing radiation are hardly or not at all observed in man mainly due to the low values of risk coefficients that preclude statistical analyses of data from populations that are exposed to doses less than 0.2 Gy. In order to arrive at an assessment of potential risk from radiation exposure in the low dose range, the microdosimetry approach is essential. In the low dose range, ionizing radiation generates particle tracks, mainly electrons, which are distributed rather heterogeneously within the exposed tissue. Taking the individual cell as the elemental unit of life, observations and calculations of cellular responses to being hit by energy depositions events from low LET type are analysed. It emerges that besides the probability of a hit cell to sustain a detrimental effect with the consequense of malignant transformation there are probabilities of various adaptive responses that equipp the hit cell with a benefit. On the one hand, an improvement of cellular radical detoxification was observed in mouse bone marrow cells; another adaptive response pertaining to improved DNA repair, was reported for human lymphocytes. The improved radical detoxification in mouse bone marrow cells lasts for a period of 5-10 hours and improved DNA repair in human lymphocytes was seen for some 60 hours following acute irradiation. It is speculated that improved radical detoxification and improved DNA repair may reduce the probability of spontaneous carcinogenesis. Thus it is proposed to weigh the probability of detriment for a hit cell within a multicellular system against the probability of benefit through adaptive responses in other hit cells in the same system per radiation exposure. In doing this, the net effect of low doses of low LET radiation in tissue with individual cells being hit by energy deposition events could be zero or even beneficial. (orig./MG)

  17. Net CO2 and water exchanges of trees and grasses in a semi-arid region (Gourma, Mali)

    Science.gov (United States)

    Le Dantec, Valérie; Kergoat, Laurent; Timouk, Franck; Hiernaux, Pierre; Mougin, Eric

    2010-05-01

    even during maximum leafy period of trees, which demonstrated that trees contribute weakly to net CO2 exchange at the sandy site, where the tree cover is of the order of 3%. During the rainy period, the seasonal pattern of NEE followed LAI dynamics of the herb layer with no effect of species composition, although the species composition did change during the growing season. In 2007, the maximum value of daily NEE was strongly and linearly related to LAI except during 4 days of drought (238-244). Because of an exceptional dry year, this relationship was not found in 2008. Carbon uptake by photosynthesis (GPP) contributed up to 60-80 % of Net CO2 fluxes. During the period of maximum LAI of herbs, Light Use Efficiency (LUE, net CO2 uptake per absorbed radiation) was strongly related to Soil Water Content (SWC) of the first centimetres. Similarly, the seasonal dynamics of Evapotranspiration (ETR) also followed the variations of SWC at small depth. During the dry season, ETR was small (0.2 mmol H2O m-2 s-1) but not zero. In fact, tree transpiration occurred throughout year. Leaf phenology was found to be the main driving factor of the seasonal dynamics of tree water use in this "dry" savanna. We also found that sapflow density was from 1.5 to 2 l dm-2 hour-1at the beginning of dry season when % of leaves on tree was maximum, showing that trees had access to deep soil water.

  18. FAO/IAEA interregional training course on the use of isotope and radiation techniques in studies on soil/plant relationships with emphasis on soil water management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The document presents an outline and programme schedule for the FAO/IAEA Inter-regional Training Workshop on the Use of Isotope and Radiation Techniques in Studies on Soil-Plant Relationships held in Vienna, 1 June - 9 July 1993. The major topics include instrumentation and radiometric assay, liquid scintillation counting, isotope techniques in fertilizer use efficiency and nitrogen fixation, crop-soil-water-atmosphere relations. General topics such as plant growth, water requirement and soil erosion processes are also covered

  19. FAO/IAEA interregional training course on the use of isotope and radiation techniques in studies on soil/plant relationships with emphasis on soil water management

    International Nuclear Information System (INIS)

    1993-01-01

    The document presents an outline and programme schedule for the FAO/IAEA Inter-regional Training Workshop on the Use of Isotope and Radiation Techniques in Studies on Soil-Plant Relationships held in Vienna, 1 June - 9 July 1993. The major topics include instrumentation and radiometric assay, liquid scintillation counting, isotope techniques in fertilizer use efficiency and nitrogen fixation, crop-soil-water-atmosphere relations. General topics such as plant growth, water requirement and soil erosion processes are also covered

  20. Role of radiation damping in the impedance function approach to soil-structure interaction analysis

    International Nuclear Information System (INIS)

    1980-05-01

    This report was prepared at the request of the Lawrence Livermore Laboratory (LLL) to provide background information for analyzing soil-structure interaction by the frequency-independent impedance function approach. LLL is conducting such analyses as part of its seismic review of selected operating plants under the Systematic Evaluation Program for the US Nuclear Regulatory Commission. The analytical background and basic assumptionsof the impedance function theory are briefly reviewed, and the role of radiation damping in soil-structure interaction analysis is discussed. The validity of modeling soil-structure interaction by using frequency-independent functions is evaluated based on data from several field tests. Finally, the recommended procedures for performing soil-structure interaction analyses are discussed with emphasis on the modal superposition method

  1. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    Science.gov (United States)

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. Copyright © 2016 Elsevier

  2. Observation and simulation of net primary productivity in Qilian Mountain, western China.

    Science.gov (United States)

    Zhou, Y; Zhu, Q; Chen, J M; Wang, Y Q; Liu, J; Sun, R; Tang, S

    2007-11-01

    We modeled net primary productivity (NPP) at high spatial resolution using an advanced spaceborne thermal emission and reflection radiometer (ASTER) image of a Qilian Mountain study area using the boreal ecosystem productivity simulator (BEPS). Two key driving variables of the model, leaf area index (LAI) and land cover type, were derived from ASTER and moderate resolution imaging spectroradiometer (MODIS) data. Other spatially explicit inputs included daily meteorological data (radiation, precipitation, temperature, humidity), available soil water holding capacity (AWC), and forest biomass. NPP was estimated for coniferous forests and other land cover types in the study area. The result showed that NPP of coniferous forests in the study area was about 4.4 tCha(-1)y(-1). The correlation coefficient between the modeled NPP and ground measurements was 0.84, with a mean relative error of about 13.9%.

  3. Estimativa do saldo de radiação em girassol como função da radiação solar global Estimation of net radiation in sunflower as a function of solar radiation

    Directory of Open Access Journals (Sweden)

    Arno B Heldwein

    2012-02-01

    Full Text Available Objetivou-se com este trabalho a obtenção de modelos para a estimativa do saldo de radiação (Q* a partir da radiação solar global incidente (Rg sobre dosseis de plantas de girassol. Os experimentos foram conduzidos na área experimental da Universidade Federal de Santa Maria, nos anos de 2007, 2008 e 2009. O Q* foi medido com saldos radiômetros instalados acima das plantas e a Rg em estações meteorológicas automáticas. Para fins de cálculo foram efetuadas as somas diárias de Q* e de Rg, obtendo-se a relação entre Q* e Rg para cada dia. Obtiveram-se, então, modelos com elevado coeficiente de determinação e baixo RQME no teste entre valores medidos e estimados de um banco de dados independente, indicando precisão na estimativa do saldo de radiação em dosseis de girassol, independendo da época de cultivo no ano. A função linear geral obtida com dados de diferentes épocas de cultivo foi: Q* = 0,5285 Rg (R² = 0,95, que no teste apresentou RQME = 1,04 MJ m-2 d-1. Conclui-se que o saldo de radiação (Q* pode ser estimado utilizando-se a radiação solar global medida em estações automáticas, com precisão suficiente para os diferentes fins na agrometeorologia do girassol.This study aimed to develop models for estimating the net radiation (Q * from the incident solar radiation (Rg on canopies of sunflower plants. The experiments were conducted at the Plant Science Department of the Federal University of Santa Maria in 2007, 2008 and 2009 years. Q* was measured by net radiometers above the plants and Rg by automatic weather stations. For purposes of calculation, daily sums of Q* and Rg were performed, obtaining the relationship between Q* and Rg for each day. Models with high coefficient of determination and low RQME were obtained in test between measured and estimated values from an independent database, indicating precision to estimate net radiation in sunflower canopies, regardless of cultivation time in year. The general

  4. NET test blanket design and remote maintenance

    International Nuclear Information System (INIS)

    Holloway, C.; Hubert, P.

    1991-01-01

    The NET machine has three horizontal ports reserved for testing tritium breeding blanket designs during the physics phase and possibly five during the technology phase. The design of the ports and test blankets are modular to accept a range of blanket options, provide radiation shielding and allow routine replacement. Radiation levels during replacement or maintenance require that all operations must be carried out remotely. The paper describes the problems overcome in providing a port design which includes attachment to the vacuum vessel with double vacuum seals, an integrated cooled first wall and support guides for the test blanket module. The method selected to remotely replace the test module whilst controlling the spread of contamination is also adressed. The paper concludes that the provisions of a test blanket facility based on the NET machine design is feasible. (orig.)

  5. Hysteresis response of daytime net ecosystem exchange during drought

    Directory of Open Access Journals (Sweden)

    N. Pingintha

    2010-03-01

    Full Text Available Continuous measurements of net ecosystem CO2 exchange (NEE using the eddy-covariance method were made over an agricultural ecosystem in the southeastern US. During optimum environmental conditions, photosynthetically active radiation (PAR was the primary driver controlling daytime NEE, accounting for as much as 67 to 89% of the variation in NEE. However, soil water content became the dominant factor limiting the NEE-PAR response during the peak growth stage. NEE was significantly depressed when high PAR values coincided with very low soil water content. The presence of a counter-clockwise hysteresis of daytime NEE with PAR was observed during periods of water stress. This is a result of the stomatal closure control of photosynthesis at high vapor pressure deficit and enhanced respiration at high temperature. This result is significant since this hysteresis effect limits the range of applicability of the Michaelis-Menten equation and other related expressions in the determination of daytime NEE as a function of PAR. The systematic presence of hysteresis in the response of NEE to PAR suggests that the gap-filling technique based on a non-linear regression approach should take into account the presence of water-limited field conditions. Including this step is therefore likely to improve current evaluation of ecosystem response to increased precipitation variability arising from climatic changes.

  6. Modification of Sunlight Radiation through Colored Photo-Selective Nets Affects Anthocyanin Profile in Vaccinium spp. Berries.

    Directory of Open Access Journals (Sweden)

    Laura Zoratti

    Full Text Available In recent years, the interest on the effects of the specific wavelengths of the light spectrum on growth and metabolism of plants has been increasing markedly. The present study covers the effect of modified sunlight conditions on the accumulation of anthocyanin pigments in two Vaccinium species: the European wild bilberry (V. myrtillus L. and the cultivated highbush blueberry (V. corymbosum L..The two Vaccinium species were grown in the same test field in the Alps of Trentino (Northern Italy under modified light environment. The modification of sunlight radiation was carried out in field, through the use of colored photo-selective nets throughout the berry ripening during two consecutive growing seasons. The anthocyanin profile was then assessed in berries at ripeness.The results indicated that the light responses of the two Vaccinium species studied were different. Although both studied species are shade-adapted plants, 90% shading of sunlight radiation was beneficial only for bilberry plants, which accumulated the highest content of anthocyanins in both seasons. The same condition, instead, was not favorable for blueberries, whose maturation was delayed for at least two weeks, and anthocyanin accumulation was significantly decreased compared to berries grown under sunlight conditions. Moreover, the growing season had strong influence on the anthocyanin accumulation in both species, in relation to temperature flow and sunlight spectra composition during the berry ripening period.Our results suggest that the use of colored photo-selective nets may be a complementary agricultural practice for cultivation of Vaccinium species. However, further studies are needed to analyze the effect of the light spectra modifications to other nutritional properties, and to elucidate the molecular mechanisms behind the detected differences between the two relative Vaccinium species.

  7. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    Science.gov (United States)

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate herbivore species or guilds. We assessed how a diverse herbivore community affects net N mineralization in subalpine grasslands. By using size-selective fences, we progressively excluded large, medium, and small mammals, as well as invertebrates from two vegetation types, and assessed how the exclosure types (ET) affected net N mineralization. The two vegetation types differed in long-term management (centuries), forage quality, and grazing history and intensity. To gain a more mechanistic understanding of how herbivores affect net N mineralization, we linked mineralization to soil abiotic (temperature; moisture; NO3-, NH4+, and total inorganic N concentrations/pools; C, N, P concentrations; pH; bulk density), soil biotic (microbial biomass; abundance of collembolans, mites, and nematodes) and plant (shoot and root biomass; consumption; plant C, N, and fiber content; plant N pool) properties. Net N mineralization differed between ET, but not between vegetation types. Thus, short-term changes in herbivore community composition and, therefore, in grazing intensity had a stronger effect on net N mineralization than long-term management and grazing history. We found highest N mineralization values when only invertebrates were present, suggesting that mammals had a negative effect on net N mineralization. Of the variables included in our analyses, only mite abundance and aboveground plant biomass explained variation in net N mineralization among ET. Abundances of both mites and leaf-sucking invertebrates were positively correlated with aboveground plant biomass, and biomass increased with progressive exclusion

  8. Gamma radiation fields from activity deposited on road and soil surfaces

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1993-12-01

    Radioactive material deposited in the environment after an accidental release would cause exposure of the population living in the affected areas. The radiation field will depend on many factors such as radionuclide composition, surface contamination density, removal of activity by weathering and migration, and protective measures like decontamination, ploughing and covering by asphalt. Methods are described for calculation of air kerma rate from deposited activity on road and soil surfaces, both from the initially deposited activity and from activity distributed in the upper layer of soil as well as from activity covered by asphalt or soil. Air kerma rates are calculated for different source geometries and the results are fitted to a power-exponential function of photon energy, depth distributions in soil and horizontal dimensions. Based on this function calculations of air kerma rate can easily be made on a personal computer or programmable pocket calculator for specific radionuclide compositions and different horizontal and vertical distributions of the deposited activity. The calculations are compared to results from other methods like the Monte Carlo method and good agreement is found between the results. (au) (7 tabs., 12 ills., 8 refs.)

  9. [Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].

    Science.gov (United States)

    Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin

    2011-06-01

    Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.

  10. Effects of Long-Term CO2 Enrichment on Soil-Atmosphere CH4 Fluxes and the Spatial Micro-Distribution of Methanotrophic Bacteria.

    Science.gov (United States)

    Karbin, Saeed; Guillet, Cécile; Kammann, Claudia I; Niklaus, Pascal A

    2015-01-01

    Effects of elevated atmospheric CO2 concentrations on plant growth and associated C cycling have intensively been studied, but less is known about effects on the fluxes of radiatively active trace gases other than CO2. Net soil-atmosphere CH4 fluxes are determined by the balance of soil microbially-driven methane (CH4) oxidation and methanogenesis, and both might change under elevated CO2. Here, we studied CH4 dynamics in a permanent grassland exposed to elevated CO2 for 14 years. Soil-atmosphere fluxes of CH4 were measured using large static chambers, over a period of four years. The ecosystem was a net sink for atmospheric CH4 for most of the time except summer to fall when net CH4 emissions occurred. We did not detect any elevated CO2 effects on CH4 fluxes, but emissions were difficult to quantify due to their discontinuous nature, most likely because of ebullition from the saturated zone. Potential methanotrophic activity, determined by incubation of fresh sieved soil under standardized conditions, also did not reveal any effect of the CO2 treatment. Finally, we determined the spatial micro-distribution of methanotrophic activity at less than 5× atmospheric (10 ppm) and elevated (10000 ppm) CH4 concentrations, using a novel auto-radiographic technique. These analyses indicated that domains of net CH4 assimilation were distributed throughout the analyzed top 15 cm of soils, with no dependence on CH4 concentration or CO2 treatment. Our investigations suggest that elevated CO2 exerts no or only minor effects on CH4 fluxes in the type of ecosystem we studied, at least as long as soil moisture differences are small or absent as was the case here. The autoradiographic analyses further indicate that the spatial niche of CH4 oxidation does not shift in response to CO2 enrichment or CH4 concentration, and that the same type of methanotrophs may oxidize CH4 from atmospheric and soil-internal sources.

  11. Borehole environmental tracers for evaluating net infiltration and recharge through desert bedrock

    Science.gov (United States)

    Heilweil, V.M.; Solomon, D.K.; Gardner, P.M.

    2006-01-01

    Permeable bedrock aquifers in arid regions are being increasingly developed as water supplies, yet little is generally known about recharge processes and spatial and temporal variability. Environmental tracers from boreholes were used in this study to investigate net infiltration and recharge to the fractured Navajo Sandstone aquifer. Vadose zone tracer profiles at the Sand Hollow study site in southwestern Utah look similar to those of desert soils at other sites, indicating the predominance of matrix flow. However, recharge rates are generally higher in the Navajo Sandstone than in unconsolidated soils in similar climates because the sandstone matrix allows water movement but not root penetration. Water enters the vadose zone either as direct infiltration of precipitation through exposed sandstone and sandy soils or as focused infiltration of runoff. Net infiltration and recharge exhibit extreme spatial variability. High-recharge borehole sites generally have large amounts of vadose zone tritium, low chloride concentrations, and small vadose zone oxygen-18 evaporative shifts. Annual net-infiltration and recharge rates at different locations range from about 1 to 60 mm as determined using vadose zone tritium, 0 to 15 mm using vadose zone chloride, and 3 to 60 mm using groundwater chloride. Environmental tracers indicate a cyclical net-infiltration and recharge pattern, with higher rates earlier in the Holocene and lower rates during the late Holocene, and a return to higher rates during recent decades associated with anomalously high precipitation during the latter part of the 20th century. The slightly enriched stable isotopic composition of modern groundwater indicates this recent increase in precipitation may be caused by a stronger summer monsoon or winter southern Pacific El Nin??o storm track. ?? Soil Science Society of America.

  12. Shielding calculations for NET

    International Nuclear Information System (INIS)

    Verschuur, K.A.; Hogenbirk, A.

    1991-05-01

    In the European Fusion Technology Programme there is only a small activity on research and development for fusion neutronics. Never-the-less, looking further than blanket design now, as ECN is getting involved in design of radiation shields for the coils and biological shields, it becomes apparent that fusion neutronics as a whole still needs substantial development. Existing exact codes for calculation of complex geometries like MCNP and DORT/TORT are put over the limits of their numerical capabilities, whilst approximate codes for complex geometries like FURNACE and MERCURE4 are put over the limits of their modelling capabilities. The main objective of this study is just to find out how far we can get with existing codes in obtaining reliable values for the radiation levels inside and outside the cryostat/shield during operation and after shut-down. Starting with a 1D torus model for preliminary parametric studies, more dimensional approximation of the torus or parts of it including the main heterogeneities should follow. Regular contacts with the NET-Team are kept, to be aware of main changes in NET design that might affect our calculation models. Work on the contract started 1 July 1990. The technical description of the contract is given. (author). 14 refs.; 4 figs.; 1 tab

  13. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands

    NARCIS (Netherlands)

    Bezemer, T.M.; Lawson, C.S.; Hedlund, K.; Edwards, A.R.; Brooks, A.J.; Igual, J.M.; Mortimer, S.R.; Putten, van der W.H.

    2006-01-01

    1 Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community

  14. Sorters for soil cleanup

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Johnson, N.R.; Tomicich, M.J.

    1991-01-01

    A soil sorter is a system with conveyor, radiation detectors, and a gate. The system activates the gate based on radiation measurements to sort soil to either clean or contaminated paths. Automatic soil sorters have been perfected for use in the cleanup of plutonium contaminated soil at Johnston Atoll. The cleanup processes soil through a plant which mines plutonium to make soil clean. Sorters at various locations in the plant effectively reduce the volume of soil for mining and they aid in assuring clean soil meets guidelines

  15. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  16. Biochar has no effect on soil respiration across Chinese agricultural soils.

    Science.gov (United States)

    Liu, Xiaoyu; Zheng, Jufeng; Zhang, Dengxiao; Cheng, Kun; Zhou, Huimin; Zhang, Afeng; Li, Lianqing; Joseph, Stephen; Smith, Pete; Crowley, David; Kuzyakov, Yakov; Pan, Genxing

    2016-06-01

    Biochar addition to soil has been widely accepted as an option to enhance soil carbon sequestration by introducing recalcitrant organic matter. However, it remains unclear whether biochar will negate the net carbon accumulation by increasing carbon loss through CO2 efflux from soil (soil respiration). The objectives of this study were to address: 1) whether biochar addition increases soil respiration; and whether biochar application rate and biochar type (feedstock and pyrolyzing system) affect soil respiration. Two series of field experiments were carried out at 8 sites representing the main crop production areas in China. In experiment 1, a single type of wheat straw biochar was amended at rates of 0, 20 and 40 tha(-1) in four rice paddies and three dry croplands. In experiment 2, four types of biochar (varying in feedstock and pyrolyzing system) were amended at rates of 0 and 20 tha(-1) in a rice paddy under rice-wheat rotation. Results showed that biochar addition had no effect on CO2 efflux from soils consistently across sites, although it increased topsoil organic carbon stock by 38% on average. Meanwhile, CO2 efflux from soils amended with 40 t of biochar did not significantly higher than soils amended with 20 t of biochar. While the biochars used in Experiment 2 had different carbon pools and physico-chemical properties, they had no effect on soil CO2 efflux. The soil CO2 efflux following biochar addition could be hardly explained by the changes in soil physic-chemical properties and in soil microbial biomass. Thus, we argue that biochar will not negate the net carbon accumulation by increasing carbon loss through CO2 efflux in agricultural soils. Copyright © 2016. Published by Elsevier B.V.

  17. Relations between radiation fluxes of a greenhouse in semi-arid conditions

    International Nuclear Information System (INIS)

    Al-Riahi, M.; Al-Karaghouli, A.; Hasson, A.M.; Al-Kayssi, A.W.

    1989-01-01

    Measurements of global radiation, reflected radiation and net total radiation inside and outside the greenhouse were conducted in Fudhiliyah Agrometeorological Research Station during the period from 1 January to 30 April, 1987. From these measurements, several relationships were established. Linear regressions of hourly values of global radiation inside the greenhouse on hourly global radiation outside the greenhouse were fitted for each month of the recording period. The degree of fit was generally good (r > 0.95). Net short-wave radiation inside the greenhouse showed strong dependence on the global inside radiation (r = 0.998), also the net total radiation and global radiation inside the greenhouse correlate very strongly. From the above-mentioned relationships, it was found that the global, net short-wave and net total radiation could be successfully predicted when only global outside radiation is available. Using the linear regression equations correlating the above radiation parameters, albedo and heating coefficient were derived. Albedo showed strong dependence on solar altitude angle and period of day (forenoon and afternoon). Heating coefficients were consistently positive and their values varied between 0.10 and 0.393. Monthly average values of mean hourly night-time net long-wave radiation inside the greenhouse were −31, −32, −38 and −42 W m −2 for the months of January, February, March and April, respectively

  18. Controls on the variability of net infiltration to desert sandstone

    Science.gov (United States)

    Heilweil, Victor M.; McKinney, Tim S.; Zhdanov, Michael S.; Watt, Dennis E.

    2007-01-01

    As populations grow in arid climates and desert bedrock aquifers are increasingly targeted for future development, understanding and quantifying the spatial variability of net infiltration becomes critically important for accurately inventorying water resources and mapping contamination vulnerability. This paper presents a conceptual model of net infiltration to desert sandstone and then develops an empirical equation for its spatial quantification at the watershed scale using linear least squares inversion methods for evaluating controlling parameters (independent variables) based on estimated net infiltration rates (dependent variables). Net infiltration rates used for this regression analysis were calculated from environmental tracers in boreholes and more than 3000 linear meters of vadose zone excavations in an upland basin in southwestern Utah underlain by Navajo sandstone. Soil coarseness, distance to upgradient outcrop, and topographic slope were shown to be the primary physical parameters controlling the spatial variability of net infiltration. Although the method should be transferable to other desert sandstone settings for determining the relative spatial distribution of net infiltration, further study is needed to evaluate the effects of other potential parameters such as slope aspect, outcrop parameters, and climate on absolute net infiltration rates.

  19. Soil emission and uptake of carbonyl sulfide at a temperate mountain grassland

    Science.gov (United States)

    Kitz, Florian; Hammerle, Albin; Laterza, Tamara; Spielmann, Felix M.; Wohlfahrt, Georg

    2016-04-01

    Flux partitioning, i.e. inferring gross primary productivity (GPP) and ecosystem respiration from the measured net ecosystem carbon dioxide (CO2) exchange, is one uncertainty in modelling the carbon cycle and in times where robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive GPP by measuring carbonyl sulfide (COS), the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite to use COS as a proxy for canopy photosynthesis is a robust estimation of COS sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on properties like soil temperature and soil water content. The main aim of this study was to quantify the soil COS exchange and its drivers of a temperate mountain grassland in order to aid the use of COS as tracer for canopy CO2 and water vapor exchange. We conducted a field campaign with a Quantum cascade laser at a temperate mountain grassland to estimate the soil COS fluxes under ambient conditions and while simulating a drought. We used self-built fused silica (i.e. light-transparent) soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. Vegetation was removed within the chambers, therefor more radiation reached the soil surface compared to natural conditions. This might be the reason for highly positive fluxes during daytime more similar to agricultural study sites. To further investigate this large soil COS source we conducted within canopy concentration measurements near the soil surface and still recorded fluxes confirming the soil as a COS source during daytime. Results from the drought experiment suggested a strong impact of incoming radiation on soil COS fluxes followed by soil

  20. Contribution of Topography and Incident Solar Radiation to Variation of Soil and Plant Litter at an Area with Heterogeneous Terrain

    Directory of Open Access Journals (Sweden)

    Felipe Cito Nettesheim

    2015-06-01

    Full Text Available Natural processes that determine soil and plant litter properties are controlled by multiple factors. However, little attention has been given to distinguishing the effects of environmental factors from the effects of spatial structure of the area on the distribution of soil and litter properties in tropical ecosystems covering heterogeneous topographies. The aim of this study was to assess patterns of soil and litter variation in a tropical area that intercepts different levels of solar radiation throughout the year since its topography has slopes predominantly facing opposing geographic directions. Soil data (pH, C, N, P, H+Al, Ca, Mg, K, Al, Na, sand, and silt and plant litter data (N, K, Ca, P, and Mg were gathered together with the geographic coordinates (to model the spatial structure of 40 sampling units established at two sites composed of slopes predominantly facing northwest and southeast (20 units each. Soil and litter chemical properties varied more among slopes within similar geographic orientations than between the slopes facing opposing directions. Both the incident solar radiation and the spatial structure of the area were relevant in explaining the patterns detected in variation of soil and plant litter. Individual contributions of incident solar radiation to explain the variation in the properties evaluated suggested that this and other environmental factors may play a particularly relevant role in determining soil and plant litter distribution in tropical areas with heterogeneous topography. Furthermore, this study corroborates that the spatial structure of the area also plays an important role in the distribution of soil and litter within this type of landscape, which appears to be consistent with the action of water movement mechanisms in such areas.

  1. A biophysical process based approach for estimating net primary production using satellite and ground observations

    Science.gov (United States)

    Choudhury, Bhaskar J.

    An approach is presented for calculating interannual variation of net primary production (C) of terrestrial plant communities at regional scale using satellite and ground measurements. C has been calculated as the difference of gross photosynthesis (A g) and respiration (R), recognizing that different biophysical factors exert major control on these two processes. A g has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R g and R m. The R m has been determined from nitrogen content of plant tissue per unit ground area, while R g has been obtained as a fraction of the difference of A g and R m. Model parameters have not been determined by matching the calculated fluxes against observations at any location. Results are presented for cultivated and temperate deciduous forest areas over North America for five consecutive years (1986-1990) and compared with observations.

  2. A survey of natural radiation levels in soils and rocks from Aliaga-Foca region in Izmir, Turkey

    International Nuclear Information System (INIS)

    Fuesun cam, N.; Oezken, I.; Yaprak, G.

    2013-01-01

    The gamma spectroscopic analysis of 226 Ra, 232 Th and 40 K has been carried out in surface soil samples collected from Aliaga-Foca industrial region. The rock samples as parent materials of the soils are also collected and analysed for relevant radionuclides in order to evaluate the natural radiation levels. In the present study, the mean activity concentrations and ranges of the related radionuclides in the soil samples from 60 sites distributed all over the region are as follows: 226 Ra is 38 (14-123) Bq kg -1 ; 232 Th, 63 (27-132) Bq kg -1 and 40 K , 633 (141-1666) Bq kg -1 . Meanwhile, the ranges of natural radionuclide activities in the rock samples characterising the region are 41-95 Bq kg -1 for 226 Ra, 10-122 Bq kg -1 for 232 Th and 264-1470 Bq kg -1 for 40 K , respectively. Based on the available data, the radiation hazard parameters associated with the surveyed soils/rocks are calculated and the results do not exceed the permissible recommended values except for soils originated from Foca rhyolites and tuffs. Furthermore, the collected data allowed for the mapping of the measured activities and corresponding gamma dose rates. (authors)

  3. Seeing the soil through the net: an eye-opener on the soil map of the Flemish region (Belgium)

    Science.gov (United States)

    Dondeyne, Stefaan; Vanierschot, Laura; Langohr, Roger; Van Ranst, Eric; Deckers, Jozef; Oorts, Katrien

    2017-04-01

    A systematic soil survey of Belgium was conducted from 1948 to 1991. Field surveys were done at the detailed scale of 1:5000 with the final maps published at a 1:20,000 scale. The legend of these detailed soil maps (scale 1:20,000) has been converted to the 3rd edition of the international soil classification system 'World Reference Base for Soil Resources' (WRB). Over the last years, the government of the Flemish region made great efforts to make these maps, along with other environmental data, available to the general audience through the internet. The soil maps are widely used and consulted by researchers, teachers, land-use planners, environmental consultancy agencies and archaeologists. The maps can be downloaded and consulted in the viewer 'Visual Soil Explorer' ('Bodemverkenner'). To increase the legibility of the maps, we assembled a collection of photographs from soil profiles representing 923 soil types and 413 photos of related landscape settings. By clicking on a specific location in the 'Visual Soil Explorer', pictures of the corresponding soil type and landscape appear in a pop-up window, with a brief explanation about the soil properties. The collection of photographs of soil profiles cover almost 80% of the total area of the Flemish region, and include the 100 most common soil types. Our own teaching experience shows that these information layers are particular valuable for teaching soil geography and earth sciences in general. Overall, such visual information layers should contribute to a better interpretation of the soil maps and legacy soil data by serving as an eye-opener on the soil map to the wider community.

  4. Natural environmental radioactivity and estimation of radiation exposure from saline soils

    International Nuclear Information System (INIS)

    Akhtar, N.; Tufail, M.; Ashraf, M.

    2005-01-01

    The study was conducted for the investigation of amount of radioactivity in the barren and cultivated soil of Bio saline Research Station in Pakka Anna, established by Nuclear Institute for Agriculture and Biology in 1990, 34 km. away from the city of Faisalabd, in the Punjab Province of Pakistan. The studies were done on an area of about 100 hectares of two types of virgin and fertilized saline soils. The technique of gamma ray spectrometry was applied using High Purity Germanium gamma ray detector and a P C based MCA. Activity concentration levels due to 40 K, 137 Cs, 226 Ra and 232 Th were measured in 250 saline soil samples collected at a spacing of about 4 hectares at the depth level of 0-25 cm. with a step of 5 cm. depth. Activity concentration ranges of the concerned radionuclides for both of the soils were as follows: 40 K, for virgin and cultivated saline soil was 500-610.2 and Bq/kg 560.2-635.6 respectively; 137 Cs, 3.57-3.63 and 1.98-5.15 Bq/kg 238 U, 26.3-31.6 and 30.6-38.7 Bq/kg, and 232 Th, 50.6-55.3 and 50.6-64.0 Bq/kg respectively. The absorbed dose rate in air lies in the region 63-73 nGyh -1 and 68-83 nGyh -1 for virgin and fertilized soils respectively. This indicates that this region lies in the area of higher radiation background, while comparing with the worlds' average. The slightly higher value of dose in the fertilized farm may be due to the use of fertilizers for cultivation. Before the radiometric measurements, chemical analysis for concentration of Na, Ca and Mg was also carried out along with the measurement of electrical conductivity and p H of the soil samples

  5. Role of soil moisture vs. recent climate change for heat waves in western Russia

    Science.gov (United States)

    Hauser, Mathias; Orth, Rene; Seneviratne, Sonia

    2015-04-01

    Using the framework of event attribution, anthropogenic climate change was found to have a discernible influence on the occurence-probability of heat waves, such as the one in Russia in 2010. Soil moisture, on the other hand, is an important physical driver for heat waves as its availability has a large influence on the partitioning of the available surface net radiation into latent and sensible heat flux. The presented study investigates the relative importance of both controls, soil moisture and increasing greenhouse gas concentrations, on heat waves in the region of the 2010 Russian heat wave. This is done with a large number of ensemble members from climate simulations with and without interactive soil moisture for both, the 2000s and the 1960s. The simualtions allow to determine the occurence-probability of heat waves with and without the soil moisture-temperature feedback and to compare it to the change caused by climate change. Thereby, we expect to see the largest effect on daytime maximum temperatures (TXx) and a smaller influence of soil moisture on the mean temperatures and cold extremes.

  6. Levels of concern for radioactive contaminations in soil according to soil protection standards

    International Nuclear Information System (INIS)

    Gellermann, R.; Barkowski, D.; Machtolf, M.

    2016-01-01

    In the paper the question is examined whether the established soil protection standards for carcinogenic substances are also applicable to the assessment of radioactive soil contamination. Referring to the methods applied in soil protection for evaluation of dose-effectrelations and estimations of carcinogenic risks as well as the calculation methods for test values in soil protection ''levels of concern'' for soil contamination by artificial radionuclides are derived. The values obtained are significantly larger than the values for unrestricted clearance of ground according to the German Radiation Protection Ordinance (StrlSchV). The thesis that soil is protected according to environmental standards provided that radiation protection requirements are met needs further checks but can be probably confirmed if the radiation protection requirements are clearly defined.

  7. [Seasonal variation of soil heat conduction in a larch plantation and its relations to environmental factors].

    Science.gov (United States)

    Wang, Wen-Jie; Cui, Song; Liu, Wei; Zu, Yuan-Gang; Sun, Wei; Wang, Hui-Min

    2008-10-01

    Based on a 3-year (2003-2005) observation of soil heat flux (SHF) in a larch (Larix gmelinii) plantation, the characteristics of soil heat conduction in the plantation and their relationships with environment factors were analyzed. The results showed that there was an obvious seasonal variation of SHF in different years and sampling sites. The SHF was positive from April to August and mostly negative from September to next March, with an almost balance between heat income and outcome at annual scale. Solar net radiation had significant effects on the SHF and soil heat conductance (k), and an obvious time-lag effect was found, with 4-5 hours' time-lag in winter and 2-3 hours' time-lag in summer. Based on the real-time measurement of SHF and soil temperature difference at the study sites, the k value was significantly higher in early spring (P 0.05). Therefore, when we use the observation data of soil temperature from weather stations to estimate soil heat flux, the k value in spring (from March to May) could induce a bias estimation.

  8. Natural radioactivity levels and estimation of radiation exposure from soils in Bahi and Manyoni Districts in Tanzania

    International Nuclear Information System (INIS)

    Nkuba, Leonid L.; Nyanda, Pendo B.

    2017-01-01

    Soils from Bahi and Manyoni districts in Tanzania were analyzed for radioactivity. The radioactivity levels of 226 Ra, 232 Th and 40 K were measured by direct γ‐ray spectrometry using HPGe detector by Compton suppression method. The radioactivity concentration in soil were computed in arithmetic mean. The results from this study have been compared with those from other areas in Tanzania, different countries of the world and the world average radioactivity in the soil. To assess the radiological effects and hazards indices from natural radionuclides ( 226 Ra, 232 Th and 40 K), the absorbed dose rate (DR), the annual effective dose equivalent (AEDE), Excess Lifetime Cancer Risk (ELCR), the radium equivalent activity (Raeq), the external (Hex), the alpha index (Iα) and the radioactivity level index (Iγ) were calculated. Except for DR in all the soil samples; Raeq, Hex and Iα exceeds the recommended limits due to high activity of 226 Ra in Membeta soils. Also Iγ was above the limits due to higher 226 Ra in soils from Membeta and 232 Th in Ilindi and Nala. Whilst the other radiological parameters (AEDE and ELCR) as well as the Raeq, Hex, Iα and Iγ in same areas were far below the recommended limits. However, this does not guarantee the safety. Therefore the probability of occurrence of the health effects from radiation is significant. The study recommends that the soils from Membeta should not be used as building material because they might expose the population to radiation. (author)

  9. Natural radioactivity levels and estimation of radiation exposure from soils in Bahi and Manyoni Districts in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Nkuba, Leonid L.; Nyanda, Pendo B., E-mail: leonid_nkuba@yahoo.co.uk [Tanzania Atomic Energy Commission, Directorate of Radiation Control, Dar es Salaam (Tanzania, United Republic of)

    2017-07-01

    Soils from Bahi and Manyoni districts in Tanzania were analyzed for radioactivity. The radioactivity levels of {sup 226}Ra, {sup 232}Th and {sup 40}K were measured by direct γ‐ray spectrometry using HPGe detector by Compton suppression method. The radioactivity concentration in soil were computed in arithmetic mean. The results from this study have been compared with those from other areas in Tanzania, different countries of the world and the world average radioactivity in the soil. To assess the radiological effects and hazards indices from natural radionuclides ({sup 226}Ra, {sup 232}Th and {sup 40}K), the absorbed dose rate (DR), the annual effective dose equivalent (AEDE), Excess Lifetime Cancer Risk (ELCR), the radium equivalent activity (Raeq), the external (Hex), the alpha index (Iα) and the radioactivity level index (Iγ) were calculated. Except for DR in all the soil samples; Raeq, Hex and Iα exceeds the recommended limits due to high activity of {sup 226}Ra in Membeta soils. Also Iγ was above the limits due to higher {sup 226}Ra in soils from Membeta and {sup 232}Th in Ilindi and Nala. Whilst the other radiological parameters (AEDE and ELCR) as well as the Raeq, Hex, Iα and Iγ in same areas were far below the recommended limits. However, this does not guarantee the safety. Therefore the probability of occurrence of the health effects from radiation is significant. The study recommends that the soils from Membeta should not be used as building material because they might expose the population to radiation. (author)

  10. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    Science.gov (United States)

    Manohar, S. N.; Meijer, H. A. J.; Herber, M. A.

    2013-12-01

    Naturally occurring radioactive noble gas, radon (222Rn) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution of the radon flux density over the Earth's surface. Terrestrial gamma radiation is a useful proxy for generating radon flux maps. A previously reported radon flux map of Europe used terrestrial gamma radiation extracted from automated radiation monitoring networks. This approach failed to account for the influence of local artificial radiation sources around the detector, leading to under/over estimation of the reported radon flux values at different locations. We present an alternative approach based on soil radionuclides which enables us to generate accurate radon flux maps with good confidence. Firstly, we present a detailed comparison between the terrestrial gamma radiation obtained from the National Radiation Monitoring network of the Netherlands and the terrestrial gamma radiation calculated from soil radionuclides. Extending further, we generated radon flux maps of the Netherlands and Europe using our proposed approach. The modelled flux values for the Netherlands agree reasonably well with the two observed direct radon flux measurements (within 2σ level). On the European scale, we find that the observed radon flux values are higher than our modelled values and we introduce a correction factor to account for this difference. Our approach discussed in this paper enables us to develop reliable and accurate radon flux maps in countries with little or no information on radon flux values.

  11. Natural radioactivity in soil samples of Yelagiri Hills, Tamil Nadu, India and the associated radiation hazards

    International Nuclear Information System (INIS)

    Ravisankar, R.; Chandrasekaran, A.; Vijayagopal, P.; Venkatraman, B.; Senthilkumar, G.; Eswaran, P.; Rajalakshmi, A.

    2012-01-01

    The natural radioactivity of soils at Yelagiri hills has been studied in this paper. The radioactivities of 25 samples have been measured with a NaI(Tl) detector. The radioactivity concentrations of 238 U, 232 Th and 40 K ranged from ≤2.17 to 53.23, 13.54 to 89.89 and from 625.09 to 2207.3 Bq kg −1 , respectively. The measured activity concentrations for these radionuclides were compared with world average activity of soil. The average activity concentration of 232 Th in the present study is 1.19 times higher than world median value while the activity of 238 U and 40 K is found to be lower. In order to evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity Ra eq , the absorbed dose rate D R , the annual effective dose rate and the external hazard index (H ex ) have been calculated and compared with the internationally approved values. The study provides background radioactivity concentrations in Yelagiri hills. - Highlights: ► Soil radioactivity is used for base line data in future impact assessment. ► We report the results of radiation hazard parameters in soils of Yelagiri hills. ► The level of the natural radiation in the studied area does not exceed the norm.

  12. Soil carbon sequestration and biochar as negative emission technologies.

    Science.gov (United States)

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. © 2016 John Wiley & Sons Ltd.

  13. Mobilizing local safety nets for enhanced adaptive capacity to ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    22 avr. 2016 ... In Zimbabwe, the increased frequency of drought, flash floods, and unpredictable rainfall has added to recurrent food deficits for poor households who depend on rainfed farming on nutrient poor soils. This brief explores how the erosion of Zunde raMambo — a traditional community safety net mechanism ...

  14. Comparisons of micrometeorology, growth of leather-fern [Rumohra adiantiformis, pteridophyta] and comfortable working environment between PO-film-covered and net-covered greenhouses in summer

    International Nuclear Information System (INIS)

    Yokoyama, H.; Harazono, Y.

    2004-01-01

    Protected cultivation of leather-fern in Hachijo-Island has been urged to prevent the Mottled Yellowing Syndrome (MYS) damage and to reduce the production costs. The purpose of the study was to reveal greenhouse environments that would provide good plant growth, a comfortable working environment and low-cost management, by comparing the micrometeorology and leatherfern productivity between Poly-Olefin (PO) film-covered greenhouses and the conventional netcovered greenhouses. Both greenhouses were fully covered by the same net. Field studies of leather-fern cultivation in Hachijo-Island showed that better productivity and quality of leather-fern have been provided by farmer's net-covered greenhouses than by farmer's PO-covered greenhouses. The light transmittance in the net-covered greenhouse was higher and the air temperature was lower than those in the PO-covered greenhouse. The comparative experiments using PO-covered greenhouses (PO), and net-covered greenhouses (NET), were conducted at the Hachijojima Horticultural Research Center. Air temperature and its vertical gradient in NET were lower than those in PO. Irrigation in PO was 225 mm during August and September in 1999, but 507 mm of precipitation in addition to the irrigation was supplied in NET. Air temperature and its vertical gradient in PO increased with solar radiation increase. Heat disorder in working environments for farmers did not occur in the NET, but several warning hours of heat disorder occurred in the PO as a dangerous working environment. The NET was thought to be a better system of leather-fern cultivation bringing about low costs and comfortable working environments. However, further application of fully rolled-up PO-film greenhouse system was recommended to control the soil water condition

  15. Economic feasibility of no-tillage and manure for soil carbon sequestration in corn production in northeastern Kansas.

    Science.gov (United States)

    Pendell, Dustin L; Williams, Jeffery R; Rice, Charles W; Nelson, Richard G; Boyles, Scott B

    2006-01-01

    This study examined the economic potential of no-tillage versus conventional tillage to sequester soil carbon by using two rates of commercial N fertilizer or beef cattle manure for continuous corn (Zea mays L.) production. Yields, input rates, field operations, and prices from an experiment were used to simulate a distribution of net returns for eight production systems. Carbon release values from direct, embodied, and feedstock energies were estimated for each system, and were used with soil carbon sequestration rates from soil tests to determine the amount of net carbon sequestered by each system. The values of carbon credits that provide an incentive for managers to adopt production systems that sequester carbon at greater rates were derived. No-till systems had greater annual soil carbon gains, net carbon gains, and net returns than conventional tillage systems. Systems that used beef cattle manure had greater soil carbon gains and net carbon gains, but lower net returns, than systems that used commercial N fertilizer. Carbon credits would be needed to encourage the use of manure-fertilized cropping systems.

  16. NCRP soil contamination task group

    International Nuclear Information System (INIS)

    Jacobs, D.G.

    1987-01-01

    The National Council of Radiation Protection and Measurements (NCRP) has recently established a Task Group on Soil Contamination to describe and evaluate the migration pathways and modes of radiation exposure that can potentially arise due to radioactive contamination of soil. The purpose of this paper is to describe the scientific principles for evaluation of soil contamination which can be used as a basis for derivation of soil contamination limits for specific situations. This paper describes scenarios that can lead to soil contamination, important characteristics of soil contamination, the subsequent migration pathways and exposure modes, and the application of principles in the report in deriving soil contamination limits. The migration pathways and exposure modes discussed in this paper include: direct radiation exposure; and exhalation of gases

  17. A Study on the Removal of Cesium in Soil Contaminated with Radiation Using a Soil Washing Process

    International Nuclear Information System (INIS)

    Park, Ukryang; Kim, Gyenam; Kim, Seungsoo; Park, Hyemin; Kim, Wansuk; Moon, Jaikwon

    2013-01-01

    The first principle is related with the washing process which is carried out to transfer the contaminated mass from the soil to water by dissolving it with a cleansing solution. The second is concerned with the size of the separation process which focuses on the reduction of the volume by separating the subject matters based on the different sizes of the soil. The complex agents used in the soil washing process include HCl, Oxalic acid, Citric acid, CaCl 2 , BaCl 2 , NH 4 NO 3 , and NaOH. It is known that the complex-forming capacity of such complex agents and radionuclides influences the decontamination from the soil. Also, since the forms of the chemical species related with the complex agents and the surface potential of the soil vary based on the changes of acidity observed in the cleansing solution, the level of acidity in the cleansing solution can be regarded as a factor that influences the decontamination. Therefore, in this study, H 2 SO 4 was selected as the complex agent and used to check the influence of the temperature when the subject contaminated soil was washed. Then, by applying the sieve grading process with a sieve-shaker, the size separation process was carried out to measure the level of radiation for each size. By washing the contaminated soil separated into different sizes with the complex agent H 2 SO 4 , the different removal tendencies for each size were considered. After selecting the complex agent H 2 SO 4 and checking the influence of temperature when the contaminated soil was washed based on the solid-liquid ratio of 1g:2ml, it was found that the heat washing process at a temperature of 95 .deg. C showed a higher level of efficiency for the removal of Cs compared to the case of the non-heat washing process. Also, according to the results given by the process of considering the different removal tendencies for each size based on the heat washing process after the sieve grading process was applied with the sieve-shaker prior for the size

  18. Can next-generation soil data products improve soil moisture modelling at the continental scale? An assessment using a new microclimate package for the R programming environment

    Science.gov (United States)

    Kearney, Michael R.; Maino, James L.

    2018-06-01

    Accurate models of soil moisture are vital for solving core problems in meteorology, hydrology, agriculture and ecology. The capacity for soil moisture modelling is growing rapidly with the development of high-resolution, continent-scale gridded weather and soil data together with advances in modelling methods. In particular, the GlobalSoilMap.net initiative represents next-generation, depth-specific gridded soil products that may substantially increase soil moisture modelling capacity. Here we present an implementation of Campbell's infiltration and redistribution model within the NicheMapR microclimate modelling package for the R environment, and use it to assess the predictive power provided by the GlobalSoilMap.net product Soil and Landscape Grid of Australia (SLGA, ∼100 m) as well as the coarser resolution global product SoilGrids (SG, ∼250 m). Predictions were tested in detail against 3 years of root-zone (3-75 cm) soil moisture observation data from 35 monitoring sites within the OzNet project in Australia, with additional tests of the finalised modelling approach against cosmic-ray neutron (CosmOz, 0-50 cm, 9 sites from 2011 to 2017) and satellite (ASCAT, 0-2 cm, continent-wide from 2007 to 2009) observations. The model was forced by daily 0.05° (∼5 km) gridded meteorological data. The NicheMapR system predicted soil moisture to within experimental error for all data sets. Using the SLGA or the SG soil database, the OzNet soil moisture could be predicted with a root mean square error (rmse) of ∼0.075 m3 m-3 and a correlation coefficient (r) of 0.65 consistently through the soil profile without any parameter tuning. Soil moisture predictions based on the SLGA and SG datasets were ≈ 17% closer to the observations than when using a chloropleth-derived soil data set (Digital Atlas of Australian Soils), with the greatest improvements occurring for deeper layers. The CosmOz observations were predicted with similar accuracy (r = 0.76 and rmse of ∼0

  19. Simulating soil greenhouse emissions from Swiss long-term cropping system trials

    Science.gov (United States)

    Necpalova, Magdalena; Lee, Juhwan; Skinner, Colin; Büchi, Lucie; Berner, Alfred; Mäder, Paul; Mayer, Jochen; Charles, Raphael; van der Heijden, Marcel; Wittwer, Raphael; Gattinger, Andreas; Six, Johan

    2017-04-01

    There is an urgent need to identify and evaluate management practices for their bio-physical potential to mitigate greenhouse gas (GHG) emissions from agriculture. The cost and time required for direct management-specific GHG measurements limit the spatial and temporal resolution and the extent of data that can be collected. Biogeochemical process-based models such as DayCent can be used to bridge data gaps over space and time and estimate soil GHG emissions relevant to various climate change mitigation strategies. Objectives of this study were (a) to parameterize DayCent for common Swiss crops and crop-specific management practices using the Swiss long-term experimental data collected at four sites (Therwil, Frick, Changins, and Reckenholz); (b) to evaluate the model's ability to predict crop productivity, long-term soil carbon dynamics and N2O emissions from Swiss cropping systems; (c) to calculate a net soil GHG balance for all treatments (except for bio-dynamic) studied in long-term field experiments in Switzerland; and (d) to study the management effects and their interactions on soil GHG emissions at each experimental site. Model evaluation indicated that DayCent predicted crop productivity (rRMSE=0.29 r2=0.81, n=2614), change in soil carbon stock (rRMSE=0.14, r2=0.72, n=1289) and cumulative N2O emissions (rRMSE=0.25, r2=0.89, n=8) satisfactorily across all treatments and sites. Net soil GHG emissions were derived from changes in soil carbon, N2O emissions and CH4 oxidation on an annual basis using IPCC (2014) global warming potentials. Modelled net soil GHG emissions calculated for individual treatments over 30 years ranged from -594 to 1654 kg CO2 eq ha-1 yr-1. The highest net soil GHG emissions were predicted for conventional tillage and slurry application treatment at Frick, while soils under organic and reduced tillage management at Reckenholz acted as a net GHG sink. The statistical analyses using linear MIXED models indicated that net soil GHG

  20. Contemporary state of plutonium and americium in the soils of Palesse state radiation-ecological reserve

    International Nuclear Information System (INIS)

    Papenia, M.V.; Sokolik, G.A.; Ovsiannikova, S.V.; Voinikava, E.V.; Svirschevsky, S.F.; Brown, J.; Skipperud, L.

    2010-01-01

    Full text: At present, the most important alpha-emitting radionuclides of Chernobyl origin are Pu 238, Pu 239, Pu 240 and Am 241. They are classified as the most dangerous group of radionuclides in view of the long half-lives and high radiotoxicity. The main part of alpha-emitted radionuclides is located within the Palesse State Radiation-Ecological Reserve. One of the most important factors determining the radioecological situation in the contaminated ecosystems is the physicochemical forms of radionuclides in a soil medium. Radionuclide species determine the radionuclide entrance into the soil solutions, their redistribution in soil profiles and the 'soil - plant' and the 'soil - surface, ground or underground water' systems as well as spreading beyond the contaminated area. The present work is devoted to investigation of state and migration ability of plutonium and americium in soils of the Palesse state radiation-ecological reserve after more than 20 years from the Chernobyl accident. The objects of investigation were mineral and organic soils sampled in 2008 with the step of 5 cm to the depth of 25-30 cm. The forms of plutonium and americium distinguishing by association with the different components of soil and by potential for migration in the soil medium were studied using the method of sequential selective extraction according to the modified Tessier scheme. Activities of Pu 238, Pu 239, Pu 240 and Am 241 in the samples were determined by the method of radiochemical analysis with alpha-spectrometer radionuclide identification. The dominant part of plutonium and americium in the soils is in immobile forms. Nowadays, radionuclide portions in water soluble and reversibly bound forms do not exceed 9.4 % of radionuclide content in the soil. In mineral soil samples, the radionuclide portions in these fractions exceed the corresponding portions in organic ones. In both mineral and organic soils, the portions of mobile americium are higher than plutonium. The

  1. Exploring the interactions and binding sites between Cd and functional groups in soil using two-dimensional correlation spectroscopy and synchrotron radiation based spectromicroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fusheng [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Department of Soil Science, North Carolina State University, Raleigh, NC 27695 (United States); Polizzotto, Matthew L. [Department of Soil Science, North Carolina State University, Raleigh, NC 27695 (United States); Guan, Dongxing [Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210026 (China); Wu, Jun [College of Environment, Zhejiang University of Technology, Hangzhou 310014 (China); Shen, Qirong; Ran, Wei [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Wang, Boren [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Yu, Guanghui, E-mail: yuguanghui@njau.edu.cn [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2017-03-15

    Highlights: • The interactions and binding between Cd and functional groups are essential for their fates. • Two-dimensional correlation spectroscopy can identify Cd binding to functional groups in soils. • Synchrotron radiation based spectromicroscopy shows the micro-scale distribution of Cd in soils. • Soil functional groups controlling Cd binding can be modified by fertilization treatments. - Abstract: Understanding how heavy metals bind and interact in soils is essential for predicting their distributions, reactions and fates in the environment. Here we propose a novel strategy, i.e., combining two-dimensional correlation spectroscopy (2D COS) and synchrotron radiation based spectromicroscopies, for identifying heavy metal binding to functional groups in soils. The results showed that although long-term (23 yrs) organic fertilization treatment caused the accumulation of Cd (over 3 times) in soils when compared to no fertilization and chemical fertilization treatments, it significantly (p < 0.05) reduced the Cd concentration in wheat grain. The 2D COS analyses demonstrated that soil functional groups controlling Cd binding were modified by fertilization treatments, providing implications for the reduced bioavailability of heavy metals in organic fertilized soils. Furthermore, correlative micro X-ray fluorescence spectromicroscopy, electron probe micro-analyzer mapping, and synchrotron-radiation-based FTIR spectromicroscopy analysis showed that Cd, minerals, and organic functional groups were heterogeneously distributed at the micro-scale in soil colloids. Only minerals, rather than organic groups, had a similar distribution pattern with Cd. Together, this strategy has a potential to explore the interactions and binding sites among heavy metals, minerals and organic components in soil.

  2. Estimating Net Primary Productivity Beneath Snowpack Using Snowpack Radiative Transfer Modeling and Global Satellite Data

    Science.gov (United States)

    Barber, D. E.; Peterson, M. C.

    2002-05-01

    Sufficient photosynthetically active radiation (PAR) penetrates snow for plants to grow beneath snowpack during late winter or early spring in tundra ecosystems. During the spring in this ecosystem, the snowpack creates an environment with higher humidity and less variable and milder temperatures than on the snow-free land. Under these conditions, the amount of PAR available is likely to be the limiting factor for plant growth. Current methods for determining net primary productivity (NPP) of tundra ecosystems do not account for this plant growth beneath snowpack, apparently resulting in underestimating plant production there. We are currently in the process of estimating the magnitude of this early growth beneath snow for tundra ecosystems. Our method includes a radiative transfer model that simulates diffuse and direct PAR penetrating snowpack based on downwelling PAR values and snow depth data from global satellite databases. These PAR levels are convolved with plant growth for vegetation that thrives beneath snowpacks, such as lichen. We expect to present the net primary production for Cladonia species (a common Arctic lichen) that has the capability of photosynthesizing at low temperatures beneath snowpack. This method may also be used to study photosynthesis beneath snowpacks in other hardy plants. Lichens are used here as they are common in snow-covered regions, flourish under snowpack, and provide an important food source for tundra herbivores (e.g. caribou). In addition, lichens are common in arctic-alpine environments and our results can be applied to these ecosystems as well. Finally, the NPP of lichen beneath snowpack is relatively well understood compared to other plants, making it ideal vegetation for this first effort at estimating the potential importance of photosynthesis at large scales. We are examining other candidate plants for their photosynthetic potential beneath snowpack at this time; however, little research has been done on this topic. We

  3. Bioaccessibility of Fukushima-Accident-Derived Cs in Soils and the Contribution of Soil Ingestion to Radiation Doses in Children.

    Science.gov (United States)

    Takahara, Shogo; Ikegami, Maiko; Yoneda, Minoru; Kondo, Hitoshi; Ishizaki, Azusa; Iijima, Masashi; Shimada, Yoko; Matsui, Yasuto

    2017-07-01

    Ingestion of contaminated soil is one potential internal exposure pathway in areas contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Doses from this pathway can be overestimated if the availability of radioactive nuclides in soils for the gastrointestinal tract is not considered. The concept of bioaccessibility has been adopted to evaluate this availability based on in vitro tests. This study evaluated the bioaccessibility of radioactive cesium from soils via the physiologically-based extraction test (PBET) and the extractability of those via an extraction test with 1 mol/L of hydrochloric acid (HCl). The bioaccessibility obtained in the PBET was 5.3% ± 1%, and the extractability in the tests with HCl was 16% ± 3%. The bioaccessibility was strongly correlated with the extractability. This result indicates the possibility that the extractability in HCl can be used as a good predictor of the bioaccessibility with PBET. In addition, we assessed the doses to children from the ingestion of soil via hand-to-mouth activity based on our PBET results using a probabilistic approach considering the spatial distribution of radioactive cesium in Date City in Fukushima Prefecture and the interindividual differences in the surveyed amounts of soil ingestion in Japan. The results of this assessment indicate that even if children were to routinely ingest a large amount of soil with relatively high contamination, the radiation doses from this pathway are negligible compared with doses from external exposure owing to deposited radionuclides in Fukushima Prefecture. © 2016 Society for Risk Analysis.

  4. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.

    Science.gov (United States)

    Deng, Qi; Cheng, Xiaoli; Hui, Dafeng; Zhang, Qian; Li, Ming; Zhang, Quanfa

    2016-01-15

    Afforestation may alter soil microbial community structure and function, and further affect soil carbon (C) and nitrogen (N) dynamics. Here we investigated soil microbial carbon and nitrogen (MBC and MBN) and microbial community [e.g. bacteria (B), fungi (F)] derived from phospholipid fatty acids (PLFAs) analysis in afforested (implementing woodland and shrubland plantations) and adjacent croplands in central China. Relationships of microbial properties with biotic factors [litter, fine root, soil organic carbon (SOC), total nitrogen (TN) and inorganic N], abiotic factors (soil temperature, moisture and pH), and major biological processes [basal microbial respiration, microbial metabolic quotient (qCO2), net N mineralization and nitrification] were developed. Afforested soils had higher mean MBC, MBN and MBN:TN ratios than the croplands due to an increase in litter input, but had lower MBC:SOC ratio resulting from low-quality (higher C:N ratio) litter. Afforested soils also had higher F:B ratio, which was probably attributed to higher C:N ratios in litter and soil, and shifts of soil inorganic N forms, water, pH and disturbance. Alterations in soil microbial biomass and community structure following afforestation were associated with declines in basal microbial respiration, qCO2, net N mineralization and nitrification, which likely maintained higher soil carbon and nitrogen storage and stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  6. Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil mesurements

    Science.gov (United States)

    The net ecosystem exchange (NEE) is the difference between ecosystem CO2 assimilation and CO2 losses to the atmosphere. Ecosystem respiration (Reco), the efflux of CO2 from the ecosystem to the atmosphere, includes the soil-to-atmosphere carbon flux (i.e., soil respiration; Rsoil) and aboveground pl...

  7. Estimating Net Primary Productivity Using Satellite and Ancillary Data

    Science.gov (United States)

    Choudhury, Bhaskar J.

    2002-01-01

    The net primary productivity (C) or the annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of gross photosynthesis (A(sub g)) and respiration (R) per unit ground area. Available field observations show that R is a large and variable fraction of A(sub g), although it is generally recognized that there are considerable difficulties in determining these fluxes, and thus pose challenge in assessing the accuracy. Further uncertainties arise in extrapolating field measurements (which are acquired over a hectare or so area) to regional scale. Here, an approach is presented for determining these fluxes using satellite and ancillary data to be representative of regional scale and allow assessment of interannual variation. A, has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R(sub g) and R(sub m)).The R(sub m) has been determined from nitrogen content of plant tissue per unit ground area, while R(sub g) has been obtained as a fraction of the difference of A(sub g) and R(sub m). Results for five consecutive years (1986-1990) are presented for the Amazon-Tocontins, Mississippi, and Ob River basins.

  8. Nitrogen as a regulatory factor of methane oxidation in soils and sediments

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Laanbroek, H.J.

    2004-01-01

    The oxidation of methane by methane-oxidising microorganisms is an important link in the global methane budget. Oxic soils are a net sink while wetland soils are a net source of atmospheric methane. It has generally been accepted that the consumption of methane in upland as well as lowland systems

  9. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: A cost-effective sampling strategy

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Ciais, P.; Bariac, T.; Brunet, Y.; Berbigier, P.; Roche, C.; Richard, P.; Bardoux, G.; Bonnefond, J.-M.

    2003-06-01

    The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring the long-term biosphere-atmosphere net CO2 exchange (net ecosystem exchange, NEE). Partitioning this flux into its elementary components, net assimilation (FA), and respiration (FR), remains necessary in order to get a better understanding of biosphere functioning and design better surface exchange models. Noting that FR and FA have different isotopic signatures, we evaluate the potential of isotopic 13CO2 measurements in the air (combined with CO2 flux and concentration measurements) to partition NEE into FR and FA on a routine basis. The study is conducted at a temperate coniferous forest where intensive isotopic measurements in air, soil, and biomass were performed in summer 1997. The multilayer soil-vegetation-atmosphere transfer model MuSICA is adapted to compute 13CO2 flux and concentration profiles. Using MuSICA as a "perfect" simulator and taking advantage of the very dense spatiotemporal resolution of the isotopic data set (341 flasks over a 24-hour period) enable us to test each hypothesis and estimate the performance of the method. The partitioning works better in midafternoon when isotopic disequilibrium is strong. With only 15 flasks, i.e., two 13CO2 nighttime profiles (to estimate the isotopic signature of FR) and five daytime measurements (to perform the partitioning) we get mean daily estimates of FR and FA that agree with the model within 15-20%. However, knowledge of the mesophyll conductance seems crucial and may be a limitation to the method.

  10. Gamma Radiation Dose from Radionuclides in Soil Samples of Udagamandalam (Ooty) in India

    International Nuclear Information System (INIS)

    Selvasekarapandian, S.; Muguntha Manikandan, N.; Sivakumar, R.; Balasubramanian, S.; Venkatesan, T.; Meenakshisundram, V.; Ragunath, V.M.; Gajendran, V.

    1999-01-01

    The systematic study of background radiation and the distribution of radionuclides in the environment of Udagamandalam in Nilgiri District of Tamil Nadu has been made. Gamma spectrometric analysis of the soil samples of this area has been carried out. The measured gamma dose in air is in the range 31.6 nGy.h -1 - 221.1 nGy.h -1 with a mean value 121.8 nGy.h -1 . The average activities of the 232 Th series, 238 U series and 40 K in soil samples are 114.6 ± 52.5 Bq.kg -1 , 43.2 ± 23.2 Bq.kg -1 and 274.6 ± 86.7 Bq.kg -1 respectively. (author)

  11. Effect of soil moisture content on the radiosensitivity of soil bacteria and fungi

    International Nuclear Information System (INIS)

    Massoud, M.A.; El-Nennah, M.E.; El-Kholi, A.F.; Abd-Elmonem, M.A.

    1982-01-01

    The purpose of this investigation was to study the effect of soil moisture on the radiosensitivity of soil bacteria and fungi. The percentages of survival of soil bacteria and fungi, after exposure to different doses of gamma radiation, were lower in the moistened soil samples than in the dry one, inspite of the observed encouragement of wetting the soil samples, before gamma radiation exposure, on the proliferation of soil micro-organisms. This effect was explained by the indirect action from the breakdown products of radiolysis of water rather than by the direct damage to the cell structure

  12. Assessment of natural radiation exposure and radon exhalation rates from the soil of Islamabad District of Pakistan

    International Nuclear Information System (INIS)

    Mujahid, S.A.

    2007-01-01

    Complete text of publication follows. The earth's crust is a main source of natural radionuclides in soils and rocks. The specific levels of background gamma radiation depend upon the geological composition of each lithologically separated area, and the content of the rock from which the soils originate the radioactive elements of 226Rn, 232Th and 40K. These naturally occurring radionuclides of terrestrial origin in soil can be a source of external radiation exposure through the gamma ray emission whereas internal exposure occurs through the inhalation of radon gas. The measurements of natural radioactivity and the assessment of radiological hazards in the soil samples of Islamabad district of Pakistan have been carried out using High Purity Germanium (HPGe) detector. The radon exhalation rates from these samples have also been estimated employing the 'closed-can' technique of passive dosimeters. The measured activities of 226Ra, 232Th and 40K were found in the range 14 - 30, 18 - 40 and 301 - 655 Bq.kg-1. The annual effective dose was calculated in the range 0.15 - 0.31 mSv. The values of external and internal hazard indices were less than 1. The radon exhalation rates these areas were found in the range 200 - 345 mBq.m-2h-1.

  13. Playa Soil Moisture and Evaporation Dynamics During the MATERHORN Field Program

    Science.gov (United States)

    Hang, Chaoxun; Nadeau, Daniel F.; Jensen, Derek D.; Hoch, Sebastian W.; Pardyjak, Eric R.

    2016-06-01

    We present an analysis of field data collected over a desert playa in western Utah, USA in May 2013, the most synoptically active month of the year, as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. The results show that decreasing surface albedo, decreasing Bowen ratio and increasing net radiation with increasing soil moisture sustained a powerful positive feedback mechanism promoting large evaporation rates immediately following rain events. Additionally, it was found that, while nocturnal evaporation was negligible during dry periods, it was quite significant (up to 30 % of the daily cumulative flux) during nights following rain events. Our results further show that the highest spatial variability in surface soil moisture is found under dry conditions. Finally, we report strong spatial heterogeneities in evaporation rates following a rain event. The cumulative evaporation for the different sampling sites over a five-day period varied from ≈ 0.1 to ≈ 6.6 mm. Overall, this study allows us to better understand the mechanisms underlying soil moisture dynamics of desert playas as well as evaporation following occasional rain events.

  14. A Study on the Removal of Cesium in Soil Contaminated with Radiation Using a Soil Washing Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ukryang; Kim, Gyenam; Kim, Seungsoo; Park, Hyemin; Kim, Wansuk; Moon, Jaikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The first principle is related with the washing process which is carried out to transfer the contaminated mass from the soil to water by dissolving it with a cleansing solution. The second is concerned with the size of the separation process which focuses on the reduction of the volume by separating the subject matters based on the different sizes of the soil. The complex agents used in the soil washing process include HCl, Oxalic acid, Citric acid, CaCl{sub 2}, BaCl{sub 2}, NH{sub 4}NO{sub 3}, and NaOH. It is known that the complex-forming capacity of such complex agents and radionuclides influences the decontamination from the soil. Also, since the forms of the chemical species related with the complex agents and the surface potential of the soil vary based on the changes of acidity observed in the cleansing solution, the level of acidity in the cleansing solution can be regarded as a factor that influences the decontamination. Therefore, in this study, H{sub 2}SO{sub 4} was selected as the complex agent and used to check the influence of the temperature when the subject contaminated soil was washed. Then, by applying the sieve grading process with a sieve-shaker, the size separation process was carried out to measure the level of radiation for each size. By washing the contaminated soil separated into different sizes with the complex agent H{sub 2}SO{sub 4}, the different removal tendencies for each size were considered. After selecting the complex agent H{sub 2}SO{sub 4} and checking the influence of temperature when the contaminated soil was washed based on the solid-liquid ratio of 1g:2ml, it was found that the heat washing process at a temperature of 95 .deg. C showed a higher level of efficiency for the removal of Cs compared to the case of the non-heat washing process. Also, according to the results given by the process of considering the different removal tendencies for each size based on the heat washing process after the sieve grading process was

  15. Solar ultraviolet radiation alters alder and birch litter chemistry that in turn affects decomposers and soil respiration.

    Science.gov (United States)

    Kotilainen, Titta; Haimi, Jari; Tegelberg, Riitta; Julkunen-Tiitto, Riitta; Vapaavuori, Elina; Aphalo, Pedro Jose

    2009-10-01

    Solar ultraviolet (UV)-A and UV-B radiation were excluded from branches of grey alder (Alnus incana) and white birch (Betula pubescens) trees in a field experiment. Leaf litter collected from these trees was used in microcosm experiments under laboratory conditions. The aim was to evaluate the effects of the different UV treatments on litter chemical quality (phenolic compounds, C, N and lignin) and the subsequent effects of these changes on soil fauna and decomposition processes. We measured the decomposition rate of litter, growth of woodlice (Porcellio scaber), soil microbial respiration and abundance of nematodes and enchytraeid worms. In addition, the chemical quality of woodlice feces was analyzed. The exclusion of both UV-A and UV-B had several effects on litter chemistry. Exclusion of UV-B radiation decreased the C content in litter in both tree species. In alder litter, UV exclusion affected concentration of phenolic groups variably, whereas in birch litter there were no significant differences in phenolic compounds. Moreover, further effects on microbial respiration and chemical quality of woodlice feces were apparent. In both tree species, microbial CO(2) evolution was lower in soil with litter produced under exclusion of both UV-A and UV-B radiation when compared to soil with control litter. The N content was higher in the feces of woodlice eating alder litter produced under exclusion of both UV-A and UV-B compared to the control. In addition, there were small changes in the concentration of individual phenolic compounds analyzed from woodlice feces. Our results demonstrate that both UV-A and UV-B alter litter chemistry which in turn affects decomposition processes.

  16. Management of glioblastoma at safety-net hospitals.

    Science.gov (United States)

    Brandel, Michael G; Rennert, Robert C; Lopez Ramos, Christian; Santiago-Dieppa, David R; Steinberg, Jeffrey A; Sarkar, Reith R; Wali, Arvin R; Pannell, J Scott; Murphy, James D; Khalessi, Alexander A

    2018-04-24

    Safety-net hospitals (SNHs) provide disproportionate care for underserved patients. Prior studies have identified poor outcomes, increased costs, and reduced access to certain complex, elective surgeries at SNHs. However, it is unknown whether similar patterns exist for the management of glioblastoma (GBM). We sought to determine if patients treated at HBHs receive equitable care for GBM, and if safety-net burden status impacts post-treatment survival. The National Cancer Database was queried for GBM patients diagnosed between 2010 and 2015. Safety-net burden was defined as the proportion of Medicaid and uninsured patients treated at each hospital, and stratified as low (LBH), medium (MBH), and high-burden (HBH) hospitals. The impact of safety-net burden on the receipt of any treatment, trimodality therapy, gross total resection (GTR), radiation, or chemotherapy was investigated. Secondary outcomes included post-treatment 30-day mortality, 90-day mortality, and overall survival. Univariate and multivariate analyses were utilized. Overall, 40,082 GBM patients at 1202 hospitals (352 LBHs, 553 MBHs, and 297 HBHs) were identified. Patients treated at HBHs were significantly less likely to receive trimodality therapy (OR = 0.75, p < 0.001), GTR (OR = 0.84, p < 0.001), radiation (OR = 0.73, p < 0.001), and chemotherapy (OR = 0.78, p < 0.001) than those treated at LBHs. Patients treated at HBHs had significantly increased 30-day (OR = 1.25, p = 0.031) and 90-day mortality (OR = 1.24, p = 0.001), and reduced overall survival (HR = 1.05, p = 0.039). GBM patients treated at SNHs are less likely to receive standard-of-care therapies and have increased short- and long-term mortality. Additional research is needed to evaluate barriers to providing equitable care for GBM patients at SNHs.

  17. The response of soil processes to climate change

    DEFF Research Database (Denmark)

    Emmett, B.A.; Beier, C.; Estiarte, M.

    2004-01-01

    Predicted changes in climate may affect key soil processes such as respiration and net nitrogen (N) mineralization and thus key ecosystem functions such as carbon (C) storage and nutrient availability. To identify the sensitivity of shrubland soils to predicted climate changes, we have carried out...... the environmental gradient with the results from the manipulation experiments provides evidence for strong climate controls on soil respiration, net N mineralization and nitrification, and litter decomposition. Trends of 0%-19% increases of soil respiration in response to warming and decreases of 3%-29% in response...... to drought were observed. Across the environmental gradient and below soil temperatures of 20degreesC at a depth of 5-10 cm, a mean Q(10) of 4.1 in respiration rates was observed although this varied from 2.4 to 7.0 between sites. Highest Q(10), values were observed in Spain and the UK and were therefore...

  18. Biotic and abiotic controls on diurnal fluctuations in labile soil phosphorus of a wet tropical forest.

    Science.gov (United States)

    Vandecar, Karen L; Lawrence, Deborah; Wood, Tana; Oberbauer, Steven F; Das, Rishiraj; Tully, Katherine; Schwendenmann, Luitgard

    2009-09-01

    The productivity of many tropical wet forests is generally limited by bioavailable phosphorus (P). Microbial activity is a key regulator of P availability in that it determines both the supply of P through organic matter decomposition and the depletion of bioavailable P through microbial uptake. Both microbial uptake and mineralization occur rapidly, and their net effect on P availability varies with soil moisture, temperature, and soil organic matter quantity and quality. Exploring the mechanisms driving P availability at fine temporal scales can provide insight into the coupling of carbon, water, and nutrient cycles, and ultimately, the response of tropical forests to climate change. Despite the recognized importance of P cycling to the dynamics of wet tropical forests and their potential sensitivity to short-term fluctuations in bioavailable P, the diurnal pattern of P remains poorly understood. This study quantifies diurnal fluctuations in labile soil P and evaluates the importance of biotic and abiotic factors in driving these patterns. To this end, measurements of labile P were made every other hour in a Costa Rican wet tropical forest oxisol. Spatial and temporal variation in Bray-extractable P were investigated in relation to ecosystem carbon flux, soil CO2 efflux, soil moisture, soil temperature, solar radiation, and sap-flow velocity. Spatially averaged bi-hourly (every two hours) labile P ranged from 0.88 to 2.48 microg/g across days. The amplitude in labile P throughout the day was 0.61-0.82 microg/g (41-54% of mean P concentrations) and was characterized by a bimodal pattern with a decrease at midday. Labile P increased with soil CO2 efflux and soil temperature and declined with increasing sap flow and solar radiation. Together, soil CO2 efflux, soil temperature, and sap flow explained 86% of variation in labile P.

  19. Inter-Annual Variability of Soil Moisture Stress Function in the Wheat Field

    Science.gov (United States)

    Akuraju, V. R.; Ryu, D.; George, B.; Ryu, Y.; Dassanayake, K. B.

    2014-12-01

    Root-zone soil moisture content is a key variable that controls the exchange of water and energy fluxes between land and atmosphere. In the soil-vegetation-atmosphere transfer (SVAT) schemes, the influence of root-zone soil moisture on evapotranspiration (ET) is parameterized by the soil moisture stress function (SSF). Dependence of actual ET: potential ET (fPET) or evaporative fraction to the root-zone soil moisture via SSF can also be used inversely to estimate root-zone soil moisture when fPET is estimated by remotely sensed land surface states. In this work we present fPET versus available soil water (ASW) in the root zone observed in the experimental farm sites in Victoria, Australia in 2012-2013. In the wheat field site, fPET vs ASW exhibited distinct features for different soil depth, net radiation, and crop growth stages. Interestingly, SSF in the wheat field presented contrasting shapes for two cropping years of 2012 and 2013. We argue that different temporal patterns of rainfall (and resulting soil moisture) during the growing seasons in 2012 and 2013 are responsible for the distinctive SSFs. SSF of the wheat field was simulated by the Agricultural Production Systems sIMulator (APSIM). The APSIM was able to reproduce the observed fPET vs. ASW. We discuss implications of our findings for existing modeling and (inverse) remote sensing approaches relying on SSF and alternative growth-stage-dependent SSFs.

  20. PCB in soils and estimated soil-air exchange fluxes of selected PCB congeners in the south of Sweden

    International Nuclear Information System (INIS)

    Backe, Cecilia; Cousins, Ian T.; Larsson, Per

    2004-01-01

    PCB concentrations were studied in different soils to determine the spatial variation over a region of approximately 11 000 km 2 . PCB congener pattern was used to illustrate the spatial differences, as shown by principal component analysis (PCA). The relationship to different soil parameters was studied. PCB concentrations in soil showed a large variation between sampling-areas with median concentrations ranging between 2.3 and 332 ng g -1 (dw). Highest concentrations were found at two sites with sandy soils, one with extremely high organic carbon content. Both sites were located on the west coast of southern Sweden. Soils with similar soil textures (i.e. sandy silt moraine) did not show any significant differences in PCB concentrations. PCB congener composition was shown to differ between sites, with congener patterns almost site-specific. PCB in air and precipitation was measured and the transfer of chemicals between the soil and air compartments was estimated. Soil-air fugacity quotient calculations showed that the PCBs in the soil consistently had a higher fugacity than the PCBs in the air, with a median quotient value of 2.7. The gaseous fluxes between soil and air were estimated using standard modelling equations and a net soil-air flux estimated by subtracting bulk deposition from gaseous soil-air fluxes. It was shown that inclusion of vertical sorbed phase transport of PCBs in the soil had a large effect on the direction of the net soil-air exchange fluxes. - Soil-air exchange of PCBs is investigated and modelled across Sweden

  1. Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models

    Science.gov (United States)

    Robock, Alan; Vinnikov, Konstantin YA.; Schlosser, C. Adam; Speranskaya, Nina A.; Xue, Yongkang

    1995-01-01

    Soil moisture observations in sites with natural vegetation were made for several decades in the former Soviet Union at hundreds of stations. In this paper, the authors use data from six of these stations from different climatic regimes, along with ancillary meteorological and actinometric data, to demonstrate a method to validate soil moisture simulations with biosphere and bucket models. Some early and current general circulation models (GCMs) use bucket models for soil hydrology calculations. More recently, the Simple Biosphere Model (SiB) was developed to incorporate the effects of vegetation on fluxes of moisture, momentum, and energy at the earth's surface into soil hydrology models. Until now, the bucket and SiB have been verified by comparison with actual soil moisture data only on a limited basis. In this study, a Simplified SiB (SSiB) soil hydrology model and a 15-cm bucket model are forced by observed meteorological and actinometric data every 3 h for 6-yr simulations at the six stations. The model calculations of soil moisture are compared to observations of soil moisture, literally 'ground truth,' snow cover, surface albedo, and net radiation, and with each other. For three of the stations, the SSiB and 15-cm bucket models produce good simulations of seasonal cycles and interannual variations of soil moisture. For the other three stations, there are large errors in the simulations by both models. Inconsistencies in specification of field capacity may be partly responsible. There is no evidence that the SSiB simulations are superior in simulating soil moisture variations. In fact, the models are quite similar since SSiB implicitly has a bucket embedded in it. One of the main differences between the models is in the treatment of runoff due to melting snow in the spring -- SSiB incorrectly puts all the snowmelt into runoff. While producing similar soil moisture simulations, the models produce very different surface latent and sensible heat fluxes, which

  2. Soil water effect on crop growth, leaf gas exchange, water and radiation use efficiency of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel in semi-arid Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Danilo Scordia

    2015-12-01

    Full Text Available Great effort has been placed to identify the most suited bioenergy crop under different environments and management practices, however, there is still need to find new genetic resources for constrained areas. For instance, South Mediterranean area is strongly affected by prolonged drought, high vapour pressure deficit (VPD and extremely high temperatures during summertime. In the present work we investigated the soil water effect on crop growth and leaf gas exchange of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel, a perennial, rhizomatous, herbaceous grass. Furthermore, the net increase of biomass production per unit light intercepted [radiation use efficiency (RUE] and per unit water transpired [water use efficiency (WUE] was also studied. To this end a field trial was carried out imposing three levels of soil water availability (I100, I50 and I0, corresponding to 100%, 50% and 0% of ETm restutition under a semi-arid Mediterranean environment. Leaf area index (LAI, stem height, biomass dry matter yield, CO2 assimilation rate, and transpiration rate resulted significantly affected by measurement time and irrigation treatment, with the highest values in I100 and the lowest in I0. RUE was the highest in I100 followed by I50 and I0; on the other hand, WUE was higher in I0 than I50 and I100. At LAI values greater than 2.0, 85% photosynthetically active radiation was intercepted by the Saccharum stand, irrespective of the irrigation treatment. Saccharum spontaneum spp. aegyptiacum is a potential species for biomass production in environment characterized by drought stress, high temperatures and high VPD, as those of Southern Europe and similar semi-arid areas.

  3. Global aspects of radiation memory

    International Nuclear Information System (INIS)

    Winicour, J

    2014-01-01

    Gravitational radiation has a memory effect represented by a net change in the relative positions of test particles. Both the linear and nonlinear sources proposed for this radiation memory are of the ‘electric’ type, or E mode, as characterized by the even parity of the polarization pattern. Although ‘magnetic’ type, or B mode, radiation memory is mathematically possible, no physically realistic source has been identified. There is an electromagnetic counterpart to radiation memory in which the velocity of charged test particles obtain a net ‘kick’. Again, the physically realistic sources of electromagnetic radiation memory that have been identified are of the electric type. In this paper, a global null cone description of the electromagnetic field is applied to establish the non-existence of B-mode radiation memory and the non-existence of E-mode radiation memory due to a bound charge distribution. (paper)

  4. Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data

    NARCIS (Netherlands)

    Verhoef, W.; Bach, H.

    2007-01-01

    Coupling radiative transfer models for the soil background and vegetation canopy layers is facilitated by means of the four-stream flux interaction concept and use of the adding method. Also the coupling to a state-of-the-art atmospheric radiative transfer model like MODTRAN4 can be established in

  5. Response of vegetable seed germination to solar radiation penetrating through soil

    International Nuclear Information System (INIS)

    Hamamoto, H.

    1999-01-01

    Response of vegetable seeds to irradiation and emergence of plants seeded at various depths were investigated to clarify the effects of solar radiation through soil on vegetable seed germination. Seeds of eight vegetable species were germinated in Petri dishes under 11-h irradiation per day. Seed germination was delayed in tomato (Licopersicon esculentum Mill.) but accelerated in perilla (Perilla ocymoides L.) and Japanese hornwort (Cryptotaenia japonica Hassk.) with increase in irradiation at the intensities higher than 0.4W m -2 . Seeds of Japanese radish (Raphanus sativus L.), watermelon (Citrullus lanatus Matsum.), and Chinese cabbage (Brassica campestris L.) showed delayed germination at more than 4-6W m -2 . No effect of irradiation on lettuce (Lactuca sativa L.) and carrot (Daucus carota L.) seed germination was seen. For tomato, Japanese radish and Japanese hornwort, the effects of irradiation time on germination were also investigated. Tomato seed germination was delayed and Japanese hornwort seed germination was accelerated with increase in irradiation time beyond 2h per day. The emergence of tomato and Japanese hornwort covered with Shimokuriyagawa loam soil (Kuriyagawa soil) and vermiculite at depths of less than 5mm, 5-10mm and 10-15mm was observed. Plants emerged more rapidly from 5-10mm depths than from less than 5mm depth in tomato. The plants seeded at 10-15mm depths emerged as rapidly as those at 5-10mm depths using vermiculite but later than those at other depths using Kuriyagawa soil, probably due to high bulk density. The early emergence of Japanese hornwort was fastest from less than 5mm depth. The plants seeded at 5-10mm depths did not emerge much slower than those at less than 5mm depth. A seeding depth of 5-10mm was suitable for the rapid emergence of those vegetables covered with both the soil and vermiculite. (author)

  6. Sandy soil plantation in semi-arid zones by polyacrylamide gel conditioner prepared by ionizing radiation. Part of a coordinated programme on radiation modified polymers for biomedical and biochemical applications

    International Nuclear Information System (INIS)

    Azzam, R.A.I.

    1983-07-01

    Polyacrylamide gel prepared by ionizing radiation was found to be capable of furnishing adequate conditions for sandy-soil plantation in semi-arid zones. The gel can be tailored for any soil texture under various climatic conditions. The sand-gel combination maintains three cycles of complete destruction and reformation without significant changes in erosion index. Water holding capacity and retention at different suctions in treated sand are increased. This increases water use efficiency. Fertilizers use efficiency is also increased to almost three times that of fertile clayey soil

  7. RadNet Map Interface for Near-Real-Time Radiation Monitoring Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet is a national network of monitoring stations that regularly collect air, precipitation, drinking water, and milk samples for analysis of radioactivity. The...

  8. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China.

    Science.gov (United States)

    Qiu, Qingyan; Wu, Jianping; Liang, Guohua; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2015-05-01

    Acid rain is an environmental problem of increasing concern in China. In this study, a laboratory leaching column experiment with acid forest soil was set up to investigate the responses of soil and soil solution chemistry to simulated acid rain (SAR). Five pH levels of SAR were set: 2.5, 3.0, 3.5, 4.0, and 4.5 (as a control, CK). The results showed that soil acidification would occur when the pH of SAR was ≤3.5. The concentrations of NO₃(-)and Ca(2+) in the soil increased significantly when the pH of SAR fell 3.5. The concentration of SO₄(2-) in the soil increased significantly when the pH of SAR was soil solution chemistry became increasingly apparent as the experiment proceeded (except for Na(+) and dissolved organic carbon (DOC)). The net exports of NO₃(-), SO₄(2-), Mg(2+), and Ca(2+) increased about 42-86% under pH 2.5 treatment as compared to CK. The Ca(2+) was sensitive to SAR, and the soil could release Ca(2+) through mineral weathering to mitigate soil acidification. The concentration of exchangeable Al(3+) in the soil increased with increasing the acidity of SAR. The releases of soluble Al and Fe were SAR pH dependent, and their net exports under pH 2.5 treatment were 19.6 and 5.5 times, respectively, higher than that under CK. The net export of DOC was reduced by 12-29% under SAR treatments as compared to CK. Our results indicate the chemical constituents in the soil are more sensitive to SAR than those in the soil solution, and the effects of SAR on soil solution chemistry depend not only on the intensity of SAR but also on the duration of SAR addition. The soil and soil solution chemistry in this region may not be affected by current precipitation (pH≈4.5) in short term, but the soil and soil leachate chemistry may change dramatically if the pH of precipitation were below 3.5 and 3.0, respectively.

  9. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The priming effect of glucose in soil sterilized by γ-radiation and reinoculated with Cellulomonas sp

    International Nuclear Information System (INIS)

    Kunc, F.

    1980-01-01

    The mineralization of native organic matter and U- 14 C-glucose was studied by measuring the formation of CO 2 and its radioactivity in chernozem soil samples presterilized by γ-radiation and inoculated with a washed suspension of Cellulomonas sp. cells. The introduced bacteria mineralized the soil organic component to a higher extent in variants enriched with glucose. This so-called priming effect of glucose was observed also in the presence of chloramphenicol inhibiting the growth of the bacteria. An increased mineralization of the native soil organic fraction was also detected in samples that were not enriched with glucose when the bacterial suspension was first disintegrated ultrasonically and the material then used for inoculation. The possible participation of phenomena of the type of cometabolism and activation of cell membrane transport mechanisms on the occurrence of the priming effect of glucose in the soil is discussed. (author)

  11. Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations.

    Science.gov (United States)

    Ambebe, Titus F; Dang, Qing-Lai

    2009-11-01

    White birch (Betula papyrifera Marsh.) seedlings were grown under two carbon dioxide concentrations (ambient: 360 micromol mol(-1) and elevated: 720 micromol mol(-1)), three soil temperatures (5, 15 and 25 degrees C initially, increased to 7, 17 and 27 degrees C, respectively, 1 month later) and three moisture regimes (low: 30-40%; intermediate: 45-55% and high: 60-70% field water capacity) in greenhouses. In situ gas exchange and chlorophyll fluorescence were measured after 2 months of treatments. Net photosynthetic rate (A(n)) of seedlings grown under the intermediate and high moisture regimes increased from low to intermediate T(soil) and then decreased to high T(soil). There were no significant differences between the low and high T(soil), with the exception that A(n) was significantly higher under high than low T(soil) at the high moisture regime. No significant T(soil) effect on A(n) was observed at the low moisture regime. The intermediate T(soil) increased stomatal conductance (g(s)) only at intermediate and high but not at low moisture regime, whereas there were no significant differences between the low and high T(soil) treatments. Furthermore, the difference in g(s) between the intermediate and high T(soil) at high moisture regime was not statistically significant. The low moisture regime significantly reduced the internal to ambient CO2 concentration ratio at all T(soil). There were no significant individual or interactive effects of treatment on maximum carboxylation rate of Rubisco, light-saturated electron transport rate, triose phosphate utilization or potential photochemical efficiency of photosystem II. The results of this study suggest that soil moisture condition should be taken into account when predicting the responses of white birch to soil warming.

  12. Radiative and convective properties of 316L Stainless Steel fabricated using the Laser Engineered Net Shaping process

    Science.gov (United States)

    Knopp, Jonathan

    Temperature evolution of metallic materials during the additive manufacturing process has direct influence in determining the materials microstructure and resultant characteristics. Through the power of Infrared (IR) thermography it is now possible to monitor thermal trends in a build structure, giving the power to adjust building parameters in real time. The IR camera views radiation in the IR wavelengths and determines temperature of an object by the amount of radiation emitted from the object in those wavelengths. Determining the amount of radiation emitted from the material, known as a materials emissivity, can be difficult in that emissivity is affected by both temperature and surface finish. It has been shown that the use of a micro-blackbody cavity can be used as an accurate reference temperature when the sample is held at thermal equilibrium. A micro-blackbody cavity was created in a sample of 316L Stainless Steel after being fabricated during using the Laser Engineered Net Shaping (LENS) process. Holding the sample at thermal equilibrium and using the micro-blackbody cavity as a reference and thermocouple as a second reference emissivity values were able to be obtained. IR thermography was also used to observe the manufacturing of these samples. When observing the IR thermography, patterns in the thermal history of the build were shown to be present as well as distinct cooling rates of the material. This information can be used to find true temperatures of 316L Stainless Steel during the LENS process for better control of desired material properties as well as future work in determining complete energy balance.

  13. Net nitrogen mineralization in natural ecosystems across the conterminous US

    Science.gov (United States)

    LeeAnna Y. Chapman; Steven G. McNulty; Ge Sun; Yang Zhang

    2013-01-01

    Nitrogen is the primary nutrient limiting ecosystem productivity over most of the US. Although soil nitrogen content is important, knowledge about its spatial extent at the continental scale is limited. The objective of this study was to estimate net nitrogen mineralization for the conterminous US (CONUS) using an empirical modeling approach by scaling up site level...

  14. Mapping soil erosion hotspots and assessing the potential impacts of land management practices in the highlands of Ethiopia

    Science.gov (United States)

    Tamene, Lulseged; Adimassu, Zenebe; Ellison, James; Yaekob, Tesfaye; Woldearegay, Kifle; Mekonnen, Kindu; Thorne, Peter; Le, Quang Bao

    2017-09-01

    An enormous effort is underway in Ethiopia to address soil erosion and restore overall land productivity. Modelling and participatory approaches can be used to delineate erosion hotspots, plan site- and context-specific interventions and assess their impacts. In this study, we employed a modelling interface developed based on the Revised Universal Soil Loss Equation adjusted by the sediment delivery ratio to map the spatial distribution of net soil loss and identify priority areas of intervention. Using the modelling interface, we also simulated the potential impacts of different soil and water conservation measures in reducing net soil loss. Model predictions showed that net soil loss in the study area ranges between 0.4 and 88 t ha- 1 yr- 1 with an average of 12 t ha- 1 yr- 1. The dominant soil erosion hotspots were associated with steep slopes, gullies, communal grazing and cultivated areas. The average soil loss observed in this study is higher than the tolerable soil loss rate estimated for the highland of Ethiopia. The scenario analysis results showed that targeting hotspot areas where soil loss exceeds 10 t ha- 1 yr- 1 could reduce net soil loss to the tolerable limit (interventions. Future work should include cost-benefit and tradeoff analyses of the various management options for achieving a given level of erosion reduction.

  15. Long-term soil warming and Carbon Cycle Feedbacks to the Climate System

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry M.

    2014-04-30

    The primary objective of the proposed research was to quantify and explain the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem. The research was done at an established soil warming experiment at the Harvard Forest in central Massachusetts – Barre Woods site established in 2001. In the field, a series of plant and soil measurements were made to quantify changes in C storage in the ecosystem and to provide insights into the possible relationships between C-storage changes and nitrogen (N) cycling changes in the warmed plots. Field measurements included: 1) annual woody increment; 2) litterfall; 3) carbon dioxide (CO2) efflux from the soil surface; 4) root biomass and respiration; 5) microbial biomass; and 6) net N mineralization and net nitrification rates. This research was designed to increase our understanding of how global warming will affect the capacity of temperate forest ecosystems to store C. The work explored how soil warming changes the interactions between the C and N cycles, and how these changes affect land-atmosphere feedbacks. This core research question framed the project – What are the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem? A second critical question was addressed in this research – What are the effects of a sustained in situ 5{degrees}C soil temperature increase on nitrogen (N) cycling in a northeastern deciduous forest ecosystem?

  16. MPL-net at ARM Sites

    Science.gov (United States)

    Spinhirne, J. D.; Welton, E. J.; Campbell, J. R.; Berkoff, T. A.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The NASA MPL-net project goal is consistent data products of the vertical distribution of clouds and aerosol from globally distributed lidar observation sites. The four ARM micro pulse lidars are a basis of the network to consist of over twelve sites. The science objective is ground truth for global satellite retrievals and accurate vertical distribution information in combination with surface radiation measurements for aerosol and cloud models. The project involves improvement in instruments and data processing and cooperation with ARM and other partners.

  17. Atmospheric impact of abandoned boreal organic agricultural soils depends on hydrological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maljanen, M.; Martikainen, P.J. [Univ. of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science], E-Mail: marja.maljanen@uef.fi; Hytonen, J. [Finnish Forest Research Inst., Kannus (Finland); Makiranta, P.; Minkkinen, K. [Helsinki Univ. (Finland). Dept. of Forest Sciences; Laine, J. [Finnish Forest Research Inst., Parkano (Finland)

    2013-09-01

    Drained agricultural peat soils are significant sources of carbon dioxide (CO{sub 2}) but also small sinks for methane (CH{sub 4}). Leaving these soils without any cultivation practice could be an option to mitigate GHG emissions. To test this hypothesis, we measured, over a three year period, net CO{sub 2} exchange and fluxes of CH{sub 4} for five agricultural peat soils that had been abandoned for 20-30 years. Annually, the sites were either small net sinks or sources of CO{sub 2} and CH{sub 4} (-7,8 to 530 g CO{sub 2}-Cm {sup -2} and -0,41 to 1,8 g CH{sub 4}m{sup -2}). Including N{sub 2}O emissions from our previous study, the net (CH{sub 4}+CO{sub 2}+N{sub 2}O) emissions as CO{sub 2} equivalents were lower than in cultivated peat soils and were lowest in the wet year. Therefore, high GHG emissions from these soils could be avoided if the water table is maintained close to the soil surface when photosynthesis is favoured over respiration. (orig.)

  18. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations

    Directory of Open Access Journals (Sweden)

    J. Kalisch

    2012-10-01

    Full Text Available The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system.

    An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand.

    Averaged over all cruise tracks, we obtain a total net (solar + thermal radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2.

    For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle.

    The ECHAM5 single column model provides a surface net cloud effect that is more

  19. Assessing Effect of Manure and Chemical Fertilizer on Net Primary Production, Soil Respiration and Carbon Budget in Winter Wheat (Triticum aestivum L. Ecosystem under Mashhad Climatic Condition

    Directory of Open Access Journals (Sweden)

    Y alizade

    2018-02-01

    Full Text Available Introduction The imbalance between anthropogenic emissions of CO2 and the sequestration of CO2 from the atmosphere by ecosystems has led to an increase in the average concentration of this greenhouse gas (GHG in the atmosphere. Enhancing carbon sequestration in soil is an important issue to reduce net flux of carbon dioxide to the atmosphere. Soil organic carbon content is obtained from the difference between carbon input resulting from plant biomass and carbon losses the soil through different ways including soil respiration. CO2 emission varies largely during the year and is considerably affected by management type. The goal of this investigation was to study the effects of application of manure and chemical fertilizer on CO2 flux and carbon balance in agricultural system. Materials and Methods In order to evaluate the carbon dynamics and effect of fertilizer and manure management on soil respiration and carbon budget for winter wheat, an experiment was conducted as a randomized complete block design with three replications in research field of Faculty of Agriculture of Ferdowsi University of Mashhad for two years of 2010-2011 and 2011-2012 . The experimental treatments were 150 and 250 kg chemical nitrogen (N1 and N2, manure (M, manure plus chemical nitrogen (F-M and control (C. CO2 emission was measured six times during growth season and to minimize daily temperature variation error, the measurement was performed between 8 to 11 am. Chambers length and diameter were 50 cm and 30 cm respectively and their edges were held down 3 cm in soil in time of sampling so that no plant live mass was present in the chamber. Carbon budgets were estimated for two years using an ecological technique. Results and Discussion The net primary production (NPP was significantly higher in the F2 and F-M treatments with 6467 and 6294kg ha-1 in the first year and 6260 and 6410 kg ha-1 in the second year, respectively. The highest shoot to root ratio was obtained in

  20. Horizontal ichthyoplankton tow-net system with unobstructed net opening

    Science.gov (United States)

    Nester, Robert T.

    1987-01-01

    The larval fish sampler described here consists of a modified bridle, frame, and net system with an obstruction-free net opening and is small enough for use on boats 10 m or less in length. The tow net features a square net frame attached to a 0.5-m-diameter cylinder-on-cone plankton net with a bridle designed to eliminate all obstructions forward of the net opening, significantly reducing currents and vibrations in the water directly preceding the net. This system was effective in collecting larvae representing more than 25 species of fish at sampling depths ranging from surface to 10 m and could easily be used at greater depths.

  1. Effect of Simulated Acid Rain on Potential Carbon and Nitrogen Mineralization in Forest Soils

    Institute of Scientific and Technical Information of China (English)

    OUYANG Xue-Jun; ZHOU Guo-Yi; HUANG Zhong-Liang; LIU Ju-Xiu; ZHANG De-Qiang; LI Jiong

    2008-01-01

    Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control of pH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments.For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg-1 dry soil, net production of available N from 17.37 to 48.95 mg kg-1 dry soil, and net production of NO-3-N from 9.09 to 46.23 mg kg-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission.SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P≤0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.

  2. Higher-moment measurements of net-kaon, net-charge and net-proton multiplicity distributions at STAR

    International Nuclear Information System (INIS)

    Sarkar, Amal

    2014-01-01

    In this paper, we report the measurements of the various moments, such as mean, standard deviation (σ), skewness (S) and kurtosis (κ) of the net-kaon, net-charge and net-proton multiplicity distributions at mid-rapidity in Au + Au collisions from √(s NN )=7.7 to 200 GeV with the STAR experiment at RHIC. This work has been done with the aim to locate the critical point on the QCD phase diagram. These moments and their products are related to the thermodynamic susceptibilities of conserved quantities such as net baryon number, net charge, and net strangeness as well as to the correlation length of the system which diverges in an ideal infinite thermodynamic system at the critical point. For a finite system, existing for a finite time, a non-monotonic behavior of these variables would indicate the presence of the critical point. Furthermore, we also present the moment products Sσ, κσ 2 of net-kaon, net-charge and net-proton multiplicity distributions as a function of collision centrality and energy. The energy and the centrality dependence of higher moments and their products have been compared with different models

  3. Winter Radiation Extinction and Reflection in a Boreal Pine Canopy: Measurements and Modelling

    Science.gov (United States)

    Pomeroy, J. W.; Dion, K.

    1996-12-01

    Predicting the rate of snowmelt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50̂, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at the

  4. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils.

    Science.gov (United States)

    Bonnett, S A F; Blackwell, M S A; Leah, R; Cook, V; O'Connor, M; Maltby, E

    2013-05-01

    Soils are predicted to exhibit significant feedback to global warming via the temperature response of greenhouse gas (GHG) production. However, the temperature response of hydromorphic wetland soils is complicated by confounding factors such as oxygen (O2 ), nitrate (NO3-) and soil carbon (C). We examined the effect of a temperature gradient (2-25 °C) on denitrification rates and net nitrous oxide (N2 O), methane (CH4 ) production and heterotrophic respiration in mineral (Eutric cambisol and Fluvisol) and organic (Histosol) soil types in a river marginal landscape of the Tamar catchment, Devon, UK, under non-flooded and flooded with enriched NO3- conditions. It was hypothesized that the temperature response is dependent on interactions with NO3--enriched flooding, and the physicochemical conditions of these soil types. Denitrification rate (mean, 746 ± 97.3 μg m(-2)  h(-1) ), net N2 O production (mean, 180 ± 26.6 μg m(-2)  h(-1) ) and net CH4 production (mean, 1065 ± 183 μg m(-2)  h(-1) ) were highest in the organic Histosol, with higher organic matter, ammonium and moisture, and lower NO3- concentrations. Heterotrophic respiration (mean, 127 ± 4.6 mg m(-2)  h(-1) ) was not significantly different between soil types and dominated total GHG (CO2 eq) production in all soil types. Generally, the temperature responses of denitrification rate and net N2 O production were exponential, whilst net CH4 production was unresponsive, possibly due to substrate limitation, and heterotrophic respiration was exponential but limited in summer at higher temperatures. Flooding with NO3- increased denitrification rate, net N2 O production and heterotrophic respiration, but a reduction in net CH4 production suggests inhibition of methanogenesis by NO3- or N2 O produced from denitrification. Implications for management and policy are that warming and flood events may promote microbial interactions in soil between distinct microbial communities and increase

  5. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  6. Physically-based modeling of topographic effects on spatial evapotranspiration and soil moisture patterns through radiation and wind

    Directory of Open Access Journals (Sweden)

    M. Liu

    2012-02-01

    Full Text Available In this paper, simulations with the Soil Water Atmosphere Plant (SWAP model are performed to quantify the spatial variability of both potential and actual evapotranspiration (ET, and soil moisture content (SMC caused by topography-induced spatial wind and radiation differences. To obtain the spatially distributed ET/SMC patterns, the field scale SWAP model is applied in a distributed way for both pointwise and catchment wide simulations. An adapted radiation model from r.sun and the physically-based meso-scale wind model METRAS PC are applied to obtain the spatial radiation and wind patterns respectively, which show significant spatial variation and correlation with aspect and elevation respectively. Such topographic dependences and spatial variations further propagate to ET/SMC. A strong spatial, seasonal-dependent, scale-relevant intra-catchment variability in daily/annual ET and less variability in SMC can be observed from the numerical experiments. The study concludes that topography has a significant effect on ET/SMC in the humid region where ET is a energy limited rather than water availability limited process. It affects the spatial runoff generation through spatial radiation and wind, therefore should be applied to inform hydrological model development. In addition, the methodology used in the study can serve as a general method for physically-based ET estimation for data sparse regions.

  7. Correlation between gamma radiation levels and soil radium concentrations at the Edgemont uranium mill site

    International Nuclear Information System (INIS)

    Wallace, R.G.; Reed, R.P.; Polehn, J.L.; Wilson, G.T.

    1985-01-01

    The Tennessee Valley Authority's uranium mill in Edgemont, South Dakota, is being decommissioned. Approximately 4 million tons of contaminated tailings, building equipment, and contaminated soil and debris on the mill site will be removed to the disposal site located approximately 3 kilometers to the southeast. To minimize recontamination of cleaned areas, tailings removal will progress from the northwest corner to the southeast corner of the mill site. As specific areas are cleaned, surveys will be conducted to determine if the concentrations of radium-226 in soil are within the limits outlined in 40 CFR, Part 192. Conformance with the criteria will be demonstrated by a gamma survey of the area employing the differential, or delta-measurement, technique. This technique involves fitting the detector with a base and a receptacle for a removable high-density filter. By making measurements with and without the filter in place, a gamma radiation level proportional to the radium-226 concentration in soil can be determined. This paper describes the results obtained in the development of the correlation between the gamma survey measurements and the soil radium concentrations

  8. Correlation between gamma radiation levels and soil radium concentrations at the Edgemont uranium mill site

    International Nuclear Information System (INIS)

    Wallace, R.G.; Reed, R.P.; Polehn, J.L.; Wilson, G.T.

    1986-01-01

    The Tennessee Valley Authority's uranium mill in Edgemont, South Dakota is being decommissioned. Approximately 4 million tons of contaminated tailings, building equipment, and contaminated soil and debris on the mill site will be removed to the disposal site located approximately 3 kilometers to the southeast. To minimize recontamination of cleaned areas, tailings removal will progress from the northwest corner to the southeast corner of the mill site. As specific areas are cleaned, surveys will be conducted to determine if the concentrations of radium-226 in soil are within the limits outlined in 40 CFR, Part 192. Conformance with the criteria will be demonstrated by a gamma survey of the area employing the differential, or delta-measurement, technique. This technique involves fitting the detector with a base and a receptacle for a removable high-density filter. By making measurements with and without the filter in place, a gamma radiation level proportional to the radium-226 concentration in soil can be determined. This paper describes the results obtained in the development of the correlation between the gamma survey measurements and the soil radium concentrations

  9. Variations in Vegetation Net Primary Production in the Qinghai-Xizang Plateau, China, from 1982 to 1999

    Energy Technology Data Exchange (ETDEWEB)

    Piao, S.; Fang, J.; He, J. [Department of Ecology, College of Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871 (China)

    2006-01-15

    Vegetation net primary production (NPP) derived from a carbon model (Carnegie-Ames-Stanford Approach, CASA) and its interannual change in the Qinghai-Xizang (Tibetan) Plateau were investigated in this study using 1982-1999 time series data sets of normalized difference vegetation index (NDVI) and paired ground-based information on vegetation, climate, soil, and solar radiation. The 18-year averaged annual NPP over the plateau was 125 g C m-2 yr-1, decreasing from the southeast to the northwest, consistent with precipitation and temperature patterns. Total annual NPP was estimated between 0.183 and 0.244 Pg C over the 18 years, with an average of 0.212 Pg C (1 Pg = 1015 g). Two distinct periods (1982-1990 and 1991-1999) of NPP variation were observed, separated by a sharp reduction during 1990-1991. From 1982 to 1990, annual NPP did not show a significant trend, while from 1991 to 1999 a marked increase of 0.007 Pg C yr-2 was observed. NPP trends for most vegetation types resembled that of the whole plateau. The largest annual NPP increase during 1991-1999 appeared in alpine meadows, accounting for 32.3% of the increment of the whole region. Changes in solar radiation and temperature significantly influenced NPP variation, suggesting that solar radiation may be one of the major factors associated with changes in NPP.

  10. A comparison of different neutron probes calibration method for the soil surface and their radiation effect on the users

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, A; Razzouk, A K; Al-Ain, F [Atomic Energy commission , Damascus (Syrian Arab Republic). Dept of Radiation Agriculture

    1996-08-01

    In situ calibration curves were installed for the soil surface using different models of depth neutron probes and different adaptors. depth beutron probe readings increased with increasing the number of teflon plastic blocks deposited on the soil surface. The intercept of the straight line regression analysis decreased with increasing of teflon plastics blocks deposited on the soil surface in all sites. The least exposure was with depth probe with surface reflectors. This study proves the possibility of measuring the moisture content of the soil surface by using a depth probe with a block laid on the surface, without a danger of receiving the thresgold of radiation dose. (author). 10 Refs., 2 Figs., 8 Tabs.

  11. Radioecology teaching: evaluation of the background radiation levels from areas with high concentrations of radionuclides in soil

    International Nuclear Information System (INIS)

    Anjos, R M; Okuno, E; Gomes, P R S; Veiga, R; Estellita, L; Mangia, L; Uzeda, D; Soares, T; Facure, A; Brage, J A P; Mosquera, B; Carvalho, C; Santos, A M A

    2004-01-01

    The study of environmental radioactivity is a topic which is not usually included in physics courses in Brazilian and Latin American universities. Consequently, high-school teachers are not able to show experimentally or discuss with their students the effects of exposure to terrestrial radiation. This paper presents a laboratory experiment in a teaching programme on the physics of ionizing radiation. It is based on the evaluation of the background radiation levels from areas with high concentrations of natural or artificial radionuclides in the soil. A brief analysis of the theory behind the technique and a description of some measurements, including their interpretations, are presented

  12. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  13. Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types

    Directory of Open Access Journals (Sweden)

    A. Bargsten

    2010-05-01

    Full Text Available Nitric oxide (NO plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification, that occurs in the uppermost centimeter of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany. We performed laboratory incubation and flushing experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate. Net potential NO fluxes (in terms of mass of N from soil samples taken under different understories ranged from 1.7–9.8 ng m−2 s−1 (soil sampled under grass and moss cover, 55.4–59.3 ng m−2 s−1 (soil sampled under spruce cover, and 43.7–114.6 ng m−2 s−1 (soil sampled under blueberry cover at optimum water content and a soil temperature of 10 °C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss covered soils, between 1.0 and 1.1 for grass covered soils, 1.1 and 1.2 for spruce covered soils, and 1.3 and 1.9 for blueberry covered soils. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level only for NH4+. Therefore, as an alternative explanation for the differences in soil biogenic NO emission we consider more biological factors like understory

  14. Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens.

    Science.gov (United States)

    Olff, H; Hoorens, B; de Goede, R G M; van der Putten, W H; Gleichman, J M

    2000-10-01

    We analyzed the dynamics of dominant plant species in a grazed grassland over 17 years, and investigated whether local shifts in these dominant species, leading to vegetation mosaics, could be attributed to interactions between plants and soil-borne pathogens. We found that Festuca rubra and Carex arenaria locally alternated in abundance, with different sites close together behaving out of phase, resulting in a shifting mosaic. The net effect of killing all soil biota on the growth of these two species was investigated in a greenhouse experiment using gamma radiation, controlling for possible effects of sterilization on soil chemistry. Both plant species showed a strong net positive response to soil sterilization, indicating that pathogens (e.g., nematodes, pathogenic fungi) outweighed the effect of mutualists (e.g., mycorrhizae). This positive growth response towards soil sterilization appeared not be due to effects of sterilization on soil chemistry. Growth of Carex was strongly reduced by soil-borne pathogens (86% reduction relative to its growth on sterilized soil) on soil from a site where this species decreased during the last decade (and Festuca increased), while it was reduced much less (50%) on soil from a nearby site where it increased in abundance during the last decade. Similarly, Festuca was reduced more (67%) on soil from the site where it decreased (and Carex increased) than on soil from the site where it increased (55%, the site where Carex decreased). Plant-feeding nematodes showed high small-scale variation in densities, and we related this variation to the observed growth reductions in both plant species. Carex growth on unsterilized soil was significantly more reduced at higher densities of plant-feeding nematodes, while the growth reduction in Festuca was independent of plant-feeding nematode densities. At high plant-feeding nematode densities, growth of Carex was reduced more than Festuca, while at low nematode densities the opposite was found

  15. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Directory of Open Access Journals (Sweden)

    Bing Mao

    Full Text Available Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  16. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Science.gov (United States)

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  17. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2.s(-1 and clipping (2.06 μmol.m(-2.s(-1 than under grazing (1.65 μmol.m-(2.s(-1 over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP. Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content and biotic (ANPP and BNPP factors regulate soil respiration in the semiarid temperate grassland of northern China.

  18. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Science.gov (United States)

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  19. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, Joy S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  20. Measurement and modelling of radiation transmission within a stand of maritime pine (Pinus pinaster Ait)

    International Nuclear Information System (INIS)

    Berbigier, P.; Bonnefond, J.M.

    1995-01-01

    A semi-empirical model of radiation penetration in a maritime pine canopy was developed so that mean solar (and net) radiation absorption by crowns and understorey could be estimated from above-canopy measurements only. Beam radiation Rb was assumed to penetrate the canopy according to Beer's law with an extinction coefficient of 0.32; this figure was found using non-linear regression techniques. For diffuse sky radiation, Beer's law was integrated over the sky vault assuming a SOC (standard overcast sky) luminance model; the upward and downward scattered radiative fluxes were obtained using the Kubelka-Munk equations and measurements of needle transmittance and reflectance. The penetration of net radiation within the canopy was also modelled. The model predicts the measured albedo of the stand very well. The estimation of solar radiation transmitted by the canopy was also satisfactory with the maximum difference between this and the mean output of mobile sensors at ground level being only 18 W m -2 . Due to the poor precision of net radiometers, the net radiation model could not be tested critically. However, as the modelled longwave radiation balance under the canopy is always between -10 and -20 Wm -2 , the below-canopy net radiation must be very close to the solar radiation balance. (author) [fr

  1. ESR dating of elephant teeth and radiation dose rate estimation in soil

    International Nuclear Information System (INIS)

    Taisoo Chong; Ohta, Hiroyuki; Nakashima, Yoshiyuki; Iida, Takao; Saisho, Hideo

    1989-01-01

    Chemical analysis of 238 U, 232 Th and 40 K in the dentine as well as enamel of elephant tooth fossil has been carried out in order to estimate the internal absorbed dose rate of the specimens, which was estimated to be (39±4) mrad/y on the assumption of early uptake model of radionuclides. The external radiation dose rate in the soil including the contribution from cosmic rays was also estimated to be (175±18) mrad/y with the help of γ-ray spectroscopic techniques of the soil samples in which the specimens were buried. The 60 Co γ-ray equivalent accumulated dose of (2±0.2) x 10 4 rad for the tooth enamel gave ''ESR age'' of (9±2) x 10 4 y, which falls in the geologically estimated range between 3 x 10 4 and 30 x 10 4 y before the present. (author)

  2. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    Science.gov (United States)

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise. © 2015 John Wiley & Sons Ltd.

  3. Net emission coefficient for CO–H2 thermal plasmas with the consideration of molecular systems

    International Nuclear Information System (INIS)

    Billoux, T.; Cressault, Y.; Gleizes, A.

    2015-01-01

    This paper deals with the calculation of net emission coefficients (NECs) for CO–H 2 thermal plasmas. This task required the elaboration of a complete spectroscopic database including atoms and molecules formed by carbon, oxygen and hydrogen elements. We have used a systematic line by line method to calculate all the main radiative contributions which are the atomic and molecular continua, the atomic lines and the molecular (diatomic and polyatomic) lines. The main diatomic electronic systems for CO–H 2 plasmas and the triatomic molecular bands were considered. We present some variations of the net emission coefficient versus temperature, for various pressures and for two relative proportions of the components. The role of the diatomic molecules is important at temperatures lower than 5000 K whereas the net emission coefficient presents an unusual peak at temperature around 1000 K, due to the presence of the CO 2 molecule presenting a strong infrared radiation. Finally, the results show that the NEC slightly depends on the relative proportion of CO and H 2 . - highlights: • We calculate radiative losses from CO–H 2 thermal plasmas. • We use the up-to-date atomic and molecular databases. • The influence of CO 2 molecule is very important at low temperature. • The relative maximum of the net emission coefficient at low temperature is unusual

  4. NET-2 Network Analysis Program

    International Nuclear Information System (INIS)

    Malmberg, A.F.

    1974-01-01

    The NET-2 Network Analysis Program is a general purpose digital computer program which solves the nonlinear time domain response and the linearized small signal frequency domain response of an arbitrary network of interconnected components. NET-2 is capable of handling a variety of components and has been applied to problems in several engineering fields, including electronic circuit design and analysis, missile flight simulation, control systems, heat flow, fluid flow, mechanical systems, structural dynamics, digital logic, communications network design, solid state device physics, fluidic systems, and nuclear vulnerability due to blast, thermal, gamma radiation, neutron damage, and EMP effects. Network components may be selected from a repertoire of built-in models or they may be constructed by the user through appropriate combinations of mathematical, empirical, and topological functions. Higher-level components may be defined by subnetworks composed of any combination of user-defined components and built-in models. The program provides a modeling capability to represent and intermix system components on many levels, e.g., from hole and electron spatial charge distributions in solid state devices through discrete and integrated electronic components to functional system blocks. NET-2 is capable of simultaneous computation in both the time and frequency domain, and has statistical and optimization capability. Network topology may be controlled as a function of the network solution. (U.S.)

  5. [Changes of soil nutrient contents after prescribed burning of forestland in Heshan City, Guangdong Province].

    Science.gov (United States)

    Sun, Yu-xin; Wu, Jian-ping; Zhou, Li-xia; Lin, Yong-biao; Fu, Sheng-lei

    2009-03-01

    A comparative study was conducted to analyze the changes of soil nutrient contents in Eucalyptus forestland and in shrubland after three years of prescribed burning. In Eucalyptus forestland, soil organic carbon, total nitrogen, available potassium contents and soil pH decreased significantly; soil available phosphorus and exchangeable magnesium contents, net nitrogen mineralization rate and ammonification rate also decreased but showed no significant difference. In shrubland, soil exchangeable calcium content increased significantly, but the contents of other nutrients had no significant change. The main reason of the lower soil net nitrogen mineralization rate in Eucalyptus forest could be the decrease of available substrates and the uptake of larger amount of soil nutrients by the fast growth of Eucalyptus. The soil nutrients in shrubland had a quick restoration rate after burning.

  6. Contribution of magnetic measurements onboard NetLander to Mars exploration

    DEFF Research Database (Denmark)

    Menvielle, M.; Musmann, G.; Kuhnke, F.

    2000-01-01

    between the environment of the planet and solar radiation, and a secondary source, the electric currents induced in the conductive planet. The continuous recording of the time variations of the magnetic field at the surface of Mars by means of three component magnetometers installed onboard Net...

  7. A dynamic simulation to study NET in-vessel handling operations

    International Nuclear Information System (INIS)

    Fung, P.T.F.

    1989-01-01

    The inspection, maintenance and repair of the Next European Torus (NET) fusion machine will require the extensive use of remote handling equipment to minimise the human exposure to the high radiation environment. The use of efficient manipulators will reduce the NET downtime by reducing the preparation time for entry into the controlled area and by performing the task with reasonable area and by performing the task with reasonable dexterity and speed, consistent with safety. A high fidelity simulation is a valuable tool to assist in the manipulator design, operations, trajectory planning, parameter optimisation and system verification. A manipulator simulation package called ASAD was originally developed by Spar for space manipulator applications. It is now being adapted to simulate the in-Vessel HandlingUnit for the NET program. This terestrial version of ASAD has been name ASAD - T. Spar, through the services of the Canadian Fusion Fuels Technology Project, is under contract to the NET program for the performance of this activity. This paper describes the capabillities and underlying assumptions of ASAD - T, aling with description of the simulation development of the NET in-vessel manipulator. (author). 4 refs.; 7 figs

  8. Winter radiation extinction and reflection in a boreal pine canopy: measurements and modelling

    International Nuclear Information System (INIS)

    Pomeroy, J.W.; Dion, K.

    1996-01-01

    Predicting the rate of snow melt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50°, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at

  9. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.

    Science.gov (United States)

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin

    2017-08-01

    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.

  10. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  11. Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

    Directory of Open Access Journals (Sweden)

    esmat mohammadi

    2017-09-01

    Full Text Available Evaluation of net primary productivity and carbon allocation to different organs of corn under nutrient management and tillage systems Introduction Agriculture operations produce 10 to 20 percent of greenhouse gases. As a result of conventional operations of agriculture, greenhouse gases have been increased (Osborne et al., 2010. Therefor it is necessary to notice to carbon sequestration to reduce greenhouse gases emissions. In photosynthesis process, plants absorb CO2 and large amounts of organic carbon accumulate in their organs. Biochar is produced of pyrolysis of organic compounds. Biochar is an appropriate compound for improved of soil properties and carbon sequestration (Whitman and Lehmann, 2009; Smith et al., 2010. Conservation tillage has become an important technology in sustainable agriculture due to its benefits. So the aim of this study was to evaluate the effect of nutrient management and tillage systems on net primary production and carbon allocation to different organs of corn in Shahrood. Material and methods This study was conducted at the Shahrood University of Technology research farm. Experiment was done as split plot in randomized complete block design with three replications. Tillage systems with two levels (conventional tillage and minimum tillage were as the main factor and nutrient management in seven levels including (control, chemical fertilizer, manure, biochar, chemical fertilizer + manure, chemical fertilizer + biochar, manure + biochar were considered as sub plot. At the time of maturity of corn, was sampled from its aboveground and belowground biomasses. Carbon content of shoot, seed and root was considered almost 45 percent of yield of each of these biomasses and carbon in root exudates almost 65 percent of carbon in the root. Statistical analysis of the data was performed using SAS program. Comparison of means was conducted with LSD test at the 5% level. Results and discussion Effect of nutrient management was

  12. Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Schuster, Tim; Stock, Reinhard; Mitrovski, Michael; Bleicher, Marcus

    2012-01-01

    We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand-canonical ensemble we explicitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central (b≤2.75 fm) Pb+Pb/Au+Au collisions from E lab =2A GeV to √(s NN )=200 GeV from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low √(s NN ). (orig.)

  13. Forms of newly retained phosphorus in mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1964-01-01

    Full Text Available The distribution of soluble phosphate in various fractions of soil phosphorus was studied by treating 1 g-samples of 180 mineral soils with 50 ml of a KH2PO4- solution containing P 5 mg/l for 24 hours, and carrying out the fractionation by the method of CHANG and JACKSON after the solution was removed and the moist samples had stood for 3 days at room temperature. The amount of retained phosphorus in the different fractions was computed by taking the difference between the treated and check samples. In the 70 samples of clay soils, the mean proportion of the retained phosphorus was 57 per cent of the 250 mg/kg applied, in the 62 samples of the sand and fine sand soils the corresponding part was 45 per cent, and in the 48 samples of loam and silt soils it was 44 per cent. The higher retention in the clay soils was mainly due to a higher retention in the alkali-soluble fraction. The net increase in the fluoride-soluble forms was of the same order in these three soil groups. On the average, more than 95 per cent of the sorbed phosphorus was found in the fluoride-soluble and alkali-soluble fractions. In one third of the samples a low net increase in the acid soluble fraction was detected, but this may be partly due to changes in the solubility of the native phosphorus in the treated samples. Owing to the fairly large variation, the tendency to somewhat higher mean values for the sorption in the subsoils compared with those of the topsoils was not statistically significant. The ratio between the sorbed amounts of fluoride-soluble and alkali soluble forms was higher in the sand and fine sand soils than in the clay soils. Only in 15 samples, most of them Litorina-soils, the net increase in the alkali-soluble forms was higher than in the fluoride-soluble fraction. Probably, because an equilibrium in the phosphorus conditions was not yet reached at the end of the treatment, the attempt failed to find any clear connection between the distribution of the

  14. The impact of soil amendments on greenhouse gas emissions: a comprehensive life cycle assessment approach

    Science.gov (United States)

    DeLonge, M. S.; Ryals, R.; Silver, W. L.

    2011-12-01

    Soil amendments, such as compost and manure, can be applied to grasslands to improve soil conditions and enhance aboveground net primary productivity. Applying such amendments can also lead to soil carbon (C) sequestration and, when materials are diverted from waste streams (e.g., landfills, manure lagoons), can offset greenhouse gas (GHG) emissions. However, amendment production and application is also associated with GHG emissions, and the net impact of these amendments remains unclear. To investigate the potential for soil amendments to reduce net GHG emissions, we developed a comprehensive, field-scale life cycle assessment (LCA) model. The LCA includes GHG (i.e., CO2, CH4, N2O) emissions of soil amendment production, application, and ecosystem response. Emissions avoided by diverting materials from landfills or manure management systems are also considered. We developed the model using field observations from grazed annual grassland in northern California (e.g., soil C; above- and belowground net primary productivity; C:N ratios; trace gas emissions from soils, manure piles, and composting), CENTURY model simulations (e.g., long-term soil C and trace gas emissions from soils under various land management strategies), and literature values (e.g., GHG emissions from transportation, inorganic fertilizer production, composting, and enteric fermentation). The LCA quantifies and contrasts the potential net GHG impacts of applying compost, manure, and commercial inorganic fertilizer to grazing lands. To estimate the LCA uncertainty, sensitivity tests were performed on the most widely ranging or highly uncertain parameters (e.g., compost materials, landfill emissions, manure management system emissions). Finally, our results are scaled-up to assess the feasibility and potential impacts of large-scale adoption of soil amendment application as a land-management strategy in California. Our base case results indicate that C sinks and emissions offsets associated with

  15. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    Science.gov (United States)

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    (as either rain or snow), snow accumulation, sublimation, snowmelt, infiltration into the root zone, evapotranspiration, drainage, water content change throughout the root-zone profile (represented as a 6-layered system), runoff (defined as excess rainfall and snowmelt) and surface water run-on (defined as runoff that is routed downstream), and net infiltration (simulated as drainage from the bottom root-zone layer). Potential evapotranspiration is simulated using an hourly solar radiation model to simulate daily net radiation, and daily evapotranspiration is simulated as an empirical function of root zone water content and potential evapotranspiration. The model uses daily climate records of precipitation and air temperature from a regionally distributed network of 132 climate stations and a spatially distributed representation of drainage basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The temporal distribution of daily, monthly, and annual net infiltration can be used to evaluate the potential effect of future climatic conditions on potential recharge. The INFILv3 model inputs representing drainage basin characteristics were developed using a geographic information system (GIS) to define a set of spatially distributed input parameters uniquely assigned to each grid cell of the INFILv3 model grid. The model grid, which was defined by a digital elevation model (DEM) of the Death Valley region, consists of 1,252,418 model grid cells with a uniform grid cell dimension of 278.5 meters in the north-south and east-west directions. The elevation values from the DEM were used with monthly regression models developed from the daily climate data to estimate the spatial distribution of daily precipitation and air temperature. The elevation values were also used to simulate atmosp

  16. Sensitivity of a soil-plant-atmosphere model to changes in air temperature, dew point temperature, and solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J. (Oak Ridge National Lab.,TN); Stolzy, J.L.; Holdeman, J.T.

    1981-01-01

    Air temperature, dew point temperature and solar radiation were independently varied in an hourly soil-plant-atmosphere model in a sensitivity analysis of these parameters. Results suggested that evapotranspiration in eastern Tennessee is limited more by meteorological conditions that determine the vapor-pressure gradient than by the necessary energy to vaporize water within foliage. Transpiration and soil water drainage were very sensitive to changes in air and dew point temperature and to solar radiation under low atmospheric vapor-pressure deficit conditions associated with reduced air temperature. Leaf water potential and stomatal conductance were reduced under conditions having high evapotranspiration. Representative air and dew point temperature input data for a particular application are necessary for satisfactory results, whereas irradiation may be less well characterized for applications with high atmospheric vapor-pressure deficit. The effects of a general rise in atmospheric temperature on forest water budgets are discussed.

  17. Natural Radioactivity in Surface Soil and Its Radiation Risk Implications in The Vicinity of Lynas Rare-Earth Plant at Gebeng, Kuantan

    International Nuclear Information System (INIS)

    Wo, Y.M.; Zal Uyun Wan Mahmood; Abdul Kadir Ishak; Mohd Abdul Wahab Yusof; Faizal Azrin Abdul Razalim

    2015-01-01

    Natural radionuclides (NORM) concentration (Bq/ kg) in surface soil at Lynas plant in Kuantan, Pahang were measured. To evaluate radiation hazard risk to human, radium equivalent activity (R aeq ), external hazard index (H ex ), representative level index(Iγr) and dose rate in air from the terrestrial natural gamma radiation (nGy/ h) were calculated. (author)

  18. Soil burden by radionuclides

    International Nuclear Information System (INIS)

    Blum, W.E.H.; Wenzel, W.W.

    1989-01-01

    Natural radioactivity - half-lifes and radiation type of man-made nuclides, radionuclide behaviour in soils, effects on soil condition and soil functions are described. The only mode of decontamination is by decay and thus primarily dependent on the half-life of nuclides

  19. Bayesian Methods for Radiation Detection and Dosimetry

    CERN Document Server

    Groer, Peter G

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed comp...

  20. Seasonal changes in the radiation balance of subarctic forest and tundra

    International Nuclear Information System (INIS)

    Lafleur, P.M.; Renzetti, A.V.; Bello, R.

    1993-01-01

    This paper examines the seasonal behavior of the components of the radiation budget of subarctic tundra and open forest near Churchill, Manitoba. Data were collected between late February and August 1990. The presence of the winter snowpack is the most important factor which affects the difference in radiation balances of tundra and forest. Overall, net radiation was about four to five times larger over the forest when snow covered the ground. Albedo differences were primarily responsible for this difference in net radiation; however, somewhat smaller net longwave losses were experienced at the tundra site. The step decrease in albedo from winter to summer (i.e. snow-covered to snow-free conditions) was significant at both sites. The forest albedo decreased by about three-fold while the tundra experienced a seven-fold decrease. Net radiation at both sites increased in direct response to the albedo change. Transmissivity of the atmosphere near Churchill also appeared to change at about the same time as the loss of the snow cover and may be related to changing air masses which bring about the final snow melt

  1. Benchmarking the inelastic neutron scattering soil carbon method

    Science.gov (United States)

    The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...

  2. Nitrogen, phosphor, and potassium nutrients uptake of soybean (Glycine max (L.) Merril) on three levels of radiation intensities and soil moisture content of latosol

    International Nuclear Information System (INIS)

    Syahbuddin, H.; Apriyana, Y.; Heryani, N.; Darmijati, S.; Las, I.

    1998-01-01

    An experiment was implemented from July to August 1994 in greenhouse of the Ecophysiology Division, Bogor Research Institute for Food Crops using a split-split plot design with three replications. Radiation intensity levels as main plot were: without shelter, 25 percent shelter, and 67 percent shelter. Levels of available water in soil as sub-plot were: less than 25 percent soil water availability, content of soil water availability, and 125 percent soil water availability. Soybean varieties as sub-sub plots were: Wilis, Malabar, and Lokon. The experiment showed that nitrogen and phosphor uptake of Wilis was the highest, 41.228 mg and 1.225 mg per hill, especially under 100 percent light intensity and soil water availability more than 25 percent. Under 25 percent shade the potassium uptake of Wilis was 45.997 mg, this was higher than Malabar. The highest increased in seed dry weight, up to 0.733 g, occurred if soil water content changed from available water to 125 percent water content. One calory decreased in radiation caused 0.006 g decreased in seed dry weight per hill, Malabar variety produced an average of 0.892 g seed dry weight, where each millimeter of water will increased 2.0 mg of dry seed weight. Malabar variety had water use efficiency of 0.043 percent g/ml and radiation use efficiency 0.011 percent g/cal. Malabar variety produced the heaviest 100 good seed (7.293 g), followed by Wilis variety (5.520 g) and Lokon variety (4.597 g) [in

  3. Tillage and Fertilizer Management Effects on Soil-Atmospheric Exchanges of Methane and Nitrous Oxide in a Corn Production System

    Directory of Open Access Journals (Sweden)

    Ermson Z. Nyakatawa

    2011-01-01

    Full Text Available Land application of poultry litter (PL presents an opportunity to improve soil productivity and disposal of poultry waste. We investigated methane (CH4 and nitrous oxide (N2O emissions from agricultural soil receiving PL and ammonium nitrate (AN fertilizers using surface (SA, soil incorporation (SI, and subsurface band (BA application methods in conventional (CT and no-tillage (NT systems on a Decatur silt loam soil in North Alabama. Plots under CT and NT were sinks of CH4 in spring, summer, and fall. In winter, the plots had net emissions of 3.32 and 4.24 g CH4 ha-1 day-1 in CT and NT systems, respectively. Plots which received AN were net emitters of CH4 and N2O, whereas plots which received PL were net sinks of CH4. Plots which received PL using SA or SI methods were net emitters of N2O, whereas under PL using BA application, the plots were net sinks of N2O. Our study indicates that using subsurface band application of PL was the most promising environmentally sustainable poultry waste application method for reducing CH4 and N2O emissions from agricultural soil in NT and CT corn production systems on the Decatur soil in north Alabama.

  4. Field soil-water properties measured through radiation techniques

    International Nuclear Information System (INIS)

    1984-07-01

    This report shows a major effort to make soil physics applicable to the behaviour of the field soils and presents a rich and diverse set of data which are essential for the development of effective soil-water management practices that improve and conserve the quality and quantity of agricultural lands. This piece of research has shown that the neutron moisture meter together with some complementary instruments like tensiometers, can be used not only to measure soil water contents but also be extremely handy to measure soil hydraulic characteristics and soil water flow. It is, however, recognized that hydraulic conductivity is highly sensitive to small changes in soil water content and texture, being extremely variable spatially and temporally

  5. UV sensitivity of planktonic net community production in ocean surface waters

    OpenAIRE

    Regaudie de Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-01-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we tes...

  6. Microbial and environmental controls of methane fluxes along a soil moisture gradient in a Pacific coastal temperate rainforest

    DEFF Research Database (Denmark)

    Christiansen, Jesper Riis; Levy-Booth, David; Prescott, Cindy E.

    2016-01-01

    , and nutrient availability in three typical forest types across a soil moisture gradient. CH4 displayed a spatial variability changing from a net uptake in the upland soils (3.9–46 µmol CH4 m−2 h−1) to a net emission in the wetter soils (0–90 μmol CH4 m−2 h−1). Seasonal variations of CH4 fluxes were related......Most studies of greenhouse gas fluxes from forest soils in the coastal rainforest have considered carbon dioxide (CO2), whereas methane (CH4) has not received the same attention. Soil hydrology is a key driver of CH4 dynamics in ecosystems, but the impact on the function and distribution...... of the underlying microbial communities involved in CH4 cycling and the resultant net CH4 exchange is not well understood at this scale. We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs (CH4 oxidizers) and methanogens (CH4 producers), soil hydrology...

  7. Aboveground vertebrate and invertebrate herbivore impacts on net N mineralization in subalpine grasslands

    Science.gov (United States)

    Anita C. Risch; Martin Schutz; Martijn L. Vandegehuchte; Wim H. van der Putten; Henk Duyts; Ursina Raschein; Dariusz J. Gwiazdowicz; Matt D. Busse; Deborah S. Page-Dumroese; Stephan Zimmerman

    2015-01-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate...

  8. Petri Nets

    Indian Academy of Sciences (India)

    In a computer system, for example, typical discrete events ... This project brought out a series of influential reports on Petri net theory in the mid and late ... Technology became a leading centre for Petri net research and from then on, Petri nets ...

  9. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  10. Payback time for soil carbon and sugar-cane ethanol

    Science.gov (United States)

    Mello, Francisco F. C.; Cerri, Carlos E. P.; Davies, Christian A.; Holbrook, N. Michele; Paustian, Keith; Maia, Stoécio M. F.; Galdos, Marcelo V.; Bernoux, Martial; Cerri, Carlos C.

    2014-07-01

    The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO2 savings attributed to bioenergy crops. There have been few direct field measurements that quantify the effects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world's largest producer . We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1 m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.

  11. Assessment of gamma radiation levels and natural radioactivity in soils along a subtropical river basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Dekun; Yu, Tao [Third Institute of Oceanography, Xiamen (China). Lab. of Marine Isotopic Technology and Environmental Risk Assessment

    2017-07-01

    The activities of natural radionuclides in the environment can be used to assess radiological effects. Monitoring the radiation level in soils is important for public health. It also has important geochemical implications as most of the sediment eroded from river basins is from soil. Therefore, we carried out a soil sampling campaign along a subtropical river basin in southeastern China (Jiulong River). Surface and depth profile soils were collected, and the natural radionuclide activities were measured. The activities of the natural radionuclides {sup 238}U, {sup 232}Th, and {sup 40}K in the surface soils varied from 31.6 to 132.1 Bq kg-dry{sup -1}, 37.8 to 174.0 Bq kg-dry{sup -1}, and 52.3 to 596.2 Bq kg-dry{sup -1}, with average values of 56.7±30.3 Bq kg-dry{sup -1}, 86.7±41.3 Bq kg-dry{sup -1}, and 352.8±190.6 Bq kg-dry{sup -1}, respectively. The absorbed gamma dose in air and the annual effective dose equivalent (AEDE) in surface soils along the river basin were both higher than the world average. In the depth profiles, excess {sup 210}Pb ({sup 210}Pbex) decreased with depth and significant correlation between {sup 210}Pbex and TOC was observed, suggesting that they are affected by similar processes (leaching and sorption).

  12. Aspects of the quality of data from the Southern Great Plains (SGP) cloud and radiation testbed (CART) site broadband radiation sensors

    Energy Technology Data Exchange (ETDEWEB)

    Splitt, M.E. [Univ. of Oklahoma, Norman, OK (United States); Wesely, M.L. [Argonne National Lab., IL (United States)

    1996-04-01

    A systmatic evaluation of the performance of broadband radiometers at the Radiation Testbed (CART) site is needed to estimate the uncertainties of the irradiance observations. Here, net radiation observed with the net radiometer in the enrgy balance Bowen ratio station at the Central facility is compared with the net radiation computed as the sum of component irradiances recorded by nearby pyranameters and pyrgeometers. In addition, data obtained from the central facility pyranometers, pyrgeometers, and pyrheliometers are examined for April 1994, when intensive operations periods were being carried out. The data used in this study are from central facility radiometers in a solar and infrared observation station, and EBBR station, the so-called `BSRN` set of upward pointing radiometers, and a set of radiometers pointed down at the 25-m level of a 60-m tower.

  13. Preliminary results on soil-emitted gamma radiation and its relation with the local atmospheric electric field at Amieira (Portugal)

    International Nuclear Information System (INIS)

    Lopes, F; Barbosa, S M; Silva, H G; Bárias, S

    2015-01-01

    The atmospheric electric field near the Earth's surface is dominated by atmospheric pollutants and natural radioactivity, with the latter directly linked to radon ( 222 Rn) gas. For a better comprehension on the temporal variability of both the atmospheric electric field and the radon concentration and its relation with local atmospheric variables, simultaneous measurements of soil-emitted gamma radiation and potential gradient (defined from the vertical component of the atmospheric electric field) were taken every minute, along with local meteorological parameters (e.g., temperature, atmospheric pressure, relative humidity and daily solar radiation). The study region is Amieira, part of the Alqueva lake in Alentejo Portugal, where an interdisciplinary meteorological campaign, ALEX2014, took place from June to August 2014. Soil gamma radiation is more sensitive to small concentrations of radon as compared with alpha particles measurements, for that reason it is more suited for sites with low radon levels, as expected in this case. Preliminary results are presented here: statistical and spectral analysis show that i) the potential gradient has a stronger daily cycle as compared with the gamma radiation, ii) most of the energy of the gamma signal is concentrated in the low frequencies (close to 0), contrary to the potential gradient that has most of the energy in frequency 1 (daily cycle) and iii) a short-term relation between gamma radiation and the potential gradient has not been found. Future work and plans are also discussed. (paper)

  14. Diurnal changes of net photosynthetic rate (NPR) in leaves of Lonicera japonica Thunb. and the responding mathematical model of NPR to photosynthetic valid radiation

    International Nuclear Information System (INIS)

    Wu Dafu; Zhang Shengli; Li Dongfang

    2009-01-01

    [Objective] The study provided theoretical basis for production practice . [Method] With Lonicera japonica Thunb .as material, diurnal changes of net photosynthetic rate (NPR) in leaves of the plant and the responding mathematical model of NPR to photosynthetic valid radiation were studied using portable photosynthetic determinator system. [Result] Like most of C3 plants, the diurnal changes curve of NPR of Lonicera japonica Thunb .showed double peaks, but there were time difference in reaching the peak value between the study and previous ones . The responding mathematical model of NPR to photosynthetic valid radiation could be described by three mathematic functions, such as logarithm, linearity and binomial, but binomial function was more precise than the others. Light saturation point of Lonicera japonica Thunb. was figured out by binomial equation deduced in the study , and light saturation point was 1 086 .3 μmol/ (m2•s) . [Conclusion] The diurnal changes curve of NPR of Lonicera japonica Thunb .showed double peaks, and the responding mathematical model of NPR to photosynthetic valid radiation could be described by binomial functions

  15. A review of experimental soil-structure interaction damping

    International Nuclear Information System (INIS)

    Tsai, N.C.

    1981-01-01

    In soil-structure interaction analysis, the foundation soil is usually represented by impedance springs and dampers. The impedance damping includes the effect of both the material damping and the radiation damping. Because the impedance theory normally assumes a rigid structural base and an elastic bond between the soil and structure, it is generally held that the radiation damping has been overestimated by the theory. There are some published information on the dynamic tests of footings and structures that allow direct or indirect assessments of the validity of the analytical radiation damping. An overview of such information is presented here. Based on these limited test data, it is concluded that for horizontal soil-structure interaction analysis the analytical radiation damping alone is sufficient to represent the combined material and radiation damping in the field. On the other hand, for vertical analysis it appears that the theory may have overestimated the radiation damping and certain reduction is recommended. (orig.)

  16. Bayesian approach in MN low dose of radiation counting

    International Nuclear Information System (INIS)

    Serna Berna, A.; Alcaraz, M.; Acevedo, C.; Navarro, J. L.; Alcanzar, M. D.; Canteras, M.

    2006-01-01

    The Micronucleus assay in lymphocytes is a well established technique for the assessment of genetic damage induced by ionizing radiation. Due to the presence of a natural background of MN the net MN is obtained by subtracting this value to the gross value. When very low doses of radiation are given the induced MN is close even lower than the predetermined background value. Furthermore, the damage distribution induced by the radiation follows a Poisson probability distribution. These two facts pose a difficult task to obtain the net counting rate in the exposed situations. It is possible to overcome this problem using a bayesian approach, in which the selection of a priori distributions for the background and net counting rate plays an important role. In the present work we make a detailed analysed using bayesian theory to infer the net counting rate in two different situations: a) when the background is known for an individual sample, using exact value value for the background and Jeffreys prior for the net counting rate, and b) when the background is not known and we make use of a population background distribution as background prior function and constant prior for the net counting rate. (Author)

  17. Off-Site Radiation Exposure Review Project: Phase 2 soils program

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, R.D.; Miller, F.L. Jr.

    1989-12-01

    To help estimate population doses of radiation from fallout originating at the Nevada Test Site, soil samples were collected throughout the western United States. Each sample was prepared by drying and ball-milling, then analyzed by gamma-spectrometry to determine the amount of {sup 137}Cs it contained. Most samples were also analyzed by chemical separation and alpha-spectrometry to determine {sup 239 + 240}Pu and by isotope mass spectroscopy to determine the ratios of {sup 240}Pu to {sup 239}Pu and {sup 241}Pu to {sup 239}Pu. The total inventories of cesium and plutonium at 171 sites were computed from the results. This report describes the sample collection, processing, and analysis, presents the analytical results, and assesses the quality of the data. 10 refs., 9 figs., 12 tabs.

  18. Ecological Role of Soils upon Radioactive Contamination

    Science.gov (United States)

    Tsvetnov, Evgeny; Shcheglov, Alexei; Tsvenova, Olga

    2016-04-01

    The ecological role of soils upon radioactive contamination is clearly manifested in the system of notions about ecosystems services, i.e., benefits gained by humans from ecosystems and their components, including soils (Millennium Ecosystem Assessment, 2005). For the soils, these services are considered on the basis of soil functions in the biosphere that belong to the protective ecosystem functions within the group of soil functions known under the names of "Buffer and protective biogeocenotic shield" (at the level of particular biogeocenoses) and "Protective shield of the biosphere" (at the global biospheric level) (according to Dobrovol'skii & Nikitin, 2005). With respect to radionuclides, this group includes (1) the depositing function, i.e., the accumulation and long-term sequestration of radioactive substances by the soil after atmospheric fallout; (2) the geochemical function, i.e., the regulation of horizontal and vertical fluxes of radionuclides in the system of geochemically conjugated landscapes and in the soil-groundwater and soil-plant systems; and (3) the dose-forming function that is manifested by the shielding capacity of the soil with respect to the external ionizing radiation (lowering of the dose from external radiation) and by the regulation of the migration of radionuclides in the trophic chain (lowering of the dose from internal radiation). The depositing and geochemical functions of the soils are interrelated, which is seen from quantitative estimates of the dynamics of the fluxes of radionuclides in the considered systems (soil-plant, soil-groundwater, etc.). The downward migration of radionuclides into the lower soil layers proceeds very slowly: for decades, more than 90% of the pool of radionuclides is stored in the topmost 10 cm of the soil profile. In the first 3-5 years after the fallout, the downward migration of radionuclides with infiltrating water flows decreases from several percent to decimals and hundredths of percent from the

  19. In situ net N mineralisation and nitrification under organic and conventionally managed olive oil orchards

    DEFF Research Database (Denmark)

    Gomez Muñoz, Beatriz; Hinojosa, M. B.; García-Ruiz, R.

    2015-01-01

    Olive oil orchard occupies a great percentage of the cropland in southern Spain. Thus, changes in nitrogen (N) fertilization might have a great effect on N dynamics at least at regional scale, which should be investigated for a sustainable N fertilization program. In situ net N mineralization (NM......) and nitrification (NN) were investigated during a year in comparable organic (OR) and conventional (CV) olive oil orchards of two locations differing their N input. Soil samples were collected in two soil positions (under and between trees canopy) and both buried-bags and soil core techniques were used to quantify...... soil TN. Soil TN and PMN explained together a 50 % of the variability in soil N availability, which suggests that these two variables are good predictors of the potential of a soil to provide available N. The highest rates of soil N availability were found in spring, when olive tree demand for N...

  20. The equivalency between logic Petri workflow nets and workflow nets.

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  1. The Equivalency between Logic Petri Workflow Nets and Workflow Nets

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented. PMID:25821845

  2. Radiation budget in green beans crop with and without polyethylene cover

    International Nuclear Information System (INIS)

    Souza, J.L. de; Escobedo, J.F.

    1997-01-01

    The radiation budget in agricultural crops is very important on the microclimate characterization, on the water losses determination and on dry matter accumulation of vegetation. This work describes the radiation budget determination in a green beans crop (Phaseolus vulgaris L.), in Botucatu, SP, Brazil (22° 54′S; 48° 27′W; 850 m), under two different conditions: the normal field culture and in a polyethylene greenhouse. The densities of fluxes of radiation were used to construct diurnal curves of the components of global radiation (Rg), reflected radiation (Rr), net radiation (Rn).The arithmetic's relations allowed to obtain the components net short-waves (Rc) and net long-waves (Rl). The analysis of these components related to the leaf area index (LAI) in many phenological phases of the culture showed Rg distributed in 68%, 85%, 17% and 66%, 76%, 10% to Rn, Rc and Rl in the internal and external ambients in a polyethylene greenhouse, respectively [pt

  3. Download this PDF file

    African Journals Online (AJOL)

    komla

    Soil Heat Flux - Net Radiation Relations for some Surfaces. V. C. K. Kakane ... radiation is dissipated in four different ways: balance to infer properties of vegetation re-radiation to ... has greater thermal conductivity and, hence,. At Dawhenya ...

  4. DeviceNet-based device-level control in SSRF

    CERN Document Server

    Leng Yong Bin; Lu Cheng Meng; Miao Hai Feng; Liu Song Qiang; Shen Guo Bao

    2002-01-01

    The control system of Shanghai Synchrotron Radiation Facility is an EPICS-based distributed system. One of the key techniques to construct the system is the device-level control. The author describes the design and implementation of the DeviceNet-based device controller. A prototype of the device controller was tested in the experiments of magnet power supply and the result showed a precision of 3 x 10 sup - sup 5

  5. Soil-air exchange of organochlorine pesticides in the Southern United States

    International Nuclear Information System (INIS)

    Bidleman, Terry F.; Leone, Andi D.

    2004-01-01

    Soil samples were collected from 30 farms in Alabama, Louisiana and Texas during 1999-2000 to determine residues of organochlorine pesticides (OCPs). One or more of the DDT compounds (p,p'-DDT, o,p'-DDT, p,p'-DDD, p,p'-DDE, o,p'-DDE) was above the quantitation limit (0.1 ng g -1 dry weight) in every soil, and toxaphene was above the quantitation limit (3 ng g -1 ) in 26 soils. Chlordanes, dieldrin and hexachlorocyclohexane (HCH) isomers occurred less frequently (quantitation limits 0.1 ng g -1 for dieldrin and 0.05 ng g -1 for chlordanes and HCHs). OCPs were measured in air at 40 cm above the soil at selected farms to investigate soil-air partitioning. Concentrations of OCPs in air were positively and significantly (P s and f a ) for samples with quantifiable residues in both compartments. The fugacity fraction ((f s )/(f s +f a ))=0.5 at equilibrium and is 0.5 for net deposition and net volatilisation, respectively. Fugacity fractions varied greatly for different soil-air pairs, reflecting generally disequilibrium conditions. Mean fugacity fractions indicated near-equilibrium for some OCPs (p,p'-DDE, chlordanes, trans-nonachlor and dieldrin) and net volatilisation for others (p,p'-DDT, o,p'-DDT, toxaphene, γ-HCH). Chiral analysis showed that enantioselective degradation of (+) or (-) o,p'-DDT in soil was accompanied by enrichment or depletion of the corresponding enantiomers in the overlying air, although there appeared to be some dilution by racemic o,p'-DDT from regional air transport. - Old pesticide residues in agricultural soils continue to be emitted into the atmosphere

  6. Photogrammetric techniques for across-scale soil erosion assessment

    OpenAIRE

    Eltner, Anette

    2016-01-01

    Soil erosion is a complex geomorphological process with varying influences of different impacts at different spatio-temporal scales. To date, measurement of soil erosion is predominantly realisable at specific scales, thereby detecting separate processes, e.g. interrill erosion contrary to rill erosion. It is difficult to survey soil surface changes at larger areal coverage such as field scale with high spatial resolution. Either net changes at the system outlet or remaining traces after the ...

  7. Passive Gamma-Ray Emission for Soil-Disturbance Detection

    Science.gov (United States)

    2016-08-01

    technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. ERDC/CRREL TR-16-10 August 2016...area should be relatively constant if landform and provenance are known and con- trolled . As the soil dries out, the gamma-ray spectra should change...attenuation-pathway con- trolled (Figure 3). The attenuation is a function of the mass attenuation coefficients of the soil constituents (i.e., soil, water

  8. Levels of concern for radioactive contaminations in soil according to soil protection standards; Besorgniswerte fuer Radionuklide in Boeden nach bodenschutzrechtlichen Massstaeben

    Energy Technology Data Exchange (ETDEWEB)

    Gellermann, R. [Nuclear Control and Consulting GmbH, Braunschweig (Germany); Barkowski, D.; Machtolf, M. [IFUA-Projekt-GmbH Bielefeld (Germany)

    2016-07-01

    In the paper the question is examined whether the established soil protection standards for carcinogenic substances are also applicable to the assessment of radioactive soil contamination. Referring to the methods applied in soil protection for evaluation of dose-effectrelations and estimations of carcinogenic risks as well as the calculation methods for test values in soil protection ''levels of concern'' for soil contamination by artificial radionuclides are derived. The values obtained are significantly larger than the values for unrestricted clearance of ground according to the German Radiation Protection Ordinance (StrlSchV). The thesis that soil is protected according to environmental standards provided that radiation protection requirements are met needs further checks but can be probably confirmed if the radiation protection requirements are clearly defined.

  9. Assessment of natural radioactivity and associated radiation indices in soil samples from the high background radiation area, Kanyakumari district, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    A K Ajithra

    2017-01-01

    Full Text Available Assessment of natural radioactivity is very important from different points of view, especially for assessment of radiation exposure to human. In the present study, natural radionuclide concentrations of 238U, 232Th, and 40K were measured by gamma spectrometry using HPGe detector in soil samples collected from Southwest coast of Kanyakumari district, Tamil Nadu. The radiological index parameters due to natural radionuclides such as radium equivalent activity, absorbed dose rate, annual effective dose rate, external hazard index, internal hazard index, and gamma index were calculated for the soil samples. All the calculated radiological index values are higher than world average values and the recommended safety limits. Multivariate statistical techniques such as Pearson correlation, principal component analysis, and cluster analysis were applied to know the relation between radionuclides and radiological parameters and to study the spatial distribution of radionuclides.

  10. Plant functional traits and soil carbon sequestration in contrasting biomes.

    NARCIS (Netherlands)

    De Deyn, G.B.; Cornelissen, J.H.C.; Bardgett, R.D.

    2008-01-01

    Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its

  11. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, Ari-Matti; Aleksashkin, Sergei; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Haukka, Harri

    2015-04-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Scientific Payload The payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: 1. MetBaro Pressure device 2. MetHumi Humidity device 3. MetTemp Temperature sensors Optical devices: 1. PanCam Panoramic 2. MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer 3. DS Dust sensor The descent processes dynamic properties are monitored by a special 3-axis accelerometer combined with a 3-axis gyrometer. The data will be sent via auxiliary beacon antenna throughout the

  12. Construction of a forensic soil database of the Hokkaido region in Japan by synchrotron radiation X-ray analysis

    International Nuclear Information System (INIS)

    Shirota, Yusuke; Hirao, Masataka; Abe, Yoshinari; Nakai, Izumi; Osaka, Keiichi; Itou, Masayoshi

    2017-01-01

    The purpose of the present study is to construct a nation-wide forensic soil database, which allows for the identification of soil evidence based on heavy element and heavy mineral signatures determined by two synchrotron radiation (SR) X-ray techniques, i.e., a high-energy synchrotron radiation X-ray fluorescence analysis and a synchrotron-radiation X-ray powder diffraction analysis, respectively. The heavy element and heavy mineral compositions of the stream sediments collected at 3024 points located all over Japan were measured by the two SR X-ray techniques. The present paper focuses on a regional characterization of the sediments collected from the Hokkaido areas. The concentrations of heavy elements and heavy minerals in the Hokkaido areas were visualized as maps that enable us to compare the heavy element and heavy mineral compositions with the geological context of the samples. Based on a hierarchical cluster analysis using the semi-quantitative compositions of the heavy minerals, we could successfully classify the sediments into six groups corresponding to their background geologies. A Bonferroni multiple comparison demonstrated that these six groups also have significant differences in the heavy element composition. From these examinations, we could demonstrate that detailed regional identification of unknown samples is possible by analyzing both heavy element and heavy mineral compositions of each sample. (author)

  13. An assessment of the natural radioactivity distribution and radiation hazard in soil samples from Qatar using high-resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Al-Sulaiti, Huda; Al Mugren, K.S.; Bradley, D.A.; Regan, P.H.; Santawamaitre, T.; Malain, D.; Habib, A.; Nasir, Tabassum; Alkhomashi, N.; Al-Dahan, N.; Al-Dosari, M.; Bukhari, S.

    2017-01-01

    We establish baseline measurements for radioactivity concentration in the soil samples collected from the Qatarian peninsula. The work focused on the naturally occurring and technically enhanced levels of radiation associated with 235,8 U and 232 Th natural decay chains and the long-lived naturally occurring radionuclide 40 K in 129 soil samples collected across the landscape of the State of Qatar. Three radiological distribution maps showing the activity concentrations of 226 Ra, 232 Th and 40 K were constructed. Two soil samples were found to be elevated to the favour of 226 Ra concentration and significantly above the average and global values. Notably, these samples were collected from an area within an oil field (NW Dukhan). The mean values of activity concentrations of 226 Ra, 232 Th and 40 K for the full cohort of samples were found to be 17.2±1.6, 6.38±0.26 and 169±5 Bq/kg, respectively. These values lie within the expected range relative to the world average values in soil samples of 30, 35 and 400 Bq/kg, respectively. - Highlights: • This study aimed to establish a baseline for soil radioactivity in Qatar. • The work focused on measurement of NORM levels in 129 samples using HPGe detector. • The mean values lie within the range relative to the world average values. • The Ac of Dukhan soil samples were elevated. • The mean of D, Ra eq , H ex and AEDE had all normal levels of radiation.

  14. Effect of gamma radiation on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa; Efecto de la radiacion gamma sobre la fotosintesis neta y la respiracion de Chlorella pyrenoidosa

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C; Fernandez, J

    1983-07-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first b chlorophyll affected to a greater extent than a chlorophyll. Net photosynthesis and respiration decline throughout the time of the observation after irradiation, this depressing effect being much more remarkable for the first one. Met photosynthesis inhibition levels of about 30% are got only five hours post irradiation at a dose of 5000 Gy. Radio estimation by low doses, although obtained in some cases for tho 10 Gy dose, has not been statistically confirmed. (Author) 23 refs.

  15. Global Soil Moisture Estimation from L-Band Satellite Data: The Impact of Radiative Transfer Modeling in Assimilation and Retrieval Systems

    Science.gov (United States)

    De Lannoy, Gabrielle; Reichle, Rolf; Gruber, Alexander; Bechtold, Michel; Quets, Jan; Vrugt, Jasper; Wigneron, Jean-Pierre

    2018-01-01

    The SMOS and SMAP missions have collected a wealth of global L-band Brightness temperature (Tb) observations. The retrieval of surface Soil moisture estimates, and the estimation of other geophysical Variables, such as root-zone soil moisture and temperature, via data Assimilation into land surface models largely depends on accurate Radiative transfer modeling (RTM). This presentation will focus on various configuration aspects of the RTM (i) for the inversion of SMOS Tb to surface soil moisture, and (ii) for the forward modeling as part of a SMOS Tb data assimilation System to estimate a consistent set of geophysical land surface Variables, using the GEOS-5 Catchment Land Surface Model.

  16. Effects of artificial soil surface management on changes of ...

    African Journals Online (AJOL)

    Studies of size distribution, stability of the aggregates, and other soil properties are very important due to their influence on tilth, water infiltration, and nutrient ... Data measured for eight years on induced erosion experiments on a Ferralsol covered by artificial soil netting locally called sombrite at Campinas, Brazil, were used ...

  17. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1987-01-01

    The author describes a Petri net model, called coloured Petri nets (CP-nets), by means of which it is possible to describe large systems without having to cope with unnecessary details. The author introduces CP-nets and provide a first impression of their modeling power and the suitability...

  18. Soil radioactivity levels and radiation hazard assessment around a Thermal Power Plant

    International Nuclear Information System (INIS)

    Kumar, Mukesh; Kumar, Pankaj; Sharma, Somdutt; Agrawal, Anshu; Kumar, Rajesh; Prajith, Rama; Sahoo, B.K.

    2016-01-01

    Coal based thermal power plants further enhance the level of radioactivity in the environment, as burning of coal produces fly ash that can be released into the environment containing traces of 238 U, 232 Th and their decay products. Therefore, coal fired power plants are one of the major contributor towards the Technologically Enhanced Natural Radiation (TENR). Keeping this in view, a study of natural radioactivity in the soil of twenty five villages within 5 km radius around the Harduaganj Thermal Power Plant, Aligarh, UP, India is going on under a BRNS major project, to know the radiological implications on general population living around this plant

  19. Net one, net two: the primary care network income statement.

    Science.gov (United States)

    Halley, M D; Little, A W

    1999-10-01

    Although hospital-owned primary care practices have been unprofitable for most hospitals, some hospitals are achieving competitive advantage and sustainable practice operations. A key to the success of some has been a net income reporting tool that separates practice operating expenses from the costs of creating and operating a network of practices to help healthcare organization managers, physicians, and staff to identify opportunities to improve the network's financial performance. This "Net One, Net Two" reporting allows operations leadership to be held accountable for Net One expenses and strategic leadership to be held accountable for Net Two expenses.

  20. Does temperature nudging overwhelm aerosol radiative ...

    Science.gov (United States)

    For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated meteorology-air quality models that include aerosol direct and indirect effects. However in such multi-modeling systems, temperature changes due to nudging can compete with temperature changes induced by radiatively active & hygroscopic short-lived tracers leading to interesting dilemmas: From weather and climate prediction’s (retrospective or future) point of view when nudging is continuously applied, is there any real added benefit of using such complex and computationally expensive regional integrated modeling systems? What are the relative sizes of these two competing forces? To address these intriguing questions, we convert temperature changes due to nudging into radiative fluxes (referred to as the pseudo radiative forcing, PRF) at the surface and troposphere, and compare the net PRF with the reported aerosol radiative forcing. Results indicate that the PRF at surface dominates PRF at top of the atmosphere (i.e., the net). Also, the net PRF is about 2-4 times larger than estimated aerosol radiative forcing at regional scales while it is significantly larger at local scales. These results also show large surface forcing errors at many polluted urban sites. Thus, operational c

  1. Predicting soil formation on the basis of transport-limited chemical weathering

    Science.gov (United States)

    Yu, Fang; Hunt, Allen Gerhard

    2018-01-01

    Soil production is closely related to chemical weathering. It has been shown that, under the assumption that chemical weathering is limited by solute transport, the process of soil production is predictable. However, solute transport in soil cannot be described by Gaussian transport. In this paper, we propose an approach based on percolation theory describing non-Gaussian transport of solute to predict soil formation (the net production of soil) by considering both soil production from chemical weathering and removal of soil from erosion. Our prediction shows agreement with observed soil depths in the field. Theoretical soil formation rates are also compared with published rates predicted using soil age-profile thickness (SAST) method. Our formulation can be incorporated directly into landscape evolution models on a point-to-point basis as long as such models account for surface water routing associated with overland flow. Further, our treatment can be scaled-up to address complications associated with continental-scale applications, including those from climate change, such as changes in vegetation, or surface flow organization. The ability to predict soil formation rates has implications for understanding Earth's climate system on account of the relationship to chemical weathering of silicate minerals with the associated drawdown of atmospheric carbon, but it is also important in geomorphology for understanding landscape evolution, including for example, the shapes of hillslopes, and the net transport of sediments to sedimentary basins.

  2. Analysis of the radiation budget in regional climate simulations with COSMO-CLM for Africa

    Directory of Open Access Journals (Sweden)

    Steffen Kothe

    2014-09-01

    Full Text Available This study analysed two regional climate simulations for Africa regarding the radiation budgets with particular focus on the contribution of potentially influential parameters on uncertainties in the radiation components. The ERA-Interim driven simulations have been performed with the COSMO-CLM (grid-spacings of 0.44 ° or 0.22 °. The simulated budgets were compared to the satellite-based Global Energy and Water Cycle Experiment Surface Radiation Budget and ERA-Interim data sets. The COSMO-CLM tended to underestimate the net solar radiation and the outgoing long-wave radiation, and showed a regionally varying over- or underestimation in all budget components. An increase in horizontal resolution from 0.44 ° to 0.22 ° slightly reduced the mean errors by up to 5 %. Especially over sea regions, uncertainties in cloud fraction were the main influencing parameter on errors in the simulated radiation fluxes. Compared to former simulations the introduction of a new bare soil albedo treatment reduced the influence of uncertainties in surface albedo significantly. Over the African continent errors in aerosol optical depth and skin temperature were regionally important sources for the discrepancies within the simulated radiation. In a sensitivity test it was shown that the use of aerosol optical depth values from the MACC reanalysis product improved the simulated surface radiation substantially.

  3. Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT.

    Science.gov (United States)

    Han, Yoseob; Ye, Jong Chul

    2018-06-01

    X-ray computed tomography (CT) using sparse projection views is a recent approach to reduce the radiation dose. However, due to the insufficient projection views, an analytic reconstruction approach using the filtered back projection (FBP) produces severe streaking artifacts. Recently, deep learning approaches using large receptive field neural networks such as U-Net have demonstrated impressive performance for sparse-view CT reconstruction. However, theoretical justification is still lacking. Inspired by the recent theory of deep convolutional framelets, the main goal of this paper is, therefore, to reveal the limitation of U-Net and propose new multi-resolution deep learning schemes. In particular, we show that the alternative U-Net variants such as dual frame and tight frame U-Nets satisfy the so-called frame condition which makes them better for effective recovery of high frequency edges in sparse-view CT. Using extensive experiments with real patient data set, we demonstrate that the new network architectures provide better reconstruction performance.

  4. Radiation absorption and use by humid savanna grassland: assessment using remote sensing and modelling

    International Nuclear Information System (INIS)

    Roux, X. le; Gauthier, H.; Begue, A.; Sinoquet, H.

    1997-01-01

    The components of the canopy radiation balance in photosynthetically active radiation (PAR), phytomass and leaf area index (LAI) were measured during a complete annual cycle in an annually burned African humid savanna. Directional reflectances measured by a hand-held radiometer were used to compute the canopy normalized difference vegetation index (NDVI). The fraction f APAR of PAR absorbed by the canopy (APAR) and canopy reflectances were simulated by the scattering from arbitrarily inclined leaves (SAIL) and the radiation interception in row intercropping (RIRI) models. The daily PAR to solar radiation ratio was linearly related to the daily fraction of diffuse solar radiation with an annual value around 0.47. The observed f APAR was non-linearly related to NDVI. The SAIL model simulated reasonably well directional reflectances but noticeably overestimated f APAR during most of the growing season. Comparison of simulations performed with the 1D and 3D versions of the RIRI model highlighted the weak influence of the heterogeneous structure of the canopy after fire and of the vertical distribution of dead and green leaves on total f APAR . Daily f APAR values simulated by the 3D-RIRI model were linearly related to and 9.8% higher than observed values. For sufficient soil water availability, the net production efficiency ϵ n of the savanna grass canopy was 1.92 and 1.28 g DM MJ −1 APAR (where DM stands for dry matter) during early regrowth and mature stage, respectively. In conclusion, the linear relationship between NDVI and f APAR used in most primary production models operating at large scales may slightly overestimate f APAR by green leaves for the humid savanna biome. Moreover, the net production efficiency of humid savannas is close to or higher than values reported for the other major natural biomes. (author)

  5. Relationships between radiation, clouds, and convection during DYNAMO

    Science.gov (United States)

    Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng

    2017-03-01

    The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of 0.4-0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating enhances the convective signal in the mean by 20% with a minimum in this enhancement 10 days prior to peak MJO rainfall and maximum 7 days after. This suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.

  6. Balanço de energia em vinhedo de 'Niagara Rosada' Energy balance on 'Niagara Rosada' vineyard

    Directory of Open Access Journals (Sweden)

    José Ricardo Macedo Pezzopane

    2003-01-01

    Full Text Available O método do balanço de energia foi utilizado para caracterizar a variação horária do saldo de radiação e dos fluxos de calor latente, sensível e no solo, em vinhedo cultivado com a cultivar NiagaraRosada', conduzida no sistema de espaldeira, em Jundiaí (SP. Além disso, foram determinadas as relações entre o saldo de radiação (SR no vinhedo e a radiação solar global (RG e a partição da energia disponível ao sistema nos fluxos de calor latente (LE, sensível (H e no solo (G. Em um dia característico de período seco, o LE representou 44% do SR e o H, 48%. Em um dia chuvoso, o LE representou 86% do SR e o H, 21%. Em um dia ensolarado, após um período de chuvas, LE e H foram, respectivamente, 68% e 29% do SR. O G foi, em média, 5,7% e 1,3% do SR para as ruas mantidas capinadas e com forro, respectivamente.The energy balance method was used to characterize the hourly variation of the net radiation, latent and sensible fluxes and soil heat flux on a mature vineyard grown at Jundiaí, São Paulo, Brazil. The grapevines, cv. Niagara Rosada, in the vineyard were wrapped to trellis wires, creating compact hedgerows 2 m apart, 1.7 m height and 0.4 wide, with the foliage 1m above the soil surface. Also, the net and incoming radiation relationships and the partioning of the available energy to the system into latent and heat flux, and soil heat flux were determined for the vineyard. During a sunny day (dry period the latent heat flux was 44% of the net radiation and the sensible heat flux, 48%. However during a rainy day, the latent heat flux was 86% of the net radiation and the sensible heat flux, 21%. During a sunny day, after the occurrence of rain, the latent and sensible heat fluxes were, respectively, 68% and 29% of the net radiation. The soil heat flux was 5.7 an 1.3% of the net radiation, for bare soil and mulched rows, respectively.

  7. Radiation balance of an alfalfa crop in Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Yemeni, M.N.; Grace, J.

    1995-01-01

    Short-wave reflectivity or albedo is an important component of net radiation which represents the major determinant of radiation balance of crop surface. This study was conducted on an irrigated alfalfa crop field at Al-Kharj agricultural area in Saudi Arabia, grown according to normal agricultural practices. Data on radiation balance and crop cover were collected over a number of days from March to October 1986, crop albedo varying from 0–4 in early morning to 0–20 at noon, the overall mean value of the crop albedo being estimated at 0–26. The relation between the individual components of radiation balance was studied, and a significant correlation between incident radiation and net radiation was found. Possible causes responsible for changes in crop albedo were discussed. (author)

  8. Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings.

    Science.gov (United States)

    Liu, Xiping; Fan, Yangyang; Long, Junxia; Wei, Ruifeng; Kjelgren, Roger; Gong, Chunmei; Zhao, Jun

    2013-03-01

    The efficient use of water and nitrogen (N) to promote growth and increase yield of fruit trees and crops is well studied. However, little is known about their effects on woody plants growing in arid and semiarid areas with limited water and N availability. To examine the effects of water and N supply on early growth and water use efficiency (WUE) of trees on dry soils, one-year-old seedlings of Robinia pseudoacacia were exposed to three soil water contents (non-limiting, medium drought, and severe drought) as well as to low and high N levels, for four months. Photosynthetic parameters, leaf instantaneous WUE (WUEi) and whole tree WUE (WUEb) were determined. Results showed that, independent of N levels, increasing soil water content enhanced the tree transpiration rate (Tr), stomatal conductance (Gs), intercellular CO2 concentration (Ci), maximum net assimilation rate (Amax), apparent quantum yield (AQY), the range of photosynthetically active radiation (PAR) due to both reduced light compensation point and enhanced light saturation point, and dark respiration rate (Rd), resulting in a higher net photosynthetic rate (Pn) and a significantly increased whole tree biomass. Consequently, WUEi and WUEb were reduced at low N, whereas WUEi was enhanced at high N levels. Irrespective of soil water availability, N supply enhanced Pn in association with an increase of Gs and Ci and a decrease of the stomatal limitation value (Ls), while Tr remained unchanged. Biomass and WUEi increased under non-limiting water conditions and medium drought, as well as WUEb under all water conditions; but under severe drought, WUEi and biomass were not affected by N application. In conclusion, increasing soil water availability improves photosynthetic capacity and biomass accumulation under low and high N levels, but its effects on WUE vary with soil N levels. N supply increased Pn and WUE, but under severe drought, N supply did not enhance WUEi and biomass.

  9. Evaluation of different methods of measuring evapotranspiration as a scheduling guide for drip-irrigated cotton

    International Nuclear Information System (INIS)

    Rawitz, E.; Marani, A.; Mahrer, Y.; Berkovich, D.

    1983-01-01

    Evapotranspiration in a drip-irrigated cotton field was estimated by the energy balance method, net radiation, standard evaporation pan, evaporation pan in the field at canopy height, and by the Penman equation, and the results were compared with the soil-water balance based on neutron meter and tensiometer data from seven observation sites. Evapotranspiration according to the soil-water balance was only about 85% of that determined by the energy balance method, and this is attributed to the fact that irrigation laterals were placed every second row, and the soil-water balance was determined in the irrigated rows. The crop also utilized moisture stored from winter rains in the unirrigated inter-row spaces, which was detected by the energy balance method. Actual evapotranspiration (ET) was 96% of potential ET (Penman), and the latter equalled 98% of net radiation energy. The actual ET equalled 90% of free water evaporation from the pan in the field at canopy height, and 88% of net radiation. The high-frequency drip regime maintained ET very close to potential ET, and under these conditions the field-installed evaporation pan, or the net radiometer, are good indicators of crop water use, with the latter being adaptable to computer-controlled irrigation. (author)

  10. Soil radioactivity levels and radiation hazard assessment for some populated areas, Cairo, Egypt

    International Nuclear Information System (INIS)

    Abu-Zeid, H.M; Abd-ElMaksoud, T.M; Nada, A; Awad, S; El-Nagar, T.

    2011-01-01

    Determination of the natural radioactivity has been carried out, by means of gamma ray spectrometry system ,on sixty two surface soil samples collected from different localities in Nasr City and Heliopolis for measuring the activity concentrations for 238 U, 232 Th, and 40 K. The evaluation of environmental radioactivity and estimating the current radiation hazards to the population make this study an interesting issue. The output results referred to all these localities indicated that these regions are not hazardous from the environmental point of view.The results of the present study were discussed and compared with internationally recommended values.

  11. Analysis and research on thermal infrared properties and adaptability of the camouflage net

    Science.gov (United States)

    Cui, Guangzhen; Hu, Jianghua; Jian, Chaochao; Yang, Juntang

    2016-10-01

    As camouflage equipment, camouflage net which covers or obstruct the enemy reconnaissance and attack, have the compatibility such as optics, infrared, radar wave band performance. To improve the adaptive between the camouflage net with background in infrared wavelengths, the heat shield and heat integration requirements on the surface of the camouflage net was analyzed. The condition that satisfied the heat shield was when the average thermal infrared transmittance was less than 25.38% on camouflage screen surface. Studies have shown that camouflage nets and the background field fused together when infrared radiation temperature difference control is within the scope of ± 4K . Experiment on temperature contrast was tested in situ background, thermal camouflage spots and camouflage net with sponge material, the infrared heat maps was recorded in the period of experiment through the thermal imager. Results showed that the thermal inertia of camouflage net was markedly lower than the background and the exposed signs were obvious. It was difficult to reach camouflage thermal infrared fusion requirements by relying on camouflage spot emissivity, but sponge which mix with polymer resin can reduce target significance in the context of mottled and realize the fusion effect.

  12. Copper in Surface Soil of Veles Region, Macedonia

    International Nuclear Information System (INIS)

    Panchevski, Zlatko; Stafilov, Trajche; Frontasyeva, Marina V.

    2006-01-01

    For the first time a systematic study of copper distribution in surface soil over of the Veles region, known for its lead and zinc industrial activity, was undertaken. A total of 201 soil samples were collected according to a dense net (0.5 km) in urban and less dense net (1 km) in rural areas. Copper was determined by flame atomic absorption spectrometry (FAAS) using microwave digestion technique with two different types of solvents: aqua regia (HCI and HNO 3 )and the mixture of strong acids (HNO 3 , HCI, and HF). So far the same soil samples were subjected to reactor non-destructive multi-element instrumental neutron activation analysis (INAA), it served as a reference analytical technique for bulk copper determination. The results obtained by two methods of FAAS and INAA are discussed. GIS technology was applied to reveal the areas most affected by copper contamination. It was found that the content of copper in soil samples around the lead and zinc smelter plant is the highest and reaches 1800 mg/kg. Copper content in surface soil all around the town of Veles exceeds maximum permissible level for urban surface soil. Elevated copper content in some rural areas of the Veles region most likely could be explained through using copper containing fungicides for agricultural needs. (Author)

  13. Landscape analysis of soil methane flux across complex terrain

    Science.gov (United States)

    Kaiser, Kendra E.; McGlynn, Brian L.; Dore, John E.

    2018-05-01

    Relationships between methane (CH4) fluxes and environmental conditions have been extensively explored in saturated soils, while research has been less prevalent in aerated soils because of the relatively small magnitudes of CH4 fluxes that occur in dry soils. Our study builds on previous carbon cycle research at Tenderfoot Creek Experimental Forest, Montana, to identify how environmental conditions reflected by topographic metrics can be leveraged to estimate watershed scale CH4 fluxes from point scale measurements. Here, we measured soil CH4 concentrations and fluxes across a range of landscape positions (7 riparian, 25 upland), utilizing topographic and seasonal (29 May-12 September) gradients to examine the relationships between environmental variables, hydrologic dynamics, and CH4 emission and uptake. Riparian areas emitted small fluxes of CH4 throughout the study (median: 0.186 µg CH4-C m-2 h-1) and uplands increased in sink strength with dry-down of the watershed (median: -22.9 µg CH4-C m-2 h-1). Locations with volumetric water content (VWC) below 38 % were methane sinks, and uptake increased with decreasing VWC. Above 43 % VWC, net CH4 efflux occurred, and at intermediate VWC net fluxes were near zero. Riparian sites had near-neutral cumulative seasonal flux, and cumulative uptake of CH4 in the uplands was significantly related to topographic indices. These relationships were used to model the net seasonal CH4 flux of the upper Stringer Creek watershed (-1.75 kg CH4-C ha-1). This spatially distributed estimate was 111 % larger than that obtained by simply extrapolating the mean CH4 flux to the entire watershed area. Our results highlight the importance of quantifying the space-time variability of net CH4 fluxes as predicted by the frequency distribution of landscape positions when assessing watershed scale greenhouse gas balances.

  14. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    Science.gov (United States)

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  15. Stocks of organic carbon in Estonian soils

    Directory of Open Access Journals (Sweden)

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  16. Study of soil redistribution in cultivated fields using fallout cesium-137 at Fateh Jang, Attock, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Iqbal, N.; Akram, W.; Aasi, M.R.

    2009-11-01

    The study was carried out to investigate soil redistribution and net soil losses from two cultivated fields located in the dissected loess plains in the Pothwar Plateau at Mangial (33.6 N; 72.8 E), District Attock, Pakistan. For reference site, soil samples were collected by scrapper plate at 2 cm intervals and bulk cores in a grid, while the cultivated fields were sampled taking bulk cores in grid and along transect. /sup 137/Cs was measured by gamma spectroscopy using Soil 6 (IAEA) as a standard. The established reference inventory of /sup 137/Cs for this area is 3204 Bq/m/sup 2/. The technique provides very clear quantitative information on medium-term erosion and deposition rates at different locations, and net soil loss from cultivated fields, while no other methods available can be applied so simply. Gradient of the cultivated fields play an important role in the soil redistribution and net soil loss. Due to higher gradient of Field 2, the net soil losses determined by PM and MBM-1 using 20 cm plough layer (14.18 t ha/sup -1/ yr/sup -1/ and 16.37 t ha/sup -1/ yr/sup -1/ respectively) are much higher than that for Field 1 determined by the same models (0.24 t ha-1 yr-1 and 3.84 t ha/sup -1/ yr/sup -1/). Therefore, the cultivated fields should be as much leveled as possible. Major implication arises in using soil conversion models when thickness of /sup 137/Cs bearing layer becomes more than the normal plough layer due to deposition of eroded soil at low-lying areas. In case of Field 2, using 30 cm thickness of plough layer having significant /sup 137/Cs in the deposition areas the net erosion estimates using by PM and MBM-1 are 8.71 t ha/sup -1/ yr/sup -1/ and 10.05 t ha-1 yr/sup -1/, respectively, which seem more reliable because maximum /sup 137/Cs inventory is taken into accounted. The herbicide residue varies spatially in the field, but these three distributions corresponding to the three sampling dates indicate reduction in the residue with time. The

  17. Air–surface exchange of gaseous mercury over permafrost soil: an investigation at a high-altitude (4700 m a.s.l. and remote site in the central Qinghai–Tibet Plateau

    Directory of Open Access Journals (Sweden)

    Z. Ci

    2016-11-01

    Full Text Available The pattern of air–surface gaseous mercury (mainly Hg(0 exchange in the Qinghai–Tibet Plateau (QTP may be unique because this region is characterized by low temperature, great temperature variation, intensive solar radiation, and pronounced freeze–thaw process of permafrost soils. However, the air–surface Hg(0 flux in the QTP is poorly investigated. In this study, we performed field measurements and controlled field experiments with dynamic flux chambers technique to examine the flux, temporal variation and influencing factors of air–surface Hg(0 exchange at a high-altitude (4700 m a.s.l. and remote site in the central QTP. The results of field measurements showed that surface soils were the net emission source of Hg(0 in the entire study (2.86 ng m−2 h−1 or 25.05 µg m−2 yr−1. Hg(0 flux showed remarkable seasonality with net high emission in the warm campaigns (June 2014: 4.95 ng m−2 h−1; September 2014: 5.16 ng m−2 h−1; and May–June 2015: 1.95 ng m−2 h−1 and net low deposition in the winter campaign (December 2014: −0.62 ng m−2 h−1 and also showed a diurnal pattern with emission in the daytime and deposition in nighttime, especially on days without precipitation. Rainfall events on the dry soils induced a large and immediate increase in Hg(0 emission. Snowfall events did not induce the pulse of Hg(0 emission, but snowmelt resulted in the immediate increase in Hg(0 emission. Daily Hg(0 fluxes on rainy or snowy days were higher than those of days without precipitation. Controlled field experiments suggested that water addition to dry soils significantly increased Hg(0 emission both on short (minutes and relatively long (hours timescales, and they also showed that UV radiation was primarily attributed to Hg(0 emission in the daytime. Our findings imply that a warm climate and environmental change could facilitate Hg release from the permafrost terrestrial ecosystem

  18. Radiation budget measurement/model interface research

    Science.gov (United States)

    Vonderhaar, T. H.

    1981-01-01

    The NIMBUS 6 data were analyzed to form an up to date climatology of the Earth radiation budget as a basis for numerical model definition studies. Global maps depicting infrared emitted flux, net flux and albedo from processed NIMBUS 6 data for July, 1977, are presented. Zonal averages of net radiation flux for April, May, and June and zonal mean emitted flux and net flux for the December to January period are also presented. The development of two models is reported. The first is a statistical dynamical model with vertical and horizontal resolution. The second model is a two level global linear balance model. The results of time integration of the model up to 120 days, to simulate the January circulation, are discussed. Average zonal wind, meridonal wind component, vertical velocity, and moisture budget are among the parameters addressed.

  19. Increased UV-B radiation reduces N2-fixation in tropical leguminous crops

    International Nuclear Information System (INIS)

    Anupa Singh

    1997-01-01

    Net photosynthesis, leaf area, biomass, and number, size and activity of nodules were examined in three leguminous plants subjected under field conditions to supplemental UV-B radiation equivalent to a 15% ozone depletion at 25 degrees N latitude. Enhanced UV-B radiation adversely affected the net photosynthetic rate, growth characteristics and nodule activity in all three species. Maximum reduction in net photosynthesis occurred in Phaseolus mungo cv. Pant U-30, whereas the greatest reduction in nitrogenase activity occurred in Vigna radiata. (author)

  20. Assessment of large aperture scintillometry for large-area surface ...

    Indian Academy of Sciences (India)

    Abhishek Danodia

    2017-07-19

    Jul 19, 2017 ... Agriculture and Soils Division, Indian Institute of Remote Sensing – ISRO, ... height) were recorded at a temporal resolution of fortnight basis along the path length at usual sampling .... The measurement of net radiation, soil.

  1. Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils.

    Science.gov (United States)

    Guimarães, J R; Meili, M; Hylander, L D; de Castro e Silva, E; Roulet, M; Mauro, J B; de Lemos, R

    2000-10-16

    In aquatic systems, bottom sediments have often been considered as the main methylmercury (MeHg) production site. In tropical floodplain areas, however, floating meadows and flooded forests extend over large areas and can be important Hg methylating sites. We present here a cross-system comparison of the Hg net methylation capacity in surface sediments, flooded soils and roots of floating aquatic macrophytes, assayed by in situ incubation with 203Hg and extraction of formed Me203 Hg by acid leaching and toluene. The presence of mono-MeHg was confirmed by thin layer chromatography and other techniques. Study areas included floodplain lakes in the Amazon basin (Tapajós, Negro and Amazon rivers), the Pantanal floodplain (Paraguay river basin), freshwater coastal lagoons in Rio de Janeiro and oxbow lakes in the Mogi-Guaçú river, São Paulo state. Different Hg levels were added in assays performed in 1994-1998, but great care was taken to standardise all other test parameters, to allow data comparisons. Net MeHg production was one order of magnitude higher (mean 13.8%, range 0.28-35) in the living or decomposing roots of floating or rooted macrophyte mats (Eichhornia azurea, E. crassipes, Paspalum sp., Eleocharis sellowiana, Salvinia sp., S. rotundifolia and Scirpus cubensis) than in the surface layer of underlying lake sediments (mean 0.6%, range 0.022-2.5). Methylation in flooded soils presented a wide range and was in some cases similar to the one found in macrophyte roots but usually much lower. In a Tapajós floodplain lake, natural concentrations of MeHg in soil and sediment cores taken along a lake-forest transect agreed well with data on net methylation potentials in the same samples. E. azurea, E. crassipes and Salvinia presented the highest methylation potentials, up to 113 times higher than in sediments. Methylation in E. azurea from six lakes of the Paraguay and Cuiabá rivers, high Pantanal, was determined in the 1998 dry and wet seasons and ranged from

  2. Soil restoration under pasture after lignite mining - management effects on soil biochemical properties and their relationships with herbage yields

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.J.; Speir, T.W.; Cowling, J.C.; Feltham, C.W. (DSIR, Lower Hutt (New Zealand))

    1992-01-01

    The recovery of soil biochemical properties under grazed, grass-clover pasture after simulated lignite mining was studied over a 5-year period in a mesic Typic Dystrochrept soil at Waimumu, Southland, New Zealand. Restoration procedures involved four replacement treatments, after A,B and C horizon materials had been separately removed, from all except the control, and stockpiled for 2-3 weeks. Replacement treatment markedly influenced the recovery of herbage production and soil organic C and total N contents, N mineralization, microbial biomass (as indicated by mineral-N flush) and invertase and sulphatase activities. The effectiveness of replacement treatments decreased in the order: 1. control (no stripping or replacement). 2. A,B and C horizon materials replaced in the same order. 3. A,B and C horizon materials each mixed with an equal amount of siltstone overburden and replaced in order, 4. A and B horizon materials mixed before replacing over C horizon materials. Ripping increased herbage production, net N mineralization and microbial biomass. Fertilizer N also stimulated herbage production but depressed clover growth. Increases in soil invertase and, to a lesser extent, sulphatase activity were closely related to changes in herbage production. Microbial biomass increased more rapidly than soil organic C in early stages in the trial. Rates of net N mineralization suggest that N availability would have limited pasture growth.

  3. Calibration of HPGe detector for in situ measurements of 137Cs in soil by 'peak to valley' method

    International Nuclear Information System (INIS)

    Fueloep, M.

    2000-01-01

    The contamination of soil with gamma-ray emitters can be measured in two ways: soil sampling method and in situ spectrometry of the ambient gamma-ray radiation. The conventional soil sampling method has two disadvantages: samples may not be representative for a large areas and determination of the depth distribution of radionuclide requires the measurement of several samples taken from different depths. In situ measurement of a radionuclide activity in soil is more sensitive and provides more representative data than data obtained by soil sample collection and subsequent laboratory analysis. In emergency situations time to assess the contamination is critical. For rapid assessment of the deposited activity direct measurement of ambient gamma-ray radiation are used. In order to obtain accurate measurements of radionuclides in the soil, the detector should be placed on relatively even and open terrain. It is our customary practice to place the detector 1 m above the soil surface. At this height, a tripod-mounted detector can be handled easily and still provide a radius of view for gamma emitting sources out to about 10 m. The 'field of view' actually varies, being somewhat larger for higher sources. Depending upon source energy, the detector effectively sees down to a depth of 15-30 cm. Commonly used method for field gamma spectrometry is method by Beck (1). The most important disadvantages of in situ spectrometry by Beck are that the accuracy of the analysis depends on a separate knowledge of the radioactivity distribution with soil depth. This information can be obtained by calculations using data from in situ measurements and energy dependence of absorption and scattering of photons in soil and track length distribution of photons in soil (2). A method of in situ measurements of 137 Cs in soil where radionuclide distribution in soil profile is calculated by unfolding of detector responses in the full energy peak net area at 0.662 MeV and in the valley under the

  4. Pre-sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress.

    Science.gov (United States)

    Mridha, Nilimesh; Chattaraj, Sudipta; Chakraborty, Debashis; Anand, Anjali; Aggarwal, Pramila; Nagarajan, Shantha

    2016-09-01

    Soil moisture stress during pod filling is a major constraint in production of chickpea (Cicer arietinum L.), a fundamentally dry land crop. We investigated effect of pre-sowing seed priming with static magnetic field (SMF) on alleviation of stress through improvement in radiation and water use efficiencies. Experiments were conducted under greenhouse and open field conditions with desi and kabuli genotypes. Seeds exposed to SMF (strength: 100 mT, exposure: 1 h) led to increase in root volume and surface area by 70% and 65%, respectively. This enabled the crop to utilize 60% higher moisture during the active growth period (78-118 days after sowing), when soil moisture became limiting. Both genotypes from treated seeds had better water utilization, biomass, and radiation use efficiencies (17%, 40%, and 26% over control). Seed pre-treatment with SMF could, therefore, be a viable option for chickpea to alleviate soil moisture stress in arid and semi-arid regions, helping in augmenting its production. It could be a viable option to improve growth and yield of chickpea under deficit soil moisture condition, as the selection and breeding program takes a decade before a tolerant variety is released. Bioelectromagnetics. 37:400-408, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. HT oxidation activity of soil irradiated with gamma radiation

    International Nuclear Information System (INIS)

    Momoshima, Noriyuki; Tjahaja, P.I.; Takashima, Yoshimasa

    1992-01-01

    The HT oxidation activity was examined for soils irradiated with 60 Co γ-rays at various doses. The HT oxidation rate decreased with increase of initial H 2 concentration, indicating a similar oxidation mechanism between HT and H 2 . Irradiated soils showed decrease of oxidation activity with dose suggests that HT and H 2 oxidation activities were affected by sterilization with γ-rays. The decline of the oxidation activity with dose was analyzed by a composite of two components with different radiosensitivity and they were considered to be activities of soil microorganisms and abiotic soil enzymes. The oxidation activity due to soil microorganisms would be important at low dose range and more radioresistant abiotic soil enzymes would be responsible for the oxidation activity observed at more than several kGy. In non-irradiated soil about half of the oxidation activity was considered resulting from abiotic soil enzymes. (author)

  6. [Effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash].

    Science.gov (United States)

    Du, She-ni; Bai, Gang-shuan; Liang, Yin-li

    2011-04-01

    A pot experiment with artificial shading was conducted to study the effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash variety "Jingyingyihao". Under all test soil moisture conditions, 30% shading promoted the growth of "Jingyingyihao", with the highest yield at 70% - 80% soil relative moisture contents. 70% shading inhibited plant growth severely, only flowering and not bearing fruits, no economic yield produced. In all treatments, there was a similar water consumption trend, i. e., both the daily and the total water consumption decreased with increasing shading and decreasing soil moisture content. Among all treatments, 30% shading and 70% - 80% soil relative moisture contents had the highest water use efficiency (2.36 kg mm(-1) hm(-2)) and water output rate (1.57 kg mm(-1) hm(-2)). The net photosynthetic rate, transpiration rate, stomatal conductance, and chlorophyll content of squash leaves decreased with increasing shading, whereas the intercellular CO2 concentration was in adverse. The leaf protective enzyme activity and proline content decreased with increasing shading, and the leaf MAD content decreased in the order of 70% shading, natural radiation, and 30% shading. Under the three light intensities, the change characteristics of squash leaf photosynthesis, protective enzyme activity, and proline and MAD contents differed with the increase of soil relative moisture content.

  7. Polychlorinated naphthalenes (PCNs) in the surface soils of the Pearl River Delta, South China: Distribution, sources, and air-soil exchange

    International Nuclear Information System (INIS)

    Wang Yan; Cheng Zhineng; Li Jun; Luo Chunling; Xu Yue; Li Qilu; Liu Xiang; Zhang Gan

    2012-01-01

    Polychlorinated naphthalenes (PCNs) are now under review by the Stockholm Convention as a candidate for POPs for their persistence, toxicity, bioaccumulation, and long-range atmospheric transport. Data regarding PCN levels and their environmental fate are sparse in China. The PCN concentration and distribution in soils of the Pearl River Delta were reported, and the average total concentration was 59.9 ± 86.7 pg/g. Tri-CNs was the dominant homologue group, and CN 24 was the most abundant congener. A gradient of PCN levels between more and less developed areas was observed. Based on fugacity fraction results, CN 51 is proposed as a possible source marker for specific combustion emissions. Air-soil exchange of PCNs was estimated by calculating the soil and air fugacity. Fugacity fraction values indicated that tri- to penta-CNs were closer to equilibrium in winter and toward net volatilization in summer, while hexa-CNs experienced net air-to-soil transfer in both seasons. Highlights: ► A gradient of PCN levels between highly and less developed areas was observed. ► CN 51 may be a new specific source indicator compared to other congeners. ► Soil acts as a secondary source in summer and a recipient in winter for PCNs in PRD. ► Low-chlorinated PCNs released from the PRD may transport to North China. - As a potential source during the hot period, low-chlorinated PCNs released from contaminated soils may transport to nearby regions.

  8. Enhanced priming of old, not new soil carbon at elevated atmospheric CO2

    DEFF Research Database (Denmark)

    Vestergard, Mette; Reinsch, Sabine; Bengtson, Per

    2016-01-01

    Rising atmospheric CO2 concentrations accompanied by global warming and altered precipitation patterns calls for assessment of long-term effects of these global changes on carbon (C) dynamics in terrestrial ecosystems, as changes in net C exchange between soil and atmosphere will impact the atmos......Rising atmospheric CO2 concentrations accompanied by global warming and altered precipitation patterns calls for assessment of long-term effects of these global changes on carbon (C) dynamics in terrestrial ecosystems, as changes in net C exchange between soil and atmosphere will impact...... accelerate the decomposition of soil organic C (SOC), a phenomenon termed ‘the priming effect’, and the priming effect is most pronounced at low soil N availability. Hence, we hypothesized that priming of SOC decomposition in response to labile C addition would increase in soil exposed to long-term elevated...... decomposition of relatively old SOC fractions, i.e. SOC assimilated more than 8 years before sampling....

  9. Natural gamma radiation levels, indoor and water 222RN Concentrations in soil division of Kerio valley, kenya

    International Nuclear Information System (INIS)

    Nderitu, S.K.; Maina, D.M.; Kinyua, A.M.

    2001-01-01

    Human beings are constantly exposed to natural radioactivity. This radiation is mainly from natural gamma rays and radon and its decay products. The gamma rays are as a result of the decay of primordial nuclides and their daughter radioactive nuclides present in the earth's crust. Radon is produced from the decay of 226 Ra and it diffuses to the indoor environment through cracks on the floor or from building materials containing radium and hence radon problem is mainly indoors. In Kenya, some parts have been identified as having high gamma radiation causing exposure to the public. These areas include Mrima Hill (Kwale), Homa Bay, Bufayo, Weast Pokot, Kitui, Nanyuki, Kerio Valley and Tura. It is therefore necessary to carry out studies on the levels of radiation and determine whether they are within safe limits. Kerio valley, which is the area of study in this work, has been identified as one of the areas with uranium traces associated with fluorite mineralisation. In this study an assessment of the natural radiation levels in this area was carried out and in addition the radon concentrations indoor as well in water that the public is exposed were determined. To measure the radiation levels, soil samples were collected from the area of study, Kerio valley, and analysed for gamma levels using gamma spectroscopy technique. Indoor 222 Rn and radon in water concentrations were measured using the E-perm system. The activity concentrations of the radionuclides present, the doses as well as the annual effective dose equivalents were calculated for the soils using conversion factors adopted from the UNSCEAR (1988 and 1993) reports. Similarly, the dose equivalents and the annual effective doses for 222 Rn concentrations were evaluated. For natural gamma radiation 74 samples were analysed. The soil samples yielded activity concentrations ranging from 194.54??2.89 to 995.77??5.48 Bq Kg-1 for 40 K, 17.04??0.43 to 122.4??0.94 Bq Kg-1 for 232 Th which was evaluated from the 212

  10. Application of deconvolution interferometry with both Hi-net and KiK-net data

    Science.gov (United States)

    Nakata, N.

    2013-12-01

    Application of deconvolution interferometry to wavefields observed by KiK-net, a strong-motion recording network in Japan, is useful for estimating wave velocities and S-wave splitting in the near surface. Using this technique, for example, Nakata and Snieder (2011, 2012) found changed in velocities caused by Tohoku-Oki earthquake in Japan. At the location of the borehole accelerometer of each KiK-net station, a velocity sensor is also installed as a part of a high-sensitivity seismograph network (Hi-net). I present a technique that uses both Hi-net and KiK-net records for computing deconvolution interferometry. The deconvolved waveform obtained from the combination of Hi-net and KiK-net data is similar to the waveform computed from KiK-net data only, which indicates that one can use Hi-net wavefields for deconvolution interferometry. Because Hi-net records have a high signal-to-noise ratio (S/N) and high dynamic resolution, the S/N and the quality of amplitude and phase of deconvolved waveforms can be improved with Hi-net data. These advantages are especially important for short-time moving-window seismic interferometry and deconvolution interferometry using later coda waves.

  11. CO2, CH4 and N2O fluxes from soil of a burned grassland in Central Africa

    Directory of Open Access Journals (Sweden)

    R. Valentini

    2010-11-01

    Full Text Available The impact of fire on soil fluxes of CO2, CH4 and N2O was investigated in a tropical grassland in Congo Brazzaville during two field campaigns in 2007–2008. The first campaign was conducted in the middle of the dry season and the second at the end of the growing season, respectively one and eight months after burning. Gas fluxes and several soil parameters were measured in each campaign from burned plots and from a close-by control area preserved from fire. Rain events were simulated at each campaign to evaluate the magnitude and duration of the generated gas flux pulses. In laboratory experiments, soil samples from field plots were analysed for microbial biomass, net N mineralization, net nitrification, N2O, NO and CO2 emissions under different water and temperature soil regimes. One month after burning, field CO2 emissions were significantly lower in burned plots than in the control plots, the average daily CH4 flux shifted from net emission in the unburned area to net consumption in burned plots, no significant effect of fire was observed on soil N2O fluxes. Eight months after burning, the average daily fluxes of CO2, CH4 and N2O measured in control and burned plots were not significantly different. In laboratory, N2O fluxes from soil of burned plots were significantly higher than fluxes from soil of unburned plots only above 70% of maximum soil water holding capacity; this was never attained in the field even after rain simulation. Higher NO emissions were measured in the lab in soil from burned plots at both 10% and 50% of maximum soil water holding capacity. Increasing the incubation temperature from 25 °C to 37 °C negatively affected microbial growth, mineralization and nitrification activities but enhanced N2O and CO2 production. Results indicate that fire did not increase post-burning soil GHG emissions in this tropical grasslands characterized by acidic, well drained and nutrient-poor soil.

  12. Development of Software for Measurement and Analysis of Solar Radiation

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Abul Adli Anuar; Noor Ezati Shuib

    2015-01-01

    This software was under development using LabVIEW to be using with StellarNet spectrometers system with USB communication to computer. LabVIEW have capabilities in hardware interfacing, graphical user interfacing and mathematical calculation including array manipulation and processing. This software read data from StellarNet spectrometer in real-time and then processed for analysis. Several measurement of solar radiation and analysis have been done. Solar radiation involved mainly infra-red, visible light and ultra-violet. With solar radiation spectrum data, information of weather and suitability of plant can be gathered and analyzed. Furthermore, optimization of utilization and safety precaution of solar radiation can be planned. Using this software, more research and development in utilization and safety of solar radiation can be explored. (author)

  13. Pratt & Whitney aircraft nuclear J-8 turbojet engine performance variation with radiator diameter

    International Nuclear Information System (INIS)

    Larson, John W.

    1960-01-01

    The variation of engine performance with liquid metal radiator diameter and flight altitude has been estimated for both the 1600F NaK and 1800F NaK radiators at Mach 0.6 and hot day atmospheric conditions. The net thrust, air flow and reactor power is presented in 3 figures for the Pratt & Whitney Aircraft J-58 engine with the 1600F NaK radiator. The net thrust, air flow and reactor power for the 1800F NaK radiator are also presented in figures.

  14. Estimation of daily global solar radiation as a function of the solar energy potential at soil surface

    International Nuclear Information System (INIS)

    Pereira, A.B.; Vrisman, A.L.; Galvani, E.

    2002-01-01

    The solar radiation received at the surface of the earth, apart from its relevance to several daily human activities, plays an important role in the growth and development of plants. The aim of the current work was to develop and gauge an estimation model for the evaluation of the global solar radiation flux density as a function of the solar energy potential at soil surface. Radiometric data were collected at Ponta Grossa, PR, Brazil (latitude 25°13' S, longitude 50°03' W, altitude 880 m). Estimated values of solar energy potential obtained as a function of only one measurement taken at solar noon time were confronted with those measured by a Robitzsch bimetalic actinograph, for days that presented insolation ratios higher than 0.85. This data set was submitted to a simple linear regression analysis, having been obtained a good adjustment between observed and calculated values. For the estimation of the coefficients a and b of Angström's equation, the method based on the solar energy potential at soil surface was used for the site under study. The methodology was efficient to assess the coefficients, aiming at the determination of the global solar radiation flux density, whith quickness and simplicity, having also found out that the criterium for the estimation of the solar energy potential is equivalent to that of the classical methodology of Angström. Knowledge of the available solar energy potential and global solar radiation flux density is of great importance for the estimation of the maximum atmospheric evaporative demand, of water consumption by irrigated crops, and also for building solar engineering equipment, such as driers, heaters, solar ovens, refrigerators, etc [pt

  15. A comparison using the caesium-137 technique of the relative importance of cultivation and overland flow on soil erosion in a steep semi-tropical sub-catchment

    International Nuclear Information System (INIS)

    Wiranatha, A.S.; Rose, C.W.; Salama, M.S.

    2001-01-01

    The spatial pattern of net soil loss on 6 downslope transects in a small semi-tropical sub-catchment was measured in 1990-91 using the resident caesium-137 deficit technique. The sub-catchment consisted of 2 opposing hillslopes which shed water to an intermittent stream in the valley bottom of the sub-catchment. There were 3 transects on each of the opposing hillslopes, and measurement indicated net soil loss from all 6 transects. Furthermore, the spatial pattern of caesium- 37 deficit did not indicate the accumulation of soil expected due to the slope decrease toward the bottom of the valley. Possible explanations of this finding could be the effect of periodic flooding of the intermittent valley stream, or seepage-accelerated erosion. Pineapple cultivation in the sub-catchment since 1950 included intensive cultivation at 4-year intervals by downslope-moving rotary hoe. The paper develops a theoretical prediction of the spatial pattern of net soil loss expected due to such cultivation, as well as the expected pattern of soil loss due to overland flow on the hillslopes. The spatial patterns of soil loss due to these 2 different soil erosion mechanisms were then compared with the pattern of net soil loss indicated by caesium- 137 depletion to provide an assessment of their likely relative importance in contributing to soil loss. In the upper part of each hillslope, this comparison of spatial trends did not allow the dominant cause of soil erosion to be distinguished. Both the model of erosion due to cultivation and that due to hillside overland flow predicted soil accumulation in the lower valley sides where slope decreased. Neither model represented the net loss of such accumulated soil indicated by caesium- 137 deficit, and this loss possibly occurred during periodically observed flooding of the valley floor, or due to surface burial with caesium-137 depleted subsoil. Copyright (2001) CSIRO Publishing

  16. Shrubland primary production and soil respiration diverge along European climate gradient

    DEFF Research Database (Denmark)

    Reinsch, Sabine; Koller, Eva; Sowerby, Alwyn

    2017-01-01

    uncertain. Here we show the responses of ecosystem C to 8-12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes...

  17. Surface radiation survey and soil sampling of the 300-FF-1 operable unit, Hanford Site, southeastern Washington: A case study

    International Nuclear Information System (INIS)

    Teel, S.S.; Olsen, K.B.

    1990-10-01

    The methods used for conducting a radiological characterization of the soil surface for the Phase I Remedial Investigation of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site is presented via a case study. The study site is an operable unit (300-FF-1) located in and adjacent to the 300 Area of the US Department of Energy's Hanford Site in southeastern Washington State. The operable unit contains liquid and solid waste disposal facilities associated with nuclear fuels fabrication. Continuous surface radiation surveying and soil sampling of selected locations were conducted. Contamination was found in several locations within the operable unit including areas near the liquid and solid waste disposal facilities. Instruments used during surveying included portable beta/gamma (P-11) detectors, and the Ultrasonic Ranging and Data System using an NaI (Tl) detector. Laboratory analyses results indicate that above-background radiation levels were primarily due to the presence of uranium. Both types of field instruments used in the study were effective in detecting surface contamination from radionuclides; however, each had specific advantages. Guidelines are presented for the optimum use of these instruments when performing a radiological characterization of the soil surface. 4 refs., 3 figs., 3 tabs

  18. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Plauborg, Finn; Jacobsen, Sven-Erik

    2012-01-01

    Quinoa (Chenopodium quinoa Willd.) is believed to be tolerant to abiotic stress including salinity, drought and poor soil quality. To investigate the effect of soil type and soil-drying during the seed-filling phase on N-uptake, yield and water use, a Danish-bred cultivar (cv. Titicaca) was grown...... in field lysimeters with sand, sandy loam and sandy clay loam soil. Despite application of the same amount of nitrogen (120 kg N ha−1) to all plots, there were large differences in crop nitrogen-uptake for sandy clay loam (134 kg ha−1), sandy loam (102 kg ha−1) and sand (77 kg ha−1) under full irrigation....... This lead to higher interception of photosynthetic active radiation and higher seed yield on sandy clay loam (3.3 Mg ha−1) and sandy loam (3.0 Mg ha−1) than on sand (2.3 Mg ha−1). The soil with higher clay content had also the highest transpiration, crop evapotranspiration and yield due to the higher uptake...

  19. Preliminary study of prairies forested with Eucalyptus sp. at the northwestern Uruguayan soils

    International Nuclear Information System (INIS)

    Carrasco-Letelier, L.; Eguren, G.; Castineira, C.; Parra, O.; Panario, D.

    2004-01-01

    The forestation of Uruguayan natural prairie soil does not always ensure an increase of soil carbon sink. - The land cover change of Uruguayan Forestal Plan provoked biogeochemical changes on horizon Au 1 of Argiudols; in native prairies which were replaced by monoculture Eucalyptus sp. plantation with 20 year rotations as trees. Five fields forested and six natural prairies were compared. The results not only show a statistical significant soil acidification, diminution of soil organic carbon, increase of aliphaticity degree of humic substances, and increase of affinity and capacity of hydrolytic activity from soil microbial communities for forested sites with Eucalyptus sp. but also, a tendency of podzolization and/or mineralization by this kind of land cover changes, with a net soil organic lost of 16.6 tons ha -1 in the horizon Au 1 of soil under Eucalyptus sp. plantation compared with prairie. Besides, these results point out the necessity of correction of the methodology used by assigned Uruguayan commission to assess the national net emission of greenhouse gases, since the mineralization and/or podzolization process detected in forested soil imply a overestimation of soil organic carbon. The biochemical parameters show a statistical significant correlation between the soil organic carbon status and these parameters which were presented as essential for the correct evaluation of Uruguayan soil carbon sink

  20. Environmental radiation safety: plutonium/soil interactions for plutonium particles in soil

    International Nuclear Information System (INIS)

    Moss, O.R.; Rossingnol, E.J.; Cannon, W.C.; Stevens, D.L.

    1980-12-01

    The goal of this project is to provide information useful in estimating hazards related to resuspension characteristics and subsequent aerodynamic behavior of aerosols from a mixing of soil and 238 PuO 2 . Experiments were carried out to determine whether simple models, used to predict the total activity concentration of resuspended particles, need to be modified to account for changes in the 238 PuO 2 activity distribution on resuspended particles due to aging of the soil mixture under humid or dry conditions. A literature search revealed that one model, based on the suspension factors, S/sub f/, may be a useful predictor of hazard reduction irrespective of site. Our experiments demonstrated little or no change in the activity of resuspended particles following humid or dry aging of the soil- 238 PuO 2 mixture. Additional terms for activity distribution changes should not be needed for the simple resuspension hazard model

  1. Dry soil diurnal quasi-periodic oscillations in soil 222Rn concentrations

    International Nuclear Information System (INIS)

    Tommasone Pascale, F.; De Francesco, S.; Carbone, P.; Cuoco, E.; Tedesco, D.

    2014-01-01

    222 Rn concentrations have been monitored during the dry season in August 2009 and August 2010, in a reworked alluvial-pyroclastic soil of the Pietramelara Plain, in Southern Italy, with the aim of determining the role of atmospheric factors in producing the quasi-periodic oscillations in soil 222 Rn concentrations reported in the literature. In this study we present the results of a detailed analysis and matching of soil 222 Rn concentrations, meteorological and solar parameters where the observed oscillations feature a characteristic behavior with second order build-up and depletion limbs, separated by a daily maximum and minimum. All these features are clearly shown to be tied to sunrise and sunset timings and environmental radiative flux regimes. Furthermore, a significant, and previously unreported, second order correlation (r 2  = 0.73) between daily maximum hourly global radiation and the daily range of soil 222 Rn concentrations has been detected, allowing estimates of the amplitude of these oscillations to be made from estimated or measured solar radiation data. The correlation has been found to be valid even in the presence of persistent patchy daytime cloudiness. In this case a daytime prolongation of the night-time build up stage and an attenuation or even suppression of daytime depletion is observed (a previously unreported effect). Neither soil cracking, nor precipitation, both suggested in some studies as causative factors for these oscillations, during the dry season appear to be necessary in explaining their occurrence. We also report the results of an artificial shading experiment, conducted in August 2009, that further support this conclusion. As soil 222 Rn concentrations during the dry season show a characteristic daily cycle, radon monitoring in soils under these conditions necessarily has to be gauged to the timings of the daily maximum and minimum, as well as to the eventual occurrence of cloudiness and to its related effects, in order to

  2. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    Directory of Open Access Journals (Sweden)

    S. Comeau

    2017-07-01

    Full Text Available The threat represented by ocean acidification (OA for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet, and between PAR and community net calcification (Gnet, using experiments on three coral communities constructed to match (i the back reef of Mo'orea, French Polynesia, (ii the fore reef of Mo'orea, and (iii the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu. For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  3. Bayesian Methods for Radiation Detection and Dosimetry

    International Nuclear Information System (INIS)

    Peter G. Groer

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model

  4. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2015-01-01

    Full Text Available In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35%. When the effect of length is researched, different lengths of basalt fibers with 4 mm, 8 mm, 12 mm, and 15 mm are put into soil at the same content of 0.05%. Experimental results show that basalt fiber can effectively improve the UCS of clay soil. And the best content and length are 0.25% and 12 mm, respectively. The results also show that the basalt fiber reinforced clay soil has the “poststrong” characteristic. About the reinforcement mechanism, the fiber and soil column-net model is proposed in this paper. Based on this model and SEM images, the effect of fiber content and length is related to the change of fiber-soil column and formation of effective fiber-soil net.

  5. Quantifying global soil carbon losses in response to warming.

    Science.gov (United States)

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  6. Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States

    Science.gov (United States)

    Bowling, David R.; Grote, E.E.; Belnap, J.

    2011-01-01

    Biological activity in arid grasslands is strongly dependent on moisture. We examined gas exchange of biological soil crusts (biocrusts), the underlying soil biotic community, and the belowground respiratory activity of C3 and C4 grasses over 2 years in southeast Utah, USA. We used soil surface CO2 flux and the amount and carbon isotope composition (δ13C) of soil CO2 as indicators of belowground and soil surface activity. Soil respiration was always below 2 μmol m-2s-1 and highly responsive to soil moisture. When moisture was available, warm spring and summer temperature was associated with higher fluxes. Moisture pulses led to enhanced soil respiration lasting for a week or more. Biological response to rain was not simply dependent on the amount of rain, but also depended on antecedent conditions (prior moisture pulses). The short-term temperature sensitivity of respiration was very dynamic, showing enhancement within 1-2 days of rain, and diminishing each day afterward. Carbon uptake occurred by cyanobacterially dominated biocrusts following moisture pulses in fall and winter, with a maximal net carbon uptake of 0.5 μmol m-2s-1, although typically the biocrusts were a net carbon source. No difference was detected in the seasonal activity of C3 and C4 grasses, contrasting with studies from other arid regions (where warm- versus cool-season activity is important), and highlighting the unique biophysical environment of this cold desert. Contrary to other studies, the δ13C of belowground respiration in the rooting zone of each photosynthetic type did not reflect the δ13C of C3 and C4 physiology.

  7. Initial Results From The Micro-pulse Lidar Network (MPL-Net)

    Science.gov (United States)

    Welton, E. J.; Campbell, J. R.; Berkoff, T. A.; Spinhirne, J. D.; Ginoux, P.

    2001-12-01

    The micro-pulse lidar system (MPL) was developed in the early 1990s and was the first small, eye-safe, and autonomous lidar built for fulltime monitoring of cloud and aerosol vertical distributions. In 2000, a new project using MPL systems was started at NASA Goddard Space Flight Center. This new project, the Micro-pulse Lidar Network or MPL-Net, was created to provide long-term observations of aerosol and cloud vertical profiles at key sites around the world. This is accomplished using both NASA operated sites and partnerships with other organizations owning MPL systems. The MPL-Net sites are co-located with NASA AERONET sunphotometers to provide aerosol optical depth data needed for calibration of the MPL. In addition to the long-term sites, MPL-Net provides lidar support for a limited number of field experiments and ocean cruises each year. We will present an overview of the MPL-Net project and show initial results from the first two MPL-Net sites at the South Pole and at Goddard Space Flight Center. Observations of dust layers transported from the desert regions of China, across the Pacific Ocean, to the east coast of the United States will also be shown. MPL-Net affiliated instruments were in place at the desert source region in China, on a research vessel in the Sea of Japan, at ARM sites in Alaska and Oklahoma, and finally at our home site in Maryland (GSFC) during the massive dust storms that occurred in April 2001. The MPL observations of dust layers at each location are shown in comparison to dust layers predicted using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART). Finally, the MPL-Net project is the primary ground-validation program for the Geo-Science Laser Altimeter System (GLAS) satellite lidar project (launch date 2002). We will present an overview demonstrating how MPL-Net results are used to help prepare the GLAS data processing algorithms and assist in the calibration/validation of the GLAS data

  8. Initial Results from the Micro-pulse Lidar Network (MPL-Net)

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Ginoux, Paul; Starr, David OC. (Technical Monitor)

    2001-01-01

    The micro-pulse lidar system (MPL) was developed in the early 1990s and was the first small, eye-safe, and autonomous lidar built for full time monitoring of cloud and aerosol vertical distributions. In 2000, a new project using MPL systems was started at NASA Goddard Space Flight Center. This new project, the Micro-pulse Lidar Network or MPL-Net, was created to provide long-term observations of aerosol and cloud vertical profiles at key sites around the world. This is accomplished using both NASA operated sites and partnerships with other organizations owning MPL systems. The MPL-Net sites are co-located with NASA AERONET sunphotometers to provide aerosol optical depth data needed for calibration of the MPL. In addition to the long-term sites, MPL-Net provides lidar support for a limited number of field experiments and ocean cruises each year. We will present an overview of the MPL-Net project and show initial results from the first two MPL-Net sites at the South Pole and at Goddard Space Flight Center. Observations of dust layers transported from the Gobi desert, across the Pacific Ocean, to the east coast of the United States will also be shown. MPL-Net affiliated instruments were in place at the desert source region in China, on a research vessel in the Sea of Japan, at ARM sites in Alaska and Oklahoma, and finally at our home site in Maryland (GSFC) during the massive dust storms that occurred in April 2001. The MPL observations of dust layers at each location are shown in comparison to dust layers predicted using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART). Finally, the MPL-Net project is the primary ground-validation program for the Geo-Science Laser Altimeter System (GLAS) satellite lidar project (launch date 2002). We will present an overview demonstrating how MPL-Net results are used to help prepare the GLAS data processing algorithms and assist in the calibration/validation of the GLAS data products.

  9. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  10. Soil properties associated with net nitrification following watershed conversion with Appalachian hardwoods to Norway spruce

    Science.gov (United States)

    Charlene N. Kelly; Stephen H. Schoenholtz; Mary Beth Adams

    2011-01-01

    Nitrate (NO3-N) in soil solution and streamwater can be an important vector of nitrogen (N) loss from forested watersheds, and nitrification is associated with negative consequences of soil acidification and eutrophication of aquatic ecosystems. The purpose of this study was to identify vegetation-mediated soil properties that may control...

  11. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    Coloured Petri nets (CP-nets) can be used for several fundamentally different purposes like functional analysis, performance analysis, and visualisation. To be able to use the corresponding tool extensions and libraries it is sometimes necessary to include extra auxiliary information in the CP......-net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... of the same basic CP-net. One solution to this problem is that the auxiliary information is not integrated into colour sets and arc inscriptions of a CP-net, but is kept separately. This makes it easy to disable this auxiliary information if a CP-net is to be used for another purpose. This paper proposes...

  12. Method for assay of radioactivity in waste soil

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Willhoite, S.B.

    1991-01-01

    Contaminated soil is a result of many nuclear operations. During facility decommissioning or site cleanup, it may be packaged for disposal. The waste soil must be assayed for contaminants to follow transport regulations and waste handling facility requirements. Methods used for assay include the following: (1) sampling the ground before excavation and assuming ground data apply to soil when packaged; (2) analyzing samples taken from the soil added to a package; (3) counting radiation at the exterior of the package; and (4) measuring neutron absorption by packaged waste soil. The Defense Nuclear Agency (DNA) worked with Eberline Instruments Corporation (EIC) to develop an automated assay method for the waste stream in a plutonium-contaminated soil cleanup at Johnston Atoll in the North Pacific Ocean. The perfected method uses a personal computer, an electronic weighing scale, and a programmable radiation counter. Computer programs get weight and radiation counts at frequent intervals as packages fill, calculate activity in the waste, and produce reports. The automated assay method is an efficient one-person routine that steadfastly collects data and produces a comprehensive record on packaged waste

  13. Variability of the contrail radiative forcing due to crystal shape

    Science.gov (United States)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    determined. Two cases are discussed here: a 1% homogeneous contrail cover and the contrail cover provided by Rädel and Shine (2008). In the second distribution case, a more realistic contrail cover is taken into account. This model combines the AERO2K flight inventory with meteorological data and normalizes it with respect to the contrail cover derived from satellite observations. Simulations performed by the Fu-Liou model show significant variability of the shortwave, longwave, and net radiative forcing with crystal shape. The nonspherical crystals have smaller net forcing in contrary to spherical particles. The differences in net radiative forcing between optical models reach up to 50%. The hexagonal column and hexagonal plate particles show the smallest net radiative forcing while the largest forcing is obtained for the spheres. The global and annual mean shortwave, longwave, and net contrail radiative forcing, average over all crystal models and assuming an optical depth of 0.3 at visible wavelengths, is -5.7, 16.8, and 11.1 mW/m2, respectively. A ratio of the radiative forcings' standard deviation to the mean value, derived using 10 different ice particle models, is about 0.2 for the shortwave, 0.14 for the longwave, and 0.23 for the net radiation.

  14. Response of heterogeneous vegetation to aerosol radiative forcing over a northeast Indian station.

    Science.gov (United States)

    Latha, R; Vinayak, B; Murthy, B S

    2018-01-15

    Importance of atmospheric aerosols through direct and indirect effects on hydrological cycle is highlighted through multiple studies. This study tries to find how much the aerosols can affect evapo-transpiration (ET), a key component of the hydrological cycle over high NDVI (normalized difference vegetation index)/dense canopy, over Dibrugarh, known for vast tea plantation. The radiative effects of aerosols are calculated using satellite (Terra-MODIS) and reanalysis data on daily and monthly scales. Aerosol optical depth (AOD) obtained from satellite and ground observations compares well. Aerosol radiative forcing (ARF), calculated using MERRA data sets of 'clean-clear radiation' and 'clear-radiation' at the surface, shows a lower forcing efficiency, 35 Wm -zs , that is about half of that of ground observations. As vegetation controls ET over high NDVI area to the maximum and that gets modified through ARF, a regression equation is fitted between ET, AOD and NDVI for this station as ET = 0.25 + (-84.27) × AOD + (131.51) × NDVI that explains 82% of 'daily' ET variation using easily available satellite data. ET is found to follow net radiation closely and the direct relation between soil moisture and ET is weak on daily scale over this station as it may be acting through NDVI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R

    2018-01-01

    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  16. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    Science.gov (United States)

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  17. Decontamination by replacing soil and soil cover with deep-level soil in flower beds and vacant places in Northern Fukushima Prefecture

    International Nuclear Information System (INIS)

    Sugiura, Hiroyuki; Kawano, Keisuke; Kayama, Yukihiko; Koube, Nobuyuki

    2012-01-01

    Radioactivity decontamination by replacing soil and soil cover with deep-level soil and soil cover in flower beds and a vacant place in Northern Fukushima Prefecture were studied, which experienced radioactive contamination due to the accident at the TEPCO's Fukushima Daiichi Nuclear Power Plant. Radioactivity counting rate 1 cm above the soil surface after replacing surface soil with uncontaminated deep-level soil decreased to 13.7% of the control in gardens. The concentration of radioactive cesium in the cover soil increased after 132 days; however, it decreased in the old surface soil under the cover soil in flower beds. A 10 cm deep-level soil cover placed by heavy machinery decreased the radiation dose rate to 70.8% of the control and radioactivity counting rate to 24.6% in the vacant place. Replacing the radioactively contaminated surface soil and soil cover with a deep-level soil was a reasonable decontamination method for the garden and vacant place because it is quick, cost effective and labour efficient. (author)

  18. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    International Nuclear Information System (INIS)

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-01-01

    Soil properties and soil–atmosphere fluxes of CO 2 , CH 4 and N 2 O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO 2 -equivalent flux of 137.27 mg CO 2 m −2 h −1 , which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH 4 and N 2 O fluxes from Spartina soil were 13.77 and 1.14 μmol m −2 h −1 , respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation

  19. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yaping [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China); Chen, Guangcheng [Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian (China); Ye, Yong, E-mail: yeyong.xmu@gmail.com [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China)

    2015-09-01

    Soil properties and soil–atmosphere fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO{sub 2}-equivalent flux of 137.27 mg CO{sub 2} m{sup −2} h{sup −1}, which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH{sub 4} and N{sub 2}O fluxes from Spartina soil were 13.77 and 1.14 μmol m{sup −2} h{sup −1}, respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the

  20. Learning Visual Basic NET

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Learning Visual Basic .NET is a complete introduction to VB.NET and object-oriented programming. By using hundreds of examples, this book demonstrates how to develop various kinds of applications--including those that work with databases--and web services. Learning Visual Basic .NET will help you build a solid foundation in .NET.

  1. Multisource Estimation of Long-term Global Terrestrial Surface Radiation

    Science.gov (United States)

    Peng, L.; Sheffield, J.

    2017-12-01

    Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual

  2. Methane oxidation in contrasting soil types

    DEFF Research Database (Denmark)

    D'Imperio, Ludovica; Nielsen, Cecilie Skov; Westergaard-Nielsen, Andreas

    2017-01-01

    Arctic ecosystems are characterized by a wide range of soil moisture conditions and thermal regimes and contribute differently to the net methane (CH4) budget. Yet, it is unclear how climate change will affect the capacity of those systems to act as a net source or sink of CH4. Here, we present...... subsequently scaled to the entire study area of 0.15 km2, a landscape also consisting of wetlands with a seasonally integrated methane release of 0.10 ± 0.01 g CH4-C m−2 (3.7 ± 1.2 g CO2-eq m−2). The result was a net landscape sink of 12.71 kg CH4-C (0.48 tonne CO2-eq) during the growing season...

  3. Soil surface CO2 fluxes and the carbon budget of a grassland

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-01-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  4. Soil biogeochemistry properties vary between two boreal forest ecosystems in Quebec: significant differences in soil carbon, available nutrients and iron and aluminium crystallinity

    Science.gov (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-04-01

    At the northernmost extent of the managed forest in Quebec, the boreal forest is currently undergoing an ecological transition from closed-canopy black spruce-moss forests towards open-canopy lichen woodlands, which spread southward. Our study aim was to determine whether this shift could impact soil properties on top of its repercussions on forest productivity or carbon storage. We studied the soil biogeochemical composition of three pedological layers in moss forests (MF) and lichen woodlands (LW) north of the Manicouagan crater in Quebec. The humus layer (FH horizons) was significantly thicker and held more carbon, nitrogen and exchangeable Ca and Mg in MF plots than in LW plots. When considering mineral horizons, we found that the deep C horizon had a very close composition in both ecosystem plots, suggesting that the parent material was of similar geochemical nature. This was expected as all selected sites developed from glacial deposit. Multivariate analysis of surficial mineral B horizon showed however that LW B horizon displayed higher concentrations of Al and Fe oxides than MF B horizon, particularly for inorganic amorphous forms. Conversely, main exchangeable base cations (Ca, Mg) were higher in B horizon of MF than that of LW. Ecosystem types explained much of the variations in the B horizon geochemical composition. We thus suggest that the differences observed in the geochemical composition of the B horizon have a biological origin rather than a mineralogical origin. We also showed that total net stocks of carbon stored in MF soils were three times higher than in LW soils (FH + B horizons, roots apart). Altogether, we suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the of vegetation structure (stand density) and composition (ground cover type) and their subsequent consequences on soil environmental

  5. A threshold in soil formation at Earth’s arid hyperarid transition

    Science.gov (United States)

    Ewing, Stephanie A.; Sutter, Brad; Owen, Justine; Nishiizumi, Kunihiko; Sharp, Warren; Cliff, Steven S.; Perry, Kevin; Dietrich, William; McKay, Christopher P.; Amundson, Ronald

    2006-11-01

    The soils of the Atacama Desert in northern Chile have long been known to contain large quantities of unusual salts, yet the processes that form these soils are not yet fully understood. We examined the morphology and geochemistry of soils on post-Miocene fans and stream terraces along a south-to-north (27° to 24° S) rainfall transect that spans the arid to hyperarid transition (21 to ˜2 mm rain y -1). Landform ages are ⩾ 2 My based on cosmogenic radionuclide concentrations in surface boulders, and Ar isotopes in interbedded volcanic ash deposits near the driest site indicate a maximum age of 2.1 My. A chemical mass balance analysis that explicitly accounts for atmospheric additions was used to quantify net changes in mass and volume as a function of rainfall. In the arid (21 mm rain y -1) soil, total mass loss to weathering of silicate alluvium and dust (-1030 kg m -2) is offset by net addition of salts (+170 kg m -2). The most hyperarid soil has accumulated 830 kg m -2 of atmospheric salts (including 260 kg sulfate m -2 and 90 kg chloride m -2), resulting in unusually high volumetric expansion (120%) for a soil of this age. The composition of both airborne particles and atmospheric deposition in passive traps indicates that the geochemistry of the driest soil reflects accumulated atmospheric influxes coupled with limited in-soil chemical transformation and loss. Long-term rates of atmospheric solute addition were derived from the ion inventories in the driest soil, divided by the landform age, and compared to measured contemporary rates. With decreasing rainfall, the soil salt inventories increase, and the retained salts are both more soluble and present at shallower depths. All soils generally exhibit vertical variation in their chemistry, suggesting slow and stochastic downward water movement, and greater climate variability over the past 2 My than is reflected in recent (˜100 y) rainfall averages. The geochemistry of these soils shows that the transition

  6. Radiation dose in the high background radiation area in Kerala, India.

    Science.gov (United States)

    Christa, E P; Jojo, P J; Vaidyan, V K; Anilkumar, S; Eappen, K P

    2012-03-01

    A systematic radiological survey has been carried out in the region of high-background radiation area in Kollam district of Kerala to define the natural gamma-radiation levels. One hundred and forty seven soil samples from high-background radiation areas and five samples from normal background region were collected as per standard sampling procedures and were analysed for (238)U, (232)Th and (40)K by gamma-ray spectroscopy. External gamma dose rates at all sampling locations were also measured using a survey meter. The activities of (238)U, (232)Th and (40)K was found to vary from 17 to 3081 Bq kg(-1), 54 to 11976 Bq kg(-1) and BDL (67.4 Bq kg(-1)) to 216 Bq kg(-1), respectively, in the study area. Such heterogeneous distribution of radionuclides in the region may be attributed to the deposition phenomenon of beach sand soil in the region. Radium equivalent activities were found high in several locations. External gamma dose rates estimated from the levels of radionuclides in soil had a range from 49 to 9244 nGy h(-1). The result of gamma dose rate measured at the sampling sites using survey meter showed an excellent correlation with dose rates computed from the natural radionuclides estimated from the soil samples.

  7. Soil Penetration by Earthworms and Plant Roots--Mechanical Energetics of Bioturbation of Compacted Soils.

    Directory of Open Access Journals (Sweden)

    Siul Ruiz

    Full Text Available We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip. The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities.

  8. Soil organic matter dynamics and the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  9. The Impacts of Heating Strategy on Soil Moisture Estimation Using Actively Heated Fiber Optics.

    Science.gov (United States)

    Dong, Jianzhi; Agliata, Rosa; Steele-Dunne, Susan; Hoes, Olivier; Bogaard, Thom; Greco, Roberto; van de Giesen, Nick

    2017-09-13

    Several recent studies have highlighted the potential of Actively Heated Fiber Optics (AHFO) for high resolution soil moisture mapping. In AHFO, the soil moisture can be calculated from the cumulative temperature ( T cum ), the maximum temperature ( T max ), or the soil thermal conductivity determined from the cooling phase after heating ( λ ). This study investigates the performance of the T cum , T max and λ methods for different heating strategies, i.e., differences in the duration and input power of the applied heat pulse. The aim is to compare the three approaches and to determine which is best suited to field applications where the power supply is limited. Results show that increasing the input power of the heat pulses makes it easier to differentiate between dry and wet soil conditions, which leads to an improved accuracy. Results suggest that if the power supply is limited, the heating strength is insufficient for the λ method to yield accurate estimates. Generally, the T cum and T max methods have similar accuracy. If the input power is limited, increasing the heat pulse duration can improve the accuracy of the AHFO method for both of these techniques. In particular, extending the heating duration can significantly increase the sensitivity of T cum to soil moisture. Hence, the T cum method is recommended when the input power is limited. Finally, results also show that up to 50% of the cable temperature change during the heat pulse can be attributed to soil background temperature, i.e., soil temperature changed by the net solar radiation. A method is proposed to correct this background temperature change. Without correction, soil moisture information can be completely masked by the background temperature error.

  10. Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy.

    Science.gov (United States)

    Kumar B N, Vinay; Kampe, Bernd; Rösch, Petra; Popp, Jürgen

    2015-07-07

    A soil habitat consists of an enormous number of pigmented bacteria with the pigments mainly composed of diverse carotenoids. Most of the pigmented bacteria in the top layer of the soil are photoprotected from exposure to huge amounts of UVA radiation on a daily basis by these carotenoids. The photostability of these carotenoids depends heavily on the presence of specific features like a carbonyl group or an ionone ring system on its overall structure. Resonance Raman spectroscopy is one of the most sensitive and powerful techniques to detect and characterize these carotenoids and also monitor processes associated with them in their native system at a single cell resolution. However, most of the resonance Raman profiles of carotenoids have very minute differences, thereby making it extremely difficult to confirm if these differences are attributed to the presence of different carotenoids or if it is a consequence of their interaction with other cellular components. In this study, we devised a method to overcome this problem by monitoring also the photodegradation of the carotenoids in question by UVA radiation wherein a differential photodegradation response will confirm the presence of different carotenoids irrespective of the proximities in their resonance Raman profiles. Using this method, the detection and characterization of carotenoids in pure cultures of five species of pigmented coccoid soil bacteria is achieved. We also shed light on the influence of the structure of the carotenoid on its photodegradation which can be exploited for use in the characterization of carotenoids via resonance Raman spectroscopy.

  11. Incorporation of a Cuban radiological station to the global net of isotopes in precipitations

    International Nuclear Information System (INIS)

    Dominguez L, O.; Ramos V, E.O.; Prendes A, M.; Alonso A, D.; Caveda R, C.A.

    2006-01-01

    From March, 2002 the West station of the National Net of Environmental Radiological Surveillance located in the Center of Protection and Hygiene of the Radiations, belongs to the Global Net of Isotopes in Precipitations. The obtained isotopic information of the analysis of the samples of monthly monitored precipitations (oxygen-18, deuterium and tritium) its are stored in a database, which is available through Internet. For the acceptance in the Global Net, it was necessary the incorporation to the monitoring of the station the meteorological surface variables. Also it was developed a software for the calculation of the tension of the water steam starting from the values of humidity and temperature. The obtained results in 2002 and published recently, its are inside the range of values reported for these isotopes in the Caribbean area. (Author)

  12. Pro-Nets versus No-Nets: Differences in Urban Older Adults' Predilections for Internet Use

    Science.gov (United States)

    Cresci, M. Kay; Yarandi, Hossein N.; Morrell, Roger W.

    2010-01-01

    Enthusiasm for information technology (IT) is growing among older adults. Many older adults enjoy IT and the Internet (Pro-Nets), but others have no desire to use it (No-Nets). This study found that Pro-Nets and No-Nets were different on a number of variables that might predict IT use. No-Nets were older, had less education and income, were…

  13. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  14. Effects of topography on simulated net primary productivity at landscape scale.

    Science.gov (United States)

    Chen, X F; Chen, J M; An, S Q; Ju, W M

    2007-11-01

    Local topography significantly affects spatial variations of climatic variables and soil water movement in complex terrain. Therefore, the distribution and productivity of ecosystems are closely linked to topography. Using a coupled terrestrial carbon and hydrological model (BEPS-TerrainLab model), the topographic effects on the net primary productivity (NPP) are analyzed through four modelling experiments for a 5700 km(2) area in Baohe River basin, Shaanxi Province, northwest of China. The model was able to capture 81% of the variability in NPP estimated from tree rings, with a mean relative error of 3.1%. The average NPP in 2003 for the study area was 741 gCm(-2)yr(-1) from a model run including topographic effects on the distributions of climate variables and lateral flow of ground water. Topography has considerable effect on NPP, which peaks near 1350 m above the sea level. An elevation increase of 100 m above this level reduces the average annual NPP by about 25 gCm(-2). The terrain aspect gives rise to a NPP change of 5% for forests located below 1900 m as a result of its influence on incident solar radiation. For the whole study area, a simulation totally excluding topographic effects on the distributions of climatic variables and ground water movement overestimated the average NPP by 5%.

  15. Ozone flux over a Norway spruce forest and correlation with net ecosystem production

    International Nuclear Information System (INIS)

    Zapletal, Milos; Cudlin, Pavel; Chroust, Petr; Urban, Otmar; Pokorny, Radek; Edwards-Jonasova, Magda; Czerny, Radek; Janous, Dalibor; Taufarova, Klara; Vecera, Zbynek; Mikuska, Pavel; Paoletti, Elena

    2011-01-01

    Daily ozone deposition flux to a Norway spruce forest in Czech Republic was measured using the gradient method in July and August 2008. Results were in good agreement with a deposition flux model. The mean daily stomatal uptake of ozone was around 47% of total deposition. Average deposition velocity was 0.39 cm s -1 and 0.36 cm s -1 by the gradient method and the deposition model, respectively. Measured and modelled non-stomatal uptake was around 0.2 cm s -1 . In addition, net ecosystem production (NEP) was measured by using Eddy Covariance and correlations with O 3 concentrations at 15 m a.g.l., total deposition and stomatal uptake were tested. Total deposition and stomatal uptake of ozone significantly decreased NEP, especially by high intensities of solar radiation. - Highlights: → We estimate ozone deposition flux to a Norway spruce forest using the gradient method and model. → The mean stomatal uptake of ozone is approximately 47% of the total deposition. → We measure net ecosystem production (NEP) using Eddy Covariance. → We test whether elevated total deposition and stomatal uptake of O 3 imply a reduction of NEP. → Deposition and stomatal uptake of O 3 decrease NEP, especially by high intensities of solar radiation. - Net ecosystem production of a Norway spruce forest decreases with increasing deposition and stomatal uptake of ozone.

  16. BALANÇO DE RADIAÇÃO NO PERÍMETRO IRRIGADO SÃO GONÇALO - PB MEDIANTE IMAGENS ORBITAIS

    Directory of Open Access Journals (Sweden)

    BERNARDO BARBOSA DA SILVA

    2011-01-01

    Full Text Available The net radiation is of great importance in studies related to energy and mass exchanges between the land surface and atmosphere, although it is not measured routinely in a meteorological network. In this sense, the use of satellite images over the last decade has been increasingly used for its determination. The present study aimed at determining the radiation balance in the Irrigated São Gonçalo Project - PISG and surrounding areas based on satellite images and a few meteorological data measured within the PISG. Landsat 5 Thematic Mapper images available in 2008 and procedures of SEBAL - Surface Energy Balance Algorithm for Land were used for mapping albedo and net radiation. Three selected areas into the study scene were used to discuss the behavior of different components of the radiation balance under different soil cover types. It was observed that the waters of São Gonçalo dam presented albedo in the range of 3.3 to 7,5%, while in the soil with low vegetation cover the albedo ranged between 32 and 38,7% over the studied period. In the irrigated coconut orchard the albedo ranged between 15.0 to 18.7%, while the net radiation values over the dam and the coconut orchard were consistently higher than those in other areas. It was concluded that the irrigated areas have lower albedo and surface temperature and thus increased net radiation, contributing to reduce the air temperature locally.

  17. Topographical controls on soil moisture distribution and runoff response in a first order alpine catchment

    Science.gov (United States)

    Penna, Daniele; Gobbi, Alberto; Mantese, Nicola; Borga, Marco

    2010-05-01

    detect the presence/absence of surface runoff. Results show a significant correlation between plot-averaged soil moisture at 0-20 cm depth, local slope and local curvature, while poor correlations were found with aspect and solar radiation: this suggests a sharp control of the catchment topological architecture (likely coupled with soil properties) on soil moisture distribution. This was also confirmed by the visual inspection of interpolated maps which reveal the persistence of high values of soil moisture in hollow areas and, conversely, of low values over the hillslopes. Moreover, a strong correlation between plot-averaged soil moisture patterns over time, with no decline after rainfall events, indicates a good temporal stability of water content distribution and its independence from the triggering of surface flow and transient lateral subsurface flow during wet conditions. The analysis of the time lag between storm centroid and piezometric peak shows an increasing delay of water table reaction with increasing distance from the stream, revealing different groundwater dynamics between the near-stream and the hillslope zone. Furthermore, the significant correlation between groundwater time lag monitored for the net of piezometers and the local slope suggests a topographical influence on the temporal and spatial variability of subsurface runoff. Finally, the extent of the ephemeral stream network was clearly dependent on the amount of precipitation but a different percentage of active OFDs and piezometers for the same rainfall event suggests a decoupling between patterns of surface and subsurface flows in the study area. Key words: topographical controls, soil moisture patterns, groundwater level, overland flow.

  18. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    Science.gov (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  19. Inverse transition radiation

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Romea, R.D.; Kimura, W.D.

    1997-01-01

    A new method for laser acceleration is proposed based upon the inverse process of transition radiation. The laser beam intersects an electron-beam traveling between two thin foils. The principle of this acceleration method is explored in terms of its classical and quantum bases and its inverse process. A closely related concept based on the inverse of diffraction radiation is also presented: this concept has the significant advantage that apertures are used to allow free passage of the electron beam. These concepts can produce net acceleration because they do not satisfy the conditions in which the Lawson-Woodward theorem applies (no net acceleration in an unbounded vacuum). Finally, practical aspects such as damage limits at optics are employed to find an optimized set of parameters. For reasonable assumptions an acceleration gradient of 200 MeV/m requiring a laser power of less than 1 GW is projected. An interesting approach to multi-staging the acceleration sections is also presented. copyright 1997 American Institute of Physics

  20. Radiation exposure and dose to small mammals in radon-rich soils

    International Nuclear Information System (INIS)

    Macdonald, C.R.; Laverock, M.J.

    1998-01-01

    Protection of the environment from radionuclide releases requires knowledge of the normal background levels of radiation exposure in the exposed biotic community and an estimate of the detriment caused by additional exposure. This study modeled the background exposure and dose to the lungs of small burrowing mammals from 222 Rn in artificial burrows in radon-rich soils at a site in southeastern Manitoba. E-PERM chambers used to measure 222 Rn in soil showed good reproducibility of measurement, with an average coefficient of variance (CV) of about 10%. Geometric mean (GM) 222 Rn concentrations at nine randomly selected sites ranged from 5,490 Bq/m 3 (GSD = 1.57, n = 7) to 41,000 Bq/m 3 (GSD = 1.02, n = 5). Long-term monitoring of 222 Rn concentrations in artificial burrows showed large variation within and between burrows and did not show consistent variation with season, orientation of the burrow opening, or levels of 226 Ra in the soil. Annual GM concentrations in individual burrows ranged from 7,480 Bq/m 3 (GSD = 1.60) to 18,930 Bq/m 3 (GSD = 1.81) in burrows several meters apart. A grand GM of 9,990 Bq/m 3 (GSD = 1.81, n = 214) was measured over the site for the year. An exposure model was constructed for five small mammal species based on their respiration rates and the number of hours spent in the burrow, active or hibernating, exposed to soil gas 222 Rn, and the time spent out of the burrow exposed to atmospheric 222 Rn. A background dose of 0.9 mGy/a from atmospheric 222 Rn (40 Bq/m 3 ) was estimated for a large-bodied (80 kg), nonburrowing animal living on the soil surface. The highest exposures (mJ/a) in burrowing mammals occurred in those species with the highest respiration rates. Hibernation accounted for a small fraction of total annual exposure ( 22R n concentrations from the field studies and an equilibrium factor (F) of 0.5, doses to lung ranged from 90 mGy/a in the badger to 700 mGy/a in the pocket gopher. These doses closely correspond to those

  1. On the Momentum Transported by the Radiation Field of a Long Transient Dipole and Time Energy Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-11-01

    Full Text Available The paper describes the net momentum transported by the transient electromagnetic radiation field of a long transient dipole in free space. In the dipole a current is initiated at one end and propagates towards the other end where it is absorbed. The results show that the net momentum transported by the radiation is directed along the axis of the dipole where the currents are propagating. In general, the net momentum P transported by the electromagnetic radiation of the dipole is less than the quantity U / c , where U is the total energy radiated by the dipole and c is the speed of light in free space. In the case of a Hertzian dipole, the net momentum transported by the radiation field is zero because of the spatial symmetry of the radiation field. As the effective wavelength of the current decreases with respect to the length of the dipole (or the duration of the current decreases with respect to the travel time of the current along the dipole, the net momentum transported by the radiation field becomes closer and closer to U / c , and for effective wavelengths which are much shorter than the length of the dipole, P ≈ U / c . The results show that when the condition P ≈ U / c is satisfied, the radiated fields satisfy the condition Δ t Δ U ≥ h / 4 π where Δ t is the duration of the radiation, Δ U is the uncertainty in the dissipated energy and h is the Plank constant.

  2. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    Science.gov (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  3. Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure

    Science.gov (United States)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-05-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.

  4. Radiation-thermal transformation of degraded oils

    International Nuclear Information System (INIS)

    Guliyeva, N.G.; Aliyeva, S.F.

    2010-01-01

    Full text :In order to elucidate the role of radiation in the process of oil degradation in the environment, and to identify opportunities for application of radiation-chemical technology to clean oil-contaminated soil were studied some regularities of radiation-chemical transformations of oil samples taken from wells, as well as after long-term presence on the surface of the water and soil. The most high radiation resistances of oil are samples taken from surface water. This is due to structural changes in the process of oil degradation, namely an increase in their part of the radiation-resistant resins and aspartames. This is due to evaporation of light hydrocarbons and heavy destructive transformations under the influence of oxygen, microorganisms, as well as components of the surface layer of soil. This phenomenon is explained by the specificity of action of the beam of accelerated electrons, namely the possible heating of the reaction zone due to inhibition of the electron. In this case the acceleration of diffusion processes results in an increase in the yield of gases.

  5. Methodology for implementation of a national metrology net of radionuclides used in nuclear medicine

    International Nuclear Information System (INIS)

    Santos, Joyra Amaral dos

    2004-01-01

    The National Laboratory for Ionizing Radiation Metrology, of the Institute of Radiation Protection and Dosimetry, of the National Commission on Nuclear Energy (IRD/CNEN), comes leading a comparison program for activity measurements of radiopharmaceuticals administered to patients in the Nuclear Medicine Services (NMS) with the purpose to promote the quality control. This work presents a quality assurance program for the performance of such measurements, evaluated in the comparison runs between hospitals and LNMRI, under the statistic point of view and the compliment of regulatory authority norms. The performance of the radionuclides 67 Ga, 123 I, 131 I, 99m Tc and 210 Tl were evaluated and 201 TI have been standardized by absolute methods. Besides, it was established the traceability of the radioactivity standards used in nuclear medicine and a methodology for implementation of a national metrology net of radionuclides. The comparison results prove that the implementation of a radionuclide metrology net is viable, important and feasible. (author)

  6. First use of soil nematode communities as bioindicator of radiation impact in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, C.; Bonzom, J.M.; Adam-Guillermin, C. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO (France); Della-Vedova, C. [Magelis, Cadenet (France); Beaugelin-Seiller, K. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LM2E (France); Gaschak, S. [Chernobyl Center for Nuclear safety, Radioactive waste and Radioecology, International Radioecology Laboratory (Ukraine); Coppin, F. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, L2BT (France); Garnier-Laplace, J. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS (France)

    2014-07-01

    contamination may influence the nematode assemblage either directly or indirectly by modifying their food resources. Greater Maturity Index (MI), usually characterising better soil quality, was associated to greater pH, moisture and TDR values. These results suggest that the structure of the nematode community from CEZ is slightly impacted by chronic exposure to ionising radiation for predicted TDR reaching more than 200 μGy h{sup -1}. This dose rate is 20 times higher than the predicted no-effect dose rate of 10 μGy h{sup -1} corresponding to the effect screening value to be used in ecological risk assessment. This result confirms previous laboratory study which revealed a low radio-sensitivity of terrestrial invertebrates to chronic radiation exposure. This apparent low sensitivity of nematode community to chronic exposure to radioactive soils may be partly explained by the dominance in the sampling soils of nematodes that are naturally resistant to pollutant and environmental disturbance. Document available in abstract form only. (authors)

  7. Relating soil microbial activity to water content and tillage-induced differences in soil structure

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag; Petersen, Søren O

    2011-01-01

    Several studies have identified optima in soil water content for aerobic microbial activity, and this has been ascribed to a balance between gas and solute diffusivity as limiting processes. We investigated the role of soil structure, as created by different tillage practices (moldboard ploughing......, MP, or shallow tillage, ST), in regulating net nitrification, applied here as an index of aerobic microbial activity. Intact soil cores were collected at 0–4 and 14–18 cm depth from a fine sandy (SAND) and a loamy (LOAM) soil. The cores were drained to one of seven matric potentials ranging from − 15...... content to a maximum and then decreased. This relationship was modelled with a second order polynomium. Model parameters did not show any tillage effect on the optimum water content, but the optimum coincided with a lower matric potential in ST (SAND: − 140 to –197 hPa; LOAM: − 37 to − 65 hPa) than in MP...

  8. Matter-antimatter accounting, thermodynamics, and black-hole radiation

    International Nuclear Information System (INIS)

    Toussaint, D.; Treiman, S.B.; Wilczek, F.; Zee, A.

    1979-01-01

    We discuss several issues bearing on the observed asymmetry between matter and antimatter in the content of the universe, in particular, the possible role in this of Hawking radiation from black holes, with allowance for weak C- and T-violating interactions. We show that the radiation, species by species, can be asymmetric between baryons and antibaryons. However, if baryon number is microscopically conserved there cannot be a net flux of baryon number in the radiation. Black-hole absorption from a medium with net baryon number zero can drive the medium to an asymmetric state. On the other hand, if baryon conservation is violated, a net asymmetry can develop. This can arise through asymmetric gravitational interactions of the radiated particles, and conceivably, by radiation of long-lived particles which decay asymmetrically. In the absence of microscopic baryon conservation, asymmetries can also arise from collision processes generally,say in the early stages of the universe as a whole. However, no asymmetries can develop (indeed any ''initial'' ones are erased) insofar as the baryon-violating interactions are in thermal equilibrium, as they might well be in the dense, high-temperature stages of the very early universe. Thus particle collisions can generate asymmetries only when nonequilibrium effects driven by cosmological expansion come into play. A scenario for baryon-number generation suggested by superunified theories is discussed in some detail. Black-hole radiation is another highly nonequilibrium process which is very efficient in producing asymmetry, given microscopic C, T, and baryon-number violation

  9. Soil properties differently influence estimates of soil CO2 efflux from three chamber-based measurement systems

    Science.gov (United States)

    John R. Butnor; Kurt H. Johnsen; Chris A. Maier

    2005-01-01

    Soil C02 efflux is a major component of net ecosystem productivity (NEP) of forest systems. Combining data from multiple researchers for larger-scale modeling and assessment will only be valid if their methodologies provide directly comparable results. We conducted a series of laboratory and field tests to assess the presence and magnitude of...

  10. Assessment of terrestrial gamma radiation dose rate (TGRD) of Kelantan State, Malaysia. Relationship between the geological formation and soil type to radiation dose rate

    International Nuclear Information System (INIS)

    Garba, N.N.; Gabdo, H.T.; Federal College of Education, Yola

    2014-01-01

    Terrestrial gamma radiation dose rates (TGRD) of Kelantan State were measured in situ using a portable [NaI(TI)] micro roentgen (μR) survey meter. The TGRD rates ranged between 44 and 500 nGy h -1 with a mean value of 209 ± 8 nGy h -1 . The distribution of these measurements in various districts of the state shows the statistically the influence of geology and soil types on the dose rate values. The data obtained could be used in formulating safety standard and radiological guidelines. (author)

  11. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    Science.gov (United States)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  12. Priming of soil carbon decomposition in two Inner Mongolia grassland soils following sheep dung addition: a study using ¹³C natural abundance approach.

    Science.gov (United States)

    Ma, Xiuzhi; Ambus, Per; Wang, Shiping; Wang, Yanfen; Wang, Chengjie

    2013-01-01

    To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ¹³C = -26.8‰; dung δ¹³C = -26.2‰) or Cleistogenes squarrosa (C₄ plant with δ¹³C = -14.6‰; dung δ¹³C = -15.7‰). Fresh C₃ and C₄ sheep dung was mixed with the two grassland soils and incubated under controlled conditions for analysis of ¹³C-CO₂ emissions. Soil samples were taken at days 17, 43, 86, 127 and 152 after sheep dung addition to detect the δ¹³C signal in soil and dung components. Analysis revealed that 16.9% and 16.6% of the sheep dung C had decomposed, of which 3.5% and 2.8% was sequestrated in the soils of L. chinensis and A. frigida grasslands, respectively, while the remaining decomposed sheep dung was emitted as CO₂. The cumulative amounts of C respired from dung treated soils during 152 days were 7-8 times higher than in the un-amended controls. In both grassland soils, ca. 60% of the evolved CO₂ originated from the decomposing sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g and 1.6 g additional soil C kg⁻¹ dry soil had been emitted as CO₂ for the L. chinensis and A. frigida soils, respectively. Hence, the net C losses from L. chinensis and A. frigida soils were 0.6 g and 0.9 g C kg⁻¹ soil, which was 2.6% and 7.0% of the total C in L. chinensis and A. frigida grasslands soils, respectively. Our results suggest that grazing of degraded Inner Mongolian pastures may cause a net soil C loss due to the positive priming effect, thereby accelerating soil deterioration.

  13. Use of different surface covering materials to enhance removal of radiocaesium in plants and upper soil from orchards in Fukushima prefecture.

    Science.gov (United States)

    Sato, Mamoru; Akai, Hiroko; Saito, Yuichi; Takase, Tsugiko; Kikunaga, Hidetoshi; Sekiya, Nobuhito; Ohtsuki, Tsutomu; Yamaguchi, Katsuhiko

    2017-04-04

    The effectiveness of a decontamination methodology whereby herbaceous plants were grown through different materials covering the soil surface followed by subsequent removal of the material, associated plant tissues and attached soil on 137 Cs removal from soil was evaluated. Revegetation netting sown with Kentucky bluegrass and white clover had a high effectiveness in 137 Cs removal when rolling up the plants, roots, and rhizosphere soil approximately 6 months after sowing. The removal rate was lower when there was higher 137 Cs vertical migration down the soil profile. The maximum removal effectiveness of 93.1% was observed by rolling up fertilized Kentucky bluegrass with a well-developed root mat without netting, indicating that applying nutrients to encourage the development of roots or root mats in the 3 cm topsoil rhizosphere is an efficient technology to increase the decontamination effect of plant removal in orchards. Netting and weeding were able to remove up to 80% of 137 Cs in the soil without the use of heavy machinery. There was a significant relationship between the removal ratio and the removed soil weight per area. Using the relationship on the site below the canopy, removal of 14.3 kg m -2 DW soil would achieve a removal ratio of 80%. The effectiveness of the technique will decrease with time as radiocaesium migrates down the soil profile but this would be expected to occur slowly in many soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Carbon dioxide efflux from a 550 m3 soil across a range of soul temperatues

    Science.gov (United States)

    Ramesh Murthy; Kevin L. Griffin; Stanley J. Zarnoch; Philip M. Dougherty; Barbara Watson; Joost Van Haren; Randy L. Patterson; Tilka Mahato

    2003-01-01

    Because of scaling problems point measurements of soil CO2 efflux on a small volume of soil may not necessarily reflect an overall community response. The aim of this study was to test this hypothesis in the Biosphere 2 facility and achieve the following broad goals: (1) investigate soil net CO2 exchange–temperature...

  15. Surface radiative forcing of forest disturbances over northeastern China

    International Nuclear Information System (INIS)

    Zhang, Yuzhen; Liang, Shunlin

    2014-01-01

    Forests provide important climate forcing through biogeochemical and biogeophysical processes. In this study, we investigated the climatic effects of forest disturbances due to changes in forest biomass and surface albedo in terms of radiative forcing over northeastern China. Four types of forest disturbances were considered: fires, insect damage, logging, and afforestation and reforestation. The mechanisms of the influence of forest disturbances on climate were different. ‘Instantaneous’ net radiative forcings caused by fires, insect damage, logging, and afforestation and reforestation were estimated at 0.53 ± 0.08 W m −2 , 1.09 ± 0.14 W m −2 , 2.23 ± 0.27 W m −2 , and 0.14 ± 0.04 W m −2 , respectively. Trajectories of CO 2 -driven radiative forcing, albedo-driven radiative forcing, and net forcing were different with time for each type of disturbance. Over a decade, the estimated net forcings were 2.24 ± 0.11 W m −2 , 0.20 ± 0.31 W m −2 , 1.06 ± 0.41 W m −2 , and −0.47 ± 0.07 W m −2 , respectively. These estimated radiative forcings from satellite observations provided evidence for the mechanisms of the influences of forest disturbances on climate. (paper)

  16. ROOT.NET: Using ROOT from .NET languages like C# and F#

    Science.gov (United States)

    Watts, G.

    2012-12-01

    ROOT.NET provides an interface between Microsoft's Common Language Runtime (CLR) and .NET technology and the ubiquitous particle physics analysis tool, ROOT. ROOT.NET automatically generates a series of efficient wrappers around the ROOT API. Unlike pyROOT, these wrappers are statically typed and so are highly efficient as compared to the Python wrappers. The connection to .NET means that one gains access to the full series of languages developed for the CLR including functional languages like F# (based on OCaml). Many features that make ROOT objects work well in the .NET world are added (properties, IEnumerable interface, LINQ compatibility, etc.). Dynamic languages based on the CLR can be used as well, of course (Python, for example). Additionally it is now possible to access ROOT objects that are unknown to the translation tool. This poster will describe the techniques used to effect this translation, along with performance comparisons, and examples. All described source code is posted on the open source site CodePlex.

  17. ROOT.NET: Using ROOT from .NET languages like C and F

    International Nuclear Information System (INIS)

    Watts, G

    2012-01-01

    ROOT.NET provides an interface between Microsoft's Common Language Runtime (CLR) and .NET technology and the ubiquitous particle physics analysis tool, ROOT. ROOT.NET automatically generates a series of efficient wrappers around the ROOT API. Unlike pyROOT, these wrappers are statically typed and so are highly efficient as compared to the Python wrappers. The connection to .NET means that one gains access to the full series of languages developed for the CLR including functional languages like F (based on OCaml). Many features that make ROOT objects work well in the .NET world are added (properties, IEnumerable interface, LINQ compatibility, etc.). Dynamic languages based on the CLR can be used as well, of course (Python, for example). Additionally it is now possible to access ROOT objects that are unknown to the translation tool. This poster will describe the techniques used to effect this translation, along with performance comparisons, and examples. All described source code is posted on the open source site CodePlex.

  18. Evapotranspiration estimates and consequences due to errors in the determination of the net radiation and advective effects

    International Nuclear Information System (INIS)

    Oliveira, G.M. de; Leitao, M. de M.V.B.R.

    2000-01-01

    The objective of this study was to analyze the consequences in the evapotranspiration estimates (ET) during the growing cycle of a peanut crop due to the errors committed in the determination of the radiation balance (Rn), as well as those caused by the advective effects. This research was conducted at the Experimental Station of CODEVASF in an irrigated perimeter located in the city of Rodelas, BA, during the period of September to December of 1996. The results showed that errors of the order of 2.2 MJ m -2 d -1 in the calculation of Rn, and consequently in the estimate of ET, can occur depending on the time considered for the daily total of Rn. It was verified that the surrounding areas of the experimental field, as well as the areas of exposed soil within the field, contributed significantly to the generation of local advection of sensible heat, which resulted in the increase of the evapotranspiration [pt

  19. Attribution of soil moisture dynamics - Initial conditions vs. atmospheric forcing and the role of climate change

    Science.gov (United States)

    Orth, Rene; Seneviratne, Sonia I.

    2014-05-01

    The world's climate has started to change more quickly in recent decades and a stronger and faster shift is expected in the future. Even if the public perception is mostly limited to a widespread warming, climate change is a complex phenomenon impacting numerous variables of the climate system in different ways, also depending on time and location. Furthermore, extreme events may change more drastically than the mean climate. There is growing evidence that climate change is mostly man-made. However, it is still a matter of debate to which extent changes of the mean climate but also of particular (extreme) events are due to human impact. These questions are addressed by the growing science of climate attribution. Pointing out the anthropogenic influence on extreme events such as the 2010 Russian heatwave or the 2002 floods in Central Europe may help to support adaptation to climate change. This study investigates soil moisture in Europe in the context of climate change, because of its role as a key variable of the land-climate system and its practical importance for instance to agriculture. To derive soil moisture dynamics from 1984-2007 we use E-OBS forcing data together with SRB radiation data and employ an observation-based approach where soil moisture is computed from a water balance equation in which runoff (normalized with precipitation) and ET (normalized with net radiation) are simple functions of soil moisture. The constant runoff function is prescribed for the whole continent, and the ET function is calibrated using temperature data. After performing a validation of the inferred soil moisture data we use it in order to analyze changes in the likelihood of droughts. Our results show increased drought risk especially in north-eastern Europe and the Mediterranean, whereby the probability of extreme droughts increases stronger as for mild dryness episodes. To assess the potential for drought forecasting we furthermore study the importance of the initial

  20. Nitrogen-15 natural abundance of different soil N pools as a tool for assessing N transformation processes in alpine soils

    Science.gov (United States)

    Makarov, Mikhail; Malysheva, Tatiana; Tiunov, Alexei; Kadulin, Maxim; Maslov, Mikhail

    2017-04-01

    Nitrogen availability, net N mineralization, nitrification and 15N natural abundance of total soil N and small soil N pools (N-NH4+, N-NO3-, DON and microbial biomass N) were studied in a toposequence of alpine ecosystems in the Northern Caucasus. The toposequence was represented by (1) low productive alpine lichen heath (ALH) of the wind-exposed ridge and upper slope; (2) more productive Festuca varia grassland (FG) of the middle slope; (3) most productive Geranium gymnocaulon/Hedysarum caucasicum meadow (GHM) of the lower slope and (4) low productive snow bed community (SBC) of the slope bottom. Nitrogen transformation in the alpine soils produces distinct N pools with different 15N enrichment: DON/microbial biomass N > total N > N-NH4+ > N-NO3-. Grassland and meadow soils of the middle part of the toposequence are characterized by higher nitrogen transformation activities and higher δ15 values of total N and N-NH4+. Field incubation of alpine soils increased δ15N of N-NH4+ from -2.6 - +2.0‰ to +6.1 - +15.7‰. The N-NO3-produced in the incubation experiment had extremely low (negative) δ15N values (up to -14‰). We found a positive correlation between δ15N of different soil N pools (total N, N-NH4+ and N-NO3-) and net N mineralization and nitrification. Nitrification controls the formation of 15N enriched N-NH4+ pool while N mineralization probably had an important role in regulation of 15N enrichment of DON pool in alpine soils. Overall, our results support the hypothesis that 15N is more enriched in N-rich and more depleted in N-poor ecosystems. We conclude that δ15N values of different soil N pools could be a good indicator of microbial N transformation in alpine soils of the Northern Caucasus. Acknowledgement: This study was supported by Russian Science Foundation (16-14-10208).

  1. Deposition of eroded soil on terraced croplands in Minchet catchment, Ethiopian Highlands

    Directory of Open Access Journals (Sweden)

    Alemtsehay Subhatu

    2017-09-01

    Full Text Available In the Ethiopian Highlands, soil and water conservation practices are of utmost importance to conserve eroded soil and combat soil loss. This study provides detailed results on on-site sediment deposition and net soil loss in terraced croplands in a catchment in the sub-humid Ethiopian Highlands. Sediment deposition was measured on horse bean and maize fields during the crop growing seasons of 2014 and 2015. Measurements took place on observation plots on terraced cropland with varying spacing between terraces and varying slope gradients. Net soil loss, in this case the amount leaving the terraced cropland, was calculated by modelling the Universal Soil Loss Equation (USLE for the whole observation field and subtracting the measured sediment deposition. The study result showed about 8–11 t ha−1 sediment was deposited in the deposition zone of the terraced cropland, with greater sediment deposition on terraces with narrow spacing and steeper slope gradients. Sediment deposition was highest in July and August, and relatively low in September. Annual soil loss ranged from 32 to 37 t ha−1 in the terraced cropland of the study area. From the total soil loss in the crop growing season, about 54–74% sediment was deposited on the deposition zone of terraced crop fields. Implementation of soil and water conservation with narrow spacing, especially on the steep slopes of the sub-humid Ethiopian Highlands or other similar area, are thus highly recommended as they enable conservation of the eroded soil in the cropland.

  2. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    Science.gov (United States)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-11-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4

  3. Effects of grassland management on the emission of methane from grassland on peat soils

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O. [Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen (Netherlands)

    1995-12-31

    The aim of the project on the title subject is to provide insight into the major controlling factors that contribute to the net exchange rates of methane (CH4) between grassland and atmosphere, and to provide quantitative net CH4 emission rates. Net CH4 emissions have been monitored with vented closed flux chambers on both intensively managed grasslands and grasslands in a nature preserve on peat soil in the Netherlands. Net CH4 emissions from intensively managed grasslands (Zegveld, Netherlands) were low in the period January-December 1994, in general in the range of -0.2 to 0.2 mg CH4 m{sup -2} d{sup -1}. Only in the relatively warm summer of 1994, consumption of atmospheric CH4 of about 0.4 mg m{sup -2} d{sup -1} was measured. Effects of ground water level in the range of 30-60 cm below surface were very small. There were also no clear effects of nitrogen fertilization and grazing versus mowing on CH4 emission from the soil. Net CH4 emissions from three extensively managed grasslands in a nature preserve (Nieuwkoopse Plassen area in the Netherlands) ranged from 0-215 mg CH4 m{sup -2} d{sup -1} in the period January 1994-June 1995. Differences between the three sites were quite large, as were the spatial variations at each of the sites. The results presented here indicate that a shift of intensively managed peat grasslands into more natural ecosystems will significantly increase the contribution of Dutch peat soils to the total CH4 emission. refs.

  4. Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties.

    Science.gov (United States)

    Ribeiro, F C A; Silva, J I R; Lima, E S A; do Amaral Sobrinho, N M B; Perez, D V; Lauria, D C

    2018-02-01

    Located in the south-western part of Brazil, the state of Rio de Janeiro is geotectonically contained within a complex structural province that resulted in the amalgamation of the Western Gondwana Paleocontinent. To undertake an extensive radiological characterization of this complex geological province and investigate the influence of bedrock, soil type and soil chemical-physical characteristics on natural radionuclide levels in soils, 259 surface soil samples were collected that encompassed the main soil types and geological formations throughout the state. Gamma spectrometry analysis of the samples resulted in median values of 114 Bq.kg -1 for 40 K, 32 Bq.kg -1 for 226 Ra and 74 Bq.kg -1 for 228 Ra. The median value for 226 Ra was similar to the world median value for soils, the 40 K value was well below the worldwide value, and that for 228 Ra exceeded the world median value. The intense weathering caused by the high rainfall rates and high temperatures may be responsible for the low levels of 40 K in the soils, of which the strongly acidic and clayey soils are markedly K-depleted. A soil from a high-grade metamorphic rock (granulite) presented the lowest 226 Ra (18 Bq.kg -1 ) content, whereas the highest levels for 226 Ra (92 Bq.kg -1 ) and 228 Ra (139 Bq.kg - 1) were observed in a young soil enriched in primary minerals (Leptsol). A lowland soil (Gleysol) showed the highest median of 40 K (301 Bq.kg -1 ). Strongly acidic soils tended to present high amounts of 226 Ra, and sandy soils tended to contain low levels of 228 Ra. The external radiation dose indicates that the state has a background radiation level within the natural range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Controls on soil solution nitrogen along an altitudinal gradient in the Scottish uplands.

    Science.gov (United States)

    Jackson-Blake, L; Helliwell, R C; Britton, A J; Gibbs, S; Coull, M C; Dawson, L

    2012-08-01

    Nitrogen (N) deposition continues to threaten upland ecosystems, contributing to acidification, eutrophication and biodiversity loss. We present results from a monitoring study aimed at investigating the fate of this deposited N within a pristine catchment in the Cairngorm Mountains (Scotland). Six sites were established along an elevation gradient (486-908 m) spanning the key habitats of temperate maritime uplands. Bulk deposition chemistry, soil carbon content, soil solution chemistry, soil temperature and soil moisture content were monitored over a 5 year period. Results were used to assess spatial variability in soil solution N and to investigate the factors and processes driving this variability. Highest soil solution inorganic N concentrations were found in the alpine soils at the top of the hillslope. Soil carbon stock, soil solution dissolved organic carbon (DOC) and factors representing site hydrology were the best predictors of NO(3)(-) concentration, with highest concentrations at low productivity sites with low DOC and freely-draining soils. These factors act as proxies for changing net biological uptake and soil/water contact time, and therefore support the hypothesis that spatial variations in soil solution NO(3)(-) are controlled by habitat N retention capacity. Soil percent carbon was a better predictor of soil solution inorganic N concentration than mass of soil carbon. NH(4)(+) was less affected by soil hydrology than NO(3)(-) and showed the effects of net mineralization inputs, particularly at Racomitrium heath and peaty sites. Soil solution dissolved organic N concentration was strongly related to both DOC and temperature, with a stronger temperature effect at more productive sites. Due to the spatial heterogeneity in N leaching potential, a fine-scale approach to assessing surface water vulnerability to N leaching is recommended over the broad scale, critical loads approach currently in use, particularly for sensitive areas. Copyright © 2012

  6. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils

    DEFF Research Database (Denmark)

    de Vries, Wim; Reinds, Gert Jan; Gundersen, Per

    2006-01-01

    for CO2 emissions because of harvest and forest fires, was assumed 33% of the overall C pool changes by growth. C sequestration in the soil were based on calculated nitrogen (N) retention (N deposition minus net N uptake minus N leaching) rates in soils, multiplied by the C/N ratio of the forest soils......An estimate of net carbon (C) pool changes and long-term C sequestration in trees and soils was made at more than 100 intensively monitored forest plots (level II plots) and scaled up to Europe based on data for more than 6000 forested plots in a systematic 16 km x 16 km grid (level I plots). C...... pool changes in trees at the level II plots were based on repeated forest growth surveys At the level I plots, an estimate of the mean annual C pool changes was derived from stand age and available site quality characteristics. C sequestration, being equal to the long-term C pool changes accounting...

  7. INMARSAT-C SafetyNET

    Science.gov (United States)

    Tsunamis 406 EPIRB's National Weather Service Marine Forecasts INMARSAT-C SafetyNET Marine Forecast Offices greater danger near shore or any shallow waters? NATIONAL WEATHER SERVICE PRODUCTS VIA INMARSAT-C SafetyNET Inmarsat-C SafetyNET is an internationally adopted, automated satellite system for promulgating

  8. Soil Carbon in the Time of Climate Change

    Science.gov (United States)

    Amundson, R.

    2017-12-01

    The Earth is in the midst of human induced climate change driven by the emission of greenhouse gases largely through fossil fuels and land conversion. Drastically and rapidly reducing the net emissions are critical to avoid societally disruptive climate changes by the end of the Century. In the midst of this change are soils, that have a vast store of C and for a given change in conditions, can either rapidly add or remove C from the atmosphere. Mainstream soil and agricultural science has focused on the former for nearly two decades, conducting research and estimates of the potential global C sequestration potential of soils due to changed land management. This has culminated with the French 4 per mille initiative. While it is possible that in some countries, at some times, economic or political forces may drive farming practices one way or another, the estimated requirement that 30 to 70% of all farms on Earth adopt the best practices needed to achieve this goal is simply unrealistic. In addition, it diverts attention and resources from much more viable alternatives, and is clouding the growing need for climate adaption strategies that soil and environmental science will need to provide. Soil C sequestration will never be a significant "bridge" to C-free energy during the next few decades, which is the time frame of critical importance. Most likely, soil will be part of the CO2 sources. Few agricultural sequestration studies explicitly consider the positive feedback between soil C and temperature, and on-going loss of soil C to the atmosphere. Truly comprehensive studies of the combined management vs. climate feedback effects on soil C are few, but tend to conclude that even managed soils will continue to be a net source of CO2 this century. Only by reducing fossil fuel C emissions will we successfully, and in a time frame required by the Earth's climate system, contend with the greenhouse gas issue. Better soil C management is unlikely to slow or hold off

  9. Mineralização potencial e líquida de nitrogênio em solos Potential and net nitrogen mineralization in soils

    Directory of Open Access Journals (Sweden)

    Renato Yagi

    2009-04-01

    and availability. The objective of this study was to evaluate the potential and net soil organic N mineralization, and relate them to N availability to plants. Twenty two soil samples (0-20 cm were incubated at 35 ºC for 30 weeks in aerobic conditions and at 40 ºC for seven days in anaerobic conditions, and tested in a greenhouse experiment on corn plants. During the 30 weeks-incubation period N mineralization increased in the 2nd week, followed by a decrease and stabilization from the 4th week afterwards. The mineralized N data was adjusted to an exponential decay model and the accumulated N mineralized (Nmac data was adjusted to an exponential growth model and the potentially mineralizable N (N0 was then estimated. The quantities of N0 expressed N mineralization and availability in the long-term. However, the correlation of Nmac with available N indicated by plants (N concentration and N uptake was higher than of N0, and high correlation values were found after two weeks of incubation. This indicates that the statistical adjustment of data may be unnecessary and the incubation period can be reduced. The soil total N was a better indicator of the net and potential N organic mineralization than soil organic matter, especially in the long-term. The incubation for seven days in anaerobic conditions can be used to estimate No. The subtraction of initial N-NH4+ from the data obtained after incubation did not improve the estimation of N mineralization and availability by this method, which makes it even more simple and feasible.

  10. Chemical Alteration of Soils on Earth as a Function of Precipitation: Insights Into Weathering Processes Relevant to Mars

    Science.gov (United States)

    Amundson, R.; Chadwick, O.; Ewing, S.; Sutter, B.; Owen, J.; McKay, C.

    2004-12-01

    Soils lie at the interface of the atmosphere and lithosphere, and the rates of chemical and physical processes that form them hinge on the availability of water. Here we quantify the effect of these processes on soil volume and mass in different rainfall regimes. We then use the results of this synthesis to compare with the growing chemical dataset for soils on Mars in order to identify moisture regimes on Earth that may provide crude analogues for past Martian weathering conditions. In this synthesis, the rates of elemental gains/losses, and corresponding volumetric changes, were compared for soils in nine soil chronosequences (sequences of soils of differing ages) - sequences formed in climates ranging from ~1 to ~4500 mm mean annual precipitation (MAP). Total elemental chemistry of soils and parent materials were determined via XRF, ICP-MS, and/or ICP-OES, and the absolute elemental gains or losses (and volume changes) were determined by normalizing data to an immobile index element. For the chronosequences examined, the initial stages of soil formation (103^ to 104^ yr), regardless of climate, generally show volumetric expansion due to (1) reduction in bulk density by biological/physical turbation, (2) addition of organic matter, (3) accumulation of water during clay mineral synthesis, and/or (4) accumulation of atmospheric salts and dust. Despite large differences in parent materials (basalt, sandstone, granitic alluvium), there was a systematic relationship between long-term (105^ to 106^ yr) volumetric change and rainfall, with an approximate cross-over point between net expansion (and accumulation of atmospheric solutes and dust) and net collapse (net losses of Si, Al, and alkaline earths and alkali metals) between approximately 20 and 100 mm MAP. Recently published geochemical data of soils at Gusev Crater (Gellert et al. 2004. Science 305:829), when normalized to Ti, show apparent net losses of Si and Al that range between 5 and 50% of values relative to

  11. Selected micrometeorological and soil-moisture data at Amargosa Desert Research Site, an arid site near Beatty, Nye County, Nevada, 1998-2000

    Science.gov (United States)

    Johnson, Michael J.; Mayers, Charles J.; Andraski, Brian J.

    2002-01-01

    Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radioactive waste and hazardous chemical waste facility near Beatty, Nev., 1998-2000. Data were collected in support of ongoing research studies to improve the understanding of hydrologic and contaminant-transport processes in arid environments. Micrometeorological data include precipitation, air temperature, solar radiation, net radiation, relative humidity, ambient vapor pressure, wind speed and direction, barometric pressure, soil temperature, and soil-heat flux. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily mean, maximum, and minimum values, and hourly mean values. For precipitation, data output consisted of daily, hourly, and 5-minute totals. Soil-moisture data included periodic measurements of soil-water content at nine neutron-probe access tubes with measurable depths ranging from 5.25 to 29.75 meters. The computer data files included in this report contain the complete micrometeorological and soil-moisture data sets. The computer data consists of seven files with about 14 megabytes of information. The seven files are in tabular format: (1) one file lists daily mean, maximum, and minimum micrometeorological data and daily total precipitation; (2) three files list hourly mean micrometeorological data and hourly precipitation for each year (1998-2000); (3) one file lists 5-minute precipitation data; (4) one file lists mean soil-water content by date and depth at four experimental sites; and (5) one file lists soil-water content by date and depth for each neutron-probe access tube. This report highlights selected data contained in the computer data files using figures, tables, and brief discussions. Instrumentation used for data collection also is described. Water-content profiles are shown to demonstrate variability of water content with depth. Time-series data are

  12. Soil fertility and plant nutrition

    International Nuclear Information System (INIS)

    Menzel, R.G.; Smith, S.J.

    1984-01-01

    The applications of isotopic and related techniques, including autoradiography, radiation absorption, radiation scattering and activation analysis, in investigations on soil fertility and plant nutrition are discussed. The unique information that can be obtained with isotopes and radiation techniques is indicated. The advantages and disadvantages of these techniques are discussed in relation to other methods of obtaining similar information. (U.K.)

  13. Application of soil washing system to the volume reduction of radioactively contaminated soils and automated treatment of sludge cake

    International Nuclear Information System (INIS)

    Mouri, Mitsuo; Tsuchida, Mitsuru; Baba, Naoki; Nakajima, Takuma

    2013-01-01

    The pilot plant study was intended to evaluate; a) the removal efficiency of radioactive Cs, b) the volume reduction rate of feed soils, c) the volumetric rate and concentration rate of discharged sludge cake, and d) the effect of radiation exposure reduction by automated filter press unit and automated packing unit of sludge cake. As a result of this study, following observations were made; 1) the radioactive Cs content of clean sands ranged 882∼2,940 Bq/kg as compared to the feed soils of 8,790 to 26,270 Bq/kg, 2) the removal efficiency of radioactive Cs ranged 84∼92% of feed soils, 3) the volume reduction rate of feed soils ranged 70∼86% (ave. 82%), and 4) the automated filter press unit and the automated packing system of sludge cake were helpful for workers in reducing radiation exposure. It is concluded that soil washing system can effectively reduce volume of radioactively contaminated soils and can be practically used in Fukushima for remediation of soils. (author)

  14. Removal of cyanobacterial blooms in Taihu Lake using local soils II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan

    International Nuclear Information System (INIS)

    Zou Hua; Pan Gang; Chen Hao; Yuan Xianzheng

    2006-01-01

    After sepiolite was modified with Fe 3+ to increase its surface charge, the initial algal removal rate increased significantly, but its Q 8h was not improved substantially at clay loadings below 0.1 g/L. Modification on netting and bridging properties of clays by either chitosan or polyacrylamide (PAM) dramatically increased flocculation (Q 8h ) of MA cells in freshwaters. Algal removal efficiencies of different solids, including Type III clays, local soils and sediments, were all improved to a similar level of >90% at a total loading of 0.011 g/L (contained 0.001 g/L chitosan) after they were modified with chitosan, making the idea of clearing up algal blooms using local soils/sediments possible. The mechanism of netting and bridging was confirmed to be the most important factor in improving the removal efficiency of cells, whereas clays also played important roles in the sedimentation of the floc. -- Chitosan modification can turn many solids, such as local clays and soils, into highly effective flocculants in removing harmful cyanobacterial blooms in freshwaters

  15. Quantum net dynamics

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1989-01-01

    The quantum net unifies the basic principles of quantum theory and relativity in a quantum spacetime having no ultraviolet infinities, supporting the Dirac equation, and having the usual vacuum as a quantum condensation. A correspondence principle connects nets to Schwinger sources and further unifies the vertical structure of the theory, so that the functions of the many hierarchic levels of quantum field theory (predicate algebra, set theory, topology,hor-ellipsis, quantum dynamics) are served by one in quantum net dynamics

  16. Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil

    Directory of Open Access Journals (Sweden)

    Nardoto Gabriela Bielefeld

    2003-01-01

    Full Text Available The objective of this work was to study the effects of fire on net N mineralization and soil microbial biomass in burned and unburned cerrado stricto sensu sites. The study was carried out from April 1998 to April 2000. The pH values were significantly higher in the burned site while soil moisture content was significantly higher in the unburned site (P<0.05. The soil C/N ratio was 22/1 and the available NO3-N ranged between 1.5 and 2.8 mg kg-¹ dry weight. However, the NH4-N concentration ranged between 3 and 34 mg kg-1 dry weight in the burned site and between 3 and 22 mg kg-1 dry weight in the unburned site. The NH4-N increased after fire, but no significant changes were observed for NO3-N (P<0.05. The NO3-N accumulation occurred in short periods during the rainy season. The rates of net N mineralization increased during the rainy season while reductions in soil microbial biomass were observed at both sites. This suggested that the peak in microbial activities occurred with the first rain events, with an initial net immobilization followed by net mineralization. Both sites presented the same pattern for mineralization/immobilization, however, the amount of inorganic-N cycled annually in unburned site was 14.7 kg ha-1 per year while the burned site presented only 3.8 kg ha-¹ of inorganic-N, one year after the burning.

  17. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Science.gov (United States)

    Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.

    2017-12-01

    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high

  18. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2017-12-01

    Full Text Available Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado, as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry

  19. High-level Petri Nets

    DEFF Research Database (Denmark)

    various journals and collections. As a result, much of this knowledge is not readily available to people who may be interested in using high-level nets. Within the Petri net community this problem has been discussed many times, and as an outcome this book has been compiled. The book contains reprints...... of some of the most important papers on the application and theory of high-level Petri nets. In this way it makes the relevant literature more available. It is our hope that the book will be a useful source of information and that, e.g., it can be used in the organization of Petri net courses. To make......High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...

  20. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    Science.gov (United States)

    Hari, Ari-Matti; Haukka, Harri; Aleksashkin, Sergey; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Siikonen, Timo; Palin, Matti

    2017-04-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Strawman Scientific Payload The strawman payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: - MetBaro Pressure device - MetHumi Humidity device - MetTemp Temperature sensors Optical devices: - PanCam Panoramic - MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer - DS Dust sensor Composition and Structure Devices: Tri-axial magnetometer MOURA Tri-axial System Accelerometer The descent processes dynamic properties are monitored by a special 3-axis

  1. Percolation transport theory and relevance to soil formation, vegetation growth, and productivity

    Science.gov (United States)

    Hunt, A. G.; Ghanbarian, B.

    2016-12-01

    Scaling laws of percolation theory have been applied to generate the time dependence of vegetation growth rates (both intensively managed and natural) and soil formation rates. The soil depth is thus equal to the solute vertical transport distance, the soil production function, chemical weathering rates, and C and N storage rates are all given by the time derivative of the soil depth. Approximate numerical coefficients based on the maximum flow rates in soils have been proposed, leading to a broad understanding of such processes. What is now required is an accurate understanding of the variability of the coefficients in the scaling relationships. The present abstract focuses on the scaling relationship for solute transport and soil formation. A soil formation rate relates length, x, and time, t, scales, meaning that the missing coefficient must include information about fundamental space and time scales, x0 and t0. x0 is proposed to be a fundamental mineral heterogeneity scale, i.e. a median particle diameter. to is then found from the ratio of x0 and a fundamental flow rate, v0, which is identified with the net infiltration rate. The net infiltration rate is equal to precipitation P less evapotranspiration, ET, plus run-on less run-off. Using this hypothesis, it is possible to predict soil depths and formation rates as functions of time and P - ET, and the formation rate as a function of depth, soil calcic and gypsic horizon depths as functions of P-ET. It is also possible to determine when soils are in equilibrium, and predict relationships of erosion rates and soil formation rates.

  2. Balanço de energia em um solo cultivado com feijão caupi no brejo paraibano Energy balance in a soil cultivated with cowpeas in a mountaineous area in Paraiba, Brazil

    Directory of Open Access Journals (Sweden)

    José R. de S. Lima

    2005-12-01

    Full Text Available Os componentes do balanço de energia num solo cultivado com feijão caupi nas condições do Brejo Paraibano, foram determinados numa área de 4 ha do Centro de Ciências Agrárias, da UFPB, localizada no município de Areia, PB (6o 58' S, 35o 41' W e 620 m. Para tal, instalou-se uma torre no centro da área, contendo um pluviógrafo, um piranômetro, um saldo radiômetro e sensores para medida da temperatura e da umidade relativa do ar, em dois níveis acima do dossel da cultura; além disso, dois locais no solo foram instrumentados, cada um com duas sondas térmicas instaladas horizontalmente, nas profundidades de z1 = 2,0 cm e z2 = 8,0 cm, além de uma placa destinada à medida do fluxo de calor no solo, a 5,0 cm. Essas medidas foram armazenadas a cada 30 min, num sistema de aquisição de dados. Verificou-se que o valor médio do saldo de radiação (Rn foi de 78%, sendo a Rn utilizada, em média, como 71% no fluxo de calor latente (LE, 19% como fluxo de calor sensível (H e 10% como fluxo de calor no solo (G. A fração do saldo de radiação utilizada como fluxo de calor latente aumentou com a evolução da cobertura do solo pela cultura, enquanto a fração utilizada como fluxo de calor sensível e de calor no solo, diminuiu.The energy balance components in a cowpea crop growing in the mountain region of Paraiba, Brazil ("Brejo Paraibano" was determined in a 4 ha area in the Centro de Ciências Agrárias, UFPB, in the municipality of Areia, PB (6o 58' S, 35o 41' W e 620 m. Measurements of rainfall, net and global radiation were made. Sensors at two levels above the canopy were also mounted, allowing the measurements of air temperature and relative humidity. Below the soil surface, two different sites were provided with two thermal probes, horizontally installed at depths of 2.0 and 8.0 cm, besides a heat flux plate 5.0 cm deep for soil heat flux measurements. All data were stored in a datalogger each 30 min. The average value of the net

  3. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador

    NARCIS (Netherlands)

    Tonneijck, F.H.; Jansen, B.; Nierop, K.G.J.; Verstraten, J.M.; Sevink, J.; de Lange, L.

    2010-01-01

    Volcanic ash soils contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute potential sources or sinks for the greenhouse gas carbon dioxide. Whether soils become a net carbon source or sink with climate and/or land-use change depends on the stability of

  4. Coupling diffusion and maximum entropy models to estimate thermal inertia

    Science.gov (United States)

    Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...

  5. Contribution of root to soil respiration and carbon balance in ...

    Indian Academy of Sciences (India)

    PRAKASH

    improves our understanding of the terrestrial carbon cycle ... considerably lower net ecosystem productivity in Community 2 than in Community 1 .... soil respiration chambers for each time were dried at 31ºC ..... Using existing management.

  6. Radiation balance in the sweet sorghum crop

    International Nuclear Information System (INIS)

    Assis, F.N. de; Mendez, M.E.G.; Martins, S.R.; Verona, L.A.

    1987-01-01

    The fluxes of incident solar radiation, reflected and net radiation were measured during the growing cicle of two fields of sweet sorghum (Sorghum bicolor L.), cus. BR-501 and BR-503, maintained under convenient irrigation level. Resultant data allowed to estimate the crop albedo as well as the estimates of Rn. (M.A.C.) [pt

  7. Analysis the configuration of earthing system based on high-low and low-high soil structure

    International Nuclear Information System (INIS)

    Ramani, A. N.; Ahmad, Abdul Rahman; Sulaima, M. F.; Nasir, M. N. M.; Ahmad, Arfah

    2015-01-01

    Each TNB transmission tower requires a tower footing resistance (TFR) with a lower grounding resistance value that depends on the transmission line voltage. For 132kV and 275kV tower, the TFR must less than 10Ω and 500kV tower must less than 5Ω. The TFR is changeable with variable factors such as soil resistivity. Low TFR provides essential protection to the fault such as lightning strike that may occur at any time. The fault current flow to the lowest resistance path and easily disperses to earth. Back flashover voltage across the insulator of transmission lines may occur when the TFR is high. The TFR is influenced by soil resistivity. There are three parameters affecting the soil resistivity; moisture content, salt content and temperature of the soil. High moisture content in soil will reduce the soil resistivity and resultant low TFR. Small scale moisture control by using Micro Reservoir (MR) irrigation with semi-permeable membranes have the power to offer the stable moisture in soil. By using osmosis concept, it is the process of net movement of water molecules from high potential water to lower potential water though a semi permeable membrane. The MR can withstand for 3 to 5 days without continuous water supply. The MR installed in the centre of the tower that contains a multiple parallel of electrode rods. The concentrated of electrode rods grounding configuration with a combination of MR will improve the TFR even at multilayer soil. As a result, MR gives a little improvement to TFR. The MR in area of concentrated electrode rod configuration to ensure the soil always wet and moist at all times. The changes in soil affect the tower-footing-resistance. The tower-footing-resistance measurement at afternoon is higher than at evening because of the temperature and moisture content in soil is change due to sun radiation

  8. Analysis the configuration of earthing system based on high-low and low-high soil structure

    Energy Technology Data Exchange (ETDEWEB)

    Ramani, A. N.; Ahmad, Abdul Rahman; Sulaima, M. F.; Nasir, M. N. M.; Ahmad, Arfah [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

    2015-05-15

    Each TNB transmission tower requires a tower footing resistance (TFR) with a lower grounding resistance value that depends on the transmission line voltage. For 132kV and 275kV tower, the TFR must less than 10Ω and 500kV tower must less than 5Ω. The TFR is changeable with variable factors such as soil resistivity. Low TFR provides essential protection to the fault such as lightning strike that may occur at any time. The fault current flow to the lowest resistance path and easily disperses to earth. Back flashover voltage across the insulator of transmission lines may occur when the TFR is high. The TFR is influenced by soil resistivity. There are three parameters affecting the soil resistivity; moisture content, salt content and temperature of the soil. High moisture content in soil will reduce the soil resistivity and resultant low TFR. Small scale moisture control by using Micro Reservoir (MR) irrigation with semi-permeable membranes have the power to offer the stable moisture in soil. By using osmosis concept, it is the process of net movement of water molecules from high potential water to lower potential water though a semi permeable membrane. The MR can withstand for 3 to 5 days without continuous water supply. The MR installed in the centre of the tower that contains a multiple parallel of electrode rods. The concentrated of electrode rods grounding configuration with a combination of MR will improve the TFR even at multilayer soil. As a result, MR gives a little improvement to TFR. The MR in area of concentrated electrode rod configuration to ensure the soil always wet and moist at all times. The changes in soil affect the tower-footing-resistance. The tower-footing-resistance measurement at afternoon is higher than at evening because of the temperature and moisture content in soil is change due to sun radiation.

  9. Influence of extractable soil manganese on oxidation capacity of different soils in Korea

    Science.gov (United States)

    Chon, Chul-Min; Kim, Jae Gon; Lee, Gyoo Ho; Kim, Tack Hyun

    2008-08-01

    We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00-0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests ( r = 0.655-0.851; P Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).

  10. Water and energy balance in the cultivated and bake soil in a montane area in Paraiba, Brazil

    International Nuclear Information System (INIS)

    Lima, Jose Romualdo de Sousa

    2004-02-01

    In the areas of rain fed agriculture it is very important to quantify losses of water by evapotranspiration and soil evaporation. The methods used for measuring evapotranspiration and/or evaporation varies from direct measurements techniques, using lysimeters, to measurements of the water and energy balances. The precision lysimeters have high cost, being only used for research purposes. The water and energy balances methods have been very used due the simplicity, robustness and lower cost. Therefore, the objective of this study was to assess the water and energy balance components in the soil cultivated with cowpea (Vigna unguiculata (L) Walp) and without vegetation, besides comparing the methods used to determine the cowpea evapotranspiration. Two experiments (2002 and 2003) were performed in the 4 ha area of the Centro de Ciencias Agrarias, UFPB, municipality of Areia, Paraiba State (6 deg C 58 S, 5 deg C 41 W). To determine the energy balance, the area was instrumented with a rain gauge, a pyrano meter, a net radiometer, and sensors for measuring air temperature and humidity, and wind speed in two levels. Two locals, in the soil, were instrumented with two temperature sensors located at 2.0 cm and 8.0 cm below soil surface and one heat flux plate placed at 5.0 cm below soil surface. The measurements were recorded every 30 minutes on a data logger. To determine the water balance, three plots were installed, composed one-meter access tube for neutron probe measurements, and 8 tensiometers. The results show very good correlation between the aerodynamic method and the Bowen ration energy balance method, for all atmospherics and soil water conditions. For the two years, in average 72% of the net radiation was used by crop evapotranspiration. The energy and water balance can be used, the determine the crop evapotranspiration and soil evaporation, and regardless of the method used, the major water use by crop occurred in the reproductive stage. In the year of 2002

  11. Studies of the effect of radioactive waste on the transport phenomena in soil

    International Nuclear Information System (INIS)

    El-Reefy, A.I.A.F

    1992-01-01

    This thesis introduces a new concept in the field of soil mechanics. It is an integrated work between soil and radiation in the form of gamma-rays. Chapter II was introduced to cover the basics in geotechnical engineering so as to draw a clearer picture to radiologists. Similarly, Chapter III was introduced to enable geotechnical engineers to comprehend radioactive behaviour in general. Although these two chapters are for further reading they contain various points that will be referred to regularly in the latter pages. The aim of this work is to investigate: - The effect of γ -radiations on the transport phenomena in soil. This was carried out by studying the effect of the following factors on the transmission of γ -rays with different energies: 1) Soil sample thickness 2) Grain size 3)Water content 4) Degree of compaction. - The effect of γ -radiations on moisture movement through soil. -Using the -ray transmission method to determine the soil physical properties. - Improvement of soil to increase its ability to attenuate -radiations. Experimental work took place under strict conditions at the Hot Lab. Center located at Inchas. Soil sample was sought from a nearby site which eventually will be the actual radioactive disposal site. The physical properties of the soil sample were determined as well as its grain size distribution. Accurate and detailed data on the gamma rays transport phenomena in soils was obtained using an up to date γ -radiation measurement technique. Finally, the extensive data obtained throughout this research was recorded and analyzed to ultimately approach our aim

  12. Processes regulating nitric oxide emissions from soils

    DEFF Research Database (Denmark)

    Pilegaard, Kim

    2013-01-01

    , the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes......Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources...

  13. Planning of nets

    International Nuclear Information System (INIS)

    Carberry, M

    1996-01-01

    The paper is about the planning of nets in areas of low density like it is the case of the rural areas. The author includes economic and technological aspects, planning of nets, demands and management among others

  14. Application of Spanish legislation on radiation protection in contaminated soils; Aplicacion de la normativa espanola sobre suelos contaminados en proteccion radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Trueba Alonso, C.; Robles Atienza, B.

    2013-07-01

    As the developments that have led the regulations on contaminated soils conventional pollutants are more advanced than those due to radioactive contaminants, this work is a state of the art of the current situation and is framed within the developments in R and D for radiation protection of the public and the environment. (Author)

  15. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  16. Waste conditioning technology of radiocontaminated soil

    International Nuclear Information System (INIS)

    Chen Dahua; Wang Xiaoli; Chen Xin

    2012-01-01

    A special conditioning way for low level soil contaminated by 241 Am was discussed. Firstly, the contaminated soil was condensed in package container (200 L drum) by 20 t pressing machine. The contaminated soil was pressed from loose state to compaction state, and the volume reduction rate was from 1.1 to 1.4. Secondly, cement with thickness of 10 cm to 15 cm was poured on the package container for sealing. Thus, a cement sealing member was made up by contaminated soil and it could be described as normal solid waste. Finally, taking the cement sealing member as conditioning object, using Ⅶ steel trunk as package container and cement conditioning, Ⅶ steel trunk package was got. Through radiation monitoring, the Ⅶ steel trunk package can satisfy the transport requirement of radiation waste. Also, it can satisfy the accept and disposal requirements of national repository. (authors)

  17. The environmental radiation monitoring system and in-situ measurements for early notification and OIL (Operational Intervention Levels) calculations

    Energy Technology Data Exchange (ETDEWEB)

    Haquin, G.; Ne`eman, E.; Brenner, S.; Lavi, N. [Tel Aviv Univ. (Israel). Sackler School of Medicine. Inst. for Environmental Research

    1997-12-31

    The efficiency of the environmental radiation monitoring, low level laboratory and in-situ gamma-ray spectrometry are evaluated as the systems for early notification and for determination of dose rate in air, surface contamination and activity concentration in food during emergencies for Operational Intervention Levels (OIL) recalculation.The National Environmental Radiation Monitoring System has proved its efficiency in the early detection of unregistered radiography work. A mobile station of the network can be used for absorbed dose rate measurement during emergencies in contaminated areas. The calibrated in-situ gamma-ray spectrometry system in an open phosphate ore mine has showed the efficiency of this technique for fast and accurate determination of soil activity concentration. The calibration for an uniform depth distribution can be easily mathematically converted to an exponential depth distribution in cases of radioactive material fallout 7 refs., 3 figs., 1 tab.; e-mail: envirad at post.tau.ac.il; env{sub r}ad at netvision,net.il

  18. Relationship of in-coming radiation with photosynthetically active, infra-red and net radiations in Brassica species and rocket salad (Eruca sativa)

    International Nuclear Information System (INIS)

    Nandwal, A.S.; Kuhad, M.S.

    1989-01-01

    Marked variation was observed among genotypes when the data for in-coming solar radiation were monitored horizontally. The regression equation for in-coming solar radiation versus photosynthetically active radiation and incoming solar radiation versus in-coming infra red radiation indicated linear relationship

  19. Analysis of K-net and Kik-net data: implications for ground motion prediction - acceleration time histories, response spectra and nonlinear site response; Analyse des donnees accelerometriques de K-net et Kik-net: implications pour la prediction du mouvement sismique - accelerogrammes et spectres de reponse - et la prise en compte des effets de site non-lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Pousse, G

    2005-10-15

    This thesis intends to characterize ground motion during earthquake. This work is based on two Japanese networks. It deals with databases of shallow events, depth less than 25 km, with magnitude between 4.0 and 7.3. The analysis of K-net allows to compute a spectral ground motion prediction equation and to review the shape of the Eurocode 8 design spectra. We show the larger amplification at short period for Japanese data and bring in light the soil amplification that takes place at large period. In addition, we develop a new empirical model for simulating synthetic stochastic nonstationary acceleration time histories. By specifying magnitude, distance and site effect, this model allows to produce many time histories, that a seismic event is liable to produce at the place of interest. Furthermore, the study of near-field borehole records of the Kik-net allows to explore the validity domain of predictive equations and to explain what occurs by extrapolating ground motion predictions. Finally, we show that nonlinearity reduces the dispersion of ground motion at the surface. (author)

  20. The role of soil pH on soil carbonic anhydrase activity

    Science.gov (United States)

    Sauze, Joana; Jones, Sam P.; Wingate, Lisa; Wohl, Steven; Ogée, Jérôme

    2018-01-01

    Carbonic anhydrases (CAs) are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O) of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2-H2O isotopic exchange rate (kiso) in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content) affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content) played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation) that varied with soil texture. The reasons for this offset are still unknown.