WorldWideScience

Sample records for net photosynthetic carbon

  1. Spring photosynthetic onset and net CO2 uptake in Alaska triggered by landscape thawing.

    Science.gov (United States)

    Parazoo, Nicholas C; Arneth, Almut; Pugh, Thomas A M; Smith, Ben; Steiner, Nicholas; Luus, Kristina; Commane, Roisin; Benmergui, Josh; Stofferahn, Eric; Liu, Junjie; Rödenbeck, Christian; Kawa, Randy; Euskirchen, Eugenie; Zona, Donatella; Arndt, Kyle; Oechel, Walt; Miller, Charles

    2018-04-24

    The springtime transition to regional-scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze-thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborne CO 2 from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY 111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY 133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two global CO 2 inversions using a CASA-GFED model prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic-onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available Alaskan CO 2 observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models or CO 2 inversions, with better correlation to above-freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over

  2. Photosynthetic carbon metabolism in the submerged aquatic angiosperm Scirpus subterminalis

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S; Wetzel, R G

    1981-01-01

    Scirpus subterminalis Torr., a submerged angiosperm abundant in many hardwater lakes of the Great Lakes region, was investigated for various photosynthetic carbon fixation properties in relation to available inorganic carbon and levels of carbon fixing enzymes. Photosynthetic experiments were CO/sub 2/ and HCO/sub 3//sup -/ were supplied at various concentrations showed that Scirpus was able to utilize HCO/sub 3//sup -/ at those concentrations close to natural conditions. However, when CO/sub 2/ concentrations were increased above ambient, photosynthetic rates increased markedly. It was concluded that the photosynthetic potential of this plant in many natural situations may be limited by inorganic carbon uptake in the light. Phosphoenolpyruvate carboxylase (PEPcase)/ribulose-1,5-bisphosphate carboxylase (ruBPcase) ratios of the leaves varied between 0.5 and 0.9 depending on substrate concentration during assay. The significance of PEP-mediated carbon fixation of Scirpus (basically a C/sub 3/ plant) in the dark was investigated. Malate accumulated in the leaves during the dark period of a 24-h cycle and malate levels decreased significantly during the following light period. The accumulation was not due to transport of malate from the roots. Carbon uptake rates in the dark by the leaves of Scirpus were lower than malate accumulation rates. Therefore, part of the malate was likely derived from respired CO/sub 2/. Carbon uptake rates in the light were much higher than malate turnover rates. It was estimated that carbon fixation via malate could contribute up to 12% to net photosynthetic rates. The ecological significance of this type of metabolism in submerged aquatics is discussed.

  3. Spring hydrology determines summer net carbon uptake in northern ecosystems

    International Nuclear Information System (INIS)

    Yi, Yonghong; Kimball, John S; Reichle, Rolf H

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO 2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the normalized difference vegetation index; NDVI) and atmospheric CO 2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (⩾50° N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO 2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO 2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends. (letters)

  4. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    Science.gov (United States)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  5. DAILY BUDGETS OF PHOTOSYNTHETICALLY FIXED CARBON IN SYMBIOTIC ZOANTHIDS.

    Science.gov (United States)

    Steen, R Grant; Muscatine, L

    1984-10-01

    We tested the hypothesis that some zoanthids are able to meet a portion of their daily respiratory carbon requirement with photosynthetic carbon from symbiotic algal cells (= zooxanthellae). A daily budget was constructed for carbon (C) photosynthetically fixed by zooxanthellae of the Bermuda zoanthids Zoanthus sociatus and Palythoa variabilis. Zooxanthellae have an average net photosynthetic C fixation of 7.48 and 15.56 µgC·polyp -1 ·day -1 for Z. sociatus and P. variabilis respectively. The C-specific growth rate (µ c ) was 0.215·day -1 for Z. sociatus and 0.152·day -1 for P. variabilis. The specific growth rate (µ) of zooxanthellae in the zoanthids was measured to be 0.011 and 0.017·day -1 for Z. sociatus and P. variabilis zooxanthellae respectively. Z. sociatus zooxanthellae translocated 95.1% of the C assimilated in photosynthesis, while P. variabilis zooxanthellae translocated 88.8% of their fixed C. As the animal tissue of a polyp of Z. sociatus required 14.75 µgC·day -1 for respiration, and one of P. variabiis required 105.54 µgC·day -1 , the contribution of zooxanthellae to animal respiration (CZAR) was 48.2% for Z. sociatus and 13.1% for P. variabilis.

  6. Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die?

    Science.gov (United States)

    Reich, Peter B; Falster, Daniel S; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D

    2009-01-01

    * Here, we evaluated how increased shading and declining net photosynthetic capacity regulate the decline in net carbon balance with increasing leaf age for 10 Australian woodland species. We also asked whether leaves at the age of their mean life-span have carbon balances that are positive, zero or negative. * The net carbon balances of 2307 leaves on 53 branches of the 10 species were estimated. We assessed three-dimensional architecture, canopy openness, photosynthetic light response functions and dark respiration rate across leaf age sequences on all branches. We used YPLANT to estimate light interception and to model carbon balance along the leaf age sequences. * As leaf age increased to the mean life-span, increasing shading and declining photosynthetic capacity each separately reduced daytime carbon gain by approximately 39% on average across species. Together, they reduced daytime carbon gain by 64% on average across species. * At the age of their mean life-span, almost all leaves had positive daytime carbon balances. These per leaf carbon surpluses were of a similar magnitude to the estimated whole-plant respiratory costs per leaf. Thus, the results suggest that a whole-plant economic framework, including respiratory costs, may be useful in assessing controls on leaf longevity.

  7. How closely does stem growth of adult beech (Fagus sylvatica) relate to net carbon gain under experimentally enhanced ozone stress?

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Winkler, J. Barbro; Löw, Markus; Nunn, Angela J.; Kuptz, Daniel; Häberle, Karl-Heinz; Reiter, Ilja M.; Matyssek, Rainer

    2012-01-01

    The hypothesis was tested that O 3 -induced changes in leaf-level photosynthetic parameters have the capacity of limiting the seasonal photosynthetic carbon gain of adult beech trees. To this end, canopy-level photosynthetic carbon gain and respiratory carbon loss were assessed in European beech (Fagus sylvatica) by using a physiologically based model, integrating environmental and photosynthetic parameters. The latter were derived from leaves at various canopy positions under the ambient O 3 regime, as prevailing at the forest site (control), or under an experimental twice-ambient O 3 regime (elevated O 3 ), as released through a free-air canopy O 3 fumigation system. Gross carbon gain at the canopy-level declined by 1.7%, while respiratory carbon loss increased by 4.6% under elevated O 3 . As this outcome only partly accounts for the decline in stem growth, O 3 -induced changes in allocation are referred to and discussed as crucial in quantitatively linking carbon gain with stem growth. - Highlights: ► We model O 3 -induced changes in the photosynthetic carbon gain of adult beech trees. ► Elevated O 3 decreases gross carbon gain but increases respiratory carbon loss. ► Reduction in net carbon gain only partly accounts for the decline in stem growth. ► O 3 effects on the whole-tree allocation is crucial in addition to carbon gains. - Reduction in net carbon gain at the canopy level only partly accounts for the decline in stem growth under elevated ozone.

  8. Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata.

    Science.gov (United States)

    Zavřel, Tomáš; Szabó, Milán; Tamburic, Bojan; Evenhuis, Christian; Kuzhiumparambil, Unnikrishnan; Literáková, Petra; Larkum, Anthony W D; Raven, John A; Červený, Jan; Ralph, Peter J

    2018-04-01

    This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P 700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO 2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Photosynthetic carbon metabolism in freshwater phytoplankton

    International Nuclear Information System (INIS)

    Groeger, A.W.

    1986-01-01

    Photosynthetic carbon metabolism of natural assemblages of freshwater phytoplankton was measured by following the flow of inorganic 14 C into the photosynthetic end products polysaccharide protein, lipid, and soluble metabolites. Data were collected from a wide range of physical, chemical, and trophic conditions in six southern United States reservoirs, with the primary environmental variables of interest being light intensity and nutrient supply. Polysaccharide and protein were consistently the primary products of photosynthetic carbon metabolism, comprising an average of 70% of the total carbon fixation over a wide range of light intensities. Polysaccharide was quantitatively more important at higher light intensities, and protein at lower light intensities, as light intensity varied both with depth within the water column and over diurnal cycles. Polysaccharide synthesis was more variable over the diurnal period than was protein synthesis. Phytoplankton in the downlake epilimnion of Normandy Lake, a central Tennessee reservoir, responded to summer nitrogen (N) deficiency by increasing relative rates of lipid synthesis from 10-15% to 20-25% of the total photosynthetic carbon fixation. Phytoplankton in more nitrogen-sufficient areas of the reservoir maintained lower rates of lipid synthesis throughout the summer. These results document the occurrence in nature of a relationship between N-deficiency and increased lipid synthesis previously observed only in laboratory algal culture studies

  10. Contributions of leaf photosynthetic capacity, leaf angle and self-shading to the maximization of net photosynthesis in Acer saccharum: a modelling assessment.

    Science.gov (United States)

    Posada, Juan M; Sievänen, Risto; Messier, Christian; Perttunen, Jari; Nikinmaa, Eero; Lechowicz, Martin J

    2012-08-01

    Plants are expected to maximize their net photosynthetic gains and efficiently use available resources, but the fundamental principles governing trade-offs in suites of traits related to resource-use optimization remain uncertain. This study investigated whether Acer saccharum (sugar maple) saplings could maximize their net photosynthetic gains through a combination of crown structure and foliar characteristics that let all leaves maximize their photosynthetic light-use efficiency (ε). A functional-structural model, LIGNUM, was used to simulate individuals of different leaf area index (LAI(ind)) together with a genetic algorithm to find distributions of leaf angle (L(A)) and leaf photosynthetic capacity (A(max)) that maximized net carbon gain at the whole-plant level. Saplings grown in either the open or in a forest gap were simulated with A(max) either unconstrained or constrained to an upper value consistent with reported values for A(max) in A. saccharum. It was found that total net photosynthetic gain was highest when whole-plant PPFD absorption and leaf ε were simultaneously maximized. Maximization of ε required simultaneous adjustments in L(A) and A(max) along gradients of PPFD in the plants. When A(max) was constrained to a maximum, plants growing in the open maximized their PPFD absorption but not ε because PPFD incident on leaves was higher than the PPFD at which ε(max) was attainable. Average leaf ε in constrained plants nonetheless improved with increasing LAI(ind) because of an increase in self-shading. It is concluded that there are selective pressures for plants to simultaneously maximize both PPFD absorption at the scale of the whole individual and ε at the scale of leaves, which requires a highly integrated response between L(A), A(max) and LAI(ind). The results also suggest that to maximize ε plants have evolved mechanisms that co-ordinate the L(A) and A(max) of individual leaves with PPFD availability.

  11. Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion

    Science.gov (United States)

    Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.

    2014-12-01

    In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.

  12. Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model

    International Nuclear Information System (INIS)

    Veroustraete, F.; Patyn, J.; Myneni, R.B.

    1996-01-01

    The evaluation and prediction of changes in carbon dynamics at the ecosystem level is a key issue in studies of global change. An operational concept for the determination of carbon fluxes for the Belgian territory is the goal of the presented study. The approach is based on the integration of remotely sensed data into ecosystem models in order to evaluate photosynthetic assimilation and net ecosystem exchange (NEE). Remote sensing can be developed as an operational tool to determine the fraction of absorbed photosynthetically active radiation (feAR). A review of the methodological approach of mapping fPAR dynamics at the regional scale by means of NOAA11-A VHRR / 2 data for the year 1990 is given. The processing sequence from raw radiance values to fPAR is presented. An interesting aspect of incorporating remote sensing derived fPAR in ecosystem models is the potential for modeling actual as opposed to potential vegetation. Further work should prove whether the concepts presented and the assumptions made in this study are valid. (NEE). Complex ecosystem models with a highly predictive value for a specific ecosystem are generally not suitable for global or regional applications, since they require a substantial set of ancillary data becoming increasingly larger with increasing complexity of the model. The ideal model for our purpose is one that is simple enough to be used in global scale modeling, and which can be adapted for different ecosystems or vegetation types. The fraction of absorbed photosynthetically active radiation (fPAR) during the growing season determines in part net photosynthesis and phytomass production (Ruimy, 1995). Remotely measured red and near-infrared spectral reflectances can be used to estimate fPAR. Therefore, a possible approach is to estimate net photosynthesis, phytomass, and NEE from a combination of satellite data and an ecosystem model that includes carbon dynamics. It has to be stated that some parts of the work presented in this

  13. Diurnal changes of net photosynthetic rate (NPR) in leaves of Lonicera japonica Thunb. and the responding mathematical model of NPR to photosynthetic valid radiation

    International Nuclear Information System (INIS)

    Wu Dafu; Zhang Shengli; Li Dongfang

    2009-01-01

    [Objective] The study provided theoretical basis for production practice . [Method] With Lonicera japonica Thunb .as material, diurnal changes of net photosynthetic rate (NPR) in leaves of the plant and the responding mathematical model of NPR to photosynthetic valid radiation were studied using portable photosynthetic determinator system. [Result] Like most of C3 plants, the diurnal changes curve of NPR of Lonicera japonica Thunb .showed double peaks, but there were time difference in reaching the peak value between the study and previous ones . The responding mathematical model of NPR to photosynthetic valid radiation could be described by three mathematic functions, such as logarithm, linearity and binomial, but binomial function was more precise than the others. Light saturation point of Lonicera japonica Thunb. was figured out by binomial equation deduced in the study , and light saturation point was 1 086 .3 μmol/ (m2•s) . [Conclusion] The diurnal changes curve of NPR of Lonicera japonica Thunb .showed double peaks, and the responding mathematical model of NPR to photosynthetic valid radiation could be described by binomial functions

  14. Energy transfer from natural photosynthetic complexes to single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wiwatowski, Kamil [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Dużyńska, Anna; Świniarski, Michał [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Szalkowski, Marcin [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Zdrojek, Mariusz; Judek, Jarosław [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Mackowski, Sebastian, E-mail: mackowski@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Wroclaw Research Center EIT+, Stablowicka 147, Wroclaw (Poland); Kaminska, Izabela [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland)

    2016-02-15

    Combination of fluorescence imaging and spectroscopy results indicates that single-walled carbon nanotubes are extremely efficient quenchers of fluorescence emission associated with chlorophylls embedded in a natural photosynthetic complex, peridinin-chlorophyll-protein. When deposited on a network of the carbon nanotubes forming a thin film, the emission of the photosynthetic complexes diminishes almost completely. This strong reduction of fluorescence intensity is accompanied with dramatic shortening of the fluorescence lifetime. Concluding, such thin films of carbon nanotubes can be extremely efficient energy acceptors in structures involving biologically functional complexes. - Highlights: • Fluorescence imaging of carbon nanotube - based hybrid structure. • Observation of efficient energy transfer from chlorophylls to carbon nanotubes.

  15. Photosynthetic behavior, growth and essential oil production of Melissa officinalis L. cultivated under colored shade nets

    OpenAIRE

    Graziele C Oliveira; Willyam L Vieira; Suzana C Bertolli; Ana Claudia Pacheco

    2016-01-01

    The modulation of light is of importance during cultivation of medicinal plants to obtain desirable morphological and physiological changes associated with the maximum production of active principles. This study aimed to evaluate the effect of the light spectrum transmitted by colored shade nets on growth, essential oil production and photosynthetic behavior in plants of lemon balm (Melissa officinalis L.) Plants were cultivated in pots for 4-mo under black, red, and blue nets with 50% shadin...

  16. Morning reduction of photosynthetic capacity before midday depression.

    Science.gov (United States)

    Koyama, Kohei; Takemoto, Shuhei

    2014-03-17

    Midday depression of photosynthesis has important consequences for ecosystem carbon exchange. Recent studies of forest trees have demonstrated that latent reduction of photosynthetic capacity can begin in the early morning, preceding the midday depression. We investigated whether such early morning reduction also occurs in an herbaceous species, Oenothera biennis. Diurnal changes of the photosynthetic light response curve (measured using a light-emitting diode) and incident sunlight intensity were measured under field conditions. The following results were obtained: (1) the light-saturated photosynthetic rate decreased beginning at sunrise; (2) the incident sunlight intensity on the leaves increased from sunrise; and (3) combining (1) and (2), the net photosynthetic rate under natural sunlight intensity increased from sunrise, reached a maximum at mid-morning, and then showed midday depression. Our results demonstrate that the latent morning reduction of photosynthetic capacity begins at sunrise, preceding the apparent midday depression, in agreement with previous studies of forest trees.

  17. Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation

    Science.gov (United States)

    1979-01-01

    The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.

  18. Carbon isotopic composition of legumes with photosynthetic stems from Mediterranean and desert habitats

    International Nuclear Information System (INIS)

    Nilsen, E.T.; Sharifi, M.R.

    1997-01-01

    The carbon isotopic compositions of leaves and stems of woody legumes growing in coastal mediterranean and inland desert sites in California were compared. The overall goal was to determine what factors were most associated with the carbon isotope composition of photosynthetic stems in these habitats. The carbon isotope signature (delta 13C) of photosynthetic stems was less negative than that of leaves on the same plants by an average of 1.51 +/- 0.42 per thousand. The delta 13C of bark (cortical chlorenchyma and epidermis) was more negative than that of wood (vascular tissue and pith) from the same plant for all species studied on all dates. Desert woody legumes had a higher delta 13C (less negative) and a lower intercellular CO2 concentration (Ci) (for both photosynthetic tissues) than that of woody legumes from mediterranean climate sites. Differences in the delta 13C of stems among sites could be entirely accounted for by differences among site air temperatures. Thus, the delta 13C composition of stems did not indicate a difference in whole-plant integrated water use efficiency (WUE) among sites. In contrast, stems on all plants had a lower stem Ci and a higher delta 13C than leaves on the same plant, indicating that photosynthetic stems improve long-term, whole-plant water use efficiency in a diversity of species

  19. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies).

    Science.gov (United States)

    Stinziano, Joseph R; Hüner, Norman P A; Way, Danielle A

    2015-12-01

    Climate change, via warmer springs and autumns, may lengthen the carbon uptake period of boreal tree species, increasing the potential for carbon sequestration in boreal forests, which could help slow climate change. However, if other seasonal cues such as photoperiod dictate when photosynthetic capacity declines, warmer autumn temperatures may have little effect on when carbon uptake capacity decreases in these species. We investigated whether autumn warming would delay photosynthetic decline in Norway spruce (Picea abies (L.) H. Karst.) by growing seedlings under declining weekly photoperiods and weekly temperatures either at ambient temperature or a warming treatment 4 °C above ambient. Photosynthetic capacity was relatively constant in both treatments when weekly temperatures were >8 °C, but declined rapidly at lower temperatures, leading to a delay in the autumn decline in photosynthetic capacity in the warming treatment. The decline in photosynthetic capacity was not related to changes in leaf nitrogen or chlorophyll concentrations, but was correlated with a decrease in the apparent fraction of leaf nitrogen invested in Rubisco, implicating a shift in nitrogen allocation away from the Calvin cycle at low autumn growing temperatures. Our data suggest that as the climate warms, the period of net carbon uptake will be extended in the autumn for boreal forests dominated by Norway spruce, which could increase total carbon uptake in these forests. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Geographic variation in the photosynthetic responses and life history of Mastocarpus papillatus

    International Nuclear Information System (INIS)

    Zupan, J.R.

    1985-01-01

    Population differentiation in Mastocarpus papillatus, a red alga occurring from Baja California to Alaska, was assessed by (1) characterizing the geographic pattern of variation in reproductive behavior and (2) determining the range of variation in photosynthesis and respiration. Examining these two aspects of the biology of M. papillatus yielded different estimates of population differentiation. Carpospores of females collected from 8 locations between Baja California and northern California were grown in laboratory culture and their subsequent development followed. The 8 locations could be divided into 3 groups based on life history patterns. Photosynthetic responses to temperature and photon flux density were measured foliose gametophytes and crustose tetrasporophytes from 4 locations. Gametophytes had maximal net photosynthetic rates 4-5 times higher than tetrasporophytes. Tetrasporophyte populations were uniform in photosynthetic responses to temperature. Maximal rates occurred at 15 0 C Gametophyte populations appeared to be slightly differentiated. The photosynthetic temperature optima were between 20 0 C and 25 0 C for 3 populations and between 15 0 C and 20 0 C for 1 population. A preliminary study of carbon metabolism in M. papillatus gametophytes was conducted using 14 C. Partitioning of early products of photosynthetic carbon fixation between low molecular weight and polymeric, high molecular weight compounds appeared to differ under emerged and submerged conditions

  1. Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems – the effect of drought

    Directory of Open Access Journals (Sweden)

    T. S. David

    2007-09-01

    Full Text Available Droughts reduce gross primary production (GPP and ecosystem respiration (Reco, contributing to most of the inter-annual variability in terrestrial carbon sequestration. In seasonally dry climates (Mediterranean, droughts result from reductions in annual rainfall and changes in rain seasonality. We compared carbon fluxes measured by the eddy covariance technique in three contrasting ecosystems in southern Portugal: an evergreen oak woodland (savannah-like with ca.~21% tree crown cover, a grassland dominated by herbaceous annuals and a coppiced short-rotation eucalyptus plantation. During the experimental period (2003–2006 the eucalyptus plantation was always the strongest sink for carbon: net ecosystem exchange rate (NEE between −861 and −399 g C m−2 year−1. The oak woodland and the grassland were much weaker sinks for carbon: NEE varied in the oak woodland between −140 and −28 g C m−2 year−1 and in the grassland between −190 and +49 g C m−2 year−1. The eucalyptus stand had higher GPP and a lower proportion of GPP spent in respiration than the other systems. The higher GPP resulted from high leaf area duration (LAD, as a surrogate for the photosynthetic photon flux density absorbed by the canopy. The eucalyptus had also higher rain use efficiency (GPP per unit of rain volume and light use efficiency (the daily GPP per unit incident photosynthetic photon flux density than the other two ecosystems. The effects of a severe drought could be evaluated during the hydrological-year (i.e., from October to September of 2004–2005. Between October 2004 and June 2005 the precipitation was only 40% of the long-term average. In 2004–2005 all ecosystems had GPP lower than in wetter years and carbon sequestration was strongly restricted (less negative NEE. The grassland was a net source of carbon dioxide (+49 g C m−2 year−1. In the oak woodland a large proportion of GPP resulted from carbon assimilated by its annual vegetation

  2. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in 4 northern hardwood tree species

    International Nuclear Information System (INIS)

    Sefcik, L.T.; Zak, D.R.; Ellsworth, D.S.

    2006-01-01

    Stimulation of photosynthesis in response to elevated carbon dioxide (CO 2 ) varies among tree species and species groups. In this study, seedling responses to elevated atmospheric carbon dioxide (CO 2 ) concentrations and solar irradiance over 2 growing seasons were investigated for shade tolerant Acer saccharum Marsh.; Fagus grandifolia J.F. Ehrh; and shade-intolerant Prunus serotina. Seedlings were exposed to a combination of elevated and ambient concentrations of CO 2 and understory shade in open-top chambers placed in a forest understory. It was observed that the elevated CO 2 treatment increased mean light-saturated net photosynthetic rates by 63 per cent in the shade-tolerant species and 67 per cent in the shade-intolerant species. When measured at the elevated CO 2 , long-term enhancement of photosynthesis was 10 per cent lower than the instantaneous enhancement observed in ambient-CO 2 -grown plants. As the growth irradiance increased, proportional enhancement due to elevated CO 2 decreased from 97 per cent for plants grown in deep shade to 47 per cent for plants grown in moderate shade. Results indicated that in nitrogen (N) limited northern temperate forests, trees grown in deep shade may display greater photosynthetic gains from a CO 2 enriched atmosphere than trees growing in more moderate shade, due to greater down-regulation. It was concluded that if elevated CO 2 levels promote the survival of shade-intolerant species in dim understory light, the future composition and dynamics of successional forest communities may be altered. 70 refs., 2 tabs., 3 figs

  3. Comparison of net photosynthetic rate and 14C distribution between different cultural conditions on double cropping rice

    International Nuclear Information System (INIS)

    Huang Jianliang; Li Hesong; Zou Yingbin; Tu Naimei; Li Jianhui

    2002-01-01

    By applying the cultural method 'Vigorous Root-Strong Stem-Heavy Panicle Cultural Method' (VSHM), the yield of double cropping rice reached 18000 kg/hm 2 in large area at Liling county, Hunan province. The net photosynthetic rate and 14 C distribution of rice leaves between VSHM and traditional cultural methods (CK) were compared. The photosynthetic rate of the flag leaves at ripening stages under VSHM was higher than that of controls with both earlier rice or later rice. Regarding the net amount of 14 C-assimilate by a single flag leaf and the second top leaf, there were differences at the significant level of 0.01 and 0.05, respectively between VSHM and controls, and VSHM were 7.72%-35.05% higher. The percentage of distribution at panicles of 14 C-assimilate were 51.93%-61.40% when flag leaf was labelled, and 45.34%-54.25% when the second top leaf was labelled, that of earlier rice was higher than later rice respectively, but the differences were not significant between VSHM and CK. The actual yield of double cropping rice under the cultural condition of VSHM was 17710 kg/hm 2 , and increased by 18.33% when compared with controls

  4. Photosynthetic behavior, growth and essential oil production of Melissa officinalis L. cultivated under colored shade nets

    Directory of Open Access Journals (Sweden)

    Graziele C Oliveira

    2016-03-01

    Full Text Available The modulation of light is of importance during cultivation of medicinal plants to obtain desirable morphological and physiological changes associated with the maximum production of active principles. This study aimed to evaluate the effect of the light spectrum transmitted by colored shade nets on growth, essential oil production and photosynthetic behavior in plants of lemon balm (Melissa officinalis L. Plants were cultivated in pots for 4-mo under black, red, and blue nets with 50% shading, and full sunlight exposure. Biometric and anatomical variables, essential oil yield, global solar radiation, photon flux density, chlorophyll content, and gas exchange parameters were measured in M. officinalis leaves. The results showed that despite being considered a partial shade plant, this species is able to adapt to full sunlight conditions without increasing biomass production. The spectral changes provided by colored shade nets did not caused any noticeable change in leaf anatomy of M. officinalis. However, the use of blue net resulted in increments of 116% in plant height, 168% in leaf area, 42% in chlorophyll content and 30% in yield of essential oil in lemon balm plants. These plant's qualities make the use of blue net a cultivation practice suitable for commercial use.

  5. The effect of cutting on carbon dioxide absorption and carbohydrate ...

    African Journals Online (AJOL)

    grass) and Osteospermun sinuatum (Karoo-bush) plants during the flag leaf and flower bud stages respectively resulted in a sharp decline in net carbon dioxide absorption. As new photosynthetic material was produced the total carbon ...

  6. Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Görres, C.-M.; Hoffmann, Carl Christian

    2012-01-01

    This study presents the first annual estimates of net ecosystem exchange (NEE) of CO2 and net ecosystem carbon balances (NECB) of contrasting Danish agricultural peatlands. Studies were done at eight sites representing permanent grasslands (PG) and rotational (RT) arable soils cropped to barley......, potato or forage grasses in three geo-regional settings. Using an advanced flux-chamber technique, NEE was derived from modelling of ecosystem respiration (ER) and gross primary production (GPP) with temperature and photosynthetically active radiation as driving variables. At PG (n = 3) and RT (n = 5......) sites, NEE (mean ± standard error, SE) was 5.1 ± 0.9 and 8.6 ± 2.0 Mg C ha−1 yr−1, respectively, but with the overall lowest value observed for potato cropping (3.5 Mg C ha−1 yr−1). This was partly attributed to a short-duration vegetation period and drying of the soil especially in potato ridges. NECB...

  7. Net energy benefits of carbon nanotube applications

    International Nuclear Information System (INIS)

    Zhai, Pei; Isaacs, Jacqueline A.; Eckelman, Matthew J.

    2016-01-01

    Highlights: • Life cycle net energy benefits are examined. • CNT-enabled and the conventional technologies are compared. • Flash memory with CNT switches show significant positive net energy benefit. • Lithium-ion batteries with MWCNT cathodes show positive net energy benefit. • Lithium-ion batteries with SWCNT anodes tend to exhibit negative net energy benefit. - Abstract: Implementation of carbon nanotubes (CNTs) in various applications can reduce material and energy requirements of products, resulting in energy savings. However, processes for the production of carbon nanotubes (CNTs) are energy-intensive and can require extensive purification. In this study, we investigate the net energy benefits of three CNT-enabled technologies: multi-walled CNT (MWCNT) reinforced cement used as highway construction material, single-walled CNT (SWCNT) flash memory switches used in cell phones and CNT anodes and cathodes used in lithium-ion batteries used in electric vehicles. We explore the avoided or additional energy requirement in the manufacturing and use phases and estimate the life cycle net energy benefits for each application. Additional scenario analysis and Monte Carlo simulation of parameter uncertainties resulted in probability distributions of net energy benefits, indicating that net energy benefits are dependent on the application with confidence intervals straddling the breakeven line in some cases. Analysis of simulation results reveals that SWCNT switch flash memory and MWCNT Li-ion battery cathodes have statistically significant positive net energy benefits (α = 0.05) and SWCNT Li-ion battery anodes tend to have negative net energy benefits, while positive results for MWCNT-reinforced cement were significant only under an efficient CNT production scenario and a lower confidence level (α = 0.1).

  8. Differential responses of net ecosystem exchange of carbon dioxide to light and temperature between spring and neap tides in subtropical mangrove forests.

    Science.gov (United States)

    Li, Qing; Lu, Weizhi; Chen, Hui; Luo, Yiqi; Lin, Guanghui

    2014-01-01

    The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE) and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR) using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios.

  9. Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae.

    Directory of Open Access Journals (Sweden)

    Ren-Yi Ma

    Full Text Available Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn, which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems.

  10. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance

    DEFF Research Database (Denmark)

    Kindler, Reimo; Siemens, Jan; Kaiser, Klaus

    2011-01-01

    ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small...... solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems....

  11. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    Directory of Open Access Journals (Sweden)

    M. Zhang

    2010-02-01

    Full Text Available Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS and a subtropical evergreen broad-leaved forest at Dinghushan (DHS, based on the flux data obtained during June–August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max at CBS under cloudy skies during mid-growing season (from June to August increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP and greater increase in ecosystem respiration (Re at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in

  12. Squaroglitter: A 3,4-Connected Carbon Net

    KAUST Repository

    Prasad, Dasari L. V. K.

    2013-08-13

    Theoretical calculations are presented on a new hypothetical 3,4-connected carbon net (called squaroglitter) incorporating 1,4 cyclohexadiene units. The structure has tetragonal space group P4/mmm (No. 123) symmetry. The optimized geometry shows normal distances, except for some elongated bonds in the cyclobutane ring substructures in the network. Squaroglitter has an indirect bandgap of about 1.0 eV. The hypothetical lattice, whose density is close to graphite, is more stable than other 3,4-connected carbon nets. A relationship to a (4,4)nanotube is explored, as is a potential threading of the lattice with metal needles. © 2013 American Chemical Society.

  13. Evolution and Adaptation of Phytoplankton Photosynthetic Pathways to perturbations of the geological carbon system

    Science.gov (United States)

    Rickaby, R. E.; Young, J. N.; Hermoso, M.; Heureux, A.; McCLelland, H.; Lee, R.; Eason Hubbard, M.

    2012-12-01

    The ocean and atmosphere carbon system has varied greatly over geological history both in response to initial evolutionary innovation, and as a driver of adaptive change. Here we establish that positive selection in Rubisco, the most abundant enzyme on the Earth responsible for all photosynthetic carbon fixation, occurred early in Earth's history, and basal to the radiation of the modern marine algal groups. Our signals of positive selection appear to be triggered by changing intracellular concentrations of carbon dioxide (CO2) due to the emergence of carbon concentrating mechanisms between 1.56 and 0.41 Ba in response to declining atmospheric CO2 . We contend that, at least in terms of carbon, phytoplankton generally were well poised to manage subsequent abrupt carbon cycle perturbations. The physiological pathways for optimising carbon acquisition across a wide range of ambient carbon dioxide concentrations had already been established and were genetically widespread across open ocean phytoplankton groups. We will further investigate some case studies from the Mesozoic and Cenozoic abrupt carbon cycle excursions using isotopic tools to probe the community photosynthetic response and demonstrate the flexibility of phytoplankton photosynthesis in the face of major perturbations. In particular, an unprecedented resolution record across the Toarcian (Early Jurassic) carbon isotope excursion in the Paris Basin reveals a selection and evolution towards a community reliant solely on diffusive carbon dioxide supply for photosynthesis at the height of the excursion at 1500-2500 ppm CO2. The continued flourishing of the phytoplankton biological pump throughout this excursion was able to remove the excess carbon injected into the water column in less than 45 kyrs.

  14. Implications of net energy-return-on-investment for a low-carbon energy transition

    Science.gov (United States)

    King, Lewis C.; van den Bergh, Jeroen C. J. M.

    2018-04-01

    Low-carbon energy transitions aim to stay within a carbon budget that limits potential climate change to 2 °C—or well below—through a substantial growth in renewable energy sources alongside improved energy efficiency and carbon capture and storage. Current scenarios tend to overlook their low net energy returns compared to the existing fossil fuel infrastructure. Correcting from gross to net energy, we show that a low-carbon transition would probably lead to a 24-31% decline in net energy per capita by 2050, which implies a strong reversal of the recent rising trends of 0.5% per annum. Unless vast end-use efficiency savings can be achieved in the coming decades, current lifestyles might be impaired. To maintain the present net energy returns, solar and wind renewable power sources should grow two to three times faster than in other proposals. We suggest a new indicator, `energy return on carbon', to assist in maximizing the net energy from the remaining carbon budget.

  15. Canopy uptake of atmospheric N deposition at a conifer forest: part I -canopy N budget, photosynthetic efficiency and net ecosystem exchange

    International Nuclear Information System (INIS)

    Sievering, H.; Tomaszewski, T.; Torizzo, J.

    2007-01-01

    Global carbon cycle assessments of anthropogenic nitrogen (N) deposition influences on carbon sequestration often assume enhanced sequestration results. This assumption was evaluated at a Rocky Mountains spruce-fir forest. Forest canopy N uptake (CNU) of atmospheric N deposition was estimated by combining event wet and throughfall N fluxes with gradient measured HNO 3 and NH 3 as well as inferred (NO x and particulate N) dry fluxes. Approximately 80% of the growing-season 3 kg N/ha total deposition is retained in canopy foliage and branches. This CNU constitutes ∼1/3 of canopy growing season new N supply at this conifer forest site. Daytime net ecosystem exchange (NEE) significantly (P = 0.006) and negatively (CO 2 uptake) correlated with CNU. Multiple regression indicates ∼20% of daytime NEE may be attributed to CNU (P < 0.02); more than soil water content. A wet deposition N-amendment study (Tomaszewski and Sievering), at canopy spruce branches, increased their growing-season CNU by 40-50% above ambient. Fluorometry and gas exchange results show N-amended spruce branches had greater photosynthetic efficiency and higher carboxylation rates than control and untreated branches. N-amended branches had 25% less photoinhibition, with a 5-9% greater proportion of foliar-N-in-Rubisco. The combined results provide, partly, a mechanistic explanation for the NEE dependence on CNU

  16. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    Science.gov (United States)

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the

  17. A Restricted Boltzman Neural Net to Infer Carbon Uptake from OCO-2 Satellite Data

    Science.gov (United States)

    Halem, M.; Dorband, J. E.; Radov, A.; Barr-Dallas, M.; Gentine, P.

    2015-12-01

    For several decades, scientists have been using satellite observations to infer climate budgets of terrestrial carbon uptake employing inverse methods in conjunction with ecosystem models and coupled global climate models. This is an extremely important Big Data calculation today since the net annual photosynthetic carbon uptake changes annually over land and removes on average ~20% of the emissions from human contributions to atmospheric loading of CO2 from fossil fuels. Unfortunately, such calculations have large uncertainties validated with in-situ networks of measuring stations across the globe. One difficulty in using satellite data for these budget calculations is that the models need to assimilate surface fluxes of CO2 as well as soil moisture, vegatation cover and the eddy covariance of latent and sensible heat to calculate the carbon fixed in the soil while satellite spectral observations only provide near surface concentrations of CO2. In July 2014, NASA successfully launched OCO-2 which provides 3km surface measurements of CO2 over land and oceans. We have collected nearly one year of Level 2 XCO2 data from the OCO-2 satellite for 3 sites of ~200 km2 at equatorial, temperate and high latitudes. Each selected site was part of the Fluxnet or ARM system with tower stations for measuring and collecting CO2 fluxes on an hourly basis, in addition to eddy transports of the other parameters. We are also planning to acquire the 4km NDVI products from MODIS and registering the data to the 3km XCO2 footprints for the three sites. We have implemented a restricted Boltzman machine on the quantum annealing D-Wave computer, a novel deep learning neural net, to be used for training with station data to infer CO2 fluxes from collocated XCO2, MODIS vegetative land cover and MERRA reanalysis surface exchange products. We will present performance assessments of the D-Wave Boltzman machine for generating XCO2 fluxes from the OCO-2 satellite observations for the 3 sites by

  18. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity.

    Science.gov (United States)

    Mercado, Lina M; Medlyn, Belinda E; Huntingford, Chris; Oliver, Rebecca J; Clark, Douglas B; Sitch, Stephen; Zelazowski, Przemyslaw; Kattge, Jens; Harper, Anna B; Cox, Peter M

    2018-06-01

    Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO 2 . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  19. Partitioning of net carbon dioxide flux measured by automatic transparent chamber

    Science.gov (United States)

    Dyukarev, EA

    2018-03-01

    Mathematical model was developed for describing carbon dioxide fluxes at open sedge-sphagnum fen during growing season. The model was calibrated using the results of observations from automatic transparent chamber and it allows us to estimate autotrophic, heterotrophic and ecosystem respiration fluxes, gross and net primary vegetation production, and the net carbon balance.

  20. Melatonin Improves the Photosynthetic Carbon Assimilation and Antioxidant Capacity in Wheat Exposed to Nano-ZnO Stress

    Directory of Open Access Journals (Sweden)

    Zhiyu Zuo

    2017-10-01

    Full Text Available The release of nanoparticles into the environment is inevitable, which has raised global environmental concern. Melatonin is involved in various stress responses in plants. The present study investigated the effects of melatonin on photosynthetic carbon (C assimilation and plant growth in nano-ZnO stressed plants. It was found that melatonin improved the photosynthetic C assimilation in nano-ZnO stressed wheat plants, mainly due to the enhanced photosynthetic energy transport efficiency, higher chlorophyll concentration and higher activities of Rubisco and ATPases. In addition, melatonin enhanced the activities of antioxidant enzymes to protect the photosynthetic electron transport system in wheat leaves against the oxidative burst caused by nano-ZnO stress. These results suggest that melatonin could improve the tolerance of wheat plants to nano-ZnO stress.

  1. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton

    International Nuclear Information System (INIS)

    Coveney, M.F.

    1982-01-01

    Microheterotrophic uptake of algal extracellular products was studied in two eutrophic lakes in southern Sweden. Size fractionation was used in H 14 CO 3 uptake experiments to measure 14 C fixation in total particulate, small particulate and dissolved organic fractions. Carbon fixed in algal photosynthesis was recovered as dissolved and small particulate 14 C, representing excretion and bacterial uptake of algal products. Estimated gross extracellular release was low in these eutrophic systems, 1 to 7% of total 14 C uptake per m 2 lake surface. From 28 to 80 % of 14 C released was recovered in the small particulate fraction after ca. 4h incubation.This percentage was uniform within each depth profile, but varied directly with in situ water temperature. Laboratory time-series incubations indicated steady state for the pool of algal extracellular products on one occasion, while increasing pool size was indicated in the remaining two experiments. Uptake of photosynthetic carbon to small particles in situ was 32 to 95% of estimted heterotrophic bacterial production (as dark 14 CO 2 uptake) on four occasions. While excretion apparently was not an important loss of cabon for phytoplankton, it may have represented an important carbon source for planktonic bacteria. (author)

  2. A theoretical framework for whole-plant carbon assimilation efficiency based on metabolic scaling theory: a test case using Picea seedlings.

    Science.gov (United States)

    Wang, Zhiqiang; Ji, Mingfei; Deng, Jianming; Milne, Richard I; Ran, Jinzhi; Zhang, Qiang; Fan, Zhexuan; Zhang, Xiaowei; Li, Jiangtao; Huang, Heng; Cheng, Dongliang; Niklas, Karl J

    2015-06-01

    Simultaneous and accurate measurements of whole-plant instantaneous carbon-use efficiency (ICUE) and annual total carbon-use efficiency (TCUE) are difficult to make, especially for trees. One usually estimates ICUE based on the net photosynthetic rate or the assumed proportional relationship between growth efficiency and ICUE. However, thus far, protocols for easily estimating annual TCUE remain problematic. Here, we present a theoretical framework (based on the metabolic scaling theory) to predict whole-plant annual TCUE by directly measuring instantaneous net photosynthetic and respiratory rates. This framework makes four predictions, which were evaluated empirically using seedlings of nine Picea taxa: (i) the flux rates of CO(2) and energy will scale isometrically as a function of plant size, (ii) whole-plant net and gross photosynthetic rates and the net primary productivity will scale isometrically with respect to total leaf mass, (iii) these scaling relationships will be independent of ambient temperature and humidity fluctuations (as measured within an experimental chamber) regardless of the instantaneous net photosynthetic rate or dark respiratory rate, or overall growth rate and (iv) TCUE will scale isometrically with respect to instantaneous efficiency of carbon use (i.e., the latter can be used to predict the former) across diverse species. These predictions were experimentally verified. We also found that the ranking of the nine taxa based on net photosynthetic rates differed from ranking based on either ICUE or TCUE. In addition, the absolute values of ICUE and TCUE significantly differed among the nine taxa, with both ICUE and temperature-corrected ICUE being highest for Picea abies and lowest for Picea schrenkiana. Nevertheless, the data are consistent with the predictions of our general theoretical framework, which can be used to access annual carbon-use efficiency of different species at the level of an individual plant based on simple, direct

  3. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Temperton, V. M.; Jackson, G.; Barton, C. V. M.; Jarvis, P. G. [Edinburgh Univ., Inst. of Ecology and Resource Management, Edinburgh (United Kingdom); Grayston, S. J. [Macaulay Land Use Research Inst., Plant-Soil Interaction Group, Aberdeen (United Kingdom)

    2003-10-01

    Total biomass, relative growth rate, net assimilation rate, leaf area and net photosynthetic rate of nitrogen-fixing were measured in common alder trees, grown for three years in open-top chambers in the presence of either ambient or elevated atmospheric carbon dioxide, and in two soil nitrogen regimes: i.e. full nutrient solution or no fertilizer. The objective was to clarify the relationship between elevated carbon dioxide and the rate of nitrogen fixation of nodulated trees growing under field conditions. Results showed that growth in elevated carbon dioxide stimulated net photosynthesis and total biomass accumulation. However, relative growth rate was not significantly affected by elevated carbon dioxide. Leaf area and leaf phosphorus concentration were also unaffected. Nodule mass on roots of unfertilized trees exposed to elevated carbon dioxide increased, compared with fertilized trees exposed to ambient carbon dioxide levels. Since neither in the fertilized, nor the unfertilized trees was there any evidence of effects on growth, biomass and photosynthesis that could be attributed to the interaction of fertilizer and elevated carbon dioxide interaction, it was concluded that both types exhibit similar carbon dioxide-induced growth and photosynthetic enhancements. 40 refs., 5 tabs., 3 figs.

  4. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment

    International Nuclear Information System (INIS)

    Temperton, V. M.; Jackson, G.; Barton, C. V. M.; Jarvis, P. G.; Grayston, S. J.

    2003-01-01

    Total biomass, relative growth rate, net assimilation rate, leaf area and net photosynthetic rate of nitrogen-fixing were measured in common alder trees, grown for three years in open-top chambers in the presence of either ambient or elevated atmospheric carbon dioxide, and in two soil nitrogen regimes: i.e. full nutrient solution or no fertilizer. The objective was to clarify the relationship between elevated carbon dioxide and the rate of nitrogen fixation of nodulated trees growing under field conditions. Results showed that growth in elevated carbon dioxide stimulated net photosynthesis and total biomass accumulation. However, relative growth rate was not significantly affected by elevated carbon dioxide. Leaf area and leaf phosphorus concentration were also unaffected. Nodule mass on roots of unfertilized trees exposed to elevated carbon dioxide increased, compared with fertilized trees exposed to ambient carbon dioxide levels. Since neither in the fertilized, nor the unfertilized trees was there any evidence of effects on growth, biomass and photosynthesis that could be attributed to the interaction of fertilizer and elevated carbon dioxide interaction, it was concluded that both types exhibit similar carbon dioxide-induced growth and photosynthetic enhancements. 40 refs., 5 tabs., 3 figs

  5. Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

    Directory of Open Access Journals (Sweden)

    esmat mohammadi

    2017-09-01

    significant on belowground and aboveground biomasses, total weight and net primary productivity. Maximum and minimum of shoot, seed, total weight and aboveground net primary productivity were obtained in chemical fertilizer and control respectively. Nitrogen plays a key role in several physiological crop processes. As a result of increasing N doses, the photosynthetic activity, leaf area index (LAI and leaf area density (LAD increase. Maximum and minimum of root weight and belowground net primary productivity were obtained in chemical fertilizer + manure and control respectively. Manure and biochar increased root weight 56/03 and 54/31 percent compared to control respectively that had no significant different to chemical fertilizer. Manure increased root growth, possibly through improved physical properties and increased nutrient and water availability. Manure decreases soil compatibility with increasing of stability of soil structure and soil resilient. Impact of adding manure on improving of root length density has been reported by Mosaddeghi et al. (2009. The increased maize yield in biochar amended soil could be attributed to increased nutrient availability (Chan et al. 2008; Zhang et al. 2010 and to improved soil physical properties indicated by decreased soil bulk density. Conclusions The results showed that nutrient management had significant effect on belowground and aboveground biomasses, total weight, below and aboveground net primary productivity and carbon allocated to different organs of corn. Maximum and minimum of belowground and aboveground net primary productivity was obtained in chemical fertilizer, manure+ chemical fertilizer and control respectively. Manure and biochar increased belowground net primary productivity 54/91 and 53/21 percent compared to control respectively that had no significant different to chemical fertilizer. Tillage systems had no significant effect on measured traits. The results showed that with application reduced tillage and manure

  6. The effect of nitrogen on the development and photosynthetic activity ...

    African Journals Online (AJOL)

    Whole plant net photosynthetic rates appeared to vary according to the units in which the activity is expressed. The optimum levels of photosynthetic activity differed with the stage of development, depending on the basis of expression. The form and concentration of nitrogen applied influenced morphological development ...

  7. [Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].

    Science.gov (United States)

    Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin

    2011-06-01

    Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.

  8. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees

    Science.gov (United States)

    Jensen, Anna M.; Warren, Jeffrey M.; Hanson, Paul J.; Childs, Joanne; Wullschleger, Stan D.

    2015-01-01

    Background and Aims The carbon (C) balance of boreal terrestrial ecosystems is sensitive to increasing temperature, but the direction and thresholds of responses are uncertain. Annual C uptake in Picea and other evergreen boreal conifers is dependent on seasonal- and cohort-specific photosynthetic and respiratory temperature response functions, so this study examined the physiological significance of maintaining multiple foliar cohorts for Picea mariana trees within an ombrotrophic bog ecosystem in Minnesota, USA. Methods Measurements were taken on multiple cohorts of needles for photosynthetic capacity, foliar respiration (Rd) and leaf biochemistry and morphology of mature trees from April to October over 4 years. The results were applied to a simple model of canopy photosynthesis in order to simulate annual C uptake by cohort age under ambient and elevated temperature scenarios. Key Results Temperature responses of key photosynthetic parameters [i.e. light-saturated rate of CO2 assimilation (Asat), rate of Rubisco carboxylation (Vcmax) and electron transport rate (Jmax)] were dependent on season and generally less responsive in the developing current-year (Y0) needles compared with 1-year-old (Y1) or 2-year-old (Y2) foliage. Temperature optimums ranged from 18·7 to 23·7, 31·3 to 38·3 and 28·7 to 36·7 °C for Asat, Vcmax and Jmax, respectively. Foliar cohorts differed in their morphology and photosynthetic capacity, which resulted in 64 % of modelled annual stand C uptake from Y1&2 cohorts (LAI 0·67 m2 m−2) and just 36 % from Y0 cohorts (LAI 0·52 m2 m−2). Under warmer climate change scenarios, the contribution of Y0 cohorts was even less; e.g. 31 % of annual C uptake for a modelled 9 °C rise in mean summer temperatures. Results suggest that net annual C uptake by P. mariana could increase under elevated temperature, and become more dependent on older foliar cohorts. Conclusions Collectively, this study illustrates the physiological and

  9. Estimation of absorbed photosynthetically active radiation and vegetation net production efficiency using satellite data

    International Nuclear Information System (INIS)

    Hanan, N.P.; Prince, S.D.; Begue, A.

    1995-01-01

    The amount of photosynthetically active radiation (PAR) absorbed by green vegetation is an important determinant of photosynthesis and growth. Methods for the estimation of fractional absorption of PAR (iff PAR ) for areas greater than 1 km 2 using satellite data are discussed, and are applied to sites in the Sahel that have a sparse herb layer and tree cover of less than 5%. Using harvest measurements of seasonal net production, net production efficiencies are calculated. Variation in estimates of seasonal PAR absorption (APAR) caused by the atmospheric correction method and relationship between surface reflectances and iff PAR is considered. The use of maximum value composites of satellite NDVI to reduce the effect of the atmosphere is shown to produce inaccurate APAR estimates. In this data set, however, atmospheric correction using average optical depths was found to give good approximations of the fully corrected data. A simulation of canopy radiative transfer using the SAIL model was used to derive a relationship between canopy NDVI and iff PAR . Seasonal APAR estimates assuming a 1:1 relationship between iff PAR and NDVI overestimated the SAIL modeled results by up to 260%. The use of a modified 1:1 relationship, where iff PAR was assumed to be linearly related to NDVI scaled between minimum (soil) and maximum (infinite canopy) values, underestimated the SAIL modeled results by up to 35%. Estimated net production efficiencies (ϵ n , dry matter per unit APAR) fell in the range 0.12–1.61 g MJ −1 for above ground production, and in the range 0.16–1.88 g MJ −1 for total production. Sites with lower rainfall had reduced efficiencies, probably caused by physiological constraints on photosynthesis during dry conditions. (author)

  10. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature.

    Science.gov (United States)

    Wallin, Göran; Hall, Marianne; Slaney, Michelle; Räntfors, Mats; Medhurst, Jane; Linder, Sune

    2013-11-01

    Accumulated carbon uptake, apparent quantum yield (AQY) and light-saturated net CO2 assimilation (Asat) were used to assess the responses of photosynthesis to environmental conditions during spring for three consecutive years. Whole-tree chambers were used to expose 40-year-old field-grown Norway spruce trees in northern Sweden to an elevated atmospheric CO2 concentration, [CO2], of 700 μmol CO2 mol(-1) (CE) and an air temperature (T) between 2.8 and 5.6 °C above ambient T (TE), during summer and winter. Net shoot CO2 exchange (Anet) was measured continuously on 1-year-old shoots and was used to calculate the accumulated carbon uptake and daily Asat and AQY. The accumulated carbon uptake, from 1 March to 30 June, was stimulated by 33, 44 and 61% when trees were exposed to CE, TE, and CE and TE combined, respectively. Air temperature strongly influenced the timing and extent of photosynthetic recovery expressed as AQY and Asat during the spring. Under elevated T (TE), the recovery of AQY and Asat commenced ∼10 days earlier and the activity of these parameters was significantly higher throughout the recovery period. In the absence of frost events, the photosynthetic recovery period was less than a week. However, frost events during spring slowed recovery so that full recovery could take up to 60 days to complete. Elevated [CO2] stimulated AQY and Asat on average by ∼10 and ∼50%, respectively, throughout the recovery period, but had minimal or no effect on the onset and length of the photosynthetic recovery period during the spring. However, AQY, Asat and Anet all recovered at significantly higher T (average +2.2 °C) in TE than in TA, possibly caused by acclimation or by shorter days and lower light levels during the early part of the recovery in TE compared with TA. The results suggest that predicted future climate changes will cause prominent stimulation of photosynthetic CO2 uptake in boreal Norway spruce forest during spring, mainly caused by elevated T

  11. Molecular Regulation of Photosynthetic Carbon Dioxide Fixation in Nonsulfur Purple Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tabita, Fred Robert [The Ohio State Univ., Columbus, OH (United States)

    2015-12-01

    The overall objective of this project is to determine the mechanism by which a transcriptional activator protein affects CO2 fixation (cbb) gene expression in nonsulfur purple photosynthetic bacteria, with special emphasis to Rhodobacter sphaeroides and with comparison to Rhodopseudomonas palustris. These studies culminated in several publications which indicated that additional regulators interact with the master regulator CbbR in both R. sphaeroides and R. palustris. In addition, the interactive control of the carbon and nitrogen assimilatory pathways was studied and unique regulatory signals were discovered.

  12. Tropical forests are a net carbon source based on aboveground measurements of gain and loss

    Science.gov (United States)

    Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. A.

    2017-10-01

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year-1). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year-1 and gains of 436.5 ± 31.0 Tg C year-1. Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses.

  13. Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest.

    Science.gov (United States)

    Bansal, Sheel; Nilsson, Marie-Charlotte; Wardle, David A

    2012-07-01

    In the long-term absence of rejuvenating disturbances, forest succession frequently proceeds from a maximal biomass phase to a retrogressive phase characterized by reduced nutrient availability [notably nitrogen (N) and phosphorus (P)] and net primary productivity. Few studies have considered how retrogression induces changes in ecophysiological responses associated with photosynthetic carbon (C) gain, and only for trees. We tested the hypothesis that retrogression would negatively impact photosynthetic C gain of four contrasting species, and that this impact would be greater for vascular plants (i.e., trees and shrubs) than for non-vascular plants (i.e., mosses). We used a 5,000-year-old chronosequence of forested islands in Sweden, where retrogression occurs in the long-term absence of lightning-ignited wildfires. Despite fundamental differences in plant form and ecological niche among species, vascular plants and mosses showed similar ecophysiological responses to retrogression. The most common effects of retrogression were reductions in photosynthesis and respiration per unit foliar N, increases in foliar N, δ(13)C and δ(15)N, and decreases in specific leaf areas. In contrast, photosynthesis per unit mass or area generally did not change along the chronosequence, but did vary many-fold between vascular plants and mosses. The consistent increases in foliar N without corresponding increases in mass- or area-based photosynthesis suggest that other factor(s), such as P co-limitation, light conditions or water availability, may co-regulate C gain in retrogressive boreal forests. Against our predictions, traits of mosses associated with C and N were generally highly responsive to retrogression, which has implications for how mosses influence ecosystem processes in boreal forests.

  14. Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a Carbon Bookkeeping Model.

    Science.gov (United States)

    Andersen, Lykke E; Doyle, Anna Sophia; del Granado, Susana; Ledezma, Juan Carlos; Medinaceli, Agnes; Valdivia, Montserrat; Weinhold, Diana

    2016-01-01

    Accurate estimates of global carbon emissions are critical for understanding global warming. This paper estimates net carbon emissions from land use change in Bolivia during the periods 1990-2000 and 2000-2010 using a model that takes into account deforestation, forest degradation, forest regrowth, gradual carbon decomposition and accumulation, as well as heterogeneity in both above ground and below ground carbon contents at the 10 by 10 km grid level. The approach permits detailed maps of net emissions by region and type of land cover. We estimate that net CO2 emissions from land use change in Bolivia increased from about 65 million tons per year during 1990-2000 to about 93 million tons per year during 2000-2010, while CO2 emissions per capita and per unit of GDP have remained fairly stable over the sample period. If we allow for estimated biomass increases in mature forests, net CO2 emissions drop to close to zero. Finally, we find these results are robust to alternative methods of calculating emissions.

  15. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, Joy S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  16. Tropical forests are a net carbon source based on aboveground measurements of gain and loss.

    Science.gov (United States)

    Baccini, A; Walker, W; Carvalho, L; Farina, M; Sulla-Menashe, D; Houghton, R A

    2017-10-13

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year -1 ). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year -1 and gains of 436.5 ± 31.0 Tg C year -1 Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species

    DEFF Research Database (Denmark)

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz

    2016-01-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential...... responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 -. Net photosynthesis of all species except Zostera polychlamys were limited...... at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 - users through acidification of diffusive boundary layers, production of extracellular carbonic...

  18. Photosynthetic Energy Storage for the Built Environment: Modeling Energy Generation and Storage for Net-Zero Analysis

    Science.gov (United States)

    Lichter-Marck, Eli Morris

    There is a growing need to address the energy demand of the building sector with non-polluting, renewable energy sources. The Net Zero Energy Building (NZEB) mandate seeks to reduce the impact of building sector energy consumption by encouraging on-site energy generation as a way to offset building loads. However, current approaches to designing on-site generation fail to adequately match the fluctuating load schedules of the built environment. As a result, buildings produce highly variable and often-unpredictable energy import/export patterns that create stress on energy grids and increase building dependence on primary energy resources. This research investigates the potential of integrating emerging photo-electrochemical (PEC) technologies into on-site generation systems as a way to enable buildings to take a more active role in collecting, storing and deploying energy resources according to their own demand schedules. These artificially photosynthetic systems have the potential to significantly reduce variability in hour-to-hour and day-to-day building loads by introducing high-capacity solar-hydrogen into the built environment context. The Building Integrated Artificial Photosynthesis (BIAP) simulation framework presented here tests the impact of hydrogen based energy storage on NZEB performance metrics with the goal of developing a methodology that makes on-site energy generation more effective at alleviating excessive energy consumption in the building sector. In addition, as a design performance framework, the BIAP framework helps guide how material selection and scale up of device design might tie photo-electrochemical devices into parallel building systems to take full advantage of the potential outputs of photosynthetic building systems.

  19. Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis

    International Nuclear Information System (INIS)

    Wang Yan; Xu Hao; Wu Xu; Zhu Yimei; Gu Baojing; Niu Xiaoyin; Liu Anqin; Peng Changhui; Ge Ying; Chang Jie

    2011-01-01

    Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha -1 yr -1 for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. - Highlights: → We used full carbon (C) cycle analysis to estimate the net C flux from cultivation. → The plastic greenhouse vegetable cultivation system in China can act as a C sink. → Intensified agricultural practices can generate C sinks. → Expansion of plastic greenhouse vegetable cultivation can enhance regional C sink. - The conversion from conventional vegetable cultivation to plastic greenhouse vegetable cultivation could substantially enhance carbon sink potential by 8.6 and 1.3 times for temperate and subtropical area, respectively.

  20. Photosynthetic Rates of Citronella and Lemongrass 1

    Science.gov (United States)

    Herath, H. M. Walter; Ormrod, Douglas P.

    1979-01-01

    Ten selections of citronella (Cymbopogon nardus [L.] Rendle) were grown at 32/27, 27/21, or 15/10 C day/night temperatures, and plants from three populations of lemongrass (Cymbopogon citratus [D.C.] Stapf from Japan or Sri Lanka and Cymbopogon flexuosus [D.C.] Stapf from India) were grown at 8- or 15-hour photoperiods. Net photosynthetic rates of mature leaves were measured in a controlled environment at 25 C and 260 microeinsteins per meter2 per second. Rates declined with increasing leaf age, and from the tip to the base of the leaf blade. Rates for citronella leaves grown at 15/10 C were extremely low for all selections. Highest rates of net photosynthesis were recorded for four selections grown at 27/21 C and for two selections grown at 32/27 C. Lemongrass grown at 8-hour photoperiod had higher photosynthetic rates than that grown at 15-hour photoperiod. PMID:16660737

  1. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851-2000)

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K. A.; Negrón-Juárez, R. I.

    2013-12-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851-2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr-1, an amount equivalent to 17%-36% of the US forest carbon sink.

  2. Effect of space mutation on photosynthetic characteristics of soybean varieties

    International Nuclear Information System (INIS)

    Liu Xinlei; Ma Yansong; Luan Xiaoyan; Man Weiqun; Xu Dechun; Meng Lifen; Fu Lixin; Zhao Xiaonan; Liu Qi

    2011-01-01

    In order to elucidate the response of the photosynthetic traits of soybean to space mutation, three soybean varieties (lines) of Heinong 48, Heinong 44 and Ha 2291-Y were carried by artificial satellite in 2006 and the net photosynthetic rate (Pn), stomatal conductance (Cond), intercellular CO 2 concentration (Ci) and stomatal resistance (Rs) from SP 1 to SP 4 generation were determined. The results showed that space mutation affected photosynthesis traits of soybean. The photosynthetic rate of soybean varieties by space mutation occurred different levels of genetic variation and the positive mutation rate were higher. Coefficient of variation among generations were SP 2 > SP 3 > SP 4 > CK. Results suggest that space mutation can effectively create soybean materials with higher photosynthetic rate. (authors)

  3. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Ning; Hua, Hanbai; Eneji, A Egrinya; Li, Zhaohu; Duan, Liusheng; Tian, Xiaoli

    2012-05-02

    A hydroponic culture experiment was conducted to determine genotypic variation in photosynthetic rate and the associated physiological changes in response to potassium (K) deficiency in cotton (Gossypium hirsutum L.) seedlings with contrasting two cotton cultivars in K efficiency. The K-efficient Liaomian18 produced 66.7% more biomass than the K-inefficient NuCOTN99(B) under K deficiency, despite their similar biomass under K sufficiency. Compared with NuCOTN99(B), Liaomian18 showed 19.4% higher net photosynthetic rate (P(n), per unit leaf area) under K deficient solutions and this was associated with higher photochemical efficiency and faster export of soluble sugars from the phloem. The lower net P(n) of NuCOTN99(B) was attributed to higher capacity for nitrate assimilation and lower export of soluble sugars. Furthermore, NuCOTN99(B) showed 38.4% greater ETR/P(n) than Liaomian18 under K deficiency, indicating that more electrons were driven to other sinks. Higher superoxide dismutase (SOD) and lower catalase (CAT) and ascorbate peroxidase (APX) activities resulted in higher levels of reactive oxygen species (ROS; e.g. O(2)(-)and H(2)O(2)) in NuCOTN99(B) relative to Liaomian18. Thus, the K inefficiency of NuCOTN99(B), indicated by lower biomass and net P(n) under K deficiency, was associated with excessively high nitrogen assimilation, lower export of carbon assimilates, and greater ROS accumulation in the leaf. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  4. Characterization of photosynthetic gas exchange in leaves under simulated adaxial and abaxial surfaces alternant irradiation.

    Science.gov (United States)

    Zhang, Zi-Shan; Li, Yu-Ting; Gao, Hui-Yuan; Yang, Cheng; Meng, Qing-Wei

    2016-07-05

    Previous investigations on photosynthesis have been performed on leaves irradiated from the adaxial surface. However, leaves usually sway because of wind. This action results in the alternating exposure of both the adaxial and abaxial surfaces to bright sunlight. To simulate adaxial and abaxial surfaces alternant irradiation (ad-ab-alt irradiation), the adaxial or abaxial surface of leaves were exposed to light regimes that fluctuated between 100 and 1,000 μmol m(-2) s(-1). Compared with constant adaxial irradiation, simulated ad-ab-alt irradiation suppressed net photosynthetic rate (Pn) and transpiration (E) but not water use efficiency. These suppressions were aggravated by an increase in alternant frequency of the light intensity. When leaves were transferred from constant light to simulated ad-ab-alt irradiation, the maximum Pn and E during the high light period decreased, but the rate of photosynthetic induction during this period remained constant. The sensitivity of photosynthetic gas exchange to simulated ad-ab-alt irradiation was lower on abaxial surface than adaxial surface. Under simulated ad-ab-alt irradiation, higher Pn and E were measured on abaxial surface compared with adaxial surface. Therefore, bifacial leaves can fix more carbon than leaves with two "sun-leaf-like" surfaces under ad-ab-alt irradiation. Photosynthetic research should be conducted under dynamic conditions that better mimic nature.

  5. Photosynthetic carbon fixation pathways in Zostera marina and three Florida seagrasses

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S.; Wetzel, R.G.

    1982-06-01

    The photosynthetic carbon fixation pathways of four seagrass species, Zostera marina L. from Alaska and Thalassia testudinum Banks ex Konig, Syringodium filiforme Kutz. and Halodule wrightii Aschers. from the Gulf of Mexico, were investigated with a /sup 14/C pulse-chase technique. All species were found to be principally of the C/sub 3/ type. However, Thalassia and Halodule had higher initial incorporation rates into organic acids than is typical for terrestrial C/sub 3/ plants. Of 11 seagrass species investigated thus far for C/sub 3/ or C/sub 4/ metabolism using this technique, 10 were found to be principally of the C/sub 3/ type while only one exhibited C/sub 4/ metabolism.

  6. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems

    Science.gov (United States)

    Wei Ren; Hanqin Tian; Bo Tao; Art Chappelka; Ge Sun; et al

    2011-01-01

    Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China’s forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10-km-resolution gridded historical data sets (...

  7. Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf Savannah, Queensland, Australia

    Science.gov (United States)

    Büdel, Burkhard; Williams, Wendy J.; Reichenberger, Hans

    2018-01-01

    Biological soil crusts (biocrusts) are a common element of the Queensland (Australia) dry savannah ecosystem and are composed of cyanobacteria, algae, lichens, bryophytes, fungi and heterotrophic bacteria. Here we report how the CO2 gas exchange of the cyanobacteria-dominated biocrust type from Boodjamulla National Park in the north Queensland Gulf Savannah responds to the pronounced climatic seasonality and on their quality as a carbon sink using a semi-automatic cuvette system. The dominant cyanobacteria are the filamentous species Symplocastrum purpurascens together with Scytonema sp. Metabolic activity was recorded between 1 July 2010 and 30 June 2011, during which CO2 exchange was only evident from November 2010 until mid-April 2011, representative of 23.6 % of the 1-year recording period. In November at the onset of the wet season, the first month (November) and the last month (April) of activity had pronounced respiratory loss of CO2. The metabolic active period accounted for 25 % of the wet season and of that period 48.6 % was net photosynthesis (NP) and 51.4 % dark respiration (DR). During the time of NP, net photosynthetic uptake of CO2 during daylight hours was reduced by 32.6 % due to water supersaturation. In total, the biocrust fixed 229.09 mmol CO2 m-2 yr-1, corresponding to an annual carbon gain of 2.75 g m-2 yr-1. Due to malfunction of the automatic cuvette system, data from September and October 2010 together with some days in November and December 2010 could not be analysed for NP and DR. Based on climatic and gas exchange data from November 2010, an estimated loss of 88 mmol CO2 m-2 was found for the 2 months, resulting in corrected annual rates of 143.1 mmol CO2 m-2 yr-1, equivalent to a carbon gain of 1.7 g m-2 yr-1. The bulk of the net photosynthetic activity occurred above a relative humidity of 42 %, indicating a suitable climatic combination of temperature, water availability and light intensity well above 200 µmol photons m-2 s-1

  8. Divertor plate concept with carbon based armour for NET

    International Nuclear Information System (INIS)

    Moons, F.; Howard, R.; Kneringer, G.; Stickler, R.

    1989-01-01

    A series of tests has been performed on simulated divertor elements for NET at the JET neutral beam injector test bed. The test section consisted of a water cooled main structure, the surface of which was protected with a carbon based armour in the form of tiles. The scope of these was to study the thermal behaviour of mechanically attached tiles with the use of an intermediate soft carbon layer to improve the thermal contact under divertor relevant conditions. (author). 4 refs.; 4 figs.; 1 tab

  9. Integrated biofuel facility, with carbon dioxide consumption and power generation

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering

    2009-07-01

    This presentation provided details of an economical design for a large-scale integrated biofuel facility for coupled production of bioethanol and biodiesel, with carbon dioxide capture and power generation. Several designs were suggested for both batch and continuous culture operations, taking into account all costs and revenues associated with the complete plant integration. The microalgae species Chlorella vulgaris was cultivated in a novel photobioreactor (PBR) in order to consume industrial carbon dioxide (CO{sub 2}). This photosynthetic culture can also act as a biocathode in a microbial fuel cell (MFC), which when coupled to a typical yeast anodic half cell, results in a complete biological MFC. The photosynthetic MFC produces electricity as well as valuable biomass and by-products. The use of this novel photosynthetic microalgae cathodic half cell in an integrated biofuel facility was discussed. A series of novel PBRs for continuous operation can be integrated into a large-scale bioethanol facility, where the PBRs serve as cathodic half cells and are coupled to the existing yeast fermentation tanks which act as anodic half cells. These coupled MFCs generate electricity for use within the biofuel facility. The microalgae growth provides oil for biodiesel production, in addition to the bioethanol from the yeast fermentation. The photosynthetic cultivation in the cathodic PBR also requires carbon dioxide, resulting in consumption of carbon dioxide from bioethanol production. The paper also discussed the effect of plant design on net present worth and internal rate of return. tabs., figs.

  10. Response of tundra ecosystems to elevated atmospheric carbon dioxide. [Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.; Grulke, N.E.

    1988-12-31

    Our past research shows that arctic tussock tundra responds to elevated atmospheric CO{sub 2} with marked increases in net ecosystem carbon flux and photosynthetic rates. However, at ambient temperatures and nutrient availabilities, homeostatic adjustments result in net ecosystem flux rates dropping to those found a contemporary CO{sub 2} levels within three years. Evidence for ecosystem-level acclimation in the first season of elevated CO{sub 2} exposure was found in 1987. Photosynthetic rates of Eriophorum vaginatum, the dominant species, adjusts to elevated CO{sub 2} within three weeks. Past research also indicates other changes potentially important to ecosystem structure and function. Elevated CO{sub 2} treatment apparently delays senescence and increases the period of positive photosynthetic activity. Recent results from the 1987 field season verify the results obtained in the 1983--1986 field seasons: Elevated CO{sub 2} resulted in increased ecosystem-level flux rates. Regressions fitted to the seasonal flux rates indicate an apparent 10 d extension of positive CO{sub 2} uptake reflecting a delay of the onset of plant dormancy. This delay in senescence could increase the frost sensitivity of the system. Major end points proposed for this research include the effects of elevated CO{sub 2} and the interaction of elevated atmospheric CO{sub 2} with elevated soil temperature and increased nutrient availability on: (1) Net ecosystem CO{sub 2} flux; (2) Net photosynthetic rates; (3) Patterns and resource controls on homeostatic adjustment in the above processes to elevated CO{sub 2}; (4) Plant-nutrient status, litter quality, and forage quality; (5) Soil-nutrient status; (6) Plant-growth pattern and shoot demography.

  11. Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy

    Science.gov (United States)

    Booth, Mary S.

    2018-03-01

    Climate mitigation requires emissions to peak then decline within two decades, but many mitigation models include 100 EJ or more of bioenergy, ignoring emissions from biomass oxidation. Treatment of bioenergy as ‘low carbon’ or carbon neutral often assumes fuels are agricultural or forestry residues that will decompose and emit CO2 if not burned for energy. However, for ‘low carbon’ assumptions about residues to be reasonable, two conditions must be met: biomass must genuinely be material left over from some other process; and cumulative net emissions, the additional CO2 emitted by burning biomass compared to its alternative fate, must be low or negligible in a timeframe meaningful for climate mitigation. This study assesses biomass use and net emissions from the US bioenergy and wood pellet manufacturing sectors. It defines the ratio of cumulative net emissions to combustion, manufacturing and transport emissions as the net emissions impact (NEI), and evaluates the NEI at year 10 and beyond for a variety of scenarios. The analysis indicates the US industrial bioenergy sector mostly burns black liquor and has an NEI of 20% at year 10, while the NEI for plants burning forest residues ranges from 41%-95%. Wood pellets have a NEI of 55%-79% at year 10, with net CO2 emissions of 14-20 tonnes for every tonne of pellets; by year 40, the NEI is 26%-54%. Net emissions may be ten times higher at year 40 if whole trees are harvested for feedstock. Projected global pellet use would generate around 1% of world bioenergy with cumulative net emissions of 2 Gt of CO2 by 2050. Using the NEI to weight biogenic CO2 for inclusion in carbon trading programs and to qualify bioenergy for renewable energy subsidies would reduce emissions more effectively than the current assumption of carbon neutrality.

  12. Carbon and oxygen isotope analysis of leaf biomass reveals contrasting photosynthetic responses to elevated CO2 near geologic vents in Yellowstone National Park

    Directory of Open Access Journals (Sweden)

    D. G. Williams

    2009-01-01

    Full Text Available In this study we explore the use of natural CO2 emissions in Yellowstone National Park (YNP in Wyoming, USA to study responses of natural vegetation to elevated CO2 levels. Radiocarbon (14C analysis of leaf biomass from a conifer (Pinus contortus; lodgepole pine and an invasive, non-native herb (Linaria dalmatica; Dalmation toadflax was used to trace the inputs of vent CO2 and quantify assimilation-weighted CO2 concentrations experienced by individual plants near vents and in comparable locations with no geologic CO2 exposure. The carbon and oxygen isotopic composition and nitrogen percent of leaf biomass from the same plants was used to investigate photosynthetic responses of these plants to naturally elevated atmospheric CO2 concentrations. The coupled shifts in carbon and oxygen isotope values suggest that dalmation toadflax responded to elevated CO2 exposure by increasing stomatal conductance with no change in photosynthetic capacity and lodgepole pine apparently responded by decreasing stomatal conductance and photosynthetic capacity. Lodgepole pine saplings exposed to elevated levels of CO2 likewise had reduced leaf nitrogen concentrations compared to plants with no enhanced CO2 exposure, further suggesting widespread and dominant conifer down-regulated photosynthetic capacity under elevated CO2 levels near geologic vents.

  13. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851–2000)

    International Nuclear Information System (INIS)

    Fisk, J P; Hurtt, G C; Dolan, K A; Chambers, J Q; Zeng, H; Negrón-Juárez, R I

    2013-01-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851–2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr −1 , an amount equivalent to 17%–36% of the US forest carbon sink. (letter)

  14. Enhanced photosynthetic capacity increases nitrogen metabolism through the coordinated regulation of carbon and nitrogen assimilation in Arabidopsis thaliana.

    Science.gov (United States)

    Otori, Kumi; Tanabe, Noriaki; Maruyama, Toshiki; Sato, Shigeru; Yanagisawa, Shuichi; Tamoi, Masahiro; Shigeoka, Shigeru

    2017-09-01

    Plant growth and productivity depend on interactions between the metabolism of carbon and nitrogen. The sensing ability of internal carbon and nitrogen metabolites (the C/N balance) enables plants to regulate metabolism and development. In order to investigate the effects of an enhanced photosynthetic capacity on the metabolism of carbon and nitrogen in photosynthetically active tissus (source leaves), we herein generated transgenic Arabidopsis thaliana plants (ApFS) that expressed cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in their chloroplasts. The phenotype of ApFS plants was indistinguishable from that of wild-type plants at the immature stage. However, as plants matured, the growth of ApFS plants was superior to that of wild-type plants. Starch levels were higher in ApFS plants than in wild-type plants at 2 and 5 weeks. Sucrose levels were also higher in ApFS plants than in wild-type plants, but only at 5 weeks. On the other hand, the contents of various free amino acids were lower in ApFS plants than in wild-type plants at 2 weeks, but were similar at 5 weeks. The total C/N ratio was the same in ApFS plants and wild-type plants, whereas nitrite levels increased in parallel with elevations in nitrate reductase activity at 5 weeks in ApFS plants. These results suggest that increases in the contents of photosynthetic intermediates at the early growth stage caused a temporary imbalance in the free-C/free-N ratio and, thus, the feedback inhibition of the expression of genes involved in the Calvin cycle and induction of the expression of those involved in nitrogen metabolism due to supply deficient free amino acids for maintenance of the C/N balance in source leaves of ApFS plants.

  15. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    Science.gov (United States)

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-09-15

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  16. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  17. Multi-year net ecosystem carbon balance at a horticulture-extracted restored peatland

    Science.gov (United States)

    Nugent, Kelly; Strachan, Ian; Strack, Maria

    2017-04-01

    Restoration of previously extracted peatlands is essential to minimize the impact of drainage and peat removal. Best practices restoration methods have been developed that include ditch blocking, site leveling and reintroducing bog vegetation using the moss layer transfer technique. A long term goal of restoration is the return to a peat accumulating ecosystem. Bois-des-Bel is a cool-temperate bog, located in eastern Quebec, Canada, that was vacuum harvested until 1980 and restored in 1999. While several studies have used discrete (chamber) methods to determine the net carbon exchange from rewetted or restored peatlands, ours appears to be the first to have multiple complete years of net ecosystem carbon exchange from a restored northern peatland. An eddy covariance flux tower instrumented with a sonic anemometer and open-path CO2/H2O and CH4 analyzers was operated continuously over three years to produce a robust estimate of net carbon sequestration. Our initial results indicate that this restored peatland was a consistent moderate annual net sink for CO2, a moderate source of CH4 and had low losses of dissolved organic carbon compared to undisturbed northern latitude peatlands. Closed chambers combined with a fast response CO2/H2O/CH4 analyzer were used to investigate ecohydrological controls on net ecosystem exchange of CO2 (NEE) and CH4 flux from the restored fields and remnant ditches at the site. CH4 release was found to be an order of magnitude higher in the ditches compared to the fields, with non-vegetated ditch showing a greater range in flux compared to areas invaded by Typha latifolia. Bubble magnitude and count were highest in the non-vegetated ditch, followed by Typha plots and were undetectable in the restored fields. The latter may be partially attributed to the high cover of Eriophorum vaginatum in the restored fields, plants that have aerenchymous tissue, as well as a much deeper water table level. While the non-vegetated ditch areas were a steady

  18. Photosystem II excitation pressure and photosynthetic carbon metabolism in Chlorella vulgaris

    International Nuclear Information System (INIS)

    Savitch, L.V.; Maxwell, D.P.; Huner, N.P.A.

    1996-01-01

    Chlorella vulgaris grown at 5 degrees C/150 micromoles m -2 s -1 mimics cells grown under high irradiance (27 degrees C/2200 micromoles m -2 s -1 ). This has been rationalized through the suggestion that both populations of cells were exposed to comparable photosystem II (PSII) excitation pressures measured as the chlorophyll a fluorescence quenching parameter, 1 - qP (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694). To assess the possible role(s) of feedback mechanisms on PSII excitation pressure, stromal and cytosolic carbon metabolism were examined. Sucrose phosphate synthase and fructose-1,6-bisphosphatase activities as well as the ratios of fructose-1,6-bisphosphate/fructose-6 phosphate and sucrose/starch indicated that cells grown at 27 degrees C/2200 micromoles m -2 s -1 appeared to exhibit a restriction in starch metabolism. In contrast, cells grown at 5 degrees C/150 micromoles-1 m -2 s -1 appeared to exhibit a restriction in the sucrose metabolism based on decreased cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase activities as well as a low sucrose/starch ratio. These metabolic restrictions may feedback on photosynthetic electron transport and, thus, contribute to the observed PSII excitation pressure. We conclude that, although PSII excitation pressure may reflect redox regulation of photosynthetic acclimation to light and temperature in C. vulgaris, it cannot be considered the primary redox signal. Alternative metabolic sensing/signaling mechanisms are discussed

  19. [Correlation research of photosynthetic characteristics and medicinal materials production with 4 Uncariae Cum Uncis].

    Science.gov (United States)

    Luo, Min; Song, Zhi-Qin; Yang, Ping-Fei; Liu, Hai; Yang, Zai-Gang; Wu, Ming-Kai

    2017-01-01

    Using four Uncariae Cum Uncis materials including Uncaria sinensis (HGT), U. hirsutea (MGT), Jianhe U. rhynchophylla (JHGT) and U. rhynchophylla(GT) as the research objects, the correlations between medicinal materials' yield and photosynthetic ecophysiology-factors in the plant exuberant growth period were studied. Results showed that the Uncaria plants net photosynthetic rate (Pn) changed by unimodal curve. There was not "midday depression" phenomenon. There was a different relationship among the photosynthetic ecophysiology-factors and between photosynthetic ecophysiology-factors and medicinal materials' yield. Pn,Tl,Gs had a significant correlation with medicinal materials' yield(M)and were the most important factors of growth. Copyright© by the Chinese Pharmaceutical Association.

  20. Plants modify biological processes to ensure survival following carbon depletion: a Lolium perenne model.

    Directory of Open Access Journals (Sweden)

    Julia M Lee

    Full Text Available BACKGROUND: Plants, due to their immobility, have evolved mechanisms allowing them to adapt to multiple environmental and management conditions. Short-term undesirable conditions (e.g. moisture deficit, cold temperatures generally reduce photosynthetic carbon supply while increasing soluble carbohydrate accumulation. It is not known, however, what strategies plants may use in the long-term to adapt to situations resulting in net carbon depletion (i.e. reduced photosynthetic carbon supply and carbohydrate accumulation. In addition, many transcriptomic experiments have typically been undertaken under laboratory conditions; therefore, long-term acclimation strategies that plants use in natural environments are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: Perennial ryegrass (Lolium perenne L. was used as a model plant to define whether plants adapt to repetitive carbon depletion and to further elucidate their long-term acclimation mechanisms. Transcriptome changes in both lamina and stubble tissues of field-grown plants with depleted carbon reserves were characterised using reverse transcription-quantitative polymerase chain reaction (RT-qPCR. The RT-qPCR data for select key genes indicated that plants reduced fructan degradation, and increased photosynthesis and fructan synthesis capacities following carbon depletion. This acclimatory response was not sufficient to prevent a reduction (P<0.001 in net biomass accumulation, but ensured that the plant survived. CONCLUSIONS: Adaptations of plants with depleted carbon reserves resulted in reduced post-defoliation carbon mobilization and earlier replenishment of carbon reserves, thereby ensuring survival and continued growth. These findings will help pave the way to improve plant biomass production, for either grazing livestock or biofuel purposes.

  1. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Science.gov (United States)

    Jingfeng Xiao; Qianlai Zhuang; Dennis D. Baldocchi; Beverly E. Law; Andrew D. Richardson; Jiquan Chen; Ram Oren; Gegory Starr; Asko Noormets; Siyan Ma; Sashi B. Verma; Sonia Wharton; Steven C. Wofsy; Paul V. Bolstad; Sean P. Burns; David R. Cook; Peter S. Curtis; Bert G. Drake; Matthias Falk; MArc L. Fischer; David R. Foster; Lianhong Gu; Julian L. Hadley; David Y. Hollinger; Gabriel G. Katul; Marcy Litvak; Timothy Martin; Roser Matamala; Steve McNulty; Tilden P. Meyers; Russell K. Monson; J. William Munger; Walter C. Oechel; Kyaw Tha Paw U; Hans Peter Schmid; Russell L. Scott; Ge Sun; Andrew E. Suyker; Margaret S. Torn

    2008-01-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents,...

  2. Effect of space mutation of photosynthetic characteristics of soybean varieties

    International Nuclear Information System (INIS)

    Liu Xinlei; Ma Yansong; Luan Xiaoyan; Man Weiqun; Xu Dechun; Meng Lifen; Fu Lixin; Zhao Xiao'nan; Liu Qi

    2012-01-01

    In order to elucidate the response of the photosynthetic traits of soybean to space mutation, three soybean varieties (lines) of Heinong 48, Heinong 44 and Ha 2291-Y were carried by artificial satellite in 2006 and the net photo synthetic rate (Pn), stomatal conductance (Cond), intercellular CO 2 concentration (Ci) and stomatal resistance (Rs) from SP 1 to SP 4 generation were determined. The results showed that space mutation affected photosynthesis traits of soy bean. The photosynthetic rate of soybean varieties by space mutation occurred different levels of genetic variation and the positive mutation rate were higher. Coefficient of variation among generations were SP 2 >SP 3 >SP 4 >CK. Results suggest that space mutation can effectively create soybean materials with higher photosynthetic rate. (authors)

  3. effect of ambient levels of ozone on photosynthetic components

    African Journals Online (AJOL)

    ACSS

    To clarify the long-term effects of ambient levels of tropospheric ozone (O3) on ... (Rubisco), thus contributing to the reduction in net photosynthetic rate at the .... USA). During the measurements, atmospheric. CO2 concentrations, air ...... productivity and implications for climate change. Annual Review of Plant Biology 63:.

  4. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves.

    Science.gov (United States)

    Rosati, A; Dejong, T M

    2003-06-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, 'daily' photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthesis was estimated from the photosynthetic responses to photosynthetically active radiation (PAR) and from the incident PAR measured on individual leaves during clear and overcast days. Plants were grown with either abundant or scarce N fertilization. Both net and gross daily photosynthesis of leaves were linearly related to daily incident PAR exposure of individual leaves, which implies constant PhRUE over a day throughout the canopy. The slope of these relationships (i.e. PhRUE) increased with N fertilization. When the relationship was calculated for hourly instead of daily periods, the regressions were curvilinear, implying that PhRUE changed with time of the day and incident radiation. Thus, linearity (i.e. constant PhRUE) was achieved only when data were integrated over the entire day. Using average PAR in place of instantaneous incident PAR increased the slope of the relationship between daily photosynthesis and incident PAR of individual leaves, and the regression became curvilinear. The slope of the relationship between daily gross photosynthesis and incident PAR of individual leaves increased for an overcast compared with a clear day, but the slope remained constant for net photosynthesis. This suggests that net PhRUE of all leaves (and thus of the whole canopy) may be constant when integrated over a day, not only when the incident PAR changes with depth in the canopy, but also when it varies on the same leaf owing to changes in daily incident PAR above the canopy. The

  5. Impact of global climate change on ecosystem-level interactions among sympatric plants from all three photosynthetic pathways. Terminal report

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1997-12-17

    The proposed research will determine biochemical and physiological responses to variations in environmental factors for plants of all three photosynthetic pathways under competitive situations in the field. These responses will be used to predict the effects of global climatic change on an ecosystem in the northwestern Sonoran Desert where the C{sub 3} subshrub Encelia farinosa, the C{sub 4} bunchgrass Hilaria rigida, and the CAM succulent Agave deserti are co-dominants. These perennials are relatively short with overlapping shallow roots facilitating the experimental measurements as well as leading to competition for soil water. Net CO{sub 2} uptake over 24-h periods measured in the laboratory will be analyzed using an environmental productivity index (EPI) that can incorporate simultaneous effects of soil water, air temperature, and light. Based on EPI, net CO{sub 2} uptake and hence plant productivity will be predicted for the three species in the field under various treatments. Activity of the two CO{sub 2} fixation enzymes, Rubisco and PEPCase, will be determined for these various environmental conditions; also, partitioning of carbon to various organs will be measured based on {sup 14}CO{sub 2} labeling and dry weight analysis. Thus, enzymatic and partitioning controls on competition among sympatric model plants representing all three photosynthetic pathways will be investigated.

  6. Quantitative Analysis of Carbon Flow into Photosynthetic Products Functioning as Carbon Storage in the Marine Coccolithophore, Emiliania huxleyi.

    Science.gov (United States)

    Tsuji, Yoshinori; Yamazaki, Masatoshi; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2015-08-01

    The bloom-forming coccolithophore Emiliania huxleyi (Haptophyta) is a dominant marine phytoplankton, cells of which are covered with calcareous plates (coccoliths). E. huxleyi produces unique lipids of C37-C40 long-chain ketones (alkenones) with two to four trans-unsaturated bonds, β-glucan (but not α-glucan) and acid polysaccharide (AP) associated with the morphogenesis of CaCO3 crystals in coccoliths. Despite such unique features, there is no detailed information on the patterns of carbon allocation into these compounds. Therefore, we performed quantitative estimation of carbon flow into various macromolecular products by conducting (14)C-radiotracer experiments using NaH(14)CO3 as a substrate. Photosynthetic (14)C incorporation into low molecular-mass compounds (LMC), extracellular AP, alkenones, and total lipids except alkenones was estimated to be 35, 13, 17, and 25 % of total (14)C fixation in logarithmic growth phase cells and 33, 19, 18, and 18 % in stationary growth phase cells, respectively. However, less than 1 % of (14)C was incorporated into β-glucan in both cells. (14)C-mannitol occupied ca. 5 % of total fixed (14)C as the most dominant LMC product. Levels of all (14)C compounds decreased in the dark. Therefore, alkenones and LMC (including mannitol), but not β-glucan, function in carbon/energy storage in E. huxleyi, irrespective of the growth phase. Compared with other algae, the low carbon flux into β-glucan is a unique feature of carbon metabolism in E. huxelyi.

  7. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  8. Assessing net carbon sequestration on urban and community forests of northern New England, USA

    Science.gov (United States)

    Daolan Zheng; Mark J. Ducey; Linda S. Heath

    2013-01-01

    Urban and community forests play an important role in the overall carbon budget of the USA. Accurately quantifying carbon sequestration by these forests can provide insight for strategic planning to mitigate greenhouse gas effects on climate change. This study provides a new methodology to estimate net forest carbon sequestration (FCS) in urban and community lands of...

  9. Net ecosystem exchange in a sedge-sphagnum fen at the South of West Siberia, Russia

    Science.gov (United States)

    Dyukarev, Egor

    2017-04-01

    The model of net ecosystem exchange was used to study the influence of different environmental factors and to calculate daily and growing season carbon budget for minerotrophic fen at South of West Siberia, Russia. Minerotrophic sedge-sphagnum fen occupies the central part of the Bakcharskoe bog. The model uses air and soil temperature, incoming photosynthetically active radiation, and leaf area index as the explanatory factors for gross primary production, heterotrophic and autotrophic respiration. The model coefficients were calibrated using data collected by automated soil CO2 flux system with clear long-term chamber. The studied ecosystem is a sink of carbon according to modelling and observation results. This study was supported by Russian Foundation for Basic Researches (grant numbers 16-07-01205 and 16-45-700562.

  10. Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L

    International Nuclear Information System (INIS)

    Singal, H.R.; Sheoran, I.S.; Singh, R.

    1987-01-01

    Activities of key enzymes of the Calvin cycle and C 4 metabolism, rates of CO 2 fixation, and the initial products of photosynthetic 14 CO 2 fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv Toria. Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C 4 metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwall and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of 14 CO 2 assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO 2 during light. However, respiratory losses were very high during the dark period

  11. Measurement-based upscaling of pan Arctic net ecosystem exchange: the PANEEx project

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe; Kusbach, Antonin; Lund, Magnus

    2015-01-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) can be attributed to the high spatial heterogeneity of Arctic tundra due to the complex topography. Current models of C exchange handle the Arctic as either a single or few ecosystems, responding to environmental...... change in the same manner. In this study, we developed and tested a simple NEE model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide data from 12...... Arctic tundra sites. The model input parameters (fcsat, Rd and α) were estimated as a function of air temperature (AirT) and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship, including the saturation flux, dark respiration and initial light use efficiency...

  12. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay

    Science.gov (United States)

    Kemp, W.M.; Smith, E.M.; Marvin-DiPasquale, M.; Boynton, W.R.

    1997-01-01

    The major fluxes of organic carbon associated with physical transport and biological metabolism were compiled, analyzed and compared for the mainstem portion of Chesapeake Bay (USA). In addition, 5 independent methods were used to calculate the annual mean net ecosystem metabolism (NEM = production - respiration) for the integrated Bay. These methods, which employed biogeochemical models, nutrient mass-balances anti summation of individual organic carbon fluxes, yielded remarkably similar estimates, with a mean NEM of +50 g C m-2 yr-1 (?? SE = 751, which is approximately 8% of the estimated annual average gross primary production. These calculations suggest a strong cross-sectional pattern in NEM throughout the Bay, wherein net heterotrophic metabolism prevails in the pelagic zones of the main channel, while net autotrophy occurs in the littoral zones which flank the deeper central area. For computational purposes, the estuary was separated into 3 regions along the land-sea gradient: (1) the oligohaline Upper Bay (11% of total area); (2) the mesohaline Mid Bay (36% of area); and (3) the polyhaline Lower Bay (53% of area). A distinct regional trend in NEM was observed along this salinity gradient, with net here(atrophy (NEM = 87 g C m-2 yr-1) in the Upper Bay, balanced metabolism in the Mid Bay and net autotrophy (NEM = +92 g C m-2 yr-1) in the Lower Bay. As a consequence of overall net autotrophy, the ratio of dissolved inorganic nitrogen (DIN) to total organic nitrogen (TON) changed from DIN:TON = 5.1 for riverine inputs to DIN:TON = 0.04 for water exported to the ocean. A striking feature of this organic C mass-balance was the relative dominance of biologically mediated metabolic fluxes compared to physical transport fluxes. The overall ratio of physical TOC inputs (1) to biotic primary production (P) was 0.08 for the whole estuary, but varied dramatically from 2.3 in the Upper Bay to 0.03 in the Mid and Lower Bay regions. Similarly, ecosystem respiration was

  13. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.

    Science.gov (United States)

    Stinziano, Joseph R; Way, Danielle A

    2017-08-01

    Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.

  14. Carbon dioxide addition to coral reef waters suppresses net community calcification

    Science.gov (United States)

    Albright, Rebecca; Takeshita, Yuichiro; Koweek, David A.; Ninokawa, Aaron; Wolfe, Kennedy; Rivlin, Tanya; Nebuchina, Yana; Young, Jordan; Caldeira, Ken

    2018-03-01

    Coral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef. Reduced calcification, coupled with increased bioerosion and dissolution, may drive reefs into a state of net loss this century. Our ability to predict changes in ecosystem function and associated services ultimately hinges on our understanding of community- and ecosystem-scale responses. Past research has primarily focused on the responses of individual species rather than evaluating more complex, community-level responses. Here we use an in situ carbon dioxide enrichment experiment to quantify the net calcification response of a coral reef flat to acidification. We present an estimate of community-scale calcification sensitivity to ocean acidification that is, to our knowledge, the first to be based on a controlled experiment in the natural environment. This estimate provides evidence that near-future reductions in the aragonite saturation state will compromise the ecosystem function of coral reefs.

  15. A Conceptual Model for Projecting Coccolithophorid Growth, Calcification and Photosynthetic Carbon Fixation Rates in Response to Global Ocean Change

    Directory of Open Access Journals (Sweden)

    Natasha A. Gafar

    2018-01-01

    Full Text Available Temperature, light and carbonate chemistry all influence the growth, calcification and photosynthetic rates of coccolithophores to a similar degree. There have been multiple attempts to project the responses of coccolithophores to changes in carbonate chemistry, but the interaction with light and temperature remains elusive. Here we devise a simple conceptual model to derive a fit equation for coccolithophorid growth, photosynthetic and calcification rates in response to simultaneous changes in carbonate chemistry, temperature and light conditions. The fit equation is able to account for up to 88% of the variability in measured metabolic rates. Equation projections indicate that temperature, light and carbonate chemistry all have different modulating effects on both optimal growth conditions and the sensitivity of responses to extreme environmental conditions. Calculations suggest that a single extreme environmental condition (CO2, temperature, light will reduce maximum rates regardless of how optimal the other environmental conditions may be. Thus, while the response of coccolithophores to ocean change depends on multiple variables, the one which is least optimal will have the most impact on overall rates. Finally, responses to ocean change are usually reported in terms of cellular rates. However, changes in cellular rates can be a poor predictor for assessing changes in production at the community level. We therefore introduce a new metric, the calcium carbonate production potential (CCPP, which combines the independent effects of changes in growth rate and cellular calcium carbonate content to assess how environmental changes will impact coccolith production. Direct comparison of CO2 impacts on cellular CaCO3 production rates and CCPP shows that while the former is still at 45% of its pre-industrial capacity at 1,000 μatm, the latter is reduced to 10%.

  16. Estimation of daytime net ecosystem CO2 exchange over balsam fir forests in eastern Canada : combining averaged tower-based flux measurements with remotely sensed MODIS data

    International Nuclear Information System (INIS)

    Hassan, Q.K.; Bourque, C.P.A.; Meng, F-R.

    2006-01-01

    Considerable attention has been placed on the unprecedented increases in atmospheric carbon dioxide (CO 2 ) emissions and associated changes in global climate change. This article developed a practical approach for estimating daytime net CO 2 fluxes generated over balsam fir dominated forest ecosystems in the Atlantic Maritime ecozone of eastern Canada. The study objectives were to characterize the light use efficiency and ecosystem respiration for young to intermediate-aged balsam fir forest ecosystems in New Brunswick; relate tower-based measurements of daytime net ecosystem exchange (NEE) to absorbed photosynthetically active radiation (APAR); use a digital elevation model of the province to enhance spatial calculations of daily photosynthetically active radiation and APAR under cloud-free conditions; and generate a spatial calculation of daytime NEE for a balsam fir dominated region in northwestern New Brunswick. The article identified the study area and presented the data requirements and methodology. It was shown that the seasonally averaged daytime NEE and APAR values are strongly correlated. 36 refs., 2 tabs., 10 figs

  17. Modeled dosage-response relationship on the net photosynthetic rate for the sensitivity to acid rain of 21 plant species.

    Science.gov (United States)

    Deng, Shihuai; Gou, Shuzhen; Sun, Baiye; Lv, Wenlin; Li, Yuanwei; Peng, Hong; Xiao, Hong; Yang, Gang; Wang, Yingjun

    2012-08-01

    This study investigated the sensitivity of plant species to acid rain based on the modeled dosage-response relationship on the net photosynthetic rate (P (N)) of 21 types of plant species, subjected to the exposure of simulated acid rain (SAR) for 5 times during a period of 50 days. Variable responses of P (N) to SAR occurred depending on the type of plant. A majority (13 species) of the dosage-response relationship could be described by an S-shaped curve and be fitted with the Boltzmann model. Model fitting allowed quantitative evaluation of the dosage-response relationship and an accurate estimation of the EC(10), termed as the pH of the acid rain resulting in a P (N) 10 % lower than the reference value. The top 9 species (Camellia sasanqua, Cinnamomum camphora, etc. EC(10) ≤ 3.0) are highly endurable to very acid rain. The rare, relict plant Metasequoia glyptostroboides was the most sensitive species (EC(10) = 5.1) recommended for protection.

  18. Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation.

    Science.gov (United States)

    Jin, Peng; Gao, Kunshan; Villafañe, Virginia E; Campbell, Douglas A; Helbling, E Walter

    2013-08-01

    Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO₂ levels, under regimes of fluctuating irradiances with or without UVR. Under both CO₂ levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO₂ showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO₂-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.

  19. The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Zeng, Q.; Xie, Z.; Tang, H.; Zhu, C. (Chinese Academy of Sciences. State Key Lab. of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing (China)); Hasegawa, T. (National Institute for Agro-Environmental Sciences. Agro-Meteorology Div., Tsukuba (Japan)); Ziska, L. (Crop Systems and Global Change Lab., Beltsville, MD (United States)); Jia, X. (Chinese Academic of Sciences/Nanjing Botanical Garden Memorial Sun Yat-Sen. Jiangsu Institute of Botany, Nanjing (China))

    2012-07-15

    In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, g{sub s}, g{sub m}, C{sub i}/C{sub a}, C{sub i}/C{sub c}, V{sub cmax}, J{sub max}, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid-anthesis and the late grain-filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid-anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO{sub 2}]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non-structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO{sub 2}] appeared to enhance the rate of N degradation and senescence so that by late-grain fill, photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO{sub 2}] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation. (Author)

  20. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms.

    Science.gov (United States)

    Tomar, Vandana; Sidhu, Gurpreet Kaur; Nogia, Panchsheela; Mehrotra, Rajesh; Mehrotra, Sandhya

    2017-11-01

    This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO 2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O 2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C 4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO 2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO 2 and HCO 3 - transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO 2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.

  1. Soil respiration and photosynthetic uptake of carbon dioxide by ground-cover plants in four ages of jack pine forest

    Science.gov (United States)

    Striegl, Robert G.; Wickland, K.P.

    2001-01-01

    Soil carbon dioxide (CO2) emission (soil respiration), net CO2 exchange after photosynthetic uptake by ground-cover plants, and soil CO2 concentration versus depth below land surface were measured at four ages of jack pine (Pinus banksiana Lamb.) forest in central Saskatchewan. Soil respiration was smallest at a clear-cut site, largest in an 8-year-old stand, and decreased with stand age in 20-year-old and mature (60-75 years old) stands during May-September 1994 (12.1, 34.6, 31.5, and 24.9 mol C??m-2, respectively). Simulations of soil respiration at each stand based on continuously recorded soil temperature were within one standard deviation of measured flux for 48 of 52 measurement periods, but were 10%-30% less than linear interpolations of measured flux for the season. This was probably due to decreased soil respiration at night modeled by the temperature-flux relationships, but not documented by daytime chamber measurements. CO2 uptake by ground-cover plants ranged from 0 at the clear-cut site to 29, 25, and 9% of total growing season soil respiration at the 8-year, 20-year, and mature stands. CO2 concentrations were as great as 7150 ppmv in the upper 1 m of unsaturated zone and were proportional to measured soil respiration.

  2. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Marland, Gregg; West, Tristram O.; Schlamadinger, Bernhard; Canella, Lorenza

    2003-01-01

    A change in agricultural practice can increase carbon sequestration in agricultural soils. To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO 2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield. We also consider how these factors will evolve over time. A change from conventional tillage to no-till agriculture, based on data for average practice in the U.S.; will result in net carbon sequestration in the soil that averages 337 kg C/ha/yr for the initial 20 yr with a decline to near zero in the following 20 yr, and continuing savings in CO 2 emissions because of reduced use of fossil fuels. The long-term results, considering all factors, can generally be expected to show decreased net greenhouse gas emissions. The quantitative details, however, depend on the site-specific impact of the conversion from conventional to no-till agriculture on agricultural yield and N 2 O emissions from nitrogen fertilizer

  3. Progress of CRISPR-Cas based genome editing in Photosynthetic microbes

    NARCIS (Netherlands)

    Naduthodi, M.I.S.; Barbosa, M.J.; Oost, van der J.

    2018-01-01

    The carbon footprint caused by unsustainable development and its environmental and economic impact has become a major concern in the past few decades. Photosynthetic microbes such as microalgae and cyanobacteria are capable of accumulating value-added compounds from carbon dioxide, and have been

  4. Relationship of photosynthetic carbon fixation with environmental changes in the Jiulong River estuary of the South China Sea, with special reference to the effects of solar UV radiation

    International Nuclear Information System (INIS)

    Li Gang; Gao Kunshan; Yuan Dongxing; Zheng Ying; Yang Guiyuan

    2011-01-01

    Highlights: → C-fixation is the highest in turbidity front, though UV resulted in higher inhibition. → Increased availability of CO 2 appeared to stimulate photosynthetic machinery. → Osmotic stress made phytoplankton more sensitive to UV. - Abstract: Phytoplankton cells in estuary waters usually experience drastic changes in chemical and physical environments due to mixing of fresh and seawaters. In order to see their photosynthetic performance in such dynamic waters, we measured the photosynthetic carbon fixation by natural phytoplankton assemblages in the Jiulong River estuary of the South China Sea during April 24-26 and July 24-26 of 2008, and investigated its relationship with environmental changes in the presence or the absence of UV radiation. Phytoplankton biomass (Chl a) decreased sharply from the river-mouth to seawards (17.3-2.1 μg L -1 ), with the dominant species changed from chlorophytes to diatoms. The photosynthetic rate based on Chl a at noon time under PAR-alone increased from 1.9 μg C (μg Chl a) -1 L -1 in low salinity zone (SSS -1 L -1 in turbidity front (SSS within 10-20), and then decreased to 2.1 μg C (μg Chl a) -1 L -1 in mixohaline zone (SSS > 20); accordingly, the carbon fixation per volume of seawater increased from 12.8 to 149 μg C L -1 h -1 , and decreased to 14.3 μg C L -1 h -1 . Solar UVR caused the inhibition of carbon fixation in surface water of all the investigated zones, by 39% in turbidity area and 7-10% in freshwater or mixohaline zones. In the turbidity zone, higher availability of CO 2 could have enhanced the photosynthetic performance; while osmotic stress might be responsible for the higher sensitivity of phytoplankton assemblages to solar UV radiation.

  5. Sources and fluxes of inorganic carbon in a deep, oligotrophic lake (Loch Ness, Scotland)

    Science.gov (United States)

    Jones, R. I.; Grey, J.; Quarmby, Christopher; Sleep, Darren

    2001-12-01

    The main river inflows to Loch Ness and several depths in the water column within the loch were sampled over an annual cycle. The carbon isotope composition of total dissolved inorganic carbon (DIC) from the samples was determined as well as that of phytoplankton from the loch. Values of δ13C for DIC in the rivers indicated that this DIC was derived from soil respiration in the catchment and achieved only partial equilibrium with the atmosphere during river transport. Riverine loading accounted for most of the DIC in Loch Ness, and the great depth of the loch relative to its surface area allows only limited exchange with the atmosphere. Despite the low productivity in Loch Ness, DIC concentrations in the low alkalinity water are appreciably influenced by plankton metabolism, and seasonal fluctuations in δ13C of DIC and phytoplankton revealed the particular impact of photosynthetic carbon fixation on DIC. However, the photosynthetic depletion of DIC during summer does not offset the riverine loading sufficiently to prevent the loch waters being supersaturated with CO2 throughout the year. Annual efflux of CO2 from Loch Ness is estimated to be 253 × 106 mol yr-1, of which around one quarter may be due to net heterotrophic mineralization within the loch of organic carbon of terrestrial origin. The remainder is attributable to inorganic carbon input to the lake via river inflow and derived from prior mineralization of soil organic matter within the drainage area. This annual efflux of CO2 can represent around 6% of net ecosystem production in the catchment.

  6. Warmer temperatures reduce net carbon uptake, but not water use, in a mature southern Appalachian forest

    Science.gov (United States)

    Increasing air temperature is expected to extend growing season length in temperate, broadleaf forests, leading to potential increases in evapotranspiration and net carbon uptake. However, other key processes affecting water and carbon cycles are also highly temperature-dependent...

  7. Net Community Metabolism and Seawater Carbonate Chemistry Scale Non-intuitively with Coral Cover

    Directory of Open Access Journals (Sweden)

    Heather N. Page

    2017-05-01

    Full Text Available Coral cover and reef health have been declining globally as reefs face local and global stressors including higher temperature and ocean acidification (OA. Ocean warming and acidification will alter rates of benthic reef metabolism (i.e., primary production, respiration, calcification, and CaCO3 dissolution, but our understanding of community and ecosystem level responses is limited in terms of functional, spatial, and temporal scales. Furthermore, dramatic changes in coral cover and benthic metabolism could alter seawater carbonate chemistry on coral reefs, locally alleviating or exacerbating OA. This study examines how benthic metabolic rates scale with changing coral cover (0–100%, and the subsequent influence of these coral communities on seawater carbonate chemistry based on mesocosm experiments in Bermuda and Hawaii. In Bermuda, no significant differences in benthic metabolism or seawater carbonate chemistry were observed for low (40% and high (80% coral cover due to large variability within treatments. In contrast, significant differences were detected between treatments in Hawaii with benthic metabolic rates increasing with increasing coral cover. Observed increases in daily net community calcification and nighttime net respiration scaled proportionally with coral cover. This was not true for daytime net community organic carbon production rates, which increased the most between 0 and 20% coral cover and then less so between 20 and 100%. Consequently, diel variability in seawater carbonate chemistry increased with increasing coral cover, but absolute values of pH, Ωa, and pCO2 were not significantly different during daytime. To place the results of the mesocosm experiments into a broader context, in situ seawater carbon dioxide (CO2 at three reef sites in Bermuda and Hawaii were also evaluated; reefs with higher coral cover experienced a greater range of diel CO2 levels, complementing the mesocosm results. The results from this study

  8. [Impact of atmospheric total suspended particulate pollution on photosynthetic parameters of street mango trees in Xiamen City].

    Science.gov (United States)

    Yu, Yu-xian; Chen, Jin-sheng; Ren, Yin; Li, Fang-yi; Cui, Sheng-hui

    2010-05-01

    With the development of urbanization, total suspended particulate (TSP) pollution is getting serious, and the normal physiological processes of urban vegetation are profoundly affected while adsorbing and purifying the particulates. In this study, four areas were selected, i.e., Tingxi reservoir (clean control area), Xiamen University (cultural and educational area), Xianyue (business area), and Haicang (industrial area), with their atmospheric TSP concentrations and the photosynthetic parameters of street Mango (Mangifera indica) trees monitored in April and May, 2009. The daily average concentration of TSP in Tingxi, Xiamen University, Xianyue, and Haicang was 0.061, 0.113, 0.120 and 0.205 mg x m(-3), respectively, and the impact of TSP stress on M. indica was in the sequence of Haicang > Xianyue > Xiamen University > Tingxi. TSP pollution negatively affected the net photosynthetic rate, stomatal conductance, and transpiration rate of M. indica, and induced intercellular CO2 concentration changed significantly. High TSP concentration could cause the decline of net photosynthetic rate via stomatal limitation.

  9. Soil surface CO2 fluxes and the carbon budget of a grassland

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-01-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  10. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers.

    Science.gov (United States)

    Gamon, John A; Huemmrich, K Fred; Wong, Christopher Y S; Ensminger, Ingo; Garrity, Steven; Hollinger, David Y; Noormets, Asko; Peñuelas, Josep

    2016-11-15

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying "photosynthetic phenology" from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a "chlorophyll/carotenoid index" (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA's Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology.

  11. Controls on seasonal patterns of maximum ecosystem carbon uptake and canopy-scale photosynthetic light response: contributions from both temperature and photoperiod.

    Science.gov (United States)

    Stoy, Paul C; Trowbridge, Amy M; Bauerle, William L

    2014-02-01

    Most models of photosynthetic activity assume that temperature is the dominant control over physiological processes. Recent studies have found, however, that photoperiod is a better descriptor than temperature of the seasonal variability of photosynthetic physiology at the leaf scale. Incorporating photoperiodic control into global models consequently improves their representation of the seasonality and magnitude of atmospheric CO2 concentration. The role of photoperiod versus that of temperature in controlling the seasonal variability of photosynthetic function at the canopy scale remains unexplored. We quantified the seasonal variability of ecosystem-level light response curves using nearly 400 site years of eddy covariance data from over eighty Free Fair-Use sites in the FLUXNET database. Model parameters describing maximum canopy CO2 uptake and the initial slope of the light response curve peaked after peak temperature in about 2/3 of site years examined, emphasizing the important role of temperature in controlling seasonal photosynthetic function. Akaike's Information Criterion analyses indicated that photoperiod should be included in models of seasonal parameter variability in over 90% of the site years investigated here, demonstrating that photoperiod also plays an important role in controlling seasonal photosynthetic function. We also performed a Granger causality analysis on both gross ecosystem productivity (GEP) and GEP normalized by photosynthetic photon flux density (GEP n ). While photoperiod Granger-caused GEP and GEP n in 99 and 92% of all site years, respectively, air temperature Granger-caused GEP in a mere 32% of site years but Granger-caused GEP n in 81% of all site years. Results demonstrate that incorporating photoperiod may be a logical step toward improving models of ecosystem carbon uptake, but not at the expense of including enzyme kinetic-based temperature constraints on canopy-scale photosynthesis.

  12. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    Science.gov (United States)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  13. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    Directory of Open Access Journals (Sweden)

    S. Comeau

    2017-07-01

    Full Text Available The threat represented by ocean acidification (OA for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet, and between PAR and community net calcification (Gnet, using experiments on three coral communities constructed to match (i the back reef of Mo'orea, French Polynesia, (ii the fore reef of Mo'orea, and (iii the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu. For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  14. Biological control of the terrestrial carbon sink

    Science.gov (United States)

    Schulze, E.-D.

    2006-03-01

    This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in plant growth has

  15. Biological control of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    E.-D. Schulze

    2006-01-01

    Full Text Available This lecture reviews the past (since 1964 when the International Biological Program began and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in

  16. Algal C-14 and total carbon metabolisms 2. Experimental observations with the diatom Skeletonema costatum

    DEFF Research Database (Denmark)

    Williams, P.J.L.; Robinson, C.; Søndergaard, M.

    1996-01-01

    Three sets of comparisons of net and gross inorganic carbon assimilation and C-14 uptake were made with an axenic culture of Skeletonema costatum. The comparisons showed that in the physiological window studied (10-20% of the intrinsic generation time and gross photosynthesis/respiration ratios...... of 2-3), C-14 uptake into the particulate plus the dissolved fractions approximated to net photosynthesis. Rate constants derived from the chemically determined changes were used to parameterize models that accounted for the respiration of photosynthetic products and for the recycling of respiratory CO......2. The conclusion drawn was that over the time scale studied, the C-14 technique was measuring net photosynthesis, consistent with essentially 100% recycling of respiratory CO2. The study has shown that we now possess the basis to make a rigorous analysis of net, gross CO2 fixation and net C-14...

  17. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in the seawater carbonate chemistry

    DEFF Research Database (Denmark)

    Trimborn, S; Lundholm, Nina; Thoms, S

    2008-01-01

    . In terms of carbon source, all species took up both CO2 and HCO3-. K-1/2 values for inorganic carbon uptake decreased with increasing pH in two species, while in N. navis-varingica apparent affinities did not change. While the contribution of HCO3- to net fixation was more than 85% in S. stellaris......The effects of pH-induced changes in seawater carbonate chemistry on inorganic carbon (C-i) acquisition and domoic acid (DA) production were studied in two potentially toxic diatom species, Pseudo-nitzschia multiseries and Nitzschia navis-varingica, and the non-toxic Stellarima stellaris. In vivo...... activities of carbonic anhydrase (CA), photosynthetic O-2 evolution and CO2 and HCO3- uptake rates were measured by membrane inlet MS in cells acclimated to low (7.9) and high pH (8.4 or 8.9). Species-specific differences in the mode of carbon acquisition were found. While extracellular carbonic anhydrase (e...

  18. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

    OpenAIRE

    Gamon, John A.

    2016-01-01

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks ever...

  19. Effects of salt and water stress on plant biomass and photosynthetic ...

    African Journals Online (AJOL)

    Water deficit led to earlier peaks of net photosynthetic rate (PN) during the day. Relative rate of electron transport (ETR) decreased, but optimal quantum yield of photosystem II (Fv/Fm) showed no significant difference (P<0.05) with water deficit (from 60 to 20% FC); soil salt significantly decreased PN and transpiration rate ...

  20. Net emissions of carbon dioxide to the atmosphere when using forest residues for production of heat and electricity

    International Nuclear Information System (INIS)

    Zetterberg, L.; Hansen, O.

    1998-05-01

    This study estimates net emissions of carbon dioxide to the atmosphere from the use of forest residues for production of heat and electricity. In the report, the use of forest residues for energy production is called residue-usage. Our results show that for a turnover period of 80 years, the net emission of CO 2 to the atmosphere is 15.8 kg CO 2 -C/MWh (3.1-31.6 kg CO 2 -C/MWh), which represents 16% of the total carbon content in the wood fuel (3%-32%). Fossil fuel consumption is responsible for 3.1 kg CO 2 -C/MWh of this. Residue-usage may produce indirect emissions or uptake of carbon dioxide, e.g. through changes in production conditions, changes in the turnover of carbon in the humus layer or through a reduction of the amount of forest fires. Due to uncertainties in data it is hard to quantify these indirect effects. In some cases it is hard even to determine their signs. As a consequence of this, we have chosen not to include the indirect effects in our estimates of net emissions from residue-usage. Instead we discuss these effects in a qualitative manner. It may seem surprising that the biogenic part of the residue-usage produces a net emission of carbon dioxide considering that carbon has originated from the atmosphere. The explanation is that the residue-usage systematically leads to earlier emissions than would be the case if the residues were left on the ground. If forest residues are left to decay, in the long run a pool of carbon might be created in the ground. This does not happen with residue-usage 33 refs, 4 figs, 12 tabs

  1. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review

    Science.gov (United States)

    Riitta Hyvönen; Göran I. Ågren; Sune Linder; Tryggve Persson; M. Francesca Cotrufo; Alf Ekblad; Michael Freeman; Achim Grelle; Ivan A. Janssens; Paul G. Jarvis; Seppo Kellomäki; Anders Lindroth; Denis Loustau; Tomas Lundmark; Richard J. Norby; Ram Oren; Kim Pilegaard; Michael G. Ryan; Bjarni D. Sigurdsson; Monika Strömgren; Marcel van Oijen; Göran Wallin

    2007-01-01

    Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic...

  2. Carbon allocation to major metabolites in illuminated leaves is not just proportional to photosynthesis when gaseous conditions (CO2 and O2 ) vary.

    Science.gov (United States)

    Abadie, Cyril; Bathellier, Camille; Tcherkez, Guillaume

    2018-04-01

    In gas-exchange experiments, manipulating CO 2 and O 2 is commonly used to change the balance between carboxylation and oxygenation. Downstream metabolism (utilization of photosynthetic and photorespiratory products) may also be affected by gaseous conditions but this is not well documented. Here, we took advantage of sunflower as a model species, which accumulates chlorogenate in addition to sugars and amino acids (glutamate, alanine, glycine and serine). We performed isotopic labelling with 13 CO 2 under different CO 2 /O 2 conditions, and determined 13 C contents to compute 13 C-allocation patterns and build-up rates. The 13 C content in major metabolites was not found to be a constant proportion of net fixed carbon but, rather, changed dramatically with CO 2 and O 2 . Alanine typically accumulated at low O 2 (hypoxic response) while photorespiratory intermediates accumulated under ambient conditions and at high photorespiration, glycerate accumulation exceeding serine and glycine build-up. Chlorogenate synthesis was relatively more important under normal conditions and at high CO 2 and its synthesis was driven by phosphoenolpyruvate de novo synthesis. These findings demonstrate that carbon allocation to metabolites other than photosynthetic end products is affected by gaseous conditions and therefore the photosynthetic yield of net nitrogen assimilation varies, being minimal at high CO 2 and maximal at high O 2 . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  3. Ecosystem carbon partitioning: aboveground net primary productivity correlates with the root carbon input in different land use types of Southern Alps

    Science.gov (United States)

    Rodeghiero, Mirco; Martinez, Cristina; Gianelle, Damiano; Camin, Federica; Zanotelli, Damiano; Magnani, Federico

    2013-04-01

    Terrestrial plant carbon partitioning to above- and below-ground compartments can be better understood by integrating studies on biomass allocation and estimates of root carbon input based on the use of stable isotopes. These experiments are essential to model ecosystem's metabolism and predict the effects of global change on carbon cycling. Using in-growth soil cores in conjunction with the 13C natural abundance method we quantified net plant-derived root carbon input into the soil, which has been pointed out as the main unaccounted NPP (net primary productivity) component. Four land use types located in the Trentino Region (northern Italy) and representing a range of aboveground net primary productivity (ANPP) values (155-868 gC m-2 y-1) were investigated: conifer forest, apple orchard, vineyard and grassland. Cores, filled with soil of a known C4 isotopic signature were inserted at 18 sampling points for each site and left in place for twelve months. After extraction, cores were analysed for %C and d13C, which were used to calculate the proportion of new plant-derived root C input by applying a mass balance equation. The GPP (gross primary productivity) of each ecosystem was determined by the eddy covariance technique whereas ANPP was quantified with a repeated inventory approach. We found a strong and significant relationship (R2 = 0.93; p=0.03) between ANPP and the fraction of GPP transferred to the soil as root C input across the investigated sites. This percentage varied between 10 and 25% of GPP with the grassland having the lowest value and the apple orchard the highest. Mechanistic ecosystem carbon balance models could benefit from this general relationship since ANPP is routinely and easily measured at many sites. This result also suggests that by quantifying site-specific ANPP, root carbon input can be reliably estimated, as opposed to using arbitrary root/shoot ratios which may under- or over-estimate C partitioning.

  4. What Drives Carbon Isotope Fractionation by the Terrestrial Biosphere?

    Science.gov (United States)

    Still, Christopher; Rastogi, Bharat

    2017-11-01

    During photosynthesis, terrestrial plants preferentially assimilate the lighter and much more abundant form of carbon, 12C, which accounts for roughly 99% of naturally occurring forms of this element. This photosynthetic preference for lighter carbon is driven principally by differences in molecular diffusion of carbon dioxide with differing 13C/12C across stomatal pores on leaves, followed by differences in carboxylation rates by the Rubisco enzyme that is central to the process of photosynthesis. As a result of these slight preferences, which work out to about a 2% difference in the fixation rates of 12CO2 versus 13CO2 by C3 vegetation, plant tissues are depleted in the heavier form of carbon (13C) relative to atmospheric CO2. This difference has been exploited in a wide range of scientific applications, as the photosynthetic isotope signature is passed to ecosystem carbon pools and through ecological food webs. What is less appreciated is the signature that terrestrial carbon exchanges leave on atmospheric CO2, as the net uptake of carbon by land plants during their growing season not only draws down the local CO2 concentration, it also leaves behind relatively more CO2 molecules containing 13C. The converse happens outside the growing season, when autotrophic and heterotrophic respiration predominate. During these periods, atmospheric CO2 concentration increases and its corresponding carbon isotope composition becomes relatively depleted in 13C as the products of photosynthesis are respired, along with some small isotope fractionation that happen downstream of the initial photosynthetic assimilation. Similar phenomena were first observed at shorter time scales by the eminent carbon cycle scientist, Charles (Dave) Keeling. Keeling collected samples of air in glass flasks from sites along the Big Sur coast that he later measured for CO2 concentration and carbon isotope composition (δ13C) in his lab (Keeling, 1998). From these samples, Keeling observed increasing

  5. Rain events decrease boreal peatland net CO2 uptake through reduced light availability.

    Science.gov (United States)

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B; van der Zee, Sjoerd E A T M; Berendse, Frank

    2015-06-01

    Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2 ) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2 . The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m(-2) . On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely

  6. Long term estimation of carbon dynamic and sequestration for Iranian agro-ecosystem: I- Net primary productivity and annual carbon input for common agricultural crops

    Directory of Open Access Journals (Sweden)

    M Nassiri Mahalati

    2016-05-01

    Full Text Available Evaluation of carbon input is one of the most important factors for estimating soil carbon changes and potential for carbon sequestration. To evaluate the net primary productivity (NPP and soil carbon input in agricultural eco-systems of Iran, data for yield, cultivated area, harvest index (HI and shoot /root ratio in different crops including: wheat, barley, maize, cotton, rice, alfalfa and chickpea were obtained for different provinces. Then, allocated carbon to different organs of plant were calculated based on carbon allocation coefficients and finally, the net primary productivity based on carbon (NPPc was calculated. The ratio of NPPc that was annually returned to soil was considered as carbon annual input. The results showed that the maximum amount of NPPc for wheat, barely and alfalfa were obtained in Khazari climate for rice, chickpea and cotton was achieved in warm-wet climate and for maize was gained in warm-dry climate. In all regions of Iran, chickpea had the lowest effect on NPPc and consequently on carbon sequestration. The highest amount of carbon input per unit area among studied crops and different regions were observed in Khazari region for alfalfa whereas, the lowest carbon input per unit area was relation to chickpea in cold region. The lowest gap between actual and potential of carbon sequestration was observed in alfalfa whereas wheat, rice and cotton showed the most gap by 0.4, 0.38 and 0.37, respectively.

  7. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    Science.gov (United States)

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  8. Isoprenoids emission in Stipa tenacissima L.: Photosynthetic control and the effect of UV light

    International Nuclear Information System (INIS)

    Guidolotti, Gabriele; Rey, Ana; Medori, Mauro; Calfapietra, Carlo

    2016-01-01

    Fluxes of CO_2 and isoprenoids were measured for the first time in Stipa tenacissima L (alfa grass), a perennial tussock grass dominant in the driest areas of Europe. In addition, we studied how those fluxes were influenced by environmental conditions, leaf ontogeny and UV radiation and compared emission rates in two contrasting seasons: summer when plants are mostly inactive and autumn, the growing season in this region. Leaf ontogeny significantly affected both photosynthesis and isoprenoids emission. Isoprene emission was positively correlated with photosynthesis, although a low isoprene emission was detected in brown leaves with a net carbon loss. Moreover, leaves with a significant lower photosynthesis emitted only monoterpenes, while at higher photosynthetic rates also isoprene was produced. Ambient UV radiation uncoupled photosynthesis and isoprene emission. It is speculated that alfa grass represent an exception from the general rules governing plant isoprenoid emitters. - Highlights: • Stipa tenacissima L. is a grass emitting either monoterpenes and isoprene. • The emission has reasonable rates even in senescent leaves. • Isoprene emission is positively correlated with CO_2 assimilation. • Ambient UV radiation uncouples photosynthesis and isoprene emission. • Leaves with lower photosynthetic rates emit only monoterpenes. - We proved for the first time that alfa grass emit both isoprene and monoterpene, and we provide some innovative aspects about the UV effect and the behavior of Stipa tenacissima.

  9. Effect of Elevated Carbon Dioxide Concentration on Carbon Assimilation under Fluctuating Light

    Czech Academy of Sciences Publication Activity Database

    Holišová, Petra; Zitová, Martina; Klem, Karel; Urban, Otmar

    2012-01-01

    Roč. 41, č. 6 (2012), s. 1931-1938 ISSN 0047-2425 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GAP501/10/0340; GA MŠk(CZ) LM2010007; GA AV ČR IAA600870701 Institutional support: RVO:67179843 Keywords : carbon * light * beech * spruce * carbon assimilation * elevat e carbon * dioxide concentration * mol * photosynthetic * assimilation * carbon dioxide * dioxide * concentracion * leave * photosynthetic efficiency Subject RIV: EH - Ecology, Behaviour Impact factor: 2.353, year: 2012

  10. Seasonal response of photosynthetic electron transport and energy dissipation in the eighth year of exposure to elevated atmospheric CO2 (FACE) in Pinus taeda (loblolly pine)

    International Nuclear Information System (INIS)

    Logan, B.A.; Combs, A.; Kent, R.; Stanley, L.; Myers, K.; Tissue, D.T.; Western Sydney Univ., Richmond, NSW

    2009-01-01

    This study investigated the biological adaptation of loblolly pine following long-term seasonal exposure to elevated carbon dioxide (CO 2 ) partial pressures (pCO 2 ). Exposure to elevated atmospheric CO 2 (pCO 2 ) usually results in significant stimulation in light-saturated rates of photosynthetic CO 2 assimilation. Plants are protected against photoinhibition by biochemical processes known as photoprotection, including energy dissipation, which converts excess absorbed light energy into heat. This study was conducted in the eighth year of exposure to elevated pCO 2 at the Duke FACE site. The effect of elevated pCO 2 on electron transport and energy dissipation in the pine trees was examined by coupling the analyses of the capacity for photosynthetic oxygen (O 2 ) evolution, chlorophyll fluorescence emission and photosynthetic pigment composition with measurements of net photosynthetic CO 2 assimilation (Asat). During the summer growing season, Asat was 50 per cent higher in current-year needles and 24 per cent higher in year-old needles in elevated pCO 2 in comparison with needles of the same age cohort in ambient pCO 2 . Thus, older needles exhibited greater photosynthetic down-regulation than younger needles in elevated pCO 2 . In the winter, Asat was not significantly affected by growth pCO 2 . Asat was lower in winter than in summer. Growth at elevated pCO 2 had no significant effect on the capacity for photosynthetic oxygen evolution, photosystem 2 efficiencies, chlorophyll content or the size and conversion state of the xanthophyll cycle, regardless of season or needle age. There was no evidence that photosynthetic electron transport or photoprotective energy dissipation responded to compensate for the effects of elevated pCO 2 on Calvin cycle activity. 73 refs., 4 figs

  11. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.

    Science.gov (United States)

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W; Statton, John; Colmer, Timothy D; Kendrick, Gary A

    2016-06-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 (-) . Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 (-) users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3 (-) . Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon. © 2015 John Wiley & Sons Ltd.

  12. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation.

    Science.gov (United States)

    Yang, Shihong; Xiao, Ya Nan; Xu, Junzeng

    2018-04-01

    Quantifying carbon sequestration in paddy soil is necessary to understand the effect of agricultural practices on carbon cycles. The objective of this study was to assess the effect of organic fertilizer addition (MF) on the soil respiration and net ecosystem carbon dioxide (CO 2 ) absorption of paddy fields under water-saving irrigation (CI) in the Taihu Lake Region of China during the 2014 and 2015 rice-growing seasons. Compared with the traditional fertilizer and water management (FC), the joint regulation of CI and MF (CM) significantly increased the rice yields and irrigation water use efficiencies of paddy fields by 4.02~5.08 and 83.54~109.97% (p < 0.05). The effects of organic fertilizer addition on soil respiration and net ecosystem CO 2 absorption rates showed inter-annual differences. CM paddy fields showed a higher soil respiration and net CO 2 absorption rates during some periods of the rice growth stage in the first year and during most periods of the rice growth stage in the second year. These fields also had significantly higher total CO 2 emission through soil respiration (total R soil ) and total net CO 2 absorption compared with FC paddy fields (p < 0.05). The total R soil and net ecosystem CO 2 absorption of CM paddy fields were 67.39~91.55 and 129.41~113.75 mol m -2 , which were 27.66~135.52 and 12.96~31.66% higher than those of FC paddy fields. The interaction between water and fertilizer management had significant effects on total net ecosystem CO 2 absorption. The frequent alternate wet-dry cycles of CI paddy fields increased the soil respiration and reduced the net CO 2 absorption. Organic fertilizer promoted the soil respiration of paddy soil but also increased its net CO 2 absorption and organic carbon content. Therefore, the joint regulation of water-saving irrigation and organic fertilizer is an effective measure for maintaining yield, increasing irrigation water use efficiency, mitigating CO 2 emission, and promoting paddy

  13. Beyond pure offsetting: Assessing options to generate Net-Mitigation-Effects in carbon market mechanisms

    International Nuclear Information System (INIS)

    Warnecke, Carsten; Wartmann, Sina; Höhne, Niklas; Blok, Kornelis

    2014-01-01

    The current project-based carbon market mechanisms such as the Clean Development Mechanism (CDM) and the Joint Implementation (JI) do not have a direct impact on global greenhouse gas emission levels, because they only replace or offset emissions. Nor do they contribute to host country's national greenhouse gas emission reduction targets. Contributions to net emission reductions in host countries is likely to become mandatory in new mechanisms under development such as in the framework for various approaches, a new market-based mechanism and even in a reformed JI. This research analysed the question if approaches for carbon market-based mechanisms exist that allow the generation of net emission reductions in host countries while keeping project initiation attractive. We present a criteria-based assessment method and apply it for four generic options in existing mechanisms and derive implications for future mechanism frameworks. We identified the application of “discounts” on the amount of avoided emissions for the issuance of carbon credits and “standardisation below business as usual” as most promising options over “limiting the crediting period” and “over-conservativeness”. We propose to apply these options differentiated over project types based on internal rate of return to ensure cost-efficiency and attractiveness. - Highlights: • Options for net emission reductions of market-based mechanisms are assessed. • Research combines past and current views for project and sector-based mechanisms. • Implementation ensures initiation of mitigation activities is not discouraged. • Important insights for methodological design of new market-based mechanisms. • Profitability-based approach for project-based mechanisms suggested

  14. Seasonal photosynthetic gas exchange and water-use efficiency in a constitutive CAM plant, the giant saguaro cactus (Carnegiea gigantea).

    Science.gov (United States)

    Bronson, Dustin R; English, Nathan B; Dettman, David L; Williams, David G

    2011-11-01

    Crassulacean acid metabolism (CAM) and the capacity to store large quantities of water are thought to confer high water use efficiency (WUE) and survival of succulent plants in warm desert environments. Yet the highly variable precipitation, temperature and humidity conditions in these environments likely have unique impacts on underlying processes regulating photosynthetic gas exchange and WUE, limiting our ability to predict growth and survival responses of desert CAM plants to climate change. We monitored net CO(2) assimilation (A(net)), stomatal conductance (g(s)), and transpiration (E) rates periodically over 2 years in a natural population of the giant columnar cactus Carnegiea gigantea (saguaro) near Tucson, Arizona USA to investigate environmental and physiological controls over carbon gain and water loss in this ecologically important plant. We hypothesized that seasonal changes in daily integrated water use efficiency (WUE(day)) in this constitutive CAM species would be driven largely by stomatal regulation of nighttime transpiration and CO(2) uptake responding to shifts in nighttime air temperature and humidity. The lowest WUE(day) occurred during time periods with extreme high and low air vapor pressure deficit (D(a)). The diurnal with the highest D(a) had low WUE(day) due to minimal net carbon gain across the 24 h period. Low WUE(day) was also observed under conditions of low D(a); however, it was due to significant transpiration losses. Gas exchange measurements on potted saguaro plants exposed to experimental changes in D(a) confirmed the relationship between D(a) and g(s). Our results suggest that climatic changes involving shifts in air temperature and humidity will have large impacts on the water and carbon economy of the giant saguaro and potentially other succulent CAM plants of warm desert environments.

  15. Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems

    Directory of Open Access Journals (Sweden)

    Félix L Figueroa

    2013-11-01

    Full Text Available In vivo chlorophyll fluorescence associated to Photosystem II is being used to evaluate photosynthetic activity of microalgae grown in different types of photobioreactors; however, controversy on methodology is usual. Several recommendations on the use of chlorophyll fluorescence to estimate electron transport rate and productivity of microalgae grown in thin-layer cascade cultivators and methacrylate cylindrical vessels are included. Different methodologies related to the measure of photosynthetic activity in microalgae are discussed: (1 measurement of light absorption, (2 determination of electron transport rates versus irradiance and (3 use of simplified devices based on pulse amplitude modulated (PAM fluorescence as Junior PAM or Pocket PAM with optical fiber and optical head as measuring units, respectively. Data comparisons of in vivo chlorophyll fluorescence by using these devices and other PAM fluorometers as Water-PAM in the microalga Chlorella sp. (Chlorophyta are presented. Estimations of carbon production and productivity by transforming electron transport rate to gross photosynthetic rate (as oxygen evolution using reported oxygen produced per photons absorbed values and carbon photosynthetic yield based on reported oxygen/carbon ratio are also shown. The limitation of ETR as estimator of photosynthetic and biomass productivity is discussed. Low cost:quality PAMs can promote monitoring of chlorophyll fluorescence in algal biotechnology to estimate the photosynthetic activity and biomass productivity.

  16. Seasonal changes in photosynthetic capacity of leaves of kiwifruit (Actinidia deliciosa) vines

    International Nuclear Information System (INIS)

    Buwalda, J.G.; Meekings, J.S.; Smith, G.S.

    1991-01-01

    The seasonal trend of photosynthetic capacity of leaves of kiwifruit (Actinidia deliciosa var. deliciosa) vines growing in the field was examined, by measuring the response of net photosynthesis (A) to irradiance (PAR) at monthly intervals for leaves that emerged at different stages of the growing season. A climate controlled minicuvette system was used, to ensure constant environmental conditions, apart from the controlled changes in leaf irradiance. Responses of A to irradiance were described using asymptotic exponential curves, providing estimates of the radiation saturated rate of A (A sat ), and the response of A to increasing incident PAR at low PAR levels (ϕ i ). The change in photosynthetic capacity with leaf age was similar for leaves emerging 1, 2, 3 or 4 months after bud burst. At 1 month after leaf emergence, when leaves were fully expanded, Asat was 9–11 μmol CO 2 m −2 s −1 . Maximum photosynthetic capacity was not attained until 3–5 months after leaf emergence, when Asat was 16–17 μmol CO 2 m −2 s −1 . The increasing photosynthetic capacity during 3–5 months after leaf emergence was closely related to concomitant changes in leaf N and chlorophyll contents. The possibility that N import to the leaf was a significant factor limiting the development of photosynthetic capacity is discussed. (author)

  17. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, J.S.; Thornton, P.E.; White, M.A.; Running, S.W. [Montana Univ., Missoula, MT (United States). School of Forestry

    1997-12-31

    Studies have shown that the boreal forest region is in danger of experiencing significant warming and drying in response to increases in atmospheric CO{sub 2} concentration and other greenhouse gases. Since the boreal forest region contains 16-24 per cent of the world`s soil carbon, warming in this region could result in a rapid, large-scale displacement and redistribution of boreal forest, enhanced release of CO{sub 2} to the atmosphere, and an intensification of global warming. A study was conducted in which a process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce. The objective was to integrate point measurements across multiple spatial and temporal scales using process level models of the boreal forest water, energy and biogeochemical cycles. Climate characteristics that control simulated carbon fluxes were also studied. Results showed that trees with large daily evapotranspiration rates and those situated on sandy soils with low water holding capacities were especially vulnerable to increased temperature and drought conditions. Trees subject to frequent water stress during the growing season, particularly older trees that exhibit low photosynthetic and high respiration rates, were on the margin between being annual net sources or sinks for atmospheric carbon. 71 refs., 3 tabs., 5 figs.

  18. Variability in carbon exchange of European croplands

    DEFF Research Database (Denmark)

    Eddy J, Moors; Jacobs, Cor; Jans, Wilma

    2010-01-01

    The estimated net ecosystem exchange (NEE) of CO2 based on measurements at 17 flux sites in Europe for 45 cropping periods showed an average loss of -38 gC m-2 per cropping period. The cropping period is defined as the period after sowing or planting until harvest. The variability taken as the st......The estimated net ecosystem exchange (NEE) of CO2 based on measurements at 17 flux sites in Europe for 45 cropping periods showed an average loss of -38 gC m-2 per cropping period. The cropping period is defined as the period after sowing or planting until harvest. The variability taken...... as the standard deviation of these cropping periods was 251 gC m-2. These numbers do not include lateral inputs such as the carbon content of applied manure, nor the carbon exchange out of the cropping period. Both are expected to have a major effect on the C budget of high energy summer crops such as maize. NEE...... and gross primary production (GPP) can be estimated by crop net primary production based on inventories of biomass at these sites, independent of species and regions. NEE can also be estimated by the product of photosynthetic capacity and the number of days with the average air temperature >5 °C. Yield...

  19. Sources of CO{sub 2} in the Gulf of Trieste (N. Adriatic). Stable Carbon Isotope Evidence

    Energy Technology Data Exchange (ETDEWEB)

    Ogrinc, N.; Zavadlav, S. [Department of Environmental Sciences, Jozef Stefan Institute, Ljubljana (Slovenia); Turk, D. [Department of Oceanography, Dalhousie University, Halifax, Nova Scotia (Canada); Lamont-Doherty Earth Observatory, Earth Institute at Columbia University, Palisades, NY (United States); Faganeli, J. [Marine Biological Station National Institute of Biology, Piran (Slovenia)

    2013-07-15

    In the present study the influence of freshwater intrusions on the net carbon dynamics in the Gulf of Trieste (northern Adriatic Sea) were investigated. Carbonate mineral weathering dominates the inorganic carbon geochemical flux of the N Adriatic rivers and thus the origin of dissolved inorganic carbon (DIC) in the gulf seawater. Based on {delta}{sup 13}C{sub DIC} values and isotopic mass balance it was estimated that rivers represents about 20% of DIC in spring, while the riverine contribution in autumn is less pronounced probably due to intensive water mixing. The results, therefore, suggest that river inputs play a significant role in the carbon cycling in the Gulf of Trieste due to mixing of higher DIC riverine water with lower seawater DIC. The observed higher summer {delta}{sup 13}C{sub DIC} values were due to more pronounced photosynthetic carbon fractionation. (author)

  20. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.

    Science.gov (United States)

    L.S. Santiago; G. Goldstein; F.C. Meinzer; J.B. Fisher; K. Maehado; D. Woodruff; T. Jones

    2004-01-01

    We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity (kL) of upper branches was positively correlated with maximum rates of net CO2, assimilation per unit leaf area (Aarea...

  1. Advances in Metabolic Engineering of Cyanobacteria for Photosynthetic Biochemical Production

    OpenAIRE

    Lai, Martin C.; Lan, Ethan I.

    2015-01-01

    Engineering cyanobacteria into photosynthetic microbial cell factories for the production of biochemicals and biofuels is a promising approach toward sustainability. Cyanobacteria naturally grow on light and carbon dioxide, bypassing the need of fermentable plant biomass and arable land. By tapping into the central metabolism and rerouting carbon flux towards desirable compound production, cyanobacteria are engineered to directly convert CO2 into various chemicals. This review discusses the d...

  2. Effect of different levels of air pollution on photosynthetic activity of some lichens

    Directory of Open Access Journals (Sweden)

    Ewa Niewiadomska

    2014-01-01

    Full Text Available Four lichen species: Hypogymnia physodes, Pseudevernia furfuracea, Parmelia saxatilis, and Platismatia glauca were collected from two sites (S. Poland with a different air pollution level: "Kamienica valley" (less polluted and "Kopa" (more polluted. The thalli were compared with respect to their: net photosynthetic rate (PN, fluorescence parameters (Fv/Fm, Fm, Fm/Fo, chlorophyll a+b content, and phaeophytinization quotient (O.D.435/O.D.415. PN intensity, chlorophyll a+b and O.D.435/O.D.415 were reduced only in Pa furfuracea collected from Kopa, which is in agreement with the Hawksworth-Rose scale of sensitivity of lichens to air pollution. Fluorescence parameters were significantly lowered in all lichens coming from the more polluted site (except of Fv/Fm and Fm/F0 in P. saxatilis. Parameters based on chlorophyll fluorescence measurements enable to reveal the very early signs of decreased photosynthetical capacity of the thalli, caused by air pollution, before changes in the other photosynthetic parameters become mesurable.

  3. Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps.

    Science.gov (United States)

    Wieser, Gerhard; Oberhuber, Walter; Walder, Lisa; Spieler, Daniela; Gruber, Andreas

    2010-04-01

    Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European Alps, where low temperatures limit carbon metabolism.We focused on the effects of air and soil temperature on net photosynthesis (P(n)) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian Alps. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall.In general, P(n) was significantly lower in fall as compared to summer. Nevertheless, independent from season mean P(n) values tended to increase with elevation and were positively correlated with root zone temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement.Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime.

  4. Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts.

    Directory of Open Access Journals (Sweden)

    Li Wu

    Full Text Available As an important successional stage and main type of biological soil crusts (BSCs in Shapotou region of China (southeastern edge of Tengger Desert, lichen soil crusts (LSCs often suffer from many stresses, such as desiccation and excess light intensity. In this study, the chlorophyll fluorescence and CO2 exchange in the rehydrated LSCs were detected under a series of photosynthetically active radiation (PAR gradients to study the photosynthetic acclimation of LSCs. The results showed that although desiccation leaded to the loss of photosynthetic activity in LSCs, the fluorescence parameters including Fo, Fv and Fv/Fm of LSCs could be well recovered after rehydration. After the recovery of photosynthetic activity, the effective photosynthetic efficiency ΦPSII detected by Imaging PAM had declined to nearly 0 within both the lichen thallus upper and lower layers when the PAR increased to 200 μE m-2 s-1, however the net photosynthesis detected by the CO2 gas analyzer in the LSCs still appeared when the PAR increased to 1000 μE m-2 s-1. Our results indicate that LSCs acclimating to high PAR, on the one hand is ascribed to the special structure in crust lichens, making the incident light into the lichen thallus be weakened; on the other hand the massive accumulation of photosynthetic pigments in LSCs also provides a protective barrier for the photosynthetic organisms against radiation damage. Furthermore, the excessive light energy absorbed by crust lichens is also possibly dissipated by the increasing non-photochemical quenching, therefore to some extent providing some protection for LSCs.

  5. Different Metabolomic Responses to Carbon Starvation between Light and Dark Conditions in the Purple Photosynthetic Bacterium, Rhodopseudomonas palustris.

    Science.gov (United States)

    Kanno, Nanako; Matsuura, Katsumi; Haruta, Shin

    2018-03-29

    Purple photosynthetic bacteria utilize light energy for growth. We previously demonstrated that light energy contributed to prolonging the survival of multiple purple bacteria under carbon-starved conditions. In order to clarify the effects of illumination on metabolic states under carbon-starved, non-growing conditions, we herein compared the metabolic profiles of starved cells in the light and dark using the purple bacterium, Rhodopseudomonas palustris. The metabolic profiles of starved cells in the light were markedly different from those in the dark. After starvation for 5 d in the light, cells showed increases in the amount of ATP and the NAD + /NADH ratio. Decreases in the amounts of most metabolites related to glycolysis and the TCA cycle in energy-rich starved cells suggest the active utilization of these metabolites for the modification of cellular components. Starvation in the dark induced the consumption of cellular compounds such as amino acids, indicating that the degradation of these cellular components produced ATP in order to maintain viability under energy-poor conditions. The present results suggest that intracellular energy levels alter survival strategies under carbon-starved conditions through metabolism.

  6. Energy and carbon balances in cheatgrass, an essay in autecology. [Shortwave radiation, radiowave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, W.T.

    1975-01-01

    An experiment to determine the fates of energy and carbon in cheatgrass (Bromus tectorum L.) was carried out on steep (40/sup 0/) north- and south-facing slopes on a small earth mound, using many small lysimeters to emulate swards of cheatgrass. Meteorological conditions and energy fluxes that were measured included air and soil temperatures, relative humidity, wind speed, incoming shortwave radiation, net all-wave radiation, heat flux to the soil, and evaporation and transpiration separately. The fate of photosynthetically fixed carbon during spring growth was determined by analysis of the plant tissues into mineral nutrients, crude protein, crude fat, crude fiber, and nitrogen-free extract (NFE) for roots, shoots, and seeds separately. (auth)

  7. Photosynthetic Performance of the Red Alga Pyropia haitanensis During Emersion, With Special Reference to Effects of Solar UV Radiation, Dehydration and Elevated CO2 Concentration.

    Science.gov (United States)

    Xu, Juntian; Gao, Kunshan

    2015-11-01

    Macroalgae distributed in intertidal zones experience a series of environmental changes, such as periodical desiccation associated with tidal cycles, increasing CO2 concentration and solar UVB (280-315 nm) irradiance in the context of climate change. We investigated how the economic red macroalga, Pyropia haitanensis, perform its photosynthesis under elevated atmospheric CO2 concentration and in the presence of solar UV radiation (280-400 nm) during emersion. Our results showed that the elevated CO2 (800 ppmv) significantly increased the photosynthetic carbon fixation rate of P. haitanensis by about 100% when the alga was dehydrated. Solar UV radiation had insignificant effects on the net photosynthesis without desiccation stress and under low levels of sunlight, but significantly inhibited it with increased levels of desiccation and sunlight intensity, to the highest extent at the highest levels of water loss and solar radiation. Presence of UV radiation and the elevated CO2 acted synergistically to cause higher inhibition of the photosynthetic carbon fixation, which exacerbated at higher levels of desiccation and sunlight. While P. haitanensis can benefit from increasing atmospheric CO2 concentration during emersion under low and moderate levels of solar radiation, combined effects of elevated CO2 and UV radiation acted synergistically to reduce its photosynthesis under high solar radiation levels during noon periods. © 2015 The American Society of Photobiology.

  8. The Influence of Different Interstock Lengths of Minneola Tanjelo on Photosynthetic Parameters and Fruit Yield of Star Ruby Grapefruit

    Directory of Open Access Journals (Sweden)

    Bilge Yılmaz

    2014-05-01

    Full Text Available In this study, Minneola Tangelo hybrid, a cross of grapefruit and mandarin (Duncan grapefruit x Dancy mandarin, used as interstock to Star Ruby grapefruit with different lengths. Effects of different interstock lengths on fruit yield and quality, plant development and photosynthetic parameters were investigated. According to the results, different interstock lengths significantly affected fruit yield and size. The highest fruit yield was determined in T-M20-S whereas the lowest was on T-M5-S. The highest fruit size were determined in Star Ruby fruits on T-M5-S and T-M40-S whereas the lowest on T-M20-S and T-S (control. T-M40-S and T-M20-S treatments markedly reduced stem diameter and tree canopy in comparison to other treatments and control. Usage of different interstock lengths did not significantly affected some of fruit quality traits, net photosynthetic rate, stomatal conductance, leaf transpiration rate, leaf water usage efficiency and leaf chlorophyll concentration. In regards to seasonal changes, net photosynthetic rate were higher in spring and summer seasons then winter and fall seasons.

  9. Dynamic optimization of CELSS crop photosynthetic rate by computer-assisted feedback control

    Science.gov (United States)

    Chun, C.; Mitchell, C. A.

    1997-01-01

    A procedure for dynamic optimization of net photosynthetic rate (Pn) for crop production in Controlled Ecological Life-Support Systems (CELSS) was developed using leaf lettuce as a model crop. Canopy Pn was measured in real time and fed back for environmental control. Setpoints of photosynthetic photon flux (PPF) and CO_2 concentration for each hour of the crop-growth cycle were decided by computer to reach a targeted Pn each day. Decision making was based on empirical mathematical models combined with rule sets developed from recent experimental data. Comparisons showed that dynamic control resulted in better yield per unit energy input to the growth system than did static control. With comparable productivity parameters and potential for significant energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  10. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Navid, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-19

    Rising energy demands and the imperative to reduce carbon dioxide (CO2) emissions are driving research on biofuels development. Hydrogen gas (H2) is one of the most promising biofuels and is seen as a future energy carrier by virtue of the fact that 1) it is renewable, 2) does not evolve the “greenhouse gas” CO2 in combustion, 3) liberates large amounts of energy per unit weight in combustion (having about 3 times the energy content of gasoline), and 4) is easily converted to electricity by fuel cells. Among the various bioenergy strategies, environmental groups and others say that the concept of the direct manufacture of alternative fuels, such as H2, by photosynthetic organisms is the only biofuel alternative without significant negative criticism [1]. Biological H2 production by photosynthetic microorganisms requires the use of a simple solar reactor such as a transparent closed box, with low energy requirements, and is considered as an attractive system to develop as a biocatalyst for H2 production [2]. Various purple bacteria including Rhodopseudomonas palustris, can utilize organic substrates as electron donors to produce H2 at the expense of solar energy. Because of the elimination of energy cost used for H2O oxidation and the prevention of the production of O2 that inhibits the H2-producing enzymes, the efficiency of light energy conversion to H2 by anoxygenic photosynthetic bacteria is in principle much higher than that by green algae or cyanobacteria, and is regarded as one of the most promising cultures for biological H2 production [3]. Here implemented a simple and relatively straightforward strategy for hydrogen production by photosynthetic microorganisms using sunlight, sulfur- or iron-based inorganic substrates, and CO2 as the feedstock. Carefully selected microorganisms with bioengineered beneficial

  11. Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species

    OpenAIRE

    Hidaka, Amane; Kitayama, Kanehiro

    2013-01-01

    How plants develop adaptive strategies to efficiently use nutrients on infertile soils is an important topic in plant ecology. It has been suggested that, with decreasing phosphorus (P) availability, plants increase photosynthetic P-use efficiency (PPUE) (i.e., the ratio of instantaneous photosynthetic carbon assimilation rate per unit foliar P). However, the mechanism to increase PPUE remains unclear. In this study, we tested whether high PPUE is explained by an optimized allocation of P in ...

  12. Photosynthetic capacity of 'Niagara Rosada' grapes grown under transparent plastic covering

    Directory of Open Access Journals (Sweden)

    Bruna Corrêa da Silva de Deus

    2016-06-01

    Full Text Available ABSTRACT: New techniques in tropical regions such as use of transparent plastic covering (TPC, have been employed in grapes to avoid the wetting leaves and fruits, which can reduce the occurrence of fungal diseases, reduce the use of sprays, and reduce damage caused by hail and high winds. TPC may significantly affect the photosynthetic rates of grapevines cultivated in tropical regions, and thus have strong effects on plant productivity and improve fruit quality. However, in the North of Rio de Janeiro region there are lacks of studies related to TPC effects on photosynthetic capacity. The objective of this study was to evaluate the photosynthetic capacity in 'Niagara Rosada' vines grown under TPC and without transparent plastic covering (WTPC. The experiment was conducted between April and June 2013, on Tabuinha farm, located in the 3rd district of São Fidélis, Rio de Janeiro State, Brazil. A completely randomized block design was used with two treatments (TPC and WTPC and twelve replications. Evaluations consisted of climatological variables, gas exchange and maximum quantum efficiency of open photosystem II centers-quantum yield (Fv/Fm It was possible to observe that under TPC maximum temperature increase of 2.3°C, relative humidity reduced 1.5%, vapor pressure deficit increase 0.4kPa, and light intensity reduced 47.7%. These changes did not cause photochemical damage to the leaves. The TPC promoted higher net photosynthetic rate at 800h, which was associated with higher stomatal conductance. Thus, the TPC used in the northern region of Rio de Janeiro State did not impair the photosynthetic capacity of 'Niagara Rosada' vines.

  13. Effects of gibberellic acid on growth and photosynthetic pigments of ...

    African Journals Online (AJOL)

    The aim of this study was to improve growth performance by enhancing the photosynthetic pigments and enzyme carbonic anhydrase (CA) activity of Hibiscus sabdariffa L. (cv. Sabahia 17) under NaCl stress. Under non-saline condition, application of GA3 enhanced growth parameters (shoot length, shoot fresh weight (FW) ...

  14. Energy consumption and net CO2 sequestration of aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Ruijg, G.J.; Comans, R.N.J.; Witkamp, G.J.

    2006-12-01

    Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in dependence of various process variables using either wollastonite (CaSiO3) or steel slag as feedstock. For wollastonite, the maximum energetic CO2 sequestration efficiency within the ranges of process conditions studied was 75% at 200C, 20 bar CO2, and a particle size of <38μm. The main energy-consuming process steps were the grinding of the feedstock and the compression of the CO2 feed. At these process conditions, a significantly lower efficiency was determined for steel slag (69%), mainly because of the lower Ca content of the feedstock. The CO2 sequestration efficiency might be improved substantially for both types of feedstock by, e.g., reducing the amount of process water applied and further grinding of the feedstock. The calculated energetic efficiencies warrant a further assessment of the (energetic) feasibility of CO2 sequestration by aqueous mineral carbonation on the basis of a pilot-scale process

  15. Black carbon reduction will weaken the aerosol net cooling effect

    Science.gov (United States)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  16. Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs.

    Science.gov (United States)

    Watanabe, K; Imase, M; Aoyagi, H; Ohmura, N; Saiki, H; Tanaka, H

    2008-09-01

    (i) Quantitative and qualitative analyses of photosynthetic metabolites of Chlorella sorokiniana and elucidation of the mechanism of their utilization by algal symbionts. (ii) Development of artificial medium that imitates photoautotroph-heterotroph interaction and investigation of its suitability for isolation of novel microbes from the environment. Various components, including free dissolved carbohydrates, nitrogenous compounds and vitamin, were detected and together contributed 11.1% (as carbon content) of the total photosynthetic metabolites in the medium. Utilization of these photosynthetic metabolites in algal culture broth by algal symbionts was studied. Many symbionts showed specific utilization patterns. A novel artificial extracellular released organic carbon medium, which imitated the nutritional conditions surrounding algae, was developed based on the pattern of utilization of the algal metabolites by the symbiotic heterotrophs. About 42.9% of the isolates were closely related to photoautotrophic-dependent and oligotrophic bacteria. With the novel artificial medium, it was possible to selectively isolate some bacterial strains. Synthetic bacterial growth medium is an important and basic tool for bacterial isolation from environmental samples. The current study shows that preferential separation of typical bacterial subset can be achieved by using artificial medium that mimics photosynthetic metabolites.

  17. Net ecosystem exchange of carbon dioxide and water of far eastern Siberian Larch (Larix cajanderii on permafrost

    Directory of Open Access Journals (Sweden)

    A. J. Dolman

    2004-01-01

    Full Text Available Observations of the net ecosystem exchange of water and CO2 were made during two seasons in 2000 and 2001 above a Larch forest in Far East Siberia (Yakutsk. The measurements were obtained by eddy correlation. There is a very sharply pronounced growing season of 100 days when the forest is leaved. Maximum half hourly uptake rates are 18 µmol m-2 s-1; maximum respiration rates are 5 µmol m-2 s-1. Net annual sequestration of carbon was estimated at 160 gCm-2 in 2001. Applying no correction for low friction velocities added 60 g C m-2. The net carbon exchange of the forest was extremely sensitive to small changes in weather that may switch the forest easily from a sink to a source, even in summer. June was the month with highest uptake in 2001. The average evaporation rate of the forest approached 1.46 mm day-1 during the growing season, with peak values of 3 mm day-1 with an estimated annual evaporation of 213 mm, closely approaching the average annual rainfall amount. 2001 was a drier year than 2000 and this is reflected in lower evaporation rates in 2001 than in 2000. The surface conductance of the forest shows a marked response to increasing atmospheric humidity deficits. This affects the CO2 uptake and evaporation in a different manner, with the CO2 uptake being more affected. There appears to be no change in the relation between surface conductance and net ecosystem uptake normalized by the atmospheric humidity deficit at the monthly time scale. The response to atmospheric humidity deficit is an efficient mechanism to prevent severe water loss during the short intense growing season. The associated cost to the sequestration of carbon may be another explanation for the slow growth of these forests in this environment.

  18. Mycorrhiza Symbiosis Increases the Surface for Sunlight Capture in Medicago truncatula for Better Photosynthetic Production

    Science.gov (United States)

    Adolfsson, Lisa; Keresztes, Áron; Uddling, Johan; Schoefs, Benoît; Spetea, Cornelia

    2015-01-01

    Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with Pi fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with Pi fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased Pi supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and Pi-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by Pi fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and Pi-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area. PMID:25615871

  19. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production.

    Directory of Open Access Journals (Sweden)

    Lisa Adolfsson

    Full Text Available Arbuscular mycorrhizal (AM fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi, and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM, mock inoculum (control or with P(i fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with P(i fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased P(i supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and P(i-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by P(i fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and P(i-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.

  20. Post photosynthetic carbon partitioning to sugar alcohols and consequences for plant growth.

    Science.gov (United States)

    Dumschott, Kathryn; Richter, Andreas; Loescher, Wayne; Merchant, Andrew

    2017-12-01

    The occurrence of sugar alcohols is ubiquitous among plants. Physiochemical properties of sugar alcohols suggest numerous primary and secondary functions in plant tissues and are often well documented. In addition to functions arising from physiochemical properties, the synthesis of sugar alcohols may have significant influence over photosynthetic, respiratory, and developmental processes owing to their function as a large sink for photosynthates. Sink strength is demonstrated by the high concentrations of sugar alcohols found in plant tissues and their ability to be readily transported. The plant scale distribution and physiochemical function of these compounds renders them strong candidates for functioning as stress metabolites. Despite this, several aspects of sugar alcohol biosynthesis and function are poorly characterised namely: 1) the quantitative characterisation of carbon flux into the sugar alcohol pool; 2) the molecular control governing sugar alcohol biosynthesis on a quantitative basis; 3) the role of sugar alcohols in plant growth and ecology; and 4) consequences of sugar alcohol synthesis for yield production and yield quality. We highlight the need to adopt new approaches to investigating sugar alcohol biosynthesis using modern technologies in gene expression, metabolic flux analysis and agronomy. Combined, these approaches will elucidate the impact of sugar alcohol biosynthesis on growth, stress tolerance, yield and yield quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Net change in carbon emissions with increased wood energy use in the United States

    Science.gov (United States)

    Prakash Nepal; David N. Wear; Kenneth E. Skog

    2014-01-01

    Use of wood biomass for energy results in carbon (C) emissions at the time of burning and alters C stocks on the land because of harvest, regrowth, and changes in land use or management. This study evaluates the potential effects of expanded woody biomass energy use (for heat and power) on net C emissions over time. A scenario with increased wood energy use is compared...

  2. Potassium nutrition and water availability affect phloem transport of photosynthetic carbon in eucalypt trees

    Science.gov (United States)

    Epron, Daniel; Cabral, Osvaldo; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo; Trivelin, Paulo; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2015-04-01

    Potassium fertilisation strongly affects growth and carbon partitioning of eucalypt on tropical soil that are strongly weathered. In addition, potassium fertilization could be of great interest in mitigating the adverse consequences of drought in planted forests, as foliar K concentrations influence osmotic adjustment, stomatal regulation and phloem loading. Phloem is the main pathway for transferring photosynthate from source leaves to sink organs, thus controlling growth partitioning among the different tree compartments. But little is known about the effect of potassium nutrition on phloem transport of photosynthetic carbon and on the interaction between K nutrition and water availability. In situ 13C pulse labelling was conducted on tropical eucalypt trees (Eucalyptus grandis L.) grown in a trial plantation with plots in which 37% of throughfall were excluded (about 500 mm/yr) using home-made transparent gutters (-W) or not (+W) and plots that received 0.45 mol K m-2 applied as KCl three months after planting (+K) or not (-K). Three trees were labelled in each of the four treatments (+K+W, +K-W, -K+W and -K-W). Trees were labelled for one hour by injecting pure 13CO2 in a 27 m3 whole crown chamber. We estimated the velocity of carbon transfer in the trunk by comparing time lags between the uptake of 13CO2 and its recovery in trunk CO2 efflux recorded by off axis integrated cavity output spectroscopy (Los Gatos Research) in two chambers per tree, one just under the crown and one at the base of the trunk. We analyzed the dynamics of the label recovered in the foliage and in the phloem sap by analysing carbon isotope composition of bulk leaf organic matter and phloem extracts using an isotope ratio mass spectrometer. The velocity of carbon transfer in the trunk and the initial rate 13C disappearance from the foliage were much higher in +K trees than in -K trees with no significant effect of rainfall. The volumetric flow of phloem, roughly estimated by multiplying

  3. The effects of lead on the gaseous exchange and photosynthetic carbon metabolism of pea seedlings

    Directory of Open Access Journals (Sweden)

    Jerzy W. Poskuta

    2014-01-01

    Full Text Available Roots of whole 3 week-old pea seedlings (Pisum sativum L. var. "Bordi" were immersed for 24 h in solutions of lead chloride at Pb copcentrations of 200, 400, 800,12000 mg dm3. Accumulation of lead in roots was independent of the Pb concentration, whereas the accumulation of Pb in shoots was an almost linear function of the concentration of this element in the root medium. This treatment caused Pb concentration-dependent inhibition of apparent photosynthesis (APS, photorespiration (PR, 14CO2 uptake, stomatal opening and transpiration of shoots and also germination of seeds. The most sensitive to Pb contamination was CO2 exchange, then transpiration and to a lesser degree germination of seeds. Lead caused a considerable alteration of photosynthetic and photorespiratory carbon metabolism, restricted the 14C-labeling of: phosphoglycerate, ribose+ribulose, sucrose, glycolate and glycine+serine. Under conditions of C02 uptake limited by lead, an enhancement of the 14C-labeling of malate+citrate, alanine and glucose was observed.

  4. [Hydraulic limitation on photosynthetic rate of old Populus simonii trees in sandy soil of north Shaanxi Province].

    Science.gov (United States)

    Zuo, Li-Xiang; Li, Yang-Yang; Chen, Jia-Cun

    2014-06-01

    'Old and dwarf trees' on the loess plateau region mainly occurred among mature trees rather than among small trees. To elucidate the mechanism of tree age on 'old and dwarf trees' formation, taking Populus simonii, a tree species that accounted for the largest portion of 'old and dwarf trees' on the loess plateau, as an example, the growth, photosynthesis and hydraulic traits of P. simonii trees with different ages (young: 13-15 years, mid-aged: 31-34 years, and old: 49-54 years) were measured. The results showed that the dieback length increased, and net photosynthetic rate, stomatal conductance, transpiration rate, and whole plant hydraulic conductance decreased significantly with the increasing tree age. Both net photosynthetic rate and stomatal conductance measured at different dates were significantly and positively related to the whole plant hydraulic conductance, suggesting that the decreasing photosynthetic rate of old trees was possibly caused by the declined hydraulic conductance. Although the resistance to cavitation in stems and leaves was stronger in old trees than in young and mid-aged trees, there were no differences in midday native stem embolization degree and leaf hydraulic conductance based on the vulnerability curve estimation, suggesting that the increased hydraulic resistance of the soil-root system is probably the most important reason for decreasing the whole plant hydraulic conductance of old trees.

  5. Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes.

    Science.gov (United States)

    Naduthodi, Mihris Ibnu Saleem; Barbosa, Maria J; van der Oost, John

    2018-02-03

    The carbon footprint caused by unsustainable development and its environmental and economic impact has become a major concern in the past few decades. Photosynthetic microbes such as microalgae and cyanobacteria are capable of accumulating value-added compounds from carbon dioxide, and have been regarded as environmentally friendly alternatives to reduce the usage of fossil fuels, thereby contributing to reducing the carbon footprint. This light-driven generation of green chemicals and biofuels has triggered the research for metabolic engineering of these photosynthetic microbes. CRISPR-Cas systems are successfully implemented across a wide range of prokaryotic and eukaryotic species for efficient genome editing. However, the inception of this genome editing tool in microalgal and cyanobacterial species took off rather slowly due to various complications. In this review, we elaborate on the established CRISPR-Cas based genome editing in various microalgal and cyanobacterial species. The complications associated with CRISPR-Cas based genome editing in these species are addressed along with possible strategies to overcome these issues. It is anticipated that in the near future this will result in improving and expanding the microalgal and cyanobacterial genome engineering toolbox. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiang eTang

    2011-08-01

    Full Text Available Photosynthesis is the biological process that converts solar energy to biomass, bio-products and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and 13C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO2 assimilation pathways, acetate assimilation, carbohydrate catabolism, the TCA cycle and some key and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed.

  7. Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts.

    Science.gov (United States)

    Torres, Rocio; Diz, Virginia E; Lagorio, M Gabriela

    2018-04-18

    Effects of gold nanoparticles (average diameter: 10-14 nm) on leaves and chloroplasts have been studied. Gold nanoparticles (AuNPs) quenched significantly chlorophyll fluorescence when introduced both in intact leaves and isolated chloroplasts. Additionally, the fluorescence spectra corrected for light re-absorption processes showed a net decrease in the fluorescence ratio calculated as the quotient between the maximum fluorescence at 680 and 735 nm. This fact gave evidence for a reduction in the fluorescence emission of the PSII relative to that of the PSI. Strikingly, the photosynthetic parameters derived from the analysis of the slow phase of Kautsky's kinetics, the rate of oxygen evolution and the rate of photo-reduction of 2,6-dichlorophenolindophenol were increased in the presence of AuNPs indicating an apparent greater photosynthetic capacity. The observed results were consistent with an electron transfer process from the excited PSII, which was thermodynamically possible, and which competed with both the electron transport process that initiated photosynthesis and the deactivation of the excited PSII by fluorescence emission. Additionally, it is here explained, in terms of a completely rational kinetic scheme and their corresponding algebraic expressions, why the photosynthetic parameters and the variable and non-variable fluorescence of chlorophyll are modified in a photosynthetic tissue containing gold nanoparticles.

  8. Convergent evolution towards high net carbon gain efficiency contributes to the shade tolerance of palms (Arecaceae)

    NARCIS (Netherlands)

    Ma, Ren Yi; Zhang, Jiao Lin; Cavaleri, Molly A.; Sterck, Frank; Strijk, J.S.; Cao, Kun Fang

    2015-01-01

    Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn),

  9. Estimating Net Primary Production of Swedish Forest Landscapes by Combining Mechanistic Modeling and Remote Sensing

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Smith, Benjamin; Løfgren, Anders

    2009-01-01

    and the Beer-Lambert law. LAI estimates were compared with satellite-extrapolated field estimates of LAI, and the results were generally acceptable. NPP estimates directly from the dynamic vegetation model and estimates obtained by combining the model estimates with remote sensing information were, on average......The aim of this study was to investigate a combination of satellite images of leaf area index (LAI) with processbased vegetation modeling for the accurate assessment of the carbon balances of Swedish forest ecosystems at the scale of a landscape. Monthly climatologic data were used as inputs...... in a dynamic vegetation model, the Lund Potsdam Jena-General Ecosystem Simulator. Model estimates of net primary production (NPP) and the fraction of absorbed photosynthetic active radiation were constrained by combining them with satellite-based LAI images using a general light use efficiency (LUE) model...

  10. Importance of structure and density of macroalgae communities (Fucus serratus) for photosynthetic production and light utilisation

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    at high light depended on community density. Therefore, while the determination of the production of individual algal thalli is useful for evaluating differences in acclimatisation and adaptation between species and stands, it is not useful for evaluating production rates for entire plants and communities......Determination of photosynthetic production in plant communities is essential for evaluating plant growth rates and carbon fluxes in ecosystems, but it cannot easily be derived from the photosynthetic response of individual leaves or thalli, which has been the focus of virtually all previous aquatic...... studies. To evaluate the regulation of aquatic community production, we measured the photosynthetic production of thallus parts and entire communities of Fucus serratus (L.) of different density and spatial structure exposed to varying photon flux density and dissolved CO2 concentration. Photosynthetic...

  11. Photosynthetic capacities of mature tropical forest trees in Rwanda are linked to successional group identity rather than to leaf nutrient content

    Science.gov (United States)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Adolfsson, Lisa; Niyonzima, Felix; Nsabimana, Donat; Uddling, Johan

    2014-05-01

    Tropical forests are crucial in the global carbon balance, yet information required to estimate how much carbon that enter these ecosystems through photosynthesis is very limited, in particular for Africa and for tropical montane forests. In order to increases the knowledge of natural variability of photosynthetic capacities in tropical tree species in tropical Africa, measurements of leaf traits and gas exchange were conducted on sun and shade leaves of ten tree species growing in two tropical forests in Rwanda in central Africa. Seven species were studied in Ruhande Arboretum, a forest plantation at mid altitude (1700 m), and six species in Nyungwe National Park, a cooler and higher altitude (at 2500 m) montane rainforest. Three species were common to both sites. At Nyungwe, three species each belonged to the successional groups pioneer and climax species. Climax species had considerably lower maximum rates of photosynthetic carboxylation (Vcmax) and electron transport (Jmax) than pioneer species. This difference was not related to leaf nutrient content, but rather seemed to be caused by differences in within-leaf N allocation between the two successional groups. With respect to N, leaves of climax species invested less N into photosynthetic enzymes (as judged by lower Vcmax and Jmax values) and more N into chlorophyll (as judged by higher SPAD values). Photosynthetic capacities, (i.e., Jmax and Vcmax), Jmax to Vcmax ratio and P content were significantly higher in Nyungwe than in Arboretum. Sun leaves had higher photosynthetic capacities and nutrient content than shade leaves. Across the entire dataset, variation in photosynthetic capacities among species was not related to leaf nutrient content, although significant relationships were found within individual species. This study contributes critical tropical data for global carbon models and suggests that, for montane rainforest trees of different functional types, successional group identity is a better

  12. Biological processing of carbon dioxide. ; Photosynthetic function of plants, and carbon dioxide fixing function of marine organisms. Nisanka tanso no seibutsuteki shori. ; Shokubutsu no kogosei kino to kaiyo seibutsu no nisanka tanso kotei kino

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, M [National Research Inst. for Pollution and Resources, Tsukuba (Japan)

    1991-02-15

    This paper describes photosynthetic function of plants, and CO {sub 2} fixing function of marine organisms. Among the photosythetic reaction systems, the C {sub 3} type reaction carries out CO {sub 2} fixation using the Calvin cycle, and takes out the carbon dioxide out of the system through enzymatic reactions of 3-phosphoglycerate {yields} fructose-6-phosphate. The C {sub 4} type reaction has a special cycle to supply CO {sub 2} to the Calvin cycle, i. e. C {sub 4} dicarboxylic acid cycle. The CAM type reaction enables the photosynthetic type to be converted according to variations in the growing environment. The majority of the surace agricultural crops are from C {sub 3} plants, of which yield may be increased when grown in a high CO {sub 2} atmosphere. On the one hand, gene engineering may make possible breeding of plants having high CO {sub 2} fixing capability. In the area of marine organisms, lime algae growing in clusters around coral reefs form and deposit CaCO {sub 3}. Reef creating corals have symbiotically in their stomach layer brown algae having photosynthetic function to build CaCO {sub 3} skeleton. The corals calcify algae quickly and in a large quantity, hence play an important role in fixing underwater CO {sub 2}. 2 tabs.

  13. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    Science.gov (United States)

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  14. Uncovering the Minor Contribution of Land-Cover Change in Upland Forests to the Net Carbon Footprint of a Boreal Hydroelectric Reservoir.

    Science.gov (United States)

    Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude

    2015-07-01

    Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Water Level and Fire Regulate Carbon Sequestration in a Subtropical Peat Marsh

    Science.gov (United States)

    Graham, S.; Sumner, D.; Shoemaker, B.; Benscoter, B.; Hinkle, C. R.

    2014-12-01

    Managed wetlands provide valuable ecosystem services, including carbon storage. Management practices, such as water-level manipulation and prescribed fire, can have a profound effect on the carbon dynamics of these ecosystems. Fluxes of carbon dioxide have been measured by eddy covariance methods over a subtropical peat marsh in Florida, USA since 2009. During this 5-year period, the site has experienced hydroperiods ranging from nine to twelve months. Hydroperiod was found to affect net ecosystem productivity, which was relatively low (70-130 grams carbon per square meter) in years with periodic drying events and much higher (300-600 grams carbon per square meter) during years with constant marsh inundation. The site experienced a prescribed fire in Spring of 2014, which consumed approximately 80% of the aboveground biomass (800 grams carbon per square meter). In addition to the carbon released by the fire, photosynthetic uptake during what would normally be the most productive part of the year was reduced relative to previous years due to low leaf area. These results illustrate how management practices can affect carbon sequestration, which is important for both atmospheric greenhouse gas concentrations and maintenance of peat topography.

  16. Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China's grassland ecosystems from 1961 to 2000

    International Nuclear Information System (INIS)

    Ren Wei; Tian Hanqin; Chen Guangsheng; Liu Mingliang; Zhang Chi; Chappelka, Arthur H.; Pan Shufen

    2007-01-01

    Our simulations with the Dynamic Land Ecosystem Model (DLEM) indicate that the combined effect of ozone, climate, carbon dioxide and land use have caused China's grasslands to act as a weak carbon sink during 1961-2000. This combined effect on national grassland net primary productivity (NPP) and carbon storage was small, but changes in annual NPP and total carbon storage across China's grasslands showed substantial spatial variation, with the maximum total carbon uptake reduction of more than 400 g m -2 in some places of northeastern China. The grasslands in the central northeastern China were more sensitive and vulnerable to elevated ozone pollution than other regions. The combined effect excluding ozone could potentially lead to an increase of 14 Tg C in annual NPP and 0.11 Pg C in total carbon storage for the same time period. This implies that improvement in air quality could significantly increase productivity and carbon storage in China's grassland ecosystems. - Net primary productivity and carbon storage across China's grassland in the late half of the 20th century have been assessed by using the Dynamic Land Ecosystem Model

  17. Net ecosystem production and organic carbon balance of U.S. East Coast estuaries: A synthesis approach

    Science.gov (United States)

    Herrmann, Maria; Najjar, Raymond G.; Kemp, W. Michael; Alexander, Richard B.; Boyer, Elizabeth W.; Cai, Wei-Jun; Griffith, Peter C.; Kroeger, Kevin D.; McCallister, S. Leigh; Smith, Richard A.

    2015-01-01

    Net ecosystem production (NEP) and the overall organic carbon budget for the estuaries along the East Coast of the United States are estimated. We focus on the open estuarine waters, excluding the fringing wetlands. We developed empirical models relating NEP to loading ratios of dissolved inorganic nitrogen to total organic carbon, and carbon burial in the sediment to estuarine water residence time and total nitrogen input across the landward boundary. Output from a data-constrained water quality model was used to estimate inputs of total nitrogen and organic carbon to the estuaries across the landward boundary, including fluvial and tidal-wetland sources. Organic carbon export from the estuaries to the continental shelf was computed by difference, assuming steady state. Uncertainties in the budget were estimated by allowing uncertainties in the supporting model relations. Collectively, U.S. East Coast estuaries are net heterotrophic, with the area-integrated NEP of −1.5 (−2.8, −1.0) Tg C yr−1 (best estimate and 95% confidence interval) and area-normalized NEP of −3.2 (−6.1, −2.3) mol C m−2 yr−1. East Coast estuaries serve as a source of organic carbon to the shelf, exporting 3.4 (2.0, 4.3) Tg C yr−1 or 7.6 (4.4, 9.5) mol C m−2 yr−1. Organic carbon inputs from fluvial and tidal-wetland sources for the region are estimated at 5.4 (4.6, 6.5) Tg C yr−1 or 12 (10, 14) mol C m−2 yr−1 and carbon burial in the open estuarine waters at 0.50 (0.33, 0.78) Tg C yr−1 or 1.1 (0.73, 1.7) mol C m−2 yr−1. Our results highlight the importance of estuarine systems in the overall coastal budget of organic carbon, suggesting that in the aggregate, U.S. East Coast estuaries assimilate (via respiration and burial) ~40% of organic carbon inputs from fluvial and tidal-wetland sources and allow ~60% to be exported to the shelf.

  18. BOREAS TE-9 NSA Photosynthetic Capacity and Foliage Nitrogen Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the spatial and temporal relationship between foliage nitrogen concentration and photosynthetic capacity in the canopies of black spruce, jack pine, and aspen located within the Northern Study Area (NSA). The data were collected from June to September 1994 and are useful for modeling the vertical distribution of carbon fixation for different forest types in the boreal forest. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  19. Photosynthetic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.

    1981-01-01

    The photosynthetic unit of hydrogen evolution, the turnover time of photosynthetic hydrogen production, and hydrogenic photosynthesis are discussed in the section on previous work. Recent results are given on simultaneous photoproduction of hydrogen and oxygen, kinetic studies, microscopic marine algae-seaweeds, and oxygen profiles.

  20. Constrained parameterisation of photosynthetic capacity causes significant increase of modelled tropical vegetation surface temperature

    Science.gov (United States)

    Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C.

    2009-04-01

    Photosynthetic capacity is one of the most sensitive parameters of terrestrial biosphere models whose representation in global scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Due to its coupling to stomatal conductance changes in the parameterisation of photosynthetic capacity may potentially influence transpiration rates and vegetation surface temperature. Here, we provide a constrained parameterisation of photosynthetic capacity for different plant functional types in the context of the photosynthesis model proposed by Farquhar et al. (1980), based on a comprehensive compilation of leaf photosynthesis rates and leaf nitrogen content. Mean values of photosynthetic capacity were implemented into the coupled climate-vegetation model ECHAM5/JSBACH and modelled gross primary production (GPP) is compared to a compilation of independent observations on stand scale. Compared to the current standard parameterisation the root-mean-squared difference between modelled and observed GPP is substantially reduced for almost all PFTs by the new parameterisation of photosynthetic capacity. We find a systematic depression of NUE (photosynthetic capacity divided by leaf nitrogen content) on certain tropical soils that are known to be deficient in phosphorus. Photosynthetic capacity of tropical trees derived by this study is substantially lower than standard estimates currently used in terrestrial biosphere models. This causes a decrease of modelled GPP while it significantly increases modelled tropical vegetation surface temperatures, up to 0.8°C. These results emphasise the importance of a constrained parameterisation of photosynthetic capacity not only for the carbon cycle, but also for the climate system.

  1. Photosynthetic control of electron transport and the regulation of gene expression.

    Science.gov (United States)

    Foyer, Christine H; Neukermans, Jenny; Queval, Guillaume; Noctor, Graham; Harbinson, Jeremy

    2012-02-01

    The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.

  2. A Study on Photosynthetic Physiological Characteristics of Six Rare and Endangered Species

    Institute of Scientific and Technical Information of China (English)

    Tailin ZHONG; Guangwu ZHAO; Jiamiao CHU; Xiaomin GUO; Genyou LI

    2014-01-01

    The parameters of gas exchange and chlorophyl fluorescence in leaves of six rare and endangered species Neolitsea sericea, Cinnamomum japonicum var. cheni , Sinojackia microcarpa, Discocleidion glabrum var. trichocarpum, Parrotia sub-aequalis, Cercidiphyl um japonicum were measured in fields. The results showed that there were significant differences in photosynthetic capacity, intrinsic water use effi-ciency (WUEi ), the efficiency of primary conversion of light energy of PSⅡ and its potential activity, the quantum yield of PSⅡ electron transport, and the potential ca-pacity of heat dissipation among the six species. However, there was no significant difference in WUE. The highest values of net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (gs) occurred in D. glabrum var. trichocarpum and the lowest in S. microcarpa. On the contrary, D. glabrum var. trichocarpum had the lowest WUE, intrinsic water use efficiency (WUEi ) and S. microcarpa had the highest. The results indicated that D. glabrum var. trichocarpum had higher photo-synthetic capacity and poorer WUE, while S. microcarpa had lower photosynthetic capacity and greater WUE. Furthermore, the mean values of maximal fluorescence (Fm), potential efficiency of primary conversion of light energy of PSⅡ (Fv/Fm),ΦPSⅡ, actual efficiency of primary conversion of light energy of PSⅡ (F′v/F′m) and non-photochemical quenching coefficient (NPQ) were the highest in S. micro-carpa, indicating that its PSⅡ had higher capacity of heat dissipation and could prevent photosynthetic apparatus from damage by excessive light energy. Correlation analysis showed that there were significant correlations among photosynthetic physi-ological parameters. However, the initial fluorescence (Fo) was not significantly cor-related with any other parameters. This study also revealed the extremely significant positive correlations between Pn and Tr, gs, apparent quantum yield (AQY), be-tween Tr and

  3. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Nicolás, Emilio; Fernández, José Enrique

    2007-08-01

    This study tests the hypothesis that diffusional limitation of photosynthesis, rather than light, determines the distribution of photosynthetic capacity in olive leaves under drought conditions. The crowns of four olive trees growing in an orchard were divided into two sectors: one sector absorbed most of the radiation early in the morning (MS) while the other absorbed most in the afternoon (AS). When the peak of radiation absorption was higher in MS, air vapour pressure deficit (VPD) was not high enough to provoke stomatal closure. In contrast, peak radiation absorption in AS coincided with the daily peak in VPD. In addition, two soil water treatments were evaluated: irrigated trees (I) and non-irrigated trees (nI). The seasonal evolution of leaf water potential, leaf gas exchange and photosynthetic capacity were measured throughout the tree crowns in spring and summer. Results showed that stomatal conductance was reduced in nI trees in summer as a consequence of soil water stress, which limited their net assimilation rate. Olive leaves displayed isohydric behaviour and no important differences in the diurnal course of leaf water potentials among treatments and sectors were found. Seasonal diffusional limitation of photosynthesis was mainly increased in nI trees, especially as a result of stomatal limitation, although mesophyll conductance (g(m)) was found to decrease in summer in both treatments and sectors. A positive relationship between leaf nitrogen content with both leaf photosynthetic capacity and the daily integrated quantum flux density was found in spring, but not in summer. The relationship between photosynthetic capacity and g(m) was curvilinear. Leaf temperature also affected to g(m) with an optimum temperature at 29 degrees C. AS showed larger biochemical limitation than MS in August in both treatments. All these suggest that both diffusional limitation and the effect of leaf temperature could be involved in the seasonal reduction of photosynthetic

  4. Photosynthetic metabolism of malate and aspartate in Flaveria trinervia a C4 dicot

    International Nuclear Information System (INIS)

    Moore, B.A.

    1986-01-01

    C 4 species are known to vary in their apparent relative use of malate and aspartate to mediate carbon flux through the C 4 cycle. These studies investigate some of the adjustments in photosynthetic carbon metabolism that occur during a dark to light transition and during expansion of leaves of Flaveria trinervia, a C 4 dicot. Enzyme localization studies with isolated leaf mesophyll and bundle sheath protoplasts, indicated that both C 4 acids are formed in the mesophyll chloroplast, and that aspartate is metabolized to malate in the bundle sheath chloroplast prior to decaroxylation there. During photosynthetic induction, the partitioning of 14 CO 2 between malate and aspartate showed a single oscillation of increased aspartate labelling after 5 min of illumination. Turnover of [4-14C] (malate plus aspartate) was slow initially during illumination, prior to establishment of active pools of C 4 cycle metabolites

  5. CO2 supersaturation and net heterotrophy in a tropical estuary (Cochin, India): Influence of anthropogenic effect - Carbon dynamics in tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Thottathil, S.D.; Balachandran, K.K.; Madhu, N.V.; Madeswaran, P.; Nair, S.

    of pCO sub(2) (up to 6000 mu atm) and CO sub(2) effluxes (up to 274 mmolC m sup(-2) d sup(-1)) especially during monsoon. A first-order estimate of the carbon mass balance shows that net production of dissolved inorganic carbon is an order of magnitude...

  6. Managing the Microbial Ecology of a Cyanobacteria-Based Photosynthetic Factory Direct!, Final Report for EE0006100

    Energy Technology Data Exchange (ETDEWEB)

    Rittmann, Bruce [Arizona State Univ., Tempe, AZ (United States); Krajmalnik‐Brown, Rosa [Arizona State Univ., Tempe, AZ (United States); Zevin, Alexander [Arizona State Univ., Tempe, AZ (United States); Nguyen, Binh [Arizona State Univ., Tempe, AZ (United States); Patel, Megha [Arizona State Univ., Tempe, AZ (United States)

    2015-02-28

    The grandest challenge facing human society today is providing large amounts of energy and industrial chemicals that are renewable and carbon-neutral. An outstanding opportunity lies in employing photosynthetic microorganisms, which have the potential to generate energy and chemical feedstock from sunlight and CO2 at rates 10 to 100 times greater than plants. Major challenges for solar-powered production using photosynthetic microorganisms are associated with the harvesting and downstream processing of biomass to yield the usable energy or material feedstock e.g. The technical challenges and costs of downstream processing could be avoided if, powered by solar energy, the photosynthetic microorganisms were to convert CO2 directly to the desired product, which they release for direct harvesting. This approach creates a true photosynthetic factory, our goal for Photosynthetic Factory Direct! Our team is able to genetically modify the cyanobacterium Synechocystis sp. PCC 6803 so that it produces and excretes a range of renewable energy and chemical products directly from CO2 and sunlight. Essential to realizing the potential of the photosynthetic factory is an engineered Advanced Photobioreactor (APBR) for reliable synthesis and harvest of the products.

  7. A screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater

    Directory of Open Access Journals (Sweden)

    Mieko Higuchi-Takeuchi

    2016-09-01

    Full Text Available Polyhydroxyalkanoates (PHAs are a family of biopolyesters accumulated by a variety of microorganisms as carbon and energy storage under starvation conditions. We focused on marine purple non-sulfur photosynthetic bacteria as host microorganisms for PHA production and developed a method for their isolation from natural seawater. To identify novel PHA-producing marine purple non-sulfur photosynthetic bacteria, natural seawaters were cultured in nutrient-rich medium for purple non-sulfur photosynthetic bacteria, and twelve pink- or red-pigmented colonies were picked up. Gas chromatography mass spectrometry analysis revealed that four isolates synthesized PHA at levels ranging from 0.5 to 24.4 wt% of cell dry weight. The 16S ribosomal RNA sequence analysis revealed that one isolate (HM2 showed 100% identity to marine purple non-sulfur photosynthetic bacteria. In conclusion, we have demonstrated in this study that PHA-producing marine purple non-sulfur photosynthetic bacteria can be isolated from natural seawater under nutrient-rich conditions.

  8. Photosynthetic pathways of some aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Hough, R A [Wayne State Univ., Detroit; Wetzel, R G

    1977-12-01

    Over 40 species of aquatic angiosperms, including submersed, floating and emergent types, have been examined for photosynthetic status as part of a search for possible aquatic C/sub 4/ species. The C/sub 4/ system is viewed as potentially of adaptive value in certain aquatic situations, although evidence for its occurrence there is not conclusive. Emphasis was on plants from North-temperate softwater and hardwater lakes to explore both possibilities of CO/sub 2/ limitation, i.e., low total inorganic carbon in softwater vs. low free CO/sub 2/ in hardwater lakes. On the basis of leaf cross-section anatomy, all plants examined, with one exception, clearly did not show evidence of C/sub 4/ ''Krantz anatomy.'' In the submersed plant Potamogeton praelongus Wulf, large starch-producing chloroplasts were concentrated in cells surrounding vascular bundles and in a narrow band of cells between vascular bundles. The in situ photosynthetic rate of this plant was twice that of a related species, but other evidence including PEP carboxylase content and photorespiratory response to high O/sub 2/ did not confirm the presence of the C/sub 4/ photosynthesis.

  9. Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems

    DEFF Research Database (Denmark)

    Wohlfahrt, Georg; Anderson-Dunn, Margaret; Bahn, Michael

    2008-01-01

    The net ecosystem carbon dioxide (CO2) exchange (NEE) of nine European mountain grassland ecosystems was measured during 2002-2004 using the eddy covariance method. Overall, the availability of photosynthetically active radiation (PPFD) was the single most important abiotic influence factor for NEE....... Its role changed markedly during the course of the season, PPFD being a better predictor for NEE during periods favorable for CO2 uptake, which was spring and autumn for the sites characterized by summer droughts (southern sites) and (peak) summer for the Alpine and northern study sites. This general...... pattern was interrupted by grassland management practices, that is, mowing and grazing, when the variability in NEE explained by PPFD decreased in concert with the amount of aboveground biomass (BMag). Temperature was the abiotic influence factor that explained most of the variability in ecosystem...

  10. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Science.gov (United States)

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  11. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Directory of Open Access Journals (Sweden)

    Bernardo Vargas-Ángel

    Full Text Available This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2 yr(-1 of early successional recruitment communities on Calcification Accretion Unit (CAU plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons

  12. Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn.

    Science.gov (United States)

    Linkosalo, Tapio; Heikkinen, Juha; Pulkkinen, Pertti; Mäkipää, Raisa

    2014-01-01

    We studied the photosynthetic activity of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst) in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 1-3 times per week. We began by measuring shoots present in late winter (i.e., March 2013) before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only. We analyzed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence. The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 2013-2014 was unusually mild and similar to future conditions predicted by global climate models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.

  13. Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn

    Directory of Open Access Journals (Sweden)

    Tapio eLinkosalo

    2014-06-01

    Full Text Available We studied the photosynthetic activity of Scots pine (Pinus sylvestris L. and Norway spruce (Picea abies [L.] Karst in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 13 times per week. We began by measuring shoots present in late winter (i.e., March 2013 before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only.We analysed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence.The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 20132014 was unusually mild and similar to future conditions predicted by global warming models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.

  14. Photosynthetic pigments content, photosynthesis rate and chloroplast structure in young plants of Mikania laevigata Schultz Bip. ex Baker grown under colored netsTeores de pigmentos fotossintéticos, taxa de fotossíntese e estrutura de cloroplastos de plantas jovens de Mikania laevigata Schultz Bip. ex Baker cultivadas sob malhas coloridas

    Directory of Open Access Journals (Sweden)

    Anacleto Ranulfo dos Santos

    2011-12-01

    Full Text Available Guaco (Mikania laevigata is a medicinal plant used to treat fever, rheumatism, flu and respiratory tract diseases. Understanding the physiology of this species and its responses to environmental conditions has become necessary to improving the cultivation methods. In this context, this work aimed to access the effects of shading by using colored nets in on photosynthetic pigment concentration, photosynthetic rate and ultrastructure of chloroplasts of Mikania laevigata. The plants were cultivated during four months under nets with 50% shading in blue, red and gray color nets and under full sunlight (0%. The plants grown under full sunlight had decreased contents of a and b chlorophyll, and of carotenoids, while those grown under blue nets shown higher concentrations of a and b chlorophyll. The lowest density of chloroplasts was found in plants cultivated under full sunlight. Elongated chloroplasts were noticed in treatments with 50% shading. Regarding the potential rate of photosynthesis no significant change was observed among the plants grown under red, blue and gray nets, which leads to the conclusion that the spectrum transmitted by different coloured nets did not affect guaco photosynthetic apparatus.O guaco (Mikania laevigata é uma planta medicinal, usada para o tratamento de febre, reumatismo, gripe e doenças do trato respiratório. O entendimento do comportamento fisiológico dessa espécie e as suas respostas às condições do ambiente tornam-se necessários ao aperfeiçoamento dos métodos de cultivo. Nesse contexto, o presente trabalho teve como objetivo avaliar os efeitos do sombreamento com uso de malhas coloridas na concentração de pigmentos fotossintéticos, na taxa de fotossíntese e na ultra-estrutura de cloroplastos de plantas de Mikania laevigata. As plantas foram cultivadas por quatro meses sob malhas de 50% de sombreamento nas cores azul, vermelha e cinza e a pleno sol (0%. As plantas mantidas a pleno sol tiveram os

  15. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    Science.gov (United States)

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  16. Modelling the impact of soil Carbonic Anhydrase on the net ecosystem exchange of OCS at Harvard forest using the MuSICA model

    Science.gov (United States)

    Launois, Thomas; Ogée, Jérôme; Commane, Roisin; Wehr, Rchard; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Wofsy, Steve; Zahniser, Mark; Wingate, Lisa

    2016-04-01

    The exchange of CO2 between the terrestrial biosphere and the atmosphere is driven by photosynthetic uptake and respiratory loss, two fluxes currently estimated with considerable uncertainty at large scales. Model predictions indicate that these biosphere fluxes will be modified in the future as CO2 concentrations and temperatures increase; however, it still unclear to what extent. To address this challenge there is a need for better constraints on land surface model parameterisations. Additional atmospheric tracers of large-scale CO2 fluxes have been identified as potential candidates for this task. In particular carbonyl sulphide (OCS) has been proposed as a complementary tracer of gross photosynthesis over land, since OCS uptake by plants is dominated by carbonic anhydrase (CA) activity, an enzyme abundant in leaves that catalyses CO2 hydration during photosynthesis. However, although the mass budget at the ecosystem is dominated by the flux of OCS into leaves, some OCS is also exchanged between the atmosphere and the soil and this component of the budget requires constraining. In this study, we adapted the process-based isotope-enabled model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of OCS within a forested ecosystem. This model was combined with 3 years (2011-2013) of in situ measurements of OCS atmospheric concentration profiles and fluxes at the Harvard Forest (Massachussets, USA) to test hypotheses on the mechanisms responsible for CA-driven uptake by leaves and soils as well as possible OCS emissions during litter decomposition. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem OCS flux. A sensitivity analysis on soil CA activity and soil OCS emission rates was also performed to quantify their impact on the vertical profiles of OCS inside the

  17. Effects of water stress on photosynthetic electron transport, photophosphorylation, and metabolite levels of Xanthium strumarium mesophyll cells.

    Science.gov (United States)

    Sharkey, T D; Badger, M R

    1982-12-01

    Several component processes of photosynthesis were measured in osmotically stressed mesophyll cells of Xanthium strumarium L. The ribulose-1,5-bisphosphate regeneration capacity was reduced by water stress. Photophoshorylation was sensitive to water stress but photosynthetic electron transport was unaffected by water potentials down to-40 bar (-4 MPa). The concentrations of several intermediates of the photosynthetic carbon-reduction cycle remained relatively constant and did not indicate that ATP supply was limiting photosynthesis in the water-stressed cells.

  18. Photosynthetic oxygen production in a warmer ocean: the Sargasso Sea as a case study.

    Science.gov (United States)

    Richardson, Katherine; Bendtsen, Jørgen

    2017-09-13

    Photosynthetic O 2 production can be an important source of oxygen in sub-surface ocean waters especially in permanently stratified oligotrophic regions of the ocean where O 2 produced in deep chlorophyll maxima (DCM) is not likely to be outgassed. Today, permanently stratified regions extend across approximately 40% of the global ocean and their extent is expected to increase in a warmer ocean. Thus, predicting future ocean oxygen conditions requires a better understanding of the potential response of photosynthetic oxygen production to a warmer ocean. Based on our own and published observations of water column processes in oligotrophic regions, we develop a one-dimensional water column model describing photosynthetic oxygen production in the Sargasso Sea to quantify the importance of photosynthesis for the downward flux of O 2 and examine how it may be influenced in a warmer ocean. Photosynthesis is driven in the model by vertical mixing of nutrients (including eddy-induced mixing) and diazotrophy and is found to substantially increase the downward O 2 flux relative to physical-chemical processes alone. Warming (2°C) surface waters does not significantly change oxygen production at the DCM. Nor does a 15% increase in re-mineralization rate (assuming Q 10  = 2; 2°C warming) have significant effect on net sub-surface oxygen accumulation. However, changes in the relative production of particulate (POM) and dissolved organic material (DOM) generate relatively large changes in net sub-surface oxygen production. As POM/DOM production is a function of plankton community composition, this implies plankton biodiversity and food web structure may be important factors influencing O 2 production in a warmer ocean.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  19. The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay, South Africa

    International Nuclear Information System (INIS)

    Naidoo, G.; Chirkoot, D.

    2004-01-01

    Richards Bay, on the northern KwaZulu-Natal coast, is the largest coal exporting port in South Africa. The coal is stored at the Richards Bay Coal Terminal (RBCT) prior to export. Dust from coal operations is a major problem in the Richards Bay area. In this study, we tested the hypothesis that coal dust adversely affects photosynthetic performance of Avicennia marina (Forssk.) Vierh., the dominant mangrove species in the harbour. Photosynthetic performance was determined on 10 trees by measuring carbon dioxide uptake and chlorophyll fluorescence parameters at two elevation sites and on upper and lower leaf surfaces that were covered or uncovered with coal dust. Measurements were made on five clear, sunny days at saturating light (>1000 μmol m -2 s -1 ) and high temperature (28-30 deg. C). Coal dust significantly reduced carbon dioxide exchange of upper and lower leaf surfaces by 17-39%, the reduction being generally greater on the lower leaf surface that is covered by a dense mat of trichomes and salt glands. The reduction in carbon dioxide exchange by coal dust was higher at the high elevation site that supported isolated dwarfed trees. The chlorophyll fluorescence data indicated that leaves coated with dust exhibited significantly lower photosystem II (PS II) quantum yield, lower electron transport rate (ETR) through PSII and reduced quantum efficiency of PSII (F v F m ). The chlorophyll fluorescence data supported the gas exchange measurements and are consistent with reduced photosynthetic performance of leaves coated with coal dust. - Coal dust reduced photosynthetic performance of the mangrove, Avicennia marina

  20. Biotechnological Approaches to Enhance Halotolerance and Photosynthetic Efficacy in the Cyanobacterium, Fremyella diplosiphon

    Science.gov (United States)

    Tabatabai, Ben

    Growing concerns over dwindling energy supplies linked to nonrenewable fossil fuels have driven profound interest in biofuels as a clean and sustainable alternative. Cyanobacteria are a promising source of third-generation biofuel due to their fast generation time and high net biomass conversion. In this study, the effect of salinity stress on Fremyella diplosiphon, a model organism for studying photosynthetic pathways, was investigated and nanobiotechnological approaches undertaken to enhance its halotolerance and photosynthetic efficacy. Heat-induced mutagenesis resulted in a mutant strain that could survive in 20 g L-1 sodium chloride (NaCl) with no loss in pigmentation. To further enhance F. diplosiphon halotolerance, expression plasmids harboring the hlyB and mdh genes were overexpressed in the wild type resulting in two transformants that thrived in 35 g L-1 NaCl, the average salinity of sea water. In addition, no significant reduction in photosynthetic efficacy was detected in the halotolerant strains relative to the wild type. Total lipid content and fatty acid methyl ester composition of wild type and halotolerant strains were assessed for their potential as a production-scale biofuel agent. Methyl palmitate, the methyl ester of hexodeconoate (C16:0), was found to be most abundant in the wild type and transformants accounting for 60-70% of total FAMEs produced. Efforts to enhance the photosynthetic efficiency of the strains revealed that gold nanoparticle-derived surface plasmon resonance augmented culture growth and pigment accumulation. Cell-nanoparticles interactions were visualized using scanning and transmission electron microscopy. Our findings address two key challenges that cyanobacterial biofuel agents need to overcome: enhanced halotolerance and photosynthetic efficacy to minimize freshwater input and artificial light supply. These innovations have paved the way for an efficient cyanobacterial cultivation system for large-scale production of

  1. Engineering cyanobacteria as photosynthetic feedstock factories.

    Science.gov (United States)

    Hays, Stephanie G; Ducat, Daniel C

    2015-03-01

    Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels with reduced carbon footprints. Cyanobacteria possess a number of features that make them well suited as an alternative feedstock crop in comparison to traditional terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chassis. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application.

  2. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, Ted A.; Burdett, Jim; Whelan, Joseph F.; Paull, Charles K.

    1997-02-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO 2/O 2 ratios appear to be the major controlling variable. Atmospheric CO 2/O 2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO 2 in the course of obtaining 0 2. Tissue CO 2 therefore, does not isotopically equilibrate with environmental CO 2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO 2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO 2 uptake is several times faster than respiratory CO 2 release. Photosynthesis, therefore, affects skeletal δ13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects.

  3. Response of Eustoma Leaf Phenotype and Photosynthetic Performance to LED Light Quality

    Directory of Open Access Journals (Sweden)

    Md Zohurul Kadir Roni

    2017-10-01

    Full Text Available In a controlled environment, light from light-emitting diodes (LEDs has been associated with affecting the leaf characteristics of Eustoma. LEDs help plant growth and development, yet little is known about photosynthetic performance and related anatomical features in the early growth stage of Eustoma leaves. In this study, we examined the effects of blue (B, red (R, and white (W LEDs on the photosynthetic performance of Eustoma leaves, as well as leaf morphology and anatomy including epidermal layer thickness, palisade cells, and stomatal characteristics. Leaves grown under B LEDs were thicker and had a higher chlorophyll content than those grown under the R and W LEDs. Leaves under B LEDs had greater net photosynthetic rates (A, stomatal conductance (gs, and transpiration rates (E, especially at a higher photon flux density (PPFD, that resulted in a decrease in the intercellular CO2 concentration (Ci, than leaves under the W and R LEDs. B LEDs resulted in greater abaxial epidermal layer thickness and palisade cell length and width than the R and W LED treatments. The palisade cells also developed a more cylindrical shape in response to the B LEDs. B LED leaves also showed greater guard cell length, breadth, and area, and stomatal density, than W or R LEDs, which may contribute to increased A, gs and E at higher PPFDs.

  4. Inter and intra-specific variation in photosynthetic acclimation response to long term exposure of elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M. [Univ. of Essex, Colchester (United Kingdom)]|[Writtle Coll. (United Kingdom)

    1996-08-01

    The response of intra and interspecific variation in photosynthetic acclimation to growth at elevated atmospheric CO{sub 2} concentration (600{micro}mol mol-l) in six important grassland species was investigated. Plants were grown in a background sward of Lolium perenne and measurements were made after four years of growth at elevated C{sub a}. Elevated CO{sub 2} was maintained using a FACE (Free-Air Carbon Enrichment) system. Significant intra and interspecific variation in acclimation response was demonstrated. The response of adaxial and abaxial stomatal conductance to elevated CO{sub 2} was also investigated. The stomatal conductance of both the adaxial and abaxial leaf surfaces was found to be reduced by elevated C{sub a}. Significant asymmetric responses in stomatal conductance was demonstrated in D. glomerata and T. pratense. Analysis of stomatal indices and densities indicated that the observed reductions in stomatal conductance were probably the result of changes in stomatal aperture.

  5. Integrating livestock manure with a corn-soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential

    International Nuclear Information System (INIS)

    Thelen, K.D.; Fronning, B.E.; Kravchenko, A.; Min, D.H.; Robertson, G.P.

    2010-01-01

    Carbon cycling and the global warming potential (GWP) of bioenergy cropping systems with complete biomass removal are of agronomic and environmental concern. Corn growers who plan to remove corn stover as a feedstock for the emerging cellulosic ethanol industry will benefit from carbon amendments such as manure and compost, to replace carbon removed with the corn stover. The objective of this research was to determine the effect of beef cattle feedlot manure and composted dairy manure on short-term carbon sequestration rates and net global warming potential (GWP) in a corn-soybean rotation with complete corn-stover removal. Field experiments consisting of a corn-soybean rotation with whole-plant corn harvest, were conducted near East Lansing, MI over a three-year period beginning in 2002. Compost and manure amendments raised soil carbon (C) at a level sufficient to overcome the C debt associated with manure production, manure collection and storage, land application, and post-application field emissions. The net GWP in carbon dioxide equivalents for the manure and compost amended cropping systems was -934 and -784 g m -2 y -1 , respectively, compared to 52 g m -2 y -1 for the non-manure amended synthetic fertilizer check. This work further substantiates the environmental benefits associated with renewable fuels and demonstrates that with proper management, the integration of livestock manures in biofuel cropping systems can enhance greenhouse gas (GHG) remediation.

  6. Nitrogen deposition's role in determining forest photosynthetic capacity; a FLUXNET synthesis

    Science.gov (United States)

    Fleischer, K.; Rebel, K.; van der Molen, M.; Erisman, J.; Wassen, M.; Dolman, H.

    2011-12-01

    There is growing evidence that nitrogen (N) deposition stimulates forest growth, as many forest ecosystems are N-limited. However, the significance of N deposition in determining the strength of the present and future terrestrial carbon sink is strongly debated. We investigated and quantified the effect of N deposition on ecosystem photosynthetic capacity (Amax) with the FLUXNET database, including 80 forest sites, covering the major forest types and climates of the world. The relative effect of climate and N deposition on photosynthesis was assessed with regression models. We found a significant positive correlation of Amax and N deposition for evergreen needleleaf forests in our dataset. We further found indications that foliar N and LAI scale positively with N deposition, reflecting the 2 mechanisms at which N is believed to cause an increase in carbon gain. We can support the hypothesis that foliar N is the principal scaling factor for canopy Amax across all forest types. Deciduous forests are less diverse in terms of climate and nutritional conditions for the included sites and these forests exhibited weak to no correlations with the included climate and N predictor variables. Quantifying the effect of N deposition on photosynthetic rates at the canopy level is an essential step for quantifying its contribution to the terrestrial carbon sink and for predicting vegetation response to N fertilization and global change in the future. The approach shows that eddy-covariance measurements of carbon fluxes at the canopy scale allow us to test hypotheses with respect to the expected nitrogen-photosynthesis relationships at the canopy scale.

  7. Net carbon allocation in soybean seedlings as influenced by soil water stress at two soil temperatures

    International Nuclear Information System (INIS)

    McCoy, E.L.; Boersma, L.; Ekasingh, M.

    1990-01-01

    The influence of water stress at two soil temperatures on allocation of net photoassimilated carbon in soybean (Glycine max [L.] Merr.) was investigated using compartmental analysis. The experimental phase employed classical 14 C labeling methodology with plants equilibrated at soil water potentials of -0.04, -0.25 and -0.50 MPa; and soil temperatures of 25 and 10C. Carbon immobilization in the shoot apex generally followed leaf elongation rates with decreases in both parameters at increasing water stress at both soil temperatures. However, where moderate water stress resulted in dramatic declines in leaf elongation rates, carbon immobilization rates were sharply decreased only at severe water stress levels. Carbon immobilization was decreased in the roots and nodules of the nonwater stressed treatment by the lower soil temperature. This relation was reversed with severe water stress, and carbon immobilization in the roots and nodules was increased at the lower soil temperature. Apparently, the increased demand for growth and/or carbon storage in these tissues with increased water stress overcame the low soil temperature limitations. Both carbon pool sizes and partitioning of carbon to the sink tissues increased with moderate water stress at 25C soil temperature. Increased pool sizes were consistent with whole plant osmotic adjustment at moderate water stress. Increased partitioning to the sinks was consistent with carbon translocation processes being less severely influenced by water stress than is photosynthesis

  8. Non-linear mixed-effects modeling for photosynthetic response of Rosa hybrida L. under elevated CO2 in greenhouses - Short communication

    DEFF Research Database (Denmark)

    Öztürk, I.; Ottosen, C.O.; Ritz, C.

    2011-01-01

    Photosynthetic response to light was measured on the leaves of two cultivars of Rosa hybrida L. (Escimo and Mercedes) in the greenhouse to obtain light-response curves and their parameters. Th e aim was to use a model to simulate leaf photosynthetic carbon gain with respect to environmental condi...

  9. Carbon dioxide fluxes from a degraded woodland in West Africa and their responses to main environmental factors.

    Science.gov (United States)

    Ago, Expedit Evariste; Serça, Dominique; Agbossou, Euloge Kossi; Galle, Sylvie; Aubinet, Marc

    2015-12-01

    In West Africa, natural ecosystems such as woodlands are the main source for energy, building poles and livestock fodder. They probably behave like net carbon sinks, but there are only few studies focusing on their carbon exchange with the atmosphere. Here, we have analyzed CO 2 fluxes measured for 17 months by an eddy-covariance system over a degraded woodland in northern Benin. Specially, temporal evolution of the fluxes and their relationships with the main environmental factors were investigated between the seasons. This study shows a clear response of CO 2 absorption to photosynthetic photon flux density (Q p ), but it varies according to the seasons. After a significant and long dry period, the ecosystem respiration (R) has increased immediately to the first significant rains. No clear dependency of ecosystem respiration on temperature has been observed. The degraded woodlands are probably the "carbon neutral" at the annual scale. The net ecosystem exchange (NEE) was negative during wet season and positive during dry season, and its annual accumulation was equal to +29 ± 16 g C m -2 . The ecosystem appears to be more efficient in the morning and during the wet season than in the afternoon and during the dry season. This study shows diurnal and seasonal contrasted variations in the CO 2 fluxes in relation to the alternation between dry and wet seasons. The Nangatchori site is close to the equilibrium state according to its carbon exchanges with the atmosphere. The length of the observation period was too short to justify the hypothesis about the "carbon neutrality" of the degraded woodlands at the annual scale in West Africa. Besides, the annual net ecosystem exchange depends on the intensity of disturbances due to the site management system. Further research works are needed to define a woodland management policy that might keep these ecosystems as carbon sinks.

  10. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years.

    Science.gov (United States)

    Ballantyne, A P; Alden, C B; Miller, J B; Tans, P P; White, J W C

    2012-08-02

    One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.

  11. Photosynthetic assimilation of 14C in isolated chloroplasts in the presence of NO3-, SO4- and NH4+

    International Nuclear Information System (INIS)

    Tsenova, M.

    1977-01-01

    Quantitative changes in carbon photosynthesis assimilation occurring as an effect of varying nitrate, sulfate and ammonia ions in the incubation medium were studied in isolated chloroplasts of spinach. Carbon photosynthetic assimilation is enhanced under the influence of rising nitrate anion concentrations to a certain level. The percentage of 14 C concent in the insoluble products is also raised while in glycolic acid it is reduced. The nitrate anion has an effect similar to that of the bicarbonic anion the same processes. Ammonium and sulfate ions have the opposite effect. It can be assumed that the established effect of the ions studied is due to the influence they have on photosynthetic phosphorylation. (author)

  12. Photosynthate consumption and carbon turnover in the rhizosphere depending on plant species and growth conditions

    International Nuclear Information System (INIS)

    Sauerbeck, D.R.; Helal, H.M.; Nonnen, S.; Allard, J.-l.

    1982-01-01

    The root tissue which can be isolated from soils represents only part of the total plant carbon incorporation. Between 20 and 40% of the photosynthetic production of plants is expended for root growth and root metabolism. This indicates a striking turnover of energy in the rhizosphere, because relatively litle root-derived organic matter remains there until harvest time. Plant species and variety, soil conditions and temperature were shown to be the most decisive factors governing the assimilate consumption of plant root systems. A special technique is described which enables to study how this extensive turnover affects the surrounding soil depending on its proximity to the roots. Plant-derived carbon can be detected up to 20mm away from the roots. A priming effect has been found on the decomposition of soil organic matter. This explains why, in spite of the rhizo-deposition mentioned, no net-accumulation of carbon in the rhizosphere has been found. (Author) [pt

  13. Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach. I. Using remotely sensed data and ecological observations of net primary production

    International Nuclear Information System (INIS)

    Ying Ping Wang; Barrett, Damian J.

    2003-01-01

    We have developed a modelling framework that synthesizes various types of field measurements at different spatial and temporal scales. We used this modelling framework to estimate monthly means and their standard deviations of gross photosynthesis, total ecosystem production, net primary production (NPP) and net ecosystem production (NEP) for eight regions of the Australian continent between 1990 and 1998. Annual mean NPP of the Australian continent varied between 800 and 1100 Mt C/yr between 1990 and 1998, with a coefficient of variation that is defined as the ratio of standard deviation and mean between 0.24 and 0.34. The seasonal variation of NPP for the whole continent varied between 50 and 110 Mt C/month with two maxima, one in the autumn and another in the spring. NEP was most negative in the winter (a carbon sink) and was most positive (a carbon source) in the summer. However, the coefficient of variation of monthly mean NEP was very large (> 4), and consequently confidence in the predicted net carbon fluxes for any month in the period 1990-1998 for the whole continent was very low. A companion paper will apply atmospheric inverse technique to measurements of CO 2 concentration to further constrain the continental carbon cycle and reduce uncertainty in estimated mean monthly carbon fluxes

  14. Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO2 uptake in Arbutus unedo growing in Portugal.

    Science.gov (United States)

    Demmig-Adams, B; Adams, W W; Winter, K; Meyer, A; Schreiber, U; Pereira, J S; Krüger, A; Czygan, F C; Lange, O L

    1989-03-01

    During the "midday depression" of net CO2 exchange in the mediterranean sclerophyllous shrub Arbutus unedo, examined in the field in Portugal during August of 1987, several parameters indicative of photosynthetic competence were strongly and reversibly affected. These were the photochemical efficiency of photosystem (PS) II, measured as the ratio of variable to maximum chlorophyll fluorescence, as well as the photon yield and the capacity of photosynthetic O2 evolution at 10% CO2, of which the apparent photon yield of O2 evolution was most depressed. Furthermore, there was a strong and reversible increase in the content of the carotenoid zeaxanthin in the leaves that occurred at the expense of both violaxanthin and β-carotene. Diurnal changes in fluorescence characteristics were interpreted to indicate three concurrent effects on the photochemical system. First, an increase in the rate of radiationless energy dissipation in the antenna chlorophyll, reflected by changes in 77K fluorescence of PSII and PSI as well as in chlorophyll a fluorescence at ambient temperature. Second, a state shift characterized by an increase in the proportion of energy distributed to PSI as reflected by changes in PSI fluorescence. Third, an effect lowering the photon yield of O2 evolution and PSII fluorescence at ambient temperature without affecting PSII fluorescence at 77K which would be expected from a decrease in the activity of the water splitting enzyme system, i.e. a donor side limitation.

  15. Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2].

    Directory of Open Access Journals (Sweden)

    José C Ramalho

    Full Text Available Coffee is one of the world's most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m(-2 s(-1, RH (75% and 380 or 700 μL CO2 L(-1 for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49% when measured at 700 than at 380 μL CO2 L(-1. This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down

  16. Sustained Photosynthetic Performance of Coffea spp. under Long-Term Enhanced [CO2

    Science.gov (United States)

    Ramalho, José C.; Rodrigues, Ana P.; Semedo, José N.; Pais, Isabel P.; Martins, Lima D.; Simões-Costa, Maria C.; Leitão, António E.; Fortunato, Ana S.; Batista-Santos, Paula; Palos, Isabel M.; Tomaz, Marcelo A.; Scotti-Campos, Paula; Lidon, Fernando C.; DaMatta, Fábio M.

    2013-01-01

    Coffee is one of the world’s most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m-2 s-1), RH (75%) and 380 or 700 μL CO2 L-1 for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49%) when measured at 700 than at 380 μL CO2 L-1. This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory) components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down-regulation was found, our data

  17. The sporulation of the green alga Ulva prolifera is controlled by changes in photosynthetic electron transport chain.

    Science.gov (United States)

    Wang, Hui; Lin, Apeng; Gu, Wenhui; Huan, Li; Gao, Shan; Wang, Guangce

    2016-04-22

    Sporulation and spore release are essential phases of the life cycle in algae and land plants. Ulva prolifera, which is an ideal organism for studying sporulation and spore release, was used as the experimental material in the present study. The determination of photosynthetic parameters, combined with microscopic observation, treatment with photosynthetic inhibitors, limitation of carbon acquisition, and protein mass spectrometry, was employed in this experiment. Cycle electron transport (CEF) was found enhanced at the onset of sporangia formation. The inhibition effect of dibromothymoquinone (DBMIB) towards sporulation was always strong during the sporulation process whereas the inhibition effect of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) was continuously declined accompanied with the progress of sporulation. The changes of photosynthesis resulted from the limitation of CO2 acquisition could stimulate sporulation onset. Quantitative protein analysis showed that enzymes involved in carbon fixation, including RUBISCO and pyruvate orthophosphate dikinase, declined during sporogenesis, while proteins involved in sporulation, including tubulin and centrin, increased. These results suggest that enhanced cyclic electron flow (CEF) and oxidation of the plastoquinone pool are essential for sporangia formation onset, and changes in photosynthetic electron transport chain have significant impacts on sporulation of the green algae.

  18. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    Science.gov (United States)

    Kato, E.; Yamagata, Y.

    2014-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise below 2°C above pre-industrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large-scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full post-process combustion CO2 capture is deployed with a high fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required, however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise a conflict of land-use with food production is inevitable.

  19. Impact of heat-wave at high and low VPD on photosynthetic components of wheat and their recovery

    DEFF Research Database (Denmark)

    Rashid, Muhammad Adil; Andersen, Mathias Neumann; Wollenweber, Bernd

    2018-01-01

    relatively insignificant. The processes involved in CO2-use (i.e. in vivo carboxylation efficiency and Vcmax) presented higher sensitivity than the processes involved in light-use (PSII efficiency, quantum yield and chlorophyll content index). Maximum photosynthetic capacity under high temperature......-impact studies. Higher sensitivity of CO2-use suggested that even moderately high temperature-episodes might limit photosynthetic capacity and hence crop productivity, thus reiterating the need to develop crop cultivars with greater tolerance to high temperatures. Abbreviations Asat, maximum net CO2 assimilation......Indirect effects of high temperature through increased vapor pressure deficit (VPD) are vital but often ignored in climate impact studies. We investigated the direct (via heat) and indirect (via VPD) effects of a post-anthesis applied high temperature episode on biochemical and diffusional...

  20. Integrating livestock manure with a corn-soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, K.D.; Fronning, B.E.; Kravchenko, A.; Min, D.H.; Robertson, G.P. [Michigan State University, East Lansing, MI 48824 (United States)

    2010-07-15

    Carbon cycling and the global warming potential (GWP) of bioenergy cropping systems with complete biomass removal are of agronomic and environmental concern. Corn growers who plan to remove corn stover as a feedstock for the emerging cellulosic ethanol industry will benefit from carbon amendments such as manure and compost, to replace carbon removed with the corn stover. The objective of this research was to determine the effect of beef cattle feedlot manure and composted dairy manure on short-term carbon sequestration rates and net global warming potential (GWP) in a corn-soybean rotation with complete corn-stover removal. Field experiments consisting of a corn-soybean rotation with whole-plant corn harvest, were conducted near East Lansing, MI over a three-year period beginning in 2002. Compost and manure amendments raised soil carbon (C) at a level sufficient to overcome the C debt associated with manure production, manure collection and storage, land application, and post-application field emissions. The net GWP in carbon dioxide equivalents for the manure and compost amended cropping systems was -934 and -784 g m{sup -2} y{sup -1}, respectively, compared to 52 g m{sup -2} y{sup -1} for the non-manure amended synthetic fertilizer check. This work further substantiates the environmental benefits associated with renewable fuels and demonstrates that with proper management, the integration of livestock manures in biofuel cropping systems can enhance greenhouse gas (GHG) remediation. (author)

  1. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  2. Scaling net ecosystem production and net biome production over a heterogeneous region in the Western United States

    Science.gov (United States)

    D.P. Turner; W.D. Ritts; B.E. Law; W.B. Cohen; Z. Yan; T. Hudiburg; J.L. Campbell; M. Duane

    2007-01-01

    Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5x105 km2 ) in the Western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history...

  3. UV sensitivity of planktonic net community production in ocean surface waters

    OpenAIRE

    Regaudie de Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-01-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we tes...

  4. Interactive effects of copper stress and arbuscular mycorrhizal fungi on photosynthetic characteristics and chlorphyl fluorescence parameters of elsholtzia splendens

    International Nuclear Information System (INIS)

    Li, Y.; Jin, Z.; Li, J.

    2017-01-01

    To determine interactive effects of added copper (Cu) and arbuscular mycorrhizal fungi (AMF) inoculation on the photosynthesis of Elsholtzia splendens, a greenhouse pot experiment was conducted. Four treatments were used, including -Cu-AMF (no Cu addition and no AMF inoculation), +Cu-AMF (Cu addition but no AMF inoculation), -Cu+AMF (no Cu addition and AMF inoculation), and +Cu+AMF (Cu addition and AMF inoculation). Cu addition did not change diurnal variation curves of the net photosynthetic rate(PN), the intercellular CO/sub 2/ concentration (Ci), the stomatal conductance (gs), or the transpiration rate (E); however, it significantly decreased the daily mean PN, gs, E, light-use efficiency (LUE), and carboxylation efficiency (CE). Furthermore, AMF inoculation significantly increased the daily mean PN, gs, LUE, and CE of E. splendens. In response to light, Cu addition significantly decreased the light-saturated net photosynthetic rate (PNmax), the light saturation point (LSP), the light compensation point (LCP), and the apparent quantum yield (AQY), while AMF inoculation significantly increased PNmax and AQY. In response to the CO/sub 2/ concentration, Cu addition significantly decreased PNmax and the CO/sub 2/ saturation point (CSP), while AMF inoculation significantly increased PNmax. Both Cu addition and AMF inoculation significantly decreased the relative chlorophyll content. Compared to the negative control treatment (-Cu-AMF), Cu addition significantly increased the minimal fluorescence, but significantly decreased maximal fluorescence, variable fluorescence,and maximum photochemical efficiency of PSII. These results suggest that AMF inoculations alleviate the inhibitory effect of copper stress on E. splendens plants by weakening its toxic effects on the photosynthetic apparatus and pigments. (author)

  5. Carbon balance of a southern taiga spruce stand in European Russia

    International Nuclear Information System (INIS)

    Milyukova, I.M.; Varlagin, A.V.; Vygodskaya, N.N.; Kolle, O.; Schulze, E.D.; Lloyd, J.

    2002-01-01

    We present results from nearly three years of net ecosystem flux measurements above a boreal spruce stand growing in European Russia. Fluxes were measured by eddy covariance using conventional techniques. In all years examined (1998-2000), the forest was a significant source of carbon to the atmosphere. However, the magnitude of this inferred source depended upon assumptions regarding the degree of 'flux loss' under conditions of low turbulence, such as typically occur at night. When corrections were not made, the forest was calculated to be only a modest source of C to the atmosphere (3-5 mol C/m 2 /yr). However, when the corrections were included, the apparent source was much larger (20-30 mol C/m 2 /yr). Using a simple model to describe the temperature dependencies of ecosystem respiration on air and soil temperatures, about 80% of the night-time flux was inferred to be from soil respiration, with the remainder being attributable to foliage, branches and boles. We used reasonable assumptions to estimate the rate of ecosystem respiration during the day, allowing an estimation of canopy photosynthetic rates and hence the annual Gross Primary Productivity of the ecosystem. For the two full years examined (1999 and 2000), this was estimated at 122 and 130 mol C/m 2 /yr, respectively. This value is similar to estimates for boreal forests in Scandinavia, but substantially higher than has been reported for Canadian or Siberian boreal forests. There was a clear tendency for canopy photosynthetic rates to increase with both light and temperature, but the slope of the temperature response of photosynthesis was less steep that that of ecosystem respiration. Thus, on most warm days in summer the forest was a substantial source of carbon to the atmosphere; with the forest usually being a net sink only on high insolation days where the average daily air temperatures were below about 18 deg C. These data, along with other studies on the current balance of boreal ecosystems

  6. Photoelectrochemical cells based on photosynthetic systems: a review

    Directory of Open Access Journals (Sweden)

    Roman A. Voloshin

    2015-06-01

    Full Text Available Photosynthesis is a process which converts light energy into energy contained in the chemical bonds of organic compounds by photosynthetic pigments such as chlorophyll (Chl a, b, c, d, f or bacteriochlorophyll. It occurs in phototrophic organisms, which include higher plants and many types of photosynthetic bacteria, including cyanobacteria. In the case of the oxygenic photosynthesis, water is a donor of both electrons and protons, and solar radiation serves as inexhaustible source of energy. Efficiency of energy conversion in the primary processes of photosynthesis is close to 100%. Therefore, for many years photosynthesis has attracted the attention of researchers and designers looking for alternative energy systems as one of the most efficient and eco-friendly pathways of energy conversion. The latest advances in the design of optimal solar cells include the creation of converters based on thylakoid membranes, photosystems, and whole cells of cyanobacteria immobilized on nanostructured electrode (gold nanoparticles, carbon nanotubes, nanoparticles of ZnO and TiO2. The mode of solar energy conversion in photosynthesis has a great potential as a source of renewable energy while it is sustainable and environmentally safety as well. Application of pigments such as Chl f and Chl d (unlike Chl a and Chl b, by absorbing the far red and near infrared region of the spectrum (in the range 700-750 nm, will allow to increase the efficiency of such light transforming systems. This review article presents the last achievements in the field of energy photoconverters based on photosynthetic systems.

  7. Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves.

    Directory of Open Access Journals (Sweden)

    Guoxian Zhang

    Full Text Available The effect of exogenous CaCl2 on photosystem I and II (PSI and PSII activities, cyclic electron flow (CEF, and proton motive force of tomato leaves under low night temperature (LNT was investigated. LNT stress decreased the net photosynthetic rate (Pn, effective quantum yield of PSII [Y(II], and photochemical quenching (qP, whereas CaCl2 pretreatment improved Pn, Y(II, and qP under LNT stress. LNT stress significantly increased the non-regulatory quantum yield of energy dissipation [Y(NO], whereas CaCl2 alleviated this increase. Exogenous Ca2+ enhanced stimulation of CEF by LNT stress. Inhibition of oxidized PQ pools caused by LNT stress was alleviated by CaCl2 pretreatment. LNT stress reduced zeaxanthin formation and ATPase activity, but CaCl2 pretreatment reversed both of these effects. LNT stress caused excess formation of a proton gradient across the thylakoid membrane, whereas CaCl2 pretreatment decreased the said factor under LNT. Thus, our results showed that photoinhibition of LNT-stressed plants could be alleviated by CaCl2 pretreatment. Our findings further revealed that this alleviation was mediated in part by improvements in carbon fixation capacity, PQ pools, linear and cyclic electron transports, xanthophyll cycles, and ATPase activity.

  8. Primary photosynthetic processes: from supercomplex to leaf

    NARCIS (Netherlands)

    Broess, K.

    2009-01-01

    This thesis describes fluorescence spectroscopy experiments on photosynthetic complexes that cover the primary photosynthetic processes, from the absorption of light by photosynthetic pigments to a charge separation (CS) in the reaction center (RC). Fluorescence spectroscopy is a useful tool in

  9. Winter respiratory C losses provide explanatory power for net ecosystem productivity

    Czech Academy of Sciences Publication Activity Database

    Haeni, M.; Zweifel, R.; Eugster, W.; Gessler, A.; Zielis, S.; Bernhofer, C.; Carrara, A.; Gruenwald, T.; Havránková, Kateřina; Heinesch, B.; Herbst, M.; Ibrom, A.; Knohl, A.; Lagergren, F.; Law, B. E.; Marek, Michal V.; Matteucci, G.; McCaughey, J. H.; Minerbi, S.; Montagnani, L.; Moors, E.; Olejnik, Janusz; Pavelka, Marian; Pilegaard, K.; Pita, G.; Rodrigues, A.; Sanz Sanchez, M. J.; Schelhaas, M.J.; Urbaniak, M.; Valentini, R.; Varlagin, A.; Vesala, T.; Vincke, C.; Wu, J.; Buchmann, N.

    2017-01-01

    Roč. 122, č. 1 (2017), s. 243-260 ISSN 2169-8953 R&D Projects: GA MŠk(CZ) LO1415 Grant - others:COST(IT) FP0903 Action Institutional support: RVO:68378076 Keywords : spaceborne imaging spectroscopy * temperate deciduous forest * mixedwood boreal forest * beech fagus-sylvatica * water-vapor exchange * stem radius change s * carbon uptake * interannual variability * photosynthetic capacity * leaf characteristics * eddy covariance * CO2 exchange * carbon sink * carbon source * growing season length * winter respiration Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.395, year: 2016

  10. Variability in carbon dioxide fluxes for dense urban, suburban and woodland environments in southern England

    Science.gov (United States)

    Ward, Helen; Kotthaus, Simone; Grimmond, C. Sue; Bjorkegren, Alex; Wilkinson, Matt; Morrison, Will; Evans, Jon; Morison, James; Christen, Andreas

    2014-05-01

    The net exchange of carbon dioxide between the surface and atmosphere can be measured using the eddy covariance technique. Fluxes from a dense urban environment (central London), a suburban landscape (Swindon) and a woodland ecosystem (Alice Holt) are compared. All sites are located in southern England and experience similar climatic and meteorological conditions, yet have very different land cover. The signatures of anthropogenic and biogenic processes are explored at various (daily, seasonal and annual) timescales. Particular emphasis is placed on identifying the mixture of controls that determine the flux. In summer, there are clear similarities between the suburban and woodland sites, as the diurnal behaviour is dominated by photosynthetic uptake. In winter, however, vegetation is largely dormant and human activity determines the pattern of fluxes at the urban and suburban sites. Emissions from building heating augment the net release of carbon dioxide in cold months. Road use is a major contributor to the total emissions, and the diurnal cycle in the observed fluxes reflects this: in central London roads are busy throughout the day, whereas in Swindon a double-peaked rush-hour signal is evident. The net exchange of carbon dioxide is estimated for each site and set in context with other studies around the world. Central London has the smallest proportion of vegetation and largest emissions amongst study sites in the literature to date. Although Swindon's appreciable vegetation fraction helps to offset the anthropogenic emissions, even in summertime the 24h total flux is usually positive, indicating carbon release. Comparison of these three sites in a similar region demonstrates the effects of increasing urban density and changing land use on the atmosphere. Findings are relevant in terms of characterising the behaviour of urban surfaces and for quantifying the impact of anthropogenic activities.

  11. Ecosystem-Atmosphere Exchange of Carbon, Water and Energy over a Mixed Deciduous Forest in the Midwest

    Energy Technology Data Exchange (ETDEWEB)

    Danilo Dragoni; Hans Peter Schmid; C.S.B. Grimmond; J.C. Randolph; J.R. White

    2012-12-17

    During the project period we continued to conduct long-term (multi-year) measurements, analysis, and modeling of energy and mass exchange in and over a deciduous forest in the Midwestern United States, to enhance the understanding of soil-vegetation-atmosphere exchange of carbon. At the time when this report was prepared, results from nine years of measurements (1998 - 2006) of above canopy CO2 and energy fluxes at the AmeriFlux site in the Morgan-Monroe State Forest, Indiana, USA (see Table 1), were available on the Fluxnet database, and the hourly CO2 fluxes for 2007 are presented here (see Figure 1). The annual sequestration of atmospheric carbon by the forest is determined to be between 240 and 420 g C m-2 a-1 for the first ten years. These estimates are based on eddy covariance measurements above the forest, with a gap-filling scheme based on soil temperature and photosynthetically active radiation. Data gaps result from missing data or measurements that were rejected in qua)lity control (e.g., during calm nights). Complementary measurements of ecological variables (i.e. inventory method), provided an alternative method to quantify net carbon uptake by the forest, partition carbon allocation in each ecosystem components, and reduce uncertainty on annual net ecosystem productivity (NEP). Biometric datasets are available on the Fluxnext database since 1998 (with the exclusion of 2006). Analysis for year 2007 is under completion.

  12. [Photosynthetic characteristics of Cuscuta japonica and its hosts during parasitization and after detachment].

    Science.gov (United States)

    Wang, Dong; Hu, Fei; Chen, Yu-Fen; Yang, Jun; Kong, Chui-Hua

    2007-08-01

    The study on the photosynthetic characteristics of Cuscuta japonica and its hosts showed that there was a negative correlation between the photosynthetic pigment content (PPC) of C. japonica and its hosts. The PPC increased in the C. japonica-preferred hosts' parasitized and neighboring leaves, but decreased in its less preferred hosts' parasitized and neighboring leaves. The leaves parasitized by C. japonica and their neighboring far from the parasitized ones had a lowered net photosynthesis rate P(n), and the decreasing order accorded with that of parasitization. The decrease of P(n) for C. japonica-less preferred hosts was mainly due to the stomatal factors, but that for the preferred hosts was regulated by multi-factors. Under light, the PPC of C. japonica detached from preferred hosts increased faster than that of C. japonica detached from less preferred hosts, but the dry matter decrease was in adverse. In dark, however, the changes in PPC and dry matter content of C. japonica were not significant, whatever hosts it was detached from.

  13. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13C org fluctuations and carbonate precipitation in hypersaline microbial mats.

    Science.gov (United States)

    Houghton, J; Fike, D; Druschel, G; Orphan, V; Hoehler, T M; Des Marais, D J

    2014-11-01

    Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ(13) C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ(13) C signatures. In the photic zone, the δ(13) C org signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ(13) C signatures similar to DIC in the overlying water column (-2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate-reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and HCO3- concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter-scale variability in the δ(13) C org signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ(13) C org signatures; these processes need to be considered when attempting to relate

  14. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress.

    Directory of Open Access Journals (Sweden)

    Guang Gao

    Full Text Available Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs. However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli's acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC and elevated (HC CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure.

  15. Photosynthetic characteristics of Lycoris aurea and monthly ...

    African Journals Online (AJOL)

    The leaf photosynthetic characteristics of Lycoris aurea, the monthly dynamics in lycorine and galantamine contents in its bulb and the correlation among the photosynthetic characteristics and the lycorine and galantamine during the annual growth period were studied by using LI-6400 portable photosynthetic measurement ...

  16. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    Science.gov (United States)

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  17. Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends.

    Science.gov (United States)

    Fernandes, Bruno D; Mota, Andre; Teixeira, Jose A; Vicente, Antonio A

    2015-11-01

    The possibility of using photosynthetic microorganisms, such as cyanobacteria and microalgae, for converting light and carbon dioxide into valuable biochemical products has raised the need for new cost-efficient processes ensuring a constant product quality. Food, feed, biofuels, cosmetics and pharmaceutics are among the sectors that can profit from the application of photosynthetic microorganisms. Biomass growth in a photobioreactor is a complex process influenced by multiple parameters, such as photosynthetic light capture and attenuation, nutrient uptake, photobioreactor hydrodynamics and gas-liquid mass transfer. In order to optimize productivity while keeping a standard product quality, a permanent control of the main cultivation parameters is necessary, where the continuous cultivation has shown to be the best option. However it is of utmost importance to recognize the singularity of continuous cultivation of cyanobacteria and microalgae due to their dependence on light availability and intensity. In this sense, this review provides comprehensive information on recent breakthroughs and possible future trends regarding technological and process improvements in continuous cultivation systems of microalgae and cyanobacteria, that will directly affect cost-effectiveness and product quality standardization. An overview of the various applications, techniques and equipment (with special emphasis on photobioreactors) in continuous cultivation of microalgae and cyanobacteria are presented. Additionally, mathematical modeling, feasibility, economics as well as the applicability of continuous cultivation into large-scale operation, are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Estimation of Net Ecosystem Carbon Exchange for the Conterminous UnitedStates by Combining MODIS and AmeriFlux Data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.

    2009-03-06

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.

  19. Photosynthetic responses of C3 and C4 species to seasonal water variability and competition.

    Science.gov (United States)

    Niu, Shuli; Yuan, Zhiyou; Zhang, Yanfang; Liu, Weixing; Zhang, Lei; Huang, Jianhui; Wan, Shiqiang

    2005-11-01

    This study examined the impacts of seasonal water variability and interspecific competition on the photosynthetic characteristics of a C3 (Leymus chinensis) and a C4 (Chloris virgata) grass species. Plants received the same amount of water but in three seasonal patterns, i.e. the one-peak model (more water in the summer than in the spring and autumn), the two-peak model (more water in the spring and autumn than in the summer), and the average model (water evenly distributed over the growing season). The effects of water variability on the photosynthetic characteristics of the C3 and C4 species were dependent on season. There were significant differences in the photosynthetic characteristics of the C4 species in the summer and the C3 species in the autumn among the three water treatments. Interspecific competition exerted negative impacts on the C3 species in August and September but had no effects on the C4 species in any of the four measuring dates. The relative competitive capability of the two species was not altered by water availability. The assimilation rate, the maximum quantum yield of net CO2 assimilation, and the maximum rate of carboxylation of the C3 species were 13-56%, 5-11%, and 11-48% greater, respectively, in a monoculture than in a mixture in August and September. The results demonstrated that the photosynthetic characteristics of the C3 and C4 species were affected by water availability, but the effects varied considerably with season.

  20. Unraveling net carbon exchange into its component processes of photosynthesis and respiration

    Science.gov (United States)

    Ballantyne, A.

    2017-12-01

    The recent `warming hiatus' presents an excellent opportunity to investigate climate sensitivity of carbon cycle processes. Herewe combine satellite and atmospheric observations to show that the rate of net biome productivity (NBP) has significantlyaccelerated from 0.007+/-0.065 PgC yr-2 over the warming period (1982 to 1998) to 0.119+/-0.071 PgC yr-2 over thewarminghiatus (1998-2012). This acceleration in NBP is not due to increased primary productivity, but rather reduced respiration thatis correlated (r2 0.58; P = 0.0007) and sensitive ( gamma= 4.05 to 9.40 PgC yr-1 per deg C) to land temperatures. Global landmodels do not fully capture this apparent reduced respiration over the warming hiatus; however, an empirical model includingsoil temperature and moisture observations seems to better captures the reduced respiration.

  1. Net ecosystem productivity and carbon dynamics of the traditionally managed Imperata grasslands of North East India.

    Science.gov (United States)

    Pathak, Karabi; Malhi, Yadvinder; Sileshi, G W; Das, Ashesh Kumar; Nath, Arun Jyoti

    2018-09-01

    There have been few comprehensive descriptions of how fire management and harvesting affect the carbon dynamics of grasslands. Grasslands dominated by the invasive weed Imperata cylindrica are considered as environmental threats causing low land productivity throughout the moist tropical regions in Asia. Imperata grasslands in North East India are unique in that they are traditionally managed and culturally important in the rural landscapes. Given the importance of fire in the management of Imperata grassland, we aimed to assess (i) the seasonal pattern of biomass production, (ii) the eventual pathways for the produced biomass, partitioned between in situ decomposition, harvesting and combustion, and (iii) the effect of customary fire management on the ecosystem carbon cycle. Comparatively high biomass production was recorded during pre-monsoon (154 g m -2  month -1 ) and monsoon (214 g m -2  month -1 ) compared to the post-monsoon (91 g m -2  month -1 ) season, and this is attributed to nutrient return into the soil immediately after fire in February. Post fire effects might have killed roots and rhizomes leading to high belowground litter production 30-35 g m -2 during March to August. High autotrophic respiration was recorded during March-July, which was related to high belowground biomass production (35-70 g m -2 ) during that time. Burning removed all the surface litter in March and this appeared to hinder surface decomposition and result in low heterotrophic respiration. Annual total biomass carbon production was estimated at 886 g C m -2 . Annual harvest of biomass (estimated at 577 g C m -2 ) was the major pathway for carbon fluxes from the system. Net ecosystem production (NEP) of Imperata grassland was estimated at 91 g C m -2  yr -1 indicating that these grasslands are a net sink of CO 2 , although this is greatly influenced by weather and fire management. Crown Copyright © 2018. Published by Elsevier B

  2. Photosynthetic Response of Soybean to Microclimate in 26-Year-Old Tree-Based Intercropping Systems in Southern Ontario, Canada.

    Science.gov (United States)

    Peng, Xiaobang; Thevathasan, Naresh V; Gordon, Andrew M; Mohammed, Idris; Gao, Pengxiang

    2015-01-01

    In order to study the effect of light competition and microclimatic modifications on the net assimilation (NA), growth and yield of soybean (Glycine max L.) as an understory crop, three 26-year-old soybean-tree (Acer saccharinum Marsh., Populus deltoides X nigra, Juglans nigra L.) intercropping systems were examined. Tree competition reduced photosynthetically active radiation (PAR) incident on soybeans and reduced net assimilation, growth and yield of soybean. Soil moisture of 20 cm depth close (tree rows was also reduced. Correlation analysis showed that NA and soil water content were highly correlated with growth and yield of soybean. When compared with the monoculture soybean system, the relative humidity (RH) of the poplar-soybean, silver maple-soybean, and black walnut-soybean intercropped systems was increased by 7.1%, 8.0% and 5.9%, soil water content was reduced by 37.8%, 26.3% and 30.9%, ambient temperature was reduced by 1.3°C, 1.4°C and 1.0°C, PAR was reduced by 53.6%, 57.9% and 39.9%, and air CO2 concentration was reduced by 3.7μmol·mol(-1), 4.2μmol·mol(-1) and 2.8μmol·mol(-1), respectively. Compared to the monoculture, the average NA of soybean in poplar, maple and walnut treatments was also reduced by 53.1%, 67.5% and 46.5%, respectively. Multivariate stepwise regression analysis showed that PAR, ambient temperature and CO2 concentration were the dominant factors influencing net photosynthetic rate.

  3. Overexpression of plastidial thioredoxins f and m differentially alters photosynthetic activity and response to oxidative stress in tobacco plants

    Directory of Open Access Journals (Sweden)

    Pascal eREY

    2013-10-01

    Full Text Available Plants display a remarkable diversity of thioredoxins (Trxs, reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively. To further delineate their in planta function, we compared the photosynthetic characteristics, the level and/or activity of various Trx targets and the responses to oxidative stress in transplastomic tobacco plants overexpressing either Trx f or Trx m. We found that plants overexpressing Trx m specifically exhibit altered growth, reduced chlorophyll content, impaired photosynthetic linear electron transfer and decreased pools of glutathione and ascorbate. In both transplastomic lines, activities of two enzymes involved in carbon metabolism, NADP-malate dehydrogenase and NADP-glyceraldehyde-3-phosphate dehydrogenase are markedly and similarly altered. In contrast, plants overexpressing Trx m specifically display increased capacity for methionine sulfoxide reductases, enzymes repairing damaged proteins by regenerating methionine from oxidized methionine. Finally, we also observed that transplastomic plants exhibit distinct responses when exposed to oxidative stress conditions generated by methyl viologen or exposure to high light combined with low temperature, the plants overexpressing Trx m being notably more tolerant than Wt and those overexpressing Trx f. Altogether, these data indicate that Trxs f and m fulfill distinct physiological functions. They prompt us to propose that the m type is involved in key processes linking photosynthetic activity, redox homeostasis and antioxidant mechanisms in the chloroplast.

  4. Effects of elevated CO2 concentration on growth, annual ring structure and photosynthesis in Larix kaempferi seedlings

    International Nuclear Information System (INIS)

    Yazaki, K.; Ishida, S.; Kawagishi, T.; Fukatsu, E.; Funada, R.; Maruyama, Y.; Kitao, M.; Tobita, H.; Koike, T.

    2004-01-01

    The effects of elevated carbon dioxide concentration and two nutrient regimes on stem growth rate, annual ring structure and temporal variations in photosynthetic characteristics of seedlings of Japanese larch were evaluated. When compared with ambient carbon dioxide, elevated carbon dioxide reduced stem height and increased stem basal diameter, but had no significant effect on ring width or the number of tracheids per radial file. No obvious difference was observed in cell wall thickness or the relative area of cell wall between seedlings grown in ambient or elevated carbon dioxide. Net assimilation rate increased in the presence of elevated carbon dioxide, however, the increase in whole-crown photosynthetic rate was minimal due to the smaller needle area and acclimation of the photosynthetic characteristics of the needles to the growth in carbon dioxide concentration. Conclusion: elevated carbon dioxide concentration did not appear to significantly affect the capacity of stems of Japanese larch seedlings for carbon fixation for use in cell wall synthesis, although there was evidence of change in the temporal pattern of stem growth and stem thickening. 52 refs., 3 tabs., 4 figs

  5. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    Science.gov (United States)

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

  6. Improving yield potential in crops under elevated CO(2): Integrating the photosynthetic and nitrogen utilization efficiencies.

    Science.gov (United States)

    Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J; Spangenberg, German

    2012-01-01

    Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO(2) levels have linearly increased. Developing crop varieties with increased utilization of CO(2) for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO(2) and achieve higher food production. The primary effects of elevated CO(2) levels in most crop plants, particularly C(3) plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO(2). The yield potential of C(3) crops is limited by their capacity to exploit sufficient carbon. The "C fertilization" through elevated CO(2) levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO(2) and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO(2), raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO(2) levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO(2) levels.

  7. Improving yield potential in crops under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies

    Science.gov (United States)

    Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J.; Spangenberg, German

    2012-01-01

    Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO2 levels have linearly increased. Developing crop varieties with increased utilization of CO2 for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO2 and achieve higher food production. The primary effects of elevated CO2 levels in most crop plants, particularly C3 plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO2. The yield potential of C3 crops is limited by their capacity to exploit sufficient carbon. The “C fertilization” through elevated CO2 levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO2 and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO2, raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO2 levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO2 levels. PMID:22833749

  8. Reversal of ocean acidification enhances net coral reef calcification.

    Science.gov (United States)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  9. Hysteretic Behavior of Tubular Steel Braces Having Carbon Fiber Reinforced Polymer Reinforcement Around End Net Sections

    Directory of Open Access Journals (Sweden)

    Cem Haydaroğlu

    2015-12-01

    Full Text Available This study presents an experimental investigation into the seismic retrofit of tubular steel braces using carbon fiber reinforced polymer (CFRP members. CFRP retrofitting of net sections for compact tubes are proposed for delaying potential local net section failure. A total of almost full-scale three (TB-1, TB-2, and TB-3 compact steel tubular specimens were designed per AISC specifications, constructed, and cyclically tested to fracture. Retrofitted braces, when compared to the reference specimen, developed fuller hysteretic curves. Increase in cumulative hysteretic energy dissipation and the elongation in fracture life in the specimen retrofitted with CFRP plates and CFRP sheet wraps at net sections are observed during testing. This resulted in a maximum of 82.5% more dissipated energy for compact tube specimens. Also, this retrofit provided a longer experimental fracture life (maximum 59% more. Due to fracture initiation during the last cycles, significant reductions in strength and stiffness have been obtained. No significant change (maximum 10% in the brace stiffness was observed, which could be desirable in seismic retrofit applications. Pushover analysis per FEMA 356 for the bare specimen shows that FEMA does not represent actual brace behavior in the compression side although pushover and experimental results are in good agreement in the tension side.

  10. Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants.

    Science.gov (United States)

    Kataria, Sunita; Guruprasad, K N; Ahuja, Sumedha; Singh, Bupinder

    2013-10-05

    A field experiment was conducted under tropical climate for assessing the effect of ambient UV-B and UV-A by exclusion of UV components on the growth, photosynthetic performance and yield of C3 (cotton, wheat) and C4 (amaranthus, sorghum) plants. The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (plant species responded to UV exclusion by a significant increase in plant height, leaf area, leaf biomass, total biomass accumulation and yield. Measurements of the chlorophyll, chlorophyll fluorescence parameters, gas exchange parameters and the activity of Ribulose-1,5-bisphosphate carboxylase (Rubisco) by fixation of (14)CO2 indicated a direct relationship between enhanced rate of photosynthesis and yield of the plants. Quantum yield of electron transport was enhanced by the exclusion of UV indicating better utilization of PAR assimilation and enhancement in reducing power in all the four plant species. Exclusion of UV-B in particular significantly enhanced the net photosynthetic rate, stomatal conductance and activity of Rubisco. Additional fixation of carbon due to exclusion of ambient UV-B was channeled towards yield as there was a decrease in the level of UV-B absorbing substances and an increase in soluble proteins in all the four plant species. The magnitude of the promotion in all the parameters studied was higher in dicots (cotton, amaranthus) compared to monocots (wheat, sorghum) after UV exclusion. The results indicated a suppressive action of ambient UV-B on growth and photosynthesis; dicots were more sensitive than monocots in this suppression while no great difference in sensitivity was found between C3 and C4 plants. Experiments indicated the suppressive action of ambient UV on carbon fixation and yield of C3 and C4 plants. Exclusion of solar UV-B will have agricultural benefits in both C3 and C4 plants under tropical climate. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Implications of agricultural encroachment on the carbon and greenhouse gas dynamics in tropical African wetlands.

    Science.gov (United States)

    Saunders, Matthew; Kansiime, Frank; Jones, Michael

    2015-04-01

    Cyperus papyrus L. (papyrus) wetlands dominate the permanently inundated wetlands of tropical East Africa and support the livelihoods of millions of people in rural sub-Saharan Africa through the provision of multiple ecosystem services such as the supply of drinking water, fish protein, building materials and biofuels. These wetlands are also extremely important in local and regional scale biogeochemical cycles due to their extensive spatial distribution, high rates of photosynthetic carbon dioxide (CO2) assimilation, long-term carbon (C) sequestration in the form of peat and the control of water loss through evapotranspiration. However, these wetlands are facing significant anthropogenic pressures due to the increasing demand for agricultural land where the papyrus plants are removed and replaced with subsistence crops such as cocoyam (Colocasia esculenta). Eddy covariance measurements were made on an undisturbed papyrus wetland and a cocoyam dominated wetland on the Ugandan shoreline of Lake Victoria to better understand the impacts of agricultural encroachment on the C sequestration potential of these wetlands. Peak rates of net photosynthetic CO2 assimilation at the papyrus wetland were over 40 μmol CO2 m-2 s-1, even under increasing vapour pressure deficit (≥2 kPa), while maximum rates of assimilation at the cocoyam site were 28 μmol CO2 m-2 s-1. Annual rates of papyrus net primary productivity (NPP) were amongst the highest recorded for wetland systems globally (3.09 kg C m-2 yr-1) and the continual regeneration of the papyrus plants, due to an absence of pronounced seasonal climatic variability, can lead to significant C accumulation in the above and belowground biomass (≥88 t C ha-1). Where these wetlands remain inundated and anaerobic conditions prevail, significant detrital and peat deposits can form further increasing the combined C sink capacity of these ecosystems to over 700 t C ha-1. The C sink strength of these wetlands is however offset by

  12. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency

    Science.gov (United States)

    Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet

    2018-01-01

    Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.

  13. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  14. Photosynthetic adaptation to light intensity in plants native to shaded and exposed habitats. [Rumex acetosa; Geum rivale; Lamium galeobdolon; Plantago lanceolata

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkman, O; Holmgren, P

    1966-01-01

    Photosynthetic adaptation to light intensity has been studied in clones of populations from shaded and exposed habitats of Rumex acetosa and Geum rivale. Clones of the shade species Lamium galeobdolon and the sun species Plantago lanceolata were also included for comparison. The plants were grown under controlled conditions at a high and a low light intensity. The capacity of photosynthetic carbon dioxide uptake at low as well as at saturating light intensities was determined on single attached leaves. As was previously demonstrated in Solidago virgaurea, clones of populations native to shaded and to exposed environments show differences in the photosynthetic response to light intensity during growth. The data provide evidence that populations of the same species native to habitats with contrasting light intensities differ in their photosynthetic properties in an adaptive manner in a similar mode as sun and shade species. 1 reference, 1 figure, 2 tables.

  15. Detection of long-term trends in carbon accumulation by forests in Northeastern U. S. and determination of causal factors: Final report

    Energy Technology Data Exchange (ETDEWEB)

    J. William Munger; Steven C. Wofsy; David R. Foster

    2012-01-31

    The overall project goal was to quantify the trends and variability for Net ecosystem exchange of CO{sub 2}, H{sub 2}O, and energy by northeastern forests, with particular attention to the role of succession, differences in species composition, legacies of past land use, and disturbances. Measurements included flux measurements and observations of biomass accumulation using ecosystem modeling as a framework for data interpretation. Continuation of the long-term record at the Environmental Measurement Site (EMS) Tower was a priority. The final quality-assured CO{sub 2}-flux data now extend through 2010. Data through 2011 are collected but not yet finalized. Biomass observations on the plot array centered on the tower are extended to 2011. Two additional towers in a hemlock stand (HEM) and a younger deciduous stand (LPH) complement the EMS tower by focusing on stands with different species composition or age distribution and disturbance history, but comparable climate and soil type. Over the period since 1993 the forest has added 24.4 Mg-C ha{sup -1} in the living trees. Annual net carbon uptake had been increasing from about 2 Mg-C ha{sup -1}y{sup -1} in the early 1990s to nearly 6 Mg-C ha{sup -1}y{sup -1} by 2008, but declined in 2009-2010. We attribute the increasing carbon uptake to a combination of warmer temperatures, increased photosynthetic efficiency, and increased influence by subcanopy hemlocks that are active in the early spring and late autumn when temperatures are above freezing but the deciduous canopy is bare. Not all of the increased carbon accumulation was found in woody biomass. Results from a study using data to optimize parameters in an ecosystem process model indicate that significant changes in model parameters for photosynthetic capacity and shifts in allocation to slow cycling soil organic matter are necessary for the model to match the observed trends. The emerging working hypothesis is that the pattern of increasing carbon uptake over the

  16. Earth's Early Biosphere and the Biogeochemical Carbon Cycle

    Science.gov (United States)

    DesMarais, David

    2004-01-01

    Our biosphere has altered the global environment principally by influencing the chemistry of those elements most important for life, e g., C, N, S, O, P and transition metals (e.g., Fe and Mn). The coupling of oxygenic photosynthesis with the burial in sediments of photosynthetic organic matter, and with the escape of H2 to space, has increased the state of oxidation of the Oceans and atmosphere. It has also created highly reduced conditions within sedimentary rocks that have also extensively affected the geochemistry of several elements. The decline of volcanism during Earth's history reduced the flow of reduced chemical species that reacted with photosynthetically produced O2. The long-term net accumulation of photosynthetic O2 via biogeochemical processes has profoundly influenced our atmosphere and biosphere, as evidenced by the O2 levels required for algae, multicellular life and certain modem aerobic bacteria to exist. When our biosphere developed photosynthesis, it tapped into an energy resource that was much larger than the energy available from oxidation-reduction reactions associated with weathering and hydrothermal activity. Today, hydrothermal sources deliver globally (0.13-1.1)x10(exp l2) mol yr(sup -1) of reduced S, Fe(2+), Mn(2+), H2 and CH4; this is estimated to sustain at most about (0.2-2)xl0(exp 12)mol C yr(sup -1) of organic carbon production by chemautotrophic microorganisms. In contrast, global photosynthetic productivity is estimated to be 9000x10(exp 12) mol C yr(sup -1). Thus, even though global thermal fluxes were greater in the distant geologic past than today, the onset of oxygenic photosynthesis probably increased global organic productivity by some two or more orders of magnitude. This enormous productivity materialized principally because oxygenic photosynthesizers unleashed a virtually unlimited supply of reduced H that forever freed life from its sole dependence upon abiotic sources of reducing power such as hydrothermal emanations

  17. Relationship of in-coming radiation with photosynthetically active, infra-red and net radiations in Brassica species and rocket salad (Eruca sativa)

    International Nuclear Information System (INIS)

    Nandwal, A.S.; Kuhad, M.S.

    1989-01-01

    Marked variation was observed among genotypes when the data for in-coming solar radiation were monitored horizontally. The regression equation for in-coming solar radiation versus photosynthetically active radiation and incoming solar radiation versus in-coming infra red radiation indicated linear relationship

  18. A comparison of simulation results from two terrestrial carbon cycle models using three climate data sets

    International Nuclear Information System (INIS)

    Ito, Akihiko; Sasai, Takahiro

    2006-01-01

    This study addressed how different climate data sets influence simulations of the global terrestrial carbon cycle. For the period 1982-2001, we compared the results of simulations based on three climate data sets (NCEP/NCAR, NCEP/DOE AMIP-II and ERA40) employed in meteorological, ecological and biogeochemical studies and two different models (BEAMS and Sim-CYCLE). The models differed in their parameterizations of photosynthetic and phenological processes but used the same surface climate (e.g. shortwave radiation, temperature and precipitation), vegetation, soil and topography data. The three data sets give different climatic conditions, especially for shortwave radiation, in terms of long-term means, linear trends and interannual variability. Consequently, the simulation results for global net primary productivity varied by 16%-43% only from differences in the climate data sets, especially in these regions where the shortwave radiation data differed markedly: differences in the climate data set can strongly influence simulation results. The differences among the climate data set and between the two models resulted in slightly different spatial distribution and interannual variability in the net ecosystem carbon budget. To minimize uncertainty, we should pay attention to the specific climate data used. We recommend developing an accurate standard climate data set for simulation studies

  19. Path of Carbon in Photosynthesis III.

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1948-06-01

    Although the overall reaction of photosynthesis can be specified with some degree of certainty (CO{sub 2} + H{sub 2}O + light {yields} sugars + possibly other reduced substances), the intermediates through which the carbon passes during the course of this reduction have, until now, been largely a matter of conjecture. The availability of isotopic carbon, that is, a method of labeling the carbon dioxide, provides the possibility of some very direct experiments designed to recognize these intermediates and, perhaps, help to understand the complex sequence and interplay of reactions which must constitute the photochemical process itself. The general design of such experiments is an obvious one, namely the exposure of the green plant to radioactive carbon dioxide and light under a variety of conditions and for continually decreasing lengths of time, followed by the identification of the compounds into which the radioactive carbon is incorporated under each condition and time period. From such data it is clear that in principle, at least, it should be possible to establish the sequence of compounds in time through which the carbon passes on its path from carbon dioxide to the final products. In the course of shortening the photosynthetic times, one times, one ultimately arrives at the condition of exposing the plants to the radioactive carbon dioxide with a zero illumination time, that is, in the dark. Actually, in the work the systematic order of events was reversed, and they have begun by studying first the dark fixation and then the shorter photosynthetic times. The results of the beginnings of this sort of a systematic investigation are given in Table I which includes three sets of experiments, namely a dark fixation experiment and two photosynthetic experiments, one of 30 seconds duration and the other of 60 seconds duration.

  20. Rewiring the Carbon Economy: Engineered Carbon Reduction Listening Day Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Illing, Lauren [BCS Inc., Laurel, MD (United States); Natelson, Robert [BCS Inc., Laurel, MD (United States); Resch, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rowe, Ian [USDOE Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States). Bioenergy Technologies Office (EE-3B); Babson, David [USDOE Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States). Bioenergy Technologies Office (EE-3B)

    2018-02-01

    On July 8, 2017, the U.S. Department of Energy’s Bioenergy Technologies Office (BETO) sponsored the Engineered Carbon Reduction Listening Day: Advanced Strategies to Bypass Land Use for the Emerging Bioeconomy in La Jolla, California. This event explored non-photosynthetic carbon dioxide–reduction technologies, including electrocatalytic, thermocatalytic, photocatalytic, and biocatalytic approaches. BETO has summarized stakeholder input from the listening day in a summary report.

  1. The magnitude of interannual variability of ecosystem photosynthetic capacity is controled by stand age and biodiversity

    Science.gov (United States)

    Musavi, Talie; Migliavacca, Mirco; Mahecha, Miguel D.; Reichstein, Markus; Kattge, Jens; Wirth, Christian; Black, T. Andrew; Janssens, Ivan; Knohl, Alexander; Loustau, Denis; Roupsard, Olivier; Varlagin, Andrej; Rambal, Serge; Cescatti, Alessandro; Gianelle, Damiano; Kondo, Hiroaki; Tamrakar, Rijan

    2017-04-01

    Gross primary productivity, GPP, the total uptake of carbon dioxide (CO2) by ecosystems via photosynthesis, is the largest flux in the global carbon cycle. The photosynthetic capacity at light saturation (GPPsat) is a fundamental ecosystem functional property and its interannual variability (IAV) is propagated to the net ecosystem exchange of CO2. In this contribution we made use of a variety of data streams consisting of ecosystem-atmosphere CO2 fluxes measured at eddy covariance flux sites with more than 4 years of data, the GPPsat derived at the different sites, information about climate (temperature, precipitation, and water availability index - WAI), biodiversity information and species richness, stand age, and plant traits, nutrient availability indexes derived from field campaigns, ancillary databases, and the literature. We also used data about forest structure derived from satellite products. Sites were selected according to the availability of eddy covariance flux measurements for at least 4 years, information about stand age, canopy cover, canopy height, and species abundance. The resulting global database consisted of 50 sites with different vegetation types across different climatic regions. Considering the importance of the understanding of IAV in CO2 fluxes to improve the predictive capacity of the global carbon cycle we analyzed a range of alternative hypotheses and potential drivers of the magnitude of IAV in GPPsat in forest ecosystems. The results show that the IAV in GPPsat within sites is driven by climate (i.e. fluctuations in air temperature and soil water availability), but the magnitude of IAV in GPPsat is related to ecosystem structure, and more in details to stand age and biodiversity (R2=0.55, p<0.0001). We conclude that irrespective of forest type the IAV of GPPsat in older and more diverse forests is dampened, and is higher in younger forests with few dominant species.

  2. Reducing the uncertainty of parameters controlling seasonal carbon and water fluxes in Chinese forests and its implication for simulated climate sensitivities

    Science.gov (United States)

    Li, Yue; Yang, Hui; Wang, Tao; MacBean, Natasha; Bacour, Cédric; Ciais, Philippe; Zhang, Yiping; Zhou, Guangsheng; Piao, Shilong

    2017-08-01

    Reducing parameter uncertainty of process-based terrestrial ecosystem models (TEMs) is one of the primary targets for accurately estimating carbon budgets and predicting ecosystem responses to climate change. However, parameters in TEMs are rarely constrained by observations from Chinese forest ecosystems, which are important carbon sink over the northern hemispheric land. In this study, eddy covariance data from six forest sites in China are used to optimize parameters of the ORganizing Carbon and Hydrology In Dynamics EcosystEms TEM. The model-data assimilation through parameter optimization largely reduces the prior model errors and improves the simulated seasonal cycle and summer diurnal cycle of net ecosystem exchange, latent heat fluxes, and gross primary production and ecosystem respiration. Climate change experiments based on the optimized model are deployed to indicate that forest net primary production (NPP) is suppressed in response to warming in the southern China but stimulated in the northeastern China. Altered precipitation has an asymmetric impact on forest NPP at sites in water-limited regions, with the optimization-induced reduction in response of NPP to precipitation decline being as large as 61% at a deciduous broadleaf forest site. We find that seasonal optimization alters forest carbon cycle responses to environmental change, with the parameter optimization consistently reducing the simulated positive response of heterotrophic respiration to warming. Evaluations from independent observations suggest that improving model structure still matters most for long-term carbon stock and its changes, in particular, nutrient- and age-related changes of photosynthetic rates, carbon allocation, and tree mortality.

  3. Branch growth and gas exchange in 13-year old loblobby pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization

    International Nuclear Information System (INIS)

    Maier, C. A.; Johnsen, K. H.; Butnor, J.; Kress, L. W.; Anderson, P. H.

    2002-01-01

    The combined effects of nutrient availability and carbon dioxide on growth and physiology in mature loblobby pine trees was investigated. Whole-tree open top chambers were used to expose 13-year old loblobby pine trees, growing in soil with high or low nutrient availability to elevated carbon dioxide to examine how carbon dioxide, foliar nutrition and crown position affect branch growth, phenology and physiology. Results showed that fertilization and elevated carbon dioxide increased branch leaf area, and the combined effects were additive. However, fertilization and elevated carbon dioxide differentially altered needle lengths, number of fascicles and flush length in such a way that flush density increased with improved nutrition but decreased with exposure to elevated carbon dioxide. Based on these results, it was concluded that changes in nitrogen availability and atmospheric carbon dioxide may alter canopy structure, facilitating greater foliage retention and deeper crowns in loblobby pine forests. Net photosynthesis and photosynthetic efficiency was increased in the presence of elevated carbon dioxide concentration and lowered the light compensation point, whereas fertilization had no appreciable effect on foliage gas exchange. 71 refs., 7 tabs., 7 figs

  4. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of Soybean (Glycine max) at elevated [CO2] and temperatures under fully open air field conditions

    Science.gov (United States)

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on 1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the ma...

  5. Atmospheric CO2 Observations Reveal Strong Correlation Between Regional Net Biospheric Carbon Uptake and Solar-Induced Chlorophyll Fluorescence

    Science.gov (United States)

    Shiga, Yoichi P.; Tadić, Jovan M.; Qiu, Xuemei; Yadav, Vineet; Andrews, Arlyn E.; Berry, Joseph A.; Michalak, Anna M.

    2018-01-01

    Recent studies have shown the promise of remotely sensed solar-induced chlorophyll fluorescence (SIF) in informing terrestrial carbon exchange, but analyses have been limited to either plot level ( 1 km2) or hemispheric/global ( 108 km2) scales due to the lack of a direct measure of carbon exchange at intermediate scales. Here we use a network of atmospheric CO2 observations over North America to explore the value of SIF for informing net ecosystem exchange (NEE) at regional scales. We find that SIF explains space-time NEE patterns at regional ( 100 km2) scales better than a variety of other vegetation and climate indicators. We further show that incorporating SIF into an atmospheric inversion leads to a spatial redistribution of NEE estimates over North America, with more uptake attributed to agricultural regions and less to needleleaf forests. Our results highlight the synergy of ground-based and spaceborne carbon cycle observations.

  6. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  7. [Photosynthetic rate, transpiration rate, and water use efficiency of cotton canopy in oasis edge of Linze].

    Science.gov (United States)

    Xie, Ting-Ting; Su, Pei-Xi; Gao, Song

    2010-06-01

    The measurement system of Li-8100 carbon flux and the modified assimilation chamber were used to study the photosynthetic characteristics of cotton (Gossypium hirsutum L.) canopy in the oasis edge region in middle reach of Heihe River Basin, mid Hexi Corridor of Gansu. At the experimental site, soil respiration and evaporation rates were significantly higher in late June than in early August, and the diurnal variation of canopy photosynthetic rate showed single-peak type. The photosynthetic rate was significantly higher (P transpiration rate also presented single-peak type, with the daily average value in late June and early August being (3.10 +/- 0.34) mmol H2O x m(-2) x s(-1) and (1.60 +/- 0.26) mmol H2O x m(-2) x s(-1), respectively, and differed significantly (P efficiency in late June and early August was (15.67 +/- 1.77) mmol CO2 x mol(-1) H2O and (23.08 +/- 5.54) mmol CO2 x mol(-1) H2O, respectively, but the difference was not significant (P > 0.05). Both in late June and in early August, the canopy photosynthetic rate was positively correlated with air temperature, PAR, and soil moisture content, suggesting that there was no midday depression of photosynthesis in the two periods. In August, the canopy photosynthetic rate and transpiration rate decreased significantly, because of the lower soil moisture content and leaf senescence, but the canopy water use efficiency had no significant decrease.

  8. Over-expressing the C3 photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE)

    Science.gov (United States)

    2011-01-01

    Background Biochemical models predict that photosynthesis in C3 plants is most frequently limited by the slower of two processes, the maximum capacity of the enzyme Rubisco to carboxylate RuBP (Vc,max), or the regeneration of RuBP via electron transport (J). At current atmospheric [CO2] levels Rubisco is not saturated; consequently, elevating [CO2] increases the velocity of carboxylation and inhibits the competing oxygenation reaction which is also catalyzed by Rubisco. In the future, leaf photosynthesis (A) should be increasingly limited by RuBP regeneration, as [CO2] is predicted to exceed 550 ppm by 2050. The C3 cycle enzyme sedoheptulose-1,7 bisphosphatase (SBPase, EC 3.1.3.17) has been shown to exert strong metabolic control over RuBP regeneration at light saturation. Results We tested the hypothesis that tobacco transformed to overexpressing SBPase will exhibit greater stimulation of A than wild type (WT) tobacco when grown under field conditions at elevated [CO2] (585 ppm) under fully open air fumigation. Growth under elevated [CO2] stimulated instantaneous A and the diurnal photosynthetic integral (A') more in transformants than WT. There was evidence of photosynthetic acclimation to elevated [CO2] via downregulation of Vc,max in both WT and transformants. Nevertheless, greater carbon assimilation and electron transport rates (J and Jmax) for transformants led to greater yield increases than WT at elevated [CO2] compared to ambient grown plants. Conclusion These results provide proof of concept that increasing content and activity of a single photosynthesis enzyme can enhance carbon assimilation and yield of C3 crops grown at [CO2] expected by the middle of the 21st century. PMID:21884586

  9. CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands

    Czech Academy of Sciences Publication Activity Database

    Rascher, U.; Agati, G.; Alonso, L.; Cecchi, G.; Champaigne, S.; Colombo, R.; Damm, A.; Daumard, F.; de Miguel, E.; Fernandez, G.; Franch, B.; Franke, J.; Gerbig, C.; Gioli, B.; Gomez, J.A.; Goulas, Y.; Guanter, L.; Gutierrez-de-la-Camara, O.; Hamdi, K.; Hostert, P.; Jimenez, M.; Košvancová, Martina; Lognoli, D.; Meroni, M.; Miglietta, F.; Moersch, A.; Moreno, J.; Moya, I.; Neininger, B.; Okujeni, A.; Ounis, A.; Palombi, L.; Raimondi, V.; Schickling, A.; Sobrino, J.A.; Stellmes, M.; Toci, G.; Toscano, P.; Udelhoven, T.; van der Linden, S.; Zaldei, A.

    2009-01-01

    Roč. 6, č. 7 (2009), s. 1181-1198 ISSN 1726-4170 Institutional research plan: CEZ:AV0Z60870520 Keywords : remote sensing * photosynthetic efficiency * fluorescence * CO2 flux * gross primary production * water-stress * steady-state Subject RIV: ED - Physiology Impact factor: 3.246, year: 2009 www.biogeosciences-discuss.net/6/2217/2009/

  10. Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Sarma, V.V.S.S.; Robin, R.S.; Raman, A.V.; JaiKumar, M.; Rakesh, M.; Subramanian, B.R.

    in monsoon was contributed by its supply from rivers and the rest was contributed by in situ heterotrophic activity. Based on oxygen and total carbon mass balance, net ecosystem production (NEP) of lake (- 308 mmolC m sup(-2) d sup(-1) approx. equal to - 3...

  11. Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits

    Czech Academy of Sciences Publication Activity Database

    Musavi, T.; Migliavacca, M.; van de Weg, M. J.; Kattge, J.; Wohlfahrt, G.; van Bodegom, P. M.; Reichstein, M.; Bahn, M.; Carrara, A.; Domingues, T. F.; Gavazzi, M.; Gianelle, D.; Gimeno, C.; Granier, A.; Gruening, C.; Havránková, Kateřina; Herbst, M.; Hrynkiw, Ch.; Kalhori, A.; Kaminski, T.; Klumpp, K.; Kolari, P.; Longdoz, B.; Minerbi, S.; Montagnani, L.; Moors, E.; Oechel, W.; Reich, P. B.; Rohatyn, S.; Rossi, A.; Rotenberg, E.; Varlagin, A.; Wilkinson, M.; Wirth, C.; Mahecha, M. D.

    2016-01-01

    Roč. 6, č. 20 (2016), s. 7352-7366 ISSN 2045-7758 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : gross primary production * cross-biome analysis * relative growth-rate * plant traits * carbon-dioxide * forest productivity * wide-range * environmental variation * nutrient concentrations * terrestrial biosphere * ecosystem functional property * eddy covariance * fluxnet * interannual variability * photosynthetic capacity * plant traits * spatiotemporal variability * TRY database Subject RIV: EH - Ecology, Behaviour Impact factor: 2.440, year: 2016

  12. Drivers of leaf carbon exchange capacity across biomes at the continental scale.

    Science.gov (United States)

    Smith, Nicholas G; Dukes, Jeffrey S

    2018-04-29

    Realistic representations of plant carbon exchange processes are necessary to reliably simulate biosphere-atmosphere feedbacks. These processes are known to vary over time and space, though the drivers of the underlying rates are still widely debated in the literature. Here, we measured leaf carbon exchange in >500 individuals of 98 species from the neotropics to high boreal biomes to determine the drivers of photosynthetic and dark respiration capacity. Covariate abiotic (long- and short-term climate) and biotic (plant type, plant size, ontogeny, water status) data were used to explore significant drivers of temperature-standardized leaf carbon exchange rates. Using model selection, we found the previous week's temperature and soil moisture at the time of measurement to be a better predictor of photosynthetic capacity than long-term climate, with the combination of high recent temperatures and low soil moisture tending to decrease photosynthetic capacity. Non-trees (annual and perennials) tended to have greater photosynthetic capacity than trees, and, within trees, adults tended to have greater photosynthetic capacity than juveniles, possibly as a result of differences in light availability. Dark respiration capacity was less responsive to the assessed drivers than photosynthetic capacity, with rates best predicted by multi-year average site temperature alone. Our results suggest that, across large spatial scales, photosynthetic capacity quickly adjusts to changing environmental conditions, namely light, temperature, and soil moisture. Respiratory capacity is more conservative and most responsive to longer-term conditions. Our results provide a framework for incorporating these processes into large-scale models and a dataset to benchmark such models. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. On the use of phloem sap δ13C to estimate canopy carbon discrimination

    Science.gov (United States)

    Rascher, Katherine; Máguas, Cristina; Werner, Christiane

    2010-05-01

    Although the carbon stable isotope composition (d13C) of bulk leaf material is a good integrative parameter of photosynthetic discrimination and can be used as a reliable ecological index of plant functioning; it is not a good tracer of short-term changes in photosynthetic discrimination. In contrast, d13C of phloem sap is potentially useful as an indicator of short-term changes in canopy photosynthetic discrimination. However, recent research indicates that d13C signatures may be substantially altered by metabolic processes downstream of initial leaf-level carbon fixation (e.g. post-photosynthetic fractionation). Accordingly, before phloem sap d13C can be used as a proxy for canopy level carbon discrimination an understanding of factors influencing the degree and magnitude of post-photosynthetic fractionation and how these vary between species is of paramount importance. In this study, we measured the d13C signature along the basipetal transport pathway in two co-occurring tree species in the field - an understory invasive exotic legume, Acacia longifolia, and a native pine, Pinus pinaster. We measured d13C of bulk leaf and leaf water soluble organic matter (WSOM), phloem sap sampled at two points along the plant axis and leaf and root dark respiration. In general, species differences in photosynthetic discrimination resulted in more enriched d13C values in the water-conserving P. pinaster relative to the water-spending A. longifolia. Post-photosynthetic fractionation led to differences in d13C of carbon pools along the plant axis with progressively more depleted d13C from the canopy to the trunk (~6.5 per mil depletion in A. longifolia and ~0.8per mil depletion in P. pinaster). Leaf and root respiration, d13C, were consistently enriched relative to putative substrates. We hypothesize that the pronounced enrichment of leaf respired CO2 relative to leaf WSOM may have left behind relatively depleted carbon to be loaded into the phloem resulting in d13C depletion

  14. Photosynthesis, growth and survival of the Mediterranean seagrass Posidonia oceanica in response to simulated salinity increases in a laboratory mesocosm system

    Science.gov (United States)

    Marín-Guirao, Lázaro; Sandoval-Gil, José M.; Ruíz, Juan M.; Sánchez-Lizaso, José L.

    2011-04-01

    This study aims to examine the effect of increased salinity on the photosynthetic activity of the Mediterranean seagrass Posidonia oceanica in a laboratory mesocosm system. To do this, large rhizome fragments were transplanted in a mesocosm laboratory system and maintained at 37 (ambient salinity, control treatment), 39, 41 and 43 (hypersaline treatments) for 47 days. Pigment content, light absorption, photosynthetic characteristics (derived from P vs. E curves and fluorescence parameters), and shoot size, growth rates and net shoot change were determined at the end of the experimental period. Both net and gross photosynthetic rates of plants under hypersaline conditions were significantly reduced, with rates some 25-33% and 13-20% lower than in control plants. The pigment content (Chl a, Chl b, Chl b:Chl a molar ratio, total carotenoids and carotenoids:Chl a ratio), leaf absorptance and maximum quantum yield of PSII ( F v/ F m) of control plants showed little or no changes under hypersaline conditions, which suggests that alterations to the capacity of the photosynthetic apparatus to capture and process light were not responsible for the reduced photosynthetic rates. In contrast, dark respiration rates increased substantially, with mean values up to 98% higher than in control leaves. These results suggest that the respiratory demands of the osmoregulatory process are likely to be responsible for the observed decrease in photosynthetic rates, although alterations to photosynthetic carbon assimilation and reduction could also be involved. As a consequence, leaf carbon balance was considerably impaired and leaf growth rates decreased as salinity increased above the ambient (control) salinity. No significant differences were found in the percentage of net shoot change, but mean values were clearly negative at salinity levels of 41 and 43. Results presented here indicate that photosynthesis of P. oceanica is highly sensitive to hypersaline stress and that it likely

  15. UV sensitivity of planktonic net community production in ocean surface waters

    Science.gov (United States)

    Regaudie-de-Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-05-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we test the sensitivity of net community production (NCP) to UVB of planktonic communities in surface waters across contrasting regions of the ocean. We observed here that UVB radiation affects net plankton community production at the ocean surface, imposing a shift in NCP by, on average, 50% relative to the values measured when excluding partly UVB. Our results show that under full solar radiation, the metabolic balance shows the prevalence of net heterotrophic community production. The demonstration of an important effect of UVB radiation on NCP in surface waters presented here is of particular relevance in relation to the increased UVB radiation derived from the erosion of the stratospheric ozone layer. Our results encourage design future research to further our understanding of UVB effects on the metabolic balance of plankton communities.

  16. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    Science.gov (United States)

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-06-24

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  17. Estimating Net Photosynthesis of Biological Soil Crusts in the Atacama Using Hyperspectral Remote Sensing

    Directory of Open Access Journals (Sweden)

    Lukas W. Lehnert

    2018-06-01

    Full Text Available Biological soil crusts (BSC encompassing green algae, cyanobacteria, lichens, bryophytes, heterotrophic bacteria and microfungi are keystone species in arid environments because of their role in nitrogen- and carbon-fixation, weathering and soil stabilization, all depending on the photosynthesis of the BSC. Despite their importance, little is known about the BSCs of the Atacama Desert, although especially crustose chlorolichens account for a large proportion of biomass in the arid coastal zone, where photosynthesis is mainly limited due to low water availability. Here, we present the first hyperspectral reflectance data for the most wide-spread BSC species of the southern Atacama Desert. Combining laboratory and field measurements, we establish transfer functions that allow us to estimate net photosynthesis rates for the most common BSC species. We found that spectral differences among species are high, and differences between the background soil and the BSC at inactive stages are low. Additionally, we found that the water absorption feature at 1420 nm is a more robust indicator for photosynthetic activity than the chlorophyll absorption bands. Therefore, we conclude that common vegetation indices must be taken with care to analyze the photosynthesis of BSC with multispectral data.

  18. Hybrid system of semiconductor and photosynthetic protein

    International Nuclear Information System (INIS)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-01-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. (topical reviews)

  19. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

    Science.gov (United States)

    Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L

    2017-03-07

    To increase energy security and reduce emissions of air pollutants and CO 2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP 20 and GWP 100 ). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP 20 . To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP 20 . We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

  20. Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Kottmeier, Dorothee M; Rokitta, Sebastian D; Rost, Björn

    2016-07-01

    A combined increase in seawater [CO2 ] and [H(+) ] was recently shown to induce a shift from photosynthetic HCO3 (-) to CO2 uptake in Emiliania huxleyi. This shift occurred within minutes, whereas acclimation to ocean acidification (OA) did not affect the carbon source. To identify the driver of this shift, we exposed low- and high-light acclimated E. huxleyi to a matrix of two levels of dissolved inorganic carbon (1400, 2800 μmol kg(-1) ) and pH (8.15, 7.85) and directly measured cellular O2 , CO2 and HCO3 (-) fluxes under these conditions. Exposure to increased [CO2 ] had little effect on the photosynthetic fluxes, whereas increased [H(+) ] led to a significant decline in HCO3 (-) uptake. Low-light acclimated cells overcompensated for the inhibition of HCO3 (-) uptake by increasing CO2 uptake. High-light acclimated cells, relying on higher proportions of HCO3 (-) uptake, could not increase CO2 uptake and photosynthetic O2 evolution consequently became carbon-limited. These regulations indicate that OA responses in photosynthesis are caused by [H(+) ] rather than by [CO2 ]. The impaired HCO3 (-) uptake also provides a mechanistic explanation for lowered calcification under OA. Moreover, it explains the OA-dependent decrease in photosynthesis observed in high-light grown phytoplankton. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Torsethaugen, Gro

    1998-09-01

    The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.

  2. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Directory of Open Access Journals (Sweden)

    Autumn Oczkowski

    2018-02-01

    Full Text Available Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C measurements could play in understanding that adaptation with a series of three Ecostat (i.e., continuous culture experiments. We quantified linkages among δ13C, nutrients, carbonate chemistry, primary, and secondary production in temperate estuarine waters. Experimental culture vessels (9.1 L containing 33% whole and 67% filtered (0.2 μm seawater were amended with dissolved inorganic nitrogen (N and phosphorous (P in low (3 vessels; 5 μM N, 0.3 μM P, moderate (3 vessels; 25 μM N, 1.6 μM P, and high amounts (3 vessels; 50 μM N, 3.1 μM P. The parameters necessary to calculate carbonate chemistry, chlorophyll-a concentrations, and particulate δ13C values were measured throughout the 14 day experiments. Outflow lines from the experimental vessels fed 250 ml containers seeded with juvenile blue mussels (Mytilus edulis. Mussel subsamples were harvested on days 0, 7, and 14 and their tissues were analyzed for δ13C values. We consistently observed that particulate δ13C values were positively correlated with chlorophyll-a, carbonate chemistry, and to changes in the ratio of bicarbonate to dissolved carbon dioxide (HCO3-:CO2. While the relative proportion of HCO3- to CO2 increased over the 14 days, concentrations of each declined, reflecting the drawdown of carbon associated with enhanced production. Plankton δ13C values, like chlorophyll-a concentrations, increased over the course of each experiment, with the greatest increases in the moderate and high treatments. Trends in δ13C over time were also observed in the mussel tissues. Despite ecological variability and different plankton abundances the experiments consistently demonstrated how δ13C values in primary producers and consumers reflected nutrient availability, via its impact on carbonate chemistry. We

  3. Leaf Characteristics and Photosynthetic Performance of Floating, Emergent and Terrestrial Leaves of Marsilea quadrifolia

    Directory of Open Access Journals (Sweden)

    Chia-Hong Lin

    2007-09-01

    Full Text Available Individuals of Marsilea quadrifolia, an amphibious fern, experiencing extreme variation in environment develop heterophyll. In this study, we compared stomatal and trichome density on upper and lower surfaces, leaf and petiole area mass ratio, spectral properties and photosynthetic performance of floating, emergent and terrestrial leaves of M. quadrifolia, to explore the ecological advantages of producing different leaf types. Morphological measurement reveals that these three types of leaf display highly differences in stomatal density on lower epidermis, trichome density on both surfaces and petiole dry mass per length, and reflectance coefficient between 500 and 650 nm. In contrast, no significant difference was found in the PSII electron transport rate of the three types of leaves. The analysis of stable carbon isotope ratio of the three types of leaves indicates that they all use C3 photosynthetic pathway.

  4. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin

    Science.gov (United States)

    Resende de Sousa, Celio Helder; Hilker, Thomas; Waring, Richard; Mendes De Moura, Yhasmin; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.

  5. Accelerating Net Terrestrial Carbon Uptake During the Warming Hiatus Due to Reduced Respiration

    Science.gov (United States)

    Ballantyne, Ashley; Smith, William; Anderegg, William; Kauppi, Pekka; Sarmiento, Jorge; Tans, Pieter; Shevliakova, Elena; Pan, Yude; Poulter, Benjamin; Anav, Alessandro; hide

    2017-01-01

    The recent warming hiatus presents an excellent opportunity to investigate climate sensitivity of carbon cycle processes. Here we combine satellite and atmospheric observations to show that the rate of net biome productivity (NBP) has significantly accelerated from - 0.007 +/- 0.065 PgC yr(exp -2) over the warming period (1982 to 1998) to 0.119 +/- 0.071 PgC yr(exp -2) over the warming hiatus (19982012). This acceleration in NBP is not due to increased primary productivity, but rather reduced respiration that is correlated (r = 0.58; P = 0.0007) and sensitive ( y = 4.05 to 9.40 PgC yr(exp -1) per C) to land temperatures. Global land models do not fully capture this apparent reduced respiration over the warming hiatus; however, an empirical model including soil temperature and moisture observations better captures the reduced respiration.

  6. Transcriptome-based analysis on carbon metabolism of Haematococcus pluvialis mutant under 15% CO2.

    Science.gov (United States)

    Li, Ke; Cheng, Jun; Lu, Hongxiang; Yang, Weijuan; Zhou, Junhu; Cen, Kefa

    2017-06-01

    To elucidate the mechanism underlying the enhanced growth rate in the Haematococcus pluvialis mutated with 60 Co-γ rays and domesticated with 15% CO 2 , transcriptome sequencing was conducted to clarify the carbon metabolic pathways of mutant cells. The CO 2 fixation rate of mutant cells increased to 2.57gL -1 d -1 under 15% CO 2 due to the enhanced photosynthesis, carbon fixation, glycolysis pathways. The upregulation of PetH, ATPF0A and PetJ related to photosynthetic electron transport, ATP synthase and NADPH generation promoted the photosynthesis. The upregulation of genes related to Calvin cycle and ppdK promoted carbon fixation in both C3 and C4 photosynthetic pathways. The reallocation of carbon was also enhanced under 15% CO 2 . The 19-, 14- and 3.5-fold upregulation of FBA, TPI and PK genes, respectively, remarkably promoted the glycolysis pathways. This accelerated the conversion of photosynthetic carbon to pyruvate, which was an essential precursor for astaxanthin and lipids biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biophysical controls on light response of net CO2 exchange in a winter wheat field in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Xiaojuan Tong

    Full Text Available To investigate the impacts of biophysical factors on light response of net ecosystem exchange (NEE, CO2 flux was measured using the eddy covariance technique in a winter wheat field in the North China Plain from 2003 to 2006. A rectangular hyperbolic function was used to describe NEE light response. Maximum photosynthetic capacity (P max was 46.6 ± 4.0 µmol CO2 m(-2 s(-1 and initial light use efficiency (α 0.059 ± 0.006 µmol µmol(-1 in April-May, two or three times as high as those in March. Stepwise multiple linear regressions showed that P max increased with the increase in leaf area index (LAI, canopy conductance (g c and air temperature (T a but declined with increasing vapor pressure deficit (VPD (P25°C or VPD>1.1-1.3 kPa, NEE residual increased with the increase in T a and VPD (P<0.001, indicating that temperature and water stress occurred. When g c was more than 14 mm s(-1 in March and May and 26 mm s(-1 in April, the NEE residuals decline disappeared, or even turned into an increase in g c (P<0.01, implying shifts from stomatal limitation to non-stomatal limitation on NEE. Although the differences between sunny and cloudy sky conditions were unremarkable for light response parameters, simulated net CO2 uptake under the same radiation intensity averaged 18% higher in cloudy days than in sunny days during the year 2003-2006. It is necessary to include these effects in relevant carbon cycle models to improve our estimation of carbon balance at regional and global scales.

  8. Inorganic carbon uptake during photosynthesis. II. Uptake by isolated Asparagus mesophyll cells during isotopic disequilibrium

    International Nuclear Information System (INIS)

    Espie, G.S.; Owttrim, G.W.; Colman, B.

    1986-01-01

    The species of inorganic carbon (CO 2 or HCO 3 - ) taken up as a source of substrate for photosynthetic fixation by isolated Asparagus sprengeri mesophyll cells is investigated. Discrimination between CO 2 or HCO 3 - transport, during steady state photosynthesis, is achieved by monitoring the changes (by 14 C fixation) which occur in the specific activity of the intracellular pool of inorganic carbon when the inorganic carbon present in the suspending medium is in a state of isotopic disequilibrium. Quantitative comparisons between theoretical (CO 2 or HCO 3 - transport) and experimental time-courses of 14 C incorporation, over the pH range of 5.2 to 7.5, indicate that the specific activity of extracellular CO 2 , rather than HCO 3 - , is the appropriate predictor of the intracellular specific activity. It is concluded, therefore, that CO 2 is the major source of exogenous inorganic carbon taken up by Asparagus cells. However, at high pH (8.5), a component of net DIC uptake may be attributable to HCO 3 - transport, as the incorporation of 14 C during isotopic disequilibrium exceeds the maximum possible incorporation predicted on the basis of CO 2 uptake alone. The contribution of HCO 3 - to net inorganic carbon uptake (pH 8.5) is variable, ranging from 5 to 16%, but is independent of the extracellular HCO 3 - concentration. The evidence for direct HCO 3 - transport is subject to alternative explanations and must, therefore, be regarded as equivocal. Nonlinear regression analysis of the rate of 14 C incorporation as a function of time indicates the presence of a small extracellular resistance to the diffusion of CO 2 , which is partially alleviated by a high extracellular concentration of HCO 3 -

  9. Study on carbon-fixing,oxygen-releasing,temperature-reducing and humidity-increasing effects of evergreen plants in south highway

    Directory of Open Access Journals (Sweden)

    LIU Minmin

    2014-04-01

    Full Text Available Li-6400 portable photosynthesis system,was used to test the diurnal variations of photosynthetic rate and stomatal conductance of evergreen plants in Southern Highway,and to calculate their ability of absorbing carbon dioxide and releasing oxygen and to calculate the transpiring water volume and absorbing heat quantity of plants.Results showed that Euonymus fortunei Hand-Mazz,Hedera helix.Aucuba eriobotryaefolia had better carbon-fixing and oxygen-releasing effects,while Photinia serrulata,Trachycarpus fortunei,Radix Ophiopogonis had worse carbon-fixing and oxygen-releasing effects.Radix Ophiopogonis,Photinia glabra,Euonymus fortunei Hand.-Mazz had higher cooling and humidification ability,while Photinia serrulata,Trachycarpus fortunei did not act as well as them.Euonymus fortunei Hand.-Mazz and Hedera helix had higher leaf chlorophyll in per unit mass,values are 12.91、10.34、9.93 mg·g-1.Radix Ophiopogonis、Cinnamomum camphora(Linn. Presl and Trachycarpus fortunei had lower leaf chlorophyll in per unit mass,value is 3.55、2.67、2.06 mg·g-1.Releasing oxygen,fixing carbon,net assimilation and chlorophyll content has good correlation(P<0.05.

  10. Increased Ratio of Electron Transport to Net Assimilation Rate Supports Elevated Isoprenoid Emission Rate in Eucalypts under Drought1[W][OPEN

    Science.gov (United States)

    Dani, Kaidala Ganesha Srikanta; Jamie, Ian McLeod; Prentice, Iain Colin; Atwell, Brian James

    2014-01-01

    Plants undergoing heat and low-CO2 stresses emit large amounts of volatile isoprenoids compared with those in stress-free conditions. One hypothesis posits that the balance between reducing power availability and its use in carbon assimilation determines constitutive isoprenoid emission rates in plants and potentially even their maximum emission capacity under brief periods of stress. To test this, we used abiotic stresses to manipulate the availability of reducing power. Specifically, we examined the effects of mild to severe drought on photosynthetic electron transport rate (ETR) and net carbon assimilation rate (NAR) and the relationship between estimated energy pools and constitutive volatile isoprenoid emission rates in two species of eucalypts: Eucalyptus occidentalis (drought tolerant) and Eucalyptus camaldulensis (drought sensitive). Isoprenoid emission rates were insensitive to mild drought, and the rates increased when the decline in NAR reached a certain species-specific threshold. ETR was sustained under drought and the ETR-NAR ratio increased, driving constitutive isoprenoid emission until severe drought caused carbon limitation of the methylerythritol phosphate pathway. The estimated residual reducing power unused for carbon assimilation, based on the energetic status model, significantly correlated with constitutive isoprenoid emission rates across gradients of drought (r2 > 0.8) and photorespiratory stress (r2 > 0.9). Carbon availability could critically limit emission rates under severe drought and photorespiratory stresses. Under most instances of moderate abiotic stress levels, increased isoprenoid emission rates compete with photorespiration for the residual reducing power not invested in carbon assimilation. A similar mechanism also explains the individual positive effects of low-CO2, heat, and drought stresses on isoprenoid emission. PMID:25139160

  11. Porphyrin and fullerene-based artificial photosynthetic materials for photovoltaics

    International Nuclear Information System (INIS)

    Imahori, Hiroshi; Kashiwagi, Yukiyasu; Hasobe, Taku; Kimura, Makoto; Hanada, Takeshi; Nishimura, Yoshinobu; Yamazaki, Iwao; Araki, Yasuyuki; Ito, Osamu; Fukuzumi, Shunichi

    2004-01-01

    We have developed artificial photosynthetic systems in which porphyrins and fullerenes are self-assembled as building blocks into nanostructured molecular light-harvesting materials and photovoltaic devices. Multistep electron transfer strategy has been combined with our finding that porphyrin and fullerene systems have small reorganization energies, which are suitable for the construction of light energy conversion systems as well as artificial photosynthetic models. Highly efficient photosynthetic electron transfer reactions have been realized at ITO electrodes modified with self-assembled monolayers of porphyrin oligomers as well as porphyrin-fullerene linked systems. Porphyrin-modified gold nanoclusters have been found to have potential as artificial photosynthetic materials. These results provide basic information for the development of nanostructured artificial photosynthetic systems

  12. Effects of nitrogen infiltration into plant tissue on the metabolism of carbon, with special reference to Themeda triandra Forssk

    Energy Technology Data Exchange (ETDEWEB)

    Amory, A M

    1983-01-01

    The infiltration of nitrate and ammonia into Themeda triandra and Zea mays leaf tissue influenced the carbon dioxide gas exchange characteristics: 1) the carbon dioxide compensation point increased, 2) the net photosynthetic rate was increased by the nitrate ion and decreased by the ammonium ion, and 3) dark respiration was unaffected. /sup 14/CO/sub 2/ assimilation and the partitioning of /sup 14/C by Themeda triandra leaves were influenced by the infiltration of both forms of nitrogen; the amino acid fraction changed in both composition and concentration. Nitrogen infiltration increased the activities of the following enzymes: aspartate amino-transferase, PEP carboxylase and RuBP carboxylase. Methionine sulphoximine (inhibitor of glutamate synthetase) increased the carbon dioxide compensation point and formate pool size. Infiltration of nitrate and ammonia enhanced the /sup 14/C uptake from labelled glycolate, glyoxylate and formate into the water soluble fraction of Themeda triandra leaves. The activities of RuBP carboxylase and RuBP oxygenase (to a greater extent) were increased by the addition of nitrate and ammonia in vitro.

  13. [THE EFFECT OF ACID RAIN ON ULTRASTRUCTURE AND FUNCTIONAL PARAMETERS OF PHOTOSYNTHETIC APPARATUS OF PEA LEAVES].

    Science.gov (United States)

    Polishchuk, A V; Vodka, M V; Belyavskaya, N A; Khomochkin, A P; Zolotareva, E K

    2016-01-01

    The effects of simulated acid rain (SAR) on the ultrastructure and functional parameters of the photosynthetic apparatus were studied using 14-day-old pea leaves as test system. Pea plants were sprayed with an aqueous solution containing NaNO₃(0.2 mM) and Na₂SO₄(0.2 mM) (pH 5.6, a control variant), or with the same solution, which was acidified to pH 2.5 (acid variant). Functional characteristics were determined by chlorophyll fluorescence analysis. Acid rain application caused reduction in the efficiency of the photosynthetic electron transport by 25%, which was accompanied by an increase by 85% in the quantum yield of thermal dissipation of excess light quanta. Ultrastructural changes in chloroplast were registered by transmission electron microscopy (TEM) after two days of the SAR-treatment of pea leaves. In this case, the changes in the structure of grana, heterogeneity of thylakoids packaging in granum, namely, the increase of intra-thylakoid gaps and thickness of granal thylakoids compared to the control were found. The migration of protein complexes in thylakoid membranes of chloroplasts isolated from leaves treated with SAR was suppressed. It was shown also that carbonic anhydrase activity was inhibited in chloroplast preparations isolated from SAR-treated pea leaves. We proposed a hypothesis on the possible inactivation of thylakoid carbonic anhydrase under SAR and its involvement in the inhibition of photochemical activity of chloroplasts. The data obtained allows to suggest that acid rains negatively affect the photosynthetic apparatus disrupting the membrane system of chloroplast.

  14. Balance de carbono en un bosque novedoso de Castilla elastica: resultados preliminares

    Science.gov (United States)

    Ariel E. Lugo; Jessica Fonseca da Silva; Alejandra María. Sáez Uribe

    2008-01-01

    During June 17 and 18, 2008, a Castilla elastica forest located in El Tallonal, municipality of Arecibo, functioned as a carbon sink. The net photosynthetic rate ranged from 14.28 (native species) and 21.96 (C. elastica) g C m-1 day-1 and respiration of leaves, stems, and soil varied from 13.76 (native species) and 16.88 (C. elastica) g C m-1 day-1. The net...

  15. Estimating Net Primary Productivity Using Satellite and Ancillary Data

    Science.gov (United States)

    Choudhury, Bhaskar J.

    2002-01-01

    The net primary productivity (C) or the annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of gross photosynthesis (A(sub g)) and respiration (R) per unit ground area. Available field observations show that R is a large and variable fraction of A(sub g), although it is generally recognized that there are considerable difficulties in determining these fluxes, and thus pose challenge in assessing the accuracy. Further uncertainties arise in extrapolating field measurements (which are acquired over a hectare or so area) to regional scale. Here, an approach is presented for determining these fluxes using satellite and ancillary data to be representative of regional scale and allow assessment of interannual variation. A, has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R(sub g) and R(sub m)).The R(sub m) has been determined from nitrogen content of plant tissue per unit ground area, while R(sub g) has been obtained as a fraction of the difference of A(sub g) and R(sub m). Results for five consecutive years (1986-1990) are presented for the Amazon-Tocontins, Mississippi, and Ob River basins.

  16. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    Science.gov (United States)

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  17. Effects of ultraviolet radiation (UVA+UVB) on young gametophytes of Gelidium floridanum: growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure.

    Science.gov (United States)

    Simioni, Carmen; Schmidt, Eder C; Felix, Marthiellen R de L; Polo, Luz Karime; Rover, Ticiane; Kreusch, Marianne; Pereira, Debora T; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-01-01

    This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1) and PAR+UVA (0.70 W m(-2))+UVB (0.35 W m(-2)) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development. © 2014 The American Society of Photobiology.

  18. Isotopic fractionation between organic carbon and carbonate carbon in Precambrian banded ironstone series from Brazil

    International Nuclear Information System (INIS)

    Schidlowski, M.; Eichmann, R.; Fiebiger, W.

    1976-01-01

    37 delta 13 Csub(org) and 9 delta 13 Csub(carb) values furnished by argillaceous and carbonate sediments from the Rio das Velhas and Minas Series (Minas Gerais, Brazil) have yielded means of -24.3 +- 3.9 promille [PDB] and -0.9 +- 1.4 promille [PDB], respectively. These results, obtained from a major sedimentary banded ironstone province with an age between 2 and 3 x 10 9 yr, support previous assumptions that isotopic fractionation between inorganic and organic carbon in Precambrian sediments is about the same as in Phanerozoic rocks. This is consistent with a theoretically expected constancy of the kinetic fractionation factor governing biological carbon fixation and, likewise, with a photosynthetic pedigree of the reduced carbon fraction of Precambrian rocks. (orig.) [de

  19. Inorganic Carbon Source for Photosynthesis in the Seagrass Thalassia hemprichii (Ehrenb.) Aschers.

    Science.gov (United States)

    Abel, K M

    1984-11-01

    Photosynthetic carbon uptake of the tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers was studied by several methods. Photosynthesis in buffered seawater in media in the range of pH 6 to pH 9 showed an exponentially increasing rate with decreasing pH, thus indicating that free CO(2) was a photosynthetic substrate. However, these experiments were unable to determine whether photosynthesis at alkaline pH also contained some component due to HCO(3) (-) uptake. This aspect was further investigated by studying photosynthetic rates in a number of media of varying pH (7.8-8.61) and total inorganic carbon (0.75-13.17 millimolar). In these media, photosynthetic rate was correlated with free CO(2) concentration and was independent of the HCO(3) (-) concentration in the medium. Short time-course experiments were conducted during equilibration of free CO(2) and HCO(3) (-) after injection of (14)C labeled solution at acid or alkaline pH. High initial photosynthetic rates were observed when acidic solutions (largely free CO(2)) were used but not with alkaline solutions. The concentration of free CO(2) was found to be a limiting factor for photosynthesis in this plant.

  20. Understanding Seasonal Dynamics of the Photo-Protective Xanthophyll Cycle Improves Remote Detection of Photosynthetic Phenology in Deciduous Trees and Evergreen Conifers

    Science.gov (United States)

    Ensminger, I.; Wong, C. Y.; Junker, L. V.; Bathena, Y.; Arain, M. A.; D'Odorico, P.

    2017-12-01

    The ability of plants to sequester carbon is highly variable over the course of the year and reflects seasonal variation in photosynthetic efficiency. This seasonal variation is most prominent during autumn, when leaves of deciduous tree species undergo senescence, which is associated with the downregulation of photosynthesis and a change of leaf color and leaf optical properties. Vegetation indices derived from remote sensing of leaf optical properties using e.g. spectral reflectance measurements are increasingly used to monitor and predict growing season length and seasonal variation in carbon sequestration. Here we compare leaf-level, canopy-level and drone based observations of leaf spectral reflectance measurements. We demonstrate that some of the widely used vegetation indices such as the normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI) vary in their ability to adequately track the seasonal variation in photosynthetic efficiency and chlorophyll content. We further show that monitoring seasonal variation of photosynthesis using NDVI or PRI is particularly challenging in evergreen conifers, due to little seasonal variation in foliage. However, there is remarkable seasonal variation in leaf optical properties associated with changes in pools of xanthophyll cycle pigments and carotenoids that provide a promising way of monitoring photosynthetic phenology in evergreen conifers via leaf reflectance measurements.

  1. A greenhouse-scale photosynthetic microbial bioreactor for carbon sequestration in magnesium carbonate minerals.

    Science.gov (United States)

    McCutcheon, Jenine; Power, Ian M; Harrison, Anna L; Dipple, Gregory M; Southam, Gordon

    2014-08-19

    A cyanobacteria dominated consortium collected from an alkaline wetland located near Atlin, British Columbia, Canada accelerated the precipitation of platy hydromagnesite [Mg5(CO3)4(OH)2·4H2O] in a linear flow-through experimental model wetland. The concentration of magnesium decreased rapidly within 2 m of the inflow point of the 10-m-long (∼1.5 m(2)) bioreactor. The change in water chemistry was monitored over two months along the length of the channel. Carbonate mineralization was associated with extra-cellular polymeric substances in the nutrient-rich upstream portion of the bioreactor, while the lower part of the system, which lacked essential nutrients, did not exhibit any hydromagnesite precipitation. A mass balance calculation using the water chemistry data produced a carbon sequestration rate of 33.34 t of C/ha per year. Amendment of the nutrient deficiency would intuitively allow for increased carbonation activity. Optimization of this process will have application as a sustainable mining practice by mediating magnesium carbonate precipitation in ultramafic mine tailings storage facilities.

  2. Effect of Mahanarva fimbriolata (Hemiptera: Cercopidae) Attack on Photosynthetic Parameters of Sugarcane Genotypes of Contrasting Susceptibility.

    Science.gov (United States)

    Soares, Bruno Oliveira; Chaves, Vinicius de Vicente; Tomaz, Adriano Cirino; Kuki, Kacilda Naomi; Peternelli, Luiz Alexandre; Barbosa, Márcio Henrique Pereira

    2017-12-05

    The aim of this study was to compare the effect of spittlebug Mahanarva fimbriolata Stål (Hemiptera: Cercopidae) on photosynthetic parameters of both a susceptible (SP81-3250) and a resistant (H.Kawandang) sugarcane genotype. In the first assay, the susceptibility level of genotypes to spittlebug was confirmed by comparing damage score and chlorophyll content of the plants. In the second assay, the effect of spittlebug nymphs on photosynthetic characteristics was assessed using the following parameters: Net photosynthetic rate (A), carboxylation efficiency (A/Ci), stomata conductance (gS), transpiration (E), electron transport rate (ETR), maximum quantum yield of Photosystem 2 (PSII) (FV/FM), effective quantum yield (Y(II)), photochemical quenching (Y(NPQ)), and nonphotochemical quenching (Y(NO)). Spittlebug nymphs affected the photosynthetic process of the susceptible genotype SP81-3250 by decreasing the Chl content, ETR, FV/FM, and Y(II). However, this genotype was able to maintain A probably due to its ability to maintain stomata aperture, increase the carboxylation efficiency of Rubisco, and dissipate excess energy through the xanthophyll cycle, as Y(NPQ) increased under the spittlebug attack. On the other hand, the spittlebug did not affect Chl content and FV/FM of the H.Kawandang genotype. Furthermore, H.Kawandang increased A to compensate for the sink demand by the spittlebug by increasing stomatal aperture and carboxylation efficiency and increasing efficiency of the photochemical apparatus in converting light energy into chemical products. We can conclude that the feeding habits of spittlebug nymphs have different impacts on photosynthesis of susceptible and resistant sugarcane genotypes. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Management effects on net ecosystem carbon and GHG budgets at European crop sites

    DEFF Research Database (Denmark)

    Ceschia, Eric; Bêziat, P; Dejoux, J.F.

    2010-01-01

    The greenhouse gas budgets of 15 European crop sites covering a large climatic gradient and corresponding to 41 site-years were estimated. The sites included a wide range of management practices (organic and/or mineral fertilisation, tillage or ploughing, with or without straw removal....... The variability of the different terms and their relative contributions to the net ecosystem carbon budget (NECB) were analysed for all site-years, and the effect of management on NECB was assessed. To account for greenhouse gas (GHG) fluxes that were not directly measured on site, we estimated the emissions...... caused by field operations (EFO) for each site using emission factors from the literature. The EFO were added to the NECB to calculate the total GHG budget (GHGB) for a range of cropping systems and management regimes. N2O emissions were calculated following the IPCC (2007) guidelines, and CH4 emissions...

  4. Research on spatial distribution of photosynthetic characteristics of Winter Wheat

    Science.gov (United States)

    Yan, Q. Q.; Zhou, Q. Y.; Zhang, B. Z.; Han, X.; Han, N. N.; Li, S. M.

    2018-03-01

    In order to explore the spatial distribution of photosynthetic characteristics of winter wheat leaf, the photosynthetic rate on different parts of leaf (leaf base-leaf middle-leaf apex) and that on each canopy (top layer-middle layer-bottom layer) leaf during the whole growth period of winter wheat were measured. The variation of photosynthetic rate with PAR and the spatial distribution of winter wheat leaf during the whole growth periods were analysed. The results showed that the photosynthetic rate of different parts of winter wheat increased with the increase of PAR, which was showed as leaf base>leaf middle>leaf apex. In the same growth period, photosynthetic rate in different parts of the tablet was showed as leaf middle>leaf base>leaf apex. For the different canopy layer of winter wheat, the photosynthetic rate of the top layer leaf was significantly greater than that of the middle layer and lower layer leaf. The photosynthetic rate of the top layer leaf was the largest in the leaf base position. The photosynthetic rate of leaf of the same canopy layer at different growth stages were showed as tasseling stage >grain filling stage > maturation stage.

  5. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species.

    Science.gov (United States)

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M; Dusenge, Mirindi Eric; Medlyn, Belinda E; Hasper, Thomas B; Nsabimana, Donat; Uddling, Johan

    2015-05-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species with those of exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to carbon dioxide (CO2 ) at different temperatures (20-40°C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Effect of ambient-level gas-phase peroxides on foliar injury, growth, and net photosynthesis in Japanese radish (Raphanus sativus)

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuan, E-mail: xuan66chen@yahoo.co.j [Chinese Research Academy of Environmental Science, No.8, Dayangfang, Anwai, Chaoyang District, Beijing 100012 (China); Aoki, Masatoshi [Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu-shi, Tokyo 183-8509 (Japan); Takami, Akinori [National Institute for Environmental Studies, Onogawa 16-2, Tsukuba-shi, Ibaraki 305-8506 (Japan); Chai Fahe [Chinese Research Academy of Environmental Science, No.8, Dayangfang, Anwai, Chaoyang District, Beijing 100012 (China); Hatakeyama, Shiro [Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu-shi, Tokyo 183-8509 (Japan)

    2010-05-15

    To investigate the effects of ambient-level gas-phase peroxides concurrent with O{sub 3} on foliar injury, photosynthesis, and biomass in herbaceous plants, we exposed Japanese radish (Raphanus sativus) to clean air, 50 ppb O{sub 3}, 100 ppb O{sub 3}, and 2-3 ppb peroxides + 50 ppb O{sub 3} in outdoor chambers. Compared with exposure to 100 ppb O{sub 3}, exposure to 2-3 ppb peroxides + 50 ppb O{sub 3} induced greater damage in foliar injury, net photosynthetic rates and biomass; the pattern of foliar injury and the cause of net photosynthetic rate reduction also differed from those occurring with O{sub 3} exposure alone. These results indicate for the first time that sub-ppb peroxides + 50 ppb O{sub 3} can cause more severe damage to plants than 100 ppb O{sub 3}, and that not only O{sub 3}, but also peroxides, could be contributing to the herbaceous plant damage and forest decline observed in Japan's air-polluted urban and remote mountains areas. - Ambient-level gas-phase peroxides coexisted with 50 ppb O{sub 3} may contribute to the herbaceous plants damage and forest decline observed in Japan.

  7. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status.

    Science.gov (United States)

    Meinzer, Frederick C; Smith, Duncan D; Woodruff, David R; Marias, Danielle E; McCulloh, Katherine A; Howard, Ava R; Magedman, Alicia L

    2017-08-01

    Species' differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this continuum. Here, we evaluated kinetics of light-induced stomatal opening, activation of photosynthesis and features of quasi-steady-state photosynthetic gas exchange in 10 woody species selected to represent different degrees of anisohydry. Based on a previously developed proxy for the degree of anisohydry, species' leaf water potentials at turgor loss, we found consistent trends in photosynthetic gas exchange traits across a spectrum of isohydry to anisohydry. More anisohydric species had faster kinetics of stomatal opening and activation of photosynthesis, and these kinetics were closely coordinated within species. Quasi-steady-state stomatal conductance and measures of photosynthetic capacity and performance were also greater in more anisohydric species. Intrinsic water-use efficiency estimated from leaf gas exchange and stable carbon isotope ratios was lowest in the most anisohydric species. In comparisons between gas exchange traits, species rankings were highly consistent, leading to species-independent scaling relationships over the range of isohydry to anisohydry observed. © 2017 John Wiley & Sons Ltd.

  8. ;Every dogma has its day': a personal look at carbon metabolism in photosynthetic bacteria.

    Science.gov (United States)

    Ormerod, John

    2003-01-01

    Dogmas are unscientific. What is perhaps the greatest biological dogma of all time, the 'unity of biochemistry' is, in the main, still having its day. According to present knowledge, the exceptions to this dogma are mere details when seen in relation to the biosystem as a whole. Nevertheless the exceptions are scientifically interesting and the understanding of them has led to a better comprehension of photosynthesis and ecology. Until the discovery of (14)C, photosynthetic CO(2) fixation was like a slightly opened black box. With (14)C in hand scientists mapped out the path of carbon in green plant photosynthesis in the course of a few years. The impressive reductive pentose phosphate cycle was almost immediately assumed to be universal in autotrophs, including anoxygenic phototrophs, in spite of the odd observation to the contrary. A new dogma was born and held the field for about two decades. Events began to turn when green sulfur bacteria were found to contain ferredoxin-coupled ketoacid-oxidoreductases. This led to the formulation of a novel CO(2)-fixing pathway, the reductive citric acid cycle, but its general acceptance required much work by many investigators. However, the ice had now been broken and after some years a third mechanism of CO(2) fixation was discovered, this time in Chloroflexus,and then a fourth in the same genus. One consequence of these discoveries is that it has become apparent that oxygen is an important factor that determines the kind of CO(2)-fixing mechanism an organism uses. With the prospect of the characterization of hordes of novel bacteria forecast by molecular ecologists we can expect further distinctive CO(2) fixation mechanisms to turn up.

  9. Dependence of wheat and rice respiration on tissue nitrogen and the corresponding net carbon fixation efficiency under different rates of nitrogen application

    Science.gov (United States)

    Sun, Wenjuan; Huang, Yao; Chen, Shutao; Zou, Jianwen; Zheng, Xunhua

    2007-02-01

    To quantitatively address the role of tissue N in crop respiration under various agricultural practices, and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respiration, and hence net carbon fixation efficiency ( E ncf), pot and field experiments were carried out for an annual rotation of a rice-wheat cropping system from 2001 to 2003. The treatments of the pot experiments included fertilizer N application, sowing date and planting density. Different rates of N application were tested in the field experiments. Static opaque chambers were used for sampling the gas. The respiration as CO2 emission was detected by a gas chromatograph. A successive biomass clipping method was employed to determine the crop autotrophic respiration coefficient ( R a). Results from the pot experiments revealed a linear relationship between R a and tissue N content as R a = 4.74N-1.45 ( R 2 = 0.85, P < 0.001). Measurements and calculations from the field experiments indicated that fertilizer N application promoted not only biomass production but also increased the respiration of crops. A further investigation showed that the increase of carbon loss in terms of respiration owing to fertilizer N application exceeded that of net carbon gain in terms of aboveground biomass when fertilizer N was applied over a certain rate. Consequently, the E ncf declined as the N application rate increased.

  10. Photosynthetic performance of restored and natural mangroves under different environmental constraints

    International Nuclear Information System (INIS)

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes

    2013-01-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (α ETR ). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. -- Highlights: •Photosynthetic efficiency of natural and restored mangroves are compared. •Natural stands present higher photosynthetic performance. •Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination. •Chlorophyll a fluorescence is a useful indicator to assess short-term restoration. -- Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination

  11. Photosynthetic performance of restored and natural mangroves under different environmental constraints

    Energy Technology Data Exchange (ETDEWEB)

    Rovai, André Scarlate, E-mail: rovaias@hotmail.com [Universidade Federal de Santa Catarina, Departamento de Ecologia e Zoologia, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Barufi, José Bonomi, E-mail: jose.bonomi@gmail.com [Universidade Federal de Santa Catarina, Departamento de Botânica, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Pagliosa, Paulo Roberto, E-mail: paulo.pagliosa@ufsc.br [Universidade Federal de Santa Catarina, Departamento de Geociências, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Scherner, Fernando [Universidade Federal Rural de Pernambuco, Laboratório de Ficologia, Campus Universitário, Dois Irmãos, 52171-900 Recife, PE (Brazil); Torres, Moacir Aluísio, E-mail: moatorres@cav.udesc.br [Universidade do Estado de Santa Catarina, Departamento de Engenharia Ambiental, Centro de Ciências Agroveterinárias, Av Luiz de Camões 2090, Conta Dinheiro, 88520-000 Lages, SC (Brazil); Horta, Paulo Antunes, E-mail: pahorta@ccb.ufsc.br [Universidade Federal de Santa Catarina, Departamento de Botânica, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); others, and

    2013-10-15

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (α{sub ETR}). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. -- Highlights: •Photosynthetic efficiency of natural and restored mangroves are compared. •Natural stands present higher photosynthetic performance. •Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination. •Chlorophyll a fluorescence is a useful indicator to assess short-term restoration. -- Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination.

  12. A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency.

    Directory of Open Access Journals (Sweden)

    Chunlai Li

    2011-07-01

    Full Text Available Photosynthesis is the final determinator for crop yield. To gain insight into genes controlling photosynthetic capacity, we selected from our large T-DNA mutant population a rice stunted growth mutant with decreased carbon assimilate and yield production named photoassimilate defective1 (phd1. Molecular and biochemical analyses revealed that PHD1 encodes a novel chloroplast-localized UDP-glucose epimerase (UGE, which is conserved in the plant kingdom. The chloroplast localization of PHD1 was confirmed by immunoblots, immunocytochemistry, and UGE activity in isolated chloroplasts, which was approximately 50% lower in the phd1-1 mutant than in the wild type. In addition, the amounts of UDP-glucose and UDP-galactose substrates in chloroplasts were significantly higher and lower, respectively, indicating that PHD1 was responsible for a major part of UGE activity in plastids. The relative amount of monogalactosyldiacylglycerol (MGDG, a major chloroplast membrane galactolipid, was decreased in the mutant, while the digalactosyldiacylglycerol (DGDG amount was not significantly altered, suggesting that PHD1 participates mainly in UDP-galactose supply for MGDG biosynthesis in chloroplasts. The phd1 mutant showed decreased chlorophyll content, photosynthetic activity, and altered chloroplast ultrastructure, suggesting that a correct amount of galactoglycerolipids and the ratio of glycolipids versus phospholipids are necessary for proper chloroplast function. Downregulated expression of starch biosynthesis genes and upregulated expression of sucrose cleavage genes might be a result of reduced photosynthetic activity and account for the decreased starch and sucrose levels seen in phd1 leaves. PHD1 overexpression increased photosynthetic efficiency, biomass, and grain production, suggesting that PHD1 plays an important role in supplying sufficient galactolipids to thylakoid membranes for proper chloroplast biogenesis and photosynthetic activity. These

  13. Carbon emission reductions by substitution of improved cookstoves and cattle mosquito nets in a forest-dependent community

    Directory of Open Access Journals (Sweden)

    Somanta Chan

    2015-07-01

    Substitution of conventional cookstoves with improved cookstoves and the use of mosquito nets instead of fuelwood burning could result in using less fuelwood for the same amount of energy needed and thereby result in reduction of carbon emissions and deforestation. To realize this substitution, approximately US$ 15–25 MgCO2−1 is needed depending on discount rates and amounts of emission reduction. Substitution of cookstoves will have direct impacts on the livelihoods of forest-dependent communities and on forest protection. Financial incentives under voluntary and mandatory schemes are needed to materialize this substitution.

  14. Growth, photosynthetic pigments and production of essential oil of long-pepper under different light conditions

    Directory of Open Access Journals (Sweden)

    VANDIMILLI A. LIMA

    Full Text Available ABSTRACT Piper hispidinervum C. DC. is popularly known as long-pepper and it owns a commercial value due to the essential oil it produces. Long-pepper oil is rich in safrole and eugenoln components that have insecticidal, fungicidal and bactericidal activity. It has been establish that to medicinal plants light influences not only growth but also essential oil production. The growth, the content of photosynthetic pigments and the essential oil production of Piper hispidinervum at greenhouses with different light conditions was evaluated. The treatments were characterized by cultivation of plants for 180 days under different light conditions, produced by shading greenhouses with 50% and 30% of natural incident irradiance, two colored shading nets red (RN and blue (BN both blocking 50% of the incident radiation and one treatment at full-sun (0% of shade. The results showed that the treatments of 50% shade and RN and BN were the ones which stimulated the greater growth. Blue and red light also had the best production of photosynthetic pigments. Essential oil yielded more under full sun therefore this is the most indicated condition to produce seedlings for the chemical and pharmaceutical industry.

  15. Growth, photosynthetic pigments and production of essential oil of long-pepper under different light conditions.

    Science.gov (United States)

    Lima, Vandimilli A; Pacheco, Fernanda V; Avelar, Rafaella P; Alvarenga, Ivan C A; Pinto, José Eduardo B P; Alvarenga, Amauri A DE

    2017-01-01

    Piper hispidinervum C. DC. is popularly known as long-pepper and it owns a commercial value due to the essential oil it produces. Long-pepper oil is rich in safrole and eugenoln components that have insecticidal, fungicidal and bactericidal activity. It has been establish that to medicinal plants light influences not only growth but also essential oil production. The growth, the content of photosynthetic pigments and the essential oil production of Piper hispidinervum at greenhouses with different light conditions was evaluated. The treatments were characterized by cultivation of plants for 180 days under different light conditions, produced by shading greenhouses with 50% and 30% of natural incident irradiance, two colored shading nets red (RN) and blue (BN) both blocking 50% of the incident radiation and one treatment at full-sun (0% of shade). The results showed that the treatments of 50% shade and RN and BN were the ones which stimulated the greater growth. Blue and red light also had the best production of photosynthetic pigments. Essential oil yielded more under full sun therefore this is the most indicated condition to produce seedlings for the chemical and pharmaceutical industry.

  16. Photosynthetic light reactions at the gold interface

    NARCIS (Netherlands)

    Kamran, Muhammad

    2014-01-01

    In the project described in this thesis we studied a simple bio-electronic device for solar energy conversion by surface-assembly of photosynthetic pigment-protein complexes on a bare gold-electrode. Optical excitation of the photosynthetic pigments gives rise to charge separation in the so-called

  17. Nongovernmental valorization of carbon dioxide

    International Nuclear Information System (INIS)

    Petersen, Gene; Viviani, Donn; Magrini-Bair, Kim; Kelley, Stephen; Moens, Luc; Shepherd, Phil; DuBois, Dan

    2005-01-01

    Carbon dioxide (CO 2 ) is considered the largest contributor to the greenhouse gas effect. Most attempts to manage the flow of CO 2 or carbon into our environment involve reducing net emissions or sequestering the gas into long-lived sinks. Using CO 2 as a chemical feedstock has a long history, but using it on scales that might impact the net emissions of CO 2 into the atmosphere has not generally been considered seriously. There is also a growing interest in employing our natural biomes of carbon such as trees, vegetation, and soils as storage media. Some amelioration of the net carbon emissions into the atmosphere could be achieved by concomitant large withdrawals of carbon. This report surveys the potential and limitations in employing carbon as a resource for organic chemicals, fuels, inorganic materials, and in using the biome to manage carbon. The outlook for each of these opportunities is also described

  18. Seasonal reversal of temperature-moisture response of net carbon exchange of biocrusted soils in a cool desert ecosystem.

    Science.gov (United States)

    Tucker, C.; Reed, S.; Howell, A.

    2017-12-01

    Carbon cycling associated with biological soil crusts, which occur in interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the `mantle of fertility'), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report data collected in a cool desert ecosystem over one year using a multi-sensor approach to simultaneously measuring temperature and moisture of the biocrust surface layer (0-2 mm), and the deeper soil profile (5-20 cm), concurrent with automated measurement of surface soil CO2 effluxes. Our results illuminate robust relationships between microclimate and field CO2 pulses that have previously been difficult to detect and explain. The temperature of the biocrust surface layer was highly variable, ranging from minimum of -9 °C in winter to maximum of 77 °C in summer with a maximum diurnal range of 61 °C. Temperature cycles were muted deeper in the soil profile. During summer, biocrust and soils were usually hot and dry and CO2 fluxes were tightly coupled to pulse wetting events experienced at the biocrust surface, which consistently resulted in net CO2 efflux (i.e., respiration). In contrast, during the winter, biocrust and soils were usually cold and moist, and there was sustained net CO2 uptake via photosynthesis by biocrust organisms, although during cold dry periods CO2 fluxes were minimal. During the milder spring and fall seasons, short wetting events drove CO2 loss, while sustained wetting events resulted in net CO2 uptake. Thus, the upper and lower bounds of net CO2 exchange at a point in time were functions of the seasonal temperature regime, while the actual flux within those bounds was determined by the magnitude and duration of biocrust

  19. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.

    Science.gov (United States)

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin

    2017-08-01

    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.

  20. Evolving a photosynthetic organelle

    Directory of Open Access Journals (Sweden)

    Nakayama Takuro

    2012-04-01

    Full Text Available Abstract The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles. The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis - the conversion of solar energy into chemical energy - and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  1. Evolving a photosynthetic organelle.

    Science.gov (United States)

    Nakayama, Takuro; Archibald, John M

    2012-04-24

    The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles.The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis--the conversion of solar energy into chemical energy--and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  2. Net carbon dioxide emissions from alternative firewood-production systems in Australia

    International Nuclear Information System (INIS)

    Paul, K.I.; Booth, T.H.; Jovanovic, T.; Polglase, P.J.; Elliott, A.; Kirschbaum, M.U.F.

    2006-01-01

    The use of firewood for domestic heating has the potential to reduce fossil-fuel use and associated CO 2 emissions. The level of possible reductions depends upon the extent to which firewood off-sets the use of fossil fuels, the efficiency with which wood is burnt, and use of fossil fuels for collection and transport of firewood. Plantations grown for firewood also have a cost of emissions associated with their establishment. Applying the FullCAM model and additional calculations, these factors were examined for various management scenarios under three contrasting firewood production systems (native woodland, sustainably managed native forest, and newly established plantations) in low-medium rainfall (600-800mm) regions of south-eastern Australia. Estimates of carbon dioxide emissions per unit of heat energy produced for all scenarios were lower than for non-renewable energy sources (which generally emit about 0.3-1.0kgCO 2 kWh -1 ). Amongst the scenarios, emissions were greatest when wood was periodically collected from dead wood in woodlands (0.11kgCO 2 kWh -1 ), and was much lower when obtained from harvest residues and dead wood in native forests ( 2 kWh -1 ). When wood was obtained from plantations established on previously cleared agricultural land, use of firewood led to carbon sequestration equivalent to -0.06kgCO 2 kWh -1 for firewood obtained from a coppiced plantation, and -0.17kgCO 2 kWh -1 for firewood collected from thinnings, slash and other residue in a plantation grown for sawlog production. An uncertainty analysis, where inputs and assumptions were varied in relation to a plausible range of management practices, identified the most important influencing factors and an expected range in predicted net amount of CO 2 emitted per unit of heat energy produced from burning firewood. (author)

  3. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    Directory of Open Access Journals (Sweden)

    Brümmer Franz

    2009-02-01

    Full Text Available Abstract Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide

  4. Photosynthetic production of diterpenoids in chloroplasts and cyanobacteria

    DEFF Research Database (Denmark)

    Vavitsas, Konstantinos

    Terpenoids are one of the largest classes of chemical compounds, some of them with industrial interest as nutraceuticals, biofuels, or chemical feedstocks. Diterpenoids are a large terpenoid subclass, and their chemical structure consists of a core skeleton of 20 carbon atoms. This skeleton can...... be further modified by cyclizing enzymes, and be decorated by the addition of chemical groups. Even though they are mainly plant-derived compounds, diterpenoid production in photosynthetic organisms is rather unexplored, with a few successful studies reported in the literature. In this thesis, I elaborate...... on the potential of using plant chloroplasts and cyanobacteria as biosynthetic vessels, with a focus on diterpenoid production, and on the potential direct linking of photosynthesis to drive electron-consuming enzymes, such as the monooxygenases cytochrome P450s. I subsequently present the full localization...

  5. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists.

    Science.gov (United States)

    Hadariová, Lucia; Vesteg, Matej; Hampl, Vladimír; Krajčovič, Juraj

    2018-04-01

    Chloroplasts are generally known as eukaryotic organelles whose main function is photosynthesis. They perform other functions, however, such as synthesizing isoprenoids, fatty acids, heme, iron sulphur clusters and other essential compounds. In non-photosynthetic lineages that possess plastids, the chloroplast genomes have been reduced and most (or all) photosynthetic genes have been lost. Consequently, non-photosynthetic plastids have also been reduced structurally. Some of these non-photosynthetic or "cryptic" plastids were overlooked or unrecognized for decades. The number of complete plastid genome sequences and/or transcriptomes from non-photosynthetic taxa possessing plastids is rapidly increasing, thus allowing prediction of the functions of non-photosynthetic plastids in various eukaryotic lineages. In some non-photosynthetic eukaryotes with photosynthetic ancestors, no traces of plastid genomes or of plastids have been found, suggesting that they have lost the genomes or plastids completely. This review summarizes current knowledge of non-photosynthetic plastids, their genomes, structures and potential functions in free-living and parasitic plants, algae and protists. We introduce a model for the order of plastid gene losses which combines models proposed earlier for land plants with the patterns of gene retention and loss observed in protists. The rare cases of plastid genome loss and complete plastid loss are also discussed.

  6. Effect of earthworms on growth, photosynthetic efficiency and metal uptake in Brassica juncea L. plants grown in cadmium-polluted soils.

    Science.gov (United States)

    Kaur, Parminder; Bali, Shagun; Sharma, Anket; Vig, Adarsh Pal; Bhardwaj, Renu

    2017-05-01

    The present study has been carried out to examine the role of earthworms in phytoremediation of Cd and its effect on growth, pigment content, expression of genes coding key enzymes of pigments, photosynthetic efficiency and osmoprotectants in Brassica juncea L. plants grown under cadmium (Cd) metal stress. The effect of different Cd concentrations (0.50, 0.75, 1.0, 1.25 mM) was studied in 30 and 60-day-old plants grown in soils containing earthworms. It was observed that earthworm inoculation showed stimulatory effect on phytoremediation capacity and Cd uptake has increased by 49% (in 30-day-old plants) and 35% (in 60-day-old plants) in shoots and 13.3% (in 30-day-old plants) and 10% (in 60-day-old plants) in roots in 30 and 60-day-old plants in Cd (1.25 mM) treatments. Plant growth parameters such as root and shoot length, relative water content and tolerance index were found to increase in the presence of earthworms. Recovery in photosynthetic pigments (chlorophyll and carotenoid) and gas exchange parameters, i.e. net photosynthetic rate (P n ), stomatal conductance (G s ), intercellular CO 2 concentration (C i ) and transpiration rate (E t ), was observed after earthworm's supplementation. Modulation in expression of key enzymes for pigment synthesis, i.e. chlorophyllase, phytoene synthase, chalcone synthase and phenylalanine ammonia lyase, was also observed. The results of our study revealed that earthworms help to mitigate the toxic effects produced by Cd on plant growth and photosynthetic efficiency along with enhanced phytoremediation capacity when co-inoculated with Cd in soil.

  7. On the physical controls of the carbon dioxide balance at a high arctic site in Svalbard

    International Nuclear Information System (INIS)

    Lloyd, C.R.

    2001-01-01

    Current predictions of the effects of climate change indicate that the Arctic may experience a larger than average increase in temperature with consequent changes to the length of the snow-free active summer period, winter snow depth and amount and frequency of summer precipitation being highly probable. This paper reports on measurements of carbon dioxide flux at a high arctic site at Ny-Aalesund (78 o 56' N, 11 o 55' E), Svalbard and the physical climate variables that largely control this flux. lt is shown that during three important precipitation-free periods of the active summer period, namely post snow melt, high summer, and early autumn, the net balance between CO 2 flux from the soil (due to respiration of roots and soil organisms) and CO 2 assimilation by the vegetation is controlled largely by soil temperature and solar radiation. A simple combined photosynthetic assimilation-soil respiration model is shown to be capable of simulating the net CO 2 flux during mid-summer, but is less proficient in the post snow melt period and in early autumn when the simple models' inability to simulate the effects of emergent growth and ponding during the former and senescence, freezing temperatures and dew during the latter indicates the need for a more complex descriptive model. The net CO 2 flux during the measurement periods progresses from a net CO 2 source of 0.3 gC m -2 d -1 during late snow melt to a mid summer net CO 2 sink of -0.39 gC m -2 d -1 , returning to a net CO 2 source of 0.1 gC m -2 d -1 in the early autumn. Simple extrapolation of the data indicates that, during the active summer season in 1995, this site was a net sink of CO 2 of approximately -9 gC m -2 . (author)

  8. The changing global carbon cycle: Linking plant-soil carbon dynamics to global consequences

    Science.gov (United States)

    Chapin, F. S.; McFarland, J.; McGuire, David A.; Euskirchen, E.S.; Ruess, Roger W.; Kielland, K.

    2009-01-01

    Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition).

  9. The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers.

    Science.gov (United States)

    Wong, Christopher Y S; Gamon, John A

    2015-04-01

    In evergreens, the seasonal down-regulation and reactivation of photosynthesis is largely invisible and difficult to assess with remote sensing. This invisible phenology may be changing as a result of climate change. To better understand the mechanism and timing of these hidden physiological transitions, we explored several assays and optical indicators of spring photosynthetic activation in conifers exposed to a boreal climate. The photochemical reflectance index (PRI), chlorophyll fluorescence, and leaf pigments for evergreen conifer seedlings were monitored over 1 yr of a boreal climate with the addition of gas exchange during the spring. PRI, electron transport rate, pigment levels, light-use efficiency and photosynthesis all exhibited striking seasonal changes, with varying kinetics and strengths of correlation, which were used to evaluate the mechanisms and timing of spring activation. PRI and pigment pools were closely timed with photosynthetic reactivation measured by gas exchange. The PRI provided a clear optical indicator of spring photosynthetic activation that was detectable at leaf and stand scales in conifers. We propose that PRI might provide a useful metric of effective growing season length amenable to remote sensing and could improve remote-sensing-driven models of carbon uptake in evergreen ecosystems. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Impact of Aerosols on Shortwave and Photosynthetically Active Radiation Balance over Sub-tropical Region in South Asia: Observational and Modeling Approach

    Science.gov (United States)

    Subba, T.; Pathak, B.

    2016-12-01

    The North-East Indian Region (NER) (22-30ºN, 89-98ºE) in south Asia sandwiched between two global biodiversity hotspots namely, Himalaya and Indo-Burma, assumes significance owing to its unique topography with mountains in the north, east and south and densely populated Indo Gangetic plains (IGP) towards the west resulting in complex aerosol system. Multi-year (2010-2014) concurrent measurements of aerosol properties and the shortwave radiation budget are examined over four geographically distinct stations of NER operational under Indian Space Research organization's ARFINET (Aerosol Radiative Forcing over India NETwork). An attempt has been made to lessen the ambiguity of forcing estimation by validating the radiative transfer modelled ARF with the CNR4 net radiometer measured values (r2 0.98). The Normalized Difference Vegetation Index and its dependence on the extinction of the photosynthetically active radiation (PAR) due to aerosol are assessed. The spring time enhancement of aerosols in the column has shown significant surface cooling (ARF = -48 ± 5 Wm-2) over the region, while the very high Black Carbon (BC) mass concentrations near the surface (SSA > 0.8) leads to significant atmospheric warming (ARF = +41 ± 7 Wm-2) in the shortwave range. Radiative forcing estimates reveal that the atmospheric forcing by BC could be as high as +30Wm-2 over the western part, which are significantly higher than the eastern part with a consequent heating rate of 1.5 K day-1 revealing an east-west asymmetry over NER. The impact of BC aerosols on the photosynthetic rate varies among different locations ranging from -5±2 Wm-2 to -25±3 Wm-2. Almost 70% of the total atmospheric shortwave radiative absorption is attributed to just 10% contribution of Black Carbon (BC) to total mass concentration and causes a reduction of more than 30% of PAR reaching the surface over Brahmaputra valley due to direct radiative effect. Comparison of previous and the present study shows highest

  11. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis.

    Science.gov (United States)

    Terrado, Ramon; Pasulka, Alexis L; Lie, Alle A-Y; Orphan, Victoria J; Heidelberg, Karla B; Caron, David A

    2017-09-01

    Collectively, phagotrophic algae (mixotrophs) form a functional continuum of nutritional modes between autotrophy and heterotrophy, but the specific physiological benefits of mixotrophic nutrition differ among taxa. Ochromonas spp. are ubiquitous chrysophytes that exhibit high nutritional flexibility, although most species generally fall towards the heterotrophic end of the mixotrophy spectrum. We assessed the sources of carbon and nitrogen in Ochromonas sp. strain BG-1 growing mixotrophically via short-term stable isotope probing. An axenic culture was grown in the presence of either heat-killed bacteria enriched with 15 N and 13 C, or unlabeled heat-killed bacteria and labeled inorganic substrates ( 13 C-bicarbonate and 15 N-ammonium). The alga exhibited high growth rates (up to 2 divisions per day) only until heat-killed bacteria were depleted. NanoSIMS and bulk IRMS isotope analyses revealed that Ochromonas obtained 84-99% of its carbon and 88-95% of its nitrogen from consumed bacteria. The chrysophyte assimilated inorganic 13 C-carbon and 15 N-nitrogen when bacterial abundances were very low, but autotrophic (photosynthetic) activity was insufficient to support net population growth of the alga. Our use of nanoSIMS represents its first application towards the study of a mixotrophic alga, enabling a better understanding and quantitative assessment of carbon and nutrient acquisition by this species.

  12. Short Communication Evidence of carbon transport between shelf ...

    African Journals Online (AJOL)

    The world ocean is pivotal in the global carbon cycle and, subsequent to anthropogenic loading of the atmosphere with CO2, its ability to sequestrate photosynthetically-fixed carbon is important with respect to our ability to predict climate change. A study of the Benguela Edge Exchange Processes was carried out to better ...

  13. Effects of seasonal variation of photosynthetic capacity on the carbon fluxes of a temperate deciduous forest

    Science.gov (United States)

    David Medvigy; Su-Jong Jeong; Kenneth L. Clark; Nicholas S. Skowronski; Karina V. R. Schäfer

    2013-01-01

    Seasonal variation in photosynthetic capacity is an important part of the overall seasonal variability of temperate deciduous forests. However, it has only recently been introduced in a few terrestrial biosphere models, and many models still do not include it. The biases that result from this omission are not well understood. In this study, we use the Ecosystem...

  14. Photosynthetic response of the floating-leaved macrophyte Nymphoides peltata to a temporary terrestrial habitat and its implications for ecological recovery of Lakeside zones

    Directory of Open Access Journals (Sweden)

    Yu H.

    2014-01-01

    Full Text Available For the ecological recovery of lakeside zones in shallow eutrophic lakes, choosing suitable aquatic macrophytes which could adapt to the temporary terrestrial habitat due to water level change is very important. In the present study, an experimental approach was carried out to explore the photosynthetic response of the typical floating-leaved aquatic plant Nymphoides peltata (N. peltata to varying environmental factors. N. peltata grown under aquatic and terrestrial habitats showed similar photosynthesis-irradiance response patterns. The investigation of diurnal changes in gas exchange revealed that the net photosynthetic rate (PN and water-use efficiency (WUE of the N. peltata grown in the terrestrial habitat were 68% and 94% higher, respectively, than those in the aquatic habitat at nine in the morning. N. peltata grown in the terrestrial habitat had approximately 51% less stomatal density and a 77% smaller stomatal aperture area compared with those grown in aquatic habitats. The above results indicated that N. peltata could be well-acclimated to the terrestrial habitat by developing a series of photosynthetic acclimation features. Our study may provide an important reference for restoration in lakeside zones of shallow eutrophic lakes.

  15. NACP North American 8-km Net Ecosystem Exchange and Component Fluxes, 2004

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides modeled carbon flux estimates at 8-km spatial resolution over North America for the year 2004 of (1) net ecosystem exchange (NEE) of carbon...

  16. Effects of differnt juvenile mixed plantations on growth and photosynthetic physiology of pinus yunnanensis franch

    International Nuclear Information System (INIS)

    Zheng, Y.; Ou, G. L.; Chen, D. D.; Liu, G. Y.; Li, Q. Q.; Zhang, S. H.; Han, M. Y.; Chen, J. L.

    2017-01-01

    The growth characteristics, photosynthetic gas exchange features, physiological and biochemical resistance, and soil nutrition contents of different juvenile mixed plantations were analyzed. Moreover, the synergic effect mechanism of the different species was elucidated to improve the stand quality of Pinus yunnanensis Franch. plantations and guide the screening of P. yunnanensis mixed plantations. The mixed plantations were P. yunnanensis-Alnus nepalensis-Quercus acutissima, P. yunnanensis-A. nepalensis-Cyclobalanopsis glaucoides, and P. yunnanensis-Q. acutissima-C. glaucoides. Individual juvenile plantations of pure P. yunnanensis, A. nepalensis, Q. acutissima, and C. glaucoides were used as control groups. Results showed that pure P. yunnanensis juvenile plantation consumed more soil organic matter, total nitrogen (TN), total phosphorus (TP), and total potassium (TK) than the other plantations. This plantation also showed poorer growth characteristics, poorer photosynthetic capability, lower water utilization efficiency (WUE), and biochemical resistance in infertile soil, as shown by the nutrition and water competition. Increasing soil organic matters, TN, TP, and TK of the different mixed plantations evidently enhanced height, ground diameter growth rate, net photosynthetic rate (Pn), transpiration rate (Tr), WUE, carboxylation efficiency (CE), soluble sugar (SS) content, and superoxide dismutase (SOD) activity. Moreover, different mixed forests slightly influenced the characteristics of photosynthetic gas exchange and physiological and biochemical resistance of A. nepalensis. All stand types facilitated growth of tree height and basal diameter of Q. acutissima sapling. Although Q. acutissima inhibited physiological and biochemical resistance of leaves to a certain extent, they increased WUE significantly. Different stand types slightly influenced growth features, Pn, Tr, and WUE of C. glaucoides sapling. Moreover, they inhibited the osmotic adjustment system

  17. Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.

    Directory of Open Access Journals (Sweden)

    Wei Yan

    Full Text Available Estimate of net ecosystem carbon exchange (NEE between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP and ecosystem respiration (Reco has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model.

  18. Photosynthetic responses of yellow poplar and white oak to long term atmospheric CO2 enrichment in the field

    International Nuclear Information System (INIS)

    Gunderson, C.A.; Norby, R.J.

    1991-01-01

    A critical consideration in evaluating forest response to rising atmospheric CO 2 is whether the enhancement of net photosynthesis (P N ) by elevated CO 2 can be sustained over the long term. There are reports of declining enhancement of P N with duration of exposure to elevated CO 2 , associated with decreases in photosynthetic capacity and carboxylation efficiency. We investigated whether this photosynthetic acclimation occurs in two tree species under field conditions. Seedlings of yellow-poplar (Liriodendron tulipifera L.) and white oak (Quercus alba L.) were planted in the ground within six open-top field chambers in May 1989 and have been exposed continuously to CO 2 enrichment during the last two growing seasons. The three CO 2 treatment levels were: ambient, ambient +150, and ambient +300 μL/L. Throughout the second season, gas exchange of upper, light-saturated leaves was surveyed periodically, and leaves of different ages and canopy positions were measured occasionally. Net photosynthesis remained higher at higher CO 2 levels (28-32% higher in +150 and 49-67% higher in +300 seedlings) in both species throughout the season, regardless of increasing leaf age and duration of exposure to CO 2 enrichment. Stomatal conductance remained unchanged or decreased slightly with increasing CO 2 , but instantaneous water use efficiency (P N /transpiration) increased significantly with CO 2 . Analysis of P N versus internal CO 2 concentration indicated no significant treatment differences in carboxylation efficiency, CO 2 -saturated P N , or CO 2 compensation point. There was no evidence of a downward acclimation of photosynthesis to CO 2 enrichment in this system

  19. Molecular mechanisms behind the adjustment of phototrophic light-harvesting and mixotrophic utilization of cellulosic carbon sources in Chlamydomonas reinhardtii

    OpenAIRE

    Blifernez-Klassen, Olga

    2012-01-01

    Plants, green algae and cyanobacteria perform photosynthetic conversion of sunlight into chemical energy in a permanently changing natural environment, where the efficient utilization of light and inorganic carbon represent the most critical factors. Photosynthetic organisms have developed different acclimation strategies to adapt changing light conditions and insufficient carbon source supply in order to survive and to assure optimal growth and protection. This thesis provides further insigh...

  20. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  1. Effects of Foliar Application of Nano Zinc Chelate and Zinc Sulfate on Zinc Content, Pigments and Photosynthetic Indices of Holy Basil (Ocimum sanctum(

    Directory of Open Access Journals (Sweden)

    Zohreh Moghimi pour

    2017-02-01

    Full Text Available Introduction: Holy basil is a perennial plant belongs to Lamiaceae family. The plant is a perennial and thrives well in the hot and humid climate. Its aerial parts have been in use for food, pharmaceuticals, cosmetics and perfumery industries. Leaves contain 0.5-1.5% essential oil and main oil components are eugenol, methyl eugenol, carvacrol, methyl chavicol and1,8-cineole. A balanced fertilization program with macro and micronutrients is very important in producing high quality yield. Zinc is involved in IAA production, chlorophyll biosynthesis, carbon assimilation, saccharids accumulation, reactive oxygen radicals scavenging and finally carbon utilization in volatile oil biosynthesis. Material and methods: In order to evaluate the effect on zinc foliar application on zinc content of leaves, photosynthetic indices and pigments of holy basil, an experiment was carried out in 2013 at a research farm of Horticultural Science, Shahid Chamran University (31°20'N latitude and 48°40'E longitude and 22.5 m mean sea level, Ahvaz (Iran, a region characterized by semi-dry climate. The experiment was arranged based on Randomized Complete Block Design (RCBD with six treatments and three replications. The treatments were nano zinc chelate (0, 0.5, 1 and 1.5 g.l-1 and zinc sulfate (1 and 1.5 g.l-1 fertilizers. Land preparation includes disking and the formation of raising beds (15cm high and 45cm wide across the top using a press-pan-type bed shaper. Holy basil seeds were sown on two rows on each bed, with 15 cm in-row and 40 cm between-row spacing. The plants were irrigated weekly as needed. Foliar application of zinc fertilizers was done at six-eight leaf stage and were repeated with interval 15 days until full bloom stage. Zinc content, stomata conductance (gs, CO2 under stomata (Ci, transpiration rate (E, net photosynthesis (Pn, light use efficiency (LUE, water use efficiency (WUE and also chlorophyll a, chlorophyll b, chlorophyll a+b and carotenoid

  2. Evaluation and inversion of a net ecosystem carbon exchange model for grasslands and croplands

    Science.gov (United States)

    Herbst, M.; Klosterhalfen, A.; Weihermueller, L.; Graf, A.; Schmidt, M.; Huisman, J. A.; Vereecken, H.

    2017-12-01

    A one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) was coupled to predict the net ecosystem exchange (NEE) of carbon. This model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was acceptable with a model efficiency >0.78 for NEE. In a second step, AgroC was optimized with the eddy covariance NEE measurements to examine the effect of various objective functions, constraints, and data-transformations on estimated NEE, which showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. Both, day and nighttime fluxes, were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting annual NEE differed substantially. We conclude that data-transformation, definition of objective functions, and data sources have to be considered cautiously when using a terrestrial ecosystem model to determine carbon balances by means of eddy covariance measurements.

  3. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Directory of Open Access Journals (Sweden)

    Xia Chen

    2018-01-01

    Full Text Available An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis photosynthetic stems, and the sap flux (Js and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII and ΦPSII (effective photochemical quantum yield of PSII values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux and Js,n (nighttime sap flux of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680 than in non-photosynthetic stems species (SlopeSMA = 1.943. These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  4. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547

  5. Absorption of SO/sub 2/ by pecan (Carya illinoensis (Wang) K. Koch) and alfalfa (Medicago sativa L. ) and its effect on net photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sisson, W.B.; Booth, J.A.; Throneberry, G.O.

    1981-06-01

    Absorption rates of SO/sub 2/ by pecan (Carya illinoensis (Wang) K. Koch) leaflets exposed to 2.6, 5.2, and 7.8 mg SO/sub 2/ m/sup -3/ were measured over a 2 h period. SO/sub 2/ was rapidly absorbed by the leaflets in all treatments during the initial 30-50 min; the rate of uptake decreased to a rather constant level thereafter. Total SO/sub 2/ absorbed during the 2 h period was 15.6, 25.6, and 38.9 nmol cm/sup -2/ for the low, medium, and high SO/sub 2/ concentrations, respectively. Reductions in net photosynthetic rates were proportional to ambient SO/sub 2/ concentrations and total SO/sub 2/ absorbed. Partial photosynthetic recovery occurred in all treatments during a 2 hr post-treatment period and full recovery occurred during a 12 h dark period. Exposure to SO/sub 2/ resulted in slight increases in stomatal and boundary layer resistances to CO/sub 2/ and substantial increases in residual resistances. Absorption rates of SO/sub 2/ by alfalfa (Medicago sativa L.) exposed to 5.2 mg SO/sub 2/ m/sup -3/ for 1 h were approximately double those of pecan exposed to the same ambient SO/sub 2/ concentration. Alfalfa net photosynthetic rates were reduced 74% after 1 h exposure to 5.2 mg SO/sub 2/ m/sup -3/ while a depression of 42% occurred in pecan.

  6. Oxygen concentration inside a functioning photosynthetic cell.

    Science.gov (United States)

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-06

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Multiple photosynthetic transitions, polyploidy, and lateral gene transfer in the grass subtribe Neurachninae.

    Science.gov (United States)

    Christin, Pascal-Antoine; Wallace, Mark J; Clayton, Harmony; Edwards, Erika J; Furbank, Robert T; Hattersley, Paul W; Sage, Rowan F; Macfarlane, Terry D; Ludwig, Martha

    2012-10-01

    The Neurachninae is the only grass lineage known to contain C(3), C(4), and C(3)-C(4) intermediate species, and as such has been suggested as a model system for studies of photosynthetic pathway evolution in the Poaceae; however, a lack of a robust phylogenetic framework has hindered this possibility. In this study, plastid and nuclear markers were used to reconstruct evolutionary relationships among Neurachninae species. In addition, photosynthetic types were determined with carbon isotope ratios, and genome sizes with flow cytometry. A high frequency of autopolyploidy was found in the Neurachninae, including in Neurachne munroi F.Muell. and Paraneurachne muelleri S.T.Blake, which independently evolved C(4) photosynthesis. Phylogenetic analyses also showed that following their separate C(4) origins, these two taxa exchanged a gene encoding the C(4) form of phosphoenolpyruvate carboxylase. The C(3)-C(4) intermediate Neurachne minor S.T.Blake is phylogenetically distinct from the two C(4) lineages, indicating that intermediacy in this species evolved separately from transitional stages preceding C(4) origins. The Neurachninae shows a substantial capacity to evolve new photosynthetic pathways repeatedly. Enablers of these transitions might include anatomical pre-conditions in the C(3) ancestor, and frequent autopolyploidization. Transfer of key C(4) genetic elements between independently evolved C(4) taxa may have also facilitated a rapid adaptation of photosynthesis in these grasses that had to survive in the harsh climate appearing during the late Pliocene in Australia.

  8. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    A.W. King; R.J. Andres; K J. Davis; M. Hafer; D.J. Hayes; D.N. Huntzinger; B. de Jong; W.A. Kurz; A.D. McGuire; R. Vargas; Y. Wei; T.O. West; C.W. Woodall

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net...

  9. Use of carbonates for biological and chemical synthesis

    Science.gov (United States)

    Rau, Gregory Hudson

    2014-09-09

    A system of using carbonates, especially water-insoluble or sparing soluble mineral carbonates, for maintaining or increasing dissolved inorganic carbon concentrations in aqueous media. In particular, the system generates concentrated dissolve inorganic carbon substrates for photosynthetic, chemosynthetic, or abiotic chemical production of carbonaceous or other compounds in solution. In some embodiments, the invention can also enhance the dissolution and retention of carbon dioxide in aqueous media, and can produce pH buffering capacity, metal ions, and heat, which can be beneficial to the preceding syntheses.

  10. Net ecosystem carbon dioxide exchange in tropical rainforests - sensitivity to environmental drivers and flux measurement methodology

    Science.gov (United States)

    Fu, Z.; Stoy, P. C.

    2017-12-01

    Tropical rainforests play a central role in the Earth system services of carbon metabolism, climate regulation, biodiversity maintenance, and more. They are under threat by direct anthropogenic effects including deforestation and indirect anthropogenic effects including climate change. A synthesis of the factors that determine the net ecosystem exchange of carbon dioxide (NEE) across multiple time scales in different tropical rainforests has not been undertaken to date. Here, we study NEE and its components, gross primary productivity (GPP) and ecosystem respiration (RE), across thirteen tropical rainforest research sites with 63 total site-years of eddy covariance data. Results reveal that the five ecosystems that have greater carbon uptakes (with the magnitude of GPP greater than 3000 g C m-2 y-1) sequester less carbon - or even lose it - on an annual basis at the ecosystem scale. This counterintuitive result is because high GPP is compensated by similar magnitudes of RE. Sites that provided subcanopy CO2 storage observations had higher average magnitudes of GPP and RE and consequently lower NEE, highlighting the importance of measurement methodology for understanding carbon dynamics in tropical rainforests. Vapor pressure deficit (VPD) constrained GPP at all sites, but to differing degrees. Many environmental variables are significantly related to NEE at time scales greater than one year, and NEE at a rainforest in Malaysia is significantly related to soil moisture variability at seasonal time scales. Climate projections from 13 general circulation models (CMIP5) under representative concentration pathway (RCP) 8.5 suggest that many current tropical rainforest sites on the cooler end of the current temperature range are likely to reach a climate space similar to present-day warmer sites by the year 2050, and warmer sites will reach a climate space not currently experienced. Results demonstrate the need to quantify if mature tropical trees acclimate to heat and

  11. Photosynthetic, morphological, and reproductive variations in Cypripedium tibeticum in relation to different light regimes in a subalpine forest.

    Directory of Open Access Journals (Sweden)

    Bao-Qiang Zheng

    Full Text Available Cypripedium tibeticum, a subalpine orchid species, inhabits various habitats of subalpine forests, mainly including the forest edge (FE, forest gap (FG, and understory (UST, which have significantly different light intensities (FE > FG > UST. However, the ecological and physiological influences caused by different light regimes in this species are still poorly understood. In the present study, photosynthetic, morphological, and reproductive characteristics were comprehensively studied in plants of C. tibeticum grown in three types of habitats. The photosynthetic capacities, such as the net photosynthetic rate, light-saturated photosynthesis (Pmax, and dry mass per unit leaf area (LMA, were higher in FE and FG than in UST according to light availability. Compared with FG, the populations in FE and UST suffer from excessively strong and inadequate radiation, respectively, which was further corroborated by the low Fv/Fm in FE and high apparent quantum yield (AQY in FG. The leaves of the orchids had various proportions of constituents, such as the leaf area, thickness and (or epidermal hair, to reduce damage from high radiation (including ultraviolet-b radiation in FE and capture more light in FG and UST. Although the flower rate (FR was positively correlated to both Pmax and the daily mean PAR, fruit-set only occurred in the populations in FG. The failures in FE and UST might be ascribed to changes in the floral functional structure and low biomass accumulation, respectively. Moreover, analysis of the demographic statistics showed that FG was an advantageous habitat for the orchid. Thus, C. tibeticum reacted to photosynthetic and morphological changes to adapt to different subalpine forest habitats, and neither full (under FE nor low (UST illumination was favorable for population expansion. These findings could serve as a guide for the protection and reintroduction of C. tibeticum and emphasize the importance of specific habitats for Cypripedium

  12. Photosynthetic, morphological, and reproductive variations in Cypripedium tibeticum in relation to different light regimes in a subalpine forest.

    Science.gov (United States)

    Zheng, Bao-Qiang; Zou, Long-Hai; Li, Kui; Wan, Xiao; Wang, Yan

    2017-01-01

    Cypripedium tibeticum, a subalpine orchid species, inhabits various habitats of subalpine forests, mainly including the forest edge (FE), forest gap (FG), and understory (UST), which have significantly different light intensities (FE > FG > UST). However, the ecological and physiological influences caused by different light regimes in this species are still poorly understood. In the present study, photosynthetic, morphological, and reproductive characteristics were comprehensively studied in plants of C. tibeticum grown in three types of habitats. The photosynthetic capacities, such as the net photosynthetic rate, light-saturated photosynthesis (Pmax), and dry mass per unit leaf area (LMA), were higher in FE and FG than in UST according to light availability. Compared with FG, the populations in FE and UST suffer from excessively strong and inadequate radiation, respectively, which was further corroborated by the low Fv/Fm in FE and high apparent quantum yield (AQY) in FG. The leaves of the orchids had various proportions of constituents, such as the leaf area, thickness and (or) epidermal hair, to reduce damage from high radiation (including ultraviolet-b radiation) in FE and capture more light in FG and UST. Although the flower rate (FR) was positively correlated to both Pmax and the daily mean PAR, fruit-set only occurred in the populations in FG. The failures in FE and UST might be ascribed to changes in the floral functional structure and low biomass accumulation, respectively. Moreover, analysis of the demographic statistics showed that FG was an advantageous habitat for the orchid. Thus, C. tibeticum reacted to photosynthetic and morphological changes to adapt to different subalpine forest habitats, and neither full (under FE) nor low (UST) illumination was favorable for population expansion. These findings could serve as a guide for the protection and reintroduction of C. tibeticum and emphasize the importance of specific habitats for Cypripedium spp.

  13. Enzymatic regulation of photosynthetic and light-independent carbon fixation in Laminaria setchellii (Phaeophyta, Ulva lactuca (Chlorophyta and Iridaea cordata (Rhodophyta Regulación enzimática de la fotosíntesis y la fijación de carbono en obscuridad por Laminaria setchellii (Phaeophyta, Ulva lactuca (Chlorophyta e Iridaea cordata (Rhodophyta

    Directory of Open Access Journals (Sweden)

    ALEJANDRO CABELLO-PASINI

    2001-06-01

    Full Text Available Carbon is acquired through photosynthetic and non-photosynthetic processes in marine algae. However, little is known about the biochemical regulation of these metabolic pathways along the thallus of seaweeds. Consequently, the objective of this study was to assess the distribution of in vivo carboxylation pathways and to relate them to the in vitro activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBISCO, phosphoenolpyruvate carboxykinase (PEPCK, and phosphoenolpyruvate carboxylase (PEPC in the Phaeophyte Laminaria setchellii, the Chlorophyte Ulva lactuca, and the Rhodophyte Iridaea cordata. Chlorophyll-a levels did not vary in U. lactuca and I. cordata. However, pigment levels were significantly lower in the meristematic region of L. setchellii probably as a result of a lack of differentiation of the chloroplasts in this region. Similarly, net photosynthesis did not vary in the thallus of U. lactuca and I. cordata, while it increased from the stipe and meristem towards the lamina of L. setchellii. In contrast to photosynthesis, light-independent carbon fixation rates were significantly greater in the meristematic region of L. setchellii suggesting a compensating mechanism for carbon incorporation in photosynthetically limited tissue. The activity of RUBISCO and PEPCK followed a pattern similar to that of in vivo carboxylation processes indicating that in vivo carbon assimilation is regulated by the activity of the carboxylating enzymes throughout the thallus of L. setchelliiLa incorporación de carbono en algas marinas se lleva a cabo mediante procesos fotosintéticos y no-fotosintéticos. Sin embargo, poco se sabe sobre la regulación bioquímica de estas rutas metabólicas en el tejido de algas marinas. En consecuencia, el objetivo de este estudio fue el de evaluar la distribución de la carboxilación in vivo y relacionarlas a la actividad in vitro de ribulosa 1,5-bisfosfato carboxilasa/oxigenasa (RUBISCO, fosfoenolpiruvato

  14. Long-term structural canopy changes sustain net photosynthesis per ground area in high arctic Vaccinium uliginosum exposed to changes in near-ambient UV-B levels.

    Science.gov (United States)

    Boesgaard, Kristine S; Albert, Kristian R; Ro-Poulsen, Helge; Michelsen, Anders; Mikkelsen, Teis N; Schmidt, Niels M

    2012-08-01

    Full recovery of the ozone layer is not expected for several decades and consequently, the incoming level of solar ultraviolet-B (UV-B) will only slowly be reduced. Therefore to investigate the structural and photosynthetic responses to changes in solar UV-B we conducted a 5-year UV-B exclusion study in high arctic Greenland. During the growing season, the gas exchange (H₂O and CO₂) and chlorophyll-a fluorescence were measured in Vaccinium uliginosum. The leaf dry weight, carbon, nitrogen, stable carbon isotope ratio, chlorophyll and carotenoid content were determined from a late season harvest. The net photosynthesis per leaf area was on average 22% higher in 61% reduced UV-B treatment across the season, but per ground area photosynthesis was unchanged. The leaf level increase in photosynthesis was accompanied by increased leaf nitrogen, higher stomatal conductance and F(v)/F(m). There was no change in total leaf biomass, but reduction in total leaf area caused a pronounced reduction of specific leaf area and leaf area index in reduced UV-B. This demonstrates the structural changes to counterbalance the reduced plant carbon uptake seen per leaf area in ambient UV-B as the resulting plant carbon uptake per ground area was not affected. Thus, our understanding of long-term responses to UV-B reduction must take into account both leaf level processes as well as structural changes to understand the apparent robustness of plant carbon uptake per ground area. In this perspective, V. uliginosum seems able to adjust plant carbon uptake to the present amount of solar UV-B radiation in the High Arctic. Copyright © Physiologia Plantarum 2011.

  15. Partitioning inter annual variability in net ecosystem exchange between climatic variability and functional change

    International Nuclear Information System (INIS)

    Hui, D.; Luo, Y.; Katul, G.

    2003-01-01

    Inter annual variability in net ecosystem exchange of carbon is investigated using a homogeneity-of-slopes model to identify the function change contributing to inter annual variability, net ecosystem carbon exchange, and night-time ecosystem respiration. Results of employing this statistical approach to a data set collected at the Duke Forest AmeriFlux site from August 1997 to December 2001 are discussed. The results demonstrate that it is feasible to partition the variation in ecosystem carbon fluxes into direct effects of seasonal and inter annual climatic variability and functional change. 51 refs., 4 tabs., 5 figs

  16. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  17. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    Energy Technology Data Exchange (ETDEWEB)

    Dagg, J.; Lafleur, P.

    2010-07-01

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO{sub 2}) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO{sub 2} exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO{sub 2} fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO{sub 2} uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO{sub 2} exchange in heterogeneous Tundra vegetation is variable.

  18. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    International Nuclear Information System (INIS)

    Dagg, J.; Lafleur, P.

    2010-01-01

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO 2 ) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO 2 exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO 2 fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO 2 uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO 2 exchange in heterogeneous Tundra vegetation is variable.

  19. Influence of tree cover on herbaceous layer development and carbon and water fluxes in a Portuguese cork-oak woodland

    Science.gov (United States)

    Dubbert, Maren; Mosena, Alexander; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra Cristina; Pereira, Joao Santos; Werner, Christiane

    2014-08-01

    Facilitation and competition between different vegetation layers may have a large impact on small-scale vegetation development. We propose that this should not only influence overall herbaceous layer yield but also species distribution and understory longevity, and hence the ecosystems carbon uptake capacity especially during spring. We analyzed the effects of trees on microclimate and soil properties (water and nitrate content) as well as the development of an herbaceous community layer regarding species composition, aboveground biomass and net water and carbon fluxes in a cork-oak woodland in Portugal, between April and November 2011. The presence of trees caused a significant reduction in photosynthetic active radiation of 35 mol m-2 d-1 and in soil temperature of 5 °C from April to October. At the same time differences in species composition between experimental plots located in open areas and directly below trees could be observed: species composition and abundance of functional groups became increasingly different between locations from mid April onwards. During late spring drought adapted native forbs had significantly higher cover and biomass in the open area while cover and biomass of grasses and nitrogen fixing forbs was highest under the trees. Further, evapotranspiration and net carbon exchange decreased significantly stronger under the tree crowns compared to the open during late spring and the die back of herbaceous plants occurred earlier and faster under trees. This was most likely caused by interspecific competition for water between trees and herbaceous plants, despite the more favorable microclimate conditions under the trees during the onset of summer drought.

  20. Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A

    2009-02-26

    The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.

  1. Excitons in intact cells of photosynthetic bacteria.

    Science.gov (United States)

    Freiberg, Arvi; Pajusalu, Mihkel; Rätsep, Margus

    2013-09-26

    Live cells and regular crystals seem fundamentally incompatible. Still, effects characteristic to ideal crystals, such as coherent sharing of excitation, have been recently used in many studies to explain the behavior of several photosynthetic complexes, especially the inner workings of the light-harvesting apparatus of the oldest known photosynthetic organisms, the purple bacteria. To this date, there has been no concrete evidence that the same effects are instrumental in real living cells, leaving a possibility that this is an artifact of unnatural study conditions, not a real effect relevant to the biological operation of bacteria. Hereby, we demonstrate survival of collective coherent excitations (excitons) in intact cells of photosynthetic purple bacteria. This is done by using excitation anisotropy spectroscopy for tracking the temperature-dependent evolution of exciton bands in light-harvesting systems of increasing structural complexity. The temperature was gradually raised from 4.5 K to ambient temperature, and the complexity of the systems ranged from detergent-isolated complexes to complete bacterial cells. The results provide conclusive evidence that excitons are indeed one of the key elements contributing to the energetic and dynamic properties of photosynthetic organisms.

  2. Global net primary production and heterotrophic respiration for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.E. Jr.; Piper, S.C.; Nemani, R. [Univ. of Montana, Missoula, MT (United States)]|[Scripps Institute of Oceanography, La Jolla, CA (United States)] [and others

    1995-06-01

    An ecosystem process model, BIOME-BGC, was parameterized and used to simulate the actual net primary production and heterotrophic respiration using daily climatic data, land cover type, leaf area index gridded to 1{degree} latitude by 1{degree} longitude grid cells for the year 1987. Global net primary production was 52 Pg C. These estimates were validated directly by two different methods. First, the grid cells were aggregated and used as inputs to a 3D atmospheric transport model, to compare CO{sub 2} station data with predictions. We simulated the intra-annual variation of atmospheric CO{sub 2} well for the northern hemisphere, but not for the southern hemisphere. Second, we calculated the net {sup 13}C uptake of vegetation, which is a function of water use efficiency. The {sup 13}C/{sup 12}C ratios agreed with measured data, indicating a strong limitation of global primary processes by the hydrologic cycle, especially precipitation. These are different from other global carbon models as we can simulate the year-to-year variation of climate, including El Nino, on the global carbon cycle.

  3. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize.

    Science.gov (United States)

    Ren, Baizhao; Cui, Haiyan; Camberato, James J; Dong, Shuting; Liu, Peng; Zhao, Bin; Zhang, Jiwang

    2016-08-01

    A field experiment was conducted to study the effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of two summer maize hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking (R1) to physiological maturity (R6) (S1), from the sixth leaf stage (V6) to R1 (S2), and from seeding to R6 (S3), respectively. The net photosynthetic rate (P n) was significantly decreased after shading. The greatest reduction of P n was found at S3 treatment, followed by S1 and S2 treatments. P n of S3 was decreased by 59 and 48 % for DH605, and 39 and 43 % for ZD958 at tasseling and milk-ripe stages, respectively, compared to that of CK. Additionally, leaf area index (LAI) and chlorophyll content decreased after shading. In terms of mesophyll cell ultrastructure, chloroplast configuration of mesophyll cells dispersed, and part of chloroplast swelled and became circular. Meanwhile, the major characteristics of chloroplasts showed poorly developed thylakoid structure at the early growth stage, blurry lamellar structure, loose grana, and a large gap between slices and warping granum. Then, plasmolysis occurred in mesophyll cells and the endomembrane system was destroyed, which resulted in the dissolution of cell membrane, karyotheca, mitochondria, and some membrane structures. The damaged mesophyll cell ultrastructure led to the decrease of photosynthetic capacity, and thus resulted in significant yield reduction by 45, 11, and 84 % in S1, S2, and S3 treatments, respectively, compared to that of CK.

  4. Terrestrial biological carbon sequestration: science for enhancement and implementation

    Science.gov (United States)

    Wilfred M. Post; James E. Amonette; Richard Birdsey; Charles T. Jr. Garten; R. Cesar Izaurralde; Philip Jardine; Julie Jastrow; Rattan Lal; Gregg. Marland

    2009-01-01

    The purpose of this chapter is to review terrestrial biological carbon sequestration and evaluate the potential carbon storage capacity if present and new techniques are more aggressively utilized. Photosynthetic CO2 capture from the atmosphere and storage of the C in aboveground and belowground biomass and in soil organic and inorganic forms can...

  5. Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (vicia faba) cultivars

    International Nuclear Information System (INIS)

    Hussein, M.; Embiale, A.; Husen, A.; Eref, I.E.

    2017-01-01

    Salinity is one of the most severe environmental factors limiting the productivity of agricultural crops. The present study assesses salt-tolerant cultivars of Vicia faba L.on the basis of their growth, biomass and foliar characteristics. Four levels of salt stress (0, 50, 100 and 150mM) were applied to three selected cultivars, viz. Degaga, Dosha and Hachalu. Results revealed significant differences among the cultivars, salt-stress treatments, and their interaction, indicating the cultivars' variability and differential response to salt stress. Salinity stress adversely affected plant growth, plant water status and biomass production. Salt treatments decreased the chlorophyll a and chlorophyll b contents, but cultivar Dosha, which was ahead of others in height, leaf number, relative water content, total biomass and leaf-dry-mass ratio, was least affected. Functional leaf characters, such as photochemical efficiency of PSII (maximum quantum yield = Fv/Fm), stomatal conductance (gs), net photosynthetic rate (Pn) and transpiration rate (E) were also reduced under salt-stress, and againDosha cultivar did better than others except in gs. The relatively less decline in growth, water status, biomass, photosynthetic pigments and functional leaf characters of Dosha exhibits a reasonable tolerance ability of this cultivar, while the other two varieties viz., Degaga and Hachalu proved to be sensitive to salt stress. (author)

  6. Nanodeserts: A Conjecture in Nanotechnology to Enhance Quasi-Photosynthetic CO2 Absorption

    Directory of Open Access Journals (Sweden)

    Wenfeng Wang

    2016-01-01

    Full Text Available This paper advances “nanodeserts” as a conjecture on the possibility of developing the hierarchical structured polymeric nanomaterials for enhancing abiotic CO2 fixation in the soil-groundwater system beneath deserts (termed as quasi-photosynthetic CO2 absorption. Arid and semiarid deserts ecosystems approximately characterize one-third of the Earth’s land surface but play an unsung role in the carbon cycling, considering the huge potentials of such CO2 absorption to expand insights to the long-sought missing CO2 sink and the naturally unneglectable turbulence in temperature sensitivities of soil respiration it produced. “Nanodeserts” as a reconciled concept not only indicate a conjecture in nanotechnology to enhance quasi-photosynthetic CO2 absorption, but also aim to present to the desert researchers a better understanding of the footprints of abiotic CO2 transport, conversion, and assignment in the soil-groundwater system beneath deserts. Meanwhile, nanodeserts allow a stable temperature sensitivity of soil respiration in deserts by largely reducing the CO2 release above the deserts surface and highlighting the abiotic CO2 fixation beneath deserts. This may be no longer a novelty in the future.

  7. Carbon dioxide fixation in isolated Kalanchoe chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Levi, C.; Gibbs, M.

    1975-07-01

    Chloroplasts isolated from Kalanchoe diagremontiana leaves were capable of photosynthesizing at a rate of 5.4 ..mu..moles of CO/sub 2/ per milligram of chlorophyll per hour. The dark rate of fixation was about 1 percent of the light rate. A high photosynthetic rate was associated with low starch content of the leaves. Ribose 5-phosphate, fructose 1, 6-diphosphate, and dithiothreitol stimulated fixation, whereas phosphoenolpyruvate and azide were inhibitors. The products of CO/sub 2/ fixation were primarily those of the photosynthetic carbon reduction cycle. (auth)

  8. Tropical Wetlands as Carbon Sinks

    Science.gov (United States)

    Jones, M. B.; Saunders, M.

    2007-12-01

    This presentation focuses on the tropical wetlands of sub-Saharan Africa. These are an understudied ecosystem in which large emergent grasses and sedges normally dominate and which have the potential to sequester significant amounts of carbon. Measurements of Net Primary Production of these wetlands show that they are some of the highest values recorded for any ecosystem. We have used eddy covariance to measure Net Ecosystem Exchange of pristine and disturbed wetlands and show that pristine systems can have sink strengths as strong as tropical forests while disturbed systems that have been reclaimed for agricultural purposes have a very much reduced carbon sink activity and may be net carbon sources. The management issues surrounding the use of these wetlands illustrate a direct conflict between the production of food crops for the local population and the maintenance of carbon sequestration as an ecosystem service.

  9. Effect of micronutrients (zn, cu and b) on photosynthetic and fruit yield attributes of citrus reticulata blanco var. kinnow

    International Nuclear Information System (INIS)

    Ilyas, A.; Hussain, M.

    2015-01-01

    In this investigation, influence of foliar application of micronutrients (Zn, Cu and B) was studied on the improvement in photosynthetic and fruit yield attributes of citrus (Kinnow) plants. Experiments were conducted in two districts of Punjab (Sargodha and Toba Tek Singh), Pakistan varying in soil properties and agro-climatic conditions. Plants at both sites were subjected to foliar spray of three different levels (i.e. 0.1, 0.2 and 0.3%) of each Zn, Cu and B at three different fruit developmental stages while macronutrients (NPK) were applied at recommended rates as soil amendment. Micronutrients (Zn, Cu and B) application caused a significant improvement in net photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs), Chlorophyll a, b, total, and caroteniods in both the citrus orchards. However, effect of micronutrients i.e. Zn, Cu and B was more pronounced at the levels of 0.3, 0.1 and 0.2%, respectively. These levels of nutrients were also effective in improving fruit yield with better fruit quality. (author)

  10. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    Science.gov (United States)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  11. Global patterns in human consumption of net primary production

    Science.gov (United States)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T.

    2004-06-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production `supply' and `demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production `imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  12. An observational study of the carbon-sink strength of East Asian subtropical evergreen forests

    International Nuclear Information System (INIS)

    Tan Zhenghong; Zhang Yiping; Zhang Yongjiang; Song Qinhai; Cao Kunfang; Schaefer, D A; Liu Yuhong; Liang Naishen; Hsia, Yue-Joe; Zhou Guoyi; Li Yuelin; Yan Junhua; Juang, Jehn-Yih; Chu Housen; Yu Guirui; Sun Xiaomin

    2012-01-01

    Relatively little is known about the effects of regional warming on the carbon cycle of subtropical evergreen forest ecosystems, which are characterized by year-round growing season and cold winters. We investigated the carbon balance in three typical East Asia subtropical evergreen forests, using eddy flux, soil respiration and leaf-level measurements. Subtropical evergreen forests maintain continuous, high rates of photosynthetic activity, even during winter cold periods. Warm summers enhance photosynthetic rates in a limited way, because overall ecosystem productivity is primarily restrained by radiation levels during the warm period. Conversely, warm climates significantly enhance the respiratory carbon efflux. The finding of lower sensitivity of photosynthesis relative to that of respiration suggests that increased temperature will weaken the carbon-sink strength of East Asia subtropical evergreen forests. (letter)

  13. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    Science.gov (United States)

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  14. Plankton community respiration, net ecosystem metabolism, and oxygen dynamics on the Louisiana continental shelf: Implications for hypoxia

    Science.gov (United States)

    Murrell, Michael C.; Stanley, Roman S.; Lehrter, John C.; Hagy, James D.

    2013-01-01

    We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column metabolism and the formation of hypoxia (dissolved oxygen Continental Shelf Research, 29: 1861-1872) to estimate net water column metabolism. There was consistent evidence of net heterotrophy, particularly in western transects, and in deeper waters (>40 m depth), indicating a net organic carbon deficit on the LCS. We offer a simple scale argument to suggest that riverine and inshore coastal waters may be significant sources of organic carbon to account for this deficit. This study provided unprecedented, continental shelf scale coverage of heterotrophic metabolism, which is useful for constraining models of oxygen, carbon, and nutrient dynamics along the LCS.

  15. Above‐ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy‐covariance sites

    DEFF Research Database (Denmark)

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario

    2014-01-01

    Attempts to combine biometric and eddy‐covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. We assessed above‐ground biomass changes at five long‐term EC forest stations based on tree‐ring width...... and wood density measurements, together with multiple allometric models. Measurements were validated with site‐specific biomass estimates and compared with the sum of monthly CO2 fluxes between 1997 and 2009. Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible...

  16. Scale-up of Carbon/Carbon Bipolar Plates

    Energy Technology Data Exchange (ETDEWEB)

    David P. Haack

    2009-04-08

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  17. Carbon Dioxide Fixation in Isolated Kalanchoe Chloroplasts 1

    Science.gov (United States)

    Levi, Carolyn; Gibbs, Martin

    1975-01-01

    Chloroplasts isolated from Kalanchoe diagremontiana leaves were capable of photosynthesizing at a rate of 5.4 μmoles of CO2 per milligram of chlorophyll per hour. The dark rate of fixation was about 1% of the light rate. A high photosynthetic rate was associated with low starch content of the leaves. Ribose 5-phosphate, fructose 1,6-diphosphate, and dithiothreitol stimulated fixation, whereas phosphoenolpyruvate and azide were inhibitors. The products of CO2 fixation were primarily those of the photosynthetic carbon reduction cycle. PMID:16659249

  18. Photosynthetic performance of restored and natural mangroves under different environmental constraints.

    Science.gov (United States)

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes; Simonassi, José Carlos; Quadros, Daiane Paula Cunha; Borges, Daniel Lázaro Gallindo; Soriano-Sierra, Eduardo Juan

    2013-10-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (αETR). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    OpenAIRE

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic...

  20. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    NARCIS (Netherlands)

    Oort, van B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these

  1. Effect of Low pH and Aluminum Toxicity on the Photosynthetic Characteristics of Different Fast-Growing Eucalyptus Vegetatively Propagated Clones.

    Science.gov (United States)

    Yang, Mei; Tan, Ling; Xu, Yuanyuan; Zhao, Yihui; Cheng, Fei; Ye, Shaoming; Jiang, Weixin

    2015-01-01

    Knowing how acid soils and aluminum in soils may limit the growth of Eucalyptus trees in plantations is important because these plantations grow in many tropical and subtropical regions. Seedlings of four vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla 'GLGU9'(G9), E. grandis × E. urophylla 'GLGU12' (G12), E. urophylla × E. camaldulensis 'GLUC3' (G3) and E. urophylla 'GLU4'(G4), were subjected to liquid culture with Hoagland nutrient solution for 40 days, then treated with four different treatments of acid and aluminum for 1 day. The four treatments used either pH 3.0 or 4.0 with or without added aluminum (4.4 mM) in all possible combinations; a control used no added aluminum at pH 4.8. Subsequently, the photosynthetic parameters and morphology of leaves from eucalypt seedlings were determined and observed. The results showed that the tested chlorophyll content, net photosynthetic rate, transpiration rate and water use efficiency were apparently inhibited by aluminum. Under uniform Al concentration (4.4 mM), the Al-induced limitation to photosynthetic parameters increased with pH, indicating acid stimulation to Al toxicity. Among all treatments, the most significant reduction was found in the combination of pH 3.0 and 4.4 mM Al. The photosynthetic and transpiration rates showed similar trends with G9 > G12 > G3 > G4, suggesting that G9 and G12 had higher Al-tolerance than other two clones. Microscopic observation revealed changes in leaf morphology when exposed to Al stress; for example, a reduced thickness of leaf epidermis and palisade tissue, the descendant palisade tissue/spongy tissue ratio and leaf tissue looseness. Overall, the acid and aluminum stress exerted negative effects on the photosynthetic activity of eucalypt seedlings, but the differences in tolerance to Al toxicity between the clones were favorable, offering potential to improve Eucalyptus plantation productivity by selecting Al tolerant clones.

  2. Effect of Low pH and Aluminum Toxicity on the Photosynthetic Characteristics of Different Fast-Growing Eucalyptus Vegetatively Propagated Clones

    Science.gov (United States)

    Yang, Mei; Tan, Ling; Xu, Yuanyuan; Zhao, Yihui; Cheng, Fei; Ye, Shaoming; Jiang, Weixin

    2015-01-01

    Knowing how acid soils and aluminum in soils may limit the growth of Eucalyptus trees in plantations is important because these plantations grow in many tropical and subtropical regions. Seedlings of four vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla ‘GLGU9’(G9), E. grandis × E. urophylla ‘GLGU12’ (G12), E. urophylla × E. camaldulensis ‘GLUC3’ (G3) and E. urophylla ‘GLU4’(G4), were subjected to liquid culture with Hoagland nutrient solution for 40 days, then treated with four different treatments of acid and aluminum for 1 day. The four treatments used either pH 3.0 or 4.0 with or without added aluminum (4.4 mM) in all possible combinations; a control used no added aluminum at pH 4.8. Subsequently, the photosynthetic parameters and morphology of leaves from eucalypt seedlings were determined and observed. The results showed that the tested chlorophyll content, net photosynthetic rate, transpiration rate and water use efficiency were apparently inhibited by aluminum. Under uniform Al concentration (4.4 mM), the Al-induced limitation to photosynthetic parameters increased with pH, indicating acid stimulation to Al toxicity. Among all treatments, the most significant reduction was found in the combination of pH 3.0 and 4.4 mM Al. The photosynthetic and transpiration rates showed similar trends with G9 > G12 > G3 > G4, suggesting that G9 and G12 had higher Al-tolerance than other two clones. Microscopic observation revealed changes in leaf morphology when exposed to Al stress; for example, a reduced thickness of leaf epidermis and palisade tissue, the descendant palisade tissue/spongy tissue ratio and leaf tissue looseness. Overall, the acid and aluminum stress exerted negative effects on the photosynthetic activity of eucalypt seedlings, but the differences in tolerance to Al toxicity between the clones were favorable, offering potential to improve Eucalyptus plantation productivity by selecting Al tolerant clones. PMID

  3. Effect of Low pH and Aluminum Toxicity on the Photosynthetic Characteristics of Different Fast-Growing Eucalyptus Vegetatively Propagated Clones.

    Directory of Open Access Journals (Sweden)

    Mei Yang

    Full Text Available Knowing how acid soils and aluminum in soils may limit the growth of Eucalyptus trees in plantations is important because these plantations grow in many tropical and subtropical regions. Seedlings of four vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla 'GLGU9'(G9, E. grandis × E. urophylla 'GLGU12' (G12, E. urophylla × E. camaldulensis 'GLUC3' (G3 and E. urophylla 'GLU4'(G4, were subjected to liquid culture with Hoagland nutrient solution for 40 days, then treated with four different treatments of acid and aluminum for 1 day. The four treatments used either pH 3.0 or 4.0 with or without added aluminum (4.4 mM in all possible combinations; a control used no added aluminum at pH 4.8. Subsequently, the photosynthetic parameters and morphology of leaves from eucalypt seedlings were determined and observed. The results showed that the tested chlorophyll content, net photosynthetic rate, transpiration rate and water use efficiency were apparently inhibited by aluminum. Under uniform Al concentration (4.4 mM, the Al-induced limitation to photosynthetic parameters increased with pH, indicating acid stimulation to Al toxicity. Among all treatments, the most significant reduction was found in the combination of pH 3.0 and 4.4 mM Al. The photosynthetic and transpiration rates showed similar trends with G9 > G12 > G3 > G4, suggesting that G9 and G12 had higher Al-tolerance than other two clones. Microscopic observation revealed changes in leaf morphology when exposed to Al stress; for example, a reduced thickness of leaf epidermis and palisade tissue, the descendant palisade tissue/spongy tissue ratio and leaf tissue looseness. Overall, the acid and aluminum stress exerted negative effects on the photosynthetic activity of eucalypt seedlings, but the differences in tolerance to Al toxicity between the clones were favorable, offering potential to improve Eucalyptus plantation productivity by selecting Al tolerant clones.

  4. Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production.

    Science.gov (United States)

    Lindblad, Peter; Lindberg, Pia; Oliveira, Paulo; Stensjö, Karin; Heidorn, Thorsten

    2012-01-01

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.

  5. Design, Engineering, and Construction of Photosynthetic Microbial Cell Factories for Renewable Solar Fuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, Peter; Lindberg, Pia; Stensjoe, Karin (Photochemistry and Molecular Science, Dept. of Chemistry-Aangstroem Laboratory, Uppsala Univ., Uppsala (Sweden)), E-mail: Peter.Lindblad@kemi.uu.se; Oliveira, Paulo (Instituto de Biologia Molecular e Celular, Porto (Portugal)); Heidorn, Thorsten (Bioforsk-Norwegian Inst. for Agricultural and Environmental Research, Aas Oslo, (Norway))

    2012-03-15

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H{sub 2} production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted

  6. Different growth strategies determine the carbon gain and productivity of aspen collectives to be used in short-rotation plantations

    International Nuclear Information System (INIS)

    Müller, Annika; Horna, Viviana; Zhang, Chunxia; Leuschner, Christoph

    2012-01-01

    Populus tremula is a favoured tree species in short-rotation forestry with a recognised large intraspecific variation in productivity. We compared the growth potential of 1-yr-old saplings of four Central European aspen collectives with different climate adaptation on a low-fertility site and searched for growth-determining physiological and morphological traits and their dependence on genetic constitution. Among the 35 investigated traits were photosynthetic capacity and mean assimilation rate, quantum yield and carboxylation efficiency, leaf water potential, leaf phaenology and the ratio of leaves lost to leaves produced (LP ratio), leaf size and total leaf area, axes length growth and canopy carbon gain as an estimate of productivity. The collectives differed by more than 30% in cumulative carbon gain with a large genotype effect, while mean assimilation rate and most photosynthetic and water status traits showed a relatively small intraspecific variation with no significant influence on the variation in C gain. The timing of the beginning of net leaf loss (leaf abscission > leaf production) in August differed between the four collectives and resulted in different maximum leaf areas and LP ratios, which were identified as key factors controlling C gain. Mean assimilation rate, though not related to cumulative C gain, was positively correlated with the light, CO 2 and water use efficiencies of photosynthesis. We conclude that genotype selection for high-yielding aspen in short-rotation forestry at low-fertility sites should focus on the parameters leaf phaenology, LP ratio at the end of the growing season, and the resulting total leaf area as key traits.

  7. Decadal-Scale Reduction in Forest Net Ecosystem Production Following Insect Defoliation Contrasts with Short-Term Impacts of Prescribed Fires

    Science.gov (United States)

    Kenneth L. Clark; Heidi J. Renninger; Nicholas Skowronski; Michael Gallagher; Karina V.R.  Schäfer

    2018-01-01

    Understanding processes underlying forest carbon dynamics is essential for accurately predicting the outcomes of non-stand-replacing disturbance in intermediate-age forests. We quantified net ecosystem production (NEP), aboveground net primary production (ANPP), and the dynamics of major carbon (C) pools before and during the decade following invasive insect...

  8. Effects of Arbuscular Mycorrhiza on Osmotic Adjustment and Photosynthetic Physiology of Maize Seedlings in Black Soils Region of Northeast China

    Directory of Open Access Journals (Sweden)

    Hongwen Xu

    Full Text Available ABSTRACT To investigate the effect of arbuscular mycorrhiza fungi on maize growth, osmoregulation substances and photosynthetic physiology, a popular maize variety ZD 958 was measured under potted condition. Arbuscular mycorrhiza (AM symbiosis promoted plant growth, and enhanced plant height, leaf length, mean leaf width and dry weight. Higher soluble sugar and protein, but lower proline concentrations were detected in AM seedlings than corresponding non-AM seedlings. Quantum yield of PSII photochemistry and potential photochemical efficiency increased by arbuscular mycorrhiza fungi, meanwhile, AM plants had lower primary fluorescence but higher maximal fluorescence and variable fluorescence than non-AM plants. AM enhanced apparent quantum efficiency, maximum net photosynthetic rate, dark respiration rate and light saturation point, but reduced light compensation point. The conclusion was that, after the seedling inoculated with Glomus. tortuosum, AM symbioses could protect cell from being hurt through regulating substances related to osmotic adjustment, besides, the efficiency of light utilization, the capacity of using low light and the capacity of fitting and using high light were all increased by AM symbiosis.

  9. Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants.

    Science.gov (United States)

    Athar, Habib-Ur-Rehman; Ambreen, Sarah; Javed, Muhammad; Hina, Mehwish; Rasul, Sumaira; Zafar, Zafar Ullah; Manzoor, Hamid; Ogbaga, Chukwuma C; Afzal, Muhammad; Al-Qurainy, Fahad; Ashraf, Muhammad

    2016-09-01

    Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and 5.0 % v/w basis). Crude oil contamination reduced soil microflora which may be beneficial to plant growth. It was observed that oil pollution caused a remarkable decrease in biomass, leaf water potential, turgor potential, photosynthetic pigments, quantum yield of photosystem II (PSII) (Fv/Fm), net CO2 assimilation rate, leaf nitrogen and total free amino acids. Gas exchange characteristics suggested that reduction in photosynthetic rate was mainly due to metabolic limitations. Fast chlorophyll a kinetic analysis suggested that crude oil damaged PSII donor and acceptor sides and downregulated electron transport as well as PSI end electron acceptors thereby resulting in lower PSII efficiency in converting harvested light energy into biochemical energy. However, maize plants tried to acclimate to moderate level of oil pollution by increasing root diameter and root length relative to its shoot biomass, to uptake more water and mineral nutrients.

  10. Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xi, E-mail: icy124@hotmail.com [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan); Toma, Yo [Faculty of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama 790-8566, Ehime (Japan); Yeluripati, Jagadeesh [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland (United Kingdom); Iwasaki, Shinya [Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan); Bellingrath-Kimura, Sonoko D. [Leibniz Centre for Agricultural Landscape Research, Institute of Land Use Systems (Germany); Jones, Edward O. [Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London (United Kingdom); Hatano, Ryusuke [Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan)

    2016-06-01

    Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for agriculture. We have used crop-level yields, modeled heterotrophic respiration (Rh) and land use data to estimate spatio-temporal changes in regional scale net primary productivity (NPP), plant C inputs, and net biome productivity (NBP) in northern Japan's arable croplands and grasslands for the period of 1959–2011. We compared the changes in C stocks derived from estimated NBP and using repeated inventory datasets for each individual land use type from 2005 to 2011. For the entire study region of 2193 ha, overall annual plant C inputs to the soil constituted 37% of total region NPP. Plant C inputs in upland areas (excluding bush/fallow) could be predicted by climate variables. Overall NBP for all land use types increased from − 1.26 Mg C ha{sup −1} yr{sup −1} in 1959–0.26 Mg C ha{sup −1} yr{sup −1} in 2011. However, upland and paddy fields showed a decreased in NBP over the period of 1959–2011, under the current C input scenario. From 1988, an increase in agricultural abandonment (bush/fallow) and grassland cover caused a slow increase in the regional C pools. The comparison of carbon budgets using the NBP estimation method and the soil inventory method indicated no significant difference between the two methods. Our results showed C loss in upland crops, paddy fields and sites that underwent land use change from paddy field to upland sites. We also show C gain in grassland from 2005 to 2011. An underestimation of NBP or an overestimation of repeated C inventories cannot be excluded, but either method may be suitable for tracking absolute changes in soil C, considering the uncertainty associated with these methods. - Highlights: • We compared C stocks change by two methods: (i) net biome productivity (NBP) and (ii) soil inventory. • Variation in net primary productivity (NPP), plant C input, NBP can be predicted by climate

  11. Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity

    International Nuclear Information System (INIS)

    Li, Xi; Toma, Yo; Yeluripati, Jagadeesh; Iwasaki, Shinya; Bellingrath-Kimura, Sonoko D.; Jones, Edward O.; Hatano, Ryusuke

    2016-01-01

    Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for agriculture. We have used crop-level yields, modeled heterotrophic respiration (Rh) and land use data to estimate spatio-temporal changes in regional scale net primary productivity (NPP), plant C inputs, and net biome productivity (NBP) in northern Japan's arable croplands and grasslands for the period of 1959–2011. We compared the changes in C stocks derived from estimated NBP and using repeated inventory datasets for each individual land use type from 2005 to 2011. For the entire study region of 2193 ha, overall annual plant C inputs to the soil constituted 37% of total region NPP. Plant C inputs in upland areas (excluding bush/fallow) could be predicted by climate variables. Overall NBP for all land use types increased from − 1.26 Mg C ha"−"1 yr"−"1 in 1959–0.26 Mg C ha"−"1 yr"−"1 in 2011. However, upland and paddy fields showed a decreased in NBP over the period of 1959–2011, under the current C input scenario. From 1988, an increase in agricultural abandonment (bush/fallow) and grassland cover caused a slow increase in the regional C pools. The comparison of carbon budgets using the NBP estimation method and the soil inventory method indicated no significant difference between the two methods. Our results showed C loss in upland crops, paddy fields and sites that underwent land use change from paddy field to upland sites. We also show C gain in grassland from 2005 to 2011. An underestimation of NBP or an overestimation of repeated C inventories cannot be excluded, but either method may be suitable for tracking absolute changes in soil C, considering the uncertainty associated with these methods. - Highlights: • We compared C stocks change by two methods: (i) net biome productivity (NBP) and (ii) soil inventory. • Variation in net primary productivity (NPP), plant C input, NBP can be predicted by climate conditions. • NBP

  12. A Mechanistically Informed User-Friendly Model to Predict Greenhouse Gas (GHG) Fluxes and Carbon Storage from Coastal Wetlands

    Science.gov (United States)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2015-12-01

    We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.

  13. Dissolved natural organic matter (NOM) impacts photosynthetic oxygen production and electron transport in coontail Ceratophyllum demersum

    International Nuclear Information System (INIS)

    Pflugmacher, S.; Pietsch, C.; Rieger, W.; Steinberg, C.E.W.

    2006-01-01

    Dissolved natural organic matter (NOM) is dead organic matter exceeding, in freshwater systems, the concentration of organic carbon in all living organisms by far. 80-90% (w/w) of the NOM is made up of humic substances (HS). Although NOM possesses several functional groups, a potential effect on aquatic organisms has not been studied. In this study, direct effects of NOM from various origins on physiological and biochemical functions in the aquatic plant Ceratophyllum demersum are presented. Environmentally relevant concentrations of NOM cause inhibitory effects on the photosynthetic oxygen production of C. demersum. Various NOM sources and the synthetic humic substance HS1500 inhibit the photosynthetic oxygen production of the plant as observed with 1-amino-anthraquinone, a known inhibitor of plant photosynthesis. 1-Aminoanthraquinone may serve as an analogue for the quinoid structures in NOM and HS. Most likely, the effects of NOM may be related to quinoid structures and work downstream of photosynthesis at photosystem (PS) II

  14. Carbon balance of a plastic mulch and drip irrigated cotton field in an arid oasis of Northwest China

    Science.gov (United States)

    Ming, G.

    2017-12-01

    Carbon balance of a plastic mulch and drip irrigated cotton field in an arid oasis of Northwest ChinaGuanghui Ming1, Fuqiang Tian1*, Hongchang Hu11State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China,Abstracts: Agricultural ecosystems have the potential to offset rising CO2 concentration in the atmosphere but the potential is often altered by agricultural management. Plastic film mulching and drip irrigation (PMDI) have been widespread for saving water and improving crop yield worldwide. To comprehensively assess the carbon balance and to detect the controlling factors of the carbon flux in a PMDI cotton field, experiments combining eddy covariance (EC) system, chamber method and crop sampling were implemented in an arid oasis of Xinjiang from the year 2012 to 2016. The annual net ecosystem exchange (NEE) was -250.18 ± 80.41 g C m-2 in the five years, which indicated that the filed was a much stronger carbon sink. After removal of the harvest of cotton as seed oil (Ch) of 108.81±7.57 g C m-2, the field was still a moderate carbon sink with net biome productivity (NBP) of 141.37±73.7 g C m-2. Soil temperature can explain 82% of seasonal variation of nighttime NEE while PAR can explain 36-81% of daytime NEE varying with crop development and photosynthetic activity. NEE was separated into total ecosystem respiration (Reco, 1214.20±144.42 g C m-2) and gross primary productivity (GPP, 1464.38±122.78 g C m-2). Interannual Reco changed more drastically than GPP and respiration may be the main determinant of carbon balance in the PMDI field. Seasonal NPP measured by cop sampling method (NPPCS) agreed well with NPP calculated with EC (NPPEC), with the annual NPP of 708.86 ± 52.26 g C m-2, which indicated that our carbon flux measurements and separating methods reasonable. The PMDI cotton field induced more GPP and Reco than other croplands with larger light use efficiency (LUE) but relatively

  15. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean.

    Science.gov (United States)

    Baghel, Lokesh; Kataria, Sunita; Guruprasad, Kadur Narayan

    2016-10-01

    The effectiveness of magnetopriming was assessed for alleviation of salt-induced adverse effects on soybean growth. Soybean seeds were pre-treated with static magnetic field (SMF) of 200 mT for 1 h to evaluate the effect of magnetopriming on growth, carbon and nitrogen metabolism, and yield of soybean plants under different salinity levels (0, 25, and 50 mM NaCl). The adverse effect of NaCl-induced salt stress was found on growth, yield, and various physiological attributes of soybeans. Results indicate that SMF pre-treatment significantly increased plant growth attributes, number of root nodules, nodules, fresh weight, biomass accumulation, and photosynthetic performance under both non-saline and saline conditions as compared to untreated seeds. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at J-I-P phase. Nitrate reductase activity, PIABS , photosynthetic pigments, and net rate of photosynthesis were also higher in plants that emerged from SMF pre-treated seeds as compared to untreated seeds. Leghemoglobin content and hemechrome content in root nodules were also increased by SMF pre-treatment. Thus pre-sowing exposure of seeds to SMF enhanced carbon and nitrogen metabolism and improved the yield of soybeans in terms of number of pods, number of seeds, and seed weight under saline as well as non-saline conditions. Consequently, SMF pre-treatment effectively mitigated adverse effects of NaCl on soybeans. It indicates that magnetopriming of dry soybean seeds can be effectively used as a pre-sowing treatment for alleviating salinity stress. Bioelectromagnetics. 37:455-470, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Coral bleaching independent of photosynthetic activity.

    Science.gov (United States)

    Tolleter, Dimitri; Seneca, François O; DeNofrio, Jan C; Krediet, Cory J; Palumbi, Stephen R; Pringle, John R; Grossman, Arthur R

    2013-09-23

    The global decline of reef-building corals is due in part to the loss of algal symbionts, or "bleaching," during the increasingly frequent periods of high seawater temperatures. During bleaching, endosymbiotic dinoflagellate algae (Symbiodinium spp.) either are lost from the animal tissue or lose their photosynthetic pigments, resulting in host mortality if the Symbiodinium populations fail to recover. The >1,000 studies of the causes of heat-induced bleaching have focused overwhelmingly on the consequences of damage to algal photosynthetic processes, and the prevailing model for bleaching invokes a light-dependent generation of toxic reactive oxygen species (ROS) by heat-damaged chloroplasts as the primary trigger. However, the precise mechanisms of bleaching remain unknown, and there is evidence for involvement of multiple cellular processes. In this study, we asked the simple question of whether bleaching can be triggered by heat in the dark, in the absence of photosynthetically derived ROS. We used both the sea anemone model system Aiptasia and several species of reef-building corals to demonstrate that symbiont loss can occur rapidly during heat stress in complete darkness. Furthermore, we observed damage to the photosynthetic apparatus under these conditions in both Aiptasia endosymbionts and cultured Symbiodinium. These results do not directly contradict the view that light-stimulated ROS production is important in bleaching, but they do show that there must be another pathway leading to bleaching. Elucidation of this pathway should help to clarify bleaching mechanisms under the more usual conditions of heat stress in the light. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Nitrogen control of photosynthetic protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1986-09-01

    Plant growth is severely affected by impaired photosynthesis resulting from nitrogen deficiency. The molecular aspects of this effect are being studied in the green alga Chlamydomonas grown in continuous culture systems. Photosynthetic membranes of nitrogen-limited cells are dramatically depleted in chlorophylls, xanthophylls and proteins of the light-harvesting complexes. In contrast, enzymes of the reductive pentose phosphate cycle and electron transport chain complexes are reduced only 40 to 65% on a per cell basis comparison with nitrogen-sufficient cultures. From analyses of mRNA levels by in vitro translation and hybridization analyses with cloned DNA sequences for photosynthetic proteins, we have found there are rather minor effects of nitrogen deficiency on nuclear or chloroplast gene transcription. Maturation of a transcript of the nuclear-encoded small subunit of ribulose 1,5-bisphosphate carboxylase is inhibited in nitrogen-deficient cells and causes accumulation of large amounts of mRNA precursors. Most of the effects of nitrogen deficiency on photosynthetic proteins appear to result from posttranscriptional regulatory processes: light-harvesting protein synthesis may be sustained but their import into chloroplasts or translocation to photosynthetic membranes is impaired. Nitrogen-deficient cells lack violaxanthin, a pigment that is essential for the structure, function and biogenesis of the major antenna complexes. The absence of this pigment may be a causative factor for the deficiency of light harvesting complexes. Finally, the accumulation of massive amounts of starch and triglycerides in nitrogen-limited cells indicate there are some genes whose maximal expression is dependent upon nitrogen-limiting conditions. 10 refs.

  18. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis

    Science.gov (United States)

    Terrado, Ramon; Pasulka, Alexis L; Lie, Alle A-Y; Orphan, Victoria J; Heidelberg, Karla B; Caron, David A

    2017-01-01

    Collectively, phagotrophic algae (mixotrophs) form a functional continuum of nutritional modes between autotrophy and heterotrophy, but the specific physiological benefits of mixotrophic nutrition differ among taxa. Ochromonas spp. are ubiquitous chrysophytes that exhibit high nutritional flexibility, although most species generally fall towards the heterotrophic end of the mixotrophy spectrum. We assessed the sources of carbon and nitrogen in Ochromonas sp. strain BG-1 growing mixotrophically via short-term stable isotope probing. An axenic culture was grown in the presence of either heat-killed bacteria enriched with 15N and 13C, or unlabeled heat-killed bacteria and labeled inorganic substrates (13C-bicarbonate and 15N-ammonium). The alga exhibited high growth rates (up to 2 divisions per day) only until heat-killed bacteria were depleted. NanoSIMS and bulk IRMS isotope analyses revealed that Ochromonas obtained 84–99% of its carbon and 88–95% of its nitrogen from consumed bacteria. The chrysophyte assimilated inorganic 13C-carbon and 15N-nitrogen when bacterial abundances were very low, but autotrophic (photosynthetic) activity was insufficient to support net population growth of the alga. Our use of nanoSIMS represents its first application towards the study of a mixotrophic alga, enabling a better understanding and quantitative assessment of carbon and nutrient acquisition by this species. PMID:28524870

  19. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P A; Ensminger, Ingo

    2007-03-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22 degrees C or conditions representing a cool autumn with 8 h/7 degrees C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7 degrees C) or warm autumn conditions (8-h photoperiod/22 degrees C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of beta-carotene in the warm autumn

  20. Carbon budget over 12 years in a production crop under temperate climate

    Science.gov (United States)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site) in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet (or maize)/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Continuous eddy-covariance measurements and regular biomass samplings were performed in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity, Total Ecosystem Respiration, Net Primary Productivity, and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. The main objectives were to analyze the CO2 flux responses to climatic drivers and to establish the C budget of the cropland. Crop type significantly influenced the measured CO2 fluxes. In addition to crop season duration, which had an obvious impact on cumulated NEE values for each crop type, the CO2 flux response to photosynthetic photon flux density, vapor pressure deficit and temperature differed between crop types, while no significant response to soil water content was observed in any of them. Besides, a significant positive relationship between crop residue amount and ecosystem respiration was observed. Over the 12 years, NEE was negative (-4.34 ± 0.21 kg C m-2) but NBP was positive (1.05 ± 0.30 kg C m-2), i.e. as soon as all lateral carbon fluxes - dominated by carbon exportation - are included in the budget, the site behaves as a carbon source. Intercrops were seen to play a major role in the carbon budget, being mostly due to the long time period it represented (59 % of the 12 year time period). An in-depth analysis of intercrop periods and, more specifically, growing cover crops (mustard in the case of our study), is developed in a companion poster (ref. abstract EGU2017-12216, session SSS9

  1. Long-term drought modifies the fundamental relationships between light exposure, leaf nitrogen content and photosynthetic capacity in leaves of the lychee tree (Litchi chinensis).

    Science.gov (United States)

    Damour, Gaëlle; Vandame, Marc; Urban, Laurent

    2008-09-08

    Drought has dramatic negative effects on plants' growth and crop productivity. Although some of the responses and underlying mechanisms are still poorly understood, there is increasing evidence that drought may have a negative effect on photosynthetic capacity. Biochemical models of leaf photosynthesis coupled with models of radiation transfer have been widely used in ecophysiological studies, and, more recently, in global change modeling. They are based on two fundamental relationships at the scale of the leaf: (i) nitrogen content-light exposure and (ii) photosynthetic capacity-nitrogen content. Although drought is expected to increase in many places across the world, such models are not adapted to drought conditions. More specifically, the effects of drought on the two fundamental relationships are not well documented. The objective of our study was to investigate the effects of a long-term drought imposed slowly on the nitrogen content and photosynthetic capacity of leaves similarly exposed to light, from 3-year-old lychee trees cv. Kwaï Mi. Leaf nitrogen and non-structural carbohydrate concentrations were measured along with gas exchanges and the light-saturated rate of photosynthetic electron transport (J(max)) after a 5.5-month-long period of drought. Leaf nitrogen content on a mass basis remained stable, while the leaf mass-to-area ratio (LMA) increased with increasing water stress. Consequently, the leaf nitrogen content on an area basis (N(a)) increased in a non-linear fashion. The starch content decreased, while the soluble sugar content increased. Stomata closed and net assimilation decreased to zero, while J(max) and the ratio J(max)/N(a) decreased with increasing water stress. The drought-associated decrease in photosynthetic capacity can be attributed to downregulation of photosynthetic electron transport and to reallocation of leaf nitrogen content. It is concluded that modeling photosynthesis in drought conditions will require, first, the modeling

  2. Utilisation of total solar radiation energy in the photosynthetic production of radish, red beet and bean

    Directory of Open Access Journals (Sweden)

    Wiesław Nowakowski

    2014-01-01

    Full Text Available Utilisation of total solar radiation energy in the photosynthetic production of radish, red beet and bean is expressed as per cent of solar radiation accumulated in the carbon of -the dry mass per 1 cm2 of the assimilation surface area. Utilisation of this energy ranges from 2.6 to 8.4 per cent in radish, from 1.7 to 7.5 per cent in beet and from 1.9 to 4.9 per cent in bean.

  3. Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial

    Science.gov (United States)

    van der Heijden, L. H.; Kamenos, N. A.

    2015-11-01

    The ongoing increase in anthropogenic carbon dioxide (CO2) emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass) to mitigate anthropogenic emissions, however, information on storage by coralline algae and the beds they create is scant. Calcifying photosynthetic organisms, including coralline algae, can act as a CO2 sink via photosynthesis and CaCO3 dissolution and act as a CO2 source during respiration and CaCO3 production on short-term timescales. Long-term carbon storage potential might come from the accumulation of coralline algae deposits over geological timescales. Here, the carbon storage potential of coralline algae is assessed using meta-analysis of their global organic and inorganic carbon production and the processes involved in this metabolism. Net organic and inorganic production were estimated at 330 g C m-2 yr-1 and 900 g CaCO3 m-2 yr-1 respectively giving global organic/inorganic C production of 0.7/1.8 × 109 t C yr-1. Calcium carbonate production by free-living/crustose coralline algae (CCA) corresponded to a sediment accretion of 70/450 mm kyr-1. Using this potential carbon storage for coralline algae, the global production of free-living algae/CCA was 0.4/1.2 × 109 t C yr-1 suggesting a total potential carbon sink of 1.6 × 109 tonnes per year. Coralline algae therefore have production rates similar to mangroves, salt marshes and seagrasses representing an as yet unquantified but significant carbon store, however, further empirical investigations are needed to determine the dynamics and stability of that store.

  4. Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest.

    Science.gov (United States)

    Sperlich, D; Chang, C T; Peñuelas, J; Gracia, C; Sabaté, S

    2015-05-01

    The Mediterranean region is a hot spot of climate change vulnerable to increased droughts and heat waves. Scaling carbon fluxes from leaf to landscape levels is particularly challenging under drought conditions. We aimed to improve the mechanistic understanding of the seasonal acclimation of photosynthesis and morphology in sunlit and shaded leaves of four Mediterranean trees (Quercus ilex L., Pinus halepensis Mill., Arbutus unedo L. and Quercus pubescens Willd.) under natural conditions. Vc,max and Jmax were not constant, and mesophyll conductance was not infinite, as assumed in most terrestrial biosphere models, but varied significantly between seasons, tree species and leaf position. Favourable conditions in winter led to photosynthetic recovery and growth in the evergreens. Under moderate drought, adjustments in the photo/biochemistry and stomatal/mesophyllic diffusion behaviour effectively protected the photosynthetic machineries. Severe drought, however, induced early leaf senescence mostly in A. unedo and Q. pubescens, and significantly increased leaf mass per area in Q. ilex and P. halepensis. Shaded leaves had lower photosynthetic potentials but cushioned negative effects during stress periods. Species-specificity, seasonal variations and leaf position are key factors to explain vegetation responses to abiotic stress and hold great potential to reduce uncertainties in terrestrial biosphere models especially under drought conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Magnesium-induced alterations in the photosynthetic performance and resistance of rice plants infected with Bipolaris oryzae

    Directory of Open Access Journals (Sweden)

    Wiler Ribas Moreira

    2015-08-01

    Full Text Available Brown spot (BS, caused by the fungus Bipolaris oryzae, is one of the most important diseases contracted by rice. We investigated the effect of magnesium (Mg on the development of BS, caused by Bipolaris oryzae, and the effects of disease development on the photosynthetic performance of rice (Oryza sativa L. plants (cv. Metica-1 grown in nutrient solutions containing 0.25 or 4.0 mM of Mg. Assessments of BS severity, leaf Mg and pigment concentrations (total chlorophylls and carotenoids, were carried out at 120 h after inoculation, in addition to gas exchange parameters,. Higher leaf concentration of Mg was observed in plants supplied with 4.0 mM Mg than in those supplied with 0.25 mM. The increase in leaf Mg was accompanied by a decrease in BS severity, higher concentration of total chlorophyll and better photosynthetic performance. Plants supplied with 4.0 mM Mg had higher average values for carbon assimilation, stomatal conductance and internal leaf CO2 concentration when compared with plants supplied with 0.25 mM Mg. Conversely, the concentration of carotenoids was lower in plants supplied with the higher Mg rate. These results suggest that Mg suppresses disease severity and preserves photosynthetic performance by allowing for better stomatal conductance and, consequently, greater availability of CO2 at the carboxylation sites.

  6. Climate controls photosynthetic capacity more than leaf nitrogen contents

    Science.gov (United States)

    Ali, A. A.; Xu, C.; McDowell, N. G.

    2013-12-01

    Global vegetation models continue to lack the ability to make reliable predictions because the photosynthetic capacity varies a lot with growth conditions, season and among species. It is likely that vegetation models link photosynthetic capacity to concurrent changes in leaf nitrogen content only. To improve the predictions of the vegetation models, there is an urgent need to review species growth conditions and their seasonal response to changing climate. We sampled the global distribution of the Vcmax (maximum carboxylation rates) data of various species across different environmental gradients from the literature and standardized its value to 25 degree Celcius. We found that species explained the largest variation in (1) the photosynthetic capacity and (2) the proportion of nitrogen allocated for rubisco (PNcb). Surprisingly, climate variables explained more variations in photosynthetic capacity as well as PNcb than leaf nitrogen content and/or specific leaf area. The chief climate variables that explain variation in photosynthesis and PNcb were radiation, temperature and daylength. Our analysis suggests that species have the greatest control over photosynthesis and PNcb. Further, compared to leaf nitrogen content and/or specific leaf area, climate variables have more control over photosynthesis and PNcb. Therefore, climate variables should be incorporated in the global vegetation models when making predictions about the photosynthetic capacity.

  7. Simulation of the Unexpected Photosynthetic Seasonality in Amazonian Evergreen Forests by Using an Improved Diffuse Fraction-Based Light Use Efficiency Model

    Science.gov (United States)

    Yan, Hao; Wang, Shao-Qiang; da Rocha, Humberto R.; Rap, Alexandru; Bonal, Damien; Butt, Nathalie; Coupe, Natalia Restrepo; Shugart, Herman H.

    2017-11-01

    Understanding the mechanism of photosynthetic seasonality in Amazonian evergreen forests is critical for its formulation in global climate and carbon cycle models. However, the control of the unexpected photosynthetic seasonality is highly uncertain. Here we use eddy-covariance data across a network of Amazonian research sites and a novel evapotranspiration (E) and two-leaf-photosynthesis-coupled model to investigate links between photosynthetic seasonality and climate factors on monthly scales. It reproduces the GPP seasonality (R2 = 0.45-0.69) with a root-mean-square error (RMSE) of 0.67-1.25 g C m-2 d-1 and a Bias of -0.03-1.04 g C m-2 d-1 for four evergreen forest sites. We find that the proportion of diffuse and direct sunlight governs the photosynthetic seasonality via their interaction with sunlit and shaded leaves, supported by a proof that canopy light use efficiency (LUE) has a strong linear relationship with the fraction of diffuse sunlight for Amazonian evergreen forests. In the transition from dry season to rainy season, incident total radiation (Q) decreased while LUE and diffuse fraction increased, which produced the large seasonal increase ( 34%) in GPP of evergreen forests. We conclude that diffuse radiation is an important environmental driver of the photosynthetic seasonality in tropical Amazon forests yet depending on light utilization by sunlit and shaded leaves. Besides, the GPP model simulates the precipitation-dominated GPP seasonality (R2 = 0.40-0.69) at pasture and savanna sites. These findings present an improved physiological method to relate light components with GPP in tropical Amazon.

  8. Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy.

    Science.gov (United States)

    Zhu, Zhi; Luan, Guodong; Tan, Xiaoming; Zhang, Haocui; Lu, Xuefeng

    2017-01-01

    Ethanol photosynthetic production based on cyanobacteria cell factories utilizing CO 2 and solar energy provides an attractive solution for sustainable production of green fuels. However, the scaling up processes of cyanobacteria cell factories were usually threatened or even devastated by biocontaminations, which restricted biomass or products accumulations of cyanobacteria cells. Thus it is of great significance to develop reliable biocontamination-controlling strategies for promoting ethanol photosynthetic production in large scales. The scaling up process of a previously developed Synechocystis strain Syn-HZ24 for ethanol synthesis was severely inhibited and devastated by a specific contaminant, Pannonibacter phragmitetus , which overcame the growths of cyanobacteria cells and completely consumed the ethanol accumulation in the cultivation systems. Physiological analysis revealed that growths and ethanol-consuming activities of the contaminant were sensitive to alkaline conditions, while ethanol-synthesizing cyanobacteria strain Syn-HZ24 could tolerate alkaline pH conditions as high as 11.0, indicating that pH-increasing strategy might be a feasible approach for rescuing ethanol photosynthetic production in outdoor cultivation systems. Thus, we designed and evaluated a Bicarbonate-based Integrated Carbon Capture System (BICCS) derived pH-rising strategy to rescue the ethanol photosynthetic production in non-sterilized conditions. In lab scale artificially simulated systems, pH values of BG11 culture medium were maintained around 11.0 by 180 mM NaHCO 3 and air steam, under which the infection of Pannonibacter phragmitetus was significantly restricted, recovering ethanol production of Syn-HZ24 by about 80%. As for outdoor cultivations, ethanol photosynthetic production of Syn-HZ24 was also successfully rescued by the BICCS-derived pH-rising strategy, obtaining a final ethanol concentration of 0.9 g/L after 10 days cultivation. In this work, a novel product

  9. Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective.

    Science.gov (United States)

    Gudmundsson, Steinn; Nogales, Juan

    2015-01-01

    The increasing need to replace oil-based products and to address global climate change concerns has triggered considerable interest in photosynthetic microorganisms. Cyanobacteria, in particular, have great potential as biocatalysts for fuels and fine-chemicals. During the last few years the biotechnological applications of cyanobacteria have experienced an unprecedented increase and the use of these photosynthetic organisms for chemical production is becoming a tangible reality. However, the field is still immature and many concerns about the economic feasibility of the biotechnological potential of cyanobacteria remain. In this review we describe recent successes in biofuel and fine-chemical production using cyanobacteria. We discuss the role of the photosynthetic metabolism and highlight the need for systems-level metabolic optimization in order to achieve the true potential of cyanobacterial biocatalysts.

  10. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nesterov, Alexander [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Lopez, Gustavo [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Sayre, Richard Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  11. Net carbon flux of dead wood in forests of the Eastern US

    Science.gov (United States)

    C.W. Woodall; M.B. Russell; B.F. Walters; A.W. D' Amato; S. Fraver; G.M. Domke

    2015-01-01

    Downed dead wood (DDW) in forest ecosystems is a C pool whose net flux is governed by a complex of natural and anthropogenic processes and is critical to the management of the entire forest C pool. As empirical examination of DDW C net flux has rarely been conducted across large scales, the goal of this study was to use a remeasured inventory of DDW C and ancillary...

  12. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.

    Science.gov (United States)

    Rowland, Lucy; Lobo-do-Vale, Raquel L; Christoffersen, Bradley O; Melém, Eliane A; Kruijt, Bart; Vasconcelos, Steel S; Domingues, Tomas; Binks, Oliver J; Oliveira, Alex A R; Metcalfe, Daniel; da Costa, Antonio C L; Mencuccini, Maurizio; Meir, Patrick

    2015-12-01

    Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5 ± 3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity. © 2015 John Wiley & Sons Ltd.

  13. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation

    Science.gov (United States)

    Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro

    2014-01-01

    ‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530

  14. Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize

    DEFF Research Database (Denmark)

    Rich, Sarah Meghan; Ludwig, Martha; Pedersen, Ole

    2011-01-01

    • Many wetland plants produce aquatic adventitious roots from submerged stems. Aquatic roots can form chloroplasts, potentially producing endogenous carbon and oxygen. Here, aquatic root photosynthesis was evaluated in the wetland plant Meionectes brownii, which grows extensive stem-borne aquatic...... roots during submergence. • Underwater photosynthetic light and CO(2) response curves were determined for aquatic-adapted leaves, stems and aquatic roots of M. brownii. Oxygen microelectrode and (14)CO(2)-uptake experiments determined shoot inputs of O(2) and photosynthate into aquatic roots. • Aquatic...... adventitious roots contain a complete photosynthetic pathway. Underwater photosynthetic rates are similar to those of stems, with a maximum net photosynthetic rate (P(max)) of 0.38 µmol O(2) m(-2) s(-1); however, this is c. 30-fold lower than that of aquatic-adapted leaves. Under saturating light with 300 mmol...

  15. The effect of 'Liang-Feng-Su' on increasing production of sweet potato

    International Nuclear Information System (INIS)

    Liu Yitong; Wang Zhifen

    1991-01-01

    Treating sweet potato seedling with 33 x 10 -6 'Liang-Feng-Su', by means of phosphorus-32 and carbon-14 tracing technique showed that the use of 'Liang-Feng-Su' not only increased the root vigor and net photosynthetic efficiency of leaves, but also promoted the transport of photosynthate to root tubers which results in economic benefit

  16. Exploring canopy structure and function as a potential mechanism of sustain carbon sequestration in aging forests

    Science.gov (United States)

    Fotis, A. T.; Curtis, P.; Ricart, R.

    2013-12-01

    The notion that old-growth forests reach carbon neutrality has recently been challenged, but the mechanisms responsible for continued productivity have remained elusive. Increases in canopy structural complexity, defined by high horizontal and vertical variability in leaf distribution (rugosity), has been proposed as a mechanism for sustained high rates of above ground net primary production (ANPPw) in forests up to ~170 years by enhancing light use efficiency (LUE) and nitrogen use efficiency (NUE). However, a detailed understanding of how rugosity affects resource distribution within and among trees leading to greater LUE and NUE is not known. We propose that leaves in high rugosity plots receive greater photosynthetic photon flux density (PPFD) than leaves in low rugosity plots, causing shifts from shade- to sun- adapted leaves into deeper portions of the canopy, which is thought to increase the photosynthetic capacity of individuals and lead to higher carbon assimilation in forests. The goal of this research was to: 1) quantify different canopy structural characteristics using a portable canopy LiDAR (PCL) and; 2) assess how these structural characteristics affect resource distribution and subsequent changes in leaf morphological, physiological and biochemical traits in three broadleaf species (e.g., Acer rubrum, Quercus rubra and Fagus grandifolia) and one conifer species (e.g., Pinus strobus) at different levels in the canopy in plots with similar leaf are index (LAI) but highly contrasting rugosity levels. We found that gap fraction had a strong positive correlation with rugosity. High rugosity plots had a bimodal distribution of LAI that was concentrated at the top and bottom of the canopy with an open midstory (between 10-50% of total canopy height) whereas low rugosity plots had a more even distribution of leaves. Leaf mass per area (LMA) of all broadleaved species had a strong positive correlation with cumulative gap fraction (P. strobus had a relatively

  17. Measuring Urban Carbon Footprint from Carbon Flows in the Global Supply Chain.

    Science.gov (United States)

    Hu, Yuanchao; Lin, Jianyi; Cui, Shenghui; Khanna, Nina Zheng

    2016-06-21

    A global multiregional input-output (MRIO) model was built for eight Chinese cities to track their carbon flows. For in-depth understanding of urban carbon footprint from the perspectives of production, consumption, and trade balance, four kinds of footprints and four redefined measurement indicators were calculated. From the global supply chain, urban carbon inflows from Mainland China were larger than outflows, while the carbon outflows to European, principal North American countries and East Asia were much larger than inflows. With the rapid urbanization of China, Construction was the largest consumer and Utilities was the largest producer. Cities with higher consumption (such as Dalian, Tianjin, Shanghai, and Beijing) should change their consumption patterns, while cities with lower production efficiency (such as Dalian, Shanghai, Ningbo, and Chongqing) should improve their technology. The cities of net carbon consumption tended to transfer carbon emissions out of them by trading in carbon-intensive products, while the cities of net carbon production tended to produce carbon-intensive products for nonlocal consumers. Our results indicated that urban carbon abatement requires not only rational consumption and industrial symbiosis at the city level, but also tighter collaboration along all stages of the global supply chain.

  18. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites.

    Science.gov (United States)

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario; Gielen, Bert; Janssens, Ivan A; Nikinmaa, Eero; Ibrom, Andreas; Wu, Jian; Bernhofer, Christian; Köstner, Barbara; Grünwald, Thomas; Seufert, Günther; Ciais, Philippe; Frank, David

    2014-03-01

    • Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  19. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms

    Science.gov (United States)

    Stripp, Sven T.; Goldet, Gabrielle; Brandmayr, Caterina; Sanganas, Oliver; Vincent, Kylie A.; Haumann, Michael; Armstrong, Fraser A.; Happe, Thomas

    2009-01-01

    Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation of the [FeFe] hydrogenase CrHydA1 from C. reinhardtii has been investigated. X-ray absorption spectroscopy shows that reaction with oxygen results in destruction of the [4Fe-4S] domain of the active site H-cluster while leaving the di-iron domain (2FeH) essentially intact. By protein film electrochemistry we were able to determine the order of events leading up to this destruction. Carbon monoxide, a competitive inhibitor of CrHydA1 which binds to an Fe atom of the 2FeH domain and is otherwise not known to attack FeS clusters in proteins, reacts nearly two orders of magnitude faster than oxygen and protects the enzyme against oxygen damage. These results therefore show that destruction of the [4Fe-4S] cluster is initiated by binding and reduction of oxygen at the di-iron domain—a key step that is blocked by carbon monoxide. The relatively slow attack by oxygen compared to carbon monoxide suggests that a very high level of discrimination can be achieved by subtle factors such as electronic effects (specific orbital overlap requirements) and steric constraints at the active site. PMID:19805068

  20. Economic feasibility of no-tillage and manure for soil carbon sequestration in corn production in northeastern Kansas.

    Science.gov (United States)

    Pendell, Dustin L; Williams, Jeffery R; Rice, Charles W; Nelson, Richard G; Boyles, Scott B

    2006-01-01

    This study examined the economic potential of no-tillage versus conventional tillage to sequester soil carbon by using two rates of commercial N fertilizer or beef cattle manure for continuous corn (Zea mays L.) production. Yields, input rates, field operations, and prices from an experiment were used to simulate a distribution of net returns for eight production systems. Carbon release values from direct, embodied, and feedstock energies were estimated for each system, and were used with soil carbon sequestration rates from soil tests to determine the amount of net carbon sequestered by each system. The values of carbon credits that provide an incentive for managers to adopt production systems that sequester carbon at greater rates were derived. No-till systems had greater annual soil carbon gains, net carbon gains, and net returns than conventional tillage systems. Systems that used beef cattle manure had greater soil carbon gains and net carbon gains, but lower net returns, than systems that used commercial N fertilizer. Carbon credits would be needed to encourage the use of manure-fertilized cropping systems.

  1. On the global relationships between photosynthetic water-use efficiency, leaf mass per unit area and atmospheric demand in woody and herbaceous plants

    Science.gov (United States)

    Letts, M. G.; Fox, T. A.; Gulias, J.; Galmes, J.; Hikosaka, K.; Wright, I.; Flexas, J.; Awada, T.; Rodriguez-Calcerrada, J.; Tobita, H.

    2013-12-01

    A global dataset was compiled including woody and herbaceous C3 species from forest, Mediterranean and grassland-shrubland ecosystems, to elucidate the dependency of photosynthetic water-use efficiency on vapour pressure deficit (D) and leaf traits. Mean leaf mass per unit area (LMA) was lower and mass-based leaf nitrogen content (Nmass) was higher in herbaceous species. Higher mean stomatal conductance (gs), transpiration rate (E) and net CO2 assimilation rate under light saturating conditions (Amax) were observed in herbs, but photosynthetic and intrinsic water-use efficiencies (WUE = Amax/E and WUEi = Amax/gs) were lower than in woody plants. Woody species maintained stricter stomatal regulation of water loss at low D, resulting in a steeper positive and linear relationship between log D and log E. Herbaceous species possessed very high gs at low D, resulting in higher ratio of substomatal to atmospheric CO2 concentrations (ci/ca) and E, but lower WUE and WUEi than woody plants, despite higher Amax. The lower WUE and higher rates of gas exchange were most pronounced in herbs with low LMA and high Nmass. Photosynthetic water use also differed between species from grassland-shrubland and Mediterranean or forest environments. Water-use efficiency showed no relationship with either D or LMA in grassland-shrubland species, but showed a negative relationship with D in forest and chaparral. The distinct photosynthetic water-use of woody and herbaceous plants is consistent with the opportunistic growth strategy of herbs and the more conservative growth strategy of woody species. Further research is recommended to examine the implications of these functional group and ecosystem differences in the contexts of climate and atmospheric change.

  2. Recent development in artificial photosynthetic model; Jinko kogosei no moderu ka kenkyu saikin no shinpo

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, M [Ibaraki Univ., Ibaraki (Japan). Faculty of Engineering

    1996-03-01

    In the conversion from solar energy into chemical energy (fuels) by photochemical conversion, an electron donor is necessary since all the fuels are reductive compounds. From the viewpoint of economic profit, water is the only one candidate as a cheap compound and existing impartially. In this paper, photosynthesis as well as the realization of its artificial model, and the relevant basic research executed recently aiming at the construction of an artificial photosynthetic system are explained. The main reaction of photosynthesis is the generation of carbohydrates by the reduction reaction of carbon dioxide with water as an electron donor and solar visual light as an energy resource. As a special example thereof, the UV photolysis of water due to the photocatalysis of a micro-particle system is introduced. The method of using a semiconductor and the method of using sensitizes are described as the photo excitation system when designing the artificial model. Additionally, as the research with respect to the construction of an artificial photosynthetic system, a photo-exciting charge transfer system is introduced. 27 refs., 1 fig.

  3. Study on improvement of continuous hydrogen production by photosynthetic biofilm in interior illuminant reactor.

    Science.gov (United States)

    Liu, Wenhui; Yuan, Linjiang; Wei, Bo

    2016-09-01

    In the present study, a new type of interior optical fiber illuminating reactor was developed for H2 production to solve the problem of luminous intensity attenuation at the center portion of a reactor, and an immobilization technique was used to enhance the stability of a continuous hydrogen production process with attached photosynthetic bacteria, using glucose as a sole carbon substrate for the indigenous photosynthetic bacteria (PSB) Rhodopseudomonas palustris SP-6. Results of the experiments showed that the interior optical fiber illuminating reactor produces H2 more efficiently and productively than the exterior light source reactor, with the cumulative H2 production, the maximum H2 production rate and H2 yield increased by 813ml, 11.3ml l-1 h-1 and 22.3%, respectively. The stability of the product of continuous hydrogen was realized by immobilizing PSB on the surface of powder active carbon(PAC). After adding the dosage of 2.0g l-1 PAC, the continuous steady operation of H2 production gave a high H2 yield of 1.398 mol H2 mol-1 glucose and an average H2 production rate of 35.1ml l-1 h-1 illuminating with a single interior optical fiber light source. Meanwhile, a higher H2 yield of 1.495 mol H2 mol-1 glucose and an average H2 production rate of 38.7ml l-1 h-1 were attained illuminating with a compound lamp in the continuous H2 production for 20 days.

  4. Interactions between heavy metals and photosynthetic materials studied by optical techniques.

    Science.gov (United States)

    Ventrella, Andrea; Catucci, Lucia; Piletska, Elena; Piletsky, Sergey; Agostiano, Angela

    2009-11-01

    In this work studies on rapid inhibitory interactions between heavy metals and photosynthetic materials at different organization levels were carried out by optical assay techniques, investigating the possibility of applications in the heavy metal detection field. Spinach chloroplasts, thylakoids and Photosystem II proteins were employed as biotools in combination with colorimetric assays based on dichlorophenol indophenole (DCIP) photoreduction and on fluorescence emission techniques. It was found that copper and mercury demonstrated a strong and rapid photosynthetic activity inhibition, that varied from proteins to membranes, while other metals like nickel, cobalt and manganese produced only slight inhibition effects on all tested photosynthetic materials. By emission measurements, only copper was found to rapidly influence the photosynthetic material signals. These findings give interesting information about the rapid effects of heavy metals on isolated photosynthetic samples, and are in addition to the literature data concerning the effects of growth in heavy metal enriched media.

  5. Characterization and Molecular Interpretation of the Photosynthetic Traits of Lonicera confusa in Karst Environment

    Science.gov (United States)

    Gan, Lu; Fu, Chunhua; Zhang, Libin; Yu, Longjiang; Li, Maoteng

    2014-01-01

    Lonicera confusa was a medical plant which could adapt to the Ca-rich environment in the karst area of China. The photosynthesis, relative chlorophyll content,differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) of L. confusa that cultivated in calcareous and sandstone soils were investigated. The results showed that the relative chlorophyll content and net photosynthesis rate of L. confusa in calcareous soil are much higher than that planted in sandstone soil, the higher content of calcium might play a role in keeping the chloroplast from harm and showed higher photosynthesis rate. The transpiration and stomata conductance were decreased in calcareous soil, which might result from the closure of stomata. The GeneFishing and proteomic results showed that the expression of DEGs and DEPs were critical for photosynthesis and stomata closure, such as RuBisCO, photosynthetic electron transfer c and malate dehydrogenase varied in the leaves of L. confusa that cultivated in different soils. These DEGs or DEPs were further found to be directly or indirectly regulated by calcium sensor proteins. This study enriched our knowledge of the molecular mechanism of high net photosynthesis rate and lower transpiration of L. confusa that cultivated in the calcareous soil in some degree. PMID:24959829

  6. Phylogeny and photosynthetic pathway distribution in Anticharis Endl. (Scrophulariaceae).

    Science.gov (United States)

    Khoshravesh, Roxana; Hossein, Akhani; Sage, Tammy L; Nordenstam, Bertil; Sage, Rowan F

    2012-09-01

    C(4) photosynthesis independently evolved >62 times, with the majority of origins within 16 dicot families. One origin occurs in the poorly studied genus Anticharis Endl. (Scrophulariaceae), which consists of ~10 species from arid regions of Africa and southwest Asia. Here, the photosynthetic pathway of 10 Anticharis species and one species from each of the sister genera Aptosimum and Peliostomum was identified using carbon isotope ratios (δ(13)C). The photosynthetic pathway was then mapped onto an internal transcribed spacer (ITS) phylogeny of Anticharis and its sister genera. Leaf anatomy was examined for nine Anticharis species and plants from Aptosimum and Peliostomum. Leaf ultrastructure, gas exchange, and enzyme distributions were assessed in Anticharis glandulosa collected in SE Iran. The results demonstrate that C(3) photosynthesis is the ancestral condition, with C(4) photosynthesis occurring in one clade containing four species. C(4) Anticharis species exhibit the atriplicoid type of C(4) leaf anatomy and the NAD-malic enzyme biochemical subtype. Six Anticharis species had C(3) or C(3)-C(4) δ(13)C values and branched at phylogenetic nodes that were sister to the C(4) clade. The rest of Anticharis species had enlarged bundle sheath cells, close vein spacing, and clusters of chloroplasts along the centripetal (inner) bundle sheath walls. These traits indicate that basal-branching Anticharis species are evolutionary intermediates between the C(3) and C(4) conditions. Anticharis appears to be an important new group in which to study the dynamics of C(4) evolution.

  7. Photosynthetic and nitrogen fixation capability in several soybean mutant lines

    International Nuclear Information System (INIS)

    Gandanegara, S.; Hendratno, K.

    1987-01-01

    Photosynthetic and nitrogen fixation capability in several soybean mutant lines. A greenhouse experiment has been carried out to study photosynthetic and nitrogen fixation capability of five mutant lines and two soybean varieties. An amount of 330 uCi of 14 CO 2 was fed to the plants including of the non-fixing reference crop (Chippewa non-nodulating isoline). Nitrogen fixation measurements was carried out using 15 N isotope dilution technique according to A-value concept. Results showed that beside variety/mutant lines, plant growth also has important role in photosynthetic and N fixing capability. Better growth and a higher photosynthetic capability in Orba, mutant lines nos. 63 and 65 resulted in a greater amount of N 2 fixed (mg N/plant) than other mutant lines. (author). 12 refs.; 5 figs

  8. Soil fluxes of carbonyl sulfide (COS), carbon monoxide, and carbon dioxide in a boreal forest in southern Finland

    Science.gov (United States)

    Sun, Wu; Kooijmans, Linda M. J.; Maseyk, Kadmiel; Chen, Huilin; Mammarella, Ivan; Vesala, Timo; Levula, Janne; Keskinen, Helmi; Seibt, Ulli

    2018-02-01

    Soil is a major contributor to the biosphere-atmosphere exchange of carbonyl sulfide (COS) and carbon monoxide (CO). COS is a tracer with which to quantify terrestrial photosynthesis based on the coupled leaf uptake of COS and CO2, but such use requires separating soil COS flux, which is unrelated to photosynthesis, from ecosystem COS uptake. For CO, soil is a significant natural sink that influences the tropospheric CO budget. In the boreal forest, magnitudes and variabilities of soil COS and CO fluxes remain poorly understood. We measured hourly soil fluxes of COS, CO, and CO2 over the 2015 late growing season (July to November) in a Scots pine forest in Hyytiälä, Finland. The soil acted as a net sink of COS and CO, with average uptake rates around 3 pmol m-2 s-1 for COS and 1 nmol m-2 s-1 for CO. Soil respiration showed seasonal dynamics controlled by soil temperature, peaking at around 4 µmol m-2 s-1 in late August and September and dropping to 1-2 µmol m-2 s-1 in October. In contrast, seasonal variations of COS and CO fluxes were weak and mainly driven by soil moisture changes through diffusion limitation. COS and CO fluxes did not appear to respond to temperature variation, although they both correlated well with soil respiration in specific temperature bins. However, COS : CO2 and CO : CO2 flux ratios increased with temperature, suggesting possible shifts in active COS- and CO-consuming microbial groups. Our results show that soil COS and CO fluxes do not have strong variations over the late growing season in this boreal forest and can be represented with the fluxes during the photosynthetically most active period. Well-characterized and relatively invariant soil COS fluxes strengthen the case for using COS as a photosynthetic tracer in boreal forests.

  9. Net ecosystem CO2 exchange over a larch forest in Hokkaido, Japan

    International Nuclear Information System (INIS)

    Huimin Wang; Saigusa, Nobuko; Yamamoto, Susumu; Kondo, Hiroaki; Hirano, Takashi; Toriyama, Atsushi; Fujinuma, Yasumi

    2004-01-01

    Larch forests are distributed extensively in the east Eurasian continent and are expected to play a significant role in the terrestrial ecosystem carbon cycling process. In view of the fact that studies on carbon exchange for this important biome have been very limited, we have initiated a long-term flux observation in a larch forest ecosystem in Hokkaido in northern Japan since 2000. The net ecosystem CO 2 exchange (NEE) showed large seasonal and diurnal variation. Generally, the larch forest ecosystem released CO 2 in nighttime and assimilated CO 2 in daytime during the growing season from May to October. The ecosystem started to become a net carbon sink in May, reaching a maximum carbon uptake as high as 186 g C m -2 month -1 in June. With the yellowing, senescing and leaf fall, the ecosystem turned into a carbon source in November. During the non-growing season, the larch forest ecosystem became a net source of CO 2 , releasing an average of 16.7 g C m -2 month -1 . Overall, the ecosystem sequestered 141-240 g C m -2 yr -1 in 2001. The NEE was significantly influenced by environmental factors. Respiration of the ecosystem, for example, was exponentially dependent on air temperature, while photosynthesis was related to the incident PAR in a manner consistent with the Michaelis-Menten model. Although the vapor pressure deficit (VPD) was scarcely higher than 15 hPa, the CO 2 uptake rate was also depressed when VPD surpassed 10 hPa (Author)

  10. Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs.

    Science.gov (United States)

    Palmroth, Sari; Bach, Lisbet Holm; Nordin, Annika; Palmqvist, Kristin

    2014-06-01

    Boreal coniferous forests are characterized by fairly open canopies where understory vegetation is an important component of ecosystem C and N cycling. We used an ecophysiological approach to study the effects of N additions on uptake and partitioning of C and N in two dominant understory shrubs: deciduous Vaccinium myrtillus in a Picea abies stand and evergreen Vaccinium vitis-idaea in a Pinus sylvestris stand in northern Sweden. N was added to these stands for 16 and 8 years, respectively, at rates of 0, 12.5, and 50 kg N ha(-1) year(-1). N addition at the highest rate increased foliar N and chlorophyll concentrations in both understory species. Canopy cover of P. abies also increased, decreasing light availability and leaf mass per area of V. myrtillus. Among leaves of either shrub, foliar N content did not explain variation in light-saturated CO2 exchange rates. Instead photosynthetic capacity varied with stomatal conductance possibly reflecting plant hydraulic properties and within-site variation in water availability. Moreover, likely due to increased shading under P. abies and due to water limitations in the sandy soil under P. sylvestris, individuals of the two shrubs did not increase their biomass or shift their allocation between above- and belowground parts in response to N additions. Altogether, our results indicate that the understory shrubs in these systems show little response to N additions in terms of photosynthetic physiology or growth and that changes in their performance are mostly associated with responses of the tree canopy.

  11. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-01-16

    This is the first quarterly report of the project Enhanced Practical Photosynthetic CO{sub 2} Mitigation. The official project start date, 10/02/2000, was delayed until 10/31/2000 due to an intellectual property dispute that was resolved. However, the delay forced a subsequent delay in subcontracting with Montana State University, which then delayed obtaining a sampling permit from Yellowstone National Park. However, even with these delays, the project moved forward with some success. Accomplishments for this quarter include: Culturing of thermophilic organisms from Yellowstone; Testing of mesophilic organisms in extreme CO{sub 2} conditions; Construction of a second test bed for additional testing; Purchase of a total carbon analyzer dedicated to the project; Construction of a lighting container for Oak Ridge National Laboratory optical fiber testing; Modified lighting of existing test box to provide more uniform distribution; Testing of growth surface adhesion and properties; Experimentation on water-jet harvesting techniques; and Literature review underway regarding uses of biomass after harvesting. Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  12. Photosynthetic response of an alpine plant, Rhododendron delavayi Franch, to water stress and recovery: the role of mesophyll conductance

    Directory of Open Access Journals (Sweden)

    Yanfei eCai

    2015-12-01

    Full Text Available Rhododendron delavayi Franch is an evergreen shrub or small tree with large scarlet flowers that makes it highly attractive as an ornamental species. The species is native to southwest China and southeast Asia, especially the Himalayan region, showing good adaptability and tolerance to drought. To understand the water stress coping mechanisms of R. delavayi, we analysed the plant’s photosynthetic performance during water stress and recovery. In particular, we looked at the regulation of stomatal (gs and mesophyll conductance (gm, and maximum rate of carboxylation (Vcmax. After four days of water stress treatment, the net CO2 assimilation rate (AN declined slightly while gs and gm were not affected and stomatal limitation (SL was therefore negligible. At this stage mesophyll conductance limitation (MCL and biochemical limitation (BL constituted the main limitation factors. After eight days of water stress treatment, AN, gs and gm had decreased notably. At this stage SL increased markedly and MCL even more so, while BL remained relatively constant. After re-watering, the recovery of AN, gs and gm was rapid, although remaining below the levels of the control plants, while Vcmax fully regained control levels after three days of re-watering. MCL remained the main limitation factor irrespective of the degree of photosynthetic recovery. In conclusion, in our experiment MCL was the main photosynthetic limitation factor of R. delavayi under water stress and during the recovery phase, with the regulation of gm probably being the result of interactions between the environment and leaf anatomical features.

  13. Photosynthetic Characteristics of Flag Leaves in Rice White Stripe Mutant 6001 During Senescence Process

    Directory of Open Access Journals (Sweden)

    Xiao-hui ZHEN

    2014-11-01

    Full Text Available Physiological, biochemical and electron microscopy analyses were used to investigate the photosynthetic performance of flag leaves in rice white stripe mutant 6001 during the senescence process. Results showed that the chlorophyll content at the heading and milk-ripe stages in rice mutant 6001 were about 34.78% and 3.00% less than those in wild type 6028, respectively. However, the chlorophyll content at the fully-ripe stage in rice mutant 6001 was higher than that in wild type 6028. At the heading stage, the net photosynthetic rate (Pn in rice mutant 6001 was lower than that in wild type 6028. Rice mutant 6001 also exhibited a significantly slower decrease rate of Pn than wild type 6028 during the senescence progress, especially at the later stage. Furthermore, Ca2+-ATPase, Mg2+-ATPase and photophosphorylation activities exhibited the similar trends as the Pn. During the senescence process, the 68 kDa polypeptide concentrations in the thylakoid membrane proteins exhibited a significant change, which was one of the critical factors that contributed to the observed change in photosynthesis. We also observed that the chloroplasts of rice mutant 6001 exhibited higher integrity than those of wild type 6028, and the chloroplast membrane of rice mutant 6001 disintegrated more slow during the senescence process. In general, rice mutant 6001 had a relatively slower senescence rate than wild type 6028, and exhibited anti-senescence properties.

  14. Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations.

    Science.gov (United States)

    Ambebe, Titus F; Dang, Qing-Lai

    2009-11-01

    White birch (Betula papyrifera Marsh.) seedlings were grown under two carbon dioxide concentrations (ambient: 360 micromol mol(-1) and elevated: 720 micromol mol(-1)), three soil temperatures (5, 15 and 25 degrees C initially, increased to 7, 17 and 27 degrees C, respectively, 1 month later) and three moisture regimes (low: 30-40%; intermediate: 45-55% and high: 60-70% field water capacity) in greenhouses. In situ gas exchange and chlorophyll fluorescence were measured after 2 months of treatments. Net photosynthetic rate (A(n)) of seedlings grown under the intermediate and high moisture regimes increased from low to intermediate T(soil) and then decreased to high T(soil). There were no significant differences between the low and high T(soil), with the exception that A(n) was significantly higher under high than low T(soil) at the high moisture regime. No significant T(soil) effect on A(n) was observed at the low moisture regime. The intermediate T(soil) increased stomatal conductance (g(s)) only at intermediate and high but not at low moisture regime, whereas there were no significant differences between the low and high T(soil) treatments. Furthermore, the difference in g(s) between the intermediate and high T(soil) at high moisture regime was not statistically significant. The low moisture regime significantly reduced the internal to ambient CO2 concentration ratio at all T(soil). There were no significant individual or interactive effects of treatment on maximum carboxylation rate of Rubisco, light-saturated electron transport rate, triose phosphate utilization or potential photochemical efficiency of photosystem II. The results of this study suggest that soil moisture condition should be taken into account when predicting the responses of white birch to soil warming.

  15. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners.

    Science.gov (United States)

    Bittencourt-Oliveira, Maria do Carmo; Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; de Oliveira, Ênio Tiago; dos Santos, Flávio

    2016-06-01

    The use of microcystins (MCs) contaminated water to irrigate crop plants represents a human health risk due to their bioaccumulation potential. In addition, MCs cause oxidative stress and negatively influence photosynthetic activities in plants. The present study was aimed at investigating the effect of MCs on photosynthetic parameters and antioxidative response of lettuce. Furthermore, the bioaccumulation factor (BAF) of total MCs, MC-LR and MC-RR in the vegetable after irrigation with contaminated water was determined. Lettuce crops were irrigated for 15 days with water containing cyanobacterial crude extracts (Microcystis aeruginosa) with MC-LR (0.0, 0.5, 2.0, 5.0 and 10.0 µg L(-1)), MC-RR (0.0, 0.15, 0.5, 1.5 and 3.0 µg L(-1)) and total MCs (0.0, 0.65, 2.5, 6.5 and 13.0 µg L(-1)). Increased net photosynthetic rate, stomatal conductance, leaf tissue transpiration and intercellular CO2 concentration were recorded in lettuce exposed to different MCs concentrations. Antioxidant response showed that glutathione S-transferase activity was down-regulated in the presence of MCs. On the other hand, superoxide dismutase, catalase and peroxidase activities were upregulated with increasing MCs concentrations. The bioaccumulation factor (BAF) of total MCs and MC-LR was highest at 6.50 and 5.00 µg L(-1), respectively, while for MC-RR, the highest BAF was recorded at 1.50 µg L(-1) concentration. The amount of total MCs, MC-LR and MC-RR bioacumulated in lettuce was highest at the highest exposure concentrations. However, at the lowest exposure concentration, there were no detectable levels of MC-LR, MC-RR and total MCs in lettuce. Thus, the bioaccumulation of MCs in lettuce varies according to the exposure concentration. In addition, the extent of physiological response of lettuce to the toxins relies on exposure concentrations. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Revealing Linear Aggregates of Light Harvesting Antenna Proteins in Photosynthetic Membranes

    OpenAIRE

    He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H. Peter

    2010-01-01

    How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under...

  17. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    Science.gov (United States)

    Cai, Xiaoni; Hutchins, David A.; Fu, Feixue; Gao, Kunshan

    2017-10-01

    Biological effects of ultraviolet radiation (UVR; 280-400 nm) on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280-320 nm) and UV-A (320-400 nm) on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101) using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII) and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs). After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %), MAA content was higher, and average trichome length was shorter (by up to 22 %) in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR) alone treatment (400-700 nm). These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  18. Improving the representation of radiation interception and photosynthesis for climate model applications

    International Nuclear Information System (INIS)

    Mercado, Lina M.; Huntingford, Chris; Gash, John H.C.; Cox, Peter M.; Jogireddy, Venkata

    2007-01-01

    The Joint UK Land Environment Simulator (JULES) (which is based on Met Office Surface Exchange Scheme MOSES), the land surface scheme of the Hadley Centre General Circulation Models (GCM) has been improved to contain an explicit description of light interception for different canopy levels, which consequently leads to a multilayer approach to scaling from leaf to canopy level photosynthesis. We test the improved JULES model at a site in the Amazonian rainforest by comparing against measurements of vertical profiles of radiation through the canopy, eddy covariance measurements of carbon and energy fluxes, and also measurements of carbon isotopic fractionation from top canopy leaves. Overall, the new light interception formulation improves modelled photosynthetic carbon uptake compared to the standard big leaf approach used in the original JULES formulation. Additional model improvement was not significant when incorporating more realistic vertical variation of photosynthetic capacity. Even with the improved representation of radiation interception, JULES simulations of net carbon uptake underestimate eddy covariance measurements by 14%. This discrepancy can be removed by either increasing the photosynthetic capacity throughout the canopy or by explicitly including light inhibition of leaf respiration. Along with published evidence of such inhibition of leaf respiration, our study suggests this effect should be considered for inclusion in other GCMs

  19. Estimation of Mangrove Net Primary Production and Carbon Sequestration service using Light Use Efficiency model in the Sunderban Biosphere region, India

    Science.gov (United States)

    Sannigrahi, Srikanta; Sen, Somnath; Paul, Saikat

    2016-04-01

    Net Primary Production (NPP) of mangrove ecosystem and its capacity to sequester carbon from the atmosphere may be used to quantify the regulatory ecosystem services. Three major group of parameters has been set up as BioClimatic Parameters (BCP): (Photosynthetically Active Radiation (PAR), Absorbed PAR (APAR), Fraction of PAR (FPAR), Photochemical Reflectance Index (PRI), Light Use Efficiency (LUE)), BioPhysical Parameters (BPP) :(Normalize Difference Vegetation Index (NDVI), scaled NDVI, Enhanced Vegetation Index (EVI), scaled EVI, Optimised and Modified Soil Adjusted Vegetation Index (OSAVI, MSAVI), Leaf Area Index (LAI)), and Environmental Limiting Parameters (ELP) (Temperature Stress (TS), Land Surface Water Index (LSWI), Normalize Soil Water Index (NSWI), Water Stress Scalar (WS), Inversed WS (iWS) Land Surface Temperature (LST), scaled LST, Vapor Pressure Deficit (VPD), scaled VPD, and Soil Water Deficit Index (SWDI)). Several LUE models namely Carnegie Ames Stanford Approach (CASA), Eddy Covariance - LUE (EC-LUE), Global Production Efficiency Model (GloPEM), Vegetation Photosynthesis Model (VPM), MOD NPP model, Temperature and Greenness Model (TG), Greenness and Radiation model (GR) and MOD17 was adopted in this study to assess the spatiotemporal nature of carbon fluxes. Above and Below Ground Biomass (AGB & BGB) was calculated using field based estimation of OSAVI and NDVI. Microclimatic zonation has been set up to assess the impact of coastal climate on environmental limiting factors. MODerate Resolution Imaging Spectroradiometer (MODIS) based yearly Gross Primary Production (GPP) and NPP product MOD17 was also tested with LUE based results with standard model validation statistics: Root Mean Square of Error (RMSE), Mean Absolute Error (MEA), Bias, Coefficient of Variation (CV) and Coefficient of Determination (R2). The performance of CASA NPP was tested with the ground based NPP with R2 = 0.89 RMSE = 3.28 P = 0.01. Among the all adopted models, EC

  20. The rise of the photosynthetic rate when light intensity increases is delayed in ndh gene-defective tobacco at high but not at low CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Mercedes eMartin

    2015-02-01

    Full Text Available The 11 plastid ndh genes have hovered frequently on the edge of dispensability, being absent in the plastid DNA of many algae and certain higher plants. We have compared the photosynthetic activity of tobacco (Nicotiana tabacum, cv. Petit Havana with five transgenic lines (ndhF, pr-ndhF, T181D, T181A and ndhF FC and found that photosynthetic performance is impaired in transgenic ndhF-defective tobacco plants at rapidly fluctuating light intensities and higher than ambient CO2 concentrations. In contrast to wild type and ndhF FC, which reach the maximum photosynthetic rate in less than one min when light intensity suddenly increases, ndh defective plants (ndhF and T181A show up to a 5 min delay in reaching the maximum photosynthetic rate at CO2 concentrations higher than the ambient 360 ppm. Net photosynthesis was determined at different CO2 concentrations when sequences of 130, 870, 61, 870 and 130 μmol m−2 s−1 PAR sudden light changes were applied to leaves and photosynthetic efficiency and entropy production were determined as indicators of photosynthesis performance. The two ndh-defective plants, ndhF and T181A, had lower photosynthetic efficiency and higher entropy production than wt, ndhF FC and T181D tobacco plants, containing full functional ndh genes, at CO2 concentrations above 400 ppm. We propose that the Ndh complex improves cyclic electron transport by adjusting the redox level of transporters during the low light intensity stage. In ndhF-defective strains, the supply of electrons through the Ndh complex fails, transporters remain over-oxidized (specially at high CO2 concentrations and the rate of cyclic electron transport is low, impairing the ATP level required to rapidly reach high CO2 fixation rates in the following high light phase. Hence, ndh genes could be dispensable at low but not at high atmospheric concentrations of CO2.

  1. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots.

    Science.gov (United States)

    Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2016-01-01

    Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and

  2. A natural light/dark cycle regulation of carbon-nitrogen metabolism and gene expression in rice shoots

    Directory of Open Access Journals (Sweden)

    Haixing Li

    2016-08-01

    Full Text Available Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00 and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799 were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant

  3. The importance of the photosynthetic Gibbs effect in the elucidation of the Calvin-Benson-Bassham cycle.

    Science.gov (United States)

    Ebenhöh, Oliver; Spelberg, Stephanie

    2018-02-19

    The photosynthetic carbon reduction cycle, or Calvin-Benson-Bassham (CBB) cycle, is now contained in every standard biochemistry textbook. Although the cycle was already proposed in 1954, it is still the subject of intense research, and even the structure of the cycle, i.e. the exact series of reactions, is still under debate. The controversy about the cycle's structure was fuelled by the findings of Gibbs and Kandler in 1956 and 1957, when they observed that radioactive 14 CO 2 was dynamically incorporated in hexoses in a very atypical and asymmetrical way, a phenomenon later termed the 'photosynthetic Gibbs effect'. Now, it is widely accepted that the photosynthetic Gibbs effect is not in contradiction to the reaction scheme proposed by CBB, but the arguments given have been largely qualitative and hand-waving. To fully appreciate the controversy and to understand the difficulties in interpreting the Gibbs effect, it is illustrative to illuminate the history of the discovery of the CBB cycle. We here give an account of central scientific advances and discoveries, which were essential prerequisites for the elucidation of the cycle. Placing the historic discoveries in the context of the modern textbook pathway scheme illustrates the complexity of the cycle and demonstrates why especially dynamic labelling experiments are far from easy to interpret. We conclude by arguing that it requires sound theoretical approaches to resolve conflicting interpretations and to provide consistent quantitative explanations. © 2018 The Author(s).

  4. Improving Delivery of Photosynthetic Reducing Power to Cytochrome P450s

    DEFF Research Database (Denmark)

    Mellor, Silas Busck

    at sustainable production of high-value and commodity products. Cytochrome P450 enzymes play key roles in the biosynthesis of important natural products. The electron carrier ferredoxin can couple P450s non-natively to photosynthetic electron supply, providing ample reducing power for catalysis. However......, photosynthetic reducing power feeds into both central and specialized metabolism, which leads to a fiercely competitive system from which to siphon reductant. This thesis explores the optimization of light-driven P450 activity, and proposes strategies to overcome the limitations imposed by competition...... for photosynthetic reducing power. Photosynthetic electron carrier proteins interact with widely different partners because they use relatively non-specific interactions. The mechanistic basis of these interactions and its impact on natural electron transfer complexes is discussed. This particular type...

  5. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.

    2000-01-01

    1 The role of undisturbed tropical land ecosystems in the global carbon budget is not well understood. It has been suggested that inter-annual climate variability can affect the capacity of these ecosystems to store carbon in the short term. In this paper, we use a transient version of the Terrestrial Ecosystem Model (TEM) to estimate annual carbon storage in undisturbed Amazonian ecosystems during the period 1980-94, and to understand the underlying causes of the year-to-year variations in net carbon storage for this region. 2 We estimate that the total carbon storage in the undisturbed ecosystems of the Amazon Basin in 1980 was 127.6 Pg C, with about 94.3 Pg C in vegetation and 33.3 Pg C in the reactive pool of soil organic carbon. About 83% of the total carbon storage occurred in tropical evergreen forests. Based on our model's results, we estimate that, over the past 15 years, the total carbon storage has increased by 3.1 Pg C (+ 2%), with a 1.9-Pg C (+2%) increase in vegetation carbon and a 1.2-Pg C (+4%) increase in reactive soil organic carbon. The modelled results indicate that the largest relative changes in net carbon storage have occurred in tropical deciduous forests, but that the largest absolute changes in net carbon storage have occurred in the moist and wet forests of the Basin. 3 Our results show that the strength of interannual variations in net carbon storage of undisturbed ecosystems in the Amazon Basin varies from a carbon source of 0.2 Pg C/year to a carbon sink of 0.7 Pg C/year. Precipitation, especially the amount received during the drier months, appears to be a major controller of annual net carbon storage in the Amazon Basin. Our analysis indicates further that changes in precipitation combine with changes in temperature to affect net carbon storage through influencing soil moisture and nutrient availability. 4 On average, our results suggest that the undisturbed Amazonian ecosystems accumulated 0.2 Pg C/year as a result of climate

  6. Methods to measure biomass and production of bacteria and photosynthetic microbiota and their application on illuminated lake sediments. A literature study

    International Nuclear Information System (INIS)

    Nilsson, Eva

    2001-06-01

    In the work of finding a place for long time storage of radioactive waste it is of importance to understand the surrounding ecosystems. The storage is supposed to keep the radioactive waste away from humans and nature for some hundreds of thousands of years. It is important to be able to make risk assessments for a hypothetical release and understand by which ways the radionuclides could find their way into the biota. In lakes, released radionuclides would most probably find their way into the biota through heterotrophic bacteria or auto trophic microorganisms. Therefore, it is important to investigate how large the biomass and production of heterotrophic bacteria and photosynthetic organisms in lakes are. This report is an overview of methods that are commonly used today for measuring biomass and production of bacteria and photosynthetic microorganisms in lakes. It elucidates advantages and drawbacks of the different methods. Some results from studies on illuminated lake sediment habitats are given. Biomass of bacteria is commonly measured in microscope after colouring the bacteria with a dye. Dyes commonly used are acridine orange and 4',6-diamino-2-phenylindole (DAPI). Biomass of photosynthetic microorganisms is also commonly measured in microscope but can also be determined by the amount of chlorophyll 'a' and other pigments. An advantage with measuring the biomass photosynthetic microorganisms in microscope is that a good resolution of the community is achieved. A disadvantage with determining the biomass by measuring the chlorophyll 'a' concentrations is that the concentrations may vary with light climate and nutrients even though the carbon biomass is constant. Methods for measuring bacterial production discussed in this report are the thymidine incorporation method, the leucine incorporation method and the frequency of dividing cell method (FDC). Methods for primary production discussed in this report are the 14 CO 2 -incorporation method, the O 2

  7. Methods to measure biomass and production of bacteria and photosynthetic microbiota and their application on illuminated lake sediments. A literature study

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Eva [Uppsala Univ. (Sweden). Dept. of Limnology

    2001-06-01

    In the work of finding a place for long time storage of radioactive waste it is of importance to understand the surrounding ecosystems. The storage is supposed to keep the radioactive waste away from humans and nature for some hundreds of thousands of years. It is important to be able to make risk assessments for a hypothetical release and understand by which ways the radionuclides could find their way into the biota. In lakes, released radionuclides would most probably find their way into the biota through heterotrophic bacteria or auto trophic microorganisms. Therefore, it is important to investigate how large the biomass and production of heterotrophic bacteria and photosynthetic organisms in lakes are. This report is an overview of methods that are commonly used today for measuring biomass and production of bacteria and photosynthetic microorganisms in lakes. It elucidates advantages and drawbacks of the different methods. Some results from studies on illuminated lake sediment habitats are given. Biomass of bacteria is commonly measured in microscope after colouring the bacteria with a dye. Dyes commonly used are acridine orange and 4',6-diamino-2-phenylindole (DAPI). Biomass of photosynthetic microorganisms is also commonly measured in microscope but can also be determined by the amount of chlorophyll 'a' and other pigments. An advantage with measuring the biomass photosynthetic microorganisms in microscope is that a good resolution of the community is achieved. A disadvantage with determining the biomass by measuring the chlorophyll 'a' concentrations is that the concentrations may vary with light climate and nutrients even though the carbon biomass is constant. Methods for measuring bacterial production discussed in this report are the thymidine incorporation method, the leucine incorporation method and the frequency of dividing cell method (FDC). Methods for primary production discussed in this report are the {sup 14}CO{sub 2

  8. Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites

    Science.gov (United States)

    Post, Hanna; Vrugt, Jasper A.; Fox, Andrew; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2017-03-01

    The Community Land Model (CLM) contains many parameters whose values are uncertain and thus require careful estimation for model application at individual sites. Here we used Bayesian inference with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5 ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of four central European sites with different plant functional types (PFTs). The posterior CLM parameter distributions of each site were estimated per individual season and on a yearly basis. These estimates were then evaluated using NEE data from an independent evaluation period and data from "nearby" FLUXNET sites at 600 km distance to the original sites. Latent variables (multipliers) were used to treat explicitly uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their default values in their ability to track and explain the measured NEE data of each site. The seasonal parameter values reduced with more than 50% (averaged over all sites) the bias in the simulated NEE values. The most consistent performance of CLM during the evaluation period was found for the posterior parameter values of the forest PFTs, and contrary to the C3-grass and C3-crop sites, the latent variables of the initial pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon stocks and fluxes require careful consideration of uncertain ecological parameters and initial states.

  9. Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-B/A components of solar radiation: characterization of photosynthetic parameters in leaves.

    Science.gov (United States)

    Guruprasad, Kadur; Kadur, Guruprasad; Bhattacharjee, Swapan; Swapan, Bhattacharjee; Kataria, Sunita; Sunita, Kataria; Yadav, Sanjeev; Sanjeev, Yadav; Tiwari, Arjun; Arjun, Tiwari; Baroniya, Sanjay; Sanjay, Baroniya; Rajiv, Abhinav; Abhinav, Rajiv; Mohanty, Prasanna

    2007-01-01

    Exclusion of UV (280-380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34-46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants.

  10. Photosynthetic Characteristics and Chloroplast Ultrastructure of Summer Maize Response to Different Nitrogen Supplies.

    Science.gov (United States)

    Liu, Zheng; Gao, Jia; Gao, Fei; Liu, Peng; Zhao, Bin; Zhang, Jiwang

    2018-01-01

    Maize ( Zea mays L.) is the important crop over the world. Nitrogen (N) as necessary element affects photosynthetic characteristics and grain yield of summer maize. In this study, N0 (0 kg N ha -1 ), N1 (129 kg N ha -1 ), N2 (185 kg N ha -1 ), and N3 (300 kg N ha -1 ) was conducted using hybrid 'ZhengDan958' at Dawenkou research field (36°11'N, 117°06'E, 178 m altitude) in the North China Plain to explore the effects of N rate on photosynthetic characteristics and chloroplast ultrastructure. Gas exchange parameters, chlorophyll fluorescence parameters, leaf area index (LAI), chlorophyll SPAD value, chloroplast ultrastructure, dry matter weight and grain yield were measured. At physiological maturity stage, dry matter weight and grain yield of N2 increased by 33-52% ( P ≤ 0.05) and 6-32% ( P ≤ 0.05), respectively, compared with other treatments. During the growing from silking (R1) to milk (R3) stage, LAI of N0 and N1 were 35-38% ( P ≤ 0.05) and 9-23% ( P ≤ 0.05) less than that of N2, respectively. Chlorophyll SPAD value of N0 and N1 were 13-22% ( P ≤ 0.05) and 5-11% ( P ≤ 0.05) lower than that of N2. There was no significant difference in LAI and chlorophyll SPAD value between N2 and N3 during the period from R1 to R3 ( P > 0.05). The net photosynthetic rate ( P n ), maximal quantum efficiency of PSII ( F v / F m ) and quantum efficiency of PSII (Φ PSII ) were higher with the increase of N rate up to N2 ( P ≤ 0.05), and those of N3 were significantly less than N2 ( P ≤ 0.05). In compared with N2, the chloroplast configuration of N0 and N1 became elliptical, almost circular or irregular. The membrane of chloroplast and thylakoid resolved with growing stage, and the number of chloroplast per cell and lamellae per grana decreased under N0 and N1 treatment ( P ≤ 0.05). Under N0 and N1 treatments, summer maize had more negative photosynthetic characteristics. The more number of osmium granule and vesicle and the larger gap between lamellae were

  11. Photosynthetic Characteristics and Chloroplast Ultrastructure of Summer Maize Response to Different Nitrogen Supplies

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2018-05-01

    Full Text Available Maize (Zea mays L. is the important crop over the world. Nitrogen (N as necessary element affects photosynthetic characteristics and grain yield of summer maize. In this study, N0 (0 kg N ha-1, N1 (129 kg N ha-1, N2 (185 kg N ha-1, and N3 (300 kg N ha-1 was conducted using hybrid ‘ZhengDan958’ at Dawenkou research field (36°11′N, 117°06′E, 178 m altitude in the North China Plain to explore the effects of N rate on photosynthetic characteristics and chloroplast ultrastructure. Gas exchange parameters, chlorophyll fluorescence parameters, leaf area index (LAI, chlorophyll SPAD value, chloroplast ultrastructure, dry matter weight and grain yield were measured. At physiological maturity stage, dry matter weight and grain yield of N2 increased by 33–52% (P ≤ 0.05 and 6–32% (P ≤ 0.05, respectively, compared with other treatments. During the growing from silking (R1 to milk (R3 stage, LAI of N0 and N1 were 35–38% (P ≤ 0.05 and 9–23% (P ≤ 0.05 less than that of N2, respectively. Chlorophyll SPAD value of N0 and N1 were 13–22% (P ≤ 0.05 and 5–11% (P ≤ 0.05 lower than that of N2. There was no significant difference in LAI and chlorophyll SPAD value between N2 and N3 during the period from R1 to R3 (P > 0.05. The net photosynthetic rate (Pn, maximal quantum efficiency of PSII (Fv/Fm and quantum efficiency of PSII (ΦPSII were higher with the increase of N rate up to N2 (P ≤ 0.05, and those of N3 were significantly less than N2 (P ≤ 0.05. In compared with N2, the chloroplast configuration of N0 and N1 became elliptical, almost circular or irregular. The membrane of chloroplast and thylakoid resolved with growing stage, and the number of chloroplast per cell and lamellae per grana decreased under N0 and N1 treatment (P ≤ 0.05. Under N0 and N1 treatments, summer maize had more negative photosynthetic characteristics. The more number of osmium granule and vesicle and the larger gap between lamellae were shown in N3

  12. Arctic carbon cycling

    NARCIS (Netherlands)

    Christensen, Torben R; Rysgaard, SØREN; Bendtsen, JØRGEN; Else, Brent; Glud, Ronnie N; van Huissteden, J.; Parmentier, F.J.W.; Sachs, Torsten; Vonk, J.E.

    2017-01-01

    The marine Arctic is considered a net carbon sink, with large regional differences in uptake rates. More regional modelling and observational studies are required to reduce the uncertainty among current estimates. Robust projections for how the Arctic Ocean carbon sink may evolve in the future are

  13. Temperature responses of photosynthetic capacity parameters were not affected by foliar nitrogen content in mature Pinus sylvestris.

    Science.gov (United States)

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2018-03-01

    A key weakness in current Earth System Models is the representation of thermal acclimation of photosynthesis in response to changes in growth temperatures. Previous studies in boreal and temperate ecosystems have shown leaf-scale photosynthetic capacity parameters, the maximum rates of carboxylation (V cmax ) and electron transport (J max ), to be positively correlated with foliar nitrogen (N) content at a given reference temperature. It is also known that V cmax and J max exhibit temperature optima that are affected by various environmental factors and, further, that N partitioning among the foliar photosynthetic pools is affected by N availability. However, despite the strong recent anthropogenic influence on atmospheric temperatures and N deposition to forests, little is known about the role of foliar N contents in controlling the photosynthetic temperature responses. In this study, we investigated the temperature dependencies of V cmax and J max in 1-year-old needles of mature boreal Pinus sylvestris (Scots pine) trees growing under low and high N availabilities in northern Sweden. We found that needle N status did not significantly affect the temperature responses of V cmax or J max when the responses were fitted to a peaked function. If such N insensitivity is a common tree trait it will simplify the interpretation of the results from gradient and multi-species studies, which commonly use sites with differing N availabilities, on temperature acclimation of photosynthetic capacity. Moreover, it will simplify modeling efforts aimed at understanding future carbon uptake by precluding the need to adjust the shape of the temperature response curves to variation in N availability. © 2017 Scandinavian Plant Physiology Society.

  14. Increased Air Temperature during Simulated Autumn Conditions Does Not Increase Photosynthetic Carbon Gain But Affects the Dissipation of Excess Energy in Seedlings of the Evergreen Conifer Jack Pine1[OA

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P.A.; Ensminger, Ingo

    2007-01-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22°C or conditions representing a cool autumn with 8 h/7°C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7°C) or warm autumn conditions (8-h photoperiod/22°C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of β-carotene in the warm autumn treatment as well as by changes in

  15. Evaluation of Protocols for Measuring Leaf Photosynthetic Properties of Field-Grown Rice

    Directory of Open Access Journals (Sweden)

    Chang Tian-gen

    2017-01-01

    Full Text Available Largely due to the heterogeneity of environmental parameters and the logistical difficulty of moving photosynthetic equipment in the paddy fields, effective measurement of lowland rice photosynthesis is still a challenge. In this study, we showed that measuring detached rice leaves in the laboratory can not effectively represent the parameters measured in situ. We further described a new indoor facility, high-efficiency all-weather photosynthetic measurement system (HAPS, and the associated measurement protocol to enable whole-weather measurement of photosynthetic parameters of rice grown in the paddy fields. Using HAPS, we can conduct photosynthetic measurements with a time span much longer than that appropriate for the outdoor measurements. Comparative study shows that photosynthetic parameters obtained with the new protocol can effectively represent the parameters in the fields. There was much less standard deviation for measurements using HAPS compared to the outdoor measurements, no matter for technical replications of each recording or for biological replications of each leaf position. This new facility and protocol enables rice photosynthetic physiology studies to be less tough but more efficient, and provides a potential option for large scale studies of rice leaf photosynthesis.

  16. Probing the Energy Transfer Dynamics of Photosynthetic Reaction Center Complexes Through Hole-Burning and Single-Complex Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Kerry Joseph [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Photosynthesis is the process by which light energy is used to drive reactions that generate sugars to supply energy for cellular processes. It is one of the most important fundamental biological reactions and occurs in both prokaryotic (e.g. bacteria) and eukaryotic (e.g. plants and algae) organisms. Photosynthesis is also remarkably intricate, requiring the coordination of many different steps and reactions in order to successfully transform absorbed solar energy into a biochemical usable form of energy. However, the net reaction for all photosynthetic organisms can be reduced to the following, deceptively general, equation developed by Van Niel[1] H2 - D + Aimplieshv A - H2 + D where H2-D is the electron donor, e.g. H2O, H2S. A is the electron acceptor, e.g. CO2, and A-H2 is the synthesized sugar. Amazingly, this simple net equation is responsible for creating the oxidizing atmosphere of Earth and the recycling of CO2, both of which are necessary for the sustainment of the global ecosystem.

  17. Effect of the Absorbed Photosynthetically Active Radiation Estimation Error on Net Primary Production Estimation - A Study with MODIS FPAR and TOMS Ultraviolet Reflective Products

    International Nuclear Information System (INIS)

    Kobayashi, H.; Matsunaga, T.; Hoyano, A.

    2002-01-01

    Absorbed photosynthetically active radiation (APAR), which is defined as downward solar radiation in 400-700 nm absorbed by vegetation, is one of the significant variables for Net Primary Production (NPP) estimation from satellite data. Toward the reduction of the uncertainties in the global NPP estimation, it is necessary to clarify the APAR accuracy. In this paper, first we proposed the improved PAR estimation method based on Eck and Dye's method in which the ultraviolet (UV) reflectivity data derived from Total Ozone Mapping Spectrometer (TOMS) at the top of atmosphere were used for clouds transmittance estimation. The proposed method considered the variable effects of land surface UV reflectivity on the satellite-observed UV data. Monthly mean PAR comparisons between satellite-derived and ground-based data at various meteorological stations in Japan indicated that the improved PAR estimation method reduced the bias errors in the summer season. Assuming the relative error of the fraction of PAR (FPAR) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) to be 10%, we estimated APAR relative errors to be 10-15%. Annual NPP is calculated using APAR derived from MODIS/ FPAR and the improved PAR estimation method. It is shown that random and bias errors of annual NPP in a 1 km resolution pixel are less than 4% and 6% respectively. The APAR bias errors due to the PAR bias errors also affect the estimated total NPP. We estimated the most probable total annual NPP in Japan by subtracting the bias PAR errors. It amounts about 248 MtC/yr. Using the improved PAR estimation method, and Eck and Dye's method, total annual NPP is 4% and 9% difference from most probable value respectively. The previous intercomparison study among using fifteen NPP models4) showed that global NPP estimations among NPP models are 44.4-66.3 GtC/yr (coefficient of variation = 14%). Hence we conclude that the NPP estimation uncertainty due to APAR estimation error is small

  18. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Borghese, Roberto, E-mail: roberto.borghese@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Baccolini, Chiara; Francia, Francesco [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Sabatino, Piera [Department of Chemistry G. Ciamician, University of Bologna (Italy); Turner, Raymond J. [Department of Biological Sciences, University of Calgary, Calgary, Alberta (Canada); Zannoni, Davide, E-mail: davide.zannoni@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy)

    2014-03-01

    Graphical abstract: - Highlights: • R. capsulatus cells produce extracellular chalcogens nanoprecipitates when lawsone is present. • Lawsone acts as a redox mediator from reducing equivalents to tellurite and selenite. • Nanoprecipitates production depends on carbon source and requires metabolically active cells. • Te{sup 0} and Se{sup 0} nanoprecipitates are identified by X-ray diffraction (XRD) spectroscopy. - Abstract: The facultative photosynthetic bacterium Rhodobacter capsulatus is characterized in its interaction with the toxic oxyanions tellurite (Te{sup IV}) and selenite (Se{sup IV}) by a highly variable level of resistance that is dependent on the growth mode making this bacterium an ideal organism for the study of the microbial interaction with chalcogens. As we have reported in the past, while the oxyanion tellurite is taken up by R. capsulatus cells via acetate permease and it is reduced to Te{sup 0} in the cytoplasm in the form of splinter-like black intracellular deposits no clear mechanism was described for Se{sup 0} precipitation. Here, we present the first report on the biotransformation of tellurium and selenium oxyanions into extracellular Te{sup 0} and Se{sup 0}nanoprecipitates (NPs) by anaerobic photosynthetically growing cultures of R. capsulatus as a function of exogenously added redox-mediator lawsone, i.e. 2-hydroxy-1,4-naphthoquinone. The NPs formation was dependent on the carbon source used for the bacterial growth and the rate of chalcogen reduction was constant at different lawsone concentrations, in line with a catalytic role for the redox mediator. X-ray diffraction (XRD) analysis demonstrated the Te{sup 0} and Se{sup 0} nature of the nanoparticles.

  19. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    Directory of Open Access Journals (Sweden)

    M. Chen

    2011-09-01

    Full Text Available Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM, should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI, Land Surface Water Index (LSWI and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000–2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr−1 and net primary production (NPP ranges from 3.81 to 4.38 Pg C yr−1 and net ecosystem production (NEP varies within 0.08–0.73 Pg C yr−1 over the period 2000–2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr−1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  20. A new empirical model to estimate hourly diffuse photosynthetic photon flux density

    Science.gov (United States)

    Foyo-Moreno, I.; Alados, I.; Alados-Arboledas, L.

    2018-05-01

    Knowledge of the photosynthetic photon flux density (Qp) is critical in different applications dealing with climate change, plant physiology, biomass production, and natural illumination in greenhouses. This is particularly true regarding its diffuse component (Qpd), which can enhance canopy light-use efficiency and thereby boost carbon uptake. Therefore, diffuse photosynthetic photon flux density is a key driving factor of ecosystem-productivity models. In this work, we propose a model to estimate this component, using a previous model to calculate Qp and furthermore divide it into its components. We have used measurements in urban Granada (southern Spain), of global solar radiation (Rs) to study relationships between the ratio Qpd/Rs with different parameters accounting for solar position, water-vapour absorption and sky conditions. The model performance has been validated with experimental measurements from sites having varied climatic conditions. The model provides acceptable results, with the mean bias error and root mean square error varying between - 0.3 and - 8.8% and between 9.6 and 20.4%, respectively. Direct measurements of this flux are very scarce so that modelling simulations are needed, this is particularly true regarding its diffuse component. We propose a new parameterization to estimate this component using only measured data of solar global irradiance, which facilitates its use for the construction of long-term data series of PAR in regions where continuous measurements of PAR are not yet performed.

  1. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements

    Directory of Open Access Journals (Sweden)

    D. Zanotelli

    2013-05-01

    Full Text Available Carbon use efficiency (CUE, the ratio of net primary production (NPP over gross primary production (GPP, is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010. We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m−2 and 1263 ± 189 g C m−2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71

  2. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy-covariance, biometric and continuous soil chamber measurements

    Science.gov (United States)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2012-10-01

    Carbon use efficiency (CUE) is a functional parameter that could possibly link the current increasingly accurate global estimates of gross primary production with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, net primary production (NPP) and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a~measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross-check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard both net ecosystem production and gross primary production on yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruits: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.09, was higher than the previously suggested

  3. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements

    Science.gov (United States)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2013-05-01

    Carbon use efficiency (CUE), the ratio of net primary production (NPP) over gross primary production (GPP), is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.12, was higher

  4. Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress.

    Science.gov (United States)

    Nason, Mark A; Farrar, John; Bartlett, David

    2007-12-01

    The effects of five strobilurin (beta-methoxyacrylate) fungicides and one triazole fungicide on the physiological parameters of well-watered or water-stressed wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and soya (Glycine max Merr.) plants were compared. Water use efficiency (WUE) (the ratio of rate of transpiration, E, to net rate of photosynthesis, A(n)) of well-watered wheat plants was improved slightly by strobilurin fungicides, but was reduced in water-stressed plants, so there is limited scope for using strobilurins to improve the water status of crops grown under conditions of drought. The different strobilurin fungicides had similar effects on plant physiology but differed in persistence and potency. When applied to whole plants using a spray gun, they reduced the conductance of water through the epidermis (stomatal and cuticular transpiration), g(sw), of leaves. Concomitantly, leaves of treated plants had a lower rate of transpiration, E, a lower intercellular carbon dioxide concentration, c(i), and a lower net rate of photosynthesis, A(n), compared with leaves of control plants or plants treated with the triazole. The mechanism for the photosynthetic effects is not known, but it is hypothesised that they are caused either by strobilurin fungicides acting directly on ATP production in guard cell mitochondria or by stomata responding to strobilurin-induced changes in mesophyll photosynthesis. The latter may be important since, for leaves of soya plants, the chlorophyll fluorescence parameter F(v)/F(m) (an indication of the potential quantum efficiency of PSII photochemistry) was reduced by strobilurin fungicides. It is likely that the response of stomata to strobilurin fungicides is complex, and further research is required to elucidate the different biochemical pathways involved. Copyright (c) 2007 Society of Chemical Industry.

  5. Changes in chlorophyll fluorescence and photosynthetic activity of French bean leaves induced by gamma radiation

    International Nuclear Information System (INIS)

    Saakov, V.; Lang, M.; Schindler, C.; Stober, F.; Lichtenthaler, H.K.

    1992-01-01

    When exposed to gamma-radiation (12, 8 and 3.5 kGy), the growth of bean seedlings (Phaseolus vulgaris L.) was stopped and after some hours or days the plants began to wilt in a dose-dependent manner, starting from the leaf rim. The rate of the dark respiration (R) of leaves increased and that of net photosynthesis (P(N)) was strongly reduced. The regulation of stomata opening and closure was lost and the stomatal conductance (g(s)) of the gamma-ray exposed plants was strongly reduced. The reduced P(N) was only partly due to either the partial or almost full stomata closure. Chlorophyll (Chl) fluorescence measurements witha two-wavelength fluorometer and a PAM fluorometer showed an increasingly reduced variable fluorescence F(v), lower values of R(fd), of ground fluorescence F0, and of the fluorescence ratios F(v)/F(m) and F(v)/F(o). This indicated a damage to the photosynthetic apparatus. The increasing loss of photosynthetic pigments in the 350 krad exposed plants was also detected via an increase in the fluorescence ratio F690/F730. The performance of the light driven xanthophyll cycle (violaxanthin/zeaxanthin transformation) proceeded in the gamma-ray treated plants only at reduced rates. The gamma-ray damage of plants can best be detected by measurements of stomatal conductance, P(N) and various Chl fluorescence ratios such as R(fd), F(v)/F(o) and F(v)/F(m)

  6. Aspects regarding at 13C isotope separation column control using Petri nets system

    International Nuclear Information System (INIS)

    Boca, M L; Ciortea, M E

    2015-01-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13 C Isotope Separation column using Petri nets. The major problem with 13 C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13 C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times. (paper)

  7. Environmental controls on daytime net community calcification on a Red Sea reef flat

    KAUST Repository

    Bernstein, W. N.

    2016-01-23

    Coral growth and carbonate accumulation form the foundation of the coral reef ecosystem. Changes in environmental conditions due to coastal development, climate change, and ocean acidification may pose a threat to net carbonate production in the near future. Controlled laboratory studies demonstrate that calcification by corals and coralline algae is sensitive to changes in aragonite saturation state (Ωa), as well as temperature, light, and nutrition. Studies also show that the dissolution rate of carbonate substrates is impacted by changes in carbonate chemistry. The sensitivity of coral reefs to these parameters must be confirmed and quantified in the natural environment in order to predict how coral reefs will respond to local and global changes, particularly ocean acidification. We estimated the daytime hourly net community metabolic rates, both net community calcification (NCC) and net community productivity (NCP), at Sheltered Reef, an offshore platform reef in the central Red Sea. Average NCC was 8 ± 3 mmol m−2 h−1 in December 2010 and 11 ± 1 mmol m−2 h−1 in May 2011, and NCP was 21 ± 7 mmol m−2 h−1 in December 2010 and 44 ± 4 mmol m−2 h−1 in May 2011. We also monitored a suite of physical and chemical properties to help relate the rates at Sheltered Reef to published rates from other sites. While previous research shows that short-term field studies investigating the NCC–Ωa relationship have differing results due to confounding factors, it is important to continue estimating NCC in different places, seasons, and years, in order to monitor changes in NCC versus Ω in space and time, and to ultimately resolve a broader understanding of this relationship.

  8. Scaling net ecosystem production and net biome production over a heterogeneous region in the western United States

    Directory of Open Access Journals (Sweden)

    D. P. Turner

    2007-08-01

    Full Text Available Bottom-up scaling of net ecosystem production (NEP and net biome production (NBP was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5×105 km2 in the western United States. Landsat resolution (30 m remote sensing provided the basis for mapping land cover and disturbance history, thus allowing us to account for all major fire and logging events over the last 30 years. For NEP, a 23-year record (1980–2002 of distributed meteorology (1 km resolution at the daily time step was used to drive a process-based carbon cycle model (Biome-BGC. For NBP, fire emissions were computed from remote sensing based estimates of area burned and our mapped biomass estimates. Our estimates for the contribution of logging and crop harvest removals to NBP were from the model simulations and were checked against public records of forest and crop harvesting. The predominately forested ecoregions within our study region had the highest NEP sinks, with ecoregion averages up to 197 gC m−2 yr−1. Agricultural ecoregions were also NEP sinks, reflecting the imbalance of NPP and decomposition of crop residues. For the period 1996–2000, mean NEP for the study area was 17.0 TgC yr−1, with strong interannual variation (SD of 10.6. The sum of forest harvest removals, crop removals, and direct fire emissions amounted to 63% of NEP, leaving a mean NBP of 6.1 TgC yr−1. Carbon sequestration was predominantly on public forestland, where the harvest rate has fallen dramatically in the recent years. Comparison of simulation results with estimates of carbon stocks, and changes in carbon stocks, based on forest inventory data showed generally good agreement. The carbon sequestered as NBP, plus accumulation of forest products in slow turnover pools, offset 51% of the annual emissions of fossil fuel CO2 for the state. State-level NBP dropped below zero in 2002

  9. Carbon balance and productivity of Lemna gibba, a candidate plant for CELSS

    Science.gov (United States)

    Gale, J.; Smernoff, D. T.; Macler, B. A.; Macelroy, R. D.

    1989-01-01

    The photosynthesis and productivity of Lemna gibba is analyzed for CELSS based plant growth. Net photosynthesis of Lemna gibba is determined as a function of incident photosynthetic photon flux (PPF), with the light coming from above, below, or from both directions. Light from below is about 75 percent as effective as from above when the stand is sparse, but much less so with dense stands. High rates of photosynthesis are measured at 750 micromol / sq m per sec PPF and 1500 micromol/ mol CO2 at densities up to 660 g fresh weight (FW)/ sq m with young cultures. The analysis includes diagrams illustrating the net photosynthesis response to bilateral lighting of a sparse stand of low assimilate Lemna gibba; the effect of stand density on the net photosynthesis response to bilateral lighting of high assimilate Lemna gibba; the net photosynthesis response to ambient CO2 of sparse stands of Lemna gibba; and the time course of net photosynthesis and respiration per unit chamber and per unit dry weight of Lemna gibba.

  10. Special issue of photosynthetic research

    NARCIS (Netherlands)

    Okamura, M.; Wraight, C.A.; van Grondelle, R.

    2014-01-01

    This Special Issue of Photosynthesis Research honors Louis M. N. Duysens, Roderick K. Clayton, and George Feher, three pioneering researchers whose work on bacterial photosynthesis laid much of the groundwork for our understanding of the role of the reaction center in photosynthetic light energy

  11. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    OpenAIRE

    Oort, van, B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these proteins contain fluorescent pigments. Each pigment’s fluorescence is influenced by its environment, and thereby may provide information on structure and dynamics of pigment protein complexes in vitro a...

  12. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect

    Science.gov (United States)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2015-04-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in the short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate atmosphere-only model BCC_AGCM2.0.1_CUACE/Aero with prescribed sea surface temperature and sea ice cover, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with recent past year 2000 levels if the emissions of only BC are reduced to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial~for the mitigation of global warming. However, both aerosol negative direct and indirect radiative effects are weakened when BC and its co-emitted species (sulfur dioxide and organic carbon) are simultaneously reduced. Relative to year 2000 levels, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 if the emissions of all these aerosols are decreased to the levels projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  13. Annual measurements of gain and loss in aboveground carbon density

    Science.gov (United States)

    Baccini, A.; Walker, W. S.; Carvalho, L.; Farina, M.; Sulla-menashe, D. J.; Houghton, R. A.

    2017-12-01

    Tropical forests hold large stores of carbon, but their net carbon balance is uncertain. Land use and land-cover change (LULCC) are believed to release between 0.81 and 1.14 PgC yr-1, while intact native forests are thought to be a net carbon sink of approximately the same magnitude. Reducing the uncertainty of these estimates is not only fundamental to the advancement of carbon cycle science but is also of increasing relevance to national and international policies designed to reduce emissions from deforestation and forest degradation (e.g., REDD+). Contemporary approaches to estimating the net carbon balance of tropical forests rely on changes in forest area between two periods, typically derived from satellite data, together with information on average biomass density. These approaches tend to capture losses in biomass due to deforestation (i.e., wholesale stand removals) but are limited in their sensitivity to forest degradation (e.g., selective logging or single-tree removals), which can account for additional biomass losses on the order of 47-75% of deforestation. Furthermore, while satellite-based estimates of forest area loss have been used successfully to estimate associated carbon losses, few such analyses have endeavored to determine the rate of carbon sequestration in growing forests. Here we use 12 years (2003-2014) of pantropical satellite data to quantify net annual changes in the aboveground carbon density of woody vegetation (MgC ha-1yr-1), providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 Tg C yr-1. This net release of carbon consists of losses of 861.7 ± 80.2 Tg C yr-1 and gains of -436.5 ± 31.0 Tg C yr-1 . Gains result from forest growth; losses result from reductions in forest area due to deforestation and from reductions in biomass density within standing forests (degradation), with the latter accounting for 68.9% of overall losses. Our findings advance previous research

  14. Photosynthetic rate, dry matter accumulation and yield inter-relationships jn genotypes of rice

    International Nuclear Information System (INIS)

    Devendra, R.; Udaya Kumar, M.; Krishna Sastry, K.S.

    1980-01-01

    The relationship between photosynthetic efficiency, dry matter accumulation and yield in five genotypes of paddy derived from a single cross between Jaya X Halubbalu was studied. Photosynthetic efficiency of younger leaves, on the main tiller was higher than in the older leaves. A significant positive correlation between RuDPcase activity and photosynthetic efficiency was observed in these genotypes. Also a similar positive correlation between dry matter production and photosynthetic efficiency during vegetative period but not during post-anthesis period was observed. Genotypes with high photosynthetic efficiency and also the genotypes with high LAD produced higher dry matter. A reduction in LAD or in photosynthetic efficiency during the post-anthesis period and thus a reduction in source capacity which occurred specially in late types resulted in a lesser ratio between productive and total tillers and also higher percent sterility. Differences in yield amongst the genotypes were not significant, since in the late types MR. 333 and MR. 335, the post-anthesis dry matter production was low due to lesser source capacity. But in the early types, though the total dry matter was less, the post-anthesis source capacity was high. The importance of post-anthesis leaf area of photo-synthetic efficiency in productivity in genotypes of rice is highlighted. (author)

  15. Soil carbon sequestration and biochar as negative emission technologies.

    Science.gov (United States)

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. © 2016 John Wiley & Sons Ltd.

  16. Terrestrial Carbon Sequestration in National Parks: Values for the Conterminous United States

    Science.gov (United States)

    Richardson, Leslie A.; Huber, Christopher; Zhu, Zhi-Liang; Koontz, Lynne

    2015-01-01

    Lands managed by the National Park Service (NPS) provide a wide range of beneficial services to the American public. This study quantifies the ecosystem service value of carbon sequestration in terrestrial ecosystems within NPS units in the conterminous United States for which data were available. Combining annual net carbon balance data with spatially explicit NPS land unit boundaries and social cost of carbon estimates, this study calculates the net metric tons of carbon dioxide sequestered annually by park unit under baseline conditions, as well as the associated economic value to society. Results show that, in aggregate, NPS lands in the conterminous United States are a net carbon sink, sequestering more than 14.8 million metric tons of carbon dioxide annually. The associated societal value of this service is estimated at approximately $582.5 million per year. While this analysis provides a broad overview of the annual value of carbon sequestration on NPS lands averaged over a five year baseline period, it should be noted that carbon fluxes fluctuate from year to year, and there can be considerable variation in net carbon balance and its associated value within a given park unit. Future research could look in-depth at the spatial heterogeneity of carbon flux within specific NPS land units.

  17. An evaluation of the effects of exogenous ethephon, an ethylene releasing compound, on photosynthesis of mustard (Brassica juncea cultivars that differ in photosynthetic capacity

    Directory of Open Access Journals (Sweden)

    Khan NA

    2004-12-01

    Full Text Available Abstract Background The stimulatory effect of CO2 on ethylene evolution in plants is known, but the extent to which ethylene controls photosynthesis is not clear. Studies on the effects of ethylene on CO2 metabolism have shown conflicting results. Increase or inhibition of photosynthesis by ethylene has been reported. To understand the physiological processes responsible for ethylene-mediated changes in photosynthesis, stomatal and mesophyll effects on photosynthesis and ethylene biosynthesis in response to ethephon treatment in mustard (Brassica juncea cultivars differing in photosynthetic capacity were studied. Results The effects of ethephon on photosynthetic rate (PN, stomatal conductance (gS, carbonic anhydrase (CA activity, 1-aminocyclopropane carboxylic acid synthase (ACS activity and ethylene evolution were similar in both the cultivars. Increasing ethephon concentration up to 1.5 mM increased PN, gS and CA maximally, whereas 3.0 mM ethephon proved inhibitory. ACS activity and ethylene evolution increased with increasing concentrations of ethephon. The corresponding changes in gs and CA activity suggest that the changes in photosynthesis in response to ethephon were triggered by altered stomatal and mesophyll processes. Stomatal conductance changed in parallel with changes in mesophyll photosynthetic properties. In both the cultivars ACS activity and ethylene increased up to 3.0 mM ethephon, but 1.5 mM ethephon caused maximum effects on photosynthetic parameters. Conclusion These results suggest that ethephon affects foliar gas exchange responses. The changes in photosynthesis in response to ethephon were due to stomatal and mesophyll effects. The changes in gS were a response maintaining stable intercellular CO2 concentration (Ci under the given treatment in both the cultivars. Also, the high photosynthetic capacity cultivar, Varuna responded less to ethephon than the low photosynthetic capacity cultivar, RH30. The photosynthetic

  18. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Demey, A

    2009-01-01

    Mesic-dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five...... mesic-dry tundras in Northern Sweden with contrasting microtopography, altitude, and dominant species. Those measurements were paralleled by the stock assessments of nitrogen (N), the limiting nutrient. The vascular production was determined by harvest or in situ growing units, whereas the nonvascular...... hermaphroditum is more productive than Cassiope tetragona vegetation. Although the large majority of the apical NPP occurred in early-mid season (85%), production of stems and evergreen leaves proceeded until about 2 weeks before senescence. Most of the vascular vegetation was belowground (80%), whereas most...

  19. Inorganic Carbon Utilization of the Freshwater Red Alga Compsopogon coeruleus (Balbis Montagne (Compsopogonaceae, Rhodophyta Evaluated by in situ Measurement of Chlorophyll Fluorescence

    Directory of Open Access Journals (Sweden)

    Shao-Lun Liu

    2004-09-01

    Full Text Available To explore the inorganic carbon utilization of the freshwater red alga Compsopogon coeruleus, photosynthetic rates in response to increasing of bicarbonate concentration, the addition of alkaline HEPES buffer (pH 8.8, acid HEPES buffer (pH 4.0 and the extracellular carbonic anhydrase inhibitor (acetazolamide, AZ, respectively, were examined in situ by using a submersible pulse amplitude modulated (PAM fluorometer. Among the treatments, adding acid HEPES buffer significantly reduced photosynthetic rates of the alga, while others showed no effect. Accordingly, we concluded that C. coeruleus had less or no inorganic carbon (Ci limitation in its natural habitat. The alga might have higher affinity for bicarbonate and directly uptake bicarbonate as main Ci source without the aid of extracellular carbonic anhydrase.

  20. Precipitation as driver of carbon fluxes in 11 African ecosystems

    Directory of Open Access Journals (Sweden)

    L. Merbold

    2009-06-01

    Full Text Available This study reports carbon and water fluxes between the land surface and atmosphere in eleven different ecosystems types in Sub-Saharan Africa, as measured using eddy covariance (EC technology in the first two years of the CarboAfrica network operation. The ecosystems for which data were available ranged in mean annual rainfall from 320 mm (Sudan to 1150 mm (Republic of Congo and include a spectrum of vegetation types (or land cover (open savannas, woodlands, croplands and grasslands. Given the shortness of the record, the EC data were analysed across the network rather than longitudinally at sites, in order to understand the driving factors for ecosystem respiration and carbon assimilation, and to reveal the different water use strategies in these highly seasonal environments.

    Values for maximum net carbon assimilation rates (photosynthesis ranged from −12.5 μmol CO2 m−2 s−1 in a dry, open Millet cropland (C4-plants up to −48 μmol CO2 m−2 s−1 for a tropical moist grassland. Maximum carbon assimilation rates were highly correlated with mean annual rainfall (r2=0.74. Maximum photosynthetic uptake rates (Fpmax were positively related to satellite-derived fAPAR. Ecosystem respiration was dependent on temperature at all sites, and was additionally dependent on soil water content at sites receiving less than 1000 mm of rain per year. All included ecosystems dominated by C3-plants, showed a strong decrease in 30-min assimilation rates with increasing water vapour pressure deficit above 2.0 kPa.

  1. Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S.

    Science.gov (United States)

    2012-01-01

    Background Forests of the Midwest U.S. provide numerous ecosystem services. Two of these, carbon sequestration and wood production, are often portrayed as conflicting. Currently, carbon management and biofuel policies are being developed to reduce atmospheric CO2 and national dependence on foreign oil, and increase carbon storage in ecosystems. However, the biological and industrial forest carbon cycles are rarely studied in a whole-system structure. The forest system carbon balance is the difference between the biological (net ecosystem production) and industrial (net emissions from forest industry) forest carbon cycles, but to date this critical whole system analysis is lacking. This study presents a model of the forest system, uses it to compute the carbon balance, and outlines a methodology to maximize future carbon uptake in a managed forest region. Results We used a coupled forest ecosystem process and forest products life cycle inventory model for a regional temperate forest in the Midwestern U.S., and found the net system carbon balance for this 615,000 ha forest was positive (2.29 t C ha-1 yr-1). The industrial carbon budget was typically less than 10% of the biological system annually, and averaged averaged 0.082 t C ha-1 yr-1. Net C uptake over the next 100-years increased by 22% or 0.33 t C ha-1 yr-1 relative to the current harvest rate in the study region under the optized harvest regime. Conclusions The forest’s biological ecosystem current and future carbon uptake capacity is largely determined by forest harvest practices that occurred over a century ago, but we show an optimized harvesting strategy would increase future carbon sequestration, or wood production, by 20-30%, reduce long transportation chain emissions, and maintain many desirable stand structural attributes that are correlated to biodiversity. Our results for this forest region suggest that increasing harvest over the next 100 years increases the strength of

  2. Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S.

    Directory of Open Access Journals (Sweden)

    Peckham Scott D

    2012-06-01

    Full Text Available Abstract Background Forests of the Midwest U.S. provide numerous ecosystem services. Two of these, carbon sequestration and wood production, are often portrayed as conflicting. Currently, carbon management and biofuel policies are being developed to reduce atmospheric CO2 and national dependence on foreign oil, and increase carbon storage in ecosystems. However, the biological and industrial forest carbon cycles are rarely studied in a whole-system structure. The forest system carbon balance is the difference between the biological (net ecosystem production and industrial (net emissions from forest industry forest carbon cycles, but to date this critical whole system analysis is lacking. This study presents a model of the forest system, uses it to compute the carbon balance, and outlines a methodology to maximize future carbon uptake in a managed forest region. Results We used a coupled forest ecosystem process and forest products life cycle inventory model for a regional temperate forest in the Midwestern U.S., and found the net system carbon balance for this 615,000 ha forest was positive (2.29 t C ha-1 yr-1. The industrial carbon budget was typically less than 10% of the biological system annually, and averaged averaged 0.082 t C ha-1 yr-1. Net C uptake over the next 100-years increased by 22% or 0.33 t C ha-1 yr-1 relative to the current harvest rate in the study region under the optized harvest regime. Conclusions The forest’s biological ecosystem current and future carbon uptake capacity is largely determined by forest harvest practices that occurred over a century ago, but we show an optimized harvesting strategy would increase future carbon sequestration, or wood production, by 20-30%, reduce long transportation chain emissions, and maintain many desirable stand structural attributes that are correlated to biodiversity. Our results for this forest region suggest that increasing harvest over the next 100

  3. Phytochromes in photosynthetically competent plants

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  4. The carbon cycle and global warming

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Five land-use-based approaches can be used to slow the buildup of CO 2 in the atmosphere: slowing or stopping the loss of existing forests, thus preserving current carbon reservoirs; adding to the planet's vegetative cover through reforestation or other means, thus enlarging living terrestrial carbon reservoirs; increasing the carbon stored in nonliving carbon reservoirs such as agricultural soils; increasing the carbon stored in artificial reservoirs, including timber products; and substituting sustainable biomass energy sources for fossil fuel consumption, thus reducing energy-related carbon emissions. These approaches are all based on the same basic premise: adding to the planet's net carbon stores in vegetative cover or soil, or preventing any net loss, will help moderate global warming by keeping atmospheric CO 2 levels lower than they would otherwise be. Because biotic policy options appear capable of contributing significantly to the mitigation of global warming while also furthering many other public policy objectives, their role deserves careful consideration on a country-by-country basis

  5. Photosynthetic Pigments in Diatoms.

    Science.gov (United States)

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-16

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  6. Photosynthetic Pigments in Diatoms

    Directory of Open Access Journals (Sweden)

    Paulina Kuczynska

    2015-09-01

    Full Text Available Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  7. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism.

    Science.gov (United States)

    Houston, Norma L; Hajduch, Martin; Thelen, Jay J

    2009-10-01

    Seed maturation or seed filling is a phase of development that plays a major role in the storage reserve composition of a seed. In many plant seeds photosynthesis plays a major role in this process, although oilseeds, such as castor (Ricinus communis), are capable of accumulating oil without the benefit of photophosphorylation to augment energy demands. To characterize seed filling in castor, a systematic quantitative proteomics study was performed. Two-dimensional gel electrophoresis was used to resolve and quantify Cy-dye-labeled proteins expressed at 2, 3, 4, 5, and 6 weeks after flowering in biological triplicate. Expression profiles for 660 protein spot groups were established, and of these, 522 proteins were confidently identified by liquid chromatography-tandem mass spectrometry by mining against the castor genome. Identified proteins were classified according to function, and the most abundant groups of proteins were involved in protein destination and storage (34%), energy (19%), and metabolism (15%). Carbon assimilatory pathways in castor were compared with previous studies of photosynthetic oilseeds, soybean (Glycine max) and rapeseed (Brassica napus). These comparisons revealed differences in abundance and number of protein isoforms at numerous steps in glycolysis. One such difference was the number of enolase isoforms and their sum abundance; castor had approximately six times as many isoforms as soy and rapeseed. Furthermore, Rubisco was 11-fold less prominent in castor compared to rapeseed. These and other differences suggest some aspects of carbon flow, carbon recapture, as well as ATP and NADPH production in castor differs from photosynthetic oilseeds.

  8. Horizontal ichthyoplankton tow-net system with unobstructed net opening

    Science.gov (United States)

    Nester, Robert T.

    1987-01-01

    The larval fish sampler described here consists of a modified bridle, frame, and net system with an obstruction-free net opening and is small enough for use on boats 10 m or less in length. The tow net features a square net frame attached to a 0.5-m-diameter cylinder-on-cone plankton net with a bridle designed to eliminate all obstructions forward of the net opening, significantly reducing currents and vibrations in the water directly preceding the net. This system was effective in collecting larvae representing more than 25 species of fish at sampling depths ranging from surface to 10 m and could easily be used at greater depths.

  9. Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses.

    Science.gov (United States)

    Wargent, J J; Nelson, B C W; McGhie, T K; Barnes, P W

    2015-05-01

    UV-B radiation is often viewed as a source of stress for higher plants. In particular, photosynthetic function has been described as a common target for UV-B impairment; yet as our understanding of UV-B photomorphogenesis increases, there are opportunities to expand the emerging paradigm of regulatory UV response. Lactuca sativa is an important dietary crop species and is often subjected to rapid sunlight exposure at field transfer. Acclimation to UV-B and visible light conditions in L. sativa was dissected using gas exchange and chlorophyll fluorescence measurements, in addition to non-destructive assessments of UV epidermal shielding (SUV ). After UV-B treatment, seedlings were subjected to wide-range metabolomic analysis using liquid chromatography hybrid quadrupole time-of-flight high-resolution mass spectrometry (LC-QTOF-HRMS). During the acclimation period, net photosynthetic rate increased in UV-treated plants, epidermal UV shielding increased in both subsets of plants transferred to the acclimatory conditions (UV+/UV- plants) and Fv /Fm declined slightly in UV+/UV- plants. Metabolomic analysis revealed that a key group of secondary compounds was up-regulated by higher light conditions, yet several of these compounds were elevated further by UV-B radiation. In conclusion, acclimation to UV-B radiation involves co-protection from the effects of visible light, and responses to UV-B radiation at a photosynthetic level may not be consistently viewed as damaging to plant development. © 2014 John Wiley & Sons Ltd.

  10. Whole Watershed Quantification of Net Carbon Fluxes by Erosion and Deposition within the Christina River Basin Critical Zone Observatory

    Science.gov (United States)

    Aufdenkampe, A. K.; Karwan, D. L.; Aalto, R. E.; Marquard, J.; Yoo, K.; Wenell, B.; Chen, C.

    2013-12-01

    to organic carbon and nitrogen content with stable isotope (13C, 15N) and radiocarbon (14C) abundance to quantify OC/SA and organic carbon sources and mean age. We then use multivariate mixing model analysis to quantify the fractional contribution of each source end-member to each sample of suspended or deposited sediments. Last, we calculate a predicted OC/SA based on source end-member mixing and compare to the measured OC/SA to quantify net change in mineral complexed carbon. Aufdenkampe, A.K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers Ecol. Environ. 9, 53-60 (2011). Walling, D. E. Tracing suspended sediment sources in catchments and river systems. Sci. Total Environ. 34, 159-184 (2005).

  11. Relationships between net primary productivity and forest stand age in U.S. forests

    Science.gov (United States)

    Liming He; Jing M. Chen; Yude Pan; Richard Birdsey; Jens. Kattge

    2012-01-01

    Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four...

  12. Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates

    Science.gov (United States)

    Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry

    2018-01-01

    Modeling net ecosystem exchange (NEE) at the regional scale with land surface models (LSMs) is relevant for the estimation of regional carbon balances, but studies on it are very limited. Furthermore, it is essential to better understand and quantify the uncertainty of LSMs in order to improve them. An important key variable in this respect is the prognostic leaf area index (LAI), which is very sensitive to forcing data and strongly affects the modeled NEE. We applied the Community Land Model (CLM4.5-BGC) to the Rur catchment in western Germany and compared estimated and default ecological key parameters for modeling carbon fluxes and LAI. The parameter estimates were previously estimated with the Markov chain Monte Carlo (MCMC) approach DREAM(zs) for four of the most widespread plant functional types in the catchment. It was found that the catchment-scale annual NEE was strongly positive with default parameter values but negative (and closer to observations) with the estimated values. Thus, the estimation of CLM parameters with local NEE observations can be highly relevant when determining regional carbon balances. To obtain a more comprehensive picture of model uncertainty, CLM ensembles were set up with perturbed meteorological input and uncertain initial states in addition to uncertain parameters. C3 grass and C3 crops were particularly sensitive to the perturbed meteorological input, which resulted in a strong increase in the standard deviation of the annual NEE sum (σ ∑ NEE) for the different ensemble members from ˜ 2 to 3 g C m-2 yr-1 (with uncertain parameters) to ˜ 45 g C m-2 yr-1 (C3 grass) and ˜ 75 g C m-2 yr-1 (C3 crops) with perturbed forcings. This increase in uncertainty is related to the impact of the meteorological forcings on leaf onset and senescence, and enhanced/reduced drought stress related to perturbation of precipitation. The NEE uncertainty for the forest plant functional type (PFT) was considerably lower (σ ∑ NEE ˜ 4.0-13.5 g C

  13. Can pelagic net heterotrophy account for carbon fluxes from eastern Canadian lakes?

    International Nuclear Information System (INIS)

    Dubois, Kristal; Carignan, Richard; Veizer, Jan

    2009-01-01

    Lakes worldwide are commonly oversaturated with CO 2 , however the source of this CO 2 oversaturation is not well understood. To examine the magnitude of the C flux to the atmosphere and determine if an excess of respiration (R) over gross primary production (GPP) is sufficient to account for this C flux, metabolic parameters and stable isotopes of dissolved O 2 and C were measured in 23 Quebec lakes. All of the lakes sampled were oversaturated with CO 2 over the sampling period, on average 221 ± 25%. However, little evidence was found to conclude that this CO 2 oversaturation was the result of an excess of pelagic R over GPP. In lakes Croche and a l'Ours, where CO 2 flux, R and GPP were measured weekly, the annual difference between pelagic GPP and R, or net primary production (NPP), was not sufficient to account for the size of the CO 2 flux to the atmosphere. In Lac Croche average annual NPP was 14.4 mg C m -2 d -1 while the average annual flux of CO 2 to the atmosphere was 34 mg C m -2 d -1 . In Lac a l'Ours average annual NPP was -9.1 mg C m -2 d -1 while the average annual flux of CO 2 to the atmosphere was 55 mg C m -2 d -1 . In all of the lakes sampled, O 2 saturation averaged 104.0 ± 1.7% during the ice-free season and the isotopic composition of dissolved O 2 (δ 18 O DO ) was 22.9 ± 0.3 per mille , lower than atmospheric values and indicative of net autotrophy. Carbon evasion was not a function of R, nor did the isotopic signature of dissolved CO 2 in the lakes present evidence of excess R over GPP. External inputs of C must therefore subsidize the lake to explain the continued CO 2 oversaturation. The isotopic composition of dissolved inorganic C (δ 13 C DIC ) indicates that the CO 2 oversaturation cannot be attributed to in situ aerobic respiration. δ 13 C DIC reveals a source of excess C enriched in 13 C, which may be accounted for by anaerobic sediment respiration or groundwater inputs followed by kinetic isotope fractionation during degassing

  14. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    Directory of Open Access Journals (Sweden)

    X. Cai

    2017-10-01

    Full Text Available Biological effects of ultraviolet radiation (UVR; 280–400 nm on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280–320 nm and UV-A (320–400 nm on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101 using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs. After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %, MAA content was higher, and average trichome length was shorter (by up to 22 % in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR alone treatment (400–700 nm. These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  15. [Engineering photosynthetic cyanobacterial chassis: a review].

    Science.gov (United States)

    Wu, Qin; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2013-08-01

    Photosynthetic cyanobacteria possess a series of good properties, such as their abilities to capture solar energy for CO2 fixation, low nutritional requirements for growth, high growth rate, and relatively simple genetic background. Due to the high oil price and increased concern of the global warming in recent years, cyanobacteria have attracted widespread attention because they can serve as an 'autotrophic microbial factory' for producing renewable biofuels and fine chemicals directly from CO2. Particularly, significant progress has been made in applying synthetic biology techniques and strategies to construct and optimize cyanobacteria chassis. In this article, we critically summarized recent advances in developing new methods to optimize cyanobacteria chassis, improving cyanobacteria photosynthetic efficiency, and in constructing cyanobacteria chassis tolerant to products or environmental stresses. In addition, various industrial applications of cyanobacteria chassis are also discussed.

  16. Higher-moment measurements of net-kaon, net-charge and net-proton multiplicity distributions at STAR

    International Nuclear Information System (INIS)

    Sarkar, Amal

    2014-01-01

    In this paper, we report the measurements of the various moments, such as mean, standard deviation (σ), skewness (S) and kurtosis (κ) of the net-kaon, net-charge and net-proton multiplicity distributions at mid-rapidity in Au + Au collisions from √(s NN )=7.7 to 200 GeV with the STAR experiment at RHIC. This work has been done with the aim to locate the critical point on the QCD phase diagram. These moments and their products are related to the thermodynamic susceptibilities of conserved quantities such as net baryon number, net charge, and net strangeness as well as to the correlation length of the system which diverges in an ideal infinite thermodynamic system at the critical point. For a finite system, existing for a finite time, a non-monotonic behavior of these variables would indicate the presence of the critical point. Furthermore, we also present the moment products Sσ, κσ 2 of net-kaon, net-charge and net-proton multiplicity distributions as a function of collision centrality and energy. The energy and the centrality dependence of higher moments and their products have been compared with different models

  17. Past and present of sediment and carbon biogeochemical cycling models

    Directory of Open Access Journals (Sweden)

    F. T. Mackenzie

    2004-01-01

    Full Text Available The global carbon cycle is part of the much more extensive sedimentary cycle that involves large masses of carbon in the Earth's inner and outer spheres. Studies of the carbon cycle generally followed a progression in knowledge of the natural biological, then chemical, and finally geological processes involved, culminating in a more or less integrated picture of the biogeochemical carbon cycle by the 1920s. However, knowledge of the ocean's carbon cycle behavior has only within the last few decades progressed to a stage where meaningful discussion of carbon processes on an annual to millennial time scale can take place. In geologically older and pre-industrial time, the ocean was generally a net source of CO2 emissions to the atmosphere owing to the mineralization of land-derived organic matter in addition to that produced in situ and to the process of CaCO3 precipitation. Due to rising atmospheric CO2 concentrations because of fossil fuel combustion and land use changes, the direction of the air-sea CO2 flux has reversed, leading to the ocean as a whole being a net sink of anthropogenic CO2. The present thickness of the surface ocean layer, where part of the anthropogenic CO2 emissions are stored, is estimated as of the order of a few hundred meters. The oceanic coastal zone net air-sea CO2 exchange flux has also probably changed during industrial time. Model projections indicate that in pre-industrial times, the coastal zone may have been net heterotrophic, releasing CO2 to the atmosphere from the imbalance between gross photosynthesis and total respiration. This, coupled with extensive CaCO3 precipitation in coastal zone environments, led to a net flux of CO2 out of the system. During industrial time the coastal zone ocean has tended to reverse its trophic status toward a non-steady state situation of net autotrophy, resulting in net uptake of anthropogenic CO2 and storage of carbon in the coastal ocean, despite the significant calcification

  18. Effect of Photosynthetic Photon Flux Density on Carboxylation Efficiency 1

    Science.gov (United States)

    Weber, James A.; Tenhunen, John D.; Gates, David M.; Lange, Otto L.

    1987-01-01

    The effect of photosynthetic photon flux density (PPFD) on photosynthetic response (A) to CO2 partial pressures between 35 pascals and CO2 compensation point (Γ) was investigated, especially below PPFD saturation. Spinacia oleracea cv `Atlanta,' Glycine max cv `Clark,' and Arbutus unedo were studied in detail. The initial slope of the photosynthetic response to CO2 (∂A/∂C[Γ]) was constant above a PPFD of about 500 to 600 micromoles per square meter per second for all three species; but declined rapidly with PPFD below this critical level. For Γ there was also a critical PPFD (approximately 200 micromoles per square meter per second for S. oleracea and G. max; 100 for A. unedo) above which Γ was essentially constant, but below which Γ increased with decreasing PPFD. All three species showed a dependence of ∂A/∂C(Γ) on PPFD at low PPFD. Simulated photosynthetic responses obtained with a biochemically based model of whole-leaf photosynthesis were similar to measured responses. PMID:16665640

  19. Non-photosynthetic plastids as hosts for metabolic engineering.

    Science.gov (United States)

    Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo; Jensen, Poul Erik; Pribil, Mathias

    2018-04-13

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Variations of net ecosystem production due to seasonal precipitation differences in a tropical dry forest of northwest Mexico

    Science.gov (United States)

    Verduzco, Vivian S.; Garatuza-Payán, Jaime; Yépez, Enrico A.; Watts, Christopher J.; Rodríguez, Julio C.; Robles-Morua, Agustin; Vivoni, Enrique R.

    2015-10-01

    Due to their large extent and high primary productivity, tropical dry forests (TDF) are important contributors to atmospheric carbon exchanges in subtropical and tropical regions. In northwest Mexico, a bimodal precipitation regime that includes winter precipitation derived from Pacific storms and summer precipitation from the North American monsoon (NAM) couples water availability with ecosystem processes. We investigated the net ecosystem production of a TDF ecosystem using a 4.5 year record of water and carbon fluxes obtained from the eddy covariance method complemented with remotely sensed data. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer that respiration is mainly due to decomposition of soil organic matter accumulated from the prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production but can be overwhelmed by the strength of the primary productivity during the NAM. Precipitation characteristics during NAM have significant controls on sustaining carbon fixation in the TDF into the fall season. We identified that a threshold of ~350 to 400 mm of monsoon precipitation leads to a switch in the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This monsoonal precipitation threshold is typically exceeded one out of every 2 years. The close coupling of winter and summer periods with respect to carbon fluxes suggests that the annual carbon balance is dependent on precipitation amounts in both seasons in TDF ecosystems.