WorldWideScience

Sample records for net gas exchange

  1. Leaf Water Relations and Net Gas Exchange Responses of Salinized Carrizo Citrange Seedlings during Drought Stress and Recovery

    Science.gov (United States)

    Pérez-Pérez, J. G.; Syvertsen, J. P.; Botía, P.; García-Sánchez, F.

    2007-01-01

    Background and Aims Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis × Poncirus trifoliata. Methods Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl− and Na+ were measured. Key Results Salinity increased leaf Cl− and Na+ concentrations and decreased osmotic potential (Ψπ) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO2 assimilation rate (ACO2) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower ACO2 was related to low RWC, whereas in salinized plants decreased ACO2 was related to high levels of leaf Cl− and Na+. ACO2 recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl−, Na+ and quaternary ammonium compounds after recovery. High leaf levels of Cl− and Na+ after recovery apparently came from the roots

  2. Changes in net ecosystem productivity and greenhouse gas exchange with fertilization of Douglas fir: Mathematical modeling in ecosys

    Science.gov (United States)

    Grant, R. F.; Black, T. A.; Jassal, R. S.; Bruemmer, C.

    2010-12-01

    The application of nitrogen fertilizers to Douglas fir forests is known to raise net ecosystem productivity (NEP), but also N2O emissions, the CO2 equivalent of which may offset gains in NEP when accounting for net greenhouse gas (GHG) exchange. However, total changes in NEP and N2O emissions caused by fertilizer between times of application and harvest, while needed for national GHG inventories, are difficult to quantify except through modeling. In this study, integrated hypotheses for soil and plant N processes within the ecosystem model ecosys were tested against changes in CO2 and N2O fluxes recorded with eddy covariance (EC) and surface flux chambers for 1 year after applying 20 g N m-2 of urea to a mature Douglas fir stand in British Columbia. Parameters from annual regressions of hourly modeled versus measured CO2 fluxes conducted before and after fertilization were unchanged (b = 1.0, R2 = 0.8, RMSD = 3.4 μmol m-2 s-1), indicating that model hypotheses for soil and plant N processes did not introduce bias into CO2 fluxes modeled after fertilization. These model hypotheses were then used to project changes in NEP and GHG exchange attributed to the fertilizer during the following 10 years until likely harvest of the Douglas fir stand. Increased CO2 uptake caused modeled and EC-derived annual NEP to rise from 443 and 386 g C m-2 in the year before fertilization to 591 and 547 g C m-2 in the year after. These gains contributed to a sustained rise in modeled wood C production with fertilization, which was partly offset by a decline in soil C attributed in the model to reduced root C productivity and litterfall. Gains in net CO2 uptake were further offset in the model by a rise of 0.74 g N m-2 yr-1 in N2O emissions during the first year after fertilization, which was consistent with one of 1.05 g N m-2 yr-1 estimated from surface flux chamber measurements. Further N2O emissions were neither modeled nor measured after the first year. At the end of the 11 year

  3. Fruit load and canopy shading affect leaf characteristics and net gas exchange of 'Spring' navel orange trees.

    Science.gov (United States)

    Syvertsen, J P; Goñi, C; Otero, A

    2003-09-01

    Five-year-old 'Spring' navel (Citrus sinensis (L.) Osbeck) orange trees were completely defruited, 50% defruited or left fully laden to study effects of fruit load on concentrations of nitrogen (N) and carbohydrate, net assimilation of CO2 (Ac) and stomatal conductance (gs) of mature leaves on clear winter days just before fruit harvest. Leaves on defruited trees were larger, had higher starch concentrations and greater leaf dry mass per area (LDMa) than leaves on fruited trees. Both Ac and gs were more than 40% lower in sunlit leaves on defruited trees than in sunlit leaves on trees with fruit. Leaves immediately adjacent to fruit were smaller, had lower leaf nitrogen and carbohydrate concentrations, lower LDMa and lower Ac than leaves on non-fruiting branches of the same trees. Removing half the crop increased individual fruit mass, but reduced fruit color development. Half the trees were shaded with 50% shade cloth for 4 months before harvest to determine the effects of lower leaf temperature (Tl) and leaf-to-air vapor pressure difference on leaf responses. On relatively warm days when sunlit Tl > 25 degrees C, shade increased Ac and gs, but had no effect on the ratio of internal to ambient CO2 (Ci/Ca) concentration in leaves, implying that high mesophyll temperatures in sunlit leaves were more important than gs in limiting Ac. Sunlit leaves were more photoinhibited than shaded leaves on cooler days when Tl fruit size, but shaded fruit developed better external color than sun-exposed fruit. Overall, the presence of a normal fruit crop resulted in lower foliar carbohydrate concentrations and higher Ac compared with defruited trees, except on warm days when Ac was reduced by high leaf temperatures.

  4. Net global warming potential and greenhouse gas intensity

    Science.gov (United States)

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  5. SAFE gas turbine cycle primary heat exchangers

    Science.gov (United States)

    Reid, Robert S.; Kapernick, Richard J.

    2002-01-01

    Los Alamos National Laboratory and Marshall Space Flight Center are jointly developing two modular heat pipe heat exchangers, collectively named FIGMENT (Fission Inert Gas Metal Exchanger for Non-nuclear Testing). The FIGMENT heat exchangers are designed to transfer power from the SAFE nuclear reactor cores to gas turbine energy converters. A stainless steel prototype heat exchanger will be built during 2002 in preparation for the construction of a larger refractory metal version. Two promising FIGMENT stainless steel heat exchanger concepts are reviewed here. .

  6. Eddy covariance measurements of net C exchange in the CAM bioenergy crop, Agave tequiliana

    Science.gov (United States)

    Owen, Nick A.; Choncubhair, Órlaith Ní; Males, Jamie; del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-04-01

    Bioenergy crop cultivation may focus more on low grade and marginal lands in order to avoid competition with food production for land and water resources. However, in many regions, this would require improvements in plant water-use efficiency that are beyond the physiological capacity of most C3 and C4 bioenergy crop candidates. Crassulacean acid metabolism (CAM) plants, such as Agave tequiliana, can combine high above-ground productivity with as little as 20% of the water demand of C3 and C4 crops. This is achieved through temporal separation of carboxylase activities, with stomata opening at night to allow gas exchange and minimise transpirational losses. Previous studies have employed 'bottom-up' methodologies to investigate carbon (C) accumulation and productivity in Agave, by scaling leaf-level gas exchange and titratable acidity (TA) with leaf area index or maximum productivity. We used the eddy covariance (EC) technique to quantify ecosystem-scale gas exchange over an Agave plantation in Mexico ('top-down' approach). Measurements were made over 252 days, including the transition from wet to dry periods. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Net ecosystem exchange of CO2 displayed a CAM rhythm that alternated from a net C sink at night to a net C source during the day and partitioned canopy fluxes (gross C assimilation, FA,EC) showed a characteristic four-phase CO2 exchange pattern. The projected ecosystem C balance indicated that the site was a net sink of -333 ± 24 g C m-2 y-1, comprising cumulative soil respiration of 692 ± 7 g C m-2 y-1 and FA,EC of -1025 ± 25 g C m-2 y-1. EC-estimated biomass yield was 20.1 Mg ha-1 y-1. Average integrated daily FA,EC was -234 ± 5 mmol CO2 m-2 d-1 and persisted almost unchanged after 70 days of drought conditions. Our results suggest that the carbon acquisition strategy of drought avoidance employed by Agave

  7. Modelling the limits on the response of net carbon exchange to fertilization in a south-eastern pine forest

    Science.gov (United States)

    Chun-Tai. Lai; G. Katul; J. Butnor; M. Siqueira; D. Ellsworth; C. Maier; Kurt Johnsen; S. Mickeand; R. Oren

    2002-01-01

    Using a combination of model simulations and detailed measurements at a hierarchy of scales conducted at a sandhills forest site, the effect of fertilization on net ecosystem exchange (NEE) and its components in 6-year-old Pinus taeda stands was quantified. The detailed measurements, collected over a 20-d period in September and October, included gas...

  8. Net Ecosystem Exchange and Net Biome Productivity of different land use in eastern Germany

    Science.gov (United States)

    Grünwald, Thomas; Prescher, Anne-Katrin; Bernhofer, Christian

    2010-05-01

    The carbon (CO2-C) budgets of a managed forest (spruce), grassland and a cropland (crop rotation) have been determined and compared. The sites are part of the Tharandt cluster which features low intersite variability in climate due to the small distances between the sites. This allows the comparison of management effects on the carbon budget of different land use among other things. At the forest site, continuous CO2 flux measurements are available from 1997 to 2008, the common observation period of the grassland and cropland sites was 2005 to 2008. With regard to annual net ecosystem exchange NEE (based on eddy covariance flux measurements), the forest showed the highest net sink (-698 g C m-2 (1999) to -444 g C m-2 (2003)). In contrast the grassland and cropland sites were significantly lower sinks in terms of NEE (-177 g C m-2 (2004) to -62 g C m-2 (2005) and -115 g C m-2 (2005) to -32 g C m-2 (2007 and 2008), respectively). To quantify the net biome productivity (NBP) carbon exports due to thinning or harvest as well as carbon imports due to organic fertilisation are considered besides NEE. Carbon exports and imports change the carbon budget in terms of NBP. At the forest site only the 2002 NBP is a carbon source (+221 g C m-2) due to the thinning in April 2002 when around 43 m3 ha-1 solid wood was removed from the ecosystem. After the thinning the annual NEE is reduced by around 100 g C m-2 until 2007. The grassland NBP alternated between carbon source and sink (+25 g C m-2 (2008) to -28 g C m-2 (2006)) indicating the carbon balance was approximately neutral. Low NEE and NBP values at the grassland site were a consequence of carbon export due to several cuts per year. The NBP of the cropland ecosystem was mainly influenced by the crop type (winter or spring crop) and the application of organic fertiliser (manure) resulting in carbon budgets between +484 g C m-2 (2007) and -89 g C m-2 (2006). The different timing and length of the growing season of winter and

  9. Net Exchange Ecossistem in Subtropical Agriculture Area in Southern Brazil

    Science.gov (United States)

    Roberti, D. R.; Diaz, M.; Webler, G.; Fiorin, J.; de Moraes, O. L. L.; Teichrieb, C.; Amado, T.

    2015-12-01

    Southern Brazil contribute to 38% of Brazilian grain production. In contrast with the rest of the country, the south has a wet, subtropical climate that permits two annual harvests (double cropping system). The soybean and/or maize (summer) and black oat and/or wheat (winter) succession is widely used by farmers in plateau areas. In river natural lowlands, the cultivation of flooded irrigated rice is common. Changes in the land use affect the carbon, water and energy balance, and crop management practices, such as fertilization, water management, harvest and crop residues have influence in carbon exchange between the crop field and the atmosphere. This study quantifies the net exchange ecosystem (NEE) between the atmosphere and the crop cultivations in this wide region of Brazil from 2010 to 2014. We use data from two micrometeorological sites: Cruz Alta, with crop rotation and Cachoeira do Sul, with rice paddy. The carbon flux was analyzed using the eddy covariance method and gap filling procedures. The annual integration of data carbon demonstrates that the agroecosystems in southern Brazil is a acting as an light atmospheric CO2 sink. However, the NEE emissions that occurred in the fallow periods contributed negatively for such annual accumulation. To reduce this loss of CO2, farmers could cultivate plants in fallow periods, because there are favorable weather conditions for growing plants year round. Additionally, other management practices can increase the influx of C, including the production of more dry matter with cover crops by improving management and the immediate harvesting of crop after physiological maturity to reduce the period between maturation and harvest.

  10. Hysteresis response of daytime net ecosystem exchange during drought

    Directory of Open Access Journals (Sweden)

    N. Pingintha

    2010-03-01

    Full Text Available Continuous measurements of net ecosystem CO2 exchange (NEE using the eddy-covariance method were made over an agricultural ecosystem in the southeastern US. During optimum environmental conditions, photosynthetically active radiation (PAR was the primary driver controlling daytime NEE, accounting for as much as 67 to 89% of the variation in NEE. However, soil water content became the dominant factor limiting the NEE-PAR response during the peak growth stage. NEE was significantly depressed when high PAR values coincided with very low soil water content. The presence of a counter-clockwise hysteresis of daytime NEE with PAR was observed during periods of water stress. This is a result of the stomatal closure control of photosynthesis at high vapor pressure deficit and enhanced respiration at high temperature. This result is significant since this hysteresis effect limits the range of applicability of the Michaelis-Menten equation and other related expressions in the determination of daytime NEE as a function of PAR. The systematic presence of hysteresis in the response of NEE to PAR suggests that the gap-filling technique based on a non-linear regression approach should take into account the presence of water-limited field conditions. Including this step is therefore likely to improve current evaluation of ecosystem response to increased precipitation variability arising from climatic changes.

  11. Exploring the long-term balance between net precipitation and net groundwater exchange in Florida seepage lakes

    Science.gov (United States)

    Lee, Terrie M.; Sacks, Laura A.; Swancar, Amy

    2014-01-01

    The long-term balance between net precipitation and net groundwater exchange that maintains thousands of seepage lakes in Florida’s karst terrain is explored at a representative lake basin and then regionally for the State’s peninsular lake district. The 15-year water budget of Lake Starr includes El Niño Southern Oscillation (ENSO)-related extremes in rainfall, and provides the longest record of Bowen ratio energy-budget (BREB) lake evaporation and lake-groundwater exchanges in the southeastern United States. Negative net precipitation averaging -25 cm/yr at Lake Starr overturns the previously-held conclusion that lakes in this region receive surplus net precipitation. Net groundwater exchange with the lake was positive on average but too small to balance the net precipitation deficit. Groundwater pumping effects and surface-water withdrawals from the lake widened the imbalance. Satellite-based regional estimates of potential evapotranspiration at five large lakes in peninsular Florida compared well with basin-scale evaporation measurements from seven open-water sites that used BREB methods. The regional average lake evaporation estimated for Lake Starr during 1996-2011 was within 5 percent of its measured average, and regional net precipitation agreed within 10 percent. Regional net precipitation to lakes was negative throughout central peninsular Florida and the net precipitation deficit increased by about 20 cm from north to south. Results indicate that seepage lakes farther south on the peninsula receive greater net groundwater inflow than northern lakes and imply that northern lakes are in comparatively leakier hydrogeologic settings. Findings reveal the peninsular lake district to be more vulnerable than was previously realized to drier climate, surface-water withdrawals from lakes, and groundwater pumping effects.

  12. Net ecosystem carbon exchange of a dry temperate eucalypt forest

    Science.gov (United States)

    Hinko-Najera, Nina; Isaac, Peter; Beringer, Jason; van Gorsel, Eva; Ewenz, Cacilia; McHugh, Ian; Exbrayat, Jean-François; Livesley, Stephen J.; Arndt, Stefan K.

    2017-08-01

    Forest ecosystems play a crucial role in the global carbon cycle by sequestering a considerable fraction of anthropogenic CO2, thereby contributing to climate change mitigation. However, there is a gap in our understanding about the carbon dynamics of eucalypt (broadleaf evergreen) forests in temperate climates, which might differ from temperate evergreen coniferous or deciduous broadleaved forests given their fundamental differences in physiology, phenology and growth dynamics. To address this gap we undertook a 3-year study (2010-2012) of eddy covariance measurements in a dry temperate eucalypt forest in southeastern Australia. We determined the annual net carbon balance and investigated the temporal (seasonal and inter-annual) variability in and environmental controls of net ecosystem carbon exchange (NEE), gross primary productivity (GPP) and ecosystem respiration (ER). The forest was a large and constant carbon sink throughout the study period, even in winter, with an overall mean NEE of -1234 ± 109 (SE) g C m-2 yr-1. Estimated annual ER was similar for 2010 and 2011 but decreased in 2012 ranging from 1603 to 1346 g C m-2 yr-1, whereas GPP showed no significant inter-annual variability, with a mean annual estimate of 2728 ± 39 g C m-2 yr-1. All ecosystem carbon fluxes had a pronounced seasonality, with GPP being greatest during spring and summer and ER being highest during summer, whereas peaks in NEE occurred in early spring and again in summer. High NEE in spring was likely caused by a delayed increase in ER due to low temperatures. A strong seasonal pattern in environmental controls of daytime and night-time NEE was revealed. Daytime NEE was equally explained by incoming solar radiation and air temperature, whereas air temperature was the main environmental driver of night-time NEE. The forest experienced unusual above-average annual rainfall during the first 2 years of this 3-year period so that soil water content remained relatively high and the forest

  13. Gas exchange measurements in natural systems

    Energy Technology Data Exchange (ETDEWEB)

    Broecker, W.S.; Peng, T.H.

    1983-01-01

    Direct knowledge of the rates of gas exchange in lakes and the ocean is based almost entirely on measurements of the isotopes /sup 14/C, /sup 222/Rn and /sup 3/He. The distribution of natural radiocarbon has yielded the average rate of CO/sub 2/ exchange for the ocean and for several closed basin lakes. That of bomb produced radiocarbon has been used in the same systems. The /sup 222/Rn to /sup 226/Ra ratio in open ocean surface water has been used to give local short term gas exchange rates. The radon method generally cannot be used in lakes, rivers, estuaries or shelf areas because of the input of radon from sediments. A few attempts have been made to use the excess /sup 3/He produced by decay of bomb produced tritium in lakes to give gas transfer rates. The uncertainty in the molecular diffusivity of helium and in the diffusivity dependence of the rate of gas transfer holds back the application of this method. A few attempts have been made to enrich the surface waters of small lakes with /sup 226/Ra and /sup 3/H in order to allow the use of the /sup 222/Rn and /sup 3/He methods. While these studies give broadly concordant results, many questions remain unanswered. The wind velocity dependence of gas exchange rate has yet to be established in field studies. The dependence of gas exchange rate on molecular diffusivity also remains in limbo. Finally, the degree of enhancement of CO/sub 2/ exchange through chemical reactions has been only partially explored. 49 references, 2 figures, 2 tables.

  14. Measurement-based upscaling of pan Arctic net ecosystem exchange: the PANEEx project

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe; Kusbach, Antonin; Lund, Magnus

    2015-01-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) can be attributed to the high spatial heterogeneity of Arctic tundra due to the complex topography. Current models of C exchange handle the Arctic as either a single or few ecosystems, responding to environmental...

  15. Regional atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange

    NARCIS (Netherlands)

    Alden, C.B.; Miller, J.B.; Gatti, L.V.; Gloor, M.M.; Laan-Luijkx, van der I.T.; Krol, M.C.; Guan, K.; Michalak, A.M.; Touma, T.; Andrew, A.; Basso, L.S.; Correia, C.S.C.; Domingues, L.G.; Joiner, J.; Lyapustin, A.; Peters, W.; Shiga, Y.P.; Thoning, K.; Velde, van der I.R.; Leeuwen van, T.T.; Yadav, V.; Diffenbaugh, N.S.

    2016-01-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate–carbon feedbacks. Of particular importance
    for the global carbon budget is net biome exchange of CO2 w

  16. Regional atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange

    NARCIS (Netherlands)

    Alden, Caroline B.; Miller, John B.; Gatti, Luciana V.; Gloor, Manuel M.; Guan, Kaiyu; Michalak, Anna M.; van der Laan-Luijkx, Ingrid T.; Touma, Danielle; Andrews, Arlyn; Basso, Luana S.; Correia, Caio S. C.; Domingues, Lucas G.; Joiner, Joanna; Krol, Maarten C.; Lyapustin, Alexei I.; Peters, Wouter; Shiga, Yoichi P.; Thoning, Kirk; van der Velde, Ivar R.; van Leeuwen, Thijs T.; Yadav, Vineet; Diffenbaugh, Noah S.

    2016-01-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with

  17. PAK1 negatively regulates the activity of the Rho exchange factor NET1.

    Science.gov (United States)

    Alberts, Arthur S; Qin, Huajun; Carr, Heather S; Frost, Jeffrey A

    2005-04-01

    Rho family small G-protein activity is controlled by guanine nucleotide exchange factors that stimulate the release of GDP, thus allowing GTP binding. Once activated, Rho proteins control cell signaling through interactions with downstream effector proteins, leading to changes in cytoskeletal organization and gene expression. The ability of Rho family members to modulate the activity of other Rho proteins is also intrinsic to these processes. In this work we show that the Rac/Cdc42hs-regulated protein kinase PAK1 down-regulates the activity of the RhoA-specific guanine nucleotide exchange factor NET1. Specifically, PAK1 phosphorylates NET1 on three sites in vitro: serines 152, 153, and 538. Replacement of serines 152 and 153 with glutamate residues down-regulates the activity of NET1 as an exchange factor in vitro and its ability to stimulate actin stress fiber formation in cells. Using a phospho-specific antibody that recognizes NET1 phosphorylated on serine 152, we show that PAK1 phosphorylates NET1 on this site in cells and that Rac1 stimulates serine 152 phosphorylation in a PAK1-dependent manner. Furthermore, coexpression of constitutively active PAK1 inhibits the ability of NET1 to stimulate actin polymerization only when serines 152 and 153 are present. These data provide a novel mechanism for the control of RhoA activity by Rac1 through the PAK-dependent phosphorylation of NET1 to reduce its activity as a guanine nucleotide exchange factor.

  18. Quantifying air-sea gas exchange using noble gases in a coastal upwelling zone

    Science.gov (United States)

    Manning, C. C.; Stanley, R. H. R.; Nicholson, D. P.; Squibb, M. E.

    2016-05-01

    The diffusive and bubble-mediated components of air-sea gas exchange can be quantified separately using time-series measurements of a suite of dissolved inert gases. We have evaluated the performance of four published air-sea gas exchange parameterizations using a five-day time-series of dissolved He, Ne, Ar, Kr, and Xe concentration in Monterey Bay, CA. We constructed a vertical model including surface air-sea gas exchange and vertical diffusion. Diffusivity was measured throughout the cruise from profiles of turbulent microstructure. We corrected the mixed layer gas concentrations for an upwelling event that occurred partway through the cruise. All tested parameterizations gave similar results for Ar, Kr, and Xe; their air-sea fluxes were dominated by diffusive gas exchange during our study. For He and Ne, which are less soluble, and therefore more sensitive to differences in the treatment of bubble-mediated exchange, the parameterizations gave widely different results with respect to the net gas exchange flux and the bubble flux. This study demonstrates the value of using a suite of inert gases, especially the lower solubility ones, to parameterize air-sea gas exchange.

  19. Improving respiration measurements with gas exchange analyzers.

    Science.gov (United States)

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO2 differential (ΔCO2) increased two-fold with no change in apparent Rd, when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO2. Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Imaging regional PAO2 and gas exchange.

    Science.gov (United States)

    Petersson, Johan; Glenny, Robb W

    2012-07-01

    Several methods allow regional gas exchange to be inferred from imaging of regional ventilation and perfusion (V/Q) ratios. Each method measures slightly different aspects of gas exchange and has inherent advantages and drawbacks that are reviewed. Single photon emission computed tomography can provide regional measure of ventilation and perfusion from which regional V/Q ratios can be derived. PET methods using inhaled or intravenously administered nitrogen-13 provide imaging of both regional blood flow, shunt, and ventilation. Electric impedance tomography has recently been refined to allow simultaneous measurements of both regional ventilation and blood flow. MRI methods utilizing hyperpolarized helium-3 or xenon-129 are currently being refined and have been used to estimate local PaO(2) in both humans and animals. Microsphere methods are included in this review as they provide measurements of regional ventilation and perfusion in animals. One of their advantages is their greater spatial resolution than most imaging methods and the ability to use them as gold standards against which new imaging methods can be tested. In general, the reviewed methods differ in characteristics such as spatial resolution, possibility of repeated measurements, radiation exposure, availability, expensiveness, and their current stage of development.

  1. High temperature heat exchanger studies for applications to gas turbines

    Science.gov (United States)

    Min, June Kee; Jeong, Ji Hwan; Ha, Man Yeong; Kim, Kui Soon

    2009-12-01

    Growing demand for environmentally friendly aero gas-turbine engines with lower emissions and improved specific fuel consumption can be met by incorporating heat exchangers into gas turbines. Relevant researches in such areas as the design of a heat exchanger matrix, materials selection, manufacturing technology, and optimization by a variety of researchers have been reviewed in this paper. Based on results reported in previous studies, potential heat exchanger designs for an aero gas turbine recuperator, intercooler, and cooling-air cooler are suggested.

  2. Far-from-equilibrium processes without net thermal exchange via energy sorting.

    Science.gov (United States)

    Vilar, Jose M G; Rubi, J Miguel

    2012-02-14

    Many important processes at the microscale require far-from-equilibrium conditions to occur, as in the functioning of mesoscopic bioreactors, nanoscopic rotors, and nanoscale mass conveyors. Achieving such conditions, however, is typically based on energy inputs that strongly affect the thermal properties of the environment and the controllability of the system itself. Here, we present a general class of far-from-equilibrium processes that suppress the net thermal exchange with the environment by maintaining the Maxwell-Boltzmann velocity distribution intact. This new phenomenon, referred to as ghost equilibrium, results from the statistical cancellation of superheated and subcooled nonequilibrated degrees of freedom that are autonomously generated through a microscale energy sorting process. We provide general conditions to observe this phenomenon and study its implications for manipulating energy at the microscale. The results are applied explicitly to two mechanistically different cases, an ensemble of rotational dipoles and a gas of trapped particles, which encompass a great variety of common situations involving both rotational and translational degrees of freedom. © 2012 American Institute of Physics

  3. Seasonal hysteresis of net ecosystem exchange in response to temperature change: Patterns and causes

    NARCIS (Netherlands)

    Niu, S.; Luo, Y.; Montagnani, L.; Janssens, I.A.; Gielen, B.; Rambal, S.; Moors, E.J.; Matteucci, G.

    2011-01-01

    Understanding how net ecosystem exchange (NEE) changes with temperature is central to the debate on climate change-carbon cycle feedbacks, but still remains unclear. Here, we used eddy covariance measurements of NEE from 20 FLUXNET sites (203 site-years of data) in mid- and high-latitude forests to

  4. Similar net ecosystem exchange of beech stands located in France and Denmark

    DEFF Research Database (Denmark)

    Granier, A.; Pilegaard, K.; Jensen, N.O.

    2002-01-01

    Net ecosystem exchange (NEE), as measured with eddy covariance was compared for two European beech stands for the years 1996-1999: a young beech forest (32 year-old) growing in east France, and a mature beech stand (80 year-old) located in Denmark. Those sites are included in the Carboeuroflux...

  5. Trace Gas Exchange of Biofuel Crops

    Science.gov (United States)

    Graus, M.; Warneke, C.; Williams, E. J.; Lerner, B. M.; Gilman, J. B.; Li, R.; Eller, A. S.; Gray, C.; Fierer, N.; Fall, R.; Harley, P. C.; Roberts, J. M.; Yuan, B.; Qian, Y.; Westra, P.; Fryrear, C.; Collins, M.; Whitman, K.; De Gouw, J. A.

    2011-12-01

    In 2010 leaf level gas exchange and VOC fluxes from switchgrass and corn grown at the CSU horticultural farm in Ft Collins (CO) were measured using a PTR-MS coupled to a modified Li6400 cuvette system. Both species are C4 plants with corn currently being the dominant biofuel crop in the USA whilst switchgrass being a promising candidate for cellulosic fuel ethanol production. Amongst the strongest VOC emissions from both plants were methanol, acetic acid, acetaldehyde, acetone and toluene. The switchgrass VOC emissions compare reasonably well with the only published data measured from potted plants in a whole plant enclosure (Eller et al. 2011). VOC emission studies on corn are almost as scarce as those of switchgrass. Considering the acreage of corn grown in the USA every year, VOC flux measurements of this plant species are largely under-represented in the literature. The emission rates that do exist in the literature do not compare well with the numbers found in this study (e.g. Das et al. 2003; 35μg methanol per hour per gram biomass). To investigate the biosphere atmosphere exchange of corn fields in more detail the field campaign BioCORN 2011 was initiated. In summer 2011 an eddy covariance system was set up in a corn field at ARDEC (CSU, Ft Collins, CO) to investigate the energy flux and the trace gas exchange of the US' dominant biofuel crop. Besides energy flux, evapotranspiration and CO2 flux a comprehensive suite of volatile organic compounds and inorganic species (O3, NO, NO2, CO) are measured for virtual disjunct eddy covariance (vDEC) analysis and true eddy covariance (EC) fluxes, respectively. VOCs are monitored by PTR-MS and, for the first time, fluxes of formic acid are measured utilizing NI-CIMS data for vDEC analysis. Besides the EC approach leaf level flux measurements and soil flux measurements are performed using a GC-MS system (TACOH) coupled to a modified Li6400 system and to soil chambers, respectively. Ethanol and methanol are amongst the

  6. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Science.gov (United States)

    Jingfeng Xiao; Qianlai Zhuang; Dennis D. Baldocchi; Beverly E. Law; Andrew D. Richardson; Jiquan Chen; Ram Oren; Gegory Starr; Asko Noormets; Siyan Ma; Sashi B. Verma; Sonia Wharton; Steven C. Wofsy; Paul V. Bolstad; Sean P. Burns; David R. Cook; Peter S. Curtis; Bert G. Drake; Matthias Falk; MArc L. Fischer; David R. Foster; Lianhong Gu; Julian L. Hadley; David Y. Hollinger; Gabriel G. Katul; Marcy Litvak; Timothy Martin; Roser Matamala; Steve McNulty; Tilden P. Meyers; Russell K. Monson; J. William Munger; Walter C. Oechel; Kyaw Tha Paw U; Hans Peter Schmid; Russell L. Scott; Ge Sun; Andrew E. Suyker; Margaret S. Torn

    2008-01-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents,...

  7. Net capital flows to and the real exchange rate of Western Balkan countries

    Directory of Open Access Journals (Sweden)

    Gabrisch Hubert

    2015-01-01

    Full Text Available This paper uses Granger causality tests to assess the linkages between changes in the real exchange rate and net capital inflows using the example of Western Balkan countries, which have suffered from low competitiveness and external imbalances for many years. The real exchange rate is a measure of a country’s price competitiveness, and the paper uses two concepts: relative unit labour cost and relative inflation differential. The sample consists of six Western Balkan countries for the period 1996-2012, relative to the European Union (EU. The main finding is that changes in the net capital flows precede changes in relative unit labour costs and not vice versa. Also, there is evidence that net capital flows affect the inflation differential of countries, although to a less discernible extent. This suggests that the increasing divergence in the unit labour cost between the EU and Western Balkan countries up to the global financial crisis was at least partly the result of net capital inflows. The paper adds to the ongoing debate on improving cost competitiveness through wage restrictions as the main vehicle to avert the accumulation of current account imbalances. It shows the importance of changes in the exchange rate regime, reform of the interaction between the financial and the real sector, and financial supervision and structural change.

  8. LES of Gas Exchange in IC Engines

    Directory of Open Access Journals (Sweden)

    Mittal V.

    2013-10-01

    Full Text Available As engine technologies become increasingly complex and engines are driven to new operating points, understanding transient phenomena is important to ensure reliable engine operation. Unlike Reynolds Averaged Navier-Stokes (RANS studies that only provide cycle-averaged information, Large Eddy Simulation (LES studies are capable of simulating cycle-to-cycle dynamics. In this work, a finite difference based structured methodology for LES of IC engines is presented. This structured approach allows for an efficient mesh generation process and provides potential for higher order numerical accuracy. An efficient parallel scalable block decomposition is done to overcome the challenges associated with the low ratio of fluid elements to overall mesh elements. The motion of the valves and piston is handled using a dynamic cell blanking approach and the Arbitrary Lagrangian Eulerian (ALE method, respectively. Modified three-dimensional Navier-Stokes Characteristic Boundary Conditions (NSCBC are used in the simulation to prescribe conditions in the manifolds. The accuracy of the simulation framework is validated using various canonical configurations. Flow bench simulations of an axisymmetric configuration and an actual engine geometry are done with the LES methodology. Simulations of the gas exchange in an engine under motored conditions are also performed. Overall, good agreement is obtained with experiments for all the cases. Therefore, this framework can be used for LES of engine simulations. In the future, reactive LES simulations will be performed using this framework.

  9. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan

    OpenAIRE

    Li, Longhui; Chen, Xi; Van der Tol, Christiaan; Luo, Geping; Su, Zhongbo

    2013-01-01

    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils,...

  10. Comparing net ecosystem carbon dioxide exchange at adjacent commercial bioenergy and conventional cropping systems in Lincolnshire, United Kingdom

    Science.gov (United States)

    Morrison, Ross; Brooks, Milo; Evans, Jonathan; Finch, Jon; Rowe, Rebecca; Rylett, Daniel; McNamara, Niall

    2016-04-01

    The conversion of agricultural land to bioenergy plantations represents one option in the national and global effort to reduce greenhouse gas emissions whilst meeting future energy demand. Despite an increase in the area of (e.g. perennial) bioenergy crops in the United Kingdom and elsewhere, the biophysical and biogeochemical impacts of large scale conversion of arable and other land cover types to bioenergy cropping systems remain poorly characterised and uncertain. Here, the results of four years of eddy covariance (EC) flux measurements of net ecosystem CO2 exchange (NEE) obtained at a commercial farm in Lincolnshire, United Kingdom (UK) are reported. CO2 flux measurements are presented and compared for arable crops (winter wheat, oilseed rape, spring barely) and plantations of the perennial biofuel crops Miscanthus x. giganteus (C4) and short rotation coppice (SRC) willow (Salix sp.,C3). Ecosystem light and temperature response functions were used to analyse and compare temporal trends and spatial variations in NEE across the three land covers. All three crops were net in situ sinks for atmospheric CO2 but were characterised by large temporal and between site variability in NEE. Environmental and biological controls driving the spatial and temporal variations in CO2 exchange processes, as well as the influences of land management, will be analysed and discussed.

  11. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan.

    Science.gov (United States)

    Li, Longhui; Chen, Xi; van der Tol, Christiaan; Luo, Geping; Su, Zhongbo

    2014-01-01

    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia.

  12. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    Science.gov (United States)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  13. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, J.S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  14. Exchange effects in a quasi-one-dimensional electron gas

    Science.gov (United States)

    Gold, A.; Ghazali, A.

    1990-04-01

    We calculate the electron exchange of a quasi-one-dimensional electron gas in a quantum-well wire of radius R0. A two-subband model is considered and the exchange self-energy for the first and second subband is calculated under the assumption that only the lowest subband is partially filled with electrons. Band-bending effects are also discussed. Results for the total energy per electron including kinetic and exchange energy are presented.

  15. Reversible brain inactivation induces discontinuous gas exchange in cockroaches.

    Science.gov (United States)

    Matthews, Philip G D; White, Craig R

    2013-06-01

    Many insects at rest breathe discontinuously, alternating between brief bouts of gas exchange and extended periods of breath-holding. The association between discontinuous gas exchange cycles (DGCs) and inactivity has long been recognised, leading to speculation that DGCs lie at one end of a continuum of gas exchange patterns, from continuous to discontinuous, linked to metabolic rate (MR). However, the neural hypothesis posits that it is the downregulation of brain activity and a change in the neural control of gas exchange, rather than low MR per se, which is responsible for the emergence of DGCs during inactivity. To test this, Nauphoeta cinerea cockroaches had their brains inactivated by applying a Peltier-chilled cold probe to the head. Once brain temperature fell to 8°C, cockroaches switched from a continuous to a discontinuous breathing pattern. Re-warming the brain abolished the DGC and re-established a continuous breathing pattern. Chilling the brain did not significantly reduce the cockroaches' MR and there was no association between the gas exchange pattern displayed by the insect and its MR. This demonstrates that DGCs can arise due to a decrease in brain activity and a change in the underlying regulation of gas exchange, and are not necessarily a simple consequence of low respiratory demand.

  16. Selection of organic Rankine cycle working fluid based on unit-heat-exchange-area net power

    Institute of Scientific and Technical Information of China (English)

    郭美茹; 朱启的; 孙志强; 周天; 周孑民

    2015-01-01

    To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles (ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area (UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15−363.15 K or 443.15−453.15 K, heptane is more suitable at 373.15−423.15 K, and R245ca is a good option at 483.15−503.15 K.

  17. Net greenhouse gas emissions at Eastmain-1 reservoir, Quebec, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Alain; Bastien, Julie; Bonneville, Marie-Claude; del Giorgio, Paul; Demarty, Maud; Garneau, Michelle; Helie, Jean-Francois; Pelletier, Luc; Prairie, Yves; Roulet, Nigel; Strachan, Ian; Teodoru, Cristian

    2010-09-15

    The growing concern regarding the long-term contribution of freshwater reservoirs to atmospheric greenhouse gases (GHG), led Hydro-Quebec, to study net GHG emissions from Eastmain 1 reservoir, which are the emissions related to the creation of a reservoir minus those that would have been emitted or absorbed by the natural systems over a 100-year period. This large study was realized in collaboration with University du Quebec a Montreal, McGill University and Environnement IIlimite Inc. This is a world premiere and the net GHG emissions of EM-1 will be presented in details.

  18. Abnormity control design and performance analysis of real-time data exchange software based on Petri net

    Institute of Scientific and Technical Information of China (English)

    Zhang Weimin

    2005-01-01

    In many spaceflight measure and control software systems, varieties of measure data are exchanged between different software. Qualities of measure and control software systems are influenced by the performances of data exchange software greatly. Many problems that appear during the running process of real-time measure and control software and are difficult to be located are caused by data exchange software. So, it is necessary to analyze the performances of data exchange software while designing measure and control software systems. In this article, the Petri net model of the real-time data exchange software is established first. Then the model is simplified and analyzed. The design of abnormity control for buffer overflow is given. Finally,using the Petri net method, the performances of the real-time data exchange software are analyzed and discussed.

  19. Diurnal change of gas exchange of Rhodiola sachalinensis transplanted from different habitats in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    阎秀峰; 李晶; 王玉杰; 祖元刚

    2000-01-01

    Rhodiola sachalinensis growing in the different habitats, such as Xiaotianchi plot (altitude 1800 m), Tree line plot (altitude 2000 m) and Tianwenfeng plot (altitude 2325 m) of Changbai Mountain (northern slop) were transplanted to Harbin Experimental Farm for determining its gas exchange. The study results indicated that the diurnal changes of gas exchange of Rh. sachalinensis transplanted from different habitats were still different though the morphological appearance of the newly sprouted above-ground part had become more similar. For net photosynthesis rate (Pn), stomatal conductance (Gs) and apparent quantum yield (AQY), the diurnal change curves of Rh. sachalinensis transplanted from the three plots were similar, but the data value were different. For the dark respiration rate (Rd), transpiration rate (Tr) and water use efficiency (WUE), diurnal change curves of the three plots were obviously different.

  20. Gas exchange of Rhodiola sachalinensis transplanted from different habitats in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Rhodiola sachalinensis growing in the different habitats, Xiaotianchi plot (altitude 1 800 m), Tree line plot (altitude 2 000 m) and Tianwenfeng plot (altitude 2 325 m), of Changbai Mountain (northern slop) were transplanted to Harbin Experimental Forest Farm for measuring its characteristic of gas exchange. The study results indicated that the growth state and gas exchange characteristics of Rh. sachalinensis growing in different habitats varied markedly. The plants transplanted from Tianwenfeng plot had the highest values in net photosynthesis rate(Pn) and transpiration rate (Tr), those transplanted from Tree line plot shows the second, and those transplanted rom Xiaotianchi plot had the lowest values. The variance existed in transplanted plants was the same as shown in the field. From the result it can be extrapolated that the difference of Pn and Tr existed in Rh. sachalinensis transplanted from different habitats is depend not only on the environmental factors, but on the variance of physiological characteristic of plant itself.

  1. Net ecosystem CO{sub 2} exchange over a larch forest in Hokkaido, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Huimin Wang; Saigusa, Nobuko; Yamamoto, Susumu; Kondo, Hiroaki [National Inst. of Advanced Industrial Science and Technology, Tsukuba Science City (Japan); Hirano, Takashi [Hokkaido Univ., Sapporo (Japan); Toriyama, Atsushi; Fujinuma, Yasumi [National Inst. for Environmental Studies, Tsukuba (Japan)

    2004-12-01

    Larch forests are distributed extensively in the east Eurasian continent and are expected to play a significant role in the terrestrial ecosystem carbon cycling process. In view of the fact that studies on carbon exchange for this important biome have been very limited, we have initiated a long-term flux observation in a larch forest ecosystem in Hokkaido in northern Japan since 2000. The net ecosystem CO{sub 2} exchange (NEE) showed large seasonal and diurnal variation. Generally, the larch forest ecosystem released CO{sub 2} in nighttime and assimilated CO{sub 2} in daytime during the growing season from May to October. The ecosystem started to become a net carbon sink in May, reaching a maximum carbon uptake as high as 186 g C m{sup -2} month{sup -1} in June. With the yellowing, senescing and leaf fall, the ecosystem turned into a carbon source in November. During the non-growing season, the larch forest ecosystem became a net source of CO{sub 2}, releasing an average of 16.7 g C m{sup -2} month{sup -1}. Overall, the ecosystem sequestered 141-240 g C m{sup -2} yr{sup -1} in 2001. The NEE was significantly influenced by environmental factors. Respiration of the ecosystem, for example, was exponentially dependent on air temperature, while photosynthesis was related to the incident PAR in a manner consistent with the Michaelis-Menten model. Although the vapor pressure deficit (VPD) was scarcely higher than 15 hPa, the CO{sub 2} uptake rate was also depressed when VPD surpassed 10 hPa (Author)

  2. Net ecosystem CO 2 exchange over a larch forest in Hokkaido, Japan

    Science.gov (United States)

    Wang, Huimin; Saigusa, Nobuko; Yamamoto, Susumu; Kondo, Hiroaki; Hirano, Takashi; Toriyama, Atsushi; Fujinuma, Yasumi

    Larch forests are distributed extensively in the east Eurasian continent and are expected to play a significant role in the terrestrial ecosystem carbon cycling process. In view of the fact that studies on carbon exchange for this important biome have been very limited, we have initiated a long-term flux observation in a larch forest ecosystem in Hokkaido in northern Japan since 2000. The net ecosystem CO 2 exchange (NEE) showed large seasonal and diurnal variation. Generally, the larch forest ecosystem released CO 2 in nighttime and assimilated CO 2 in daytime during the growing season from May to October. The ecosystem started to become a net carbon sink in May, reaching a maximum carbon uptake as high as 186 g C m -2 month -1 in June. With the yellowing, senescing and leaf fall, the ecosystem turned into a carbon source in November. During the non-growing season, the larch forest ecosystem became a net source of CO 2, releasing an average of 16.7 g C m -2 month -1. Overall, the ecosystem sequestered 141-240 g C m -2 yr -1 in 2001. The NEE was significantly influenced by environmental factors. Respiration of the ecosystem, for example, was exponentially dependent on air temperature, while photosynthesis was related to the incident PAR in a manner consistent with the Michaelis-Menten model. Although the vapor pressure deficit (VPD) was scarcely higher than 15 hPa, the CO 2 uptake rate was also depressed when VPD surpassed 10 hPa.

  3. Surviving floods: leaf gas films improve O₂ and CO₂ exchange, root aeration, and growth of completely submerged rice.

    Science.gov (United States)

    Pedersen, Ole; Rich, Sarah Meghan; Colmer, Timothy David

    2009-04-01

    When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas-water interface to promote O₂ uptake when under water; however, the function of leaf gas films has rarely been considered. The present study demonstrates that gas films on leaves of completely submerged rice facilitate entry of O₂ from floodwaters when in darkness and CO₂ entry when in light. O₂ microprofiles showed that the improved gas exchange was not caused by differences in diffusive boundary layers adjacent to submerged leaves with or without gas films; instead, reduced resistance to gas exchange was probably due to the enlarged water-gas interface (cf. aquatic insects). When gas films were removed artificially, underwater net photosynthesis declined to only 20% of the rate with gas films present, such that, after 7 days of complete submergence, tissue sugar levels declined, and both shoot and root growth were reduced. Internal aeration of roots in anoxic medium, when shoots were in aerobic floodwater in darkness or when in light, was improved considerably when leaf gas films were present. Thus, leaf gas films contribute to the submergence tolerance of rice, in addition to those traits already recognized, such as the shoot-elongation response, aerenchyma and metabolic adjustments to O₂ deficiency and oxidative stress.

  4. A simple method for air/sea gas exchange measurement in mesocosms and its application in carbon budgeting

    Directory of Open Access Journals (Sweden)

    J. Czerny

    2012-09-01

    Full Text Available Mesocosms as large experimental vessels principally provide the opportunity of performing elemental budget calculations e.g. to derive net biological turnover rates. However, the system is in most cases not closed at the water surface and gases can exchange with the atmosphere. Previous attempts to budget carbon pools in mesocosms relied on educated guesses concerning the exchange of CO2 with the atmosphere. Nevertheless, net primary production rates derived from these budget calculations were, despite large uncertainties in air/sea gas exchange, often more reasonable than cumulative extrapolations of bioassays. While bioassays have limitations representing the full spectrum of trophic levels and abiotic conditions inside the mesocosms, calculating dissolved inorganic carbon uptake inside the mesocosms has the potential to deliver net community production rates representative of the enclosed system. Here, we present a simple method for precise determination of air/sea gas exchange velocities in mesocosms using N2O as a deliberate tracer. Beside the application for carbon budgeting, exchange velocities can be used to calculate exchange rates of any gas of known concentration, e.g. to calculate aquatic production rates of climate relevant trace gases. Using an arctic (Kiel Off Shore Mesocosms for future Ocean Simulation mesocosm experiment as an exemplary dataset, it is shown that application of the presented method largely improves accuracy of carbon budget estimates. Methodology of manipulation, measurement, data processing and conversion to CO2 fluxes are explained. A theoretical discussion of prerequisites for precise gas exchange measurements provides a guideline for the applicability of the method under various experimental conditions.

  5. Impact of resonance regeneration and decay on the net proton fluctuations in a hadron resonance gas

    Energy Technology Data Exchange (ETDEWEB)

    Nahrgang, Marlene [Duke University, Department of Physics, Durham, NC (United States); Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main (Germany); Bluhm, Marcus [North Carolina State University, Department of Physics, Raleigh, NC (United States); Alba, Paolo [Universita degli Studi di Torino, Dipartimento di Fisica, Turin (Italy); INFN, Turin (Italy); Bellwied, Rene; Ratti, Claudia [University of Houston, Department of Physics, Houston, TX (United States)

    2015-12-15

    We investigate net proton fluctuations as important observables measured in heavy-ion collisions within the hadron resonance gas (HRG) model. Special emphasis is given to effects which are a priori not inherent in a thermally and chemically equilibrated HRG approach. In particular, we point out the importance of taking into account the successive regeneration and decay of resonances after the chemical freeze-out, which lead to a randomization of the isospin of nucleons and thus to additional fluctuations in the net proton number. We find good agreement between our model results and the recent STAR measurements of the higher-order moments of the net proton distribution. (orig.)

  6. Limiting net greenhouse gas emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  7. Gap filling strategies for defensible annual sums of net ecosystem exchange

    DEFF Research Database (Denmark)

    Falge, E.; Baldocchi, D.; Olson, R.

    2001-01-01

    Heightened awareness of global change issues within both science and political communities has increased interest in using the global network of eddy covariance flux towers to more fully understand the impacts of natural and anthropogenic phenomena on the global carbon balance. Comparisons of net...... ecosystem exchange (F-NEE) responses are being made among biome types, phenology patterns, and stress conditions. The comparisons are usually performed on annual sums of F-NEE; however, the average data coverage during a year is only 65%. Therefore, robust and consistent gap filling methods are required. We......-methods for improving the comparability of flux data products from regional and global flux networks. (C) 2001 Elsevier Science B.V. All rights reserved....

  8. Modelling Net Ecosystem Exchange and LUE in Mediterranean Oak Forest by Satellite Remote Sensing

    Science.gov (United States)

    Tramontana, Gianluca; Papale, Dario

    2011-01-01

    Net Ecosystem Exchange (NEE) is a key factor defining CO2 fluxes between atmosphere and ecosystems and CO2 flux measurements at individual eddy covariance flux sites provide valuable information on the seasonal dynamics of NEE. In this work, we developed and validated a satellite-based Light Use Efficiency (LUE) model to estimate NEE for a typical oak forest located in Central Italy. Satellite data were acquired by Moderate resolution spectroradiometer (MODIS) sensor installed on board Terra satellite. Oak forest studied is coppice managed; 2 eddy-covariance towers are located inside two forests parcels having different ages. We proposed to estimate LUE like function of mean brightness temperature, Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI). Empirical multiple regressions models (MR) and Artificial Neural Network (ANN) were parameterized and validated using subset of data acquired by both the stations. Daily, 8-day and monthly temporal resolutions were investigated and accuracy estimation in space and time was performed.

  9. Lung Structure and the Intrinsic Challenges of Gas Exchange.

    Science.gov (United States)

    Hsia, Connie C W; Hyde, Dallas M; Weibel, Ewald R

    2016-03-15

    Structural and functional complexities of the mammalian lung evolved to meet a unique set of challenges, namely, the provision of efficient delivery of inspired air to all lung units within a confined thoracic space, to build a large gas exchange surface associated with minimal barrier thickness and a microvascular network to accommodate the entire right ventricular cardiac output while withstanding cyclic mechanical stresses that increase several folds from rest to exercise. Intricate regulatory mechanisms at every level ensure that the dynamic capacities of ventilation, perfusion, diffusion, and chemical binding to hemoglobin are commensurate with usual metabolic demands and periodic extreme needs for activity and survival. This article reviews the structural design of mammalian and human lung, its functional challenges, limitations, and potential for adaptation. We discuss (i) the evolutionary origin of alveolar lungs and its advantages and compromises, (ii) structural determinants of alveolar gas exchange, including architecture of conducting bronchovascular trees that converge in gas exchange units, (iii) the challenges of matching ventilation, perfusion, and diffusion and tissue-erythrocyte and thoracopulmonary interactions. The notion of erythrocytes as an integral component of the gas exchanger is emphasized. We further discuss the signals, sources, and limits of structural plasticity of the lung in alveolar hypoxia and following a loss of lung units, and the promise and caveats of interventions aimed at augmenting endogenous adaptive responses. Our objective is to understand how individual components are matched at multiple levels to optimize organ function in the face of physiological demands or pathological constraints.

  10. Scaling leaf measurements to estimate cotton canopy gas exchange

    Science.gov (United States)

    Diurnal leaf and canopy gas exchange of well watered field grown cotton were measured. Leaf measurements were made with a portable photosynthesis system and canopy measurements with open Canopy Evapo-Transpiration and Assimilation (CETA) systems. Leaf level measurements were arithmetically scaled to...

  11. Gas exchange under water : acclimation of terrestrial plants to submergence

    NARCIS (Netherlands)

    Mommer, Liesje

    2005-01-01

    Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be prolonged photosynthesis under water, but this has received only little atten

  12. North America's net terrestrial carbon exchange with the atmosphere 1990–2009

    Directory of Open Access Journals (Sweden)

    A. W. King

    2014-07-01

    Full Text Available Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil-fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America over the period (1990–2009. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North America land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the atmospheric inversion estimate forms the lower bound of that range (a larger land-sink and the inventory-based estimate the upper (a smaller land sink. Integrating across estimates, "best" estimates (i.e., measures of central tendency are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337 based on the median. Considering both the fossil-fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. The continent's CO2 source to sink ratio for this time period was likely in the range of 4 : 1 to 3 : 1.

  13. Autochamber measurements of Net Ecosystem (CO2) Exchange at a subarctic mire in Northern Sweden

    Science.gov (United States)

    Walthall, M.; Parker-Smith, X.; Lawrence, R. D.; Crill, P. M.

    2015-12-01

    Northern latitude wetlands (>~50°N) are characterized by cold and wet conditions that result in low decomposition rates for plant litter. This process promotes the sequestration of carbon (C) in the form of organic matter (i.e. peat) and the formation of widespread peatands. Peatlands, particularly in the Northern Hemisphere, have accumulated C by removing atmospheric CO2 for approximately the past 10,000 years. Historically, peatlands represent a net C sink; however, increases in the global average temperature could alter peatlands ability to store carbon. With a warming climate and permafrost thaw, the pool of once stable soil organic C available for decomposition is increasing. Like all terrestrial ecosystems, a number of environmental factors (e.g. peat temperature and vegetation) play important roles in governing the fate of C in peatlands. Projected climate change is expected to affect these regulating factors. Subarctic peatlands in zones of discontinuous permafrost are experiencing widespread environmental changes due to climate warming. In this study, we present net ecosystem (CO2) exchange and δ13C-CO2 data from Stordalen Mire in northern Sweden (68°22'N, 19°03'E). Measurements were made using a quantum cascade laser spectrometer connected to automatic chambers placed in the three predominant ecosystems (a dry, elevated Palsa; an intermediate thaw regime dominated by Sphagnum spp. and; a completely thawed, inundated site dominated by Eriophorum angustifolium). Team was mentored by Mr. Ryan Lawrence from The University of New Hampshire.

  14. Inter-annual Variability in Net Ecosystem Exchange of Carbon Dioxide and Methane Emissions in a Temperate Freshwater Marsh

    Science.gov (United States)

    Bonneville, M.; Strachan, I.

    2009-05-01

    There exists very little information on greenhouse gas (GHG) exchange in marsh wetlands, especially in temperate climates. Measurements of carbon dioxide (CO2) and methane (CH4) fluxes were made from May 2005 to June 2008 in a temperate freshwater cattail marsh in Eastern Ontario, Canada. The net ecosystem exchange (NEE) of CO2 was measured continuously using the eddy covariance technique, and closed chambers were used to measure CH4 emissions from open water, soil, and vegetated portions of the marsh. Based on NEE, we found that the marsh accumulated 264 g C m-2 from May 2005 to April 2006 and 185 g C m-2 and 308 g C m-2 in 2006-2007 and 2007-2008, respectively. Lower spring temperature in 2005 seems to have delayed the initial growth of cattails and therefore led to a later switchover time from a net CO2 source to a net CO2 sink compared to spring 2006 and 2007. The lower cumulative NEE measured in 2006-2007 is mainly due to the cloudy conditions (i.e. low average incoming photosynthetically active radiation) that occurred through late summer and early fall 2006, which greatly decreased cattail photosynthesis and induced an earlier death of the pants, which in turn resulted in a lower average CO2 uptake compared to the other years. During the 2005, 2006 and 2007 growing seasons, the carbon uptake period was 109, 104, and 116 days in length, which is consistent with the inter-annual variability in NEE observed. The results suggest that the timing of the fall switchover from a net CO2 sink to a net CO2 source is probably the main factor influencing the annual CO2 accumulation. The average CH4 flux measured from open water was 658 mg CH4 m-2 d-1 in 2005, 381 mg CH4 m-2 d-1 in 2006, and 352 mg CH4 m-2 d-1 in 2008. The average CH4 flux from vegetation was 1001 mg CH4 m-2 d-1 in 2005, 1640 mg CH4 m-2 d-1 in 2006, and 1260 mg CH4 m-2 d-1 in 2008. The CH4 flux from soil was only measured in 2006 (255 mg CH4 m-2 d-1) and 2008 (224 mg CH4 m-2 d-1). It is known that the

  15. Regional atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange.

    Science.gov (United States)

    Alden, Caroline B; Miller, John B; Gatti, Luciana V; Gloor, Manuel M; Guan, Kaiyu; Michalak, Anna M; van der Laan-Luijkx, Ingrid T; Touma, Danielle; Andrews, Arlyn; Basso, Luana S; Correia, Caio S C; Domingues, Lucas G; Joiner, Joanna; Krol, Maarten C; Lyapustin, Alexei I; Peters, Wouter; Shiga, Yoichi P; Thoning, Kirk; van der Velde, Ivar R; van Leeuwen, Thijs T; Yadav, Vineet; Diffenbaugh, Noah S

    2016-10-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1-8 × 10(6)  km(2) ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub

  16. The performance of a new gas to gas heat exchanger with strip fin

    NARCIS (Netherlands)

    Wang, J.; Hirs, G.G.; Rollmann, P.

    1999-01-01

    A compact gas to gas heat exchanger needs large heat transfer areas on both fluid sides. This can be realised by adding secondary surfaces. The secondary surfaces are plate fin, strip fin, and louvered fin, etc. The fins extend the heat transfer surfaces and promote turbulence. This paper presents

  17. Limiting net greenhouse gas emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  18. Net global warming potential and greenhouse gas intensity affected by cropping sequence and nitrogen fertilization

    Science.gov (United States)

    Little information is available about management practice effects on the net global warming potential (GWP) and greenhouse gas intensity (GHGI) under dryland cropping systems. We evaluated the effects of cropping sequences (conventional-tillage malt barley [Hordeum vulgaris L.]–fallow [CTB-F], no-ti...

  19. The role of bubbles during air-sea gas exchange

    Science.gov (United States)

    Emerson, Steven; Bushinsky, Seth

    2016-06-01

    The potential for using the air-sea exchange rate of oxygen as a tracer for net community biological production in the ocean is greatly enhanced by recent accuracy improvements for in situ measurements of oxygen on unmanned platforms. A limiting factor for determining the exchange process is evaluating the air-sea flux contributed by bubble processes produced by breaking waves, particularly during winter months under high winds. Highly accurate measurements of noble gases (Ne, Ar & Kr) and nitrogen, N2, in seawater are tracers of the importance of bubble process in the surface mixed layer. We use measured distributions of these gases in the ventilated thermocline of the North Pacific and an annual time series of N2 in the surface ocean of the NE Subarctic Pacific to evaluate four different air-water exchange models chosen to represent the range of model interpretation of bubble processes. We find that models must have an explicit bubble mechanism to reproduce concentrations of insoluble atmospheric gases, but there are periods when they all depart from observations. The recent model of Liang et al. (2013) stems from a highly resolved model of bubble plumes and categorizes bubble mechanisms into those that are small enough to collapse and larger ones that exchange gases before they resurface, both of which are necessary to explain the data.

  20. [Net CO2 exchange and carbon isotope flux in Acacia mangium plantation].

    Science.gov (United States)

    Zou, Lu-Liu; Sun, Gu-Chou; Zhao, Ping; Cai, Xi-An; Zeng, Xiao-Ping; Wang, Quan

    2009-11-01

    By using stable carbon isotope technique, the leaf-level 13C discrimination was integrated to canopy-scale photosynthetic discrimination (Deltacanopy) through weighted the net CO2 assimilation (Anet) of sunlit and shaded leaves and the stand leaf area index (L) in an A. mangium plantation, and the carbon isotope fluxes from photosynthesis and respiration as well as their net exchange flux were obtained. There was an obvious diurnal variation in Deltacanopy, being lower at dawn and at noon time (18.47 per thousand and 19.87 per thousand, respectively) and the highest (21.21 per thousand) at dusk. From the end of November to next May, the Deltacanopy had an increasing trend, with an annual average of (20.37 +/- 0.29) per thousand. The carbon isotope ratios of CO2 from autotrophic respiration (excluding daytime foliar respiration) and heterotrophic respiration were respectively (- 28.70 +/- 0.75) per thousand and (- 26.75 +/- 1.3) per thousand in average. The delta13 C of nighttime ecosystem-respired CO2 in May was the lowest (-30.14 per thousand), while that in November was the highest (-28.01 per thousand). The carbon isotope flux of CO2 between A. mangium forest and atmosphere showed a midday peak of 178.5 and 217 micromol x m(-2) x s(-1) x per thousand in May and July, with the daily average of 638.4 and 873.2 micromol x m(-2) x s(-1) x per thousand, respectively. The carbon isotope flux of CO2 absorbed by canopy leaves was 1.6-2.5 times higher than that of CO2 emitted from respiration, suggesting that a large sum of CO2 was absorbed by A. mangium, which decreased the atmospheric CO2 concentration and improved the environment.

  1. Post-Fire Evapotranspiration and Net Ecosystem Exchange over A Semi-Arid Grassland in Arizona

    Science.gov (United States)

    Krishnan, P.; Meyers, T. P.; Heuer, M.

    2015-12-01

    The seasonal and interannual variability of evapotranspiration (E) and net ecosystem exchange (NEE) following a fire disturbance over a semi -arid grassland located on the Audubon Research Ranch in south western Arizona (31.5907N, 110.5104W, elevation 1496 m), USA, and their relationships to environmental variables were examined using continuous measurements of water vapour and CO2 fluxes made from first week of June 2002 to 2009 using the eddy covariance technique. The research ranch was established in 1969 as an ecological research preserve and it is now one of the largest ungrazed, privately managed grassland sites in Arizona. A wild fire occurred in April - May 2002, and burned all the standing vegetation and litter on in research ranch (~38,000 acres) including 500 acres of grassland. The mean annual temperature and precipitation (P) at this site were ~16 deg C and ~370 mm, respectively. More than 60% of the annual P was received during the North American monsoon period (July-September) with the lowest annual P in the drought years of 2004 and 2009. Drastic changes in albedo, vegetation growth and evapotranspiration occurred following the onset of the monsoon season in July. The ecosystem was mostly a carbon sink during monsoon period. Daily total evapotranspiration during July-August increased from 2 mm d-1 in 2002 to >3 mm d-1 in 2007. The mean annual E over the site was during 2003 -2009 was 352 ±75 mm. With the onset of monsoon the ecosystem turned to carbon sink in 2002, with daily total net ecosystem exchange (NEE) varying up to ~<-2 g C m-2, by mid-July to August 2002. It was followed by one of the driest monsoon period on the record (2003) with <50% of normal July-September P. Because of this, the recovery of the ecosystem was delayed. During 2002-2009, the ecosystem was mostly a carbon source except in 2006 an year with high growing season Normalized-difference vegetation index, longest monsoon growing season and the highest annual and July

  2. Biophysical drivers of net ecosystem exchange in shrublands of the northern Chihuahuan Desert

    Science.gov (United States)

    Jaimes, A.; Laney, C.; Tweedie, C. E.

    2013-12-01

    In the northern Chihuahuan Desert, large areas of southern New Mexico that were formerly dominated by perennial grasses, including black grama (Bouteloua eriopa) and mesa dropseed (Sporobolus flexus) have been replaced by desert shrubland species, in particular creosote bush (Larrea tridentata) and honey mesquite (Prosopis glandulosa). Recent studies suggest that these changes in land cover have the ability to modify near surface microclimate such as soil water holding capacity, albedo, carbon dioxide sequestration, and increases in local air temperature, respiration, sensible heat and evapotranspiration. Despite the recognized importance of the consequences of land cover change in the ecosystem, the rates and tipping points at which these changes occur are not well understood. This knowledge is key to improve predictions in regional and global models, as the region is expected to go through an imminent transition from warm to warmer climate in this century. This study analyze three years of data (2010-2012) from our multi sensor platform situated on the USDA ARS Jornada Experimental Range (JER), about 25 km northeast of Las Cruces, New Mexico, USA. A robust data set that combines high frequency micrometeorological data, plot phenology estimates and spectral indices was used. A combination of statistical analyses based on clustering methods (self-organizing maps) and simple nonparametric regression techniques (regression trees) were used to identify factors controlling fluxes and likely biophysical thresholds and tipping points indicative of different functional system states. Both analyses were implemented through the use of Neural Network Toolbox and Statistics toolbox within MATLAB 7.0. During the period of study the shrubland acted as a carbon sink ranging between -105 to -134 gCO2 m-2 y-1. The largest variation between years in the annual estimated fluxes was the slight decrease of total annual net ecosystem exchange during 2011 (-105 g m-2 s-1) in comparison

  3. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990-2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.

  4. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    Science.gov (United States)

    King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, W.A.; McGuire, Anthony; Vargas, Rodrigo I.; Wei, Y.; West, Tristram O.; Woodall, Christopher W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was

  5. A continuum model for metabolic gas exchange in pear fruit.

    Directory of Open Access Journals (Sweden)

    Q Tri Ho

    2008-03-01

    Full Text Available Exchange of O(2 and CO(2 of plants with their environment is essential for metabolic processes such as photosynthesis and respiration. In some fruits such as pears, which are typically stored under a controlled atmosphere with reduced O(2 and increased CO(2 levels to extend their commercial storage life, anoxia may occur, eventually leading to physiological disorders. In this manuscript we have developed a mathematical model to predict the internal gas concentrations, including permeation, diffusion, and respiration and fermentation kinetics. Pear fruit has been selected as a case study. The model has been used to perform in silico experiments to evaluate the effect of, for example, fruit size or ambient gas concentration on internal O(2 and CO(2 levels. The model incorporates the actual shape of the fruit and was solved using fluid dynamics software. Environmental conditions such as temperature and gas composition have a large effect on the internal distribution of oxygen and carbon dioxide in fruit. Also, the fruit size has a considerable effect on local metabolic gas concentrations; hence, depending on the size, local anaerobic conditions may result, which eventually may lead to physiological disorders. The model developed in this manuscript is to our knowledge the most comprehensive model to date to simulate gas exchange in plant tissue. It can be used to evaluate the effect of environmental stresses on fruit via in silico experiments and may lead to commercial applications involving long-term storage of fruit under controlled atmospheres.

  6. Measurement-based upscaling of Pan Arctic Net Ecosystem Exchange: the PANEEx project

    Science.gov (United States)

    Njuabe Mbufong, Herbert; Kusbach, Antonin; Lund, Magnus; Persson, Andreas; Christensen, Torben R.; Tamstorf, Mikkel P.; Connolly, John

    2016-04-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) can be attributed to the high spatial heterogeneity of Arctic tundra due to the complex topography. Current models of C exchange handle the Arctic as either a single or few ecosystems, responding to environmental change in the same manner. In this study, we developed and tested a simple pan Arctic NEE (PANEEx) model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide (CO2) data from 12 Arctic tundra sites. The model input parameters (Fcsat, Rd and α) were estimated as a function of air temperature (AirT) and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship, including the saturation flux, dark respiration and initial light use efficiency, respectively. LAI and air temperature were respectively estimated from empirical relationships with remotely sensed normalized difference vegetation index (NDVI) and land surface temperature (LST). These are available as MODIS Terra product MOD13Q1 and MOD11A1 respectively. Therefore, no specific knowledge of the vegetation type is required. The PANEEx model captures the spatial heterogeneity of the Arctic tundra and was effective in simulating 77% of the measured fluxes (r2 = 0.72, p agreement between the measured and modeled NEE may result from the disparity between ground-based measured LAI (used in model calibration) and remotely sensed LAI (estimated from NDVI and used in NEE estimation). Moreover, our results suggests that using simple linear regressions may be inadequate as parameters estimated using multiple linear regression showed better agreement between measured and modeled data. We propose recalibrating the model using multiple linear relationships between environmental variables and LRC parameters. This model could contribute significantly to

  7. Pan-Arctic modelling of net ecosystem exchange of CO2.

    Science.gov (United States)

    Shaver, G R; Rastetter, E B; Salmon, V; Street, L E; van de Weg, M J; Rocha, A; van Wijk, M T; Williams, M

    2013-08-19

    Net ecosystem exchange (NEE) of C varies greatly among Arctic ecosystems. Here, we show that approximately 75 per cent of this variation can be accounted for in a single regression model that predicts NEE as a function of leaf area index (LAI), air temperature and photosynthetically active radiation (PAR). The model was developed in concert with a survey of the light response of NEE in Arctic and subarctic tundras in Alaska, Greenland, Svalbard and Sweden. Model parametrizations based on data collected in one part of the Arctic can be used to predict NEE in other parts of the Arctic with accuracy similar to that of predictions based on data collected in the same site where NEE is predicted. The principal requirement for the dataset is that it should contain a sufficiently wide range of measurements of NEE at both high and low values of LAI, air temperature and PAR, to properly constrain the estimates of model parameters. Canopy N content can also be substituted for leaf area in predicting NEE, with equal or greater accuracy, but substitution of soil temperature for air temperature does not improve predictions. Overall, the results suggest a remarkable convergence in regulation of NEE in diverse ecosystem types throughout the Arctic.

  8. Contribution of aboveground biomass uncertainty to bias in modeled global net ecosystem exchange

    Science.gov (United States)

    Poulter, B.; Delbart, N.; Maignan, F.; Saatchi, S. S.; Sitch, S.; Ciais, P.

    2011-12-01

    Biomass is a key ecosystem property that links biogeochemical fluxes with the accumulation of carbon. The spatial and temporal dynamics of biomass have implications for climate stability and other ecosystem services. Globally, terrestrial forest ecosystems store approximately 383 Pg C in aboveground biomass, about 45% compared to the amount of carbon in the atmosphere. Model-data comparisons of aboveground biomass have so far been limited by a lack of wall-to-wall coverage, which has recently been resolved from satellite remote sensing. These recent satellite products use lidar to measure forest structure directly or have developed novel data-fusion techniques. Here, we compare biomass estimates among terrestrial carbon cycle models, and benchmark these estimates with inventory and satellite-based estimates. Using an ensemble of dynamic global vegetation model simulations from the TRENDY archive, we then use the distribution of biomass estimates to evaluate bias in net ecosystem exchange caused by uncertainty from carbon turnover. By identifying detailed model structure and parameters that are linked to carbon turnover, targeted improvements can be made to more realistically simulate aboveground biomass.

  9. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.

    Science.gov (United States)

    Niu, Shuli; Luo, Yiqi; Fei, Shenfeng; Yuan, Wenping; Schimel, David; Law, Beverly E; Ammann, Christof; Arain, M Altaf; Arneth, Almut; Aubinet, Marc; Barr, Alan; Beringer, Jason; Bernhofer, Christian; Black, T Andrew; Buchmann, Nina; Cescatti, Alessandro; Chen, Jiquan; Davis, Kenneth J; Dellwik, Ebba; Desai, Ankur R; Etzold, Sophia; Francois, Louis; Gianelle, Damiano; Gielen, Bert; Goldstein, Allen; Groenendijk, Margriet; Gu, Lianhong; Hanan, Niall; Helfter, Carole; Hirano, Takashi; Hollinger, David Y; Jones, Mike B; Kiely, Gerard; Kolb, Thomas E; Kutsch, Werner L; Lafleur, Peter; Lawrence, David M; Li, Linghao; Lindroth, Anders; Litvak, Marcy; Loustau, Denis; Lund, Magnus; Marek, Michal; Martin, Timothy A; Matteucci, Giorgio; Migliavacca, Mirco; Montagnani, Leonardo; Moors, Eddy; Munger, J William; Noormets, Asko; Oechel, Walter; Olejnik, Janusz; Kyaw Tha Paw U; Pilegaard, Kim; Rambal, Serge; Raschi, Antonio; Scott, Russell L; Seufert, Günther; Spano, Donatella; Stoy, Paul; Sutton, Mark A; Varlagin, Andrej; Vesala, Timo; Weng, Ensheng; Wohlfahrt, Georg; Yang, Bai; Zhang, Zhongda; Zhou, Xuhui

    2012-05-01

    • It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.

  10. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: A cost-effective sampling strategy

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Ciais, P.; Bariac, T.; Brunet, Y.; Berbigier, P.; Roche, C.; Richard, P.; Bardoux, G.; Bonnefond, J.-M.

    2003-06-01

    The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring the long-term biosphere-atmosphere net CO2 exchange (net ecosystem exchange, NEE). Partitioning this flux into its elementary components, net assimilation (FA), and respiration (FR), remains necessary in order to get a better understanding of biosphere functioning and design better surface exchange models. Noting that FR and FA have different isotopic signatures, we evaluate the potential of isotopic 13CO2 measurements in the air (combined with CO2 flux and concentration measurements) to partition NEE into FR and FA on a routine basis. The study is conducted at a temperate coniferous forest where intensive isotopic measurements in air, soil, and biomass were performed in summer 1997. The multilayer soil-vegetation-atmosphere transfer model MuSICA is adapted to compute 13CO2 flux and concentration profiles. Using MuSICA as a "perfect" simulator and taking advantage of the very dense spatiotemporal resolution of the isotopic data set (341 flasks over a 24-hour period) enable us to test each hypothesis and estimate the performance of the method. The partitioning works better in midafternoon when isotopic disequilibrium is strong. With only 15 flasks, i.e., two 13CO2 nighttime profiles (to estimate the isotopic signature of FR) and five daytime measurements (to perform the partitioning) we get mean daily estimates of FR and FA that agree with the model within 15-20%. However, knowledge of the mesophyll conductance seems crucial and may be a limitation to the method.

  11. Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Görres, C.-M.; Hoffmann, Carl Christian

    2012-01-01

    This study presents the first annual estimates of net ecosystem exchange (NEE) of CO2 and net ecosystem carbon balances (NECB) of contrasting Danish agricultural peatlands. Studies were done at eight sites representing permanent grasslands (PG) and rotational (RT) arable soils cropped to barley......, potato or forage grasses in three geo-regional settings. Using an advanced flux-chamber technique, NEE was derived from modelling of ecosystem respiration (ER) and gross primary production (GPP) with temperature and photosynthetically active radiation as driving variables. At PG (n = 3) and RT (n = 5...

  12. Ambient ozone effects on gas exchange and total non-structural carbohydrate levels in cutleaf coneflower (Rudbeckia laciniata L.) growing in Great Smoky Mountains National Park

    Science.gov (United States)

    Ozone-sensitive and -tolerant individuals of the perennial herbaceous cutleaf coneflower (Rudbeckia laciniata L.) were compared for their gas exchange characteristics and total non-structural carbohydrates in the Great Smoky Mountains National Park USA. Net photosynthesis decreased with increased f...

  13. A Constructed Freshwater Wetland Shows Signs of Declining Net Ecosystem Exchange

    Science.gov (United States)

    Anderson, F. E.; Bergamaschi, B. A.; Windham-Myers, L.; Byrd, K. B.; Drexler, J. Z.; Fujii, R.

    2014-12-01

    The USGS constructed a freshwater-wetland complex on Twitchell Island in the Sacramento-San Joaquin Delta (Delta), California, USA, in 1997 and maintained it until 2012 to investigate strategies for biomass accretion and reduction of oxidative soil loss. We studied an area of the wetland complex covered mainly by dense patches of hardstem bulrush (Schoenoplectus acutus) and cattails (Typha spp.), with smaller areas of floating and submerged vegetation, that was maintained at an average depth of 55 cm. Using eddy covariance measurements of carbon and energy fluxes, we found that the combination of water management and the region's Mediterranean climate created conditions where peak growing season daily means of net ecosystem exchange (NEE) reached -45 gCO2 m-2 d-1 and averaged around -30 gCO2 m-2 d-1 between 2002 through 2004. However, when measurements resumed in 2010, NEE rates were a fraction of the rates previously measured, approximately -6 gCO2 m-2 d-1. Interestingly, NEE rates in 2011 doubled compared to 2010 (-13 gCO2 m-2 d-1). Methane fluxes, collected in 2010 to assess a complete atmospheric carbon budget, were positive throughout the year, with daily mean flux values ranging from 50 to 300 mg CH4 m-2 d-1. As a result, methane flux reduced NEE values by approximately one-third, and when the global warming potential was considered, the wetland became a net global warming potential source. We found that carbon cycling in a constructed wetland is complex and can change over annual and decadal timescales. We investigated possible reasons for differences between flux measurements from 2002 to 2004 and those from 2010 and 2011: (1) changes in methodology, (2) differences in weather conditions, (3) differences in gross primary productivity relative to respiration rates, and (4) the amount of living plant tissue relative to brown accumulations of senesced plant litter. We hypothesize that large mats of senesced material within the flux footprint could have

  14. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China

    Directory of Open Access Journals (Sweden)

    X. Jia

    2014-03-01

    Full Text Available The carbon (C cycling in semiarid and arid areas remains largely unexplored, despite the wide distribution of drylands globally. Rehabilitation practices have been carried out in many desertified areas, but information on the C sequestration potential of recovering vegetation is still largely lacking. Using the eddy-covariance technique, we measured the net ecosystem CO2 exchange (NEE over a recovering shrub ecosystem in northwest China throughout 2012 in order to (1 quantify NEE and its components, (2 examine the dependence of C fluxes on biophysical factors at multiple timescales. The annual budget showed a gross ecosystem productivity (GEP of 456 ± 8 g C m−2 yr−1 and an ecosystem respiration (Re of 379 ± 3 g C m−2 yr−1, resulting in a net C sink of 77 ± 7 g C m−2 yr−1. The maximum daily NEE, GEP and Re were −4.7, 6.8 and 3.3 g C m−2 day−1, respectively. Both the maximum C assimilation rate (i.e., at optimum light intensity and the quantum yield varied strongly over the growing season, being higher in summer and lower in spring and autumn. At the half-hourly scale, water stress exerted a major control over daytime NEE, and interacted with heat stress and photoinhibition in constraining C fixation by the vegetation. Low soil moisture also reduced the temperature sensitivity of Re (Q10. At the synoptic scale, rain events triggered immediate pulses of C release from the ecosystem, followed by peaks of CO2 uptake 1–2 days later. Over the entire growing season, leaf area index accounted for 45 and 65% of the seasonal variation in NEE and GEP, respectively. There was a linear dependence of daily Re on GEP, with a slope of 0.34. These results highlight the role of abiotic stresses and their alleviation in regulating C cycling in the face of an increasing frequency and intensity of extreme climatic events.

  15. Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems – the effect of drought

    Directory of Open Access Journals (Sweden)

    T. S. David

    2007-09-01

    Full Text Available Droughts reduce gross primary production (GPP and ecosystem respiration (Reco, contributing to most of the inter-annual variability in terrestrial carbon sequestration. In seasonally dry climates (Mediterranean, droughts result from reductions in annual rainfall and changes in rain seasonality. We compared carbon fluxes measured by the eddy covariance technique in three contrasting ecosystems in southern Portugal: an evergreen oak woodland (savannah-like with ca.~21% tree crown cover, a grassland dominated by herbaceous annuals and a coppiced short-rotation eucalyptus plantation. During the experimental period (2003–2006 the eucalyptus plantation was always the strongest sink for carbon: net ecosystem exchange rate (NEE between −861 and −399 g C m−2 year−1. The oak woodland and the grassland were much weaker sinks for carbon: NEE varied in the oak woodland between −140 and −28 g C m−2 year−1 and in the grassland between −190 and +49 g C m−2 year−1. The eucalyptus stand had higher GPP and a lower proportion of GPP spent in respiration than the other systems. The higher GPP resulted from high leaf area duration (LAD, as a surrogate for the photosynthetic photon flux density absorbed by the canopy. The eucalyptus had also higher rain use efficiency (GPP per unit of rain volume and light use efficiency (the daily GPP per unit incident photosynthetic photon flux density than the other two ecosystems. The effects of a severe drought could be evaluated during the hydrological-year (i.e., from October to September of 2004–2005. Between October 2004 and June 2005 the precipitation was only 40% of the long-term average. In 2004–2005 all ecosystems had GPP lower than in wetter years and carbon sequestration was strongly restricted (less negative NEE. The grassland was a net source of carbon dioxide (+49 g C m−2 year−1. In the oak woodland a large proportion of GPP resulted from carbon assimilated by its annual vegetation

  16. The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon

    Science.gov (United States)

    Cirino, G. G.; Souza, R. A. F.; Adams, D. K.; Artaxo, P.

    2014-07-01

    Carbon cycling in the Amazon is closely linked to atmospheric processes and climate in the region as a consequence of the strong coupling between the atmosphere and biosphere. This work examines the effects of changes in net radiation due to atmospheric aerosol particles and clouds on the net ecosystem exchange (NEE) of CO2 in the Amazon region. Some of the major environmental factors affecting the photosynthetic activity of plants, such as air temperature and relative humidity, were also examined. An algorithm for clear-sky irradiance was developed and used to determine the relative irradiance, f, which quantifies the percentage of solar radiation absorbed and scattered due to atmospheric aerosol particles and clouds. Aerosol optical depth (AOD) was calculated from irradiances measured with the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, onboard the Terra and Aqua satellites, and was validated with ground-based AOD measurements from AERONET (Aerosol Robotic Network) sun photometers. Carbon fluxes were measured using eddy covariance technique at the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) flux towers. Two sites were studied: the Jaru Biological Reserve (RBJ), located in Rondonia, and the Cuieiras Biological Reserve at the K34 LBA tower (located in a preserved region in the central Amazon). Analysis was performed continuously from 1999 to 2009 at K34 and from 1999 to 2002 at RBJ, and includes wet, dry and transition seasons. In the Jaru Biological Reserve, a 29% increase in carbon uptake (NEE) was observed when the AOD ranged from 0.10 to 1.5 at 550 nm. In the Cuieiras Biological Reserve, the aerosol effect on NEE was smaller, accounting for an approximate 20% increase in NEE. High aerosol loading (AOD above 3 at 550 nm) or high cloud cover leads to reductions in solar flux and strong decreases in photosynthesis up to the point where NEE approaches zero. The observed increase in NEE is attributed to an enhancement (~50%) in

  17. The effect of atmospheric aerosol particles and clouds on Net Ecosystem Exchange in Amazonia

    Science.gov (United States)

    Cirino, G. G.; Souza, R. F.; Adams, D. K.; Artaxo, P.

    2013-11-01

    Carbon cycling in Amazonia is closely linked to atmospheric processes and climate in the region as a consequence of the strong coupling between the atmosphere and biosphere. This work examines the effects of changes in net radiation due to atmospheric aerosol particles and clouds on the Net Ecosystem Exchange (NEE) of CO2 in the Amazon region. Some of the major environmental factors affecting the photosynthetic activity of plants, such as air temperature and relative humidity were also examined. An algorithm for clear-sky irradiance was developed and used to determine the relative irradiance f, which quantifies the percentage of solar radiation absorbed and scattered due to atmospheric aerosol particles and clouds. Aerosol optical depth (AOD) was calculated from irradiances measured with the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, onboard the TERRA and AQUA satellites, and was validated with ground-based AOD measurements from AERONET sun photometers. Carbon fluxes were measured using eddy-correlation techniques at LBA (The Large Scale Biosphere-Atmosphere Experiment in Amazonia) flux towers. Two sites were studied: the Biological Reserve of Jaru (located in Rondonia) and the Cuieiras Biological Reserve (located in a preserved region in central Amazonia). In the Jaru Biological Reserve, a 29% increase in carbon uptake (NEE) was observed when the AOD ranged from 0.10 to 1.5. In the Cuieiras Biological Reserve, this effect was smaller, accounting for an approximately 20% increase in NEE. High aerosol loading (AOD above 3 at 550 nm) or cloud cover leads to reductions in solar flux and strong decreases in photosynthesis up to the point where NEE approaches 0. The observed increase in NEE is attributed to an enhancement (~50%) in the diffuse fraction of photosynthetic active radiation (PAR). Significant changes in air temperature and relative humidity resulting from changes in solar radiation fluxes under high aerosol loading were also observed at

  18. Environmental Control of Net Ecosystem Carbon Dioxide Exchange in Contrasting Peatlands in northern Alberta, Canada

    Science.gov (United States)

    Syed, K. H.; Carlson, P. J.; Glenn, A. J.; Flanagan, L. B.

    2004-12-01

    Peatlands cover about 21 per cent of the landscape and contain about 80 per cent of the soil carbon stock in western Canada. However, the current rates of carbon accumulation and the environmental controls on ecosystem photosynthesis and respiration in peatland ecosystems is poorly understood. As part of Fluxnet-Canada, we continuously measured net ecosystem carbon dioxide exchange (NEE) using the eddy covariance technique in a treed fen (main site) dominated by stunted black spruce and larch trees during August 2003 through July 2004. Additional NEE measurements were made at two auxiliary sites during intervals in the active growing season (May through September 2004). One auxiliary site was dominated by Sphagnum moss, while the dominant species at other site were Carex and brown mosses. The NEE measurements were used to develop statistical models to assess temporal variation in physiological parameters for ecosystem photosynthesis and respiration. Large seasonal changes occurred in maximum photosynthetic capacity and standardized ecosystem respiration rate at 10 degrees C (R10). The mid-day NEE uptake rate during July averaged 10 μ mol m-2 s-1 at the main site, while lower values of approximately 6 μ mol m-2 s-1 were observed at the two auxiliary sites. No photosynthetic activity was observed during mid-November through mid-March. On an annual basis R10 varied from less than 0.5 μ mol m-2 s-1 in the winter to approximately 3 μ mol m-2 s-1 during August at the main site. During much of the growing season, a distinct hysteresis was observed in the light (photon flux density, PFD) response curves for NEE between morning and afternoon periods. This was caused by large diurnal changes in temperature, which at times resulted in the light compensation point for NEE shifting from a PFD of 100 μ mol m-2 s-1 in the morning to 350 μ mol m-2 s-1 in the afternoon. The main site recorded a net annual gain of 160 g C m-2 yr-1, the result of a difference between gross

  19. Salt tolerance and regulation of gas exchange and hormonal homeostasis by auxin-priming in wheat

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2013-09-01

    Full Text Available The objective of this work was to assess the regulatory effects of auxin-priming on gas exchange and hormonal homeostasis in spring wheat subjected to saline conditions. Seeds of MH-97 (salt-intolerant and Inqlab-91 (salt-tolerant cultivars were subjected to 11 priming treatments (three hormones x three concentrations + two controls and evaluated under saline (15 dS m-1 and nonsaline (2.84 dS m-1 conditions. The priming treatments consisted of: 5.71, 8.56, and 11.42 × 10-4 mol L-1 indoleacetic acid; 4.92, 7.38, and 9.84 × 10-4 mol L-1 indolebutyric acid; 4.89, 7.34, and 9.79 × 10-4 mol L-1 tryptophan; and a control with hydroprimed seeds. A negative control with nonprimed seeds was also evaluated. All priming agents diminished the effects of salinity on endogenous abscisic acid concentration in the salt-intolerant cultivar. Grain yield was positively correlated with net CO2 assimilation rate and endogenous indoleacetic acid concentration, and it was negatively correlated with abscisic acid and free polyamine concentrations. In general, the priming treatment with tryptophan at 4.89 × 10-4 mol L-1 was the most effective in minimizing yield losses and reductions in net CO2 assimilation rate, under salt stress conditions. Hormonal homeostasis increases net CO2 assimilation rate and confers tolerance to salinity on spring wheat.

  20. Modeling the Net Ecosystem Carbon Balance and Net Ecosystem Exchange of Agroecosystems of the Mid-Continent Intensive Campaign Region during 2000-2008

    Science.gov (United States)

    Izaurralde, R. C.; Zhang, X.; Post, W. M.; Thomson, A. M.; West, T. O.; Williams, J. R.; Manowitz, D.; Nichols, J.; Bandaru, V.; Doraiswamy, P. C.

    2009-12-01

    The terrestrial ecosystem model EPIC (Environment Policy Integrated Climate) is used to simulate the Net Ecosystem Carbon Balance (NECB) and Net Ecosystem Exchange (NEE) in the Mid-Continent Intensive Campaign Region during 2000-2008. EPIC simulates NECB as the difference between C additions (surface and subsurface litter, organic amendments) and C losses (harvest, heterotrophic respiration, soil erosion, and leaching), and NEE as the difference between net primary productivity and heterotrophic respiration. We used the USDA Crop Data Layer to delineate croplands and pasturelands, NCEP Reanalysis data to construct weather files, the SSURGO database to build soil layer files, the NRI database to build management files, and the CTIC database to capture the evolution of tillage practices during the study period. Each site is simulated multiple times by varying input parameters in order to estimate output uncertainty. Simulations of NECB and NEE are aggregated to and reported at the county scale in order to be compared with C flux results obtained using atmospheric inversion methods.

  1. Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements

    Directory of Open Access Journals (Sweden)

    R. Raj

    2015-08-01

    Full Text Available Gross primary production (GPP, separated from flux tower measurements of net ecosystem exchange (NEE of CO2, is used increasingly to validate process-based simulators and remote sensing-derived estimates of simulated GPP at various time steps. Proper validation should include the uncertainty associated with this separation at different time steps. This can be achieved by using a Bayesian framework. In this study, we estimated the uncertainty in GPP at half hourly time steps. We used a non-rectangular hyperbola (NRH model to separate GPP from flux tower measurements of NEE at the Speulderbos forest site, The Netherlands. The NRH model included the variables that influence GPP, in particular radiation, and temperature. In addition, the NRH model provided a robust empirical relationship between radiation and GPP by including the degree of curvature of the light response curve. Parameters of the NRH model were fitted to the measured NEE data for every 10-day period during the growing season (April to October in 2009. Adopting a Bayesian approach, we defined the prior distribution of each NRH parameter. Markov chain Monte Carlo (MCMC simulation was used to update the prior distribution of each NRH parameter. This allowed us to estimate the uncertainty in the separated GPP at half-hourly time steps. This yielded the posterior distribution of GPP at each half hour and allowed the quantification of uncertainty. The time series of posterior distributions thus obtained allowed us to estimate the uncertainty at daily time steps. We compared the informative with non-informative prior distributions of the NRH parameters. The results showed that both choices of prior produced similar posterior distributions GPP. This will provide relevant and important information for the validation of process-based simulators in the future. Furthermore, the obtained posterior distributions of NEE and the NRH parameters are of interest for a range of applications.

  2. Net ecosystem exchange over heterogeneous Arctic tundra: Scaling between chamber and eddy covariance measurements

    Science.gov (United States)

    Fox, Andrew M.; Huntley, Brian; Lloyd, Colin R.; Williams, Mathew; Baxter, Robert

    2008-06-01

    Net ecosystem exchange (NEE) was estimated for an area of tundra near Abisko using both eddy covariance (EC) data and chamber measurements. This area of tundra is heterogeneous with six principal elements forming a landscape mosaic. Chamber measurements in patches of the individual mosaic elements were used to model NEE as a function of irradiance and temperature. The area around the EC mast was mapped, and a footprint model was used to simulate the varying source fraction attributable to each mosaic element. Various upscaling approaches were used to estimate NEE for comparison with NEE calculated from the EC observations. The results showed that EC measurements made for such a heterogeneous site are robust to the variations in NEE between mosaic elements that also vary substantially in their source fractions. However, they also revealed a large (˜60%) bias in the absolute magnitude of the cumulative negative NEE for a 40-day study period simulated by various upscaling approaches when compared to the value calculated from the EC observations. The magnitude of this bias, if applied to estimates for the entire tundra region, is substantial in relation to other components of the global carbon budget. Various hypotheses to account for this bias are discussed and, where possible, evaluated. A need is identified for more systematic sampling strategies when performing chamber measurements in order to assess the extent to which subjectivity of chamber location may account for much of the observed bias. If this is the origin of the bias, then upscaling approaches using chamber measurements may generally overestimate CO2 uptake.

  3. Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes.

    Science.gov (United States)

    Emmerton, Craig A; St Louis, Vincent L; Humphreys, Elyn R; Gamon, John A; Barker, Joel D; Pastorello, Gilberto Z

    2016-03-01

    High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near-zero sink of atmospheric CO2 (NEE: -0.3 ± 13.5 g C m(-2) ). A nearby meadow wetland accumulated over 300 times more carbon (NEE: -79.3 ± 20.0 g C m(-2) ) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on-site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate-related changes to productivity on polar semideserts may be restricted.

  4. The Effect of Rain on Air-Water Gas Exchange

    Science.gov (United States)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  5. The effect of land-use change on the net exchange rates of greenhouse gases: a meta-analytical approach

    Directory of Open Access Journals (Sweden)

    D.-G. Kim

    2014-01-01

    Full Text Available One of the environmental impacts of land-use change (LUC is a change in the net exchange of the greenhouse gases (GHGs carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O. Here we summarize findings based on a new global database containing data sets of changes in soil organic carbon stocks and soil CH4 and N2O fluxes. We combine that with estimates of biomass carbon stock changes and enteric CH4 emissions following LUC. Data were expressed in common units by converting net CH4 and N2O fluxes to CO2 equivalents (CO2 eq using established global warming potentials, and carbon-stock changes were converted to annual net fluxes by averaging stock changes over 100 yr. Conversion from natural forest to cropland resulted in the greatest increase in net GHG fluxes, while conversion of cropland to secondary forest resulted in the greatest reduction in net GHG emissions. Specifically, LUC from natural forest to crop and grasslands led to net fluxes of 6.2 ± 1.6 (Mean ± 95% confidence intervals and 4.8 ± 1.6 t CO2 eq ha−1 yr−1 to the atmosphere, respectively. Conversely, conversion from crop and grasslands to secondary forest reduced net emissions by 6.1 ± 4.1 and 3.9 ± 1.2 t CO2 eq ha−1 yr−1, respectively. Land-use change impacts were generally dominated by changes in biomass carbon. A retrospective analysis indicated that LUC from natural forests to agricultural lands contributed a cumulative 1326 ± 449 Gt CO2 eq between 1765 and 2005, which is equivalent to average emissions of 5.5 ± 1.6 Gt CO2 eq yr−1. This study demonstrates how specific LUCs can positively or negatively affect net GHG fluxes to the atmosphere.

  6. Eddy covariance flux measurements of net ecosystem carbon dioxide exchange from a lowland peatland flux tower network in England and Wales

    Science.gov (United States)

    Morrison, Ross; Balzter, Heiko; Burden, Annette; Callaghan, Nathan; Cumming, Alenander; Dixon, Simon; Evans, Jonathan; Kaduk, Joerg; Page, Susan; Pan, Gong; Rayment, Mark; Ridley, Luke; Rylett, Daniel; Worrall, Fred; Evans, Christopher

    2016-04-01

    Peatlands store disproportionately large amounts of soil carbon relative to other terrestrial ecosystems. Over recent decades, the large amount of carbon stored as peat has proved vulnerable to a range of land use pressures as well as the increasing impacts of climate change. In temperate Europe and elsewhere, large tracts of lowland peatland have been drained and converted to agricultural land use. Such changes have resulted in widespread losses of lowland peatland habitat, land subsidence across extensive areas and the transfer of historically accumulated soil carbon to the atmosphere as carbon dioxide (CO2). More recently, there has been growth in activities aiming to reduce these impacts through improved land management and peatland restoration. Despite a long history of productive land use and management, the magnitude and controls on greenhouse gas emissions from lowland peatland environments remain poorly quantified. Here, results of surface-atmosphere measurements of net ecosystem CO2 exchange (NEE) from a network of seven eddy covariance (EC) flux towers located at a range of lowland peatland ecosystems across the United Kingdom (UK) are presented. This spatially-dense peatland flux tower network forms part of a wider observation programme aiming to quantify carbon, water and greenhouse gas balances for lowland peatlands across the UK. EC measurements totalling over seventeen site years were obtained at sites exhibiting large differences in vegetation cover, hydrological functioning and land management. The sites in the network show remarkable spatial and temporal variability in NEE. Across sites, annual NEE ranged from a net sink of -194 ±38 g CO2-C m-2 yr-1 to a net source of 784±70 g CO2-C m-2 yr-1. The results suggest that semi-natural sites remain net sinks for atmospheric CO2. Sites that are drained for intensive agricultural production range from a small net sink to the largest observed source for atmospheric CO2 within the flux tower network

  7. Finned tubes in purified gas heat exchangers of flue gas desulfurization plant

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, J. Jr.; Meyer, T.H.

    1985-01-01

    The use of helical rolled, corrosion resistant finned tubes in the purified gas heat exchangers of flue gas desulfurization plant has considerable economic advantages over conventional heat exchangers with smooth tubes. As a result of a threefold larger external surface and hence improved heat transfer properties, heat exchangers with finned tubes can be made considerably smaller. The weight and space requirements are reduced and the pressure drop also falls owing to the smaller diameter. Thus piping, pumps, and fittings can all be made smaller. Moreover, deposition on the finned tubes is considerably lower. It is found that finned tubes can be recommended in all cases where the difference in heat transfer coefficients between the inside and the outside of the tube is considerable. (orig.).

  8. Gas exchange abnormalities in patients listed for liver transplantation.

    Science.gov (United States)

    Przybyłowski, T; Krenke, R; Fangrat, A; Nasilowski, J; Grabczak, E M; Styczynski, G; Pruszczyk, P; Krawczyk, M; Chazan, R

    2006-09-01

    Abnormalities of pulmonary gas exchange are common in patients with advanced liver disease. Since arterial blood hypoxemia is an important issue in the preoperative evaluation of liver transplant candidates, the study was undertaken to determine the incidence and severity of lung function impairment with a special emphasis on pulmonary gas exchange abnormalities in this group of patients. 104 consecutive patients (47 F and 57 M, mean age 46 +/-11 yr) listed for orthotopic liver transplantation participated in this prospective study. All patients underwent evaluation including: clinical assessment (Child-Pough and MELD classification), chest X-ray, chest sonography, lung function tests, arterial blood gases measurement, and transthoracic contrast enhanced echocardiography. There were 2 patients with acute hepatic failure, 6 patients with primary or metastatic liver carcinoma, and 96 patients with chronic liver disease. The mean PaO(2) and lung function parameters for the entire group were within normal limits. There were 29 hypoxemic patients (PaO(2)20 mmHg) P(A-a)O(2). DL(CO) was significantly lower in cirrhotic vs. non-cirrhotic patients (76.5 +/-19.3 vs. 92.4 +/-19.0% predicted; P<0.001). Hepatopulmonary syndrome (HPS) was recognized in 23 (24%) patients. 91% of patients with HPS showed mild to moderate stage of disease. There were significant difference between differences HPS patients and non-HPS patients in DL(CO) (69.0 +/-14.5 vs. 83.5 +/-20.7, P<0.01). In conclusion, all patients referred for OLT should be screened for gas exchange abnormalities. Such a workup should include not only PAO(2) but also DL(CO) and P(A-a)O(2) measurement together with contrast enhanced echocardiography.

  9. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    Energy Technology Data Exchange (ETDEWEB)

    Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and

  10. Technical Note: A simple method for air–sea gas exchange measurements in mesocosms and its application in carbon budgeting

    Directory of Open Access Journals (Sweden)

    J. Czerny

    2013-03-01

    Full Text Available Mesocosms as large experimental units provide the opportunity to perform elemental mass balance calculations, e.g. to derive net biological turnover rates. However, the system is in most cases not closed at the water surface and gases exchange with the atmosphere. Previous attempts to budget carbon pools in mesocosms relied on educated guesses concerning the exchange of CO2 with the atmosphere. Here, we present a simple method for precise determination of air–sea gas exchange in mesocosms using N2O as a deliberate tracer. Beside the application for carbon budgeting, transfer velocities can be used to calculate exchange rates of any gas of known concentration, e.g. to calculate aquatic production rates of climate relevant trace gases. Using an arctic KOSMOS (Kiel Off Shore Mesocosms for future Ocean Simulation experiment as an exemplary dataset, it is shown that the presented method improves accuracy of carbon budget estimates substantially. Methodology of manipulation, measurement, data processing and conversion to CO2 fluxes are explained. A theoretical discussion of prerequisites for precise gas exchange measurements provides a guideline for the applicability of the method under various experimental conditions.

  11. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    Science.gov (United States)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer

  12. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)]. E-mail: kristopher.novak@wsl.ch; Schaub, M. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Fuhrer, J. [Swiss Federal Research Station for Agroecology and Agriculture FAL, 8046 Zurich (Switzerland); Skelly, J.M. [Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802 (United States); Hug, C. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Landolt, W. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bleuler, P. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2005-07-15

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures.

  13. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

    Science.gov (United States)

    Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L

    2017-02-21

    To increase energy security and reduce emissions of air pollutants and CO2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP20. To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP20. We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

  14. Gas exchanges in soybean as affected by landfill biogas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Marchiol, L.; Zerbi, G. (Univ. di Udine (Italy). Dipt. di Produzione Vegetale e Tecnologie Agrarie); Mori, A.; Leita, L. (Ist. Sperimentale per la Nutrizione delle Piante-Sezione di Gorizia (Italy))

    A problem in the ecological restoration of closed landfills is the production of potentially toxic gases by decomposition of refuse that affects the root system and physiology of plants growing on these sites. The aim of the present study was to assess the effects induced by landfill biogas contamination on gas-exchanges of soybean [Glycine max (L.) Merr.]. Simulated landfill and control gases were supplied to soybean plants under laboratory conditions for 10 d. The composition of the simulated landfill gas used was: 16% O[sub 2], 8% CO[sub 2], 3% CH[sub 4], and 73% N[sub 2]; a control gas was also tested. Photosynthesis and stomatal conductance were significantly affected by the gas treatment after 3 d; in the course of the experiment, biogas treatment progressively reduced A[sub max] in light-saturation curves. The fresh and dry weight, leaf area and leaf chlorophyll content were not affected by the treatment. A metabolic adaptation to the biogas in the roots of treated plants was related to the disappearance of a fraction of the protein pool.

  15. Gas exchange and photosynthetic pigments in bell pepper irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Hidelblandi F. de Melo

    Full Text Available ABSTRACT The tools that evaluate the salinity effects on plants have great relevance as they contribute to understanding of the mechanisms of tolerance. This study aimed to evaluate gas exchanges and the contents of photosynthetic pigments in bell peppers cultivated with saline solutions (0, 1, 3, 5, 7 and 9 dS m-1 prepared using two sources: NaCl and a mixture of Ca, Mg, K, Na and Cl salts, in randomized blocks with a 6 x 2 factorial scheme and 4 replicates, totaling 48 experimental plots. The net photosynthesis (A, stomatal conductance (gs, transpiration (E, internal CO2 concentration (Ci, instantaneous carboxylation efficiency (A/Ci and water use efficiency (WUE, besides chlorophyll a, b and carotenoids were evaluated. The gas exchange parameters were efficient to indicate the effects of salinity. All photosynthetic pigments decreased with increased electrical conductivity, and the chlorophyll a is the most sensitive to salinity, while the water use efficiency increased with the increment of electrical conductivity.

  16. Net water vapour exchange over a mixed needle and broad-leaved forest in Changbai Mountain during autumn

    Institute of Scientific and Technical Information of China (English)

    HANShijie; WENXuefa; YUGuirui; SUNXiaomin; LIQingkang; RENChuanyou

    2003-01-01

    Water vapour and CO2 fluxes were measured by the eddy-covariance technique above a mixed needle and broad-leaved forest with affiliated meteorological measurements in Changbai Mountain as part of China's FLUX projects since late August in 2002. Net water vapour exchange and environmental control over the forest were examined from September 1 to October 31 in 2002. To quantify the seasonal dynamics, the transition period was separated into leafed, leaf falling and leafless stages according to the development of leaf area. The results showed that (a) seasonal variation of water vapour exchange was mainly controlled by net radiation (Rn) which could account for 78.5%, 63.4% and 56.6% for leafed, leaf falling and leafless stages, respectively, while other environmental factors' effects varied evidently; (b) magnitude of water vapour flux decreased remarkably during autumn and daily mean of water vapour exchange was 24.2 mg m-2 s-1 (100%), 14.8 mg m-2 s-1 (61.2%) and 10.3 mg m-2 s-1 (42.6%) for leafed, leaf falling and leafless stage, respectively; and (c) the budget of water vapour exchange during autumn was estimated to be 87.1 kg H2O m2, with a mean of 1427.2 g H2O d-1 varying markedly from 3104.0 to 227.5 g H2O m-2d-1.

  17. Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae.

    Science.gov (United States)

    Batan, Liaw; Quinn, Jason; Willson, Bryan; Bradley, Thomas

    2010-10-15

    Biofuels derived from microalgae have the potential to replace petroleum fuel and first-generation biofuel, but the efficacy with which sustainability goals can be achieved is dependent on the lifecycle impacts of the microalgae-to-biofuel process. This study proposes a detailed, industrial-scale engineering model for the species Nannochloropsis using a photobioreactor architecture. This process level model is integrated with a lifecycle energy and greenhouse gas emission analysis compatible with the methods and boundaries of the Argonne National Laboratory GREET model, thereby ensuring comparability to preexisting fuel-cycle assessments. Results are used to evaluate the net energy ratio (NER) and net greenhouse gas emissions (GHGs) of microalgae biodiesel in comparison to petroleum diesel and soybean-based biodiesel with a boundary equivalent to "well-to-pump". The resulting NER of the microalgae biodiesel process is 0.93 MJ of energy consumed per MJ of energy produced. In terms of net GHGs, microalgae-based biofuels avoids 75 g of CO(2)-equivalent emissions per MJ of energy produced. The scalability of the consumables and products of the proposed microalgae-to-biofuels processes are assessed in the context of 150 billion liters (40 billion gallons) of annual production.

  18. Assimilate transport in phloem sets conditions for leaf gas exchange.

    Science.gov (United States)

    Nikinmaa, Eero; Hölttä, Teemu; Hari, Pertti; Kolari, Pasi; Mäkelä, Annikki; Sevanto, Sanna; Vesala, Timo

    2013-03-01

    Carbon uptake and transpiration in plant leaves occurs through stomata that open and close. Stomatal action is usually considered a response to environmental driving factors. Here we show that leaf gas exchange is more strongly related to whole tree level transport of assimilates than previously thought, and that transport of assimilates is a restriction of stomatal opening comparable with hydraulic limitation. Assimilate transport in the phloem requires that osmotic pressure at phloem loading sites in leaves exceeds the drop in hydrostatic pressure that is due to transpiration. Assimilate transport thus competes with transpiration for water. Excess sugar loading, however, may block the assimilate transport because of viscosity build-up in phloem sap. Therefore, for given conditions, there is a stomatal opening that maximizes phloem transport if we assume that sugar loading is proportional to photosynthetic rate. Here we show that such opening produces the observed behaviour of leaf gas exchange. Our approach connects stomatal regulation directly with sink activity, plant structure and soil water availability as they all influence assimilate transport. It produces similar behaviour as the optimal stomatal control approach, but does not require determination of marginal cost of water parameter.

  19. Leaf gas exchange and yield of three upland rice cultivars

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Félix Alvarez

    2015-03-01

    Full Text Available Studies of physiological parameters associated with crop performance and growth in different groups of upland rice (Oryza sativa L. may support plant breeding programs. We evaluated the role of gas exchange rates and dry matter accumulation (DMA as traits responsible for yields in a traditional (cv. ‘Caiapó’, intermediate (cv. ‘Primavera’ and modern (cv. ‘Maravilha’ upland rice cultivars. Leaf gas exchange rates, DMA, leaf area index (LAI, harvest indexes (HI and yield components were measured on these genotypes in the field, under sprinkler irrigation. Panicles per m2 and DMA at flowering (FL and heading, as well as CO2 assimilation rates (A were similar across these cultivars. The highest yield was found in ‘Primavera’, which may be explained by (i a two-fold higher HI compared to the other cultivars, (ii greater rates of DMA during spikelet formation and grain-filling, as well as (iii a slow natural decrease of A in this cultivar, at the end of the season (between FL and maturation.

  20. GAS EXCHANGE AND CARBOHYDRATE PARTITIONING IN COFFEE SEEDLINGS UNDER WATERLOGGING

    Directory of Open Access Journals (Sweden)

    Helbert Rezende de Oliveira Silveira

    2015-04-01

    Full Text Available Irrigation has enhanced coffee production in several regions of Brazil. However, with the increase in irrigated crop areas, problems related to the frequent and poorly planned usage of irrigation may arise. Since there are few studies related to the physiological alterations in coffee plants exposed to water excess, we evaluated the effects of waterlogging on metabolism and partitioning of carbohydrates, levels of photosynthetic pigments and gas exchange in seedlings of two commercial coffee cultivars (Mundo Novo and Catuaí. After acclimation, seedlings with eight pairs of fully expanded leaves were cultivated under three water availability conditions: field capacity, intermittent waterlogging and continuous waterlogging. Gas exchange and the levels of chlorophyll, carotenoids and carbohydrates were evaluated during the five months after the beginning of the treatments. Waterlogging reduced the rates of photosynthesis and transpiration, leading to lower activity of the carboxylative step of photosynthesis and culminating in the reduction of carbohydrate partitioning in coffee seedlings. Although many physiological parameters were affected by waterlogging, the cultivars in our study survived for five months under stressful conditions.

  1. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little information exists about sources and sinks of greenhouse gases (GHGs) affected by management practices to account for net emissions from agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net global warming potential (GWP) and greenhouse gas...

  2. Multiple independent constraints help resolve net ecosystem carbon exchange under nutrient limitation

    Science.gov (United States)

    Thornton, P. E.; Metcalfe, D.; Oren, R.; Ricciuto, D. M.

    2014-12-01

    The magnitude, spatial distribution, and variability of land net ecosystem exchange of carbon (NEE) are important determinants of the trajectory of atmospheric carbon dioxide concentration. Independent observational constraints provide important clues regarding NEE and its component fluxes, with information available at multiple spatial scales: from cells, to leaves, to entire organisms and collections of organisms, to complex landscapes and up to continental and global scales. Experimental manipulations, ecosystem observations, and process modeling all suggest that the components of NEE (photosynthetic gains, and respiration and other losses) are controlled in part by the availability of mineral nutrients, and that nutrient limitation is a common condition in many biomes. Experimental and observational constraints at different spatial scales provide a complex and sometimes puzzling picture of the nature and degree of influence of nutrient availability on carbon cycle processes. Photosynthetic rates assessed at the cellular and leaf scales are often higher than the observed accumulation of carbon in plant and soil pools would suggest. We infer that a down-regulation process intervenes between carbon uptake and plant growth under conditions of nutrient limitation, and several down-regulation mechanisms have been hypothesized and tested. A recent evaluation of two alternative hypotheses for down-regulation in the light of whole-plant level flux estimates indicates that some plants take up and store extra carbon, releasing it to the environment again on short time scales. The mechanism of release, either as additional autotrophic respiration or as exudation belowground is unclear, but has important consequences for long-term ecosystem state and response to climate change signals. Global-scale constraints from atmospheric concentration and isotopic composition data help to resolve this question, ultimately focusing attention on land use fluxes as the most uncertain

  3. Net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire: field measurements and model simulations

    Science.gov (United States)

    Olchev, Alexander; Volkova, Elena; Karataeva, Tatiana; Zatsarinnaya, Dina; Novenko, Elena

    2014-05-01

    The spatial and temporal variability of net ecosystem exchange of CO2 (NEE) and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest-steppe zones in the central part of European Russia (54.06N, 37.59E, 260 m a.s.l.) was described using results of field measurements and simulations with Mixfor-3D model. The area of the mire is about 1.2 ha and it is surrounded by a broadleaved forest stand. It is a typical peat mire according to water and mineral supply as well as to vegetation composition. The vegetation of the peripheral parts of the mire is typical eutrophic whereas the vegetation in its central part is represented by meso-oligothrophic plant communities. To describe the spatial variability of NEE and ET within the mire a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO2 and H2O analyzer LI-840A (Li-Cor, USA) was used. The measurements were provided along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and from May 2013 to October 2013. The chamber method was used for measurements of NEE and ET fluxes because of small size of the mire, a very uniform surrounding forest stand and the mosaic mire vegetation. All these factors promote very heterogeneous exchange conditions within the mire and make it difficult to apply, for example, an eddy covariance method that is widely used for flux measurements in the field. The results of the field measurements showed a significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation, air temperature and ground water level. During the entire growing season the central part of the mire was a sink of CO2 for the atmosphere (up to 6.8±4.2 µmol m-2 s-1 in June) whereas its peripheral part, due to strong shading by the surrounding forest, was mainly a source of

  4. Direct Energy Exchange Enhancement in Distributed Injection Light Gas Launchers

    Energy Technology Data Exchange (ETDEWEB)

    Alger, T W; Finucane, R G; Hall, J P; Penetrante, B M; Uphaus, T M

    2000-04-06

    initially contained in the reservoir. This results deserves emphasis: whereas conventional guns apply a few percent of the reservoir pressure to a fast moving projectile, our design is paradoxically capable of applying nearly double the contained pressure. We later confirmed this experimental result analytically and related it to a type of direct energy exchange between unsteady fluid flows. This physical approach was the basis for the German V-1 ''buzz bomb'' of World War II; it has been applied to a limited number of commercial applications. (This work should not be confused with the German WWII distributed injection missile launchers.) Direct fluid-energy exchange has not previously been applied to any gas-launcher technology. As a result of these discoveries, we estimate that a practical, 15 km/s, high-velocity launcher could be built using our direct-energy-exchange, distributed-injection approach. However, the radical nature of the results, the lack of confirming or allied work being carried out anywhere else, and the fact that it would take extensive time and resources to demonstrate targeted performance precluded further development. We plan to submit the results to a refereed journal to ensure that the work will not be lost to the launcher community.

  5. Contemporary mire net ecosystem green-house gas balance: controls and susceptibility to change

    Science.gov (United States)

    Nilsson, Mats; Eriksson, Tobias; Grelle, Achim; Larsson, Anna; Laudon, Hjalmar; Lindroth, Anders; Ottosson-Löfvenius, Mikaell; Peichl, Matthias; Sagerfors, Jörgen; Ågren, Anneli; Öquist, Mats

    2015-04-01

    In this presentation I will address three main issues: 1 - What is the contemporary carbon sequestration function of high latitude mire ecosystems relative to Holocene average? 2 - The relative importance of the component carbon (C) fluxes for the annual mire Net Ecosystem Carbon Balance (NECB); 3 - The importance of gross primary production (GPP) versus ecosystem respiration (Reco) for the annual Net Ecosystem Exchange (NEE); The annual boreal mire NECB is made up principally by the biosphere-atmosphere exchange of CO2 (NEE) and CH4 and the runoff C-export. One important research issue is to further understand what controls the relative contribution from the component fluxes to the annual mire NECB. A second important major research issue is to reveal the relative importance of gross photosynthesis (GPP) and ecosystem respiration (Reco) respectively for the annual mire NEE. The relative importance of GPP and Reco respectively for the NECB also encounters the effect of changes in the lengths of the growing season and non-growing season respectively. In this presentation we use ten years of data on annual fluxes of NEE, methane and water discharge C export at a nutrient poor minerogenic boreal mire, Degerö Stormyr, in northern Sweden to address the above questions. Winter time NEE together with methane emission and water discharge C export reduces the growing season NEE with approximately 60%, thus substantially controlling the annual boreal mire NEE.

  6. Fe(III) fertilization mitigating net global warming potential and greenhouse gas intensity in paddy rice-wheat rotation systems in China.

    Science.gov (United States)

    Liu, Shuwei; Zhang, Ling; Liu, Qiaohui; Zou, Jianwen

    2012-05-01

    A complete accounting of net greenhouse gas balance (NGHGB) and greenhouse gas intensity (GHGI) affected by Fe(III) fertilizer application was examined in typical annual paddy rice-winter wheat rotation cropping systems in southeast China. Annual fluxes of soil carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O) were measured using static chamber method, and the net ecosystem exchange of CO(2) (NEE) was determined by the difference between soil CO(2) emissions (R(H)) and net primary production (NPP). Fe(III) fertilizer application significantly decreased R(H) without adverse effects on NPP of rice and winter wheat. Fe(III) fertilizer application decreased seasonal CH(4) by 27-44%, but increased annual N(2)O by 65-100%. Overall, Fe(III) fertilizer application decreased the annual NGHGB and GHGI by 35-47% and 30-36%, respectively. High grain yield and low greenhouse gas intensity can be reconciled by Fe(III) fertilizer applied at the local recommendation rate in rice-based cropping systems.

  7. Thermal Efficiency in a Direct Contact Heat Exchanger of Gas and Liquid

    Science.gov (United States)

    Fukuhara, Isamu; Tsuji, Katsuhiko

    Co-generation systems have many practical applications for energy-saving, utilization of various energy resources and energy recovery of waste gas. However, it is pointed out that heat exchangers of co-generation system involve some problems which are corrosion of heat surface, decrease of heat transfer rate due to accumulation of soot and NOx in waste gas. Then. the heat exchange which contacts waste gas with liquid are studied to solve the above problems. The contacting state of gas and liquid has not been researched on the direct contact heat exchanger of gas and liquid. For it is considered that the contacting state has direct effects on a thermal efficiency and gas absorption. Then, we try to investigate the contacting state of gas and liquid by experiments of heating and image processing on the direct contact heat exchanger. From the results, the contacting state of gas and liquid can be evaluate by a gas-liquid contacting area.

  8. Moderate water stress from regulated deficit irrigation decreases transpiration similarly to net carbon exchange in grapevine canopies

    Science.gov (United States)

    To determine the effects of timing and extent of regulated deficit irrigation (RDI) on grapevine (Vitis vinifera) canopies, whole-canopy transpiration (TrV) and canopy conductance to water vapor (gc) were calculated from whole-vine gas exchange near key stages of fruit development. The vines were ma...

  9. Characterizing the drivers of seedling leaf gas exchange responses to warming and altered precipitation: indirect and direct effects

    Science.gov (United States)

    Smith, Nicholas G.; Pold, Grace; Goranson, Carol; Dukes, Jeffrey S.

    2016-01-01

    Anthropogenic forces are projected to lead to warmer temperatures and altered precipitation patterns globally. The impact of these climatic changes on the uptake of carbon by the land surface will, in part, determine the rate and magnitude of these changes. However, there is a great deal of uncertainty in how terrestrial ecosystems will respond to climate in the future. Here, we used a fully factorial warming (four levels) by precipitation (three levels) manipulation experiment in an old-field ecosystem in the northeastern USA to examine the impact of climatic changes on leaf carbon exchange in five species of deciduous tree seedlings. We found that photosynthesis generally increased in response to increasing precipitation and decreased in response to warming. Respiration was less sensitive to the treatments. The net result was greater leaf carbon uptake in wetter and cooler conditions across all species. Structural equation modelling revealed the primary pathway through which climate impacted leaf carbon exchange. Net photosynthesis increased with increasing stomatal conductance and photosynthetic enzyme capacity (Vcmax), and decreased with increasing respiration of leaves. Soil moisture and leaf temperature at the time of measurement most heavily influenced these primary drivers of net photosynthesis. Leaf respiration increased with increasing soil moisture, leaf temperature, and photosynthetic supply of substrates. Counter to the soil moisture response, respiration decreased with increasing precipitation amount, indicating that the response to short- (i.e. soil moisture) versus long-term (i.e. precipitation amount) water stress differed, possibly as a result of changes in the relative amounts of growth and maintenance demand for respiration over time. These data (>500 paired measurements of light and dark leaf gas exchange), now publicly available, detail the pathways by which climate can impact leaf gas exchange and could be useful for testing assumptions in

  10. Characterizing the drivers of seedling leaf gas exchange responses to warming and altered precipitation: indirect and direct effects.

    Science.gov (United States)

    Smith, Nicholas G; Pold, Grace; Goranson, Carol; Dukes, Jeffrey S

    2016-01-01

    Anthropogenic forces are projected to lead to warmer temperatures and altered precipitation patterns globally. The impact of these climatic changes on the uptake of carbon by the land surface will, in part, determine the rate and magnitude of these changes. However, there is a great deal of uncertainty in how terrestrial ecosystems will respond to climate in the future. Here, we used a fully factorial warming (four levels) by precipitation (three levels) manipulation experiment in an old-field ecosystem in the northeastern USA to examine the impact of climatic changes on leaf carbon exchange in five species of deciduous tree seedlings. We found that photosynthesis generally increased in response to increasing precipitation and decreased in response to warming. Respiration was less sensitive to the treatments. The net result was greater leaf carbon uptake in wetter and cooler conditions across all species. Structural equation modelling revealed the primary pathway through which climate impacted leaf carbon exchange. Net photosynthesis increased with increasing stomatal conductance and photosynthetic enzyme capacity (Vcmax), and decreased with increasing respiration of leaves. Soil moisture and leaf temperature at the time of measurement most heavily influenced these primary drivers of net photosynthesis. Leaf respiration increased with increasing soil moisture, leaf temperature, and photosynthetic supply of substrates. Counter to the soil moisture response, respiration decreased with increasing precipitation amount, indicating that the response to short- (i.e. soil moisture) versus long-term (i.e. precipitation amount) water stress differed, possibly as a result of changes in the relative amounts of growth and maintenance demand for respiration over time. These data (>500 paired measurements of light and dark leaf gas exchange), now publicly available, detail the pathways by which climate can impact leaf gas exchange and could be useful for testing assumptions in

  11. On the use of Rotary Gas/gas Heat Exchangers as a Novel Integration Option for Heat and Water Management in Exhaust Gas Recycling Gas Turbine Plants

    OpenAIRE

    Herraiz, Laura; Hogg, Dougal; Cooper, Jim; Gibbins, Jon; Lucquiaud, Mathieu

    2014-01-01

    This work is a first-of-a-kind feasibility study investigating technology options with gas/gas rotary heat exchangers for the water management in the integration of Natural Gas Combined Cycle (NGCC) plants with post-combustion carbon capture, with and without exhaust gas recirculation (EGR). A range of configurations are examined for wet and dry cooling of the flue gas entering a post- combustion capture (PCC) absorption system, and regenerative heating of the CO2-depleted flue gas prior to t...

  12. The contribution of advective fluxes to net ecosystem exchange in a high-elevation, subalpine forest.

    Science.gov (United States)

    Yi, Chuixiang; Anderson, Dean E; Turnipseed, Andrew A; Burns, Sean P; Sparks, Jed P; Stannard, David I; Monson, Russell K

    2008-09-01

    The eddy covariance technique, which is used in the determination of net ecosystem CO2 exchange (NEE), is subject to significant errors when advection that carries CO2 in the mean flow is ignored. We measured horizontal and vertical advective CO2 fluxes at the Niwot Ridge AmeriFlux site (Colorado, USA) using a measurement approach consisting of multiple towers. We observed relatively high rates of both horizontal (F(hadv)) and vertical (F(vadv)) advective fluxes at low surface friction velocities (u(*)) which were associated with downslope katabatic flows. We observed that F(hadv) was confined to a relatively thin layer (0-6 m thick) of subcanopy air that flowed beneath the eddy covariance sensors principally at night, carrying with it respired CO2 from the soil and lower parts of the canopy. The observed F(vadv) came from above the canopy and was presumably due to the convergence of drainage flows at the tower site. The magnitudes of both F(hadv) and F(vadv) were similar, of opposite sign, and increased with decreasing u(*), meaning that they most affected estimates of the total CO2 flux on calm nights with low wind speeds. The mathematical sign, temporal variation and dependence on u(*) of both F(hadv) and F(vadv) were determined by the unique terrain of the Niwot Ridge site. Therefore, the patterns we observed may not be broadly applicable to other sites. We evaluated the influence of advection on the cumulative annual and monthly estimates of the total CO2 flux (F(c)), which is often used as an estimate of NEE, over six years using the dependence of F(hadv) and F(vadv) on u(*). When the sum of F(hadv) and F(vadv) was used to correct monthly F(c), we observed values that were different from the monthly F(c) calculated using the traditional u(*)-filter correction by--16 to 20 g C x m(-2) x mo(-1); the mean percentage difference in monthly Fc for these two methods over the six-year period was 10%. When the sum of F(hadv) and F(vadv) was used to correct annual Fc

  13. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    Directory of Open Access Journals (Sweden)

    K. Schneider-Zapp

    2014-02-01

    Full Text Available In order to advance understanding of the role of seawater surfactants in the air–sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw, we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with MilliQ water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air–sea gas exchange process.

  14. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    Directory of Open Access Journals (Sweden)

    K. Schneider-Zapp

    2014-07-01

    Full Text Available In order to advance understanding of the role of seawater surfactants in the air–sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw, we constructed a fully automated, closed air–water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with Milli-Q water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air–sea gas exchange process.

  15. Comparison of net global warming potential and greenhouse gas intensity affected by management practices in two dryland cropping sites

    Science.gov (United States)

    Little is known about the effect of management practices on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of greenhouse gas (GHG) emissions in dryland cropping systems. The objective of this study was to compare the effect of a combinat...

  16. Net Greenhouse Gas Emissions at the Eastmain 1 Reservoir, Quebec, Canada

    Science.gov (United States)

    Strachan, I. B.; Tremblay, A.; Bastien, J.; Bonneville, M.; Del Georgio, P.; Demarty, M.; Garneau, M.; Helie, J.; Pelletier, L.; Prairie, Y.; Roulet, N. T.; Teodoru, C. R.

    2010-12-01

    Canada has much potential to increase its already large use of hydroelectricity for energy production. However, hydroelectricity production in many cases requires the creation of reservoirs that inundate terrestrial ecosystems. While it has been reasonably well established that reservoirs emit GHGs, it has not been established what the net difference between the landscape scale exchange of GHGs would be before and after reservoir creation. Further, there is no indication of how that net difference may change over time from when the reservoir was first created to when it reaches a steady-state condition. A team of University and private sector researchers in partnership with Hydro-Québec has been studying net GHG emissions from the Eastmain 1 reservoir located in the boreal forest region of Québec, Canada. Net emissions are defined as those emitted following the creation of a reservoir minus those that would have been emitted or absorbed by the natural systems over a 100-year period in the absence of the reservoir. Sedimentation rates, emissions at the surface of the reservoir and natural water bodies, the degassing emissions downstream of the power house as well as the emissions/absorption of the natural ecosystems (forest, peatlands, lakes, streams and rivers) before and after the impoundment were measured using different techniques (Eddy covariance, floating chambers, automated systems, etc.). This project provides the first measurements of CO2 and CH4 between a new boreal reservoir and the atmosphere as the reservoir is being created, the development of the methodology to obtain these, and the first attempt at approaching the GHGs emissions from northern hydroelectric reservoirs as a land cover change issue. We will therefore provide: an estimate of the change in GHG source the atmosphere would see; an estimate of the net emissions that can be used for intercomparison of GHG contributions with other modes of power production; and a basis on which to develop

  17. Combined low temperature-high light effects on gas exchange properties of jojoba leaves.

    Science.gov (United States)

    Loreto, F; Bongi, G

    1989-12-01

    Jojoba (Simmondsia chinensis [Link] Schneider) is an important crop in desert climates. A relatively high frequency of periods of chilling and high photon flux density (PFD) in this environment makes photoinhibition likely, resulting in a reduction of assimilation capacity in overwintering leaves. This could explain the low net photosynthesis found in shoots from the field (4-6 micromoles per square meter per second) when compared to greenhouse grown plants (12-15 micromoles per square meter per second). The responses of photosynthesis and stomatal conductance to changes in absorbed PFD and in substomatal partial pressure of CO(2) were measured on jojoba leaves recovering from chilling temperature (4 degrees C) in high or low PFD. No measurable gas exchange was found immediately after chilling in either high or low PFD. For leaves chilled in low PFD, the original quantum yield was restored after 24 hours. The time course of recovery from chilling in high PFD was much longer. Quantum yield recovered to 60% of its original value in 72 hours but failed to recover fully after 1 week. Measurements of PSII chlorophyll fluorescence at 77 K showed that the reduced quantum yield was caused by photoinhibition. The ratio of variable to maximal fluorescence fell from a control level of 0.82 to 0.41 after the photoinhibitory treatment and recovery was slow. We also found a large increase in net assimilation rate and little closure of stomata as CO(2) was increased from ambient partial pressure of 35 to 85 pascals. For plants grown in full light, the increase in net assimilation rate was 100%. The photosynthetic response at high CO(2) concentration may constitute an ecological advantage of jojoba as a crop in the future.

  18. Gap filling strategies for defensible annual sums of net ecosystem exchange

    NARCIS (Netherlands)

    Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Grünwald, T.; Hollinger, D.; Jensen, N.O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C.T.; Law, B.E.; Meyers, T.; Moncrieff, J.; Moors, E.J.; Munger, J.W.; Pilegaard, K.; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.

    2001-01-01

    Heightened awareness of global change issues within both science and political communities has increased interest in using the global network of eddy covariance flux towers to more fully understand the impacts of natural and anthropogenic phenomena on the global carbon balance. Comparisons of net ec

  19. Gap filling strategies for defensible annual sums of net ecosystem exchange

    NARCIS (Netherlands)

    Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Grünwald, T.; Hollinger, D.; Jensen, N.O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C.T.; Law, B.E.; Meyers, T.; Moncrieff, J.; Moors, E.J.; Munger, J.W.; Pilegaard, K.; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.

    2001-01-01

    Heightened awareness of global change issues within both science and political communities has increased interest in using the global network of eddy covariance flux towers to more fully understand the impacts of natural and anthropogenic phenomena on the global carbon balance. Comparisons of net ec

  20. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  1. Pulmonary and Cutaneous O[subscript 2] Gas Exchange: A Student Laboratory Exercise in the Frog

    Science.gov (United States)

    Tattersall, Glenn J.; Currie, Suzanne; LeBlanc, Danielle M.

    2013-01-01

    Gas exchange in animals is ultimately diffusion based, generally occurring across dedicated respiratory organs. In many aquatic amphibians, however, multiple modes of gas exchange exist, allowing for the partitioning of O[subscript 2] uptake and CO[subscript 2] excretion between respiratory organs with different efficiencies. For example, due to…

  2. Minimal model quantification of pulmonary gas exchange in intensive care patients

    DEFF Research Database (Denmark)

    Karbing, Dan Stieper; Kjærgaard, Søren; Andreassen, Hans Steen

    2011-01-01

    Mathematical models are required to describe pulmonary gas exchange. The challenge remains to find models which are complex enough to describe physiology and simple enough for clinical practice. This study aimed at finding the necessary 'minimal' modeling complexity to represent the gas exchange ...

  3. Pulmonary and Cutaneous O[subscript 2] Gas Exchange: A Student Laboratory Exercise in the Frog

    Science.gov (United States)

    Tattersall, Glenn J.; Currie, Suzanne; LeBlanc, Danielle M.

    2013-01-01

    Gas exchange in animals is ultimately diffusion based, generally occurring across dedicated respiratory organs. In many aquatic amphibians, however, multiple modes of gas exchange exist, allowing for the partitioning of O[subscript 2] uptake and CO[subscript 2] excretion between respiratory organs with different efficiencies. For example, due to…

  4. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    Science.gov (United States)

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  5. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange.

    Science.gov (United States)

    Domec, Jean-Christophe; King, John S; Noormets, Asko; Treasure, Emrys; Gavazzi, Michael J; Sun, Ge; McNulty, Steven G

    2010-07-01

    *Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. *By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of normal and below-normal precipitation, and examined its effects on tree transpiration, ecosystem water use and carbon exchange. *The occurrence of HR was explained by courses of reverse flow through roots. As the drought progressed, HR maintained soil moisture above 0.15 cm(3) cm(-3) and increased transpiration by 30-50%. HR accounted for 15-25% of measured total site water depletion seasonally, peaking at 1.05 mm d(-1). The understory species depended on water redistributed by the deep-rooted overstory pine trees for their early summer water supply. Modeling carbon flux showed that in the absence of HR, gross ecosystem productivity and net ecosystem exchange could be reduced by 750 and 400 g C m(-2) yr(-1), respectively. *Hydraulic redistribution mitigated the effects of soil drying on understory and stand evapotranspiration and had important implications for net primary productivity by maintaining this whole ecosystem as a carbon sink.

  6. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Directory of Open Access Journals (Sweden)

    P. Alekseychik

    2017-08-01

    Full Text Available Very few studies of ecosystem–atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2 and energy budgets in a typical bog of the western Siberian middle taiga based on May–August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pine-covered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to 202 gC m−2 for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.

  7. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Science.gov (United States)

    Alekseychik, Pavel; Mammarella, Ivan; Karpov, Dmitry; Dengel, Sigrid; Terentieva, Irina; Sabrekov, Alexander; Glagolev, Mikhail; Lapshina, Elena

    2017-08-01

    Very few studies of ecosystem-atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2) and energy budgets in a typical bog of the western Siberian middle taiga based on May-August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pine-covered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to 202 gC m-2 for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.

  8. Effect of a long chain aliphatic alkohols on growth. gas exchange and assimilate parlitioning in radish plant

    Directory of Open Access Journals (Sweden)

    Zbyszek K. Blamowski

    2013-12-01

    Full Text Available In pot experiments the influence of long chain aliphatic alcohols (hexacosanol - HEXA, octacosanol - OCTA and triacontanol - TRIA, which were used in concentration O.00l mg·dm3 , on growth, assimilate partitioning and gas exchange of radish plants cv. "Krakowianka" and "Sopel lodu" were studied. The received results showed that triacontanol was characterized by higher physiological activity than remaining alcohols. TRIA significantly increased yield of mass, as well as it changed the pattern of distribution of assimilates in plants. Under its influence the rate of mass of leaves to mass of storage organs decreased as well as the share of mass of leaves in the total mass of both plant cultivars. TRIA stimulated the rate of net photosynthesis (Pn, howewer, it did not influence the other detennined gas exchange parameters: substomatal concentration of CO2 (ci, stomatal conductance for water vapour (gs and rate of transpiration (Tr. Remaining alcohols (HEXA and OCFA did not any influence on growth of plants and their gas exchange but only on distribution of biomass.

  9. Risk factors for transient dysfunction of gas exchange after cardiac surgery

    Directory of Open Access Journals (Sweden)

    Cristiane Delgado Alves Rodrigues

    2015-02-01

    Full Text Available Objective: A retrospective cohort study was preformed aiming to verify the presence of transient dysfunction of gas exchange in the postoperative period of cardiac surgery and determine if this disorder is linked to cardiorespiratory events. Methods: We included 942 consecutive patients undergoing cardiac surgery and cardiac procedures who were referred to the Intensive Care Unit between June 2007 and November 2011. Results: Fifteen patients had acute respiratory distress syndrome (2%, 199 (27.75% had mild transient dysfunction of gas exchange, 402 (56.1% had moderate transient dysfunction of gas exchange, and 39 (5.4% had severe transient dysfunction of gas exchange. Hypertension and cardiogenic shock were associated with the emergence of moderate transient dysfunction of gas exchange postoperatively (P=0.02 and P=0.019, respectively and were risk factors for this dysfunction (P=0.0023 and P=0.0017, respectively. Diabetes mellitus was also a risk factor for transient dysfunction of gas exchange (P=0.03. Pneumonia was present in 8.9% of cases and correlated with the presence of moderate transient dysfunction of gas exchange (P=0.001. Severe transient dysfunction of gas exchange was associated with patients who had renal replacement therapy (P=0.0005, hemotherapy (P=0.0001, enteral nutrition (P=0.0012, or cardiac arrhythmia (P=0.0451. Conclusion: Preoperative hypertension and cardiogenic shock were associated with the occurrence of postoperative transient dysfunction of gas exchange. The preoperative risk factors included hypertension, cardiogenic shock, and diabetes. Postoperatively, pneumonia, ventilator-associated pneumonia, renal replacement therapy, hemotherapy, and cardiac arrhythmia were associated with the appearance of some degree of transient dysfunction of gas exchange, which was a risk factor for reintubation, pneumonia, ventilator-associated pneumonia, and renal replacement therapy in the postoperative period of cardiac surgery and

  10. A stability dependent theory for air-sea gas exchange

    Science.gov (United States)

    Erickson, David J.

    1993-05-01

    The influence of thermal stability at the air-sea interface on computed values of the transfer velocities of trace gases is examined. The novel "whitecap" model for air-sea gas exchange of Monahan and Spillane (1984), extended here to include thermal stability effects, is linked with an atmospheric general circulation model to compute global transfer velocity patterns of a climate reactive gas, CO2. The important terms in the model equations such as the whitecap coverage, friction velocity, neutral and local drag coefficients and the stability parameter ψm(Z/L) are discussed and analyzed. The atmospheric surface level air temperature, relative humidity, wind speed and sea surface temperature, obtained from the National Center for Atmospheric Research Community Climate Model 1 (CCM1) are used to drive algorithms describing the air-sea transfer velocity of trace gases. The transfer velocity for CO2 (kCO2) is then computed for each 2.8° × 2.8° latitudinal-longitudinal area every 24 hours for 5 years of the seasonal-hydro runs of the CCM1. The new model results are compared to previously proposed formulations using the identical CCM1 forcing terms. Air-sea thermal stability effects on the transfer velocity for CO2 are most important at mid-high wind speeds. Where cold air from continental interiors is transported over relatively warm oceanic waters, the transfer velocities are enhanced over neutral stability values. The depression of computed kCO2 values when warm air resides over cold water is especially important, due to asymmetry in the stability dependence of the drag coefficient. The stability influence is 20% to 50% of kCO2 for modest air-sea temperature differences and up to 100% for extreme cases of stability or instability. The stability dependent "whitecap" model, using the transfer velocity coefficients for whitecap and nonwhitecap areas suggested by Monahan and Spillane (1984), produces CO2 transfer velocities that range from 13 to 50 cm h-1 for a

  11. Static opaque chamber-based technique for determination of net exchange of CO2 between terrestrial ecosystem and atmosphere

    Institute of Scientific and Technical Information of China (English)

    ZOU Jianwen; HUANG Yao; ZHENG Xunhua; WANG Yuesi; CHEN Yuquan

    2004-01-01

    Terrestrial carbon cycling is one of the hotspots in global change issues. In this paper, we presented the rationale for determination of net exchange of CO2 between terrestrial and the atmosphere (NEE) and the methods for measuring several relevant components. Three key processes for determination of NEE were addressed, including the separation of shoot autotrophic respiration from total CO2 emissions of the ecosystem, the partition of root respiration from soil CO2 efflux, and the quantification of rhizodeposition C from NPP. With an understanding of the processes involved in the CO2 exchange between terrestrial and the atmosphere, we estimated NEE of rice ecosystem in Nanjing based on field measurements of CO2 emissions and several relevant biotic components as well as abiotic factors. The field measurements of CO2 emissions were made over the rice-growing seasons in 2001 and 2002 with the static opaque chamber method. Calculations indicated that the seasonal pattern of NEE is comparable for two seasons. Either net carbon emission or fractional carbon fixation occurred during 3 weeks after rice transplanting and thereafter net carbon fixation appeared with an increasing trend as rice growing. Higher net carbon fixation occurred in the rice developmental period from elongating to heading. A decline trend in the fixation was documented after rice heading. The mean daily NEE was -6.06 gC·m-2 in 2001 season and -7.95 gC·m-2 in 2002 season, respectively. These values were comparable to the results obtained by Campbell et al. Who made field measurements with the Bowen ratio-energy balance technique in irrigated rice, Texas USA. Moreover, the mean daily NEE in this study was also comparable to the values obtained from a Japanese rice paddy with the eddy covariance method under the similar water regime, either drainage course or waterlogged. It is concluded that NEE determined by the static opaque chamber method is comparable and in agreement with those measured by

  12. Temporally-resolved Study of Atmosphere-lake Net CO2 Exchange at Lochaber Lake, Nova Scotia, Canada

    Science.gov (United States)

    Spafford, L. A.; Risk, D. A.

    2016-12-01

    Lakes are carbon gateways with immense processing capacity, acting as either sinks or sources for CO2. As climate change exacerbates weather extremes, carbon stored within permafrost and soils is liberated to water systems, altering aquatic carbon budgets and light availability for photosynthesis. The functional response of lakes to climate change is uncertain, and continuous data of lake respiration and its drivers are lacking. This study used high-frequency measurements of CO2 exchange during a growing season by a novel technique to quantify the net flux of carbon at a small deep oligotrophic lake in eastern Nova Scotia, Canada, and to examine the influence of environmental forcings. We installed 3 floating Forced Diffusion dynamic membrane chambers on the lake, coupled to a valving multiplexer and a single Vaisala GMP 343 CO2 analyzer. This low-power system sampled lake-atmosphere CO2 exchange at several points from shore every hour for over 100 days in the growing season. At the same frequency we also collected automated measurements of wind velocity, photosynthetically active radiation (PAR), dissolved CO2, air and water temperature. Manual measurement campaigns measured chlorophyll `a', DOC, surface methane (CH4), and CO2 flux by manual static floating chamber to confirm the automated measurements. The lake was a net source for carbon, on average emitting 0.038 µmol CO2/m2/s or 4.967 g CO2/s over the entire lake, but we did observe significant temporal variation across diel cycles, and along with changing weather. Approximately 48 hours after every rain event, we observed an increase in littoral CO2 release by the lake. Wind speed, air temperature, and distance from shore were also drivers of variation, as the littoral zone tended to release less CO2 during the course of our study. This work shows the variable influence of environmental drivers of lake carbon flux, as well as the utility of low-power automated chambers for observing aquatic net CO2 exchange.

  13. Selection of the air heat exchanger operating in a gas turbine air bottoming cycle

    Science.gov (United States)

    Chmielniak, Tadeusz; Czaja, Daniel; Lepszy, Sebastian

    2013-12-01

    A gas turbine air bottoming cycle consists of a gas turbine unit and the air turbine part. The air part includes a compressor, air expander and air heat exchanger. The air heat exchanger couples the gas turbine to the air cycle. Due to the low specific heat of air and of the gas turbine exhaust gases, the air heat exchanger features a considerable size. The bigger the air heat exchanger, the higher its effectiveness, which results in the improvement of the efficiency of the gas turbine air bottoming cycle. On the other hand, a device with large dimensions weighs more, which may limit its use in specific locations, such as oil platforms. The thermodynamic calculations of the air heat exchanger and a preliminary selection of the device are presented. The installation used in the calculation process is a plate heat exchanger, which is characterized by a smaller size and lower values of the pressure drop compared to the shell and tube heat exchanger. Structurally, this type of the heat exchanger is quite similar to the gas turbine regenerator. The method on which the calculation procedure may be based for real installations is also presented, which have to satisfy the economic criteria of financial profitability and cost-effectiveness apart from the thermodynamic criteria.

  14. The effect of wind and currents on gas exchange in an estuarine system

    Science.gov (United States)

    Broecker, W. S.; Ledwell, J. R.; Bopp, R.

    1987-01-01

    The objectives were to develop a non-volatile tracer to use in gas exchange experiments in laterally unconfined systems and to study applications of deliberate tracers in limnology and oceanography. Progress was made on both fronts but work on the development of the non-volatile tracer proved to be more difficult and labor intensive that anticipated so no field experiments using non-volatile tracers was performed as yet. In the search for a suitable non-volatile tracer for an ocean scale gas exchange experiment a tracer was discovered which does not have the required sensitivity for a large scale experiment, but is very easy to analyze and will be well suited for smaller experiments such as gas exchange determinations on rivers and streams. Sulfur hexafluoride, SF6, was used successfully as a volatile tracer along with tritium as a non-volatile tracer to study gas exchange rates from a primary stream. This is the first gas exchange experiment in which gas exchange rates were determined on a head water stream where significant groundwater input occurs along the reach. In conjunction with SF6, Radon-222 measurements were performed on the groundwater and in the stream. The feasibility of using a combination of SF6 and radon is being studied to determine groundwater inputs and gas exchange of rates in streams with significant groundwater input without using a non-volatile tracer.

  15. Estimation of net greenhouse gas balance using crop- and soil-based approaches: Two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianxiong, E-mail: lmc172@163.com; Chen, Yuanquan, E-mail: rardc@163.com; Sui, Peng, E-mail: suipeng@cau.edu.cn; Gao, Wansheng, E-mail: wshgao@cau.edu.cn

    2013-07-01

    The net greenhouse gas balance (NGHGB), estimated by combining direct and indirect greenhouse gas (GHG) emissions, can reveal whether an agricultural system is a sink or source of GHGs. Currently, two types of methods, referred to here as crop-based and soil-based approaches, are widely used to estimate the NGHGB of agricultural systems on annual and seasonal crop timescales. However, the two approaches may produce contradictory results, and few studies have tested which approach is more reliable. In this study, we examined the two approaches using experimental data from an intercropping trial with straw removal and a tillage trial with straw return. The results of the two approaches provided different views of the two trials. In the intercropping trial, NGHGB estimated by the crop-based approach indicated that monocultured maize (M) was a source of GHGs (− 1315 kg CO{sub 2}{sup −eq} ha{sup −1}), whereas maize–soybean intercropping (MS) was a sink (107 kg CO{sub 2}{sup −eq} ha{sup −1}). When estimated by the soil-based approach, both cropping systems were sources (− 3410 for M and − 2638 kg CO{sub 2}{sup −eq} ha{sup −1} for MS). In the tillage trial, mouldboard ploughing (MP) and rotary tillage (RT) mitigated GHG emissions by 22,451 and 21,500 kg CO{sub 2}{sup −eq} ha{sup −1}, respectively, as estimated by the crop-based approach. However, by the soil-based approach, both tillage methods were sources of GHGs: − 3533 for MP and − 2241 kg CO{sub 2}{sup −eq} ha{sup −1} for RT. The crop-based approach calculates a GHG sink on the basis of the returned crop biomass (and other organic matter input) and estimates considerably more GHG mitigation potential than that calculated from the variations in soil organic carbon storage by the soil-based approach. These results indicate that the crop-based approach estimates higher GHG mitigation benefits compared to the soil-based approach and may overestimate the potential of GHG mitigation in

  16. Factors associated with health information exchange system usage in a safety-net ambulatory care clinic setting.

    Science.gov (United States)

    Vest, Joshua R; Gamm, Larry D; Ohsfeldt, Robert L; Zhao, Hongwei; Jasperson, 'Jon Sean

    2012-08-01

    The Meaningful Use criteria promises to make health information exchange (HIE) much more widespread. However, the usage of the information systems made available by existing HIE efforts tends to be very low. This study sought to examine the factors associated with usage of an operational HIE system during ambulatory care visits to safety-net clinics. Overall the HIE system was accessed for 21% of encounters. However, system access took on two distinct forms. In general, usage was more likely for patients with recent emergency department visits and chronic conditions. This study indicates the organizational commitment to engage in HIE does not necessarily mean that the information systems will be always used. In addition, system usage will take on various forms for different reasons. These results reveal considerations for the development, operation and evaluation of HIE efforts.

  17. Disentangling leaf area and environmental effects on the response of the net ecosystem CO2 exchange to diffuse radiation.

    Science.gov (United States)

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2008-08-01

    There is an ongoing discussion about why the net ecosystem CO2 exchange (NEE) of some ecosystems is less sensitive to diffuse radiation than others and about the role other environmental factors play in determining the response of NEE to diffuse radiation. Using a six-year data set from a temperate mountain grassland in Austria we show that differences between ecosystems may be reconciled based on their green area index (GAI; square meter green plant area per square meter ground area) - the sensitivity to diffuse radiation increasing with GAI. Our data suggest diffuse radiation to have a negligible influence on NEE below a GAI of 2 m(2) m(-2). Changes in air/soil temperature and air humidity concurrent with the fraction of diffuse radiation were found to amplify the sensitivity of the investigated temperate mountain grassland ecosystem to diffuse radiation.

  18. Net Shape Fins for Compact Heat Exchanger Produced by Cold Spray

    Science.gov (United States)

    Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2013-10-01

    This work explores the manufacturability of pyramidal fin arrays produced using the cold spray process. Near-net shaped pyramidal fin arrays of various sizes and fin densities were manufactured using masks made of commercially available steel wire mesh. The feedstock powders used to produce the fins are characterized using scanning electron microscopy. Obstruction of the masks was investigated. The standoff distances between the substrate, mesh, and nozzle were empirically determined. Fin array characterization was performed using digital microscopy. The fin arrays' heat transfer performance was assessed experimentally for a range of Reynolds number relevant to the application sought. The fins produced using the cold spray process outperform traditional straight (rectangular) fins at the same fin density and it is hypothesized that this is due to increased fluid mixing and turbulence.

  19. Unexpected sensitivity of the annual net ecosystem exchange to the high frequency loss corrections in a grazed grassland site in Belgium

    Science.gov (United States)

    Mamadou, Ossenatou; Gourlez de la Motte, Louis; De Ligne, Anne; Bernard, Heineisch; Aubinet, Marc

    2016-04-01

    Although widely used to measure CO2 and other gas fluxes, the eddy covariance technique still needs methodological improvements. This research focuses on the high frequency loss corrections, which are especially important when using a closed-path infrared gas analyzer. We compared three approaches to implement these corrections for CO2 fluxes and evaluated their impact on the carbon balance at the Dorinne Terrestrial Observatory (DTO), an intensively grazed grassland site in Belgium. The carbon balance at DTO is also the object of a separate analysis (Gourlez de la Motte et al., Geophysical Research Abstract, Vol. 18, EGU2016-6813-1, 2016). In the first approach, the computation of correction factors was based on the measured sensible heat cospectra ('local' cospectra), whereas the other two were based on theoretical models (Kaimal et al., 1972). The correction approaches were validated by comparing the nighttime eddy covariance CO2 fluxes corrected with each approach and in situ soil respiration measurements. We found that the local cospectra differed from the Kaimal theoretical shape, although the site could not be considered 'difficult' (i.e., fairly flat, homogeneous, low vegetation, sufficient measurement height), appearing less peaked in the inertial subrange. This difference greatly affected the correction factor, especially for night fluxes. Night fluxes measured by eddy covariance were found to be in good agreement with in situ soil respiration measurements when corrected with local cospectra and to be overestimated when corrected with Kaimal cospectra. As the difference between correction factors was larger in stable than unstable conditions, this acts as a selective systematic error and has an important impact on annual fluxes. On the basis of a 4-year average, at DTO, the errors reach 71-150 g C m-2 y-1 for net ecosystem exchange (NEE), 280-562 g C m-2 y-1 for total ecosystem respiration (TER) and 209-412 g C m-2 y-1 for gross primary productivity (GPP

  20. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    Science.gov (United States)

    Zhang, M.; Yu, G.-R.; Zhang, L.-M.; Sun, X.-M.; Wen, X.-F.; Han, S.-J.; Yan, J.-H.

    2010-02-01

    Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE) in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS) and a subtropical evergreen broad-leaved forest at Dinghushan (DHS), based on the flux data obtained during June-August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR) differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max) at CBS under cloudy skies during mid-growing season (from June to August) increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt) ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD) and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP) and greater increase in ecosystem respiration (Re) at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in cloudiness is an important factor that should be included in evaluating regional carbon budgets under climate change

  1. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  2. Estimation of Net Ecosystem Carbon Exchange for the Conterminous UnitedStates by Combining MODIS and AmeriFlux Data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.

    2009-03-06

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.

  3. Minimal model quantification of pulmonary gas exchange in intensive care patients

    DEFF Research Database (Denmark)

    Karbing, Dan Stieper; Kjærgaard, Søren; Andreassen, Steen

    2011-01-01

    of both oxygen and carbon dioxide. Three models of varying complexity were compared for their ability to fit measured data from intensive care patients and to provide adequate description of patients' gas exchange abnormalities. Pairwise F-tests showed that a two parameter model provided superior fit......Mathematical models are required to describe pulmonary gas exchange. The challenge remains to find models which are complex enough to describe physiology and simple enough for clinical practice. This study aimed at finding the necessary 'minimal' modeling complexity to represent the gas exchange...... to patient data compared to a shunt only model (p...

  4. Biophysical controls on light response of net CO2 exchange in a winter wheat field in the North China Plain.

    Science.gov (United States)

    Tong, Xiaojuan; Li, Jun; Yu, Qiang; Lin, Zhonghui

    2014-01-01

    To investigate the impacts of biophysical factors on light response of net ecosystem exchange (NEE), CO2 flux was measured using the eddy covariance technique in a winter wheat field in the North China Plain from 2003 to 2006. A rectangular hyperbolic function was used to describe NEE light response. Maximum photosynthetic capacity (P max) was 46.6 ± 4.0 µmol CO2 m(-2) s(-1) and initial light use efficiency (α) 0.059 ± 0.006 µmol µmol(-1) in April-May, two or three times as high as those in March. Stepwise multiple linear regressions showed that P max increased with the increase in leaf area index (LAI), canopy conductance (g c) and air temperature (T a) but declined with increasing vapor pressure deficit (VPD) (P25°C or VPD>1.1-1.3 kPa, NEE residual increased with the increase in T a and VPD (Plight response parameters, simulated net CO2 uptake under the same radiation intensity averaged 18% higher in cloudy days than in sunny days during the year 2003-2006. It is necessary to include these effects in relevant carbon cycle models to improve our estimation of carbon balance at regional and global scales.

  5. UU* filtering of nighttime net ecosystem CO2 exchange flux over forest canopy under strong wind in wintertime

    Institute of Scientific and Technical Information of China (English)

    ZHANG Junhui; HAN Shijie; SUN Xiaomin; TANG Fengde

    2005-01-01

    The mechanism of the negative nighttime net CO2 flux in wintertime and reasonable treatment with it is of great importance in evaluating the carbon metabolism of boreal forest.Results, based on the data obtained with open-path eddy covariance system and CO2 profile measurement system from Nov. 2002 to Apr. 2003 and that obtained with five sonic anemometers in Nov. 1999, show that (1) the negative net ecosystem CO2 exchange flux (NEE) always appeared under conditions of strong wind; (2) the pressure fluctuation and horizontal advection flow are dominantly responsible for the negative NEE. Operable upper bound u* filtering method (UU* filtering) was introduced since the difficulties in real-time measuring of pressure fluctuation and horizontal advection fluxes under conditions of strong wind. Nighttime upper u* threshold for the broad-leaved Korean pine mixed forest of the Changbai Mountains is 0.4 ms-1 and can be applied to the daytime filtering; and (3) the UU* filtering corrected the nighttime ‘problem’ of negative NEE under strong wind and made the estimates more ecologically reasonable.

  6. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.

    Science.gov (United States)

    Baah-Acheamfour, Mark; Carlyle, Cameron N; Lim, Sang-Sun; Bork, Edward W; Chang, Scott X

    2016-11-15

    Western Canada's prairie region is extensively cultivated for agricultural production, which is a large source of greenhouse gas emissions. Agroforestry systems are common land uses across Canada, which integrate trees into the agricultural landscape and could play a substantial role in sequestering carbon and mitigating increases in atmospheric GHG concentrations. We measured soil CO2, CH4 and N2O fluxes and the global warming potential of microbe-mediated net greenhouse gas emissions (GWPm) in forest and herbland (areas without trees) soils of three agroforestry systems (hedgerow, shelterbelt and silvopasture) over two growing seasons (May through September in 2013 and 2014). We measured greenhouse gas fluxes and environmental conditions at 36 agroforestry sites (12 sites for each system) located along a south-north oriented soil/climate gradient of increasing moisture availability in central Alberta, Canada. The temperature sensitivity of soil CO2 emissions was greater in herbland (4.4) than in forest (3.1), but was not different among agroforestry systems. Over the two seasons, forest soils had 3.4% greater CO2 emission, 36% higher CH4 uptake, and 66% lower N2O emission than adjacent herbland soils. Combining the CO2 equivalents of soil CH4 and N2O fluxes with the CO2 emitted via heterotrophic (microbial) respiration, forest soils had a smaller GWPm than herbland soils (68 and 89kgCO2ha(-1), respectively). While emissions of total CO2 were silvopasture>hedgerow>shelterbelt, soils under silvopasture had 5% lower heterotrophic respiration, 15% greater CH4 uptake, and 44% lower N2O emission as compared with the other two agroforestry systems. Overall, the GWPm of greenhouse gas emissions was greater in hedgerow (88) and shelterbelt (85) than in the silvopasture system (76kgCO2ha(-1)). High GWPm in the hedgerow and shelterbelt systems reflects the greater contribution from the monoculture annual crops within these systems. Opportunities exist for reducing soil

  7. Seasonal patterns and control of gas exchange in local populations of the Mediterranean evergreen shrub Pistacia lentiscus L.

    Science.gov (United States)

    Flexas, Jaume; Gulías, Javier; Jonasson, Sven; Medrano, Hipólito; Mus, Mauricio

    2001-02-01

    We examined temporal and spatial variations in net photosynthesis, stomatal conductance, intrinsic water-use efficiency, sub-stomatal CO 2 concentration, apparent carboxylation efficiency and chlorophyll fluorescence in the Mediterranean shrub Pistacia lentiscus. The study was done at the extremes of a precipitation and temperature gradient on the coast and in the mountains of Mallorca, Spain, with gas exchange measurements at different times of the year, and combined measurements of gas exchange and chlorophyll fluorescence in a controlled experiment. The objectives were to relate annual variation in photosynthetic functions to environmentally induced constraints and to quantify to which extent local differences in climate can affect photosynthesis in shrub populations. In the mountain population, net photosynthesis peaked in spring and autumn, when water was abundant and temperature was moderately high. It was reduced in winter paralleling reduced carboxylation efficiency. Photosynthesis was at the annual minimum in summer at both sites due to drought-induced stomata closure combined with impaired function of the Calvin cycle. The coastal population maintained high photosynthesis in mid winter but had a pronounced decline in spring, and the summer decline lasted longer than in the mountains. Integrated over the seasons, net photosynthesis was about 25 % lower in the coastal than in the mountain population, in spite of maintained high mid winter photosynthesis. Hence, the reduction at the coast was mainly due to early onset of drought in spring and a long period of summer drought, showing that local climatic differences can cause pronounced spatial differences in plant carbon balance. As a consequence, similar differences probably also occur as a function of year-to-year variability of precipitation patterns and temperatures.

  8. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    Science.gov (United States)

    Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory

    2013-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.

  9. Estimation of net ecosystem exchange at the Skukuza flux site, Kruger National Park, South Africa

    CSIR Research Space (South Africa)

    Nickless, A

    2011-03-01

    Full Text Available change issues in the development planning process by generating quantified data on most emitting sources of greenhouse gas in order to better allocate financial resources devoted to mitigation and adaptation. The paper focused on key findings from... RESOURCES REPORTS 104 Africa and the Carbon Cycle Proceedings of the Open Science Conference on ?Africa and Carbon Cycle: the CarboAfrica project? Accra (Ghana) 25-27 November 2008 Copies of FAO publications can be requested from: SALES...

  10. Biochar and manure effects on net nitrogen mineralization and greenhouse gas emissions from calcareous soil under corn

    Science.gov (United States)

    Few multiyear field studies have examined the impacts of a one-time biochar application on net N mineralization and greenhouse gas emissions in an irrigated, calcareous soil; yet such applications are hypothesized as a means of sequestering atmospheric CO2 and improving soil quality. We fall-applie...

  11. Growth, Gas Exchange, Abscisic Acid, and Calmodulin Response to Salt Stress in Three Poplars

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present study, we investigated the effects of increasing salinity on growth, gas exchange, abscisic acid(ABA), calmodulin (CAM), and the relevance to salt tolerance in seedlings of Populus euphratica Oliv. and cuttings of P. "pupularis 35-44" (P. popularis) and P. x euramericana cv. 1-214 (P. cv. Italica). The relative growth rates of shoot height (RGRH) for P. cv. Italica and P. popularis were severely reduced by increasing salt stress,whereas the growth reduction was relatively less in P. euphratica. Similarly, P. euphratica maintained higher net photosynthetic rates (Pn) and unit transpiration rates (TRN) than P. cv. Italica and P. popularis under conditions of higher salinity. Salinity caused a significant increase in leaf ABA and CaM in the three genotypes after the onset of stress, but NaCl-induced ABA and CaM accumulation was more pronounced in P. euphratica,suggesting that P. euphratica plants are more sensitive in sensing soil salinity than the other two poplars.Furthermore, P. euphratica maintained relatively higher ABA and CaM concentrations under conditions of high salinity. The higher capacity to synthesize stress signals, namely ABA and CaM, in P. euphratica and the contribution of this to the salt resistance of P. euphratica are discussed.

  12. LEAF GAS EXCHANGE CHARACTERISTICS OF FOUR PAPAYA GENOTYPES DURING DIFFERENT STAGES OF DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    CAMPOSTRINI ELIEMAR

    2001-01-01

    Full Text Available In this research, was used four papaya (Carica papaya L. genotypes: three from the 'Solo ( Sunrise Solo TJ, Sunrise Solo 72/12 and Baixinho de Santa Amália group and one from the 'Formosa' group (Know-You 01. They were grown in plastic pots containing a sandy-clay-loam soil subjected to pH correction and fertilization, under greenhouse conditions. Throughout the experimental period plants were subjected to periodic irrigation to maintain the soil humitidy around field capacity. The experiment was conducted 73 days after sowing. In all genotypes, leaf gas exchange characteristics were determined. The net photosynthetic rate (A, mumol m-2 s-1 , stomatal conductance (g s mol m-2 s-1, leaf temperature (T I, 0C and intercellular carbon dioxide concentration (ci, muL L-1 on the 4th, 5th, 6th, 7th, 8th and 9th leaves from the plant apex were determined. No significant differences were observed for A, g s, c i, or Tl either among the leaves sampled from any of the genotypes. A was positively correlated with g s and in the other hand T I and g s were negatively correlated. The results suggest that, for 73 DAP, all the sampled papaya leaves functioned as sources of organs.

  13. Three photosynthetic patterns characterized by cluster analysis of gas exchange data in two rice populations

    Institute of Scientific and Technical Information of China (English)

    Zaisong; Ding; Tao; Li; Xianguo; Zhu; Xuefang; Sun; Suhua; Huang; Baoyuan; Zhou; Ming; Zhao

    2014-01-01

    Plant photosynthetic rate is affected by stomatal status and internal CO2 carboxylation. Understanding which process determines photosynthetic rate is essential for developing strategies for breeding crops with high photosynthetic efficiency. In this study, we identified different physiological patterns of photosynthetic rate in two different rice populations. Photosynthetic gas exchange parameters were measured during the flowering stage in two rice populations. Clustering and correlation analyses were performed on the resulting data. Five or six groups were defined by K-means clustering according to differences in net photosynthetic rates(Pn). According to differences in stomatal conductance(gs) and carboxylation efficiency(CE), each group was clustered into three subgroups characterized by physiological patterns stomatal pattern, carboxylation pattern, and intermediate pattern. Pn was significantly correlated with gs(r = 0.810) and CE(r = 0.531). Pn was also significantly correlated with gs and CE in the three physiological patterns. The correlation coefficients were highest in the stomatal pattern(0.905 and 0.957) and lowest in the carboxylation pattern(0.825 and 0.859). Higher correlation coefficients between Pn and gs or CE in the three physiological patterns indicate that clustering is very important for understanding factors limiting rice photosynthesis. ? 2013 Production and hosting by Elsevier B.V. on behalf of Crop Science Society of China

  14. Three photosynthetic patterns characterized by cluster analysis of gas exchange data in two rice populations

    Directory of Open Access Journals (Sweden)

    Zaisong Ding

    2014-02-01

    Full Text Available Plant photosynthetic rate is affected by stomatal status and internal CO2 carboxylation. Understanding which process determines photosynthetic rate is essential for developing strategies for breeding crops with high photosynthetic efficiency. In this study, we identified different physiological patterns of photosynthetic rate in two different rice populations. Photosynthetic gas exchange parameters were measured during the flowering stage in two rice populations. Clustering and correlation analyses were performed on the resulting data. Five or six groups were defined by K-means clustering according to differences in net photosynthetic rates (Pn. According to differences in stomatal conductance (gs and carboxylation efficiency (CE, each group was clustered into three subgroups characterized by physiological patterns stomatal pattern, carboxylation pattern, and intermediate pattern. Pn was significantly correlated with gs (r = 0.810 and CE (r = 0.531. Pn was also significantly correlated with gs and CE in the three physiological patterns. The correlation coefficients were highest in the stomatal pattern (0.905 and 0.957 and lowest in the carboxylation pattern (0.825 and 0.859. Higher correlation coefficients between Pn and gs or CE in the three physiological patterns indicate that clustering is very important for understanding factors limiting rice photosynthesis.

  15. Leaf Gas Exchange and Chlorophyll a Fluorescence Imaging of Rice Leaves Infected with Monographella albescens.

    Science.gov (United States)

    Tatagiba, Sandro Dan; DaMatta, Fábio Murilo; Rodrigues, Fabrício Ávila

    2015-02-01

    This study was intended to analyze the photosynthetic performance of rice leaf blades infected with Monographella albescens by combining chlorophyll (Chl) a fluorescence images with gas exchange and photosynthetic pigment pools. The net CO2 assimilation rate, stomatal conductance, transpiration rate, total Chl and carotenoid pools, and Chl a/b ratio all decreased but the internal CO2 concentration increased in the inoculated plants compared with their noninoculated counterparts. The first detectable changes in the images of Chl a fluorescence from the leaves of inoculated plants were already evident at 24 h after inoculation (hai) and increased dramatically as the leaf scald lesions expanded. However, these changes were negligible for the photosystem II photochemical efficiency (Fv/Fm) at 24 hai, in contrast to other Chl fluorescence traits such as the photochemical quenching coefficient, yield of photochemistry, and yield for dissipation by downregulation; which, therefore, were much more sensitive than the Fv/Fm ratio in assessing the early stages of fungal infection. It was also demonstrated that M. albescens was able to impair the photosynthetic process in both symptomatic and asymptomatic leaf areas. Overall, it was proven that Chl a fluorescence imaging is an excellent tool to describe the loss of functionality of the photosynthetic apparatus occurring in rice leaves upon infection by M. albescens.

  16. [Effects of soil water status on gas exchange of peanut and early rice leaves].

    Science.gov (United States)

    Chen, Jiazhou; Lü, Guoan; He, Yuanqiu

    2005-01-01

    The gas exchange characteristics of peanut and early rice leaves were investigated in experimental plots under different soil water conditions over a long growth period. The results showed that at the branching stage of peanut, the stomatal conductance (Gs) and transpiration rate (Tr) decreased slightly under mild and moderate soil water stress, while the net photosynthetic rate (Pn) and leaf water use efficiency (WUE) increased. The Gs/Tr ratio also increased under mild water stress, but decreased under moderate water stress. At podding stage, the Gs, Tr, Gs/Tr ratio and Pn decreased, while WUE increased significantly under mild and moderate water stress. The peanut was suffered from water stress at its pod setting stage. At the grain filling stage of early rice, the Gs, Tr and Gs/Tr ratio fluctuated insignificantly under mild and moderate water stress, while Pn and WUE increased significantly, with an increase in grain yield under mild water stress. It's suggested that the combination of Gs and Gs/Tr ratio could be a reference index for crop water stress, namely, crops could be hazarded by water stress when Gs and Gs/Tr decreased synchronously.

  17. UV-B impairs growth and gas exchange in grapevines grown in high altitude.

    Science.gov (United States)

    Berli, Federico J; Alonso, Rodrigo; Bressan-Smith, Ricardo; Bottini, Rubén

    2013-09-01

    We previously demonstrated that solar ultraviolet-B (UV-B) radiation levels in high altitude vineyards improve berry quality in Vitis vinifera cv. Malbec, but also reduce berry size and yield, possibly as a consequence of increased oxidative damage and growth reductions (lower photosynthesis). The defense mechanisms toward UV-B signal and/or evoked damage promote production of antioxidant secondary metabolites instead of primary metabolites. Purportedly, the UV-B effects will depend on tissues developmental stage and interplay with other environmental conditions, especially stressful situations. In this work, grapevines were exposed to high solar UV-B (+UV-B) and reduced (by filtering) UV-B (-UV-B) treatments during three consecutive seasons, and the effects of UV-B, developmental stages and seasons on the physiology were studied, i.e. growth, tissues morphology, photosynthesis, photoprotective pigments, proline content and antioxidant capacity of leaves. The +UV-B reduced photosynthesis and stomatal conductance, mainly through limitation in gas exchange, reducing plant's leaf area, net carbon fixation and growth. The +UV-B augmented leaf thickness, and also the amounts of photoprotective pigments and proline, thereby increasing the antioxidant capacity of leaves. The defense mechanisms triggered by + UV-B reduced lipid peroxidation, but they were insufficient to protect the photosynthetic pigments per leaf dry weight basis. The +UV-B effects depend on tissues developmental stage and interplay with other environmental conditions such as total radiation and air temperatures.

  18. Pulmonary and cutaneous O₂gas exchange: a student laboratory exercise in the frog.

    Science.gov (United States)

    Tattersall, Glenn J; Currie, Suzanne; LeBlanc, Danielle M

    2013-03-01

    Gas exchange in animals is ultimately diffusion based, generally occurring across dedicated respiratory organs. In many aquatic amphibians, however, multiple modes of gas exchange exist, allowing for the partitioning of O2 uptake and CO2 excretion between respiratory organs with different efficiencies. For example, due to the physical properties of O2 being vastly different between air and water phases, the lung and skin play disproportionately important roles in O2 uptake. Many aquatic frogs are renowned for their cutaneous gas exchange capacity, where often the majority of CO2 is excreted across the skin. Furthermore, the roles of these gas exchange organs change with the animal's behavior. Under diving conditions, most of the frog's gas exchange needs must be met by the skin. In this article, we describe an interactive undergraduate laboratory that allows a class of students to share equipment while assessing pulmonary and cutaneous respiration in frogs provided with an air/water choice and under enforced dive conditions. Concepts explored in this laboratory exercise include animal energetics, diving reflex, pulmonary and cutaneous gas exchange processes, diffusion-based gas flux, and O2 debt.

  19. Typhoons exert significant but differential impact on net carbon ecosystem exchange of subtropical mangrove ecosystems in China

    Directory of Open Access Journals (Sweden)

    H. Chen

    2014-06-01

    Full Text Available Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but litter information is available on how these disturbances affect ecosystem level carbon dioxide (CO2 exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during typhoon season. Daily total NEE values were decreased by 26–50% following some typhoons (e.g. W28-Nockten, W35-Molave and W35-Lio-Fan, but were significantly increased (43–131% following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP and ecosystem respiration (RE. Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings not only indicate that mangrove ecosystems have strong resilience to the frequent typhoon disturbances, but also demonstrate the damage of increasing typhoon intensity and frequency on subtropical mangrove ecosystems under future global climate change scenarios.

  20. [Characteristics of net ecosystem flux exchanges over Stipa krylovii steppe in Inner Mongolia].

    Science.gov (United States)

    Yang, Juan; Zhou, Guang-Sheng; Wang, Yun-Long; Wang, Yu-Hui

    2008-03-01

    Based on an entire year continuous measurement of surface fluxes by eddy covariance (EC) tower and micro-climate gradient observation system, the diurnal and seasonal dynamics of net ecosystem fluxes including carbon, water, and heat fluxes over Stipa krylovii steppe in Inner Mongolia were investigated. The results indicated that the diurnal pattern of carbon fluxes during growing season could be expressed as U curve. S. krylovii steppe ecosystem emitted CO2 before the sunrise and absorbed CO2 after the sunrise, with the maximum CO2 uptake around noon. The ecosystem had weaker CO2 uptake after the noon, and turned to emit CO2 after sunset. The CO2 uptake by S. krylovii steppe ecosystem reached the maximum in September, followed in August, and got the minimum in October. The diurnal dynamic patterns of sensible heat flux (Hs) and latent heat flux (LE) could be expressed as inverse U curves. The Hs and LE over S. krylovii steppe ecosystem were positive during the daytime, while Hs was negative and LE was close to zero during the nighttime. The ecosystem had the highest Hs and LE in May and September, respectively. In winter, the steppe acted as a weak carbon source, with the CO2 flux being small; while in summer, it became an obvious carbon sink.

  1. [Prone position: effect on gas exchange and functional capacity for exercise in patients with pulmonary hypertension].

    Science.gov (United States)

    Bastidas-L, Andrea Carolina; Colina-Chourio, José A; Guevara, Jesnel M; Nunez, Alexis

    2015-03-01

    The objective of this investigation was to evaluate gas exchange and cardiopulmonary functional behavior in patients with pulmonary hypertension (PH) before, during and after the change to a prone position. Thirty patients with PH and alterations in gas exchange were included in the study. Gas exchange measurements were performed in four stages: at the baseline supine position and after 30, 120 and 240 minutes in prone position. Also, the patients were evaluated by the six minutes walking test (6MWT) after 30 days in prone position during night's sleep. After four hours in prone position, all patients showed an increase of PaO2 and arterial saturation of oxygen (SaO2), with a decrease of intrapulmonary shunts, improving the gas exchange and therefore the physiological demand imposed by exercise in patients with PH.

  2. UU* filtering of nighttime net ecosystem CO2 exchange flux over forest canopy under strong wind in wintertime

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Junhui

    2005-01-01

    [1]Aubinet, M., Heinesch, B., Longdoz, B., Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections,heterogeneity of the site and inter-annual variability, Global Change Biology, 2002, 8:1053-1071.[2]Charlotte, L.R., Nigel, T.R., Seasonal contribution of CO2 fluxes in the annual C budget of a northern bog, Global Biogeochemical Cycles, 2003, 171029, doi: 10.1029/20029B001889.[3]Baldocchi, D.D., Hicks, B.B., Meyers, T. P., Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology, 1988, 69:1331-1340.[4]Baldocchi, D.D., Assessing ecosystem carbon balance: problems and prospects of the eddy covariance technique, Global change biology, 2003, 9: 478-492.[5]Canadell, J. G., Mooney, H. A., Baldocchi, D. D. et al., Carbon metabolism of the terrestrial biosphere: A multi technique approach for improved understanding, Ecosystems, 2000, 3:115-130.[6]Schmid, H. P., Footprint modeling for vegetation atmosphere exchange studies: a review and perspective, Agricultural and Forest Meteorology, 2002, 113: 159-183.[7]Wofsy, S. C., Goulden, M. L., Munger, J. W. et al., Net exchange on CO2 in a mid-latitude forest, Science, 1993, 260: 1314-1317.[8]Massman, W. J., Lee, X. H., Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges,Agricultural and Forest Meteorology, 2002, 113: 121-144.[9]Baldocchi, D. D., Finnigan, J., Wilson, K. et al., On measuring net ecosystem carbon exchange over tall vegetation on complex terrain, Boundary-Layer Meteorology, 2000, 96: 257-291.[10]Anthoni, P. M., Unsworth, M. H., Law, B. E. et al., Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems, Agricultural and Forest Meteorology, 2002, 111: 203-222.[11]Paw U, K. T., Baldocchi, D. D., Meyers, T. P. et al., Correction of eddy-covariance measurements incorporating both advective

  3. Greenhouse gas exchange of rewetted bog peat extraction sites and a Sphagnum cultivation site in northwest Germany

    Science.gov (United States)

    Beyer, C.; Höper, H.

    2015-04-01

    During the last decades an increasing area of drained peatlands has been rewetted. Especially in Germany, rewetting is the principal treatment on cutover sites when peat extraction is finished. The objectives are bog restoration and the reduction of greenhouse gas (GHG) emissions. The first sites were rewetted in the 1980s. Thus, there is a good opportunity to study long-term effects of rewetting on greenhouse gas exchange, which has not been done so far on temperate cutover peatlands. Moreover, Sphagnum cultivating may become a new way to use cutover peatlands and agriculturally used peatlands as it permits the economical use of bogs under wet conditions. The climate impact of such measures has not been studied yet. We conducted a field study on the exchange of carbon dioxide, methane and nitrous oxide at three rewetted sites with a gradient from dry to wet conditions and at a Sphagnum cultivation site in NW Germany over the course of more than 2 years. Gas fluxes were measured using transparent and opaque closed chambers. The ecosystem respiration (CO2) and the net ecosystem exchange (CO2) were modelled at a high temporal resolution. Measured and modelled values fit very well together. Annually cumulated gas flux rates, net ecosystem carbon balances (NECB) and global warming potential (GWP) balances were determined. The annual net ecosystem exchange (CO2) varied strongly at the rewetted sites (from -201.7 ± 126.8 to 29.7± 112.7g CO2-C m-2 a-1) due to differing weather conditions, water levels and vegetation. The Sphagnum cultivation site was a sink of CO2 (-118.8 ± 48.1 and -78.6 ± 39.8 g CO2-C m-2 a-1). The annual CH4 balances ranged between 16.2 ± 2.2 and 24.2 ± 5.0g CH4-C m-2 a-1 at two inundated sites, while one rewetted site with a comparatively low water level and the Sphagnum farming site show CH4 fluxes close to 0. The net N2O fluxes were low and not significantly different between the four sites. The annual NECB was between -185.5 ± 126.9 and 49

  4. On Dynamical Net-Charge Fluctuations within a Hadron Resonance Gas Approach

    Directory of Open Access Journals (Sweden)

    Abdel Nasser Tawfik

    2016-01-01

    Full Text Available The dynamical net-charge fluctuations (νdyn in different particle ratios K/π, K/p, and p/π are calculated from the hadron resonance gas (HRG model and compared with STAR central Au+Au collisions at sNN=7.7–200 GeV and NA49 central Pb+Pb collisions at sNN=6.3–17.3 GeV. The three charged particle ratios (K/π,K/p, and p/π are determined as total and average of opposite and average of the same charges. We find an excellent agreement between the HRG calculations and the experimental measurements, especially from STAR beam energy scan (BES program, while the strange particles in the NA49 experiment at lower Super Proton Synchrotron (SPS energies are not reproduced by the HRG approach. We conclude that the utilized HRG version seems to take into consideration various types of correlations including strong interactions through the heavy resonances and their decays especially at BES energies.

  5. Reducing water usage with rotary regenerative gas/gas heat exchangers in natural gas-fired power plants with post-combustion carbon capture

    OpenAIRE

    Herraiz, Laura; Hogg, Dougal; Cooper, Jim; Gibbins, Jon; Lucquiaud, Mathieu

    2015-01-01

    It is possible to greatly mitigate the increase of water usage associated with the addition of carbon capture to fossil fuel power generation. This article presents a first-of-a-kind feasibility study of a series of technology options with rotary regenerative gas/gas heat exchangers for the management of the water balance around post-combustion carbon capture process integrated with Combined Cycle Gas Turbine (CCGT) plants with and without exhaust gas recirculation (EGR). Hybrid cooling confi...

  6. MATHEMATICAL MODELING OF THERMOPHYSICAL PARAMETERS OF VORTEX HEAT EXCHANGER OF HEATING SYSTEMS OF GAS DISTRIBUTION POINTS PREMISES

    Directory of Open Access Journals (Sweden)

    V. A. Lapin

    2009-09-01

    Full Text Available The mathematical model of heat transfer in vortex heat exchanger using natural gas energy which is released under decompression in gas-main pipe-lines for consumers of gas supply systems (dwellings, public and industrial buildings.

  7. Effects of respiratory rate and tidal volume on gas exchange in total liquid ventilation.

    Science.gov (United States)

    Bull, Joseph L; Tredici, Stefano; Fujioka, Hideki; Komori, Eisaku; Grotberg, James B; Hirschl, Ronald B

    2009-01-01

    Using a rabbit model of total liquid ventilation (TLV), and in a corresponding theoretical model, we compared nine tidal volume-respiratory rate combinations to identify a ventilator strategy to maximize gas exchange, while avoiding choked flow, during TLV. Nine different ventilation strategies were tested in each animal (n = 12): low [LR = 2.5 breath/min (bpm)], medium (MR = 5 bpm), or high (HR = 7.5 bpm) respiratory rates were combined with a low (LV = 10 ml/kg), medium (MV = 15 ml/kg), or high (HV = 20 ml/kg) tidal volumes. Blood gases and partial pressures, perfluorocarbon gas content, and airway pressures were measured for each combination. Choked flow occurred in all high respiratory rate-high volume animals, 71% of high respiratory rate-medium volume (HRMV) animals, and 50% of medium respiratory rate-high volume (MRHV) animals but in no other combinations. Medium respiratory rate-medium volume (MRMV) resulted in the highest gas exchange of the combinations that did not induce choke. The HRMV and MRHV animals that did not choke had similar or higher gas exchange than MRMV. The theory predicted this behavior, along with spatial and temporal variations in alveolar gas partial pressures. Of the combinations that did not induce choked flow, MRMV provided the highest gas exchange. Alveolar gas transport is diffusion dominated and rapid during gas ventilation but is convection dominated and slow during TLV. Consequently, the usual alveolar gas equation is not applicable for TLV.

  8. Noninvasive detection of gas exchange rate by near infrared spectroscopy

    Science.gov (United States)

    Xu, Guodong; Mao, Zongzhen; Wang, Bangde

    2008-12-01

    In order to study the relationship among the oxygen concentration in skeletal muscle tissues and the heart rate (HR), oxygen uptake (VO2), respiratory exchange ratio (RER) during incremental running exercises on a treadmill, a near-infrared spectroscopy muscle oxygen monitor system is employed to measure the relative change in muscle oxygenation, with the heart rate, oxygen uptake, production of carbon dioxide (VCO2) and respiratory exchange ratio are recorded synchronously. The results indicate parameters mentioned above present regular changes during the incremental exercise. High correlations are discovered between relative change of oxy-hemoglobin concentration and heart rate, oxygen uptake, respiratory exchange ratio at the significance level (P=0.01). This research might introduce a new measurement technology and/or a novel biological monitoring parameter to the evaluation of physical function status, control the training intensity, estimation of the effectiveness of exercise. Keywords: near-infrared spectroscopy; muscle oxygen concentration; heart rate; oxygen uptake; respiratory exchange ratio.

  9. Net terrestrial CO2 exchange over China during 2001-2010 estimated with an ensemble data assimilation system for atmospheric CO2

    NARCIS (Netherlands)

    Zhang, H. F.; Chen, B. Z.; van der Laan-Luijkx, I. T.; Chen, J.; Xu, G.; Yan, J. W.; Zhou, L. X.; Fukuyama, Y.; Tans, P. P.; Peters, W.

    2014-01-01

    In this paper we present an estimate of net ecosystem CO2 exchange over China for the years 2001-2010 using the CarbonTracker Data Assimilation System for CO2 (CTDAS). Additional Chinese and Asian CO2 observations are used in CTDAS to improve our estimate. We found that the combined terrestrial

  10. Net terrestrial CO2 exchange over China during 2001-2010 estimated with an ensemble data assimilation system for atmospheric CO 2

    NARCIS (Netherlands)

    Zhang, H.F.; Chen, B.Z.; Laan-Luijkx, van der I.T.; Peters, W.; Chen, J.; Xu, G.; Yan, J.W.; Zhou, X.; Fukuyama, Y.; Tans, P.P.

    2014-01-01

    In this paper we present an estimate of net ecosystem CO2 exchange over China for the years 2001–2010 using the CarbonTracker Data Assimilation System for CO2 (CTDAS). Additional Chinese and Asian CO2 observations are used in CTDAS to improve our estimate. We found that the combined terrestrial

  11. Net regional ecosystem CO2 exchange from airborne and ground-based eddy covariance, land-use maps and weather observations

    NARCIS (Netherlands)

    Miglietta, F.; Gioli, B.; Hutjes, R.W.A.; Reichstein, M.

    2007-01-01

    Measurements of regional net ecosystem exchange (NEE) were made over a period of 21 days in summer 2002 in the South-Central part of the Netherlands and extrapolated to an area of 13 000 km2 using a combination of flux measurements made by a Sky Arrow ERA research aircraft, half-hourly eddy

  12. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis.

    Science.gov (United States)

    Guttman, Miklos; Wales, Thomas E; Whittington, Dale; Engen, John R; Brown, Jeffery M; Lee, Kelly K

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.

  13. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  14. Net ecosystem CO2 exchange and controlling factors in a steppe——Kobresia meadow on the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>Knowledge of seasonal variation of net ecosystem CO2 exchange (NEE) and its biotic and abiotic controllers will further our understanding of carbon cycling process, mechanism and large-scale modelling. Eddy covariance technique was used to measure NEE, biotic and abiotic factors for nearly 3 years in the hinterland alpine steppe--Korbresia meadow grassland on the Tibetan Plateau, the present highest fluxnet station in the world. The main objectives are to investigate dynamics of NEE and its components and to determine the major controlling factors. Maximum carbon assimilation took place in August and maximum carbon loss occurred in November. In June, rainfall amount due to monsoon climate played a great role in grass greening and consequently influenced interannual variation of ecosystem carbon gain. From July through September, monthly NEE presented net carbon assimilation. In other months, ecosystem exhibited carbon loss. In growing season, daytime NEE was mainly controlled by photosynthetically active radiation (PAR). In addition, leaf area index (LAI) interacted with PAR and together modulated NEE rates. Ecosystem respiration was controlled mainly by soil temperature and simultaneously by soil moisture. Q10 was negatively correlated with soil temperature but positively correlated with soil moisture. Large daily range of air temperature is not necessary to enhance carbon gain. Standard respiration rate at referenced 10℃(R10) was positively correlated with soil moisture, soil temperature, LAI and aboveground biomass. Rainfall patterns in growing season markedly influenced soil moisture and therefore soil moisture controlled seasonal change of ecosystem respiration. Pulse rainfall in the beginning and at the end of growing season induced great ecosystem respiration and consequently a great amount of carbon was lost. Short growing season and relative low temperature restrained alpine grass vegetation development. The results suggested that LAI be usually in

  15. Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland

    Science.gov (United States)

    Scott, Russell L.; Jenerette, G. Darrel; Potts, Daniel L.; Huxman, Travis E.

    2009-12-01

    Annual precipitation in the central and southern warm-desert region of North America is distributed climatologically between summer and winter periods with two prominent dry periods between them. We used energy and carbon dioxide (CO2) fluxes from eddy covariance along with standard meteorological and soil moisture measurements at a semiarid savanna in southern Arizona, United States, to better understand the consequences of warm or cool season drought on ecosystem CO2 exchange in these bimodally forced water-limited regions. Over the last 100 years, this historic grassland has converted to a savanna by the encroachment of the native mesquite tree (Prosopis velutina Woot.). During each of the 4 years of observation (2004-2007), annual precipitation (P) was below average, but monsoon (July-September) P was both above and below average while cool-season (December-March) P was always less than average by varying degrees. The ecosystem was a net source of CO2 to the atmosphere, ranging from 14 to 95 g C m-2 yr-1 with the strength of the source increasing with decreasing precipitation. When the rainfall was closest to the long-term average in its distribution and amount, the ecosystem was essentially carbon neutral. Summer drought resulted in increased carbon losses due mainly to a shortening of the growing season and the length of time later in the season when photosynthetic gain exceeds respiration loss. Severe cool season drought led to decreased spring carbon uptake and seemingly enhanced summer respiration, resulting in conditions that led to the greatest annual net carbon loss.

  16. Biophysical controls on light response of net CO2 exchange in a winter wheat field in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Xiaojuan Tong

    Full Text Available To investigate the impacts of biophysical factors on light response of net ecosystem exchange (NEE, CO2 flux was measured using the eddy covariance technique in a winter wheat field in the North China Plain from 2003 to 2006. A rectangular hyperbolic function was used to describe NEE light response. Maximum photosynthetic capacity (P max was 46.6 ± 4.0 µmol CO2 m(-2 s(-1 and initial light use efficiency (α 0.059 ± 0.006 µmol µmol(-1 in April-May, two or three times as high as those in March. Stepwise multiple linear regressions showed that P max increased with the increase in leaf area index (LAI, canopy conductance (g c and air temperature (T a but declined with increasing vapor pressure deficit (VPD (P25°C or VPD>1.1-1.3 kPa, NEE residual increased with the increase in T a and VPD (P<0.001, indicating that temperature and water stress occurred. When g c was more than 14 mm s(-1 in March and May and 26 mm s(-1 in April, the NEE residuals decline disappeared, or even turned into an increase in g c (P<0.01, implying shifts from stomatal limitation to non-stomatal limitation on NEE. Although the differences between sunny and cloudy sky conditions were unremarkable for light response parameters, simulated net CO2 uptake under the same radiation intensity averaged 18% higher in cloudy days than in sunny days during the year 2003-2006. It is necessary to include these effects in relevant carbon cycle models to improve our estimation of carbon balance at regional and global scales.

  17. Modelling effects of seasonal variation in water table depth on net ecosystem CO2 exchange of a tropical peatland

    Directory of Open Access Journals (Sweden)

    M. Mezbahuddin

    2013-08-01

    Full Text Available Seasonal variation in water table depth (WTD determines the balance between aggradation and degradation of tropical peatlands. Longer dry seasons together with human interventions (e.g. drainage can cause WTD drawdowns making tropical peatland C storage highly vulnerable. Better predictive capacity for effects of WTD on net CO2 exchange is thus essential to guide conservation of tropical peat deposits. Mathematical modelling of basic eco-hydrological processes under site-specific conditions can provide such predictive capacity. We hereby deploy a mathematical model ecosys to study effects of seasonal variation in WTD on net ecosystem productivity (NEP of an Indonesian peatland. We simulated lower NEPs (~ –2 g C m–2 d–1 during rainy seasons with shallow WTD, higher NEPs (~ +1 g C m–2 d–1 during early dry seasons with intermediate WTD and again lower NEPs (~ –4 g C mm–2 d–1 during late dry seasons with deep WTD during 2002–2005. These values were corroborated by regressions (P 2 fluxes which yielded R2 > 0.8, intercepts approaching 0 and slopes approaching 1. We also simulated a gradual increase in annual NEPs from 2002 (−609 g C m–2 to 2005 (−373 g C m–2 with decreasing WTD which was corroborated by EC-gap filled annual NEP estimates. These WTD effects on NEP were modelled from basic eco-hydrological processes including microbial and root oxidation-reduction reactions driven by soil and root O2 transport and uptake which in turn drove soil and plant C, N and P transformations within a soil-plant-atmosphere water transfer scheme driven by water potential gradients. This modelling should therefore provide a predictive capacity for WTD management programs to reduce tropical peat degradation.

  18. Modeling impacts of alternative practices on net global warming potential and greenhouse gas intensity from rice-wheat annual rotation in China.

    Directory of Open Access Journals (Sweden)

    Jinyang Wang

    Full Text Available BACKGROUND: Evaluating the net exchange of greenhouse gas (GHG emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. MATERIALS AND METHODS: Measured data of methane (CH(4 and nitrous oxide (N(2O were utilized to test the applicability of the Denitrification and Decomposition (DNDC model to a winter wheat - single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year impacts on net global warming potential (GWP and greenhouse gas intensity (GHGI. PRINCIPAL RESULTS: The simulated cumulative CH(4 emissions fell within the statistical deviation ranges of the field data, with the exception of N(2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH(4 and N(2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1 high straw return and manure amendment scenarios greatly increased CH(4 emissions, while other scenarios had similar CH(4 emissions, (2 high inorganic N fertilizer increased N(2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N(2O emissions, (3 the mean annual soil organic carbon sequestration rates (SOCSR under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha(-1 yr(-1, being greater than other scenarios, and (4 the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields. CONCLUSIONS: In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified

  19. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    Directory of Open Access Journals (Sweden)

    M. Zhang

    2010-02-01

    Full Text Available Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS and a subtropical evergreen broad-leaved forest at Dinghushan (DHS, based on the flux data obtained during June–August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max at CBS under cloudy skies during mid-growing season (from June to August increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP and greater increase in ecosystem respiration (Re at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in

  20. Greenhouse gas exchange in grasslands: impacts of climate, intensity of management and other factors

    Science.gov (United States)

    Smith, K. A.

    2003-04-01

    several Western European countries, very high rates of N application to both grazed grassland and to grass crops grown for winter feed have made these lands the principal source of N_2O. It has been estimated that 40% of global emissions of NO, a precursor of tropospheric ozone, come from grasslands and savannas. Global warming is expected to bring about substantial changes in the overall greenhouse gas exchange of grasslands, with a net loss of soil C as CO_2, and possibly enhanced N_2O emissions. Increased rainfall is predicted for some regions, and this can also be expected to give rise to increases in N_2O.

  1. Study of gas exchange in insects by sensitive laser photoacoustic spectroscopy

    NARCIS (Netherlands)

    Persijn, S.T.; Harren, F.J.M.; Wijkamp, I.; Mitrayana, L.

    2006-01-01

    Although quantifying gas exchange in small insect species is of great biological interest, the progress in this field of research is hampered by the inability of most gas detectors to monitor the low emission rates from these insects. Recently, laser based photoacoustic spectroscopy (LPAS) has emerg

  2. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru [Tver State Technical University (Russian Federation)

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  3. Study of gas exchange in insects by sensitive laser photoacoustic spectroscopy

    NARCIS (Netherlands)

    Persijn, S.T.; Harren, F.J.M.; Wijkamp, I.; Mitrayana, L.

    2006-01-01

    Although quantifying gas exchange in small insect species is of great biological interest, the progress in this field of research is hampered by the inability of most gas detectors to monitor the low emission rates from these insects. Recently, laser based photoacoustic spectroscopy (LPAS) has

  4. High effectiveness liquid droplet/gas heat exchanger for space power applications

    Science.gov (United States)

    Bruckner, A. P.; Mattick, A. T.

    A high-effectiveness liquid droplet/gas heat exchanger (LDHX) concept for thermal management in space is described. Heat is transferred by direct contact between fine droplets (≈ 100-300 μm dia.) of a suitable low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the zero-g environment is accomplished by configuring the LDHX as a vortex chamber. The large heat transfer area presented by the small droplets permits heat exchanger effectiveness of 0.9-0.95 in a compact, lightweight geometry which avoids many of the limitations of conventional plate and fin or tube and shell heat exchangers, such as their tendency toward single point failure. The application of the LDHX in a high temperature Brayton cycle is discussed to illustrate the performance and operational characteristics of this new heat exchanger concept.

  5. Free volume and gas permeation in ion-exchanged forms of the Nafion® membrane

    Science.gov (United States)

    Mohamed, Hamdy F. M.; Kobayashi, Y.; Kuroda, C. S.; Ohira, A.

    2010-04-01

    Variations of free volume and gas permeability of the Nafion® membrane upon ion-exchange of H+ with Cs+ or Pt2+ was studied as a function of temperature. Free volume was quantified using the positron annihilation lifetime technique. Our results showed that the free volume (VFV,Ps) of the dried membrane is enlarged by thermal expansion. It was found that the ion-exchange significantly expands the free volume and at the same time decreases the permeabilities of O2 and H2. Good linear correlations between the logarithm of permeabilities of O2 and H2 at different temperatures and 1/VFV,Ps for the ion-exchanged forms of Nafion® in the dried state suggest an important role played by the free volume in gas permeation. Considerable downward deviation of the correlations for the ion-exchanged ionomers from the H+-form suggested the importance of polymer stiffening in gas permeation.

  6. High effectiveness liquid droplet/gas heat exchanger for space power applications

    Science.gov (United States)

    Bruckner, A. P.; Mattick, A. T.

    1983-01-01

    A high-effectiveness liquid droplet/gas heat exchanger (LDHX) concept for thermal management in space is described. Heat is transferred by direct contact between fine droplets (approximately 100-300 microns in diameter) of a suitable low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the zero-g environment is accomplished by configuring the LDHX as a vortex chamber.The large heat transfer area presented by the small droplets permits heat exchanger effectiveness of 0.9-0.95 in a compact, lightweight geometry which avoids many of the limitations of conventional plate and fin or tube and shell heat exchangers, such as their tendency toward single point failure. The application of the LDHX in a high temperature Brayton cycle is discussed to illustrate the performance and operational characteristics of this new heat exchanger concept.

  7. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China

    Science.gov (United States)

    Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.

    2014-10-01

    Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but little information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during the typhoon season. Daily total NEE values decreased by 26-50% following some typhoons (e.g., W28-Nockten, W35-Molave and W35-Lio-Fan), but significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings indicate that different types of typhoon disturbances can exert very different effects on CO2 fluxes of mangrove ecosystems and that typhoon will likely have larger impacts on carbon cycle processes in subtropical mangrove ecosystems as the intensity and frequency of typhoons are predicted to increase under future global climate change scenarios.

  8. Seasonal and diurnal gas exchange differences in ozone-sensitive common milkweed (Asclepias syriaca L.) in relation to ozone uptake.

    Science.gov (United States)

    Bergweiler, Chris; Manning, William J; Chevone, Boris I

    2008-03-01

    Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation.

  9. Design optimization of heat exchangers in topside systems for offshore oil and gas processing

    OpenAIRE

    Bandopadhyay, Mayukh

    2014-01-01

    On a typical oil and gas platform, mechanical equipment units are integral parts of the topside processing system. Heat exchangers, separators, scrubbers, compressors and other equipment units are critical for the proper operation of the processing plant. The hydrocarbon stream received at the first production separator is a mixed stream comprising oil, water and gas phase. This mixed stream is processed in order to separate the oil dominated, water dominated and gas phase. The processing sys...

  10. [Evaluation of remote sensing extraction methods for vegetation phenology based on flux tower net ecosystem carbon exchange data].

    Science.gov (United States)

    Mou, Min-Jie; Zhu, Wen-Quan; Wang, Ling-Li; Xu, Ying-Jun; Liu, Jian-Hong

    2012-02-01

    Taking the vegetation phenological metrics derived from the net ecosystem carbon exchange (NEE) data of 72 flux towers in North America as the references, a comprehensive evaluation was conducted on the three typical classes of remote sensing extraction methods (threshold method, moving average method, and function fitting method) for vegetation phenology from the aspects of feasibility and accuracy. The results showed that the local midpoint threshold method had the highest feasibility and accuracy for extracting vegetation phenology, followed by the first derivative method based on fitted Logistic function. The feasibility and accuracy of moving average method were determined by the moving window size. As for the MODJS 16 d composited time-series normalized difference vegetation index (NDVI), the moving average method had preferable performance when the window size was set as 15. The global threshold method performed quite poor in the feasibility and accuracy. Though the values of the phenological metrics extracted by the curvature change rate method based on fitted Logistic function and the corresponding ones derived from NEE data had greater differences, there existed a strong correlation between them, indicating that the vegetation phenological metrics extracted by the curvature change rate method could reflect the real temporal and spatial variations of vegetation phenology.

  11. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  12. Gas exchange rates, plant height, yield components, and productivity of upland rice as affected by plant regulators

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Félix Alvarez

    2012-10-01

    Full Text Available The objective of this work was to evaluate gas exchange rates, plant height, yield components, and productivity of upland rice, as affected by type and application time of plant growth regulators. A randomized block design, in a 4x2 factorial arrangement, with four replicates was used. Treatments consisted of three growth regulators (mepiquat chloride, trinexapac-ethyl, and paclobutrazol, besides a control treatment applied at two different phenological stages: early tillering or panicle primordial differentiation. The experiment was performed under sprinkler-irrigated field conditions. Net CO2 assimilation, stomatal conductance, plant transpiration, and water-use efficiency were measured four times in Primavera upland rice cultivar, between booting and milky grain phenophases. Gas exchange rates were neither influenced by growth regulators nor by application time. There was, however, interaction between these factors on the other variables. Application of trinexapac-ethyl at both tillering and differentiation stages reduced plant height and negatively affected yield components and rice productivity. However, paclobutrazol and mepiquat chloride applied at tillering, reduced plant height without affecting rice yield. Mepiquat chloride acted as a growth stimulator when applied at the differentiation stage, and significantly increased plant height, panicle number, and grain yield of upland rice.

  13. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianwei, E-mail: jianweizhang@fs.fed.u [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Schaub, Marcus; Ferdinand, Jonathan A. [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Skelly, John M. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States); Steiner, Kim C. [School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Savage, James E. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-08-15

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g{sub wv}), foliar injury, and leaf nitrogen concentration (N{sub L}) to tropospheric ozone (O{sub 3}) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g{sub wv}, foliar injury, and N{sub L} (P < 0.05) among O{sub 3} treatments. Seedlings in AA showed the highest A and g{sub wv} due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g{sub wv}, N{sub L}, and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, g{sub wv}, and foliar injury to O{sub 3}. Both VPD and N{sub L} had a strong influence on leaf gas exchange. Foliar O{sub 3}-induced injury appeared when cumulative O{sub 3} uptake reached 8-12 mmol m{sup -2}, depending on soil water availability. The mechanistic assessment of O{sub 3}-induced injury is a valuable approach for a biologically relevant O{sub 3} risk assessment for forest trees. - Ozone effects on symptom development and leaf gas exchange interacted with leaf age and N-content on black cherry seedlings.

  14. Gas Transport and Exchange through Wetland Plant Aerenchyma

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans

    2013-01-01

    Aerenchyma, the large airspaces in aquatic plants, is a rapid gas transport pathway between atmosphere and soil in wetlands. Oxygen transport aerates belowground tissue and oxidizes rhizosphere soil, an important process in wetland biogeochemistry. Most plant O2 transport occurs by diffusion...... such as stirring of solutions. In some species, pressurized gas flows develop in shoots and rhizomes, and their contribution to gas fluxes can be assessed with pressure transducers and flow meters. Other gases produced in wetlands (e.g., CO2, CH4, and N2O) are also transported in aerenchyma. Their fluxes...

  15. Net sea–air CO2 flux uncertainties in the Bay of Biscay based on the choice of wind speed products and gas transfer parameterizations

    Directory of Open Access Journals (Sweden)

    P. Otero

    2013-05-01

    Full Text Available The estimation of sea–air CO2 fluxes is largely dependent on wind speed through the gas transfer velocity parameterization. In this paper, we quantify uncertainties in the estimation of the CO2 uptake in the Bay of Biscay resulting from the use of different sources of wind speed such as three different global reanalysis meteorological models (NCEP/NCAR 1, NCEP/DOE 2 and ERA-Interim, one high-resolution regional forecast model (HIRLAM-AEMet, winds derived under the Cross-Calibrated Multi-Platform (CCMP project, and QuikSCAT winds in combination with some of the most widely used gas transfer velocity parameterizations. Results show that net CO2 flux estimations during an entire seasonal cycle (September 2002–September 2003 may vary by a factor of ~ 3 depending on the selected wind speed product and the gas exchange parameterization, with the highest impact due to the last one. The comparison of satellite- and model-derived winds with observations at buoys advises against the systematic overestimation of NCEP-2 and the underestimation of NCEP-1. In the coastal region, the presence of land and the time resolution are the main constraints of QuikSCAT, which turns CCMP and ERA-Interim in the preferred options.

  16. Annual net ecosystem exchanges of carbon dioxide and methane from a temperate brackish marsh: should the focus of marsh restoration be on brackish environments?

    Science.gov (United States)

    Windham-Myers, L.; Anderson, F. E.; Bergamaschi, B. A.; Ferner, M. C.; Schile, L. M.; Spinelli, G.

    2015-12-01

    The exchange and transport of carbon in tidally driven, saline marsh ecosystems provide habitat and trophic support for coastal wildlife and fisheries, while potentially accumulating and storing carbon at some of the highest rates compared to other ecosystems. However, due to the predicted rise in sea level over the next century, the preservation and restoration of estuarine habitats is necessary to compensate for their expected decline. In addition, restoration of these marsh systems can also reduce the impacts of global climate change as they assimilate as much carbon as their freshwater counterparts, while emitting less methane due to the higher concentrations of sulfate in seawater. Unfortunately, in brackish marshes, with salinity concentrations less than 18 parts per thousand (ppt), simple relationships between methane production, salinity and sulfate concentrations are not well known. Here we present the net ecosystem exchange (NEE) of carbon dioxide and methane, as calculated by the eddy covariance method, from a brackish marsh ecosystem in the San Francisco Estuary where salinity ranges from oligohaline (0.5-5 ppt) to mesohaline (5-18 ppt) conditions. Daily rates of carbon dioxide and methane NEE ranged from approximately 10 gC-CO2 m-2 d-1 and 0 mgC-CH4 m-2 d-1, during the winter to -15 gC-CO2 m-2 d-1 and 30 mgC-CH4 m-2 d-1, in the summer growing season. A comparison between similar measurements made from freshwater wetlands in the Sacramento-San Joaquin Delta found that the daily rates of carbon dioxide NEE were similar, but daily rates of methane NEE were just a small fraction (0-15%). Our research also shows that the daily fluxes of carbon dioxide and methane at the brackish marsh were highly variable and may be influenced by the tidal exchanges of seawater. Furthermore, the observed decline in methane production from summer to fall may have resulted from a rise in salinity and/or a seasonal decline in water and air temperatures. Our research goals are

  17. Influence of the Asian Monsoon on net ecosystem carbon exchange in two major plant functional types in Korea

    Directory of Open Access Journals (Sweden)

    H. Kwon

    2009-11-01

    Full Text Available Considering the feedback loops in radiation, temperature, and soil moisture with alterations in rainfall patterns, the influence of the changing monsoon on net ecosystem CO2 exchange can be critical to the estimation of carbon balance in Asia. In this paper, we examined the eddy covariance CO2 fluxes observed from 2004 to 2008 in two major plant functional types in KoFlux, i.e., the Gwangneung deciduous forest (GDK site and the Haenam farmland (HFK site. The objectives of the study were to (1 quantify the net ecosystem CO2 exchange (NEE, ecosystem respiration (RE, and gross primary production (GPP, (2 examine their interannual patterns, and (3 assess the mechanism for the coupling of carbon and water exchange associated with the summer monsoon. The GDK site, which had a maximum leaf area index (LAI of ~5, was on average a relatively weak carbon sink with NEE of −84 gC m−2 y−1, RE of 1028 gC m−2 y−1, and GPP of 1113 gC m−2 y−1. Despite about 20% larger GPP (of 1321 gC m−2 y−1 in comparison with the GDK site, the HFK site (with the maximum LAI of 3 to 4 was a weaker carbon sink with NEE of −58 gC m−2 y−1 because of greater RE of 1263 gC m−2 y−1. In both sites, the annual patterns of NEE and GPP had a striking "mid-season depression" each year with two distinctive peaks of different timing and magnitude, whereas RE did not. The mid-season depression at the GDK site occurred typically from early June to late August, coinciding with the season of summer monsoon when the solar radiation decreased substantially due to frequent rainfalls and cloudiness. At the HFK site, the mid-season depression began earlier in May and continued until the end of July due to land use management (e.g., crop rotation in addition to such disturbances as summer monsoon and typhoons

  18. A method for the simultaneous measurement of gas exchange and diffusion resistance of fruits and vegetables under various gas conditions

    NARCIS (Netherlands)

    Peppelenbos, H.W.; Jeksrud, W.K.

    1998-01-01

    To measure the relationship between gas exchange rates and diffusion resistance, and their changes in time, both should be measured on the same fruit or vegetable, because diffusion resistance shows large variations between individuals of the same species and cultivar. The method described enables

  19. Gas exchange measurement during pediatric mechanical ventilation--agreement between gas sampling at the airway and the ventilator exhaust.

    Science.gov (United States)

    Smallwood, Craig D; Mehta, Nilesh M

    2013-12-01

    A variety of indirect calorimetry (IC) devices are used for gas exchange measurement and calculation of resting energy expenditure (REE) in the pediatric intensive care unit. The aim of this investigation was to compare oxygen consumption (VO2), carbon dioxide elimination (VCO2), REE and respiratory quotient (RQ) in mechanically ventilated children, obtained by 2 devices using distinct gas sampling methods. Mechanically ventilated children were targeted for IC and gas exchange measurements were recorded for a 30 min period, simultaneously using the E-COVX(®) (gas sampling at the airway) and the Vmax(®) (gas sampling at the humidifier and ventilator exhaust). Steady state gas exchange measurements by the 2 devices were tested for agreement using Spearman correlation and Bland-Altman analysis. Steady state data from both devices were available in 19 tests and were included in the analysis. The correlations coefficients for measurements by the 2 devices were r = 0.903(P < 0.001), 0.955(P < 0.001), 0.944(P < 0.001) and 0.484(P < 0.05) for VO2, VCO2, REE and RQ, respectively. The mean percentage bias (limits of agreement) for VO2, VCO2, REE and RQ values between the two methods (Vmax-E-COVX) was 0.2 (-41.8-42.3), -0.8 (-21.8-20.1), -2.2 (-33.9-29.6) and 1.9 (-21-24.9) respectively. Despite strong correlations and small mean biases for VO2, VCO2 and REE obtained by the Vmax(®) and E-COVX(®), the limits of agreement were beyond the clinically acceptable range. These devices should not be used interchangeably for gas exchange measurements in mechanically ventilated children. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems

    Science.gov (United States)

    Zappa, Christopher J.; McGillis, Wade R.; Raymond, Peter A.; Edson, James B.; Hintsa, Eric J.; Zemmelink, Hendrik J.; Dacey, John W. H.; Ho, David T.

    2007-05-01

    Air-water gas transfer influences CO2 and other climatically important trace gas fluxes on regional and global scales, yet the magnitude of the transfer is not well known. Widely used models of gas exchange rates are based on empirical relationships linked to wind speed, even though physical processes other than wind are known to play important roles. Here the first field investigations are described supporting a new mechanistic model based on surface water turbulence that predicts gas exchange for a range of aquatic and marine processes. Findings indicate that the gas transfer rate varies linearly with the turbulent dissipation rate to the ${^1}\\!/{_4 power in a range of systems with different types of forcing - in the coastal ocean, in a macro-tidal river estuary, in a large tidal freshwater river, and in a model (i.e., artificial) ocean. These results have important implications for understanding carbon cycling.

  1. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    Directory of Open Access Journals (Sweden)

    Z. Yao

    2014-06-01

    Full Text Available To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS is being increasingly adopted for the rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere–atmosphere exchanges of methane (CH4, nitrous oxide (N2O and carbon dioxide (CO2. The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emission over a complete year, as well as the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN and GCRPS (GUN and GNN, solely chicken manure (GCM and combined urea and chicken manure applications (GUM for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40% and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.087 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN. The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of −1.33 Mg C ha−1 yr−1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80–11.02 Mg CO2-eq ha−1 yr−1 for the conventional paddy and 3.05–9.37 Mg CO2-eq ha−1 yr−1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effect from rice cultivation. Using organic fertilizers for GCRPS

  2. Radiation-use efficiency and gas exchange responses to water and nutrient availability in irrigated and fertilized stands of sweetgum and sycamore.

    Science.gov (United States)

    Allen, Christopher B; Will, Rodney E; McGarvey, Robert C; Coyle, David R; Coleman, Mark D

    2005-02-01

    We investigated how water and nutrient availability affect radiation-use efficiency (epsilon) and assessed leaf gas exchange as a possible mechanism for shifts in epsilon. We measured aboveground net primary production (ANPP) and annual photosynthetically active radiation (PAR) capture to calculate epsilon as well as leaf-level physiological variables (light-saturated net photosynthesis, Asat; stomatal conductance, gs; leaf internal CO2 concentration, Ci; foliar nitrogen concentration, foliar [N]; and midday leaf water potential, Psileaf) during the second (2001) and third (2002) growing seasons in sweetgum (Liquidambar styraciflua L.) and sycamore (Platanus occidentalis L.) stands receiving a factorial combination of irrigation and fertilization at the Savannah River Site, South Carolina. Irrigation and fertilization increased PAR capture (maximum increase 60%) in 2001 and 2002 for both species and annual PAR capture was well correlated with ANPP (mean r2 = 0.77). A decreasing trend in epsilon was observed in non-irrigated stands for sweetgum in 2001 and for sycamore in both years, although this was only significant for sycamore in 2002. Irrigated stands maintained higher gas exchange rates than non-irrigated stands for sweetgum in 2001 and for sycamore in both years, although foliar [N] and Psileaf were generally unaffected. Because Ci decreased in proportion to gs in non-irrigated stands, it appeared that greater stomatal limitation of photosynthesis was associated with decreased Asat. On several measurement dates for sweetgum in 2001 and for sycamore in both years, epsilon was positively correlated with gas exchange variables (Asat, gs, Ci) (r ranged from 0.600 to 0.857). These results indicate that PAR capture is well correlated with ANPP and that gas exchange rates modified by irrigation can influence the conversion of captured light energy to biomass.

  3. A bacterial cytotoxin identifies the RhoA exchange factor Net1 as a key effector in the response to DNA damage.

    Directory of Open Access Journals (Sweden)

    Lina Guerra

    Full Text Available BACKGROUND: Exposure of adherent cells to DNA damaging agents, such as the bacterial cytolethal distending toxin (CDT or ionizing radiations (IR, activates the small GTPase RhoA, which promotes the formation of actin stress fibers and delays cell death. The signalling intermediates that regulate RhoA activation and promote cell survival are unknown. PRINCIPAL FINDINGS: We demonstrate that the nuclear RhoA-specific Guanine nucleotide Exchange Factor (GEF Net1 becomes dephosphorylated at a critical inhibitory site in cells exposed to CDT or IR. Expression of a dominant negative Net1 or Net1 knock down by iRNA prevented RhoA activation, inhibited the formation of stress fibers, and enhanced cell death, indicating that Net1 activation is required for this RhoA-mediated responses to genotoxic stress. The Net1 and RhoA-dependent signals involved activation of the Mitogen-Activated Protein Kinase p38 and its downstream target MAPK-activated protein kinase 2. SIGNIFICANCE: Our data highlight the importance of Net1 in controlling RhoA and p38 MAPK mediated cell survival in cells exposed to DNA damaging agents and illustrate a molecular pathway whereby chronic exposure to a bacterial toxin may promote genomic instability.

  4. A simple, closed-form, mathematical model for gas exchange in microchannel artificial lungs.

    Science.gov (United States)

    Potkay, Joseph A

    2013-06-01

    Microfabrication techniques are attractive for constructing artificial lungs due to the ability to create features similar in size to those in the natural lung. However, a simple and intuitive mathematical model capable of accurately predicting the gas exchange performance of microchannel artificial lungs does not currently exist. Such a model is critical to understanding and optimizing these devices. Here, we describe a simple, closed-form mathematical model for gas exchange in microchannel artificial lungs and qualify it through application to experimental data from several research groups. We utilize lumped parameters and several assumptions to obtain a closed-form set of equations that describe gas exchange. This work is intended to augment computational models by providing a more intuitive, albeit potentially less accurate, understanding of the operation and trade-offs inherent in microchannel artificial lung devices.

  5. Effect of nitric oxide inhalation on gas exchange in acute severe pneumonia.

    Science.gov (United States)

    Gómez, Federico P; Amado, Veronica M; Roca, Josep; Torres, Antoni; Nicolas, Josep M; Rodriguez-Roisin, Robert; Barberà, Joan A

    2013-06-15

    Inhaled nitric oxide (NO) causes selective pulmonary vasodilatation and may improve gas exchange. The study was aimed to evaluate the acute effects of inhaled NO on pulmonary gas exchange in severe unilateral pneumonia, where hypoxemia results from increased intrapulmonary shunt. We studied 8 patients without preexisting lung disease (59±18 yr; 4M/4F) with early unilateral severe pneumonia and respiratory failure. Pulmonary and systemic hemodynamics and gas exchange, including ventilation-perfusion (V;A/Q;) distributions, were measured at baseline and while breathing 5 and 40 parts per million (ppm) of NO. Inhaled NO caused a dose-dependent fall in pulmonary vascular resistance (by 12% and 21%, with 5 and 40ppm, respectively; ppneumonia.

  6. Dynamic C and N stocks - key factors controlling the C gas exchange of maize in a heterogenous peatland

    Science.gov (United States)

    Pohl, M.; Hoffmann, M.; Hagemann, U.; Giebels, M.; Albiac Borraz, E.; Sommer, M.; Augustin, J.

    2014-11-01

    Drainage and cultivation of fen peatlands creates complex small-scale mosaics of soils with extremely variable soil organic carbon (SOC) stocks and groundwater-level (GWL). To date, it remains unclear if such sites are sources or sinks for greenhouse gases like CO2 and CH4, especially if used for cropland. As individual control factors like GWL fail to account for this complexity, holistic approaches combining gas fluxes with the underlying processes are required to understand the carbon (C) gas exchange of drained fens. It can be assumed that the stocks of SOC and N located above the variable GWL - defined as dynamic C and N stocks - play a key role in the regulation of plant- and microbially mediated C gas fluxes of these soils. To test this assumption, the present study analysed the C gas exchange (gross primary production - GPP, ecosystem respiration - Reco, net ecosystem exchange - NEE, CH4) of maize using manual chambers for four years. The study sites were located near Paulinenaue, Germany. Here we selected three soils, which represent the full gradient in pedogenesis, GWL and SOC stocks (0-1 m) of the fen peatland: (a) Haplic Arenosol (AR; 8 kg C m-2); (b) Mollic Gleysol (GL; 38 kg C m-2); and (c) Hemic Histosol (HS; 87 kg C m-2). Daily GWL data was used to calculate dynamic SOC (SOCdyn) and N (Ndyn) stocks. Average annual NEE differed considerably among sites, ranging from 47 ± 30 g C m-2 a-1 at AR to -305 ± 123 g C m-2 a-1 at GL and -127 ± 212 g C m-2 a-1 at HS. While static SOC and N stocks showed no significant effect on C fluxes, SOCdyn and Ndyn and their interaction with GWL strongly influenced the C gas exchange, particularly NEE and the GPP:Reco ratio. Moreover, based on nonlinear regression analysis, 86% of NEE variability was explained by GWL and SOCdyn. The observed high relevance of dynamic SOC and N stocks in the aerobic zone for plant and soil gas exchange likely originates from the effects of GWL-dependent N availability on C formation and

  7. Age-dependent impacts of peatland restoration on the net ecosystem CO2 exchange of blanket bogs in Northern Scotland

    Science.gov (United States)

    Hambley, Graham; Hill, Timothy; Saunders, Matthew; Arn Teh, Yit

    2015-04-01

    The Flow Country of Northern Scotland is the largest area of contiguous blanket bog in the UK covering an area in excess of 400 km2. This region is the single largest peat and soil C repository in the UK, and plays a key role in mediating regional atmospheric exchanges of greenhouse gases (GHGs) such as carbon dioxide (CO2), methane (CH4) and water vapour (H2O). However, these peatlands were subject to significant afforestation in the 1980s, where large areas of blanket bog were drained and planted with Sitka spruce (Picea sitchensis) and Lodgepole Pine (Pinus contorta), resulting in modifications to micro-topographic features, vegetation composition and soil properties such as bulk density and water holding capacity, all of which are known to influence the production and emission of key GHGs. Since the late 1990s restoration work has been undertaken to remove forest plantations and to restore the peatland areas by raising the water table, predominantly by drain and furrow blocking, in order to encourage the recolonisation of Sphagnum species. Here we report findings from an eddy covariance study of CO2 and H2O exchange from an unmanaged peatland and a chronosequence of restored peatland sites, which were felled in 1998 and 2004. Located within the Forsinard Flows National Nature Reserve in Northern Scotland, these sites are being studied to better understand the key drivers of carbon dynamics in these ecosystems and also assess the age-dependent impacts of peatland restoration on the net CO2 sink strength. Preliminary data show rates of CO2 uptake increased with time since restoration, with peak assimilation rates of -9.9 and -14.4 micro mol CO2 m-2 s-1 measured at the 10 and 16 year old restoration sites, respectively. Carbon losses through ecosystem respiration followed a similar pattern. The data collected to date indicates that while peatland restoration is actively increasing CO2 uptake at each of the sites, more long-term observational data is required to

  8. Gas Transport and Exchange through Wetland Plant Aerenchyma

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans

    2013-01-01

    Aerenchyma, the large airspaces in aquatic plants, is a rapid gas transport pathway between atmosphere and soil in wetlands. Oxygen transport aerates belowground tissue and oxidizes rhizosphere soil, an important process in wetland biogeochemistry. Most plant O2 transport occurs by diffusion...

  9. Photosynthetic pigments and gas exchange in castor bean under conditions of above the optimal temperature and high CO2

    Directory of Open Access Journals (Sweden)

    Fabiola França Silva

    2015-08-01

    Full Text Available The castor bean plant, a Euphorbiaceae oil seed C3-metabolism rustic and drought-resistant plant, is cultivated in a wide range of environments due to its good adaptive capacity. However, given the current environmental changes, many biochemical and physiological impacts may affect the productivity of important crops, such as castor bean. This work aimed to evaluate the impacts of the castor bean gas exchange in response to high temperature and increased CO2concentration.Our experiment was conducted in a phytotron located at Embrapa Algodão in 2010. We adopted a completely randomized design, with four treatments in a factorial combination of two temperatures (30/20 and 37/30°C and two CO2 levels (400 and 800 mmol L-1; four replications were performed, obtained in five surveys over the growth cycle, for a total of 80 sample units. An infrared gas analyzer (IRGA - Infra Red Gas Analyzer was used for the quantification of the photosynthetic rate, stomatal conductance and transpiration. An increase in the atmospheric CO2 concentration and temperature negatively affected the physiology of the castor bean plants, decreasing the net rate of photosynthesis, transpiration and stomatal conductance.

  10. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  11. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  12. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  13. Greenhouse gas exchange in tropical mountain ecosystems in Tanzania

    Science.gov (United States)

    Gerschlauer, Friederike; Kikoti, Imani; Kiese, Ralf

    2014-05-01

    Tropical mountain ecosystems with their mostly immense biodiversity are important regions for natural resources but also for agricultural production. Their supportive ecosystem processes are particularly vulnerable to the combined impacts of global warming and the conversion of natural to human-modified landscapes. Data of impacts of climate and land use change on soil-atmosphere interactions due to GHG (CO2, CH4, and N2O) exchange from these ecosystems are still scarce, in particular for Africa. Tropical forest soils are underestimated as sinks for atmospheric CH4 with regard to worldwide GHG budgets (Werner et al. 2007, J GEOPHYS RES Vol. 112). Even though these soils are an important source for the atmospheric N2O budget, N2O emissions from tropical forest ecosystems are still poorly characterized (Castaldi et al. 2013, Biogeosciences 10). To obtain an insight of GHG balances of selected ecosystems soil-atmosphere exchange of N2O, CH4 and CO2 was investigated along the southern slope of Mt. Kilimanjaro, Tanzania. We will present results for tropical forests in three different altitudes (lower montane, Ocotea, and Podocarpus forest), home garden (extensive agro-forestry), and coffee plantation (intensive agro-forestry). Therefore we used a combined approach consisting of a laboratory parameterization experiment (3 temperature and 2 moisture levels) and in situ static chamber measurements for GHG exchange. Field measurements were conducted during different hygric seasons throughout two years. Seasonal variation of temperature and especially of soil moisture across the different ecosystems resulted in distinct differences in GHG exchange. In addition environmental parameters like soil bulk density and substrate availability varying in space strongly influenced the GHG fluxes within sites. The results from parameterization experiments and in situ measurements show that natural forest ecosystems and extensive land use had higher uptakes of CH4. For the investigated

  14. Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems

    Directory of Open Access Journals (Sweden)

    Junjiong Shao

    2016-08-01

    Full Text Available Climatic variables not only directly affect the interannual variability (IAV in net ecosystem exchange of CO2 (NEE but also indirectly drive it by changing the physiological parameters. Identifying these direct and indirect paths can reveal the underlying mechanisms of carbon (C dynamics. In this study, we applied a path analysis using flux data from 65 sites to quantify the direct and indirect climatic effects on IAV in NEE and to evaluate the potential relationships among the climatic variables and physiological parameters that represent physiology and phenology of ecosystems. We found that the maximum photosynthetic rate was the most important factor for the IAV in gross primary productivity (GPP, which was mainly induced by the variation in vapour pressure deficit. For ecosystem respiration (RE, the most important drivers were GPP and the reference respiratory rate. The biome type regulated the direct and indirect paths, with distinctive differences between forests and non-forests, evergreen needleleaf forests and deciduous broadleaf forests, and between grasslands and croplands. Different paths were also found among wet, moist and dry ecosystems. However, the climatic variables can only partly explain the IAV in physiological parameters, suggesting that the latter may also result from other biotic and disturbance factors. In addition, the climatic variables related to NEE were not necessarily the same as those related to GPP and RE, indicating the emerging difficulty encountered when studying the IAV in NEE. Overall, our results highlight the contribution of certain physiological parameters to the IAV in C fluxes and the importance of biome type and multi-year water conditions, which should receive more attention in future experimental and modelling research.

  15. A computational model of insect discontinuous gas exchange: A two-sensor, control systems approach.

    Science.gov (United States)

    Grieshaber, Beverley J; Terblanche, John S

    2015-06-07

    The insect gas exchange system is characterised by branching air-filled tubes (tracheae/tracheoles) and valve-like structures in their outer integument (spiracles) which allow for a periodic gas exchange pattern known as the discontinuous gas exchange cycle (DGC). The DGC facilitates the temporal decoupling of whole animal gas exchange from cellular respiration rates and may confer several physiological benefits, which are nevertheless highly controversial (primarily reduction of cellular oxidative damage and/or respiratory water saving). The intrinsic and extrinsic factors influencing DGCs are the focus of extensive ongoing research and little consensus has been reached on the evolutionary genesis or mechanistic costs and benefits of the pattern. Despite several hypotheses and much experimental and evolutionary biology research, a mechanistic physical model, which captures various key elements of the DGC pattern, is currently lacking. Here, we present a biologically realistic computational, two-sensor DGC model (pH/carbon dioxide and oxygen setpoints) for an Orthopteran gas exchange system, and show computationally for the first time that a control system of two interacting feedback loops is capable of generating a full DGC pattern with outputs which are physiologically realistic, quantitatively matching experimental results found in this taxonomic model elsewhere. A finite-element mathematical approach is employed and various trigger sets are considered. Parameter sensitivity analyses suggest that various aspects of insect DGC are adequately captured in this model. In particular, with physiologically relevant input parameters, the full DGC pattern is induced; and the phase durations, endotracheal carbon dioxide partial pressure ranges, and pH fluctuations which arise are physically realistic. The model results support the emergent property hypothesis for the existence of DGC, and indicate that asymmetric loading and off-loading (hysteresis) in one of the sensor

  16. The Iġnik Sikumi Field Experiment, Alaska North Slope: Design, operations, and implications for CO2−CH4 exchange in gas hydrate reservoirs

    Science.gov (United States)

    Boswell, Ray; Schoderbek, David; Collett, Timothy S.; Ohtsuki, Satoshi; White, Mark; Anderson, Brian J.

    2017-01-01

    The Iġnik Sikumi Gas Hydrate Exchange Field Experiment was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. The primary goals of the program were to (1) determine the feasibility of gas injection into hydrate-bearing sand reservoirs and (2) observe reservoir response upon subsequent flowback in order to assess the potential for CO2 exchange for CH4 in naturally occurring gas hydrate reservoirs. Initial modeling determined that no feasible means of injection of pure CO2 was likely, given the presence of free water in the reservoir. Laboratory and numerical modeling studies indicated that the injection of a mixture of CO2 and N2 offered the best potential for gas injection and exchange. The test featured the following primary operational phases: (1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; (2) flowback conducted at downhole pressures above the stability threshold for native CH4 hydrate; and (3) an extended (30-days) flowback at pressures near, and then below, the stability threshold of native CH4 hydrate. The test findings indicate that the formation of a range of mixed-gas hydrates resulted in a net exchange of CO2 for CH4 in the reservoir, although the complexity of the subsurface environment renders the nature, extent, and efficiency of the exchange reaction uncertain. The next steps in the evaluation of exchange technology should feature multiple well applications; however, such field test programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization. Additional insights gained from the field program include the following: (1) gas hydrate destabilization is self-limiting, dispelling any notion of the potential for

  17. Impact of Detoxification Techniques on Pulmonary Gas Exchange Function in Patients with Generalized Peritonitis

    Directory of Open Access Journals (Sweden)

    R. A. Mlinnik

    2012-01-01

    Full Text Available Objective: to analyze the impact of different detoxification techniques on pulmonary gas exchange function in patients with generalized peritonitis complicated by multiple organ failure. Subjects and methods. One hundred and thirty patients with generalized peritonitis were examined. According to the used detoxification techniques, the patients were divided into 5 groups. All the patients underwent a comprehensive examination, the key element of which was the evaluation of gas exchange parameters. Results. Membrane plasmapheresis and plasmapheresis with sodium hypochlorite infusion to the plasma filter in patients with peritonitis are shown to improve pulmonary blood oxygenation.

  18. Gamma radiation effect on gas production in anion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Traboulsi, A. [CEA Marcoule, DEN/DTCD/SPDE/LCFI, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); E.A. LISA – METICA, Aix Marseille Université, Pôle de l’Etoile, case 451, 13397 Marseille Cedex 20 (France); Labed, V., E-mail: veronique.labed@cea.fr [CEA Marcoule, DEN/DTCD/SPDE/LCFI, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Dauvois, V. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91191 Gif sur Yvette Cedex (France); Dupuy, N.; Rebufa, C. [E.A. LISA – METICA, Aix Marseille Université, Pôle de l’Etoile, case 451, 13397 Marseille Cedex 20 (France)

    2013-10-01

    Radiation-induced decomposition of Amberlite IRA400 anion exchange resin in hydroxide form by gamma radiolysis has been studied at various doses in different atmospheres (anaerobic, anaerobic with liquid water, and aerobic). The effect of these parameters on the degradation of ion exchange resins is rarely investigated in the literature. We focused on the radiolysis gases produced by resin degradation. When the resin was irradiated under anaerobic conditions with liquid water, the liquid phase over the resin was also analyzed to identify any possible water-soluble products released by degradation of the resin. The main products released are trimethylamine (TMA), molecular hydrogen (H{sub 2g}) and carbon dioxide (CO{sub 2g}). TMA and H{sub 2g} are produced in all the irradiation atmospheres. However, TMA was in gaseous form under anaerobic and aerobic conditions and in aqueous form in presence of liquid water. In the latter conditions, TMA{sub aq} was associated with aqueous dimethylamine (DMA{sub aq}), monomethylamine (MMA{sub aq}) and ammonia (NH{sub 4}{sup +}{sub aq}). CO{sub 2g} is formed in the presence of oxygen due to oxidation of organic compounds present in the system, in particular the degradation products such as TMA{sub g}.

  19. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing

    DEFF Research Database (Denmark)

    Johansson, T.; Malmer, N.; Crill, P. M.;

    2006-01-01

    SUB-ARCTIC MIRE; CLIMATE-CHANGE; BOREAL PEATLANDS; METHANE EMISSIONS; VASCULAR PLANTS; CARBON-DIOXIDE; PERMAFROST THAW; CO2 EXCHANGE; WATER-TABLE......SUB-ARCTIC MIRE; CLIMATE-CHANGE; BOREAL PEATLANDS; METHANE EMISSIONS; VASCULAR PLANTS; CARBON-DIOXIDE; PERMAFROST THAW; CO2 EXCHANGE; WATER-TABLE...

  20. The Precise Mechanisms of a High-Speed Ultrasound Gas Sensor and Detecting Human-Specific Lung Gas Exchange

    Directory of Open Access Journals (Sweden)

    Hideki Toda

    2012-12-01

    Full Text Available In this paper, we propose and develop a new real-time human respiration process analysis method using a high-time-sampling gas concentration sensor based on ultrasound. A unique point about our proposed gas concentration sensor is its 1 kHz gas concentration sampling speed. This figure could not have been attained by previously proposed gas concentration measurement methods such as InfraRed, semiconductor gas sensors, or GC-MS, because the gas analysis speeds were a maximum of a few hundred milliseconds. First, we describe the proposed new ultrasound sound speed measurement method and the signal processing, and present the measurement circuit diagram. Next, we analyse the human respiration gas variation patterns of five healthy subjects using a newly developed gas-mask-type respiration sensor. This reveals that the rapid gas exchange from H2O to CO2 contains air specific to the human being. In addition, we also measured medical symptoms in subjects suffering from asthma, hyperventilation and bronchial asthma. The millisecond level high-speed analysis of the human respiration process will be useful for the next generation of healthcare, rehabilitation and sports science technology.

  1. Three-dimensional two-phase flow model of proton exchange membrane fuel cell with parallel gas distributors

    Science.gov (United States)

    Liu, Xunliang; Lou, Guofeng; Wen, Zhi

    A non-isothermal, steady-state, three-dimensional (3D), two-phase, multicomponent transport model is developed for proton exchange membrane (PEM) fuel cell with parallel gas distributors. A key feature of this work is that a detailed membrane model is developed for the liquid water transport with a two-mode water transfer condition, accounting for the non-equilibrium humidification of membrane with the replacement of an equilibrium assumption. Another key feature is that water transport processes inside electrodes are coupled and the balance of water flux is insured between anode and cathode during the modeling. The model is validated by the comparison of predicted cell polarization curve with experimental data. The simulation is performed for water vapor concentration field of reactant gases, water content distribution in the membrane, liquid water velocity field and liquid water saturation distribution inside the cathode. The net water flux and net water transport coefficient values are obtained at different current densities in this work, which are seldom discussed in other modeling works. The temperature distribution inside the cell is also simulated by this model.

  2. Effects of Glucose Feeding on Respiration and Photosynthesis in Photoautotrophic Dianthus caryophyllus Cells: Mass Spectrometric Determination of Gas Exchange.

    Science.gov (United States)

    Avelange, M H; Sarrey, F; Rébillé, F

    1990-11-01

    When glucose (20 millimolar) was added to photoautotrophic cell suspension cultures of Dianthus caryophyllus, there was during the first 10 hours an accumulation of carbohydrates and phosphorylated compounds. These biochemical changes were accompanied by a progressive decrease of net photosynthesis and a twofold increase of the dark respiratory rate. The rise of respiration was associated with a rise of fumarase and cytochrome c oxidase activities, two mitochondrial markers. Gas exchange of illuminated cells were performed with a mass spectrometry technique and clearly established that during the first hours of glucose feeding, the decrease of net photosynthesis was essentially due to an increase of respiration in light, whereas the photosynthetic processes (gross O(2) evolution and gross CO(2) fixation) were almost not affected. However, after 24 hours of experiment, O(2) evolution and CO(2) fixation started to decline in turn. While ribulose-1,5-bisphosphate carboxylase activity was little affected during the first 48 hours of the experiment, the maximal light-induced phosphoribulokinase activity dramatically decreased with time and represented after 48 hours only 30% of its initial activity. It is postulated that the decrease in phosphoribulokinase activity was at least partially responsible for the decrease of CO(2) fixation and the metabolic events involved in this regulation are discussed.

  3. Effects of Anti-G Measures on Gas Exchange.

    Science.gov (United States)

    1981-05-01

    position (+lGz), and the endotracheal tube was connected to a Rudolf valve arranged so that expired gas passed through a heated pneumotachograph and a... Steiner , 1960; Peterson, Bishop and Erickson, 1977). Data presented in Table 111-I suggest that application of the G-sult abdominal bladder tended to...accelerations. Aerospace Med. 31: 213-219, 1960. 18. Hershgold, E.J. and S.H. Steiner . Cardiovascular changes during acceleration stress in dogs. J

  4. Dynamic C and N stocks - key factors controlling the C gas exchange of maize in heterogenous peatland

    Science.gov (United States)

    Pohl, M.; Hoffmann, M.; Hagemann, U.; Giebels, M.; Albiac Borraz, E.; Sommer, M.; Augustin, J.

    2015-05-01

    The drainage and cultivation of fen peatlands create complex small-scale mosaics of soils with extremely variable soil organic carbon (SOC) stocks and groundwater levels (GWLs). To date, the significance of such sites as sources or sinks for greenhouse gases such as CO2 and CH4 is still unclear, especially if the sites are used for cropland. As individual control factors such as GWL fail to account for this complexity, holistic approaches combining gas fluxes with the underlying processes are required to understand the carbon (C) gas exchange of drained fens. It can be assumed that the stocks of SOC and N located above the variable GWL - defined as dynamic C and N stocks - play a key role in the regulation of the plant- and microbially mediated CO2 fluxes in these soils and, inversely, for CH4. To test this assumption, the present study analysed the C gas exchange (gross primary production - GPP; ecosystem respiration - Reco; net ecosystem exchange - NEE; CH4) of maize using manual chambers for 4 years. The study sites were located near Paulinenaue, Germany, where we selected three soil types representing the full gradient of GWL and SOC stocks (0-1 m) of the landscape: (a) Haplic Arenosol (AR; 8 kg C m-2); (b) Mollic Gleysol (GL; 38 kg C m-2); and (c) Hemic Histosol (HS; 87 kg C m-2). Daily GWL data were used to calculate dynamic SOC (SOCdyn) and N (Ndyn) stocks. Average annual NEE differed considerably among sites, ranging from 47 ± 30 g C m-2 yr-1 in AR to -305 ± 123 g C m-2 yr-1 in GL and -127 ± 212 g C m-2 yr-1 in HS. While static SOC and N stocks showed no significant effect on C fluxes, SOCdyn and Ndyn and their interaction with GWL strongly influenced the C gas exchange, particularly NEE and the GPP : Reco ratio. Moreover, based on nonlinear regression analysis, 86% of NEE variability was explained by GWL and SOCdyn. The observed high relevance of dynamic SOC and N stocks in the aerobic zone for plant and soil gas exchange likely originates from the

  5. Perfusion and diffusion limitations in middle ear gas exchange: the exchange of CO2 as a test case.

    Science.gov (United States)

    Marcusohn, Yael; Ar, Amos; Dirckx, Joris J J

    2010-06-14

    A long standing debate on perfusion/diffusion limitations in the context of middle ear (ME) gas exchange was revisited using data obtained from previous iso-pressure gas-exchange measurements in different mammals. We tried to determine whether the exchange of CO(2) in the ME is limited by perfusion or by diffusion by comparing the mass specific cardiac output (msQ) and the mass specific initial CO(2) flow rate into air-washed MEs (msV(i) CO(2)) of rabbits and rats. Based on previously published allometry at rest, the msQ was 0.154 mL/(min g) in rabbits (mean body weight: 2800 g) and 0.259 mL/(min g) in rats (mean body weight: 179.1 g); msV(i) CO(2) (Delta t=0) was 0.109+/-0.047 microL/(h g) in rabbits (n=16) and 0.170+/-0.094 microL/(h g) in rats (n=9). Similar ratios were found when an allometric comparison was made between the ratio of msV(i) CO(2) (Delta t=0) (approximately 0.64), and the ratio of msQs (approximately 0.59) in rabbits and rats. If the active mucosal surface areas of MEs of rabbits and rats are directly proportional to their masses as are the masses of their hearts and if their msQs are proportional to the rates of blood flows in the ME mucosa, these results support the assumption that the exchange of CO(2) in the ME of mammals is mainly perfusion (and not diffusion) dependent.

  6. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    Science.gov (United States)

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  7. Features of gas exchange of healthy people of working age

    Directory of Open Access Journals (Sweden)

    Noreiko S.B.

    2011-12-01

    Full Text Available The purpose of this study was to improve the accuracy of determining the basal metabolism of healthy people. Comparative studies of basal metabolism of healthy men and women on probation and respiratory physical factors are considered. Surveyed 30 healthy men and women aged 21-56 years. Determination of the volume of absorbed oxygen and produces carbon dioxide carried by the gas analyzer "Spirolit-2" were defined. Calculate the actual respiratory rate. It is established that the actual value of basal metabolism is characterized by low dispersion and higher accuracy.

  8. The Precise Mechanisms of a High-Speed Ultrasound Gas Sensor and Detecting Human-Specific Lung Gas Exchange

    Directory of Open Access Journals (Sweden)

    Hideki Toda

    2012-12-01

    Full Text Available In this paper, we propose and develop a new real‐time human respiration process analysis method using a high‐time‐sampling gas concentration sensor based on ultrasound. A unique point about our proposed gas concentration sensor is its 1 kHz gas concentration sampling speed. This figure could not have been attained by previously proposed gas concentration measurement methods such as InfraRed, semiconductor gas sensors, or GC‐MS, because the gas analysis speeds were a maximum of a few hundred milliseconds. First, we describe the proposed new ultrasound sound speed measurement method and the signal processing, and present the measurement circuit diagram. Next, we analyse the human respiration gas variation patterns of five healthy subjects using a newly developed gas‐mask‐ type respiration sensor. This reveals that the rapid gas exchange from H2O to CO2 contains air specific to the human being. In addition, we also measured medical symptoms in subjects suffering from asthma, hyperventilation and bronchial asthma. The millisecond level high‐speed analysis of the human respiration process will be useful for the next generation of healthcare, rehabilitation and sports science technology.

  9. New gas-gas heat exchanger in silicon carbide for heat recovery from high temperature gases (1200/sup 0/C)

    Energy Technology Data Exchange (ETDEWEB)

    Galant, S.; Grouset, D.; Martinez, G.; Mulet, J.; Rebuffat, D. (Societe Bertin, 78 - Plaisir (France)); Minjolle, L. (Societe Ceraver, 75 - Paris (France))

    1984-06-01

    A study of a novel gas-gas ceramic heat exchanger is presented with main industrial end uses as a heat recovery systems on exhaust combustion gases to preheat the combustion air to furnace burners. Large overall heat transfer coefficients are obtained by using both radiative and jet impingement convective heat transfer. A silicium carbide plate design is chosen on the basis of existing large scale production capabilities. A 100 hour experimental test program is carried out successfully, which confirms thermodynamic calculations and good overall design: 4 year payback times are expected for a standard industrial case examined. Further optimization studies will aim at further reducing such preliminary values.

  10. Stomatal behaviour and gas exchange of Sedges ( Carex spp.) under different soil moisture regimes

    Science.gov (United States)

    Busch, J.; Lösch, R.

    Sedges ( Carex spec., Cyperaceae) are important members of different vegetation types in temperate zones nearly all over the world. For this, knowledge of gas exchange and stomata behaviour of sedges is significant for understanding the exchange of water vapour and carbon dioxide between such vegetation types and the atmosphere. The gas exchange of several Carex species was studied in an experimental site of the Botanical Garden Düsseldorf (Germany). Transpiration and netassimilation rates (A), leaf conductances (g) and microclimatic parameters were measured porometrically during two vegetation periods. Patterns of dependence of leaf gas exchange on microclimatic conditions were worked out for different species and culture regimes. The sedges differ in stomatal sensitivity to changing air humidity. Water loss through transpiration is therefore decoupled from evaporation in a species-specific degree. Resulting mathematical models of g and A are presented and the importance of these species-specific differences in modelling and upscaling water vapour, carbon dioxide and trace gas fluxes are pointed out.

  11. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    NARCIS (Netherlands)

    Mommer, L.; Pedersen, O.; Visser, E.J.W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants

  12. Flooding tolerance of Carex species. II. Root gas-exchange capacity

    NARCIS (Netherlands)

    Moog, PR; Bruggemann, W

    1998-01-01

    Root CO2 and O-2 gas exchange were measured in young Carer extensa Good. (flooding sensitive), C. remota L. and C. pseudocyperus L. (both flooding tolerant) plants, precultured either aerobically or anaerobically. Temperature changes form 21 to II degrees C had small effects on root CO2 release from

  13. Interactions between heart rate variability and pulmonary gas exchange efficiency in humans.

    Science.gov (United States)

    Sin, Peter Y W; Webber, Matthew R; Galletly, Duncan C; Ainslie, Philip N; Brown, Stephen J; Willie, Chris K; Sasse, Alexander; Larsen, Peter D; Tzeng, Yu-Chieh

    2010-07-01

    The respiratory component of heart rate variability (respiratory sinus arrhythmia, RSA) has been associated with improved pulmonary gas exchange efficiency in humans via the apparent clustering and scattering of heart beats in time with the inspiratory and expiratory phases of alveolar ventilation, respectively. However, since human RSA causes only marginal redistribution of heart beats to inspiration, we tested the hypothesis that any association between RSA amplitude and pulmonary gas exchange efficiency may be indirect. In 11 patients with fixed-rate cardiac pacemakers and 10 healthy control subjects, we recorded R-R intervals, respiratory flow, end-tidal gas tension and the ventilatory equivalents for carbon dioxide and oxygen during 'fast' (0.25 Hz) and 'slow' paced breathing (0.10 Hz). Mean heart rate, mean arterial blood pressure, mean arterial pressure fluctuations, tidal volume, end-tidal CO(2), and were similar between pacemaker and control groups in both the fast and slow breathing conditions. Although pacemaker patients had no RSA and slow breathing was associated with a 2.5-fold RSA amplitude increase in control subjects (39 +/- 21 versus 97 +/- 45 ms, P exchange efficiency during variable-frequency paced breathing observed in prior human work is not contingent on RSA being present. Therefore, whether RSA serves an intrinsic physiological function in optimizing pulmonary gas exchange efficiency in humans requires further experimental validation.

  14. Oxygen-induced plasticity in tracheal morphology and discontinuous gas exchange cycles in cockroaches Nauphoeta cinerea.

    Science.gov (United States)

    Bartrim, Hamish; Matthews, Philip G D; Lemon, Sussan; White, Craig R

    2014-12-01

    The function and mechanism underlying discontinuous gas exchange in terrestrial arthropods continues to be debated. Three adaptive hypotheses have been proposed to explain the evolutionary origin or maintenance of discontinuous gas exchange cycles (DGCs), which may have evolved to reduce respiratory water loss, facilitate gas exchange in high CO2 and low O2 micro-environments, or to ameliorate potential damage as a result of oversupply of O2. None of these hypotheses have unequivocal support, and several non-adaptive hypotheses have also been proposed. In the present study, we reared cockroaches Nauphoeta cinerea in selected levels of O2 throughout development, and examined how this affected growth rate, tracheal morphology and patterns of gas exchange. O2 level in the rearing environment caused significant changes in tracheal morphology and the exhibition of DGCs, but the direction of these effects was inconsistent with all three adaptive hypotheses: water loss was not associated with DGC length, cockroaches grew fastest in hyperoxia, and DGCs exhibited by cockroaches reared in normoxia were shorter than those exhibited by cockroaches reared in hypoxia or hyperoxia.

  15. Discontinuous gas exchange exhibition is a heritable trait in speckled cockroaches Nauphoeta cinerea.

    Science.gov (United States)

    Schimpf, N G; Matthews, P G D; White, C R

    2013-07-01

    The regulation of insect respiratory gas exchange has long been an area of interest. In particular, the reason why insects from at least five orders exhibit patterns of gas exchange that include regular periods of spiracular closure has been the source of much controversy. Three adaptive hypotheses propose that these discontinuous gas-exchange cycles (DGCs) evolved to either limit water loss across respiratory surfaces, facilitate gas exchange in underground environments or to limit oxidative damage. It is possible that DGCs evolved independently multiple times and for different reasons, but for DGCs to be a plausible target for natural selection, they must be heritable and confer a fitness benefit. In a previous study of cockroaches Nauphoeta cinerea, we demonstrated that DGCs are repeatable and extend survival under food and water restriction. Here, we show for the first time that DGCs are heritable, suggesting that they are a plausible target for natural selection. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  16. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    NARCIS (Netherlands)

    Mommer, L.; Pedersen, O.; Visser, E.J.W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants maint

  17. Emphysema following vitrectomy with fluid–gas exchange: description of a rare complication

    Directory of Open Access Journals (Sweden)

    Damasceno EF

    2014-02-01

    Full Text Available Eduardo F Damasceno,1 Nadyr Damasceno,2 Soraya Horowitz,2 Marcio Mortera Rodrigues3 1Universidade Federal Fluminense, Niterói, Brazil; 2Hospital Naval Marcílio Dias, Rio de Janeiro, Brazil; 3Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil Purpose: To report a case of subcutaneous emphysema involving the orbit, mediastinum, and face after pars plana vitrectomy with fluid–gas exchange. Methods: Case report of a 55-year-old man who presented with bilateral eyelid and face edema and dysphagia in the immediate postoperative period after pars plana vitrectomy. Orbital and chest computed tomographies were performed, revealing emphysema of the orbit and soft tissue of the face, extending from the neck to the upper chest. Results: The patient with a retinal detachment in the right eye underwent 23-gauge vitrectomy surgery with fluid–gas exchange and an implantation of silicone oil. The patient had a previous history of facial trauma for more than 20 years with an orbital fracture. After surgery, the patient developed emphysema of the orbit, soft tissue of the face and upper chest. Systemic prophylactic antibiotics associated with antibiotics and steroid drops performed a satisfactory evolution. Conclusion: The fluid–gas exchange during pars plana vitrectomy in patients with orbital fracture can lead to emphysema of the face, chest, and soft tissue. Keywords: vitrectomy complications, fluid–gas exchange, orbital emphysema, mediastinal emphysema, face emphysema, orbit fracture

  18. Estimation of Ecosystem Parameters of the Community Land Model with DREAM: Evaluation of the Potential for Upscaling Net Ecosystem Exchange

    Science.gov (United States)

    Hendricks Franssen, H. J.; Post, H.; Vrugt, J. A.; Fox, A. M.; Baatz, R.; Kumbhar, P.; Vereecken, H.

    2015-12-01

    Estimation of net ecosystem exchange (NEE) by land surface models is strongly affected by uncertain ecosystem parameters and initial conditions. A possible approach is the estimation of plant functional type (PFT) specific parameters for sites with measurement data like NEE and application of the parameters at other sites with the same PFT and no measurements. This upscaling strategy was evaluated in this work for sites in Germany and France. Ecosystem parameters and initial conditions were estimated with NEE-time series of one year length, or a time series of only one season. The DREAM(zs) algorithm was used for the estimation of parameters and initial conditions. DREAM(zs) is not limited to Gaussian distributions and can condition to large time series of measurement data simultaneously. DREAM(zs) was used in combination with the Community Land Model (CLM) v4.5. Parameter estimates were evaluated by model predictions at the same site for an independent verification period. In addition, the parameter estimates were evaluated at other, independent sites situated >500km away with the same PFT. The main conclusions are: i) simulations with estimated parameters reproduced better the NEE measurement data in the verification periods, including the annual NEE-sum (23% improvement), annual NEE-cycle and average diurnal NEE course (error reduction by factor 1,6); ii) estimated parameters based on seasonal NEE-data outperformed estimated parameters based on yearly data; iii) in addition, those seasonal parameters were often also significantly different from their yearly equivalents; iv) estimated parameters were significantly different if initial conditions were estimated together with the parameters. We conclude that estimated PFT-specific parameters improve land surface model predictions significantly at independent verification sites and for independent verification periods so that their potential for upscaling is demonstrated. However, simulation results also indicate

  19. Effects of drought – altered seasonality and low rainfall – in net ecosystem carbon exchange of three contrasting Mediterranean ecosystems

    Directory of Open Access Journals (Sweden)

    A. Rodrigues

    2007-06-01

    Full Text Available Droughts cause reductions in gross primary production (GPP and also in net ecosystem exchange (NEE, contributing to most of the inter-annual variability in terrestrial carbon sequestration. In seasonally dry climates (Mediterranean droughts result from reductions in annual rainfall and from changes in rain seasonality. In western Iberia, the hydrological-year (i.e., from October to September of 2004–2005 was extremely dry, with precipitation 50% below the long-term mean (691 mm in 1961–1990, but 2005–2006 was normal. We compared the carbon fluxes measured by the eddy covariance technique from three contrasting ecosystems in southern Portugal: an evergreen oak woodland (savannah-like with ca. 21% tree cover; a Mediterranean C3/C4 grassland; and a coppiced eucalyptus plantation. During the dry hydrological-year of 2004–2005, NEE was lowest, the highest sink strength was in the eucalypt plantation (NEE = –399 g C m −2 year−1 as compared to the oak woodland (NEE = –88 g C m −2 year−1, and the grassland (NEE = +49 g C m −2 year −1. The latter was a source of carbon dioxide. The NEE values of the dry year were, however, much lower than those for wetter years, e.g. NEE = –861 g C m−2 year −1 in 2002–2003 in the eucalypt plantation. The NEE of the grassland and the oak savannah in the 2005–2006 hydrological-year, with annual precipitation above the long term mean, were –190 and –120 g C m −2 year−1, respectively. All ecosystems studied increased their rain-use efficiency (GPP per unit of rain volume increased in dry years. In the case of annual vegetation – grassland and low tree density woodland, however &ndash, rain-use efficiency decreased with severe drought. However, this was more pronounced in the eucalypt plantation due to greater GPP and the use of deep soil water resources. Although both calendar years of 2004 and 2005 had equally low rainfall, the effect of drought on the eucalypt plantation was

  20. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae).

    Science.gov (United States)

    Terblanche, John S; Chown, Steven L

    2010-05-01

    Air flow rates may confound the investigation and classification of insect gas exchange patterns. Here we report the effects of flow rates (50, 100, 200, 400 ml min(-1)) on gas exchange patterns in wild-caught Glossina morsitans morsitans from Zambia. At rest, G. m. morsitans generally showed continuous or cyclic gas exchange (CGE) but no evidence of discontinuous gas exchange (DGE). Flow rates had little influence on the ability to detect CGE in tsetse, at least in the present experimental setup and under these laboratory conditions. Importantly, faster flow rates resulted in similar gas exchange patterns to those identified at lower flower rates suggesting that G. m. morsitans did not show DGE which had been incorrectly identified as CGE at lower flow rates. While CGE cycle frequency was significantly different among the four flow rates (prate treatment variation. Using a laboratory colony of closely related, similar-sized G. morsitans centralis we subsequently investigated the effects of temperature, gender and feeding status on CGE pattern variation since these factors can influence insect metabolic rates. At 100 ml min(-1) CGE was typical of G. m. centralis at rest, although it was significantly more common in females than in males (57% vs. 43% of 14 individuals tested per gender). In either sex, temperature (20, 24, 28 and 32 degrees C) had little influence on the number of individuals showing CGE. However, increases in metabolic rate with temperature were modulated largely by increases in burst volume and cycle frequency. This is unusual among insects showing CGE or DGE patterns because increases in metabolic rate are usually modulated by increases in frequency, but either no change or a decline in burst volume.

  1. Diurnal Course of Gas Exchange and Water Use Efficiency of Platycladus orientalis in the Semiarid Region of the Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    Tian Jinghui; He Kangning; Wang Baitian; Guo Jianghong; Zhang Weiqiang; Yin Jing

    2006-01-01

    The daily gas exchange,stomatal conductance,and water use efficiency of Platycladus orientalis in the test field of Fangshan county of Shanxi Province in the semiarid region of the Loess Plateau were measured with portable Li-6200 gas analysis system in natural conditions.The results showed that the diurnal course of net photosynthetic rate displayed a two-peak pattern,that of stomatal conductance displayed a hollow pattern,and that of transpiration rate displayed a signal-peak pattern.Water use efficiency culminated in the early morning.On the basis of two criteria of stomatal limitation of photosynthesis suggested by Farquhar and Sharkey,the predominant limiting factor of photosynthesis was the stomatal conductance of stomatal limitation in the morning (10:00-12:00).However,the midday depression of photosynthesis at noon (12:00-14:00) and the decrease in photosynthesis in the afternoon (16:00-18:00) were the results of nonstomatal limitation,such as low carboxylation capacity of the leaf mesophyll.

  2. Xenon Anesthesia Improves Respiratory Gas Exchanges in Morbidly Obese Patients

    Directory of Open Access Journals (Sweden)

    Antonio Abramo

    2010-01-01

    Full Text Available Background. Xenon-in-oxygen is a high density gas mixture and may improve PaO2/FiO2 ratio in morbidly obese patients uniforming distribution of ventilation during anesthesia. Methods. We compared xenon versus sevoflurane anesthesia in twenty adult morbidly obese patients (BMI>35 candidate for roux-en-Y laparoscopic gastric bypass and assessed PaO2/FiO2 ratio at baseline, at 15 min from induction of anaesthesia and every 60 min during surgery. Differences in intraoperative and postoperative data including heart rate, systolic and diastolic pressure, oxygen saturation, plateau pressure, eyes opening and extubation time, Aldrete score on arrival to the PACU were compared by the Mann-Whitney test and were considered as secondary aims. Moreover the occurrence of side effects and postoperative analgesic demand were assessed. Results. In xenon group PaO2-FiO2 ratio was significantly higher after 60 min and 120 min from induction of anesthesia; heart rate and overall remifentanil consumption were lower; the eyes opening time and the extubation time were shorter; morphine consumption at 72 hours was lower; postoperative nausea was more common. Conclusions. Xenon anesthesia improved PaO2/FiO2 ratio and maintained its distinctive rapid recovery times and cardiovascular stability. A reduction of opioid consumption during and after surgery and an increased incidence of PONV were also observed in xenon group.

  3. Gas separation by the molecular exchange flow through micropores of the membrane

    Science.gov (United States)

    Matsumoto, Michiaki; Nakaye, Shoeji; Sugimoto, Hiroshi

    2016-11-01

    A model gas separator that makes use of the molecular exchange flow through porous membrane of 18 cm2 area is fabricated. The gas separator performance is tested for helium-neon mixture. The separator divides a continuous flow of gas mixture into two flows of different gases. The difference of mole percentage is around 8 % at the volumetric feed flow rate of 1 sccm. In the present system, the molecular exchange flow is induced in two Knudsen pumps, where the mixed cellulose ester membrane is used as the thermal transpiration material. The experiment demonstrates the capability of these pumps to increase the concentration of heavy and light molecules, respectively, from the feed mixture.

  4. Effects of volume corrections and resonance decays on cumulants of net-charge distributions in a Monte Carlo hadron resonance gas model

    Science.gov (United States)

    Xu, Hao-jie

    2017-02-01

    The effects of volume corrections and resonance decays (the resulting correlations between positive charges and negative charges) on cumulants of net-proton distributions and net-charge distributions are investigated by using a Monte Carlo hadron resonance gas (MCHRG) model. The required volume distributions are generated by a Monte Carlo Glauber (MC-Glb) model. Except the variances of net-charge distributions, the MCHRG model with more realistic simulations of volume corrections, resonance decays and acceptance cuts can reasonably explain the data of cumulants of net-proton distributions and net-charge distributions reported by the STAR collaboration. The MCHRG calculations indicate that both the volume corrections and resonance decays make the cumulant products of net-charge distributions deviate from the Skellam expectations: the deviations of Sσ and κσ2 are dominated by the former effect while the deviations of ω are dominated by the latter one.

  5. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    Science.gov (United States)

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-01

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air.

  6. Organic iodine removal from simulated dissolver off-gas streams using partially exchanged silver mordenite

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1982-01-01

    The removal of methyl iodide by adsorption onto silver mordenite was studied using a simulated off-gas from the fuel dissolution step of a nuclear fuel reprocessing plant. The methyl iodide adsorption of partially exchanged silver mordenite was examined for the effects of NO/sub x/, humidity, filter temperature, and degree of silver exchange. Partially exchanged silver mordenite, in general, achieved significantly higher silver utilizations than the fully exchanged material. Silver utilizations of > 95% were achieved, assuming the formation of AgI. The experimental results indicate that CH/sub 3/I loadings increase proportionally with silver loading up to 5 wt % silver and then appear to level off. Tests conducted to determine the effect of temperature on the loading showed higher loadings at 200/sup 0/C than at either 150 or 250/sup 0/C. The presence of NO, NO/sub 2/, and H/sub 2/O vapor showed negligible effects on the loading of CH/sub 3/I. In contrast to iodine loaded onto fully exchanged silver mordenite, the iodine loaded onto the partially exchanged silver mordenite could not be stripped by either 4.5% hydrogen or 100% hydrogen at temperatures up to 500/sup 0/C. A study of the regeneration characteristics of fully exchanged silver mordenite indicates a decreased adsorbent capacity after complete removal of the iodine with 4.5% hydrogen in the regeneration gas stream at 500/sup 0/C. The loss of adsorbent capacity was much higher for silver mordenite regenerated in a stainless steel filter housing than in a glass filter housing. A cost evaluation for the use of the partially exchanged silver mordenite shows that the cost of the silver mordenite on a once-through basis is < $10/h of operation for a 0.5-t/d reprocessing plant.

  7. Using biometry to elucidate eddy flux observations of net ecosystem carbon exchange: evidence for episodic disturbance as the cause of net carbon loss from an old-growth Amazonian rainforest

    Science.gov (United States)

    Saleska, S. R.; Wofsy, S. C.; Rice, A. H.; Hutyra, L.; Pyle, E. H.; Camargo, P. B.; Portilho, K.; Marques, D. F.

    2002-12-01

    Net ecosystem exchange (NEE) of CO2, measured by eddy-covariance in a central Amazonian old-growth forest, showed ecosystem C loss of 0.5 to 2 MgC/ha/yr (see Wofsy et al invited presentation). This is in contrast to other published eddy flux studies of Amazonian C-balance most of which have reported significant uptake. In order to independently test eddy flux results, and elucidate the underlying forest vegetation dynamics driving this net loss, we surveyed trees and coarse woody debris in 20 ha of the eddy flux tower footprint (in the Tapaj¢s National Forest, km 67, near Santarém, Par , Brazil, 54d 58'W, 2d 51'S). Net flux to live wood biomass, estimated by resurvey after two years, was 1.49 +/- 0.58 Mg C/ha/yr, the net result of high growth rate (3.28 +/- 0.23 Mg C/ha/yr from a mean bole increment of 0.18 cm), recruitment of new trees (0.61 +/- 0.02 Mg C/ha/yr), and high mortality (-2.4 +/- 0.51 Mg C/ha/yr due to stem mortality of 1.8 percent/yr). The measured net gain in live wood biomass was exceeded, however, by estimated net loss (flux to CWD = -1.7 to -5.0 Mg C/ha/yr) from the large stock of CWD, resulting in an overall estimated flux to aboveground live and dead wood of -0.2 to -3.9 Mg C/ha/yr, a loss consistent with eddy flux. Three observations suggest that an episode of high mortality (possibly caused by El Ni¤o Southern Oscillation events of the 1990s) preceded study initiation and resulted in the current observations of carbon loss: (i) the stock of CWD is large, (ii) all of the net gain in live biomass is due to small-tree growth and recruitment, and (iii) the distribution of stem density was piecewise log-linear with a notable steeper slope for trees less than 40 cm DBH. This scenario confirms predictions that large variations in carbon balance may be expected in even old growth forest, and suggests that climatically-induced disturbance events may mask the relatively small effects on carbon uptake predicted from rising atmospheric carbon dioxide.

  8. Effects of drought on leaf gas exchange in an eastern broadleaf deciduous forest

    Science.gov (United States)

    Roman, D. T.; Brzostek, E. R.; Dragoni, D.; Rahman, A. F.; Novick, K. A.; Phillips, R.

    2013-12-01

    Understanding plant physiological adaptations to drought is critical for predicting changes in ecosystem productivity that result from climate variability and future climate change. From 2011-2013, southern Indiana experienced a late growing season drought in 2011, a severe early season drought in 2012, and a wet growing season in 2013 characterized by an absence of water stress with frequent precipitation and milder temperatures. The 2012 drought was unique due to the severity and early onset drought conditions (compared to the more frequent late season drought) and was characterized by a Palmer Drought severity index below -4 and precipitation totals from May - July that were 70% less than the long-term (2000 - 2010) mean. During the 2012 drought, an 11% decline in net ecosystem productivity relative to the long-term mean was observed at the AmeriFlux tower in Morgan Monroe State Forest despite a growing season that started ~25 days earlier. Thus, the objective of this study is to evaluate species-specific contributions to the canopy-scale response to inter-annual variability in water stress. We investigated differences between tree species in their response to climate variability using weekly leaf gas exchange and leaf water potential measurements during the growing seasons of 2011-2013. We used this unique dataset, collected at the top of the canopy with a 25 m boom lift, to evaluate changes in leaf water status and maximum assimilation capacity in the drought versus non-drought years. The leaf-level physiology of oak (Quercus) species appears to be less sensitive to drought than other species (tulip poplar [Liriodendron tulipifera], sassafras [Sassafras albidum] and sugar maple [Acer saccharum]). Preliminary data shows mean canopy leaf water potential for oaks was 30.5% more negative in May-July 2012 versus the same time period in 2013. During these same periods the rate of C assimilation in oaks was reduced by only 3%, whereas other species were reduced by

  9. Differential leaf gas exchange responses to salinity and drought in the mangrove tree Avicecennia germinans (Avicenniaceae

    Directory of Open Access Journals (Sweden)

    M.A Sobrado

    2006-06-01

    Full Text Available Leaf gas exchange was assessed in Avicennia germinans L. grown under different NaCl concentrations (0-40‰, after salt-relief, and then during drought. Stomatal conductance (g s and net photosynthetic rate (Pn decreased with increasing NaCl concentration, and intrinsic water use efficiency (Pn / g s increased. Under desalinization Pn / g s declined. Thus, g s did not change in plants grown at low NaCl concentration (10‰, but increased up to 30-32% at higher NaCl concentration (20 - 40‰. However, Pn was only slightly enhanced (10- 15%. Under drought, Pn decreased by as much as 46% in plants grown at low NaCl concentration (10‰ and by 22% at high NaCl concentration (40‰. Thus, Pn / g s decreased and water use efficiency was lower during drought compared to estimates prior to salt-relief. Rev. Biol. Trop. 54(2: 371-375. Epub 2006 Jun 01.Se estudió el intercambio de gases en las hojas de Avicennia germinans L. en varias concentraciones de NaCl (0-40‰, después de la desalinización y durante la desecación. La conductancia de los estomas (g s y la tasa de fotosíntesis (Pn decrecieron con el incremento en la concentración de NaCl, y se incrementó la eficiencia en el uso intrínseco de agua (Pn / g s. Bajo desalinización Pn / g s declinó. Así, g s no cambia en el crecimiento de las plantas a bajas concentraciones de NaCl (10‰, pero se incrementó hasta 30-32% a las concentraciones de NaCl más altas (20 - 40‰. Sin embargo, Pn aumentó ligeramente (10-15%. En desecación Pn fue reducido hasta un 46% a bajas concentaciones (10‰ de NaCl, y a un 22% a altas concentraciones (40‰ de NaCl. Así, Pn / g s decrecieron y la eficiencia en el uso de agua fue menor durante desecación en comparación con los evalolres stimados previos a la desalinización.

  10. Peach water relations, gas exchange, growth and shoot mortality under water deficit in semi-arid weather conditions.

    Directory of Open Access Journals (Sweden)

    Mitra Rahmati

    Full Text Available In this study the sensitivity of peach tree (Prunus persica L. to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration as well as carbon (C storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The C source was estimated through the leaf area dynamics and leaf photosynthesis rate along the season. The C sink was estimated for maintenance respiration and growth of shoots and fruits. Water stress significantly reduced gas exchange, and fruit, and shoot growth, but increased fruit dry matter concentration. Growth was more affected by water deficit than photosynthesis, and shoot growth was more sensitive to water deficit than fruit growth. Reduction of shoot growth was associated with a decrease of shoot elongation, emergence, and high shoot mortality. Water scarcity affected tree C assimilation due to two interacting factors: (i reduction in leaf photosynthesis (-23% and -50% under moderate (MS and severe (SS water stress compared to low (LS stress during growth season and (ii reduction in total leaf area (-57% and -79% under MS and SS compared to LS at harvest. Our field data analysis suggested a Ψstem threshold of -1.5 MPa below which daily net C gain became negative, i.e. C assimilation became lower than C needed for respiration and growth. Negative C balance under MS and SS associated with decline of trunk carbohydrate reserves--may have led to drought-induced vegetative mortality.

  11. Variation of gas exchange within native plant species of Switzerland and relationships with ozone injury: an open-top experiment.

    Science.gov (United States)

    Zhang, J; Ferdinand, J A; Vanderheyden, D J; Skelly, J M; Innes, J L

    2001-01-01

    Gas exchange and ozone-induced foliar injury were intensively measured during a 6-day period in mid-August 1998 on leaves of Acer pseudoplatanus, Betula pendula, Corylus avellana, Fagus sylvatica, Fraxinus excelsior, Morus nigra, Prunus avium, Prunus serotina, Rhamnus cathartica, and Viburnum lantana at a forest nursery site in Canton Ticino, Switzerland. Plants were grown in four open plots (AA), four open-top chambers receiving carbon-filtered (CF) air, and four receiving non-filtered (NF) air. Significant variation in gas exchange (F > 12.7, P nigra, P. avium, P. serotina, R. cathartica, and V. lantana showed more injury than A. pseudoplatanus, B. pendula, C. avellana, and Fagus sylvatica. Plants grown in CF chambers had significantly higher net photosynthesis (A) and stomatal conductance to water vapor (gwv), and lower foliar injury than plants grown in NF chambers and AA plots; interactions between species and ozone treatments were significant for all variables (F > or = 2.2, P 0.1). Although A and gwv decreased and foliar injury increased with leaf age, the magnitude of these changes was lower for plants grown in CF chambers than for plants grown in NF chambers and AA plots. Neither ozone uptake threshold (r = 0.26, P > 0.20) nor whole-plant injury (r = -0.15, P > 0.41) was significantly correlated with stomatal conductance across these species. It appears that the relationships between stomatal conductance and foliar injury are species-specific and interactions between physiology and environments and leaf biochemical processes must be considered in determining species sensitivity to ambient ozone exposures.

  12. Peach water relations, gas exchange, growth and shoot mortality under water deficit in semi-arid weather conditions.

    Science.gov (United States)

    Rahmati, Mitra; Davarynejad, Gholam Hossein; Génard, Michel; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles

    2015-01-01

    In this study the sensitivity of peach tree (Prunus persica L.) to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration) as well as carbon (C) storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The C source was estimated through the leaf area dynamics and leaf photosynthesis rate along the season. The C sink was estimated for maintenance respiration and growth of shoots and fruits. Water stress significantly reduced gas exchange, and fruit, and shoot growth, but increased fruit dry matter concentration. Growth was more affected by water deficit than photosynthesis, and shoot growth was more sensitive to water deficit than fruit growth. Reduction of shoot growth was associated with a decrease of shoot elongation, emergence, and high shoot mortality. Water scarcity affected tree C assimilation due to two interacting factors: (i) reduction in leaf photosynthesis (-23% and -50% under moderate (MS) and severe (SS) water stress compared to low (LS) stress during growth season) and (ii) reduction in total leaf area (-57% and -79% under MS and SS compared to LS at harvest). Our field data analysis suggested a Ψstem threshold of -1.5 MPa below which daily net C gain became negative, i.e. C assimilation became lower than C needed for respiration and growth. Negative C balance under MS and SS associated with decline of trunk carbohydrate reserves--may have led to drought-induced vegetative mortality.

  13. Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes

    Science.gov (United States)

    Cavieres, Lohengrin A.; Rada, Fermín; Azócar, Aura; García-Núñez, Carlos; Cabrera, Hernán M.

    2000-05-01

    Temperature may determine altitudinal tree distribution in different ways: affecting survival through freezing temperatures or by a negative carbon balance produced by lower photosynthetic rates. We studied gas exchange and supercooling capacity in a timberline and a treeline species ( Podocarpus oleifolius and Espeletia neriifolia, respectively) in order to determine if their altitudinal limits are related to carbon balance, freezing temperature damage, or both. Leaf gas exchange, leaf temperature-net photosynthesis curves and leaf temperature at which ice formation occurred were measured at two sites along an altitudinal gradient. Mean CO 2 assimilation rates for E. neriifolia were 3.4 and 1.3 μmol·m -2·s -1, at 2 400 and 3 200 m, respectively. Mean night respiration was 2.2 and 0.9 μmol·m -2·s -1 for this species at 2 400 and 3 200 m, respectively. Mean assimilation rates for P. oleifolius were 3.8 and 2.2 μmol·m -2·s -1 at 2 550 and 3 200 m, respectively. Night respiration was 0.8 μmol·m -2·s -1 for both altitudes. E. neriifolia showed similar optimum temperatures for photosynthesis at both altitudes, while a decrease was observed in P. oleifolius.E. neriifolia and P. oleifolius presented supercooling capacities of -6.5 and -3.0 °C, respectively. For E. neriifolia, freezing resistance mechanisms are sufficient to reach higher altitudes; however, other environmental factors such as cloudiness may be affecting its carbon balance. P. oleifolius does not reach higher elevations because it does not have the freezing resistance mechanisms.

  14. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils

    Science.gov (United States)

    Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...

  15. Currents and convection cause enhanced gas exchange in the ice–water boundary layer

    Directory of Open Access Journals (Sweden)

    Brice Loose

    2016-12-01

    Full Text Available The presence of sea ice acts as a physical barrier for air–sea exchange. On the other hand it creates additional turbulence due to current shear and convection during ice formation. We present results from a laboratory study that demonstrate how shear and convection in the ice–ocean boundary layer can lead to significant gas exchange. In the absence of wind, water currents beneath the ice of 0.23 m s−1 produced a gas transfer velocity (k of 2.8 m d−1, equivalent to k produced by a wind speed of 7 m s−1 over the open ocean. Convection caused by air–sea heat exchange also increased k of as much as 131 % compared to k produced by current shear alone. When wind and currents were combined, k increased, up to 7.6 m d−1, greater than k produced by wind or currents alone, but gas exchange forcing by wind produced mixed results in these experiments. As an aggregate, these experiments indicate that using a wind speed parametrisation to estimate k in the sea ice zone may underestimate k by ca. 50 % for wind speeds <8 m s−1.

  16. Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China

    Science.gov (United States)

    Wang, Xun; Lin, Che-Jen; Yuan, Wei; Sommar, Jonas; Zhu, Wei; Feng, Xinbin

    2016-09-01

    Mercury (Hg) emission from natural surfaces plays an important role in global Hg cycling. The present estimate of global natural emission has large uncertainty and remains unverified against field data, particularly for terrestrial surfaces. In this study, a mechanistic model is developed for estimating the emission of elemental mercury vapor (Hg0) from natural surfaces in China. The development implements recent advancements in the understanding of air-soil and air-foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and land use changes by agricultural activities, and is examined through a systematic set of sensitivity simulations. Using the model, the net exchange of Hg0 between the atmosphere and natural surfaces of mainland China is estimated to be 465.1 Mg yr-1, including 565.5 Mg yr-1 from soil surfaces, 9.0 Mg yr-1 from water bodies, and -100.4 Mg yr-1 from vegetation. The air-surface exchange is strongly dependent on the land use and meteorology, with 9 % of net emission from forest ecosystems; 50 % from shrubland, savanna, and grassland; 33 % from cropland; and 8 % from other land uses. Given the large agricultural land area in China, farming activities play an important role on the air-surface exchange over farmland. Particularly, rice field shift from a net sink (3.3 Mg uptake) during April-October (rice planting) to a net source when the farmland is not flooded (November-March). Summing up the emission from each land use, more than half of the total emission occurs in summer (51 %), followed by spring (28 %), autumn (13 %), and winter (8 %). Model verification is accomplished using observational data of air-soil/air-water fluxes and Hg deposition through litterfall for forest ecosystems in China and Monte Carlo simulations. In contrast to the earlier estimate by Shetty et al. (2008) that reported large emission from vegetative surfaces using an evapotranspiration approach, the estimate in

  17. Optical methods to study the gas exchange processes in large diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S.; Hattar, C. [Wartsila Diesel International Oy, Vaasa (Finland); Hernberg, R.; Vattulainen, J. [Tampere Univ. of Technology, Tampere (Finland). Plasma Technology Lab.

    1996-12-01

    To be able to study the gas exchange processes in realistic conditions for a single cylinder of a large production-line-type diesel engine, a fast optical absorption spectroscopic method was developed. With this method line-of-sight UV-absorption of SO{sub 2} contained in the exhaust gas was measured as a function of time in the exhaust port area in a continuously fired medium speed diesel engine type Waertsilae 6L20. SO{sub 2} formed during the combustion from the fuel contained sulphur was used as a tracer to study the gas exchange as a function of time in the exhaust channel. In this case of a 4-stroke diesel engine by assuming a known concentration of SO{sub 2} in the exhaust gas after exhaust valve opening and before inlet and exhaust valve overlap period, the measured optical absorption was used to determine the gas density and further the instantaneous exhaust gas temperature during the exhaust cycle. (author)

  18. Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, Sarah Meghan; Colmer, Timothy David

    2009-01-01

    When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas–water interface...... to promote O2 uptake when under water; however, the function of leaf gas films has rarely been considered. The present study demonstrates that gas films on leaves of completely submerged rice facilitate entry of O2 from floodwaters when in darkness and CO2 entry when in light. O2 microprofiles showed...... that the improved gas exchange was not caused by differences in diffusive boundary layers adjacent to submerged leaves with or without gas films; instead, reduced resistance to gas exchange was probably due to the enlarged water–gas interface (cf. aquatic insects). When gas films were removed artificially...

  19. Development of the gas trade from the viewpoint of the energy exchange; Entwicklung des Gashandels aus Sicht der Energieboerse

    Energy Technology Data Exchange (ETDEWEB)

    Mura, Christoph [COO EEX AG, Leipzig (Germany)

    2009-12-15

    The development of the European natural gas market hinges crucially on the existence of centrally located trading centres organised in the manner of stock exchanges. Examples are the natural gas spot and futures markets operated by the European Energy Exchange (EEX). Such markets attract liquidity, enhance market transparency, eliminate barriers to market entry and stimulate competition. An analysis shows what potential the natural gas trade in Germany has and what measures are needed to develop it.

  20. Extraordinary waves in two dimensional electron gas with separate spin evolution and Coulomb exchange interaction

    CERN Document Server

    Andreev, Pavel A

    2016-01-01

    Hydrodynamics analysis of waves in two-dimensional degenerate electron gas with the account of separate spin evolution is presented. The transverse electric field is included along with the longitudinal electric field. The Coulomb exchange interaction is included in the analysis. In contrast with the three-dimensional plasma-like mediums the contribution of the transverse electric field is small. We show the decrease of frequency of both the extraordinary (Langmuir) wave and the spin-electron acoustic wave due to the exchange interaction. Moreover, spin-electron acoustic wave has negative dispersion at the relatively large spin-polarization. Corresponding dispersion dependencies are presented and analyzed.

  1. 证券交易模式的创新——网上交易%Net Exchange——A New Mode for Stock Exchange

    Institute of Scientific and Technical Information of China (English)

    陈莉

    2001-01-01

    随着信息技术的飞速发展,网络化风潮席卷全球,促使全球金融电子交易系统不断涌现,也从根本上引发了证券交易方式的革命,其中最引人注目的就是证券网上交易的发展。它具有成本低、不受地域限制、安全性高、高效便捷等特点,在国际上日益成为一种新型的交易委托方式,也是我国券商开拓新客源,吸引更多投资者和创造新利润增长点的首要选择。通过分析网上交易对现有证券经营方式的冲击及我国发展证券网上交易的现状,在借鉴国外经验的基础上进一步提出了切合我国实际的政策建议。%With the rapid development of information technology,the globalfinancial electronic exchange systems have arisen,hence the revolution in the stock exchange modes among which the net exchange is most noticeable.Having the advantages of a low cost, the freedom from regional limit,a high security ratio, and high efficiency, net exchange has become the chief alternative to attract more investors and promote profits for stock companies in our country. The paper analyzes its impact on the current modes of exchange, the conditions and probems in our net exchange system,and presents some suggestions for the making of policies based upon the experience of foreign countries and the specific realities in our country.

  2. Atmospheric N deposition and feedbacks on net ecosystem CO2 exchange at a semi-natural peatland site

    Science.gov (United States)

    Hurkuck, Miriam; Brümmer, Christian; Spott, Oliver; Flessa, Heinz; Kutsch, Werner L.

    2013-04-01

    Large areas of Northern Germany have been converted from natural peat bogs to arable land and were subjected to draining and peat cutting in the past. The few protected peatland areas remaining are affected by high nitrogen (N) deposition. This is the case at our study site - a semi-natural raised bog - which although located in a natural park, is surrounded by highly fertilized agricultural land and highly emitting animal husbandry farms. In this study, we use a combined approach of two independent methods to quantify atmospheric N deposition. We further investigate possible feedbacks of seasonal variation in N deposition on net ecosystem CO2 exchange (NEE). Fluxes of ammonia (NH3) and its atmospheric reactants are measured by a KAPS-denuder system. Additionally, total N input from the atmosphere into a soil-plant model ecosystem is investigated by a 15N dilution method called 'Integrated Total Nitrogen Input' (ITNI). With this approach, we allocate atmospheric N after its uptake by the ecosystem into its different fractions and investigate both plant-species effects (Lolium multiflorum, Eriophorum vaginatum) and influences of the plant biomass production induced by different amounts of fertilizer addition. Continuous eddy-covariance measurements are carried out to measure NEE. Maximum NH3 depositions of 0.41 ± 0.04 kg ha-1 week-1 were found in spring 2012. The proportion of fluxes of other N compounds such as HNO3, aerosol NH4 and NO3 was usually around 20 % of total dry N measured by KAPS denuders. In total, dry N deposition was 11.2 ± 0.9 kg N ha-1 yr-1 over the first year of experiments. Complemented with wet N measurements using bulk samplers, total N depositions of about 25.0 kg ha-1 yr-1 were found. The mean atmospheric N uptake determined with the ITNI system was 3.99 ± 0.82 mg N g-1 dry weight from July to October 2011. About two third of total deposited airborne N was allocated in above-ground plant biomass and roots. Upscaling of data based on pot

  3. Cryogenic Heat-Exchanger Design for Freeze-out Removal of Carbon Dioxide from Landfill Gas

    Science.gov (United States)

    Chang, Ho-Myung; Chung, Myung Jin; Park, Seong Bum

    A cryogenic heat exchanger to remove carbon dioxide from landfill gas (LFG) is proposed and designed for applications to LNG production in distributed-scale. Since the major components of LFG are methane and carbon dioxide, CO2 removal is a significant pre-process in the liquefaction systems. A new and simple approach is proposed to directly remove carbon dioxide as frost on the surface wall along the cooling passage in a liquefying heat exchanger and to install two identical heat exchangers in parallel for alternative switching. As a first step of feasibility study, combined heat and mass transfer analysis is performed on the freeze-out process of CO2 in a counterflow heat exchanger, where CH4-CO2 mixture is cooled below its frost temperature in thermal contact with cold refrigerant. Engineering correlations for the analogy of heat and mass transfer are incorporated into numerical heat exchanger analysis with detailed fluid properties. The developed analytical model is used to estimate the distribution of CO2 accumulation and the required heat exchanger size with latent thermal load for the cryogenic CO2 removal in various operating conditions.

  4. Gas exchange and hatchability of chicken eggs incubated at simulated high altitude.

    Science.gov (United States)

    Visschedijk, A H

    1985-02-01

    Chicken eggs laid at sea level were incubated at sea level (control conditions), at a simulated altitude of 5.5 km without any further measures (natural conditions), and at a simulated altitude of 5.7 km at optimal incubator gas composition (optimal conditions). Under optimal conditions the incubator relative humidity was 70% throughout incubation, the gas mixture supplied to the incubator contained 45% O2-55% N2, and the ventilation rate was reduced to 6% of control in order to maintain the normal air-space gas tensions and to compensate for the increased eggshell conductance at altitude. The embryos that developed under control conditions showed a normal CO2 production with 94% hatchability of fertile eggs. Under natural conditions at altitude all embryos died within a few days. Optimal conditions resulted in an almost normal gas exchange and in an improvement of hatchability from 0 to 81% of fertile eggs.

  5. The Seasonal and Diurnal Patterns of net Ecosystem CO2 Exchange in a Subtropical Montane Cloud Forest.

    Science.gov (United States)

    Chu, H.; Lai, C.; Wu, C.; Hsia, Y.

    2008-12-01

    difference suggested that water droplets deposited on leaves might partially block the pathway of the gas exchange through stomata as canopy immersed in the very humid air. However, CO2 fluxes did not cease during foggy periods, as also supported by sap flow and leaf chamber measurements, the morphological characteristics of leaf or/and canopy structure might contribute to the well adaptability of this subtropical montane cloud forest to the humid environment.

  6. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    Science.gov (United States)

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  7. A quantitative approach to developing more mechanistic gas exchange models for field grown potato

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Poulsen, Rolf Thostrup

    2009-01-01

    of chemical and hydraulic signalling on stomatal conductance as exp(-β[ABA])exp(-δ|ψ|) in which [ABA] and |ψ| are xylem ABA concentration and absolute value of leaf or stem water potential. In this study we found that stem water potential could be a very reliable indicator of how plant water status affects......In this study we introduce new gas exchange models that are developed under natural conditions of field grown potato. The new models could explain about 85% of the stomatal conductance variations, which was much higher than the well-known gas exchange models such as the Ball-Berry model [Ball......, Woodrow, Berry, 1987. In: Nijhoff, M. (Eds.), Progress in Photosynthesis Research, vol. 4. Dordrecht, The Netherlands, pp. 5.221-5.224]. To overcome the limitations of previous models in simulating stomatal conductance when plants are exposed to drought stress, we proposed a down-regulating factor...

  8. Exchange-correlation energy of a hole gas including valence band coupling

    Science.gov (United States)

    Bobbert, P. A.; Wieldraaijer, H.; van der Weide, R.; Kemerink, M.; Koenraad, P. M.; Wolter, J. H.

    1997-08-01

    We have calculated an accurate exchange-correlation energy of a hole gas, including the complexities related to the valence band coupling as occurring in semiconductors like GaAs, but excluding the band warping. A parametrization for the dependence on the density and the ratio between light- and heavy-hole masses is given. We apply our results to a hole gas in an AlxGa1-xAs/GaAs/AlxGa1-xAs quantum well and calculate the two-dimensional band structure and the band-gap renormalization. The inclusion of the valence band coupling in the calculation of the exchange-correlation potentials for holes and electrons leads to a much better agreement between theoretical and experimental data than when it is omitted.

  9. Surfactant control of gas transfer velocity along an offshore coastal transect: results from a laboratory gas exchange tank

    Science.gov (United States)

    Pereira, R.; Schneider-Zapp, K.; Upstill-Goddard, R. C.

    2016-07-01

    Understanding the physical and biogeochemical controls of air-sea gas exchange is necessary for establishing biogeochemical models for predicting regional- and global-scale trace gas fluxes and feedbacks. To this end we report the results of experiments designed to constrain the effect of surfactants in the sea surface microlayer (SML) on the gas transfer velocity (kw; cm h-1), seasonally (2012-2013) along a 20 km coastal transect (North East UK). We measured total surfactant activity (SA), chromophoric dissolved organic matter (CDOM) and chlorophyll a (Chl a) in the SML and in sub-surface water (SSW) and we evaluated corresponding kw values using a custom-designed air-sea gas exchange tank. Temporal SA variability exceeded its spatial variability. Overall, SA varied 5-fold between all samples (0.08 to 0.38 mg L-1 T-X-100), being highest in the SML during summer. SML SA enrichment factors (EFs) relative to SSW were ˜ 1.0 to 1.9, except for two values (0.75; 0.89: February 2013). The range in corresponding k660 (kw for CO2 in seawater at 20 °C) was 6.8 to 22.0 cm h-1. The film factor R660 (the ratio of k660 for seawater to k660 for "clean", i.e. surfactant-free, laboratory water) was strongly correlated with SML SA (r ≥ 0.70, p ≤ 0.002, each n = 16). High SML SA typically corresponded to k660 suppressions ˜ 14 to 51 % relative to clean laboratory water, highlighting strong spatiotemporal gradients in gas exchange due to varying surfactant in these coastal waters. Such variability should be taken account of when evaluating marine trace gas sources and sinks. Total CDOM absorbance (250 to 450 nm), the CDOM spectral slope ratio (SR = S275 - 295/S350 - 400), the 250 : 365 nm CDOM absorption ratio (E2 : E3), and Chl a all indicated spatial and temporal signals in the quantity and composition of organic matter in the SML and SSW. This prompts us to hypothesise that spatiotemporal variation in R660 and its relationship with SA is a consequence of compositional

  10. Total Heat Exchange Factor Based on Non-Gray Radiation Properties of Gas in Reheating Furnace

    Institute of Scientific and Technical Information of China (English)

    CUI Miao; CHEN Hai-geng; XU Li; WU Bin

    2009-01-01

    Modified mathematical models based on imaginary plane zone method in reheating furnace were developed in which non-gray radiation properties of gas were considered,and the Newton's method and the finite difference method were adopted.Effects of productivity,fuel consumption,fuel-air ratio,calorific value of fuel and inserting depth of thermocouple on total heat exchange factor along the length of reheating furnace were investigated.The resuits show that total heat exchange factor increases with productivity or inserting depth of thermocouple,and it decreases when fuel consumption,fuel-air ratio or calorific value of fuel increases.The results are valuable for dynamical compensation of total heat exchange factor for online control mathematical models in reheating furnace.

  11. Net farm income and land use under a U.S. greenhouse gas cap and trade

    Science.gov (United States)

    Justin S. Baker; Bruce A. McCarl; Brian C. Murray; Steven K. Rose; Ralph J. Alig; Darius Adams; Greg Latta; Robert Beach; Adam. Daigneault

    2010-01-01

    During recent years, the U.S. agricultural sector has experienced high prices for energy related inputs and commodities, and a rapidly developing bioenergy market. Greenhouse gas (GHG) emissions mitigation would further alter agricultural markets and increase land competition in forestry and agriculture by shifting input costs, creating an agricultural GHG abatement...

  12. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    Science.gov (United States)

    Daniel J. Hayes; David P. Turner; Graham Stinson; A. David Mcguire; Yaxing Wei; Tristram O. West; Linda S. Heath; Bernardus Dejong; Brian G. McConkey; Richard A. Birdsey; Werner A. Kurz; Andrew R. Jacobson; Deborah N. Huntzinger; Yude Pan; W. Mac Post; Robert B. Cook

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000-2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2,...

  13. Critical appraisal of some factors pertinent to the functional designs of the gas exchangers.

    Science.gov (United States)

    Maina, John N

    2017-03-01

    Respiration acquires O2 from the external fluid milieu and eliminates CO2 back into the same. Gas exchangers evolved under certain immutable physicochemical laws upon which their elemental functional design is hardwired. Adaptive changes have occurred within the constraints set by such laws to satisfy metabolic needs for O2, environmental conditions, respiratory medium utilized, lifestyle pursued and phylogenetic level of development: correlation between structure and function exists. After the inaugural simple cell membrane, as body size and structural complexity increased, respiratory organs formed by evagination or invagination: the gills developed by the former process and the lungs by the latter. Conservation of water on land was the main driver for invagination of the lungs. In gills, respiratory surface area increases by stratified arrangement of the structural components while in lungs it occurs by internal subdivision. The minuscule terminal respiratory units of lungs are stabilized by surfactant. In gas exchangers, respiratory fluid media are transported by convection over long distances, a process that requires energy. However, movement of respiratory gases across tissue barriers occurs by simple passive diffusion. Short distances and large surface areas are needed for diffusion to occur efficiently. Certain properties, e.g., diffusion of gases through the tissue barrier, stabilization of the respiratory units by surfactant and a thin tripartite tissue barrier, have been conserved during the evolution of the gas exchangers. In biology, such rare features are called Bauplans, blueprints or frozen cores. That several of them (Bauplans) exist in gas exchangers almost certainly indicates the importance of respiration to life.

  14. Three photosynthetic patterns characterized by cluster analysis of gas exchange data in two rice populations

    OpenAIRE

    2014-01-01

    Plant photosynthetic rate is affected by stomatal status and internal CO2 carboxylation. Understanding which process determines photosynthetic rate is essential for developing strategies for breeding crops with high photosynthetic efficiency. In this study, we identified different physiological patterns of photosynthetic rate in two different rice populations. Photosynthetic gas exchange parameters were measured during the flowering stage in two rice populations. Clustering and correlation an...

  15. [Effects of O3-FACE(ozone-free air control enrichment) on gas exchange and chlorophyll fluorescence of rice leaf].

    Science.gov (United States)

    Liang, Jing; Zeng, Qing; Zhu, Jian-Guo; Zhu, Chun-Wu; Cao, Ji-Ling; Xie, Zu-Bin; Liu, Gang; Tang, Hao-Ye

    2010-04-01

    O3-FACE (Ozone-free air control enrichment) platform has been established for observing the effect of elevated tropospheric ozone concentration on the gas exchange and chlorophyll fluorescence of two rice varieties (Wuyunjing 21 and Liangyoupeijiu). The results showed that high ozone concentration decreased the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) of rice leaves. After 76d fumigation the decline in them for Wuyunjing 21 was as follows: 21.7%, 26.64% and 24.74% respectively, and that for Liangyoupeijiu was as follows: 25.53%, 30.31% and 25.48% respectively; however, no significant impact on leaf intercellular CO2 concentration was observed. Chlorophyll fluorescence kinetics parameters changed as can be seen by the decrease in F0 (initial fluorescence in the dark), ETR (The apparent electron transfer rate) and psiPSII (actual photochemical efficiency of PS II in the light), and the increase in NPQ (non-photochemical quenching). After 76 days of O3 treatment, the NPQ of Wuyunjing 21 and Liangyoupeijiu was enhanced by 16.37% and 11.77%, respectively. The impact of ozone on rice was a cumulative effect, and the extent of variation in the above parameters and the differences between the two varieties were enlarged as the O3 treatment time increased; At the same time because the rice leaf intercellular CO2 concentration did not significantly reduce, the inferred decrease in net photosynthetic rate was restricted by non-stomatal factors. The results of this experiment indicated that Liangyoupeijiu was more susceptible to ozone than Wuyunjing 21.

  16. Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest.

    Science.gov (United States)

    Song, Liang; Zhang, Yong-Jiang; Chen, Xi; Li, Su; Lu, Hua-Zheng; Wu, Chuan-Sheng; Tan, Zheng-Hong; Liu, Wen-Yao; Shi, Xian-Meng

    2015-07-01

    Fan life forms are bryophytes with shoots rising from vertical substratum that branch repeatedly in the horizontal plane to form flattened photosynthetic surfaces, which are well suited for intercepting water from moving air. However, detailed water relations, gas exchange characteristics of fan bryophytes and their adaptations to particular microhabitats remain poorly understood. In this study, we measured and analyzed microclimatic data, as well as water release curves, pressure-volume relationships and photosynthetic water and light response curves for three common fan bryophytes in an Asian subtropical montane cloud forest (SMCF). Results demonstrate high relative humidity but low light levels and temperatures in the understory, and a strong effect of fog on water availability for bryophytes in the SMCF. The facts that fan bryophytes in dry air lose most of their free water within 1 h, and a strong dependence of net photosynthesis rates on water content, imply that the transition from a hydrated, photosynthetically active state to a dry, inactive state is rapid. In addition, fan bryophytes developed relatively high cell wall elasticity and the osmoregulatory capacity to tolerate desiccation. These fan bryophytes had low light saturation and compensation point of photosynthesis, indicating shade tolerance. It is likely that fan bryophytes can flourish on tree trunks in the SMCF because of substantial annual precipitation, average relative humidity, and frequent and persistent fog, which can provide continual water sources for them to intercept. Nevertheless, the low water retention capacity and strong dependence of net photosynthesis on water content of fan bryophytes indicate a high risk of unbalanced carbon budget if the frequency and severity of drought increase in the future as predicted.

  17. The effects of oxygen induced pulmonary vasoconstriction on bedside measurement of pulmonary gas exchange.

    Science.gov (United States)

    Weinreich, Ulla M; Thomsen, Lars P; Rees, Stephen E; Rasmussen, Bodil S

    2016-04-01

    In patients with respiratory failure measurements of pulmonary gas exchange are of importance. The bedside automatic lung parameter estimator (ALPE) of pulmonary gas exchange is based on changes in inspired oxygen (FiO2) assuming that these changes do not affect pulmonary circulation. This assumption is investigated in this study. Forty-two out of 65 patients undergoing coronary artery bypass grafting (CABG) had measurements of mean pulmonary arterial pressure (MPAP), cardiac output and pulmonary capillary wedge pressure thus enabling the calculation of pulmonary vascular resistance (PVR) at each FiO2 level. The research version of ALPE was used and FiO2 was step-wise reduced a median of 0.20 and ultimately returned towards baseline values, allowing 6-8 min' steady state period at each of 4-6 levels before recording the oxygen saturation (SpO2). FiO2 reduction led to median decrease in SpO2 from 99 to 92 %, an increase in MPAP of 4 mmHg and an increase in PVR of 36 dyn s cm(-5). Changes were immediately reversed on returning FiO2 towards baseline. In this study changes in MPAP and PVR are small and immediately reversible consistent with small changes in pulmonary gas exchange. This indicates that mild deoxygenation induced pulmonary vasoconstriction does not have significant influences on the ALPE parameters in patients after CABG.

  18. Gas exchange pattern transitions in the workers of the harvester termite.

    Science.gov (United States)

    Inder, Isabelle M; Duncan, Frances D

    2015-04-01

    The evolutionary genesis and the current adaptive significance of the use of the discontinuous gas exchange cycle (DGC) for respiration by insects is the subject of intense debate. Years of research have resulted in several leading hypotheses, one of which is the emergent-property hypothesis. This hypothesis states that DGC is an emergent property or consequence of interactions between the O2 and CO2 set points that regulate spiracular function, i.e. opening and closing. Workers of the harvester termite, Hodotermes mossambicus were selected as a model to test this hypothesis. The respiratory patterns of major workers, investigated using flow-through respirometry, were obtained at 100% relative humidity (RH) under varying temperature to evaluate the assumptions of the emergent-property hypothesis. Metabolic rate, measured as VCO2 increased significantly after 15 °C. As VCO2 increased in response to increasing temperature and activity, the gas exchange pattern displayed by workers transitioned to a continuous gas exchange. A true DGC, defined as showing all three phases and a coefficient of variation value close to 2, was not expressed under the experimental conditions. The conclusion drawn from this study of termite workers is that changes in respiratory patterns are most likely an emergent property of the insects' nervous and respiratory system.

  19. The importance of freshwater systems to the net atmospheric exchange of carbon dioxide and methane with a rapidly changing high Arctic watershed

    Science.gov (United States)

    Emmerton, Craig A.; St. Louis, Vincent L.; Lehnherr, Igor; Graydon, Jennifer A.; Kirk, Jane L.; Rondeau, Kimberly J.

    2016-10-01

    A warming climate is rapidly changing the distribution and exchanges of carbon within high Arctic ecosystems. Few data exist, however, which quantify exchange of both carbon dioxide (CO2) and methane (CH4) between the atmosphere and freshwater systems, or estimate freshwater contributions to total catchment exchange of these gases, in the high Arctic. During the summers of 2005 and 2007-2012, we quantified CO2 and CH4 concentrations in, and atmospheric exchange with, common freshwater systems in the high Arctic watershed of Lake Hazen, Nunavut, Canada. We identified four types of biogeochemically distinct freshwater systems in the watershed; however mean CO2 concentrations (21-28 µmol L-1) and atmospheric exchange (-0.013 to +0.046 g C-CO2 m-2 day-1) were similar between these systems. Seasonal flooding of ponds bordering Lake Hazen generated considerable CH4 emissions to the atmosphere (+0.008 g C-CH4 m-2 day-1), while all other freshwater systems were minimal emitters of this gas (climates than in the past, which may have implications for moisture availability, landscape cover, and the exchange of CO2 and CH4 of underproductive but expansive polar semidesert ecosystems.

  20. Response time of indirectly accessed gas exchange depends on measurement method.

    Science.gov (United States)

    Rafl, Jakub; Kulhanek, Filip; Kudrna, Petr; Ort, Vaclav; Roubik, Karel

    2017-08-12

    Noninvasive techniques are routinely used for assessment of tissue effects of lung ventilation. However, comprehensive studies of the response time of the methods are scarce. The aim of this study was to compare the response time of noninvasive methods for monitoring of gas exchange to sudden changes in the composition of the inspired gas. A prospective experimental study with 16 healthy volunteers was conducted. A ventilation circuit was designed that enabled a fast change in the composition of the inspiratory gas mixture while allowing spontaneous breathing. The volunteers inhaled a hypoxic mixture, then a hypercapnic mixture, a hyperoxic mixture and finally a 0.3% CO mixture. The parameters with the fastest response to the sudden change of O2 in inhaled gas were peripheral capillary oxygen saturation (SpO2) and regional tissue oxygenation (rSO2). Transcutaneous oxygen partial pressure (tcpO2) had almost the same time of reaction, but its time of relaxation was 2-3 times longer. End-tidal carbon dioxide (EtCO2) response time to change of CO2 concentration in inhaled gas was less than half in comparison with transcutaneous carbon dioxide partial pressure (tcpCO2). All the examined parameters and devices reacted adequately to changes in gas concentration in the inspiratory gas mixture.

  1. Process coupling and control over the response of net ecosystem CO2 exchange to climate variability and insect disturbance in subalpine forests of the Western US

    Science.gov (United States)

    Monson, R. K.; Moore, D. J.; Trahan, N. A.; Scott-Denton, L.; Burns, S. P.; Hu, J.; Bowling, D. R.

    2011-12-01

    Following ten years of studies in subalpine forest ecosystems of the Western US, we have concluded that the tight coupling between gross primary productivity (GPP) and the autotrophic component of soil respiration (Ra) drives responses of net ecosystem CO2 exchange (NEE) to climate variability and insect disturbance. This insight has been gained through long-term eddy flux observations, manipulative plot experiments, analyses of dynamics in the stable isotope compositions of CO2 and H2O, and chamber gas-exchange measurements. Using past observations from these studies, we deployed model-data assimilation techniques and forecast weather/climate modeling to estimate how the coupling between GPP and Ra is likely to affect future (Year 2100) dynamics in NEE. The amount of winter snow and its melting dynamics in the spring represents the dominant control over interannual variation in GPP. Using the SIPNET ecosystem process model, combined with knowledge about the stable isotope content of different water sources, we estimated that approximately 75% of growing season GPP is coupled to the use of snowmelt water, whereas approximately 25% is coupled to summer rain. The tight coupling between GPP and winter snow pack drives a similar tight coupling between soil respiration (Rs) and winter snow pack. Manipulation of snow pack on forest plots has shown that Rs increases with increased snow pack, and this effect disappears when trees are girdled, which stops the transfer of GPP to roots and the soil rhizosphere. Higher-than-normal winter snowpacks cause the carbon isotope ratios of soil-respired CO2 to be depleted in 13C, reflecting a signal of lower photosynthetic water-use efficiency in the GPP that is transferred to the soil rhizosphere. Large-scale forest disturbance due to catastrophic tree mortality from mountain pine beetle attack causes an initial (2-3 year) reduction in Rs, which is attributable to the loss of GPP and its effect on Ra. This near-term reduction in Rs

  2. Accuracy of gas exchange monitoring during noninvasive ventilation: an in vitro metabolic simulation.

    Science.gov (United States)

    Smallwood, Craig D; Mehta, Nilesh M

    2014-01-01

    Gas exchange monitoring by indirect calorimetry (IC) during noninvasive ventilation (NIV) is desirable but currently not available. Leaks around the mask preclude reliable measurements of carbon dioxide production (VCO2) and oxygen consumption (VO2) in this population. We aimed to examine the impact of system leaks and gas flows on the accuracy of gas exchange measurements during NIV using an in vitro metabolic simulation. We examined the agreement between VCO2 and VO2 measurements by IC (using a novel canopy device) and reference values generated during an in vitro metabolic simulation of NIV at room air. The flow rate of gas sampled by the IC device (VIC) was set relative to the output flow of the ventilator (VVENT) to obtain a range of sample factors (SF = VIC/VVENT). Linear regression was used to determine the effect of SF on the accuracy of the system. An acceptable agreement between measured and reference values was observed, with mean bias (limits of agreement) of -3.3% (-6.9% to 0.3%) and -10.6% (-14.9% to -6.4%) for VCO2 and VO2, respectively. An SF of 1.25 was associated with the highest accuracy of measurement. VO2 measurement accuracy deteriorated with system leak and at SF >1.25 and was linearly related to sample dilution by ambient air entrainment. A novel canopy device with titration of IC sample flow in relation to the ventilator flow allowed in vitro gas exchange measurements during simulated NIV with acceptable accuracy. This model needs to be tested in clinical settings.

  3. Eddy covariance captures four-phase crassulacean acid metabolism (CAM) gas exchange signature in Agave.

    Science.gov (United States)

    Owen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-02-01

    Mass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC ) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC ) showed a characteristic four-phase CO2 exchange pattern. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m(-2)  year(-1) , mean ± 95% confidence interval) indicated the site was a net sink of -333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was -1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha(-1)  year(-1) . Average integrated daily FA,EC was -234 ± 5 mmol CO2  m(-2)  d(-1) and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA . Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi-arid C3 and C4 bioenergy candidates.

  4. Net global warming potential and greenhouse gas intensity in a double cropping cereal rotation as affected by nitrogen and straw management

    Directory of Open Access Journals (Sweden)

    T. Huang

    2013-08-01

    Full Text Available The effects of nitrogen and straw management on global warming potential (GWP and greenhouse gas intensity (GHGI in a winter wheat–summer maize double-cropping system on the North China Plain were investigated. We measured nitrous oxide (N2O emissions and studied net GWP (NGWP and GHGI by calculating the net exchange of CO2 equivalent (CO2-eq from greenhouse gas emissions, agricultural inputs and management practices, and changes in soil organic carbon (SOC, based on a long-term field experiment established in 2006. The field experiment includes six treatments with three fertilizer N levels (zero-N control, optimum and conventional N and straw removal (i.e. N0, Nopt and Ncon or return (i.e. N0, Nopt and SNcon. Optimum N management (Nopt, SNopt saved roughly half of the fertilizer N compared to conventional agricultural practice (Ncon, SNcon with no significant effect on grain yields. Annual mean N2O emissions reached 3.90 kg N2O-N ha−1 in Ncon and SNcon, and N2O emissions were reduced by 46.9% by optimizing N management of Nopt and SNopt. Straw return increased annual mean N2O emissions by 27.9%. Annual SOC sequestration was 0.40–1.44 Mg C ha−1 yr−1 in plots with N application and/or straw return. Compared to the conventional N treatments the optimum N treatments reduced NGWP by 51%, comprising 25% from decreasing N2O emissions and 75% from reducing N fertilizer application rates. Straw return treatments reduced NGWP by 30% compared to no straw return because the GWP from increments of SOC offset the GWP from higher emissions of N2O, N fertilizer and fuel after straw return. The GHGI trends from the different nitrogen and straw management practices were similar to the NGWP. In conclusion, optimum N and straw return significantly reduced NGWP and GHGI and concomitantly achieved relatively high grain yields in this important winter wheat–summer maize double-cropping system.

  5. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization.

    Science.gov (United States)

    Sainju, Upendra M; Stevens, William B; Caesar-TonThat, Thecan; Liebig, Mark A; Wang, Jun

    2014-05-01

    Little information exists about how global warming potential (GWP) is affected by management practices in agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net GWP and greenhouse gas intensity (GHGI or GWP per unit crop yield) calculated by soil respiration (GWP and GHGI) and organic C (SOC) (GWP and GHGI) methods after accounting for CO emissions from all sources (irrigation, farm operations, N fertilization, and greenhouse gas [GHG] fluxes) and sinks (crop residue and SOC) in a Lihen sandy loam from 2008 to 2011 in western North Dakota. Treatments were two irrigation practices (irrigated vs. nonirrigated) and five cropping systems (conventional-till malt barley [ L.] with N fertilizer [CTBN], conventional-till malt barley with no N fertilizer [CTBO], no-till malt barley-pea [ L.] with N fertilizer [NTB-P], no-till malt barley with N fertilizer, and no-till malt barley with no N fertilizer [NTBO]). While CO equivalents were greater with irrigation, tillage, and N fertilization than without, NO and CH fluxes were 2 to 218 kg CO eq. ha greater in nonirrigated NTBN and irrigated CTBN than in other treatments. Previous year's crop residue and C sequestration rate were 202 to 9316 kg CO eq. ha greater in irrigated NTB-P than in other treatments. Compared with other treatments, GWP and GWP were 160 to 9052 kg CO eq. ha lower in irrigated and nonirrigated NTB-P. Similarly, GHGI and GHGI were lower in nonirrigated NTB-P than in other treatments. Regardless of irrigation practices, NTB-P may lower net GHG emissions more than other treatments in the northern Great Plains. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. What Controls the Net Forest-Atmosphere Exchange of Carbonyl Sulfide? Results from 2 Years of Eddy Flux Measurements and SiB Model Simulations

    Science.gov (United States)

    Wehr, R. A.; Commane, R.; Baker, I. T.; Munger, J. W.; Saleska, S. R.; Wofsy, S. C.

    2015-12-01

    Carbonyl sulfide (OCS) is currently a focus of ground-, aircraft-, and satellite-based measurements as well as of model development, owing mainly to its potential use as a large-scale proxy for gross primary production (GPP). OCS is taken up by leaves and either taken up or emitted by soils, depending on the circumstances. Because OCS is destroyed by the enzyme carbonic anhydrase within the leaf rather than by any light-dependent reaction, the leaf uptake is expected to be related to the conductance of the diffusive pathway into the leaf (stomata + mesophyll + leaf boundary air layer) rather than to GPP directly, though GPP and the diffusive conductance are often strongly correlated. Here we use 2 years of eddy covariance measurements of the net ecosystem-atmosphere exchange of OCS, along with measurements of the vertical profile of OCS within the forest, to investigate the controls on ecosystem-scale OCS uptake and emission. We compare the OCS measurements, and simultaneous CO2 isotope flux and profile measurements, to predictions from the Simple Biosphere (SiB) model, which has been used to simulate OCS and 13CO2 fluxes for both vegetation and soils but has not yet been systematically tested against these relatively novel tracers. We thereby address the key question: How can measurements of the net ecosystem-atmosphere OCS exchange contribute to empirical quantification of stomatal conductance and GPP and to improving process-based ecosystem models?

  7. Characteristics of Gas Exchange and Chlorophyll Fluorescence in Different Position Leaves at Booting Stage in Rice Plants

    Institute of Scientific and Technical Information of China (English)

    Mo Yi-wei; JIN Song-heng; WANG Zhong; WANG Pin-mei; QIAN Shan-qin; ZHAO Kai; GU Yun-jie; YANG Yi-qing; YAO Sheng; JIANG De-an

    2004-01-01

    To investigate the senescence of rice leaves at different positions at booting stage, gas exchange and chlorophyll fluorescence properties in leaves at different positions were examined by using six rice materials. The net rates of photosynthesis (Pn),stomatal conductance (gs), transpiration rate (E) and water use efficiency (WUE) decreased significantly with lowering of leaf positions,while intercellular CO2 concentration (Cj) had a little change, indicating that the decrease of photosynthetic rate was not resulted from the decrease of gs. The decrease of SPAD reading which had a close correlation with chlorophyll content was one of apparent reasons resulting in the decease of Pn. Further evidence by chlorophyll fluorescence showed that the photochemical efficiency of PS Ⅱ and its electron transport rate (ETR) decreased substantially with lowering of the leaf positions but the variable-to-maximum fluorescence ratio(Fv/Fm) and efficiency of energy conversion of open PS Ⅱ (Fv'/Fm') remained rather stable, suggesting that primary limitation of Pn was suppression of electron transport of PS Ⅰ, and probably associated with carbon assimilation.

  8. Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis.

    Science.gov (United States)

    Pavlíková, Daniela; Pavlík, Milan; Procházková, Dagmar; Zemanová, Veronika; Hnilička, František; Wilhelmová, Naďa

    2014-04-15

    Increased endogenous plant cytokinin (CK) content through transformation with an isopentyl transferase (ipt) gene has been associated with improved plant stress tolerance. The impact of zinc (tested levels Zn1=250, Zn2=500, Zn3=750mgkg(-1)soil) on gas exchange parameters (net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration) and nitrogen utilization by plants resulted in changes of free amino acid concentrations (glutamic acid, glutamine, asparagine, aspartate, glycine, serine, cystein) and differed for transformed and non-transformed tobacco plants. For pot experiments, tobacco plants (Nicotiana tabacum L., cv. Wisconsin 38) transformed with a construct consisting of SAG12 promoter fused with the ipt gene for cytokinin synthesis (SAG plants) and its wild type (WT plants as a control) were used. Physiological analyses confirmed that SAG plants had improved zinc tolerance compared with the WT plants. The enhanced Zn tolerance of SAG plants was associated with the maintenance of accumulation of amino acids and with lower declines of photosynthetic and transpiration rates. In comparison to WT plants, SAG plants exposed to the highest Zn concentration accumulated lower concentrations of asparagine, which is a major metabolic product during senescence.

  9. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment

    Science.gov (United States)

    Stanciel, K.; Mortley, D. G.; Hileman, D. R.; Loretan, P. A.; Bonsi, C. K.; Hill, W. A.

    2000-01-01

    The effects of elevated CO2 on growth, pod, and seed yield, and gas exchange of 'Georgia Red' peanut (Arachis hypogaea L.) were evaluated under controlled environmental conditions. Plants were exposed to concentrations of 400 (ambient), 800, and 1200 micromoles mol-1 CO2 in reach-in growth chambers. Foliage fresh and dry weights increased with increased CO2 up to 800 micromoles mol-1, but declined at 1200 micromoles mol-1. The number and the fresh and dry weights of pods also increased with increasing CO2 concentration. However, the yield of immature pods was not significantly influenced by increased CO2. Total seed yield increased 33% from ambient to 800 micromoles mol-1 CO2, and 4% from 800 to 1200 micromoles mol-1 CO2. Harvest index increased with increasing CO2. Branch length increased while specific leaf area decreased linearly as CO2 increased from ambient to 1200 micromoles mol-1. Net photosynthetic rate was highest among plants grown at 800 micromoles mol-1. Stomatal conductance decreased with increased CO2. Carboxylation efficiency was similar among plants grown at 400 and 800 micromoles mol-1 and decreased at 1200 micromoles mol-1 CO2. These results suggest that CO2 enrichment from 400 to 800 micromoles mol-1 had positive effects on peanut growth and yield, but above 800 micromoles mol-1 enrichment seed yield increased only marginally.

  10. Seasonal and diurnal gas exchange differences in ozone-sensitive common milkweed (Asclepias syriaca L.) in relation to ozone uptake

    Energy Technology Data Exchange (ETDEWEB)

    Bergweiler, Chris [Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States)], E-mail: bergweiler@nre.umass.edu; Manning, William J. [Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States); Chevone, Boris I. [Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2008-03-15

    Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation. - Temporal variation in physiological processes underlying diurnal and seasonal ozone uptake are described for a key ozone bioindicator species of North America.

  11. Gas magnetometer

    Science.gov (United States)

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  12. Gas magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  13. Exergy destruction analysis of a vortices generator in a gas liquid finned tube heat exchanger: an experimental study

    Science.gov (United States)

    Ghazikhani, M.; Khazaee, I.; Monazzam, S. M. S.; Takdehghan, H.

    2016-11-01

    In the present work, the effect of using different shapes of vortices generator (VG) on a gas liquid finned heat exchanger is investigated experimentally with irreversibility analysis. In this project the ambient air with mass flow rates of 0.047-0.072 kg/s is forced across the finned tube heat exchanger. Hot water with constant flow rate of 240 L/h is circulated inside heat exchanger tubes with inlet temperature range of 45-73 °C. The tests are carried out on the flat finned heat exchanger and then repeated on the VG finned heat exchanger. The results show that using the vortex generator can decrease the ratio of air side irreversibility to heat transfer (ASIHR) of the heat exchanger. Also the results show that the IASIHR is >1.05 for all air mass flow rates, which means that ASIHR for the initial heat exchanger is higher than 5 % greater than that of improved heat exchanger.

  14. Stomatal design principles for gas exchange in synthetic and real leaves

    Science.gov (United States)

    Jensen, Kaare H.; Haaning, Katrine; Boyce, C. Kevin; Zwieniecki, Maciej

    2016-11-01

    Stomata are portals in plant leaves that control gas exchange for photosynthesis, a process fundamental to life on Earth. Gas fluxes and plant productivity depend on external factors such as light, water, and CO2 availability and on geometric properties of the stomata pores. The link between stomata geometry and environmental factors have informed a wide range of scientific fields - from agriculture to climate science, where observed variations in stomata size and density is used to infer prehistoric atmospheric CO2 content. However, the physical mechanisms and design principles responsible for major trends in stomatal patterning, are not well understood. Here we use a combination of biomimetic experiments and theory to rationalize the observed changes in stomatal geometry. We show that the observed correlations between stomatal size and density are consistent with the hypothesis that plants favor efficient use of space and maximum control of dynamic gas conductivity, and - surprisingly - that the capacity for gas exchange in plants has remained constant over at least the last 325 million years. Our analysis provides a new measure to gauge the relative performance of species based on their stomatal characteristics. Supported by the Carlsberg Foundation (2013-01-0449), VILLUM FONDEN (13166) and the National Science Foundation (EAR-1024041).

  15. Stock exchange trading of natural gas in Germany. Measures to promote natural gas trade; Status quo des boerslichen Erdgashandels in Deutschland. Massnahmen zur Erdgashandelsentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Paulun, Tobias; Beidatsch, Sirko [European Energy Exchange AG, Leipzig (Germany). Dept. of Business Development

    2010-07-01

    2010 brought about significant changes in the boundary conditions of natural gas trading in Germany. The amended GasNZV (Ordinance on Access to the Public Gas Grids) changed the conditions of access to transport capacities. At the same time, the global price trends in the natural gas sector provided a strong impetus for new acquisition strategies that may significantly enhance the trading interest of the marketeers. The contribution takes a look at the current status of the natural gas trade in Germany and especially the stock exchange for natural gas, which may soon have a decisive role in the new acquisition strategies. (orig.)

  16. Toward restoring the net carbon sink function of degraded peatlands: Short-term response in CO2 exchange to ecosystem-scale restoration

    Science.gov (United States)

    Waddington, J. M.; Strack, M.; Greenwood, M. J.

    2010-03-01

    Northern peatlands represent a globally important stock of soil carbon and have acted as a net sink of atmospheric CO2 throughout the Holocene. Disturbance for horticultural peat extraction disrupts ecosystem function and converts these ecosystems to large, persistent sources of carbon dioxide (CO2). This study investigates the effect of ecosystem-scale restoration on growing season CO2 exchange in a peatland by comparing a restored site to a neighboring nonrestored section for 1 year prerestoration (1999) and 3 years postrestoration (2000-2002). Prior to restoration, less than 23% of the site was vegetated, and it was a source of 245 g C m-2 to the atmosphere during the growing season (May to early October). Following restoration, the water table remained deep, and soil moisture was significantly higher than the nonrestored section. By the third year postrestoration, vegetation covered 50% of the restored peatland. Moss covered 90% of this vegetated area. Vegetation productivity at the restored site was also enhanced with gross ecosystem photosynthesis under full light conditions significantly higher at the restored site at both moss and herbaceous plots by 2002. While this increase in vegetation productivity provided fresh substrate and resulted in higher CO2 production potential for restored site peat, ecosystem respiration was similar to or lower than that at the nonrestored site for both bare peat and vegetated areas because of the generally wetter site conditions resulting from restoration. By upscaling chamber CO2 exchange measurements to the ecosystem level, on the basis of the relative proportion of each surface cover type, we determined the site was a net sink of ˜20 ± 5 g C m-2 during the growing season only 2 years postrestoration. Combining our results with previous work on CH4 emissions and dissolved organic carbon export, we suggest that this degraded peatland ecosystem will likely return to a net carbon sink in 6 to 10 years postrestoration.

  17. EXCHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, J.C. (ed.)

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  18. The charge-exchange induced coupling between plasma-gas counterflows in the heliosheath

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    Full Text Available Many hydrodynamic models have been presented which give similar views of the interaction of the solar wind plasma bubble with the counterstreaming partially ionized interstellar medium. In the more recent of these models it is taken into account that the solar and interstellar hydrodynamic flows of neutral atoms and protons are coupled by mass-, momentum-, and energy-exchange terms due to charge exchange processes. We shall reinvestigate the theoretical basis of this coupling here by use of a simplified description of the heliospheric interface and describe the main physics of the H-atom penetration through the more or less standing well-known plasma wall ahead of the heliopause. Thereby we can show that the type of charge exchange coupling terms used in up-to-now hydrodynamic treatments unavoidably leads to an O-type critical point at the sonic point of the H-atom flow, thus not allowing for a continuation of the integration of the hydrodynamic set of differential equations. The remedy for this problem is given by a more accurate formulation of the momentum exchange term for quasi-and sub-sonic H-atom flows. With a refined momentum exchange term derived from basic kinetic Boltzmann principles, we instead arrive at a characteristic equation with an X-type critical point, allowing for a continuous solution from supersonic to subsonic flow conditions. This necessitates that the often treated problem of the propagation of inter-stellar H-atoms through the heliosheath has to be solved using these newly derived, differently effective plasma – gas friction forces. Substantially different results are to be expected from this context for the filtration efficiency of the heliospheric interface.

    Key words. Interplanetary physics (heliopause and solar wind termination; interstellar gas – Ionosphere (plasma temperature and density

  19. Modelling the impact of soil Carbonic Anhydrase on the net ecosystem exchange of OCS at Harvard forest using the MuSICA model

    Science.gov (United States)

    Launois, Thomas; Ogée, Jérôme; Commane, Roisin; Wehr, Rchard; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Wofsy, Steve; Zahniser, Mark; Wingate, Lisa

    2016-04-01

    The exchange of CO2 between the terrestrial biosphere and the atmosphere is driven by photosynthetic uptake and respiratory loss, two fluxes currently estimated with considerable uncertainty at large scales. Model predictions indicate that these biosphere fluxes will be modified in the future as CO2 concentrations and temperatures increase; however, it still unclear to what extent. To address this challenge there is a need for better constraints on land surface model parameterisations. Additional atmospheric tracers of large-scale CO2 fluxes have been identified as potential candidates for this task. In particular carbonyl sulphide (OCS) has been proposed as a complementary tracer of gross photosynthesis over land, since OCS uptake by plants is dominated by carbonic anhydrase (CA) activity, an enzyme abundant in leaves that catalyses CO2 hydration during photosynthesis. However, although the mass budget at the ecosystem is dominated by the flux of OCS into leaves, some OCS is also exchanged between the atmosphere and the soil and this component of the budget requires constraining. In this study, we adapted the process-based isotope-enabled model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of OCS within a forested ecosystem. This model was combined with 3 years (2011-2013) of in situ measurements of OCS atmospheric concentration profiles and fluxes at the Harvard Forest (Massachussets, USA) to test hypotheses on the mechanisms responsible for CA-driven uptake by leaves and soils as well as possible OCS emissions during litter decomposition. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem OCS flux. A sensitivity analysis on soil CA activity and soil OCS emission rates was also performed to quantify their impact on the vertical profiles of OCS inside the

  20. The Study on Diurnal Changes in Leaf Gas Exchange of Lemon Balm, Catnip, Holy Basil and Sweet basil in Ahvaz

    Directory of Open Access Journals (Sweden)

    Mohammad Mahmoodi Sourestani

    2017-02-01

    eight times of evaluation 7:00,9:00, 10:00, 11:00, 12:00, 13:00, 17:00 and 20:00 h. Land preparation consisted of disking and the formation of raised beds (15cm high and 45cm wide across the top using a press-pan-type bed shaper. The plants were arranged on two rows on each bed, with 20 cm in-row and 40 cm between-row spacing. The plants were irrigated weekly as needed. Gas exchange parameters were investigated from June 9-11at end of vegetative phase under natural environmental conditions. The parameters of gas exchange were measured on the 5th and 6th nearly full expanded leaves between the hours of 07:00 and 20:00 during bright sunlight on clear and cloudless days. Determination of leaf net photosynthesis rate (Pn, stomatal conductance (gs and transpiration (E was made with Infra-red gas analyzer (LCA4, ADC Co. Ltd., Hoddesdon, UK.Instantaneous water use efficiency (WUEinst and apparent quantum yield(AQY were calculated as Pn/E andPn/PPFD ratios, respectively. Result and discussion: The result showed that plant type had significant effect on all measured traits as well as record time. Interaction between plant type and record time were significant for PPFD, leaf temperature and net photosynthesis. The highest Pnof Lemon balm (8.97 µmol CO2 m-2 s-1, catnip (11.2 µmol CO2 m-2 s-1 and sweet basil (13.75 µmol CO2 m-2 s-1 were recorded at 9:00 when the photosynthetic photon flux density (PPFD was 1488, 1598 and 1645 µmol photon m-2 s-1, respectively. Holy basil showed highest Pn (15.47 µmol CO2 m-2 s-1 at 10:00 when PPFD was 1821 µmol photon m-2 s-1.High irradiances caused photoinhibition of the four plants and it seems the four plants reach to light saturation point about 1500 µmol photon m-2 s-1.The midday depression of photosynthesis likely resulted primarily from long periods of high PPFD, limitation in stomatal conductance and high temperature. Catnip was more sensitive to high irradiance. The Pn had positive and significant correlation with gs in four plants

  1. A parameter model of gas exchange for the seasonal sea ice zone

    Directory of Open Access Journals (Sweden)

    B. Loose

    2013-07-01

    Full Text Available Carbon budgets for the polar oceans require better constraint on air-sea gas exchange in the sea ice zone (SIZ. Here, we utilize recent advances in the theory of turbulence, mixing and air-sea flux in the ice-ocean boundary layer (IOBL to formulate a simple model for gas exchange when the surface ocean is partially covered by sea ice. The gas transfer velocity (k is related to shear-driven and convection-driven turbulence in the aqueous mass boundary layer, and to the mean-squared wave slope at the air–sea interface. We use the model to estimate k along the drift track of Ice-Tethered Profilers (ITPs in the Arctic. Individual estimates of daily-averaged k from ITP drifts ranged between 1.1 and 22 m d−1, and the fraction of open water (f ranged from 0 to 0.83. Converted to area-weighted effective transfer velocities (keff, the minimum value of keff was 10−5 m d−1 near f = 0 with values exceeding keff = 5 m d−1 at f = 0.4. The largest values of k occurred during the periods when ice cover around the ITP was changing rapidly; either in advance or retreat. The model indicates that effects from shear and convection in the sea ice zone contribute an additional 40% to the magnitude of keff, beyond what would be predicted from an estimate of keff based solely upon a windspeed parameterization. Although the ultimate scaling relationship for gas exchange in the sea ice zone will require validation in laboratory and field studies, the basic parameter model described here demonstrates that it is feasible to formulate estimates of k based upon properties of the IOBL using data sources that presently exist.

  2. The impact of net value added on predicting the earnings and operating cash flow: An empirical study based on Tehran Stock Exchange

    Directory of Open Access Journals (Sweden)

    Omid Imani Khoshkhoo

    2013-12-01

    Full Text Available Information content of earnings and its components and other issues except the earnings such as the operating cash flow (OCF have been tested widely in the accounting and finance literature. Since they have had an essential role in most cases including financial reporting, contracts and evaluation models, specifying the items and financial variables that have had a significant relationship with these two variables are expected to be of utmost importance. One example of these variables and indicators is the value added. Although this variable has an economic concept, reporting of value added to the beneficiaries of business entity as the value-added statement has been observed in the field of accounting theories for many years. The main objective of this study was to investigate the effect of net value added (NVA as the basic result of value-added statement in predicting the accounting earnings and operating cash flow. For this purpose, the relationship of changes in net value added with the changes in accounting earnings and operating cash flow of listed companies in Tehran Stock Exchange from 2007 to 2011 was tested. Firstly the Single variable cross-sectional regression was analyzed and then the panel data analysis with the PLS technique was used to do a pooled analysis. The results of testing research hypothesis imply the significant relationship between changes in net value added and accounting earnings in the listed companies as cross-sectional and pooled forms. The results showed no significant relationship between changes in net value added and operating cash flow in the listed companies neither in cross-sectional nor pooled form.

  3. Experimental Investigation of Gas-Side Performance of a Compact Finned-Tube Heat Exchanger

    Science.gov (United States)

    Gedeon, Louis

    1959-01-01

    Heat-transfer and pressure-drop data were obtained experimentally for the gas side of a liquid-metal to air, compact finned-tube heat exchanger. The heat exchanger was fabricated from 0.185-inch Inconel tubing in an inline array. The fins were made of 310 stainless-steel- clad copper with a total thickness of 0.010 inch, and the fin pitch was 15.3 fins per inch. The liquid used as the heating medium was sodium. The heat-exchanger inlet gas temperature was varied from 5100 to 1260 R by burning JP fuel for airflow rates of 0.4 to 10.5 pounds per second corresponding to an approximate Reynolds number range of 300 to 9000. The sodium inlet temperature was held at 1400 R with the exception of a few runs taken at 1700 and 1960 R. The maximum ratio of surface temperature to air bulk temperature was 1.45. Friction-factor data with heat transfer were best represented by a single line when the density and viscosity of Reynolds number were evaluated at the average film temperature. At the lower Reynolds numbers reported, the friction data with heat transfer plotted slightly above the friction data without heat transfer. The density of the friction factor was calculated at the average bulk temperature. Heat-transfer results of this investigation were correlated by evaluating the physical properties of air (specific heat, viscosity, and thermal conductivity) at the film temperature.

  4. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange

    Science.gov (United States)

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Sørensen, Lise Lotte; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-01-01

    In September 2012, Arctic sea-ice extent plummeted to a new record low: two times lower than the 1979–2000 average. Often, record lows in sea-ice cover are hailed as an example of climate change impacts in the Arctic. Less apparent, however, are the implications of reduced sea-ice cover in the Arctic Ocean for marine–atmosphere CO2 exchange. Sea-ice decline has been connected to increasing air temperatures at high latitudes. Temperature is a key controlling factor in the terrestrial exchange of CO2 and methane, and therefore the greenhouse-gas balance of the Arctic. Despite the large potential for feedbacks, many studies do not connect the diminishing sea-ice extent with changes in the interaction of the marine and terrestrial Arctic with the atmosphere. In this Review, we assess how current understanding of the Arctic Ocean and high-latitude ecosystems can be used to predict the impact of a lower sea-ice cover on Arctic greenhouse-gas exchange.

  5. Hypoxia and hypercarbia in endophagous insects: Larval position in the plant gas exchange network is key.

    Science.gov (United States)

    Pincebourde, Sylvain; Casas, Jérôme

    2016-01-01

    Gas composition is an important component of any micro-environment. Insects, as the vast majority of living organisms, depend on O2 and CO2 concentrations in the air they breathe. Low O2 (hypoxia), and high CO2 (hypercarbia) levels can have a dramatic effect. For phytophagous insects that live within plant tissues (endophagous lifestyle), gas is exchanged between ambient air and the atmosphere within the insect habitat. The insect larva contributes to the modification of this environment by expiring CO2. Yet, knowledge on the gas exchange network in endophagous insects remains sparse. Our study identified mechanisms that modulate gas composition in the habitat of endophagous insects. Our aim was to show that the mere position of the insect larva within plant tissues could be used as a proxy for estimating risk of occurrence of hypoxia and hypercarbia, despite the widely diverse life history traits of these organisms. We developed a conceptual framework for a gas diffusion network determining gas composition in endophagous insect habitats. We applied this framework to mines, galls and insect tunnels (borers) by integrating the numerous obstacles along O2 and CO2 pathways. The nature and the direction of gas transfers depended on the physical structure of the insect habitat, the photosynthesis activity as well as stomatal behavior in plant tissues. We identified the insect larva position within the gas diffusion network as a predictor of risk exposure to hypoxia and hypercarbia. We ranked endophagous insect habitats in terms of risk of exposure to hypoxia and/or hypercarbia, from the more to the less risky as cambium mines>borer tunnels≫galls>bark mines>mines in aquatic plants>upper and lower surface mines. Furthermore, we showed that the photosynthetically active tissues likely assimilate larval CO2 produced. In addition, temperature of the microhabitat and atmospheric CO2 alter gas composition in the insect habitat. We predict that (i) hypoxia indirectly favors

  6. Modelling Effects of Water Table Depth Variations on Net Ecosystem CO2 Exchange of a Western Canadian Peatland

    Science.gov (United States)

    Mezbahuddin, S.; Grant, R. F.; Flanagan, L. B.

    2014-12-01

    Water table depth (WTD) is one of the key drivers affecting aggradation and degradation of peatlands. Variations in WTD can alter the balance between gross primary productivity (GPP) and ecosystem respiration (Re) and so cause a peatland to change between a sink and a source of carbon. Process based mathematical modelling can provide insights on WTD-net ecosystem productivity (NEP) interactions over peatlands. We deployed a process-based ecosystem model ecosys to examine the WTD effects on variations in NEP of a fen peatland in Alberta, Canada. Our modelled results showed that a growing season (May-August) WTD drawdown of ~0.3m from 2004-2007 caused more rapid decomposition in deeper peat layers so that Re increased by ~180 g C m-2 growing season -1. However, similar increase in GPP (~ 170 g C m-2 growing season -1) under deeper WTD condition due to more rapid microbial and root growth, and hence more rapid mineralization and nutrient uptake, left no net effect of WTD drawdown on NEP. The modelled ecosystem was overall a large sink of C (~ 100 g C m-2 yr-1) over the study period of 2004-2009. However, gradually diminishing GPP by ~ 70 g C m-2 growing season -1 with progressively deeper WTD during 2008-2009 indicated that further drawdown of WTD could alter the source sink status of these peatlands. These modelled results were corroborated against hourly eddy covariance (EC) net CO2 fluxes, latent heat and sensible heat fluxes (R2~0.75, a→0, b→1); and annual estimates of EC-gap filled NEP and partitioned GPP and Re over the site from 2004-2009. Our findings indicated the needs for coupling of soil-plant-atmosphere schemes for gases, water, energy, carbon and nutrients in models to adequately simulate WTD effects on peatland C stocks.

  7. The conversion of grassland to acacia forest as an effective option for net reduction in greenhouse gas emissions.

    Science.gov (United States)

    de Godoi, Stefânia Guedes; Neufeld, Ângela Denise Hubert; Ibarr, Mariana Alves; Ferreto, Décio Oscar Cardoso; Bayer, Cimélio; Lorentz, Leandro Homrich; Vieira, Frederico Costa Beber

    2016-03-15

    This study aimed to evaluate the effect of forestation with leguminous Acacia mearnsii De Wild in native grasslands on the soil greenhouse (GHG) fluxes and their main driving factors. The experiment was conducted in the Brazilian Pampa over the period of one year in a six-year-old Acacia plantation, evaluating four treatments: Acacia (AM), Acacia with litter periodically removed (A-l), Acacia after harvest (AH) and native grassland (NG) (reference treatment). Air samples were obtained by the static chamber method, and gas concentrations were evaluated by gas chromatography. Soil and climate factors were monitored. The accumulated fluxes of methane (CH4) and nitrous oxide (N2O) were statistically similar between the soils in the AM and NG treatments, which tended to oxidize CH4 (-1445 and -1752 g C-CH4 ha(-1) yr(-1), respectively) and had low emission of N2O (242 and 316 g N-N2O ha(-1) yr(-1)), most likely influenced by the low water-filled pore space and the low content of mineral N in the soil. However, the soil in the AH treatment presented higher emissions of both gases, totaling 1889 g C-CH4 ha(-1) yr(-1) and 1250 g N-N2O ha(-1) yr(-1). Afforestation neither significantly affected the total organic C stocks nor their lability, keeping the C management index for the forested area similar to that in the NG treatment. The conversion from grassland to Acacia forest represents an effective option for mitigating the net reduction in greenhouse gas emissions, which is basically determined by C accumulation in biomass and wood products.

  8. Long-term gas exchange characteristics as markers of deterioration in patients with cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Pramana Isabelle

    2009-11-01

    Full Text Available Abstract Background and Aim In patients with cystic fibrosis (CF the architecture of the developing lungs and the ventilation of lung units are progressively affected, influencing intrapulmonary gas mixing and gas exchange. We examined the long-term course of blood gas measurements in relation to characteristics of lung function and the influence of different CFTR genotype upon this process. Methods Serial annual measurements of PaO2 and PaCO2 assessed in relation to lung function, providing functional residual capacity (FRCpleth, lung clearance index (LCI, trapped gas (VTG, airway resistance (sReff, and forced expiratory indices (FEV1, FEF50, were collected in 178 children (88 males; 90 females with CF, over an age range of 5 to 18 years. Linear mixed model analysis and binary logistic regression analysis were used to define predominant lung function parameters influencing oxygenation and carbon dioxide elimination. Results PaO2 decreased linearly from age 5 to 18 years, and was mainly associated with FRCpleth, (p 1 (p 50 (p p 2 showed a transitory phase of low PaCO2 values, mainly during the age range of 5 to 12 years. Both PaO2 and PaCO2 presented with different progression slopes within specific CFTR genotypes. Conclusion In the long-term evaluation of gas exchange characteristics, an association with different lung function patterns was found and was closely related to specific genotypes. Early examination of blood gases may reveal hypocarbia, presumably reflecting compensatory mechanisms to improve oxygenation.

  9. Significant enhancement of the charging efficiency in the cavities of ferroelectrets through gas exchange during charging

    Science.gov (United States)

    Qiu, Xunlin

    2016-11-01

    Ferroelectrets are non-polar polymer foams or polymer systems with internally charged cavities. They are charged through a series of dielectric barrier discharges (DBDs) that are caused by the electrical breakdown of the gas inside the cavities. Thus, the breakdown strength of the gas strongly influences the charging process of ferroelectrets. A gas with a lower breakdown strength has a lower threshold voltage, thus decreasing the onset voltage for DBD charging. However, a lower threshold voltage also leads to a lower value for the remanent polarization, as back discharges that are caused by the electric field of the internally deposited charges can take place already at lower charge levels. On this basis, a charging strategy is proposed where the DBDs start in a gas with a lower breakdown strength (in the present example, helium) and are completed at a higher breakdown strength (e.g., nitrogen or atmospheric air). Thus, the exchange of the gas in the cavities during charging can significantly enhance the charging efficiency, i.e., yield much higher piezoelectric coefficients in ferroelectrets at significantly lower charging voltages.

  10. Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes

    Energy Technology Data Exchange (ETDEWEB)

    Giorgio, P.A. del [Univ. of Maryland Center for Environmental Science, Cambridge, MD (United States). Horn Point Lab.; Cole, J.J.; Caraco, N.F. [Inst. of Ecosystem Studies, Millbrook, NY (United States); Peters, R.H. [McGill Univ., Montreal, Quebec (Canada). Dept. of Biology

    1999-06-01

    Plankton communities in oligotrophic waters are characteristically dominated by the biomass of heterotrophs, including bacteria, micro-, and macrozooplankton. It has been generally assumed that these inverted biomass pyramids are the direct result of high specific production rates of phytoplankton and a tight coupling between producers and consumers. There are, however, at least two alternative hypotheses: (1) heterotrophic biomass turnover is much slower in oligotrophic than eutrophic systems; and (2) oligotrophic planktonic communities are significantly subsidized by allochthonous organic matter. In this study the authors assessed these hypotheses by establishing the relationship between plankton biomass structure, plankton function, and whole-lake gas (O{sub 2} and CO{sub 2}) fluxes in 20 temperate lakes that span a large range in primary production. The authors show that the balance of phytoplankton production and community respiration (P/R ratio) is always below unity in unproductive lakes where heterotrophic biomass (H) is high relative to autotrophic biomass (A), suggesting that these planktonic food webs function as heterotrophic systems and must be subsidized by allochthonous organic matter. Further, rates of phytoplankton specific production are not highest in communities characterized by dominance of heterotrophic biomass. All except the most productive lakes were supersaturated in CO{sub 2} and undersaturated in O{sub 2}.

  11. Heat transfer in a compact tubular heat exchanger with helium gas at 3.5 MPa

    Science.gov (United States)

    Olson, Douglas A.; Glover, Michael P.

    1990-01-01

    A compact heat exchanger was constructed consisting of circular tubes in parallel brazed to a grooved base plate. This tube specimen heat exchanger was tested in an apparatus which radiatively heated the specimen on one side at a heat flux of up to 54 W/sq cm, and cooled the specimen with helium gas at 3.5 MPa and Reynolds numbers of 3000 to 35,000. The measured friction factor of the tube specimen was lower than that of a circular tube with fully developed turbulent flow, although the uncertainty was high due to entrance and exit losses. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in circular tubes.

  12. Submaximal Exercise Pulmonary Gas Exchange in Left Heart Disease Patients With Different Forms of Pulmonary Hypertension.

    Science.gov (United States)

    Taylor, Bryan J; Smetana, Michael R; Frantz, Robert P; Johnson, Bruce D

    2015-08-01

    We determined whether pulmonary gas exchange indices during submaximal exercise are different in heart failure (HF) patients with combined post- and pre-capillary pulmonary hypertension (PPC-PH) versus HF patients with isolated post-capillary PH (IPC-PH) or no PH. Pulmonary hemodynamics and pulmonary gas exchange were assessed during rest and submaximal exercise in 39 HF patients undergoing right heart catheterization. After hemodynamic evaluation, patients were classified as having no PH (n = 11), IPC-PH (n = 12), or PPC-PH (n = 16). At an equivalent oxygen consumption, end-tidal CO2 (PETCO2) and arterial oxygen saturation (SaO2) were greater in no-PH and IPC-PH versus PPC-PH patients (36.1 ± 3.2 vs. 31.7 ± 4.5 vs. 26.2 ± 4.7 mm Hg and 97 ± 2 vs. 96 ± 3 vs. 91 ± 1%, respectively). Conversely, dead-space ventilation (VD/VT) and the ventilatory equivalent for carbon dioxide (V˙(E)/V˙CO2 ratio) were lower in no-PH and IPC-PH versus PPC-PH patients (0.37 ± 0.05 vs. 0.38 ± 0.04 vs. 0.47 ± 0.03 and 38 ± 5 vs. 42 ± 8 vs. 51 ± 8, respectively). The exercise-induced change in V(D)/V(T), V˙(E)/V˙CO2 ratio, and PETCO2 correlated significantly with the change in mean pulmonary arterial pressure, diastolic pressure difference, and transpulmonary pressure gradient in PPC-PH patients only. Noninvasive pulmonary gas exchange indices during submaximal exercise are different in HF patients with combined post- and pre-capillary PH compared with patients with isolated post-capillary PH or no PH. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Operation of an ADR using helium exchange gas as a substitute for a failed heat switch

    Science.gov (United States)

    Shirron, P.; DiPirro, M.; Kimball, M.; Sneiderman, G.; Porter, F. S.; Kilbourne, C.; Kelley, R.; Fujimoto, R.; Yoshida, S.; Takei, Y.; Mitsuda, K.

    2014-11-01

    The Soft X-ray Spectrometer (SXS) is one of four instruments on the Japanese Astro-H mission, which is currently planned for launch in late 2015. The SXS will perform imaging spectroscopy in the soft X-ray band (0.3-12 keV) using a 6 × 6 pixel array of microcalorimeters cooled to 50 mK. The detectors are cooled by a 3-stage adiabatic demagnetization refrigerator (ADR) that rejects heat to either a superfluid helium tank (at 1.2 K) or to a 4.5 K Joule-Thomson (JT) cryocooler. Four gas-gap heat switches are used in the assembly to manage heat flow between the ADR stages and the heat sinks. The engineering model (EM) ADR was assembled and performance tested at NASA/GSFC in November 2011, and subsequently installed in the EM dewar at Sumitomo Heavy Industries, Japan. During the first cooldown in July 2012, a failure of the heat switch that linked the two colder stages of the ADR to the helium tank was observed. Operation of the ADR requires some mechanism for thermally linking the salt pills to the heat sink, and then thermally isolating them. With the failed heat switch unable to perform this function, an alternate plan was devised which used carefully controlled amounts of exchange gas in the dewar's guard vacuum to facilitate heat exchange. The process was successfully demonstrated in November 2012, allowing the ADR to cool the detectors to 50 mK for hold times in excess of 10 h. This paper describes the exchange-gas-assisted recycling process, and the strategies used to avoid helium contamination of the detectors at low temperature.

  14. Operation of an ADR Using Helium Exchange Gas as a Substitute for a Failed Heat Switch

    Science.gov (United States)

    Shirron, P.; DiPirro, M.; Kimball, M.; Sneiderman, G.; Porter, F. S.; Kilbourne, C.; Kelley, R.; Fujimoto, R.; Yoshida, S.; Takei, Y.; Mitsuda, K.

    2014-01-01

    The Soft X-ray Spectrometer (SXS) is one of four instruments on the Japanese Astro-H mission, which is currently planned for launch in late 2015. The SXS will perform imaging spectroscopy in the soft X-ray band (0.3-12 keV) using a 6 6 pixel array of microcalorimeters cooled to 50 mK. The detectors are cooled by a 3-stage adiabatic demagnetization refrigerator (ADR) that rejects heat to either a superfluid helium tank (at 1.2 K) or to a 4.5 K Joule-Thomson (JT) cryocooler. Four gas-gap heat switches are used in the assembly to manage heat flow between the ADR stages and the heat sinks. The engineering model (EM) ADR was assembled and performance tested at NASA/GSFC in November 2011, and subsequently installed in the EM dewar at Sumitomo Heavy Industries, Japan. During the first cooldown in July 2012, a failure of the heat switch that linked the two colder stages of the ADR to the helium tank was observed. Operation of the ADR requires some mechanism for thermally linking the salt pills to the heat sink, and then thermally isolating them. With the failed heat switch unable to perform this function, an alternate plan was devised which used carefully controlled amounts of exchange gas in the dewar's guard vacuum to facilitate heat exchange. The process was successfully demonstrated in November 2012, allowing the ADR to cool the detectors to 50 mK for hold times in excess of 10 h. This paper describes the exchange-gas-assisted recycling process, and the strategies used to avoid helium contamination of the detectors at low temperature.

  15. Alterations in Gas Exchange and Oxidative Metabolism in Rice Leaves Infected by Pyricularia oryzae are Attenuated by Silicon.

    Science.gov (United States)

    Domiciano, Gisele Pereira; Cacique, Isaías Severino; Chagas Freitas, Cecília; Filippi, Marta Cristina Corsi; DaMatta, Fábio Murilo; do Vale, Francisco Xavier Ribeiro; Rodrigues, Fabrício Ávila

    2015-06-01

    Rice blast, caused by Pyricularia oryzae, is the most important disease in rice worldwide. This study investigated the effects of silicon (Si) on the photosynthetic gas exchange parameters (net CO2 assimilation rate [A], stomatal conductance to water vapor [gs], internal-to-ambient CO2 concentration ratio [Ci/Ca], and transpiration rate [E]); chlorophyll fluorescence a (Chla) parameters (maximum photochemical efficiency of photosystem II [Fv/Fm], photochemical [qP] and nonphotochemical [NPQ] quenching coefficients, and electron transport rate [ETR]); concentrations of pigments, malondialdehyde (MDA), and hydrogen peroxide (H2O2); and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and lypoxigenase (LOX) in rice leaves. Rice plants were grown in a nutrient solution containing 0 or 2 mM Si (-Si or +Si, respectively) with and without P. oryzae inoculation. Blast severity decreased with higher foliar Si concentration. The values of A, gs and E were generally higher for the +Si plants in comparison with the -Si plants upon P. oryzae infection. The Fv/Fm, qp, NPQ, and ETR were greater for the +Si plants relative to the -Si plants at 108 and 132 h after inoculation (hai). The values for qp and ETR were significantly higher for the -Si plants in comparison with the +Si plants at 36 hai, and the NPQ was significantly higher for the -Si plants in comparison with the +Si plants at 0 and 36 hai. The concentrations of Chla, Chlb, Chla+b, and carotenoids were significantly greater in the +Si plants relative to the -Si plants. For the -Si plants, the MDA and H2O2 concentrations were significantly higher than those in the +Si plants. The LOX activity was significantly higher in the +Si plants than in the -Si plants. The SOD and GR activities were significantly higher for the -Si plants than in the +Si plants. The CAT and APX activities were significantly higher in the +Si plants than in the -Si plants. The supply of

  16. Modeling the effects of temperature and relative humidity on gas exchange of prickly pear cactus (Opuntia spp.) stems

    NARCIS (Netherlands)

    Guevara-Arauza, J.C.; Yahia, E.M.; Cedeno, L.; Tijskens, L.M.M.

    2006-01-01

    A model to estimate gas profile of modified atmosphere packaged (MAP) prickly pear cactus stems was developed and calibrated. The model describes the transient gas exchange taking in consideration the effect of temperature (T) and relative humidity (RH) on film permeability (FPgas), respiration rate

  17. Accurate exchange-correlation energies for the warm dense electron gas

    OpenAIRE

    Malone, FD; Blunt, NS; Brown, EW; Lee, DKK; Spencer, JS; Foulkes, WMC; Shepherd, JJ

    2016-01-01

    Density matrix quantum Monte Carlo (DMQMC) is used to sample exact-on-average $N$-body density matrices for uniform electron gas systems of up to 10$^{124}$ matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the $k$-space configurati...

  18. Hierarchy carbon paper for the gas diffusion layer of proton exchange membrane fuel cells

    Science.gov (United States)

    Du, Chunyu; Wang, Baorong; Cheng, Xinqun

    This communication described the fabrication of a hierarchy carbon paper, and its application to the gas diffusion layer (GDL) of proton exchange membrane (PEM) fuel cells. The carbon paper was fabricated by growing carbon nanotubes (CNTs) on carbon fibers via covalently assembling metal nanocatalysts. Surface morphology observation revealed a highly uniform distribution of hydrophobic materials within the carbon paper. The contact angle to water of this carbon paper was not only very large but also particularly even. Polarization measurements verified that the hierarchy carbon paper facilitated the self-humidifying of PEM fuel cells, which could be mainly attributed to its higher hydrophobic property as diagnosed by electrochemical impedance spectroscopy (EIS).

  19. Stomatal control of gas-exchange is related to assimilate transport from leaves

    Science.gov (United States)

    Nikinmaa, E.; Holtta, T.; Sevanto, S.; Makela, A.; Hari, P.; Vesala, T.

    2009-04-01

    In land plants, the carbon fluxes are closely associated with those of water. The loss of water from leaves pulls water from soil in plants. High transpiration relative to compensating water flux from soil increases the tension of water column that may lead to its rupture and catastrophic dysfunction of the xylem if the transpiration rate is not regulated. Modification of the size of stomatal openings in leaves regulates the interconnected fluxes of water and carbon. Stomatal regulation of transpiration has direct influence also on the carbon transport from source leaves to sinks. Under given conditions, the water tension of xylem in leaves is linearly related to stomatal conductance while the assimilation rate, which is linked to the loading capacity, has saturating relationship with stomatal conductance. High sugar loading at source could compensate for the high water tension in xylem resulting from eg. high transpiration. However, excessive loading rate of the most commonly transported sugar, sucrose, causes rapid viscosity build up that effectively blocks the phloem transport. Assimilate transport from the shoot is a clear requirement for continuous photosynthetic production in leaves. Without transport the storage capacity of the leaves would be rapidly exhausted and accumulation of excess sugars in leaves lead to downregulation of photosynthesis. In this presentation we study the stomatal response to environment and its linkage to xylem and phloem tranport with dynamic model. We hypothesize that stomatal reaction to environment would maintain maximal assimilate transport in phloem under those conditions. We added to the xylem phloem transport model stomatal control of leaf gas-exchange, light and CO2 concentration dependent photosynthesis rate and carbon storage in leaf. For each time step we varied the stomatal conductance and selected the sollution that maximised the transport of assimilates in phloem. Our hypothesis reproduced realistically stomatal

  20. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    DEFF Research Database (Denmark)

    Mommer, L.; Pedersen, O.; Visser, E. J. W.

    2004-01-01

    . The present study demonstrates that the internal oxygen pressure in the petioles of Rumex palustris plants under water is indeed well above the critical oxygen pressure for aerobic respiration, provided that the air-saturated water is not completely stagnant. The beneficial effect of shoot acclimation...... of this terrestrial plant species to submergence for gas exchange capacity is also shown. Shoot acclimation to submergence involved a reduction of the diffusion resistance to gases, which was not only functional by increasing diffusion of oxygen into the plant, but also by increasing influx of CO2, which enhances...

  1. Gas exchange and heart rate in the harbour porpoise, Phocoena phocoena

    DEFF Research Database (Denmark)

    Reed, J.Z.; Chambers, C.; Hunter, C.J.

    2000-01-01

    The respiratory physiology, heart rates and metabolic rates of two captive juvenile male harbour porpoises (both 28 kg) were measured using a rapid-response respiratory gas analysis system in the laboratory. Breath-hold durations in the laboratory (12 +/- 0.3 s, mean +/- SEM) were shorter than...... a comparatively high minute rate of gas exchange. Oxygen consumption under these experimental conditions (247 +/- 13.8 ml O-2. min(-1)) was 1.9- fold higher than predicted by standard scaling relations. These data together with an estimate of the total oxygen stores predicted an aerobic dive limit of 5.4 min....... The peak end-tidal O-2 values were related to the length of the previous breath- hold, demonstrating the increased oxygen uptake from the lung for the longer dives. Blood oxygen capacity was 23.5 +/- 1.0 ml.100 ml(-1), and the oxygen affinity was high, enabling rapid oxygen loading during ventilation....

  2. Intensification of heat exchange in a device for gas-dynamic energy separation

    Science.gov (United States)

    Leontiev, A. I.; Burtsev, S. A.

    2016-11-01

    The operating efficiency of a gas-dynamic energy-separation device is analyzed, and it is shown that it can be improved if we deposit a regular relief on the wall separating the supersonic and subsonic channels. To decrease the total pressure losses on the side of the supersonic channel, shallow spherical dimples (stampings) are deposited, creating spherical ledges in the subsonic channel because of the small thickness of the wall. The calculation technique is modernized, and modeling is carried out, which shows that by introducing intensified heat exchange, it is possible to improve the efficiency of this device by 1.2-1.4 times in air and in natural gas with a simultaneous decrease in the device size by 20-25%.

  3. Extracorporeal gas exchange with the DeltaStream rotary blood pump in experimental lung injury.

    Science.gov (United States)

    Dembinski, Rolf; Kopp, Rüdger; Henzler, Dietrich; Hochhausen, Nadine; Oslender, Nicole; Max, Martin; Rossaint, Rolf; Kuhlen, Ralf

    2003-06-01

    In most severe cases of the acute respiratory distress syndrome, veno-venous extracorporeal membrane oxygenation (ECMO) can be used to facilitate gas exchange. However, the clinical use is limited due to the size and the concomitant risk of severe adverse events of conventionally-used centrifugal blood pumps with high extracorporeal blood volumes. The DeltaStream blood pump is a small-sized rotary blood pump that may reduce extracorporeal blood volume, foreign surfaces, contact activation of the coagulation system, and blood trauma. The aim of the present study was to test the safety and efficacy of the DeltaStream pump for ECMO in animals with normal lung function and experimental acute lung injury (ALI). Therefore, veno-venous ECMO was performed for 6 hours in mechanically ventilated pigs with normal lung function (n=6) and with ALI induced by repeated lung lavage (n=6) with a blood flow of 30% of the cardiac output. Gas flow with a FiO2 of 1.0 was set to equal blood flow. With a mean activated clotting time of 121 +/- 22 s, no circulatory impairment or thrombus formation was revealed during ECMO. Furthermore, free plasma Hb did not increase. In controls, hemodynamics and gas exchange remained unchanged. In animals with ALI, hemodynamics remained stable and gas transfer across the extracorporeal oxygenators was optimal, but only in 2 animals was a marked increase in PaO2 observed. CO2 removal was efficacious in all animals. We concluded that the DeltaStream blood pump may be used for veno-venous ECMO without major blood damage or hemodynamic impairment.

  4. Net carbon dioxide exchange rates and predicted growth patterns in Alstroemeria Jacqueline' at varying irradiances, carbon dioxide concentrations, and air temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Leonardos, E.D.; Tsujita, M.J.; Grodzinski, B. (Univ. of Guelph, Ontario (Canada). Dept. of Horticultural Science)

    1994-11-01

    The influence of irradiance, CO[sub 2] concentration, and air temperature on leaf and whole-plant net C exchange rate (NCER) of Alstroemeria Jacqueline' was studied. At ambient CO[sub 2], leaf net photosynthesis was maximum at irradiances above 600 [mu]mol[center dot]m[sup [minus]2][center dot]s[sup [minus]1] photosynthetically active radiation (PAR), while whole-plant NCER required 1,200 [mu]mol[center dot]m[sup [minus]2][center dot]s[sup [minus]1] PAR to be saturated. Leaf and whole-plant NCERs were doubled under CO[sub 2] enrichment of 1,500 to 2,000 [mu]l CO[sub 2]/liter. Leaf and whole-plant NCERs declined as temperature increased from 20 to 35 C. Whereas the optimum temperature range for leaf net photosynthesis was 17 to 23 C, whole-plant NCER, even at high light and high CO[sub 2], declined above 12 C. Dark respiration of leaves and whole plants increased with a Q[sub 10] of [approx] 2 at 15 to 35 C. In an analysis of day effects, irradiance, CO[sub 2] concentration, and temperature contributed 58%, 23%, and 14%, respectively, to the total variation in NCER explained by a second-order polynomial model (R[sup 2] = 0.85). Interactions among the factors accounted for 4% of the variation in day C assimilation. The potential whole-plant growth rates during varying greenhouse day and night temperature regimes were predicted for short- and long-day scenarios. The data are discussed with the view of designing experiments to test the importance of C gain in supporting flowering and high yield during routine harvest of Alstroemeria plants under commercial greenhouse conditions.

  5. Heat exchange effects on the performance of a clearance-sealed piston prover for gas flow measurements

    Science.gov (United States)

    Kutin, J.; Bobovnik, G.; Bajsić, I.

    2015-12-01

    This paper deals with heat exchange effects in a compact, high-speed, clearance-sealed version of a piston prover for gas flow measurements that has the temperature measurements limited to the time-averaged temperature of the gas flow. A lumped-element mathematical model is used to study the physical background of the heat exchange effects. Experimental testing is performed to validate the theoretical results, estimate the required temperature homogeneity in the piston prover and propose a modified measurement model that considers the heat exchange effects. These effects are almost linearly related to the temperature difference between the gas flow into the piston prover and the cylinder wall, with the sensitivity coefficient being dependent on the measured flow rate. The piston-prover configuration with the gas temperature sensor in the mixed inlet /outlet flow is found to be advantageous in comparison to a measurement of the inlet temperature.

  6. Excretion-retention diagram to evaluate gas exchange properties of vertebrate respiratory systems.

    Science.gov (United States)

    Zwart, A; Luijendijk, S C

    1982-09-01

    Excretion [E = (PE - PI)/(PV - PI)] and retention [R = (Pa - PI)/(PV -PI)]are completely model-free defined variables which describe the dual input-output black-box representation of vertebrate respiratory systems under steady-state conditions. In the excretion-retention diagram (E-R diagram), E is plotted as a function of R. The application of the principle of mass conservation confines the possible combinations of E and R for a gas with a blood-gas partition coefficient, lambda, in a respiratory system with an overall ventilation, VT, and an overall perfusion, QT, to E = (lambda QT/VT) (1 - R). In general, E can be described as a continuous function of R. The mathematical formulation of this function depends on the configuration of the respiratory system. Easily recognizable curvatures are obtained for counter-cross, and cocurrent systems with and without parallel inhomogeneities. Visual inspection of actual E and R data displayed in an E-R diagram therefore allows the correct choice of the configuration of the respiratory system to be eventually used for further parameter estimation schemes. The E-R diagram is also a powerful tutorial tool for visualizing the complex relationships between the gas exchange of agents with different physical properties and the consequences of changes in ventilation and perfusion distribution within the respiratory system on gas transport.

  7. Enhancement of Leaf Gas Exchange and Primary Metabolites under Carbon Dioxide Enrichment Up-Regulates the Production of Secondary Metabolites in Labisia pumila Seedlings

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2011-05-01

    Full Text Available A split plot 3 by 3 experiment was designed to investigate and distinguish the relationships among production of primary metabolites (soluble sugar and starch, secondary metabolites (total phenolics, TP; total flavonoids, TF and leaf gas exchange of three varieties of the Malaysian medicinal herb Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under three levels of CO2 enrichment (400, 800 and 1,200 µmol mol−1 for 15 weeks. The treatment effects were solely contributed by CO2 enrichment levels; no varietal differences were observed. As CO2 levels increased from 400 to 1,200 µmol mol−1, the production of carbohydrates also increased steadily, especially for starch more than soluble sugar (sucrose. TF and TP content, simultaneously, reached their peaks under 1,200 µmol exposure, followed by 800 and 400 µmol mol−1. Net photosynthesis (A and quantum efficiency of photosystem II (fv/fm were also enhanced as CO2 increased from 400 to 1,200 µmol mol−1. Leaf gas exchange characteristics displayed a significant positive relationship with the production of secondary metabolites and carbohydrate contents. The increase in production of TP and TFs were manifested by high C/N ratio and low protein content in L. pumila seedlings, and accompanied by reduction in cholorophyll content that exhibited very significant negative relationships with total soluble sugar, starch and total non structural carbohydrate.

  8. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.

    Science.gov (United States)

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M

    2015-10-01

    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment.

  9. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    Science.gov (United States)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  10. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China.

    Science.gov (United States)

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-12-02

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI.

  11. Effect of solar radiation on net ecosystem CO2 exchange of alpine meadow on the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    FAN Yuzhi; ZHANG Xianzhou; WANG Jingsheng; SHI Peili

    2011-01-01

    On the Tibetan Plateau,the alpine meadow is the most widespread vegetation type.The alpine meadow has a low biological productivity and low vegetation coverage in the growing season.The daytime NEE between the atmosphere and the alpine meadow ecosystem was influenced by solar radiation.To analyze the characteristics of change in NEE and to calculate the parameters related to photosynthesis and respiration in different solar radiation environments,the NEE measurements were taken in Damxung from July to August in 2003,2004,2005 and 2006 using the eddy covariance technique.Solar radiation was grouped into three levels according to the net radiation,which was more than 155 W m-2 d-1on clear days,144±5 W m-2 d-1 on partly cloudy days and less than 134 W m-2 d-1 on cloudy days.The diurnal relationships between NEE and PAR varied with differences in solar radiation,which was a rectangular hyperbola form on clear days,two different concave curves on partly cloudy days and an irregular triangle form on cloudy days.The mean CO2 absorption rate showed a decreasing trend with increasing solar radiation.The daytime absorption maximum occurred around 10:00 on clear days with an average of slightly less -0.2 mg m-2 d-1,around 11:00 on partly cloudy days with an average of about -0.2 mg m-2 d-1,and around 12:00 on cloudy days with an average of about -0.25 mg m-2 d-1.As solar radiation increased,the Amax and the Q10 decreased.However,the R10 increased and the maximum of the α occurred on partly cloudy days.The optimum net solar radiation was about 134-155 W m-2 d-1,which induced a PAR of about 1800-2000 μmol m-2 s-1 and soil temperature at a depth of 5 cm of about 14℃.Therefore,on the Tibetan Plateau,the alpine meadow ecosystem will have a higher carbon absorption potential while solar radiation decreases in the future.

  12. Vasomotor tone does not affect perfusion heterogeneity and gas exchange in normal primate lungs during normoxia

    Science.gov (United States)

    Glenny, R. W.; Robertson, H. T.; Hlastala, M. P.

    2000-01-01

    To determine whether vasoregulation is an important cause of pulmonary perfusion heterogeneity, we measured regional blood flow and gas exchange before and after giving prostacyclin (PGI(2)) to baboons. Four animals were anesthetized with ketamine and mechanically ventilated. Fluorescent microspheres were used to mark regional perfusion before and after PGI(2) infusion. The lungs were subsequently excised, dried inflated, and diced into approximately 2-cm(3) pieces (n = 1,208-1,629 per animal) with the spatial coordinates recorded for each piece. Blood flow to each piece was determined for each condition from the fluorescent signals. Blood flow heterogeneity did not change with PGI(2) infusion. Two other measures of spatial blood flow distribution, the fractal dimension and the spatial correlation, did not change with PGI(2) infusion. Alveolar-arterial O(2) differences did not change with PGI(2) infusion. We conclude that, in normal primate lungs during normoxia, vasomotor tone is not a significant cause of perfusion heterogeneity. Despite the heterogeneous distribution of blood flow, active regulation of regional perfusion is not required for efficient gas exchange.

  13. Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.

    Science.gov (United States)

    Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U

    2017-06-01

    To evaluate the effects of exercise velocity (60, 150, 240deg∙s(-1)) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO2) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t1/2) for oxygen uptake (V˙O2pulm), carbon dioxide output (V˙CO2pulm), and ventilation (V˙E). Significant differences of the t1/2 values were identified between 60 and 150deg∙s(-1). Significant differences in the t1/2 values were observed between V˙O2pulm and V˙CO2pulm and between V˙CO2pulm and V˙E. The time to attain the first avDO2-peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O2pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O2pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Atmospheric dust accumulation on native and non-native species: effects on gas exchange parameters.

    Science.gov (United States)

    González, Juan A; Prado, Fernando E; Piacentini, Ruben D

    2014-05-01

    Plants are continuously exposed to atmospheric particulate matter (dust), and their leaves are the main receptors of deposited dust. The objective of this study was to assess the effects of dust deposition on leaf gas exchange parameters of 17 native and non-native tree and shrub species growing in Gran San Miguel de Tucumán in northwestern Argentina. Maximum assimilation rate (), stomatal conductance (), transpiration rate (), internal CO concentration (), and instantaneous water-use efficiency (WUE) were measured in cleaned leaves (CL) and dusted leaves (DL) of different species on November 2010, July 2011, and September 2011. In almost all studied species, gas exchange parameters were significantly affected by dust deposition. Values for , , and of DL were significantly reduced in 11, 12, and 14 species compared with CL. Morphological leaf traits seem to be related to reduction. Indeed, L. and (Mart. ex DC.) Standl. species with pubescent leaves and thick ribs showed the highest reduction percentages. Contrarily, and WUE were increased in DL but were less responsive to dust deposition than other parameters. Increases of and WUE were significant in 5 and 11 species, respectively. Correlation analyses between /, /, and / pairs showed significant positive linear correlations in CL and DL of many studied species, including small and tall plants. These results suggest that leaf stomatal factors and shade-induced effect by accumulated dust are primarily responsible for the observed reductions in photosynthesis rate of DL.

  15. Iloprost improves gas exchange in patients with pulmonary hypertension and ARDS.

    Science.gov (United States)

    Sawheny, Eva; Ellis, Ashley L; Kinasewitz, Gary T

    2013-07-01

    We hypothesized that nebulized iloprost would improve ventilation-perfusion matching in patients with pulmonary hypertension and ARDS as reflected by an improved Pao2/Fio2 ratio and Pao2 without adversely affecting lung mechanics or systemic hemodynamics. Patients with ARDS and pulmonary hypertension were enrolled. With constant ventilator settings, hemodynamics, airway pressures, and gas exchange measured at baseline were compared with values 30 min after administration of 10 μg nebulized iloprost, and again 30 min after a second, larger, 20 μg dose of iloprost, and then a final measurement 2 h after the second dose. The primary outcome variable was Pao2; secondary outcomes were Pao2/Fio2 ratio, mean arterial BP, and lung-compliance ventilatory equivalents for oxygen and CO2. After informed consent was obtained, 20 patients (nine men, 11 women; median age, 59 years [interquartile range, 44-66 years]) with ARDS were enrolled. Baseline PaO2 improved from a mean (±SD) of 82 (13) mm Hg to 100 (25) mm Hg after both the first and second doses of iloprost, and the baseline mean (±SD) PaO2/FIO2 ratio of 177 (60) improved to 213 (67) and 212 (70) (all Piloprost. The improvement in gas exchange without any detrimental effects on pulmonary mechanics or systemic hemodynamics suggests nebulized iloprost may be a useful therapeutic agent to improve oxygenation in patients with ARDS. ClinicalTrials.gov; No.: NCT01274481; URL: www.clinicaltrials.gov.

  16. Effects of phosphine on the neural regulation of gas exchange in Periplaneta americana.

    Science.gov (United States)

    Woodman, James D; Haritos, Victoria S; Cooper, Paul D

    2008-04-01

    Phosphine is used for fumigating stored commodities, however an understanding of the physiological response to phosphine in insects is limited. Here we show how the central pattern generator for ventilation in the central nervous system (CNS) responds to phosphine and influences normal resting gas exchange. Using the American cockroach, Periplaneta americana, that perform discontinuous gas exchange (DGE) at rest, we simultaneously measure ventilatory nervous output from the intact CNS, VCO(2) and water loss from live specimens. Exposure to 800 ppm phosphine at 25 degrees C for 2 h (n=13) during recording did not cause any mortality or obvious sub-lethal effects. Within 60 s of introducing phosphine into the air flow, all animals showed a distinct CNS response accompanied by a burst release of CO(2). The initial ventilatory response to phosphine displaced DGE and was typically followed by low, stable and continuous CO(2) output. CNS output was highest and most orderly under normoxic conditions during DGE. Phosphine caused a series of ventilatory CNS spikes preceding almost complete cessation of CNS output. Minimal CNS output was maintained during the 2 h normoxic recovery period and DGE was not reinstated. VCO(2) was slightly reduced and water loss significantly lower during the recovery period compared with those rates prior to phosphine exposure. A phosphine narcosis effect is rejected based on animals remaining alert at all times during exposure.

  17. Chlorophyll, anthocyanin, and gas exchange changes assessed by spectroradiometry in Fragaria chiloensis under salt stress

    Institute of Scientific and Technical Information of China (English)

    Miguel Garriga; Jorge B. Retamales; Sebastin Romero-Bravo; Peter DS Caligari; Gustavo A. Lobos

    2014-01-01

    Chlorophyl and anthocyanin contents provide a valuable indicator of the status of a plant’s physiology, but to be more widely utilized it needs to be assessed easily and non-destructively. This is particularly evident in terms of assessing and exploiting germplasm for plant-breeding programs. We report, for the first time, experiments with Fragaria chiloensis (L.) Duch. and the estimation of the effects of response to salinity stress (0, 30, and 60 mmol NaCl/L) in terms of these pigments content and gas exchange. It is shown that both pigments (which interestingly, themselves show a high correlation) give a good indication of stress response. Both pigments can be accurately predicted using spectral reflectance indices (SRI);however, the accuracy of the predictions was slightly improved using multilinear regression analysis models and genetic algorithm analysis. Specifical y for chlorophyl content, unlike other species, the use of published SRI gave better indications of stress response than Normalized Difference Vegetation Index. The effect of salt on gas exchange is only evident at the highest concentration and some SRI gave better prediction perfor-mance than the known Photochemical Reflectance Index. This information wil therefore be useful for identifying tolerant genotypes to salt stress for incorporation in breeding programs.

  18. High temperature corrosion of advanced ceramic materials for hot-gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Kupp, E.R.; Trubelja, M.F.; Spear, K.E.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States)

    1995-08-01

    Experimental corrosion studies of hot gas filter materials and heat exchanger materials in oxidizing combustion environments have been initiated. Filter materials from 3M Co. and DuPont Lanxide Composites Inc. are being tested over a range of temperatures, times and gas flows. It has been demonstrated that morphological and phase changes due to corrosive effects occur after exposure of the 3M material to a combustion environment for as little as 25 hours at 800{degrees}C. The study of heat exchanger materials has focused on enhancing the corrosion resistance of DuPont Lanxide Dimox{trademark} composite tubes by adding chromium to its surfaces by (1) heat treatments in a Cr{sub 2}O{sub 3} powder bed, or (2) infiltrating surface porosity with molten chromium nitrate. Each process is followed by a surface homogenization at 1500{degrees}C. The powder bed method has been most successful, producing continuous Cr-rich layers with thicknesses ranging from 20 to 250 {mu}m. As-received and Cr-modified DuPont Lanxide Dimox{trademark} samples will be reacted with commonly encountered coal-ash slags to determine the Cr effects on corrosion resistance.

  19. Differential leaf gas exchange performance of mango cultivars infected by different isolates of Ceratocystis fimbriata

    Directory of Open Access Journals (Sweden)

    Wilka Messner da Silva Bispo

    2016-04-01

    Full Text Available ABSTRACT Caused by the vascular fungus Ceratocystis fimbriata, mango wilt is considered to be one of the most serious threats in mango-producing regions worldwide. However, changes in leaf gas exchange level and the mechanisms underlying host responses to this fungal infection remain poorly described. This study aimed to evaluate potential changes in the leaf gas exchange of different mango cultivars (Ubá, Espada, Haden and Tommy Atkins in response to two Brazilian isolates of C. fimbriata (CEBS15 and MSAK16 to non-invasively assess cultivar variability in relation to the basal level of resistance to mango wilt. Both isolates, regardless of the cultivar, caused reductions in stomatal conductance and, thus, a reduction in CO2 assimilation via diffusive limitations. Taking into account the full length of the internal lesion and the radial colonization of the stem tissues, both isolates showed equivalent aggressiveness when inoculated into the Haden and Tommy Atkins cultivars. Conversely, when compared to the CEBS15 isolate of C. fimbriata, the MSAK16 isolate was more aggressive in cv. Espada and less aggressive in cv. Ubá.

  20. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    Science.gov (United States)

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production.

  1. GROWTH, GAS EXCHANGE AND YIELD OF CORN WHEN FERTIGATED WITH BOVINE BIOFERTILIZER

    Directory of Open Access Journals (Sweden)

    THALES VINÍCIUS DE ARAÚJO VIANA

    2014-01-01

    Full Text Available The bovine biofertilizer applied through irrigation water in the soil (bio fertigation, can be a viable organic source to maintain fertility levels in agricultural production systems. So, this work was aimed at evaluating the effects of different concentrations of bovine biofertilizer applied by fertigation on corn growth, gas exchange and yield. The experiment was conducted under full sun exposure, in Fortaleza, Ceara, in 100 liter (100 L vessels. The experimental design was that of randomized blocks with five treatments and five repetitions. Treatments consisted of 0.5 L doses (per plant of a fertigating solution (biofertilizer + water weekly applied, with a different biofertilizer concentration to each treatment, as follows: C0 = 0% biofertilizer (control, C1 = 12.5%, C2 = 25% biofertilizer, C3=50% biofertilizer, C4 = 100% biofertilizer. We analyzed the effects on the following variables: plant height, stem diameter, leaf number, shoot dry weight, photosynthesis, stomatal conductance, transpiration and yield. The biofertilizer was the most efficient considering the initial growth and gas exchange. Also, the bovine biofertilizer treatments (as a whole favored the increase in the weight of 1000 seeds and grain yield.

  2. Gas exchange during exercise in different evolutional stages of chronic Chagas' heart disease

    Directory of Open Access Journals (Sweden)

    Fátima Palha de Oliveira

    2000-12-01

    Full Text Available OBJECTIVE: To compare gas exchange at rest and during exercise in patients with chronic Chagas' heart disease grouped according to the Los Andes clinical/hemodynamic classification. METHODS: We studied 15 healthy volunteers and 52 patients grouped according to the Los Andes clinical/hemodynamic classification as follows: 17 patients in group IA (normal electrocardiogram/echocardiogram, 9 patients in group IB (normal electrocardiogram and abnormal echocardiogram, 14 patients in group II (abnormal electrocardiogram/echocardiogram, without congestive heart failure, and 12 patients in group III (abnormal electrocardiogram/echocardiogram with congestive heart failure. The following variables were analyzed: oxygen consumption (V O2, carbon dioxide production (V CO2, gas exchange rate (R, inspiratory current volume (V IC, expiratory current volume (V EC, respiratory frequency, minute volume (V E, heart rate (HR, maximum load, O2 pulse, and ventilatory anaerobic threshold (AT. RESULTS: When compared with the healthy group, patients in groups II and III showed significant changes in the following variables: V O2peak, V CO2peak, V ICpeak, V ECpeak, E, HR, and maximum load. Group IA showed significantly better results for these same variables as compared with group III. CONCLUSION: The functional capacity of patients in the initial phase of chronic Chagas' heart disease is higher than that of patients in an advanced phase and shows a decrease that follows the loss in cardiac-hemodynamic performance.

  3. Do We Need Exercise Tests to Detect Gas Exchange Impairment in Fibrotic Idiopathic Interstitial Pneumonias?

    Directory of Open Access Journals (Sweden)

    Benoit Wallaert

    2012-01-01

    Full Text Available In patients with fibrotic idiopathic interstitial pneumonia (f-IIP, the diffusing capacity for carbon monoxide (DLCO has been used to predict abnormal gas exchange in the lung. However, abnormal values for arterial blood gases during exercise are likely to be the most sensitive manifestations of lung disease. The aim of this study was to compare DLCO, resting PaO2, P(A-aO2 at cardiopulmonary exercise testing peak, and oxygen desaturation during a 6-min walk test (6MWT. Results were obtained in 121 patients with idiopathic pulmonary fibrosis (IPF, n=88 and fibrotic nonspecific interstitial pneumonias (NSIP, n=33. All but 3 patients (97.5% had low DLCO values (35 mmHg and 100 (83% demonstrated significant oxygen desaturation during 6MWT (>4%. Interestingly 27 patients had low DLCO and normal P(A-aO2, peak and/or no desaturation during the 6MWT. The 3 patients with normal DLCO also had normal PaO2, normal P(A-aO2, peak, and normal oxygen saturation during 6MWT. Our results demonstrate that in fibrotic IIP, DLCO better defines impairment of pulmonary gas exchange than resting PaO2, exercise P(A-aO2, peak, or 6MWT SpO2.

  4. Exchange Energy Density Functionals that reproduce the Linear Response Function of the Free Electron Gas

    Science.gov (United States)

    García-Aldea, David; Alvarellos, J. E.

    2009-03-01

    We present several nonlocal exchange energy density functionals that reproduce the linear response function of the free electron gas. These nonlocal functionals are constructed following a similar procedure used previously for nonlocal kinetic energy density functionals by Chac'on-Alvarellos-Tarazona, Garc'ia-Gonz'alez et al., Wang-Govind-Carter and Garc'ia-Aldea-Alvarellos. The exchange response function is not known but we have used the approximate response function developed by Utsumi and Ichimaru, even we must remark that the same ansatz can be used to reproduce any other response function with the same scaling properties. We have developed two families of new nonlocal functionals: one is constructed with a mathematical structure based on the LDA approximation -- the Dirac functional for the exchange - and for the second one the structure of the second order gradient expansion approximation is took as a model. The functionals are constructed is such a way that they can be used in localized systems (using real space calculations) and in extended systems (using the momentum space, and achieving a quasilinear scaling with the system size if a constant reference electron density is defined).

  5. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    Science.gov (United States)

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  6. Lake-Atmosphere Greenhouse Gas Exchange in Relation to Atmospheric Forcing and Water Clarity

    Science.gov (United States)

    Heiskanen, J. J.; Ojala, A.; Mammarella, I.; Vesala, T.

    2015-12-01

    Even though lakes cover only 2 % of the world's land surface, it has been estimated that lakes release about 10 % of the carbon fixed annually by the terrestrial ecosystems back to the atmosphere. A critical parameter in the gas exchange estimates is the gas transfer velocity (k), which is governed by turbulence. The aim of our study was to assess the current global CO2 evasion estimates from lakes to the atmosphere by comparing parameterizations for kand the significance of wind and heat flux to the gas transfer in small lakes. To improve future predictions of gas evasion from lakes, we focused on the changes in water clarity and how they affect water column physics and processes in the air-water interface. We studied a small boreal lake and used the eddy covariance (EC) method for the high precision data needed, and therefore also aimed to improve the EC methodology on lakes. The air-water gas transfer was related to both wind and heat loss during times of seasonal stratification, but only to wind during autumn overturn. When wind-induced thermocline tilting and resulting spatial variability in surface water CO2 concentrations was accounted for, average k derived from the measurements dropped from 6.0 cm h-1 to 5.2 cm h-1. This was still over twice the estimate (2.2 cm h-1) calculated with a widely used model for kin lakes suggesting that the global estimates of gas evasion from lakes might be underestimations. Water clarity was a significant parameter defining the thermal stratification of the lake: a change from clear to dark water would lead to shorter stratification period and lower water column temperatures in small lakes and therefore have significant impact on the lake-atmosphere exchange processes. Figure 1. The isotherms of Lake Kuivajärvi throughout the open-water period 2013. The top left are the measured temperatures and the others are modeled with LAKE model using fixed light extinction coefficient, Kd. The horizontal dashed black line represents

  7. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.

    Science.gov (United States)

    Castro, Hernán Ariel; Luca, Vittorio; Banchi, Hugo Luis

    2017-03-23

    Polystyrene divinylbenzene-based ion exchange resins are employed extensively within nuclear power plants (NPPs) and research reactors for purification and chemical control of the cooling water system. To maintain the highest possible water quality, the resins are regularly replaced as they become contaminated with a range of isotopes derived from compromised fuel elements as well as corrosion and activation products including (14)C, (60)Co, (90)Sr, (129)I, and (137)Cs. Such spent resins constitute a major proportion (in volume terms) of the solid radioactive waste generated by the nuclear industry. Several treatment and conditioning techniques have been developed with a view toward reducing the spent resin volume and generating a stable waste product suitable for long-term storage and disposal. Between them, pyrolysis emerges as an attractive option. Previous work of our group suggests that the pyrolysis treatment of the resins at low temperatures between 300 and 350 °C resulted in a stable waste product with a significant volume reduction (>50%) and characteristics suitable for long-term storage and/or disposal. However, another important issue to take into account is the complexity of the off-gas generated during the process and the different technical alternatives for its conditioning. Ongoing work addresses the characterization of the ion exchange resin treatment's off-gas. Additionally, the application of plasma technology for the treatment of the off-gas current was studied as an alternative to more conventional processes utilizing oil- or gas-fired post-combustion chambers operating at temperatures in excess of 1000 °C. A laboratory-scale flow reactor, using inductively coupled plasma, operating under sub-atmospheric conditions was developed. Fundamental experiments using model compounds have been performed, demonstrating a high destruction and removal ratio (>99.99%) for different reaction media, at low reactor temperatures and moderate power

  8. Net ecosystem exchange from five land-use transitions to bioenergy crops from four locations across the UK - The Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project.

    Science.gov (United States)

    Xenakis, Georgios; Perks, Mike; Harris, Zoe M.; McCalmont, Jon; Rylett, Daniel; Brooks, Milo; Evans, Jonathan G.; Finch, Jon; Rowe, Rebecca; Morrison, Ross; Alberti, Giorgio; Donnison, Ian; Siebicke, Lukas; Morison, James; Taylor, Gail; McNamara, Niall P.

    2016-04-01

    A major part of international agreements on combating climate change is the conversion from a fossil fuel economy to a low carbon economy. Bioenergy crops have been proposed as a way to improve energy security while reducing CO2 emissions to help mitigate the effects of climate change. However, the impact of land-use change from a traditional land use (e.g., arable and grassland) to bioenergy cropping systems on greenhouse gas balance (GHG) and carbon stocks are poorly quantified at this time. The Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project was commissioned and funded by the Energy Technologies Institute (ETI) to provide scientific evidence within the UK on a range of land-use conversions (LUC) to bioenergy crops. The ELUM network consists of seven partners investigating five LUCs in four locations including Scotland, Wales, North and South England. Transitions included grasslands to short rotation forestry (SRF), to short rotation coppice willow (SRC) and to Miscanthus and arable to SRC and Miscanthus Measurements of net ecosystem exchange (NEE) along with continuous measurements of meteorological conditions were made at seven sub-sites over a two-year period. Results showed that, over two years, two of the land-uses, a grassland in South England and a grassland conversion to Miscanthus in Wales were net sources of carbon. The greatest carbon sink was into the SRF site in Scotland followed by the SRC willow in South England. The annual terrestrial ecosystem respiration (TER) for the SRC willow in North and South Sussex sites were similar, but the annual GPP at the South England site was about 27% higher than that the North England site. Establishing a long term network will allow us to continue monitoring the effects of land use change on whole ecosystem carbon balance, providing an insight into which types of LUC are suitable for bioenergy cropping in the UK.

  9. Centrality dependence of chemical freeze-out parameters from net-proton and net-charge fluctuations using hadron resonance gas model

    CERN Document Server

    Adak, Rama Prasad; Ghosh, Sanjay K; Ray, Rajarshi; Samanta, Subhasis

    2016-01-01

    We extract chemical freeze-out parameters in HRG and EVHRG model, analysing the experimental information of net-proton and net-charge fluctuations measured in Au + Au collisions by the STAR collaboration at RHIC. We observe that chemical freeze-out parameters extracted from lower and higher order fluctuations are though almost same for $\\sqrt{s_{NN}} > 27$ GeV, they tend to deviate from each other at lower $\\sqrt{s_{NN}}$. Moreover, these separations increase with decrease of $\\sqrt{s_{NN}}$ and for a fixed $\\sqrt{s_{NN}}$ increase towards central collisions. This may be an indication of approach of critical region at lower $\\sqrt{s_{NN}}$. Furthermore, we observe an approximate scaling behaviour of $(\\mu_B/T)/(\\mu_B/T)_{central}$ with $(N_{part})/(N_{part})_{central}$ for the parameters extracted from lower order fluctuations for 11.5 GeV $\\le \\sqrt{s_{NN}} \\le$ 200 GeV. Scaling is violated for the parameters extracted from higher order fluctuations for $\\sqrt{s_{NN}}= 11.5$ and 19.6 GeV. It is observed that...

  10. Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange

    Science.gov (United States)

    Vidal Melo, M. F.; Loeppky, J. A.; Caprihan, A.; Luft, U. C.

    1993-01-01

    This study describes a two-compartment model of pulmonary gas exchange in which alveolar ventilation to perfusion (VA/Q) heterogeneity and impairment of pulmonary diffusing capacity (D) are simultaneously taken into account. The mathematical model uses as input data measurements usually obtained in the lung function laboratory. It consists of two compartments and an anatomical shunt. Each compartment receives fractions of alveolar ventilation and blood flow. Mass balance equations and integration of Fick's law of diffusion are used to compute alveolar and blood O2 and CO2 values compatible with input O2 uptake and CO2 elimination. Two applications are presented. The first is a method to partition O2 and CO2 alveolar-arterial gradients into VA/Q and D components. The technique is evaluated in data of patients with chronic obstructive pulmonary disease (COPD). The second is a theoretical analysis of the effects of blood flow variation in alveolar and blood O2 partial pressures. The results show the importance of simultaneous consideration of D to estimate VA/Q heterogeneity in patients with diffusion impairment. This factor plays an increasing role in gas alveolar-arterial gradients as severity of COPD increases. Association of VA/Q heterogeneity and D may produce an increase of O2 arterial pressure with decreasing QT which would not be observed if only D were considered. We conclude that the presented computer model is a useful tool for description and interpretation of data from COPD patients and for performing theoretical analysis of variables involved in the gas exchange process.

  11. Effect of sedation with detomidine and butorphanol on pulmonary gas exchange in the horse

    Directory of Open Access Journals (Sweden)

    Morgan Karin

    2009-05-01

    Full Text Available Abstract Background Sedation with α2-agonists in the horse is reported to be accompanied by impairment of arterial oxygenation. The present study was undertaken to investigate pulmonary gas exchange using the Multiple Inert Gas Elimination Technique (MIGET, during sedation with the α2-agonist detomidine alone and in combination with the opioid butorphanol. Methods Seven Standardbred trotter horses aged 3–7 years and weighing 380–520 kg, were studied. The protocol consisted of three consecutive measurements; in the unsedated horse, after intravenous administration of detomidine (0.02 mg/kg and after subsequent butorphanol administration (0.025 mg/kg. Pulmonary function and haemodynamic effects were investigated. The distribution of ventilation-perfusion ratios (VA/Q was estimated with MIGET. Results During detomidine sedation, arterial oxygen tension (PaO2 decreased (12.8 ± 0.7 to 10.8 ± 1.2 kPa and arterial carbon dioxide tension (PaCO2 increased (5.9 ± 0.3 to 6.1 ± 0.2 kPa compared to measurements in the unsedated horse. Mismatch between ventilation and perfusion in the lungs was evident, but no increase in intrapulmonary shunt could be detected. Respiratory rate and minute ventilation did not change. Heart rate and cardiac output decreased, while pulmonary and systemic blood pressure and vascular resistance increased. Addition of butorphanol resulted in a significant decrease in ventilation and increase in PaCO2. Alveolar-arterial oxygen content difference P(A-aO2 remained impaired after butorphanol administration, the VA/Q distribution improved as the decreased ventilation and persistent low blood flow was well matched. Also after subsequent butorphanol no increase in intrapulmonary shunt was evident. Conclusion The results of the present study suggest that both pulmonary and cardiovascular factors contribute to the impaired pulmonary gas exchange during detomidine and butorphanol sedation in the horse.

  12. The creation of regional stock exchanges contributes to the gradual emancipation of gas prices; La bourse participe de l'emancipation du prix du gaz

    Energy Technology Data Exchange (ETDEWEB)

    Pauron, M

    2008-09-15

    The French gas stock exchanges should be launched by mid-November 2008 by Powernext. In this interview, J.F. Conil-Lacoste, head of Powernext, details its characteristics, how long Powernext has been preparing the launch of this new exchange market, what a gas exchange in France entails, how trading will be carried out, what he expects from it, what this exchange will bring to the current gas market, how the French gas exchange will differ from the other European exchanges, how Powernext will ensure that the exchange will attract enough players, how it will emancipate the gas prices with respect to oil and how he feels the new market opening. (J.S.)

  13. Capture of elemental and organic iodine from dilute gas streams by silver-exchanged mordenite

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, S.H.; Jubin, R.T.; Jordan, J.A. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2016-07-01

    The treatment of off-gas streams arising from reprocessing of used nuclear fuel (UNF) is an area of active study by the U.S. Department of Energy. Such off-gas streams contain volatile fission products, including long-lived {sup 129}I. Although {sup 129}I is released into the off-gas at multiple points within the chemical reprocessing flowsheet, previous research has focused on removal from the dissolver off-gas stream (DOG). The DOG is expected to contain up to 98% of iodine in UNF at ppm levels within the stream. Other off-gas streams will also contain iodine but at substantially lower concentrations. Recent work has shown that compliance with U.S. regulations will likely require capture of iodine from these dilute streams in addition to capture from DOG. In particular, the vessel off-gas (VOG) stream is expected to contain 1-3% of the total iodine inventory at ppb concentrations. A review of literature also indicates that the speciation of iodine in the VOG stream will differ from that of the DOG, with the DOG containing primarily I{sub 2} and the VOG containing a mixture of I{sub 2} and organic iodine species. Silver-exchanged mordenite (AgZ) has been identified for use in the removal of iodine from off-gas streams. It is an effective capture material for I{sub 2} at the concentrations expected in the DOG, but little is known about its performance in gas streams that may contain both I{sub 2} and organic iodides at very dilute concentrations. The experiments to be described were designed to separately characterize the adsorption of I{sub 2} and methyl iodide on AgZ through extended duration testing. Simulated vessel off-gases containing low levels of either I{sub 2} or methyl iodide were contacted with AgZ sorbent beds for up to four months. Through the use of sorbent beds in series and varied sampling times, key parameters such as adsorption rate, decontamination factor, and performance over time could be determined for the capture of each species by AgZ. This

  14. Trace gas and energy exchange above a pine afforestation: past, present and future research

    Science.gov (United States)

    Urbaniak, Marek; Chojnicki, Bogdan; Danielewska, Alina; Baran, Marcin; Ziemblinska, Klaudia; Merbold, Lutz; Olejnik, Janusz

    2013-04-01

    Forests are among the most important elements of the Earth's biosphere, providing In the context of global climate change forest plays an important role as a sink of CO2, besides providing other ecological advantages such as favourable habitat for plant and animal species. Changes in the global environment are likely to severely affect the functioning of forest ecosystems. The direction and intensity of these changes can be assessed by the analysis of mass and energy fluxes exchanged between the forest canopy and the atmosphere. Water vapour (H2O) and carbon dioxide (CO2) fluxes were measured using the eddy covariance (EC) method in order to obtain long-term data series. Measurements started in January 2008 and continue until today. The EC tower was established within a 56 year and 24 m tall scots pine (pinus sylvestris L.), located nearby the town of Tuczno (North-West Poland). This forest is representative for the large areas that are under the management of one national company (State Forests National Forest Holding). It has been hypothesized that this type of forest (same stand age and structure) are responsible for the major net uptake of atmospheric CO2 in Poland. Annual sequestration during the first two years of measurements was shown to be as high as (702 g C·m-2 in 2008 and 747 g C·m-2 in 2009. However, less carbon was sequestered during the years 2010 and 2011, 546gC·m-2 and 592 gC·m-2, respectively. During the upcoming years we aim at answering the following question: which variables, meteorological or air quality, determine the annual variance of net ecosystem productivity (NEP)? Therefore the existing EC tower was additionally instrumented with devices measuring basic meteorological parameters (solar radiation, air and soil temperature, precipitation). Research will further be extended by studying the hydrology, nutrient cycling and soil properties in order to derive a combined knowledge on forest ecosystem functioning in Poland.

  15. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation

    Directory of Open Access Journals (Sweden)

    D. Papale

    2006-01-01

    Full Text Available Eddy covariance technique to measure CO2, water and energy fluxes between biosphere and atmosphere is widely spread and used in various regional networks. Currently more than 250 eddy covariance sites are active around the world measuring carbon exchange at high temporal resolution for different biomes and climatic conditions. In this paper a new standardized set of corrections is introduced and the uncertainties associated with these corrections are assessed for eight different forest sites in Europe with a total of 12 yearly datasets. The uncertainties introduced on the two components GPP (Gross Primary Production and TER (Terrestrial Ecosystem Respiration are also discussed and a quantitative analysis presented. Through a factorial analysis we find that generally, uncertainties by different corrections are additive without interactions and that the heuristic u*-correction introduces the largest uncertainty. The results show that a standardized data processing is needed for an effective comparison across biomes and for underpinning inter-annual variability. The methodology presented in this paper has also been integrated in the European database of the eddy covariance measurements.

  16. Gas diffusion layer for proton exchange membrane fuel cells - A review

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India); Kannan, A.M.; Lin, J.F.; Saminathan, K. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Ho, Y. [Department of Biotechnology, College of Health Science, Asia University, Taichung 41354 (China); Lin, C.W. [Department of Chemical Engineering, National Yunlin University of Science and Technology, Yunlin 640 (China); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road, West Groton, MA 01472 (United States)

    2009-10-20

    Gas diffusion layer (GDL) is one of the critical components acting both as the functional as well as the support structure for membrane-electrode assembly in the proton exchange membrane fuel cell (PEMFC). The role of the GDL is very significant in the H{sub 2}/air PEM fuel cell to make it commercially viable. A bibliometric analysis of the publications on the GDLs since 1992 shows a total of 400+ publications (>140 papers in the Journal of Power Sources alone) and reveals an exponential growth due to reasons that PEMFC promises a lot of potential as the future energy source for varied applications and hence its vital component GDL requires due innovative analysis and research. This paper is an attempt to pool together the published work on the GDLs and also to review the essential properties of the GDLs, the method of achieving each one of them, their characterization and the current status and future directions. The optimization of the functional properties of the GDLs is possible only by understanding the role of its key parameters such as structure, porosity, hydrophobicity, hydrophilicity, gas permeability, transport properties, water management and the surface morphology. This paper discusses them in detail to provide an insight into the structural parts that make the GDLs and also the processes that occur in the GDLs under service conditions and the characteristic properties. The required balance in the properties of the GDLs to facilitate the counter current flow of the gas and water is highlighted through its characteristics. (author)

  17. Effect of gas diffusion layer and membrane properties in an annular proton exchange membrane fuel cell

    Science.gov (United States)

    Khazaee, I.; Ghazikhani, M.; Esfahani, M. Nasr

    2012-01-01

    A complete three-dimensional and single phase computational dynamics model for annular proton exchange membrane (PEM) fuel cell is used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the two-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by decreasing the thickness of the membrane the performance of the cell increases.

  18. Nitrous oxide net exchange in a beech dominated mixed forest in Switzerland measured with a quantum cascade laser spectrometer

    Directory of Open Access Journals (Sweden)

    W. Eugster

    2007-04-01

    Full Text Available Nitrous oxide fluxes were measured at the Lägeren CarboEurope IP flux site over the multi-species mixed forest dominated by European beech and Norway spruce. Measurements were carried out during a four-week period in October–November 2005 during leaf senescence. Fluxes were measured with a standard ultrasonic anemometer in combination with a quantum cascade laser absorption spectrometer that measured N2O, CO2, and H2O mixing ratios simultaneously at 5 Hz time resolution. To distinguish insignificant fluxes from significant ones it is proposed to use a new approach based on the significance of the correlation coefficient between vertical wind speed and mixing ratio fluctuations. This procedure eliminated roughly 56% of our half-hourly fluxes. Based on the remaining, quality checked N2O fluxes we quantified the mean efflux at 0.8 ± 0.4 μmol m−2 h−1 (mean ± standard error. Most of the contribution to the N2O flux occurred during a 6.5-h period starting 4.5 h before each precipitation event. No relation with precipitation amount could be found. Visibility data representing fog density and duration at the site indicate that wetting of the canopy may have as strong an effect on N2O effluxes as does below-ground microbial activity. It is speculated that above-ground N2O production from the senescing leaves at high moisture (fog, drizzle, onset of precipitation event may be responsible for part of the measured flux. In comparison with the annual CO2 budget of –342 g C m−2 yr−1 it is estimated that concurrent N2O fluxes offset at least 5% of the greenhouse forcing reduction via net CO2 uptake.

  19. Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes.

    Science.gov (United States)

    McDowell, Nate G; Adams, Henry D; Bailey, John D; Hess, Marcey; Kolb, Thomas E

    2006-06-01

    Homeostatic maintenance of gas exchange optimizes carbon gain per water loss. Homeostasis is regulated by short-term physiological and long-term structural mechanisms, both of which may respond to changes in resource availability associated with competition. Therefore, stand density regulation via silvicultural manipulations may facilitate growth and survival through mechanisms operating at both short and long timescales. We investigated the responses of ponderosa pine (Pinus ponderosa) to stand basal area manipulations in Arizona, USA. Stand basal area was manipulated to seven replicated levels in 1962 and was maintained for four decades by decadal thinning. We measured basal area increment (BAI) to assess the response and sustainability of wood growth, carbon isotope discrimination (A) inferred from annual rings to assess the response of crown gas exchange, and ratios of leaf area to sapwood area (A(l):A(s)) to assess longer term structural acclimation. Basal area treatments increased soil water potential (r2 = 0.99) but did not affect photosynthetic capacity. BAI increased within two years of thinning, and the 40-year mean BAI was negatively correlated with stand basal area (r2 = 0.98). delta was negatively correlated with stand basal area for years 5 through 12 after thinning (r2 = 0.90). However, delta was relatively invariant with basal area for the period 13-40 years after initial thinning despite maintenance of treatment basal areas via repeated decadal thinnings. Independent gas exchange measurements verified that the ratio of photosynthesis to stomatal conductance was invariant with basal area, but absolute values of both were elevated at lower basal areas. A(l):A(s) was negatively correlated with basal area (r2 = 0.93). We hypothesize that increased A(l):A(s) is a homeostatic response to increased water availability that maximizes water-use efficiency and whole-tree carbon uptake. Elevated A(l):A(s) of trees at low basal areas was associated with greater

  20. Long-term impacts of peatland restoration on the net ecosystem exchange (NEE) of blanket bogs in Northern Scotland.

    Science.gov (United States)

    Hambley, Graham; Hill, Timothy; Saunders, Matthew; Arn Teh, Yit

    2016-04-01

    Unmanaged peatlands represent an important long-term C sink and thus play an important part of the global C cycle. Despite covering only 12 % of the UK land area, peatlands are estimated to store approximately 20 times more carbon than the UK's forests, which cover 13% of the land area. The Flow Country of Northern Scotland is the largest area of contiguous blanket bog in the UK, and one of the biggest in Europe, covering an area in excess of 4000 km2 and plays a key role in mediating regional atmospheric exchanges of greenhouse gases (GHGs) such as carbon dioxide (CO2), and water vapour (H2O). However, these peatlands underwent significant afforestation in the 1980s, when over 670 km2 of blanket bog were drained and planted with Sitka spruce (Picea sitchensis) and Lodgepole pine (Pinus contorta). This resulted in modifications to hydrology, micro-topography, vegetation and soil properties all of which are known to influence the production, emission and sequestration of key GHGs. Since the late 1990s restoration work has been carried out to remove forest plantations and raise water tables, by drain blocking, to encourage the recolonisation of Sphagnum species and restore ecosystem functioning. Here, we report findings of NEE and its constituent fluxes, GPP and Reco, from a study investigating the impacts of restoration on C dynamics over a chronosequence of restored peatlands. The research explored the role of environmental variables and microtopography in modulating land-atmosphere exchanges, using a multi-scale sampling approach that incorporated eddy covariance measurements with dynamic flux chambers. Key age classes sampled included an undrained peatland; an older restored peatland (17 years old); and a more recently restored site (12 years old). The oldest restored site showed the strongest uptake of C, with an annual assimilation rate of 858 g C m-2 yr-1 compared to assimilation rates of 501g C m-2 yr-1 and 575g C m-2 yr-1 from the younger restored site and

  1. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange

    DEFF Research Database (Denmark)

    Colmer, Timothy David; Pedersen, Ole

    2007-01-01

    Many wetland plants have gas films on submerged leaf surfaces. We tested the hypotheses that leaf gas films enhance CO(2) uptake for net photosynthesis (P(N)) during light periods, and enhance O(2) uptake for respiration during dark periods. Leaves of four wetland species that form gas films......, and two species that do not, were used. Gas films were also experimentally removed by brushing with 0.05% (v/v) Triton X. Net O(2) production in light, or O(2) consumption in darkness, was measured at various CO(2) and O(2) concentrations. When gas films were removed, O(2) uptake in darkness was already...... diffusion-limited at 20.6 kPa (critical O(2) pressure for respiration, COP(R)>/= 284 mmol O(2) m(-3)), whereas for some leaves with gas films, O(2) uptake declined only at approx. 4 kPa (COP(R) 54 mmol O(2) m(-3)). Gas films also improved CO(2) uptake so that, during light periods, underwater P...

  2. Ecosystem CO2/H2O fluxes are explained by hydraulically limited gas exchange during tree mortality from spruce bark beetles

    Science.gov (United States)

    Frank, John M.; Massman, William J.; Ewers, Brent E.; Huckaby, Laurie S.; Negrón, José F.

    2014-06-01

    Disturbances are increasing globally due to anthropogenic changes in land use and climate. This study determines whether a disturbance that affects the physiology of individual trees can be used to predict the response of the ecosystem by weighing two competing hypothesis at annual time scales: (a) changes in ecosystem fluxes are proportional to observable patterns of mortality or (b) to explain ecosystem fluxes the physiology of dying trees must also be incorporated. We evaluate these hypotheses by analyzing 6 years of eddy covariance flux data collected throughout the progression of a spruce beetle (Dendroctonus rufipennis) epidemic in a Wyoming Engelmann spruce (Picea engelmannii)-subalpine fir (Abies lasiocarpa) forest and testing for changes in canopy conductance (gc), evapotranspiration (ET), and net ecosystem exchange (NEE) of CO2. We predict from these hypotheses that (a) gc, ET, and NEE all diminish (decrease in absolute magnitude) as trees die or (b) that (1) gc and ET decline as trees are attacked (hydraulic failure from beetle-associated blue-stain fungi) and (2) NEE diminishes both as trees are attacked (restricted gas exchange) and when they die. Ecosystem fluxes declined as the outbreak progressed and the epidemic was best described as two phases: (I) hydraulic failure caused restricted gc, ET (28 ± 4% decline, Bayesian posterior mean ± standard deviation), and gas exchange (NEE diminished 13 ± 6%) and (II) trees died (NEE diminished 51 ± 3% with minimal further change in ET to 36 ± 4%). These results support hypothesis b and suggest that model predictions of ecosystem fluxes following massive disturbances must be modified to account for changes in tree physiological controls and not simply observed mortality.

  3. Net ecosystem CO2 exchange of an invasive plant infestation: new insights on the effects of phenology and management practices on structure and functioning

    Science.gov (United States)

    Sonnentag, Oliver; Detto, Matteo; Runkle, Benjamin; Hatala, Jaclyn; Vargas, Rodrigo; Kelly, Maggi; Baldocchi, Dennis

    2010-05-01

    The net ecosystem carbon dioxide (CO2) exchange (FC) of invasive plant infestations has been subject of few studies only. Perennial pepperweed (Lepidium latifolium L.) is an aggressive invasive plant with severe economic and environmental consequences for infested ecosystems. A characteristic feature of pepperweed's phenological cycle is the dense arrangement of small white flowers during secondary inflorescence. Little is known about how pepperweed flowering and management practices such as mowing affect canopy structure and canopy photosynthesis (FA) and autotrophic respiration (FAR) and thus ecosystem respiration (FER; FC=FER-FA with FER=FAR+heterotrophic respiration [FHR]). To examine these effects we analyzed three years (2007-2010) of CO2 flux measurements made with eddy covariance, supporting environmental measurements and near-surface remote sensing data (canopy-scale reflectance, digital camera imagery) from a pepperweed-infested pasture in California's Sacramento-San Joaquin River Delta. The measurements cover three meteorologically similar summers (1 May - 30 September) that slightly differed in terms of land use practices. In 2007-2010, the site was subjected to year-round grazing by beef cattle, and in 2008, the site was additionally mowed in mid-May during flowering. We described structural changes in canopy development through seasonal changes in surface roughness for momentum transfer (z0m). Weekly soil CO2 efflux (≈ FHR) estimates from static chamber measurements made over bare soil were used to separate FER into FAR and FHR. We identified the onset of pepperweed's key phenological phases (i.e., germination, early vegetative growth, flowering, seed maturation, senescence, dormancy) through the integrated analysis of albedo of photosynthetically active radiation (PAR), a broad-band green normalized difference vegetation index, and a digital camera-based color index. We used non-linear mixed-effects model analysis to investigate the combined

  4. Investigation of the gas-phase hydrogen/deuterium exchange behavior of aromatic dicarboxylic acids in a quadrupole ion trap

    Science.gov (United States)

    Chipuk, Joseph E.; Brodbelt, Jennifer S.

    2007-11-01

    Gas-phase hydrogen/deuterium (H/D) exchange reactions of four deprotonated aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid and 2,6-naphthalic acid) with D2O were performed in a quadrupole ion trap mass spectrometer. Experimental results showed significant differences in the rate and extent of exchange when the relative position of the carboxylic acid groups varied. Spontaneous and near complete exchange of one aromatic hydrogen atom occurred when the carboxylic acid groups were in the meta-position, whereas no additional exchange was observed for either the ortho- or para-isomers or for the structurally similar naphthalic acid. Computational investigations support the participation of several possible exchange mechanisms with the contribution of each relying heavily on the relative orientation of the acid moieties. A relay mechanism that bridges the deprotonation site and the labile hydrogen site appears to be responsible for the H/D exchange of not only the labile hydrogen atom of isophthalic acid, but also for the formation of a stable carbanion and corresponding subsequent exchange of one aromatic hydrogen atom. The impact of hydrogen bonding on the relay mechanism is demonstrated by the reaction of phthalic acid as the extent and rate of reaction are greatly retarded by the favorable interaction of the two carboxylic acid groups. Finally, a flip-flop mechanism is likely responsible for the exchange of both terephthalic acid and 2,6-naphthalic acid where the reactive sites are too remote for exchange via relay.

  5. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry.

    Science.gov (United States)

    Xiao, Yiming; Konermann, Lars

    2015-08-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ↔ "native" ↔ "globally unfolded" → "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS.

  6. Changes in pulmonary blood flow do not affect gas exchange during intermittent ventilation in resting turtles

    DEFF Research Database (Denmark)

    Wang, Tobias; Hicks, James W.

    2008-01-01

    with characteristic increases in pulmonary blood flow and tachycardia. In animals with central vascular shunts, the rise in pulmonary blood flow during ventilation is associated with the development of left-to-right (L-R) cardiac shunt (pulmonary recirculation of oxygenated blood returning from the lungs......The breathing pattern of many different air-breathing vertebrates, including lungfish, anuran amphibians, turtles, crocodiles and snakes, is characterized by brief periods of lung ventilation interspersed among apnoeas of variable duration. These intermittent ventilatory cycles are associated...... experimentally. The present study measured pulmonary gas exchange in fully recovered, freely diving turtles, where changes in pulmonary blood flow were prevented by partial occlusion of the pulmonary artery. Prevention of L-R shunt during ventilation did not impair CO2 excretion and overall, oxygen uptake and CO...

  7. Carbon film coating on gas diffusion layer for proton exchange membrane fuel cells

    Science.gov (United States)

    Lin, Jui-Hsiang; Chen, Wei-Hung; Su, Shih-Hsuan; Liao, Yuan-Kai; Ko, Tse-Hao

    This study discusses a novel process to increase the performance of proton exchange membrane fuel cells (PEMFC). In order to improve the electrical conductivity and reduce the surface indentation of the carbon fibers, we modified the carbon fibers with pitch-based carbon materials (mesophase pitch and coal tar pitch). Compared with the gas diffusion backing (GDB), GDB-A240 and GDB-MP have 32% and 33% higher current densities at 0.5 V, respectively. Self-made carbon paper with the addition of a micro-porous layer (MPL) (GDL-A240 and GDL-MP) show improved performance compared with GDB-A240 and GDB-MP. The current densities of GDL-A240 and GDL-MP at 0.5 V increased by 37% and 31% compared with GDL, respectively. This study combines these two effects (carbon film and MPL coating) to promote high current density in a PEMFC.

  8. Characterisation of porous carbon electrode materials used in proton exchange membrane fuel cells via gas adsorption

    Science.gov (United States)

    Watt-Smith, M. J.; Rigby, S. P.; Ralph, T. R.; Walsh, F. C.

    Porous carbon materials are typically used in both the substrate (typically carbon paper) and the electrocatalyst supports (often platinised carbon) within proton exchange membrane fuel cells. Gravimetric nitrogen adsorption has been studied at a carbon paper substrate, two different Pt-loaded carbon paper electrodes and three particulate carbon blacks. N 2 BET surface areas and surface fractal dimensions were determined using the fractal BET and Frenkel-Halsey-Hill models for all but one of the materials studied. The fractal dimensions of the carbon blacks obtained from gas adsorption were compared with those obtained independently by small angle X-ray scattering and showed good agreement. Density functional theory was used to characterise one of the carbon blacks, as the standard BET model was not applicable.

  9. Hemodynamics and Gas Exchange Effects of Inhaled Nitrous Oxide in Patients with Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    V. N. Poptsov

    2006-01-01

    Full Text Available Inhaled nitrous oxide (iNO therapy aimed at improving pulmonary oxygenizing function and at decreasing artificial ventilation (AV load has been used in foreign clinical practice in the past decade. The study was undertaken to evaluate the hemodynamic and gas exchange effects of iNO in acute respiratory distress syndrome (ARDS that developed after car-diosurgical operations. Fifty-eight (43 males and 15 females patients aged 21 to 76 (55.2±2.4 years were examined. The study has demonstrated that in 48.3% of cases, the early stage of ARDS is attended by the increased tone pulmonary vessels due to impaired NO-dependent vasodilatation. In these patients, iNO therapy is an effective therapeutic method for correcting hemodynamic disorders and lung oxygenizing function.

  10. Environment and phenology: CO2 net ecosystem exchange and CO2 flux partitioning at an acid and oligotrophic mire system in northern Sweden

    Science.gov (United States)

    Gažovič, Michal; Peichl, Matthias; Vermeij, Ilse; Limpens, Juul; Nilsson, Mats. B.

    2015-04-01

    Static chamber and environmental measurements in combination with vegetation indices (i.e. vascular green area (VGA) and the greenness chromatic color index (gcc) derived from digital camera images) were used to investigate effects of environment and phenology on the CO2 net ecosystem exchange (NEE) and CO2 flux partitioning at the Degerö Stormyr site in northern Sweden (64°11' 23.565" N, 19°33' 55.291 E) during two environmentally different years. Our measurement design included a control plot, a moss plot (where vascular plants were removed by clipping) and four heterotrophic respiration (RH) collars (where all green moss and vascular plant biomass were removed) to partition between soil heterotrophic and plant autotrophic (moss and vascular plants) respiration (RA), as well as between moss and vascular plant gross primary production (GPP). Environmental conditions, especially the shallow snow cover, peat soil frost and cold spring in 2014 caused delayed onset of spring green up, reduced soil respiration flux and reduced GPP of vascular plants. Soil temperature measured in 26 cm depth started to rise from spring temperatures of ~ 0.6 °C in 2013 and 0.15 °C in 2014 about 20 days earlier in 2013 compared to 2014. With earlier onset of the growing season and higher soil temperatures in 2013, heterotrophic soil respiration was higher in year 2013 than in year 2014. In 2013, RH dominated the total ecosystem respiration in all months but June and August. On contrary, autotrophic respiration dominated ecosystem respiration in all months of 2014. In both years, vascular plants and mosses were more or less equally contributing to autotrophic respiration. We measured higher GPP in year 2013 compared to year 2014. Also VGA and gcc were higher in spring and throughout the rest of 2013 compared to 2014. The onset of VGA was delayed by ~ 10 days in 2014. In general, total GPP was dominated by GPP of vascular plants in both years, although moss GPP had substantial

  11. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  12. Persistent improvement of gas exchange and lung mechanics by aerosolized perfluorocarbon.

    Science.gov (United States)

    Kandler, M A; von der Hardt, K; Schoof, E; Dötsch, J; Rascher, W

    2001-07-01

    The effect of aerosolized perfluorocarbon (PFC) (FC77) on pulmonary gas exchange and lung mechanics was studied in a surfactant depleted piglet model. Sixty minutes after induction of lung injury by bronchoalveolar lavage, 20 piglets were randomized to receive aerosolized PFC (Aerosol-PFC, 10 ml/kg/h, n = 5), partial liquid ventilation (PLV) at FRC capacity volume (FRC-PLV, 30 ml/kg, n = 5) or low volume (LV-PLV, 10 ml/kg/h, n = 5), or intermittent mandatory ventilation (IMV) (Control, n = 5). After 2 h, perfluorocarbon application was stopped and IMV was continued for 6 h. Sixty minutes after the onset of therapy, PaO2 was significantly higher and PaCO2 was significantly lower in the Aerosol-PFC and the FRC-PLV groups than in the LV-PLV and the Control groups; p Aerosol-PFC group: 406.4 +/- 26.9 mm Hg, FRC-PLV: 217.3 +/- 50.5 mm Hg, LV-PLV: 96.3 +/- 18.9 mm Hg, Control: 67.6 +/- 8.4 mm Hg; p Aerosol-PFC group: 24.2 +/- 1.7 mm Hg, FRC-PLV: 35.9 +/- 2.8 mm Hg, LV-PLV: 56.7 +/- 12.4 mm Hg, Control: 60.6 +/- 5.1 mm Hg; p Aerosol-PFC group; p Aerosolized perfluorocarbon improved pulmonary gas exchange and lung mechanics as effectively as PLV did in surfactant-depleted piglets, and the improvement was sustained longer.

  13. Leaf Chlorophyll Fluorescence and Gas Exchange Response to Different Light Levels in Platycerium bifurcatum

    Directory of Open Access Journals (Sweden)

    Ruzana-Adibah M. Sanusi

    2011-01-01

    Full Text Available Problem statement: Platycerium bifurcatum (Cav. C. Chr. is epiphytes which lives in forest canopy and commonly used for its ornamental value. In these environments, they were always exposed to many types of stresses such as high light intensity. Light intensity plays an important role in affecting plants physiological performance. Therefore, the purpose of this study was to investigate physiological responses of P. bifurcatum to light stress. Approach: In this study, P. bifurcatum were grown under four different Photosynthetic Active Radiation (PAR levels which were 20 µmol m-2 s-1 (T1, 70 µmol m-2 s-1 (T2, 200 µmol m-2 s-1 (T3 and 1500 µmol m-2 s-1 (T4. Leaf gas exchange and chlorophyll fluorescence were used to evaluate the stress response of various levels of light intensity. All measurements were carried out on weekly basis for twelve weeks. Results: Results showed that Anet value of T1, T2 and T3 in the range near to the average Anet value for most epiphytes. Conversely, T4 showed lower value in Anet with 1.797 µmol CO2 m-2 s-1. Fv/Fm ratio in T3 and T4 were below 0.8 indicates that there was a sign of stress occurred in these treatments. However Anet of T3 was not affected although there have been event of photoinhibition observed in the treatment. On the contrary, T4 was fully affected by high light intensity as there was a reduction of Fv/Fm ratio and also Anet. T1 and T2 of Anet and Fv/Fm ratio values ranged of unstressed plants after subjected to light treatment. Conclusion: Measurement of leaf chlorophyll fluorescence and gas exchange are useful to detection of light stress in P. bifurcatum. Different levels of light intensity were significantly affecting physiological attributes of P. bifurcatum.

  14. Ventilation, gas exchange and blood gases in the snake, Pituophis melanoleucus.

    Science.gov (United States)

    Stinner, J N

    1982-03-01

    Oxygen consumption of Pituophis melanoleucus was about 30-50% of values predicted for snakes of similar body mass. Following a rise in body temperature there were transient increases in CO2 elimination and the respiratory exchange ratio for about 6 hours. Lowering body temperature produced transient decreases in CO2 elimination and the respiratory exchange ratio for about 24 hours. Respiratory exchange ratios measured up to 6 days following these transients were found to be significantly higher at higher temperatures. From 20 to 30 degrees C arterial pH declined 0.157 unit, and there was a significant decline in blood CO2 of 1.3 mM which is consistent with the direction of the transients in CO2 elimination. This fall in CO2 at higher temperatures probably results from increased levels of plasma fixed acid (e.g., lactate). Minute ventilation and breathing frequency increased with body temperature while tidal volume remained nearly constant at 29 ml/kg. Breathing was regular, with each breath followed by an inspiratory pause. Air convection requirement declined from about 61 ml air/ml O2 at 15 degrees C to 36 ml air/ml O2 at 30 degrees C. Blood convection requirement remained constant at about 44.6 ml blood/ml O2 at 20 degrees C and 30 degrees C with the result that ventilation/perfusion declined from approximately 1.13 to 0.76. In Pituophis, mechanisms of acid-base regulation and adjustments in gas transfer with temperature do not differ fundamentally from those of other air-breathing ectotherms. However, snakes utilize tidal volumes which are 2 to 2.5 times larger than other reptiles and have air convection requirements which exceed other reptiles by about 50%.

  15. Theoretical and experimental insights into effects of wind on leaf heat and gas exchange

    Science.gov (United States)

    Schymanski, Stanislaus J.; Or, Dani

    2014-05-01

    Transpiration and heat exchange by plant leaves are coupled physiological processes of significant importance for surface-climate interactions and ecohydrology. The common practice of modelling transpiration as an isothermal process (assuming equal leaf and air temperatures) may introduce significant bias into estimates of transpiration rates and water use efficiency (WUE, the amount of carbon gained by photosynthesis per unit of water lost by transpiration). In contrast, explicit consideration of stomatal and leaf boundary layer resistances in series and the leaf energy balance in a physically-based model led to some surprising results, such as suppressed transpiration rates for increasing wind speed at constant stomatal conductance. The model predicts that for high wind velocities, the same leaf conductance (for water vapour and carbon dioxide) can be maintained with less evaporative losses. If this leaf-scale effect is consistent across most leaves, it may have profound implications for canopy-scale water use efficiency under globally decreasing wind speeds. This presentation reports the results of a systematic study of the effect of wind speed on leaf heat and gas exchange rates and introduces a novel experimental design to verify the modelling results using an insulated wind tunnel and artificial leaves with defined pore geometries, allowing to measure leaf-scale latent and sensible heat fluxes independently. First experimental results and new insights will be highlighted.

  16. Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange.

    Science.gov (United States)

    Stimler, Keren; Montzka, Stephen A; Berry, Joseph A; Rudich, Yinon; Yakir, Dan

    2010-06-01

    *Carbonyl sulfide (COS) exchange in C(3) leaves is linked to that of CO(2), providing a basis for the use of COS as a powerful tracer of gross CO(2) fluxes between plants and the atmosphere, a critical element in understanding the response of the land biosphere to global change. *Here, we carried out controlled leaf-scale gas-exchange measurements of COS and CO(2) in representative C(3) plants under a range of light intensities, relative humidities and temperatures, CO(2) and COS concentrations, and following abscisic acid treatments. *No 'respiration-like' emission of COS or detectable compensation point, and no cross-inhibition effects between COS and CO(2) were observed. The mean ratio of COS to CO(2) assimilation flux rates, A(s)/A(c), was c. 1.4 pmol micromol(-1) and the leaf relative uptake (assimilation normalized to ambient concentrations, (A(s)/A(c))(C(a)(c)/C(a)(s))) was 1.6-1.7 across species and conditions, with significant deviations under certain conditions. Stomatal conductance was enhanced by increasing COS, which was possibly mediated by hydrogen sulfide (H(2)S) produced from COS hydrolysis, and a correlation was observed between A(s) and leaf discrimination against C(18)OO. *The results provide systematic and quantitative information necessary for the use of COS in photosynthesis and carbon-cycle research on the physiological to global scales.

  17. Gas dispersion and bubble-to-emulsion phase mass exchange in a gas-solid bubbling fluidized bed: a computational and experimental study

    NARCIS (Netherlands)

    Patil, Dhaneshwar J.; Sint Annaland, van Martin; Kuipers, J.A.M.

    2003-01-01

    Knowledge of gas dispersion and mass exchange between the bubble and the emulsion phases is essential for a correct prediction of the performance of fluidized beds, particularly when catalytic reactions take place. Test cases of single rising bubble and a bubbling fluidized bed operated with a jet w

  18. Performance testing of cross flow heat exchanger operating in the atmosphere of flue gas particulate with vapor condensation

    Directory of Open Access Journals (Sweden)

    Nuntaphan, A.

    2006-05-01

    Full Text Available Performance testing of a cross flow heat exchanger operating under the atmosphere of flue gas particulate from combustion was carried out in this work. This heat exchanger exchanges heat between flue gas from the fuel oil combustion and cold water. The heat exchanger is composed of a spiral finned tube bank having 3 rows and 8 tubes per row with a staggered arrangement. The fin spacings considered are 2.85 and 6.10 mm. The theories of thermodynamics and heat transfer are used for analyzing the performance of this system.In this experiment, the flue gas temperature of 200ºC from combustion having 0.35 kg/s mass flow rate flows along outside surface of the heat exchanger and transfers heat to the 25ºC cooling water having 0.15 kg/s mass flow rate flowing in the tube side. Each experiment uses 750 hr for testing. During the testing, part of flue gas condenses on the heat transfer surface.From the experiment, it was found that the heat transfer rate of both heat exchangers tended to decrease with time while the airside pressure drop increased. These results come from the fouling on the heat transfer surface. Moreover, it is found that the heat exchanger having 2.85 mm fin spacing has an approximately 4 times higher fouling resistance than that of the 6.10 mm fin spacing.In this work a model for calculating the fouling resistance is also developed as a the function of time. The model is developed from that of Kern and Seaton and the mean deviation of the model is 0.789.

  19. Studies on the Effects of Interphase Heat Exchange during Thermal Explosion in a Combustible Dusty Gas with General Arrhenius Reaction-Rate Laws

    OpenAIRE

    K. S. Adegbie; F. I. Alao

    2012-01-01

    A mathematical model for thermal explosion in a combustible dusty gas containing fuel droplets with general Arrhenius reaction-rate laws, convective and radiative heat losses, and interphase heat exchange between gas and inert solid particles is investigated. The objective of the study is to examine the effects of interphase heat exchange between the gas and solid particles on (i) ignition of reacting gas, (ii) accumulation of heat by the solid particles during combustion process (iii) evapor...

  20. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    Science.gov (United States)

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  1. Lack of Agreement Between Gas Exchange Variables Measured by Two Metabolic Systems

    Science.gov (United States)

    Jakovljevic, Djordje G.; Nunan, David; Donovan, Gay; Hodges, Lynette D.; Sandercock, Gavin R. H.; Brodie, David A.

    2008-01-01

    The purpose of this study was to assess the agreement and consistency between gas exchange variables measured by two online metabolic systems during an incremental exercise test. After obtaining local ethics approval and informed consent, 15 healthy subjects performed an incremental exercise test to volitional fatigue using the Bruce protocol. The Innocor (Innovision, Denmark) and CardiO2 (Medical Graphics, USA) systems were placed in series, with the Innocor mouthpiece attached to the pneumotach of the CardiO2. Metabolic data were analysed during the last 30 seconds of each stage and at peak exercise. There were non- significant differences (p > 0.05) between the two systems in estimation of oxygen consumption (VO2) and in minute ventilation (VE). Mean Cronbach’s alpha for VO2 and VE were 0.88 and 0.92. The Bland-Altman analysis revealed that limits of agreement were -0.52 to 0.55 l.min-1 for VO2, and -8.74 to 10.66 l.min-1 for VE. Carbon dioxide production (VCO2) and consequently respiratory exchange ratio (RER) measured by the Innocor were significantly lower (p < 0.05) through all stages. The CardiO2 measured fraction of expired carbon dioxide (FeCO2) significantly higher (p < 0.05). The limits of agreement for VO2 and VE are wide and unacceptable in cardio-pulmonary exercise testing. The Innocor reported VCO2 systematically lower. Therefore the Innocor and CardiO2 metabolic systems cannot be used interchangeably without affecting the diagnosis of an individual patient. Results from the present study support previous suggestion that considerable care is needed when comparing metabolic data obtained from different automated metabolic systems. Key pointsThere is general concern regarding the limited knowledge available about the accuracy of a number of commercially available systems.Demonstrated limits of agreement between key gas exchange variables (oxygen consumption and minute ventilation) as measured by the two metabolic systems were wide and unacceptable

  2. Lack of agreement between gas exchange variables measured by two metabolic systems.

    Science.gov (United States)

    Jakovljevic, Djordje G; Nunan, David; Donovan, Gay; Hodges, Lynette D; Sandercock, Gavin R H; Brodie, David A

    2008-01-01

    The purpose of this study was to assess the agreement and consistency between gas exchange variables measured by two online metabolic systems during an incremental exercise test. After obtaining local ethics approval and informed consent, 15 healthy subjects performed an incremental exercise test to volitional fatigue using the Bruce protocol. The Innocor (Innovision, Denmark) and CardiO2 (Medical Graphics, USA) systems were placed in series, with the Innocor mouthpiece attached to the pneumotach of the CardiO2. Metabolic data were analysed during the last 30 seconds of each stage and at peak exercise. There were non- significant differences (p > 0.05) between the two systems in estimation of oxygen consumption (VO2) and in minute ventilation (VE). Mean Cronbach's alpha for VO2 and VE were 0.88 and 0.92. The Bland-Altman analysis revealed that limits of agreement were -0.52 to 0.55 l.min(-1) for VO2, and -8.74 to 10.66 l.min(-1) for VE. Carbon dioxide production (VCO2) and consequently respiratory exchange ratio (RER) measured by the Innocor were significantly lower (p < 0.05) through all stages. The CardiO2 measured fraction of expired carbon dioxide (FeCO2) significantly higher (p < 0.05). The limits of agreement for VO2 and VE are wide and unacceptable in cardio-pulmonary exercise testing. The Innocor reported VCO2 systematically lower. Therefore the Innocor and CardiO2 metabolic systems cannot be used interchangeably without affecting the diagnosis of an individual patient. Results from the present study support previous suggestion that considerable care is needed when comparing metabolic data obtained from different automated metabolic systems. Key pointsThere is general concern regarding the limited knowledge available about the accuracy of a number of commercially available systems.Demonstrated limits of agreement between key gas exchange variables (oxygen consumption and minute ventilation) as measured by the two metabolic systems were wide and unacceptable

  3. Superhydrophobic PAN nanofibers for gas diffusion layers of proton exchange membrane fuel cells

    Science.gov (United States)

    Salahuddin, Mohammad; Hwang, Gisuk; Asmatulu, Ramazan

    2016-04-01

    Proton exchange membrane (PEM) fuel cells are considered to be the promising alternatives of natural resources for generating electricity and power. An optimal water management in the gas diffusion layers (GDL) is critical to high fuel cell performance. Its basic functions include transportation of the reactant gas from flow channels to catalyst effectively, draining out the liquid water from catalyst layer to flow channels, and conducting electrons with low humidity. In this study, polyacrylonitrile (PAN) was dissolved in a solvent and electrospun at various conditions to produce PAN nanofibers prior to the stabilization at 280 °C for 1 hour in the atmospheric pressure and carbonization at 850 °C for 1 hour. The surface hydrophobicity values of the carbonized PAN nanofibers were adjusted using superhydrophobic and hydrophilic agents. The thermal, mechanical, and electrical properties of the new GDLs depicted much better results compared to the conventionally used ones. The water condensation tests on the surfaces (superhydrophobic and hydrophilic) of the GDL showed a crucial step towards improved water managements in the fuel cell. This study may open up new possibilities for developing high- performing GDL materials for future PEM fuel cell applications.

  4. Highly efficient single-layer gas diffusion layers for the proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Hung, T.F.; Bai, S.H.; Lai, Y.J.; Chen-Yang, Y.W. [Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023 (China); Huang, J. [Yeu Ming Tai Chemical Industrial Co., Ltd., Taichung 40768 (China); Chuang, H.J. [Materials and Electro-Optics Research Division, Electric Energy Section, Chung Shan Institute of Science and Technology, Lung-Tan 32544 (China)

    2008-09-15

    In the present study, a series of highly efficient single-layer gas diffusion layers (SL-GDLs) was successfully prepared by the addition of a vapor grown carbon nanofiber (VGCF) in the carbon black/poly(tetrafluoroethylene) composite-based SL-GDL through a simple and inexpensive process. The scanning electron micrographs of the as-prepared VGCF-containing SL-GDLs (SL-GDL-CFs) showed that the GDLs had a microporous layer (MPL)-like structure, while the wire-like VGCFs were well dispersed and crossed among the carbon black particles in the SL-GDL matrix. Utilization of the SL-GDL-CFs for MEA fabrication was also done by direct coating with the catalyst layer. Due to the presence of VGCFs, the properties of the SL-GDL-CFs, including electronic resistivity, mechanical characteristic, gas permeability, and water repellency, varied with the VGCF content, with the overall effect beneficial to the performance of the proton exchange membrane fuel cell (PEMFC). The best performances obtained from the PEMFC with VGCFs at 15 wt.% was approximately 63% higher than those without VGCFs, and about 85% as efficient as ELAT GDL, a commercial dual-layer GDL, for both the H{sub 2}/O{sub 2} and H{sub 2}/air systems. (author)

  5. DOGEE-SOLAS: The Role of Surfactants in Air-Sea Gas Exchange

    Science.gov (United States)

    Salter, M. E.; Upstill-Goddard, R. C.; Nightingale, P.

    2008-12-01

    One of the major aims of DOGEE-SOLAS was to improve our understanding of the role of surfactants in air- sea gas exchange. With this in mind we carried out a number of artificial surfactant releases on a research cruise in the North Atlantic (D320), during June-July of 2007. We used oleyl alcohol, a surrogate for natural surfactants which is relatively cheap and easy to obtain (it is used in the manufacture of cosmetics). The main release overlaid a dual tracer "patch" of SF6 and 3He; our aim was to directly compare values of the gas transfer velocity, kw, estimated within the surfactant covered patch with those estimated quasi- simultaneously in a second, surfactant-free patch about 20km away. A second release in conjunction with colleagues from the University of Hawaii had the aim of measuring DMS fluxes by eddy correlation both inside and outside a surfactant slick, and a third was undertaken in the path of one of two 14m ASIS (Air-Sea Interaction Spar) buoys operated by the University of Miami for direct comparison of surfactant effects on the fluxes of CO2, H2O, heat and momentum (eddy correlation) etc. We present here some preliminary findings from the work.

  6. Increasing the pump-up rate to polarize 3He gas using spin-exchange optical pumping method

    Science.gov (United States)

    Lee, Wai Tung; Tong, Xin; Rich, Dennis; Liu, Yun; Fleenor, Michael; Ismaili, Akbar; Pierce, Joshua; Hagen, Mark; Dadras, Jonny; Robertson, J. Lee

    2009-09-01

    In recent years, polarized 3He gas has increasingly been used as neutron polarizers and polarization analyzers. Two of the leading methods to polarize the 3He gas are the spin-exchange optical pumping (SEOP) method and the meta-stable exchange optical pumping (MEOP) method. At present, the SEOP setup is comparatively compact due to the fact that it does not require the sophisticated compressor system used in the MEOP method. The temperature and the laser power available determine the speed, at which the SEOP method polarizes the 3He gas. For the quantity of gas typically used in neutron scattering work, this speed is independent of the quantity of the gas required, whereas the polarizing time using the MEOP method is proportional to the quantity of gas required. Currently, using the SEOP method to polarize several bar-liters of 3He to 70% polarization would require 20-40 h. This is an order of magnitude longer than the MEOP method for the same quantity of gas and polarization. It would therefore be advantageous to speed up the SEOP process. In this article, we analyze the requirements for temperature, laser power, and the type of alkali used in order to shorten the time required to polarize 3He gas using the SEOP method.

  7. Characteristics of net ecosystem carbon dioxide exchange(NEE) from August to October of Alpine meadow on the Tibetan Plateau,China

    Institute of Scientific and Technical Information of China (English)

    XU Lingling; ZHANG Xianzhou; SHI Peili; YU Guirui; SUN Xiaomin

    2006-01-01

    The Alpine meadow is one of the vegetation types widely distributed on the Tibetan Plateau in China with an area of about 1.2 million square kilometers.The Damxung rangeland station,located in the hinterland of the Tibetan Plateau,is covered with an typical vegetation.The continuous carbon flux data (from August to middle October,2003) measured with the open-path eddy covariance system was used to analyze the diurnal variation pattern of net ecosystem carbon dioxide exchange (NEE) and its relationship with the environmental factors,such as photosynthetically active radiation (PAR),precipitation,and temperature.Results showed that NEE presented obvious diurnal variation pattern with single-peak of diurnal maximum carbon assimilation at 11:00-12:00 (local time) with an CO2.m-2-s-1.During the daytime,NEE fitted fairly well with PAR in a rectangular hyperbola function with the apparent the night-time,NEE showed a good exponential relation with the soil temperature at 5 cm depth.

  8. Differential responses of net ecosystem exchange of carbon dioxide to light and temperature between spring and neap tides in subtropical mangrove forests.

    Science.gov (United States)

    Li, Qing; Lu, Weizhi; Chen, Hui; Luo, Yiqi; Lin, Guanghui

    2014-01-01

    The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE) and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR) using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios.

  9. Differential Responses of Net Ecosystem Exchange of Carbon Dioxide to Light and Temperature between Spring and Neap Tides in Subtropical Mangrove Forests

    Directory of Open Access Journals (Sweden)

    Qing Li

    2014-01-01

    Full Text Available The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios.

  10. Soil warming effect on net ecosystem exchange of carbon dioxide during the transition from winter carbon source to spring carbon sink in a temperate urban lawn

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Zhou; Xiaoke Wang; Lei Tong; Hongxing Zhang; Fei Lu; Feixiang Zheng; Peiqiang Hou; Wenzhi Song; Zhiyun Ouyang

    2012-01-01

    The significant wanning in urban environment caused by the combined effects of global warming and heat island has stimulated widely development of urban vegetations.However,it is less known of the climate feedback of urban lawn in warmed environment.Soil warming effect on net ecosystem exchange (NEE) of carbon dioxide during the transition period from winter to spring was investigated in a temperate urban lawn in Beijing,China.The NEE (negative for uptake) under soil warming treatment (temperature was about 5℃ higher than the ambient treatment as a control) was-0.71 μmol/(m2·sec),the ecosytem was a CO2 sink under soil warming treatment,the lawn ecosystem under the control was a CO2 source (0.13 μmol/(m2·sec)),indicating that the lawn ecosystem would provide a negative feedback to global warming.There was no significant effect of soil warming on nocturnal NEE (i.e.,ecosystem respiration),although the soil temperature sensitivity (Q10) of ecosystem respiration under soil warming treatment was 3.86,much lower than that in the control (7.03).The CO2 uptake was significantly increased by soil warming treatment that was attributed to about 100% increase of α (apparent quantum yield) and Amax (maximutn rate of photosynthesis).Our results indicated that the response of photosynthesis in urban lawn is much more sensitive to global warming than respiration in the transition period.

  11. Net Operations

    Institute of Scientific and Technical Information of China (English)

    蒋昌俊; 吴哲辉

    1992-01-01

    Two kinds of net operations.addition and Cartesian production of P/T nets,are introduced.They are defined on the set of underlying net of P/T systems.The conditions for preserving structural properties of Petri net after these operations are discussed.It is shown that the set of P/T nets forms and Abelian group for net addition operation and the inverse net of a P/T net in usual meaning of net theory is exactly the inverse of this P/T net as an element of the P/T net group;and that the set of P/T nets forms an Abelian ring for net addition and Caresian product operations.

  12. Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber

    Science.gov (United States)

    Corey, Kenneth A.

    1996-01-01

    Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop

  13. Mechanisms underlying gas exchange alterations in an experimental model of pulmonary embolism

    Directory of Open Access Journals (Sweden)

    J.H.T. Ferreira

    2006-09-01

    Full Text Available The aim of the present study was to determine the ventilation/perfusion ratio that contributes to hypoxemia in pulmonary embolism by analyzing blood gases and volumetric capnography in a model of experimental acute pulmonary embolism. Pulmonary embolization with autologous blood clots was induced in seven pigs weighing 24.00 ± 0.6 kg, anesthetized and mechanically ventilated. Significant changes occurred from baseline to 20 min after embolization, such as reduction in oxygen partial pressures in arterial blood (from 87.71 ± 8.64 to 39.14 ± 6.77 mmHg and alveolar air (from 92.97 ± 2.14 to 63.91 ± 8.27 mmHg. The effective alveolar ventilation exhibited a significant reduction (from 199.62 ± 42.01 to 84.34 ± 44.13 consistent with the fall in alveolar gas volume that effectively participated in gas exchange. The relation between the alveolar ventilation that effectively participated in gas exchange and cardiac output (V Aeff/Q ratio also presented a significant reduction after embolization (from 0.96 ± 0.34 to 0.33 ± 0.17 fraction. The carbon dioxide partial pressure increased significantly in arterial blood (from 37.51 ± 1.71 to 60.76 ± 6.62 mmHg, but decreased significantly in exhaled air at the end of the respiratory cycle (from 35.57 ± 1.22 to 23.15 ± 8.24 mmHg. Exhaled air at the end of the respiratory cycle returned to baseline values 40 min after embolism. The arterial to alveolar carbon dioxide gradient increased significantly (from 1.94 ± 1.36 to 37.61 ± 12.79 mmHg, as also did the calculated alveolar (from 56.38 ± 22.47 to 178.09 ± 37.46 mL and physiological (from 0.37 ± 0.05 to 0.75 ± 0.10 fraction dead spaces. Based on our data, we conclude that the severe arterial hypoxemia observed in this experimental model may be attributed to the reduction of the V Aeff/Q ratio. We were also able to demonstrate that V Aeff/Q progressively improves after embolization, a fact attributed to the alveolar ventilation redistribution

  14. Differences in Net Ecosystem Exchange for an intensely managed watershed using a lumped, regional model and a mechanistic, hillslope-scale model

    Science.gov (United States)

    Wilson, C. G.; Wacha, K.; Papanicolaou, T.; Stanier, C. O.; Jamroensan, A.

    2014-12-01

    In this study, Net Ecosystem Exchange (NEE), and its components Gross Ecosystem Exchange (GEE) and Ecosystem Respiration (RESP), were compared from a lumped, regional model and a mechanistic, hillslope-scale model to determine if the effects of land management on the carbon cycle are captured by larger-scale biosphere models that determine CO2 sources and sinks. WRF-VPRM (Weather Research & Forecasting - Vegetation Photosynthesis & Respiration Model) is a regional-scale model that uses simulated downward shortwave radiation and surface temperatures, along with satellite-derived land cover indices and eddy flux tower-derived parameters to estimate biosphere CO2 fluxes with empirical equations. The DAYCENT biogeochemical model coupled with the Watershed Erosion Prediction Project model (WEPP), which simulates changes in soil carbon stocks due to different land management and the resulting enhanced erosion, can also quantify biosphere CO2 fluxes. Both models (i.e., WRF-VPRM and WEPP-DAYCENT) were used to quantify GEE, RESP, and NEE for the summer of 2008 in the IML-CZO Clear Creek watershed of the U.S. Midwest to examine the role of land management heterogeneity in CO2 exchanges between the biosphere and atmosphere. Comparing average daily GEE rates from WRF-VPRM (-11.0 ± 5.2 g C/m2/d) with WEPP-DAYCENT average values weighted per land use area in the watershed (-10.2 ± 1.5 g C/m2/d) showed no significant differences (t-test; p=0.08). In contrast, daily RESP values were different between the two models. Daily respiration rates were relatively constant for WRF-VPRM (6.0 ± 0.8 g C/m2/d), while WEPP-DAYCENT values for each management practice were significantly greater (7.2 ± 1.8 g C/m2/d; t-test, prates from WRF-VPRM (-5.0 ± 5.3 g C/m2/d) with WEPP-DAYCENT average weighted values (-3.0 ± 1.8 g C/m2/d) also showed significant differences (t-test; p<0.001).

  15. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Costa Junior, Ciniro, E-mail: cinirojr@hotmail.com [University of São Paulo, Center of Nuclear Energy in Agriculture, Laboratory of Biogeochemistry, Avenida Centenário, 303, Piracicaba, SP 13416-000 (Brazil); Cerri, Carlos E.P., E-mail: cepcerri@usp.br [University of São Paulo, “Luiz de Queiroz” College of Agriculture, Department of Soil Science, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900 (Brazil); Pires, Alexandre V., E-mail: pires.1@usp.br [University of São Paulo, “Luiz de Queiroz” College of Agriculture, Department of Animal Science, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900 (Brazil); Cerri, Carlos C., E-mail: cerri@cena.usp.br [University of São Paulo, Center of Nuclear Energy in Agriculture, Laboratory of Biogeochemistry, Avenida Centenário, 303, Piracicaba, SP 13416-000 (Brazil)

    2015-02-01

    As part of an agreement during the COP15, the Brazilian government is fostering several activities intended to mitigate greenhouse gas (GHG) emissions. One of them is the adoption of anaerobic digester (AD) for treating animal manure. Due to a lack of information, we developed a case study in order to evaluate the effect of such initiative for beef cattle feedlots. We considered the net GHG emissions (CH{sub 4} and N{sub 2}O) from the manure generated from 140 beef heifers confined for 90 days in the scope “housing to field application” by including field measurements, literature values, and the offset generated by the AD system through the replacement of conventional sources of nitrogen (N) fertilizer and electricity, respectively. Results showed that direct GHG emissions accounted for 0.14 ± 0.06 kg of carbon dioxide equivalent (CO{sub 2}eq) per kg of animal live weight gain (lwg), with ∼ 80% originating from field application, suggesting that this emission does not differ from the conventional manure management (without AD) typically done in Brazil (0.19 ± 0.07 kg of CO{sub 2}eq per kg lwg{sup −1}). However, 2.4 MWh and 658.0 kg of N-manure were estimated to be generated as a consequence of the AD utilization, potentially offsetting 0.13 ± 0.01 kg of CO{sub 2}eq kg lwg{sup −1} or 95% (± 45%) of total direct emissions from the manure management. Although, by replacing fossil fuel sources, i.e. diesel oil, this offset could be increased to 169% (± 47%). In summary, the AD has the potential to significantly mitigate GHG emissions from manure management in beef cattle feedlots, but the effect is indirect and highly dependent on the source to be replaced. In spite of the promising results, more and continuous field measurements for decreasing uncertainties and improving assumptions are required. Identifying shortcomings would be useful not only for the effectiveness of the Brazilian government, but also for worldwide plans in mitigating GHG emissions

  16. The role of ozone atmosphere-snow gas exchange on polar, boundaru-layer tropospheric ozone - a review sensitivity analysis

    NARCIS (Netherlands)

    Helmig, D.; Ganzeveld, L.N.; Butler, T.; Oltmans, S.

    2007-01-01

    Recent research on snowpack processes and atmosphere-snow gas exchange has demonstrated that chemical and physical interactions between the snowpack and the overlaying atmosphere have a substantial impact on the composition of the lower troposphere. These observations also imply that ozone depositio

  17. Heat recovery by flue gas heat exchangers in ceramic kilns; Waermerueckgewinnung mit Rauchgas-Waermetauschern an keramischen Oefen

    Energy Technology Data Exchange (ETDEWEB)

    Strohmenger, Patrick [Keramische und Waermetechnische Anlagen Strohmenger GmbH (KWS), Neunkirchen (Germany)

    2009-07-15

    The energy costs are on the rise, so it is becoming increasingly important to prevent energy losses and practice sustainability. Numerous ceramic kilns still have such high levels of flue gas heat losses, that it would be a thoroughly worthwhile investment to fit them out with heat exchangers. This contribution presents several completed projects as examples. (orig.)

  18. The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates.

    Science.gov (United States)

    Gortan, Emmanuelle; Nardini, Andrea; Gascó, Antonio; Salleo, Sebastiano

    2009-04-01

    Leaf hydraulic conductance (Kleaf) is known to be an important determinant of plant gas exchange and photosynthesis. Little is known about the long-term impact of different environmental factors on the hydraulic construction of leaves and its eventual consequences on leaf gas exchange. In this study, we investigate the impact of soil water availability on Kleaf of Fraxinus ornus L. as well as the influence of Kleaf on gas exchange rates and plant water status. With this aim, Kleaf, leaf conductance to water vapour (gL), leaf water potential (Psileaf) and leaf mass per area (LMA) were measured in F. ornus trees, growing in 21 different sites with contrasting water availability. Plants growing in arid sites had lower Kleaf, gL and Psileaf than those growing in sites with higher water availability. On the contrary, LMA was similar in the two groups. The Kleaf values recorded in sites with two different levels of soil water availability were constantly different from each other regardless of the amount of precipitation recorded over 20 days before measurements. Moreover, Kleaf was correlated with gL values. Our data suggest that down-regulation of Kleaf is a component of adaptation of plants to drought-prone habitats. Low Kleaf implies reduced gas exchange which may, in turn, influence the climatic conditions on a local/regional scale. It is concluded that leaf hydraulics and its changes in response to resource availability should receive greater attention in studies aimed at modelling biosphere-atmosphere interactions.

  19. The role of ozone atmosphere-snow gas exchange on polar, boundaru-layer tropospheric ozone - a review sensitivity analysis

    NARCIS (Netherlands)

    Helmig, D.; Ganzeveld, L.N.; Butler, T.; Oltmans, S.

    2007-01-01

    Recent research on snowpack processes and atmosphere-snow gas exchange has demonstrated that chemical and physical interactions between the snowpack and the overlaying atmosphere have a substantial impact on the composition of the lower troposphere. These observations also imply that ozone

  20. Biomass and leaf-level gas exchange characteristics of three African savanna C4 grass species under optimum growth conditions

    NARCIS (Netherlands)

    Mantlana, K.B.; Veenendaal, E.M.; Arneth, A.; Grispen, V.; Bonyongo, C.M.; Heitkönig, I.M.A.; Lloyd, J.

    2009-01-01

    C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration

  1. Post-operative substrate utilisation and gas exchange using two different TPN-systems: glucose versus fat

    DEFF Research Database (Denmark)

    Henneberg, S; Eklund, A; Stjernström, H

    1985-01-01

    ). Amino acids corresponding to 12 g of nitrogen were given in both groups. Gas exchange, nitrogen balance, phosphate balance, vanillylmandelic acid (VMA) excretion, 1- and 3-methylhistidine in urine, acute phase proteins, immunoglobulins and albumin were followed. Substrate utilisation was calculated from...

  2. Weak coordination among petiole, leaf, vein, and gas-exchange traits across 41 Australian angiosperm species and its possible implications

    Science.gov (United States)

    Background and Aims Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life-forms. However, recent reports suggest that this relationship may become weak or break down completely within the angiosperms. Methods To examine this possi...

  3. Toxicodynamics of rigid polystyrene microparticles on pulmonary gas exchange in mice: Implications for microemboli-based drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, H.L. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Gao, D.; Li, S. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Massa, C.B.; Cervelli, J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Deshmukh, M. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Joseph, L.B.; Laskin, D.L. [UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Sinko, P.J., E-mail: sinko@rci.rutgers.edu [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States)

    2013-01-15

    The toxicodynamic relationship between the number and size of pulmonary microemboli resulting from uniformly sized, rigid polystyrene microparticles (MPs) administered intravenously and their potential effects on pulmonary gas exchange were investigated. CD-1 male mice (6–8 weeks) were intravenously administered 10, 25 and 45 μm diameter MPs. Oxygen hemoglobin saturation in the blood (SpO{sub 2}) was measured non-invasively using a pulse oximeter while varying inhaled oxygen concentration (F{sub I}O{sub 2}). The resulting data were fit to a physiologically based non-linear mathematical model that estimates 2 parameters: ventilation–perfusion ratio (V{sub A}/Q) and shunt (percentage of deoxygenated blood returning to systemic circulation). The number of MPs administered prior to a statistically significant reduction in normalized V{sub A}/Q was dependent on particle size. MP doses that resulted in a significant reduction in normalized V{sub A}/Q one day post-treatment were 4000, 40,000 and 550,000 MPs/g for 45, 25 and 10 μm MPs, respectively. The model estimated V{sub A}/Q and shunt returned to baseline levels 7 days post-treatment. Measuring SpO{sub 2} alone was not sufficient to observe changes in gas exchange; however, when combined with model-derived V{sub A}/Q and shunt early reversible toxicity from pulmonary microemboli was detected suggesting that the model and physical measurements are both required for assessing toxicity. Moreover, it appears that the MP load required to alter gas exchange in a mouse prior to lethality is significantly higher than the anticipated required MP dose for effective drug delivery. Overall, the current results indicate that the microemboli-based approach for targeted pulmonary drug delivery is potentially safe and should be further explored. -- Highlights: ► Murine pulmonary gas exchange after microembolization was non-invasively studied. ► A physiologically based model quantified impairment of pulmonary gas exchange.

  4. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H. J.; Lee, H. S.; Kim, K. R.; Cheong, H. S.; Ahn, D. H.; Lee, S. H.; Paek, S. W.; Kang, H. S.; Kim, J. G

    2001-01-01

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip.

  5. High temperature heat exchangers for gas turbines and future hypersonic air breathing propulsion

    Science.gov (United States)

    Avran, Patrick; Bernard, Pierre

    After surveying the results of ONERA's investigations to date of metallic and ceramic heat exchangers applicable to automotive and aircraft powerplants, which are primarily of finned-tube counterflow configuration, attention is given to the influence of heat-exchanger effectiveness on fuel consumption and exchanger dimensions and weight. Emphasis is placed on the results of studies of cryogenic heat exchangers used by airbreathing hypersonic propulsion systems. The numerical codes developed by ONERA for the modeling of heat exchanger thermodynamics are evaluated.

  6. Fluctuations and Correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model

    CERN Document Server

    Bazavov, A; DeTar, C E; Ding, H -T; Gottlieb, Steven; Gupta, Rajan; Hegde, P; Heller, Urs; Karsch, F; Laermann, E; Levkova, L; Mukherjee, Swagato; Petreczky, P; Schmidt, Christian; Soltz, R A; Soeldner, W; Sugar, R; Vranas, Pavlos M

    2012-01-01

    We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results in the continuum limit are obtained using calculations with tree level improved gauge and the highly improved staggered quark (HISQ) actions with almost physical light and strange quark masses at three different values of the lattice cut-off. We compare our results with the hadron resonance gas (HRG) model calculations and find agreement with HRG model results only for temperatures T < 150 MeV. We observe significant deviations in the temperature range 160 MeV < T < 170 MeV and qualitative differences in the behavior of the three conserved charge sectors. At $T \\simeq 160 MeV$ quadratic net baryon number fluctuations in QCD agree with HRG model calculations while, the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These fin...

  7. Bubble Clouds in Coastal Waters and Their Role in Air-Water Gas Exchange of CO2

    Directory of Open Access Journals (Sweden)

    Joseph R. Crosswell

    2015-08-01

    Full Text Available Bubbles generated by breaking waves can drive significant gas exchange between the ocean and atmosphere, but the role of bubble-mediated gas transfer in estuaries is unknown. Here, backscatter data from 41 acoustic Doppler current profiler stations was analyzed to assess subsurface bubble distributions in nine estuaries along the U.S. East and Gulf Coast. Wind speed, wind direction, and current velocity were the dominant controls on bubble entrainment, but the relative importance of these physical drivers depended on local geomorphology. Bubble entrainment in high-current or shallow, long-fetch estuaries began at wind speeds <5 m s−1. In deep or fetch-limited estuaries, bubble entrainment was less frequent and generally began at higher wind speeds. Data observed during several storms suggests that episodic bubble-driven gas exchange may be an important component of annual CO2 fluxes in large, shallow estuaries but would be less significant in other coastal systems.

  8. Performance analysis of three nanofluids in liquid to gas and liquid to liquid heat exchangers

    Science.gov (United States)

    Ray, Dustin R.

    One purpose of this research was to analyze the thermal and fluid dynamic performance of nanofluids in an automotive radiator (liquid to gas). Detailed computations were performed on an automotive radiator using three different nanofluids containing aluminum oxide, copper oxide and silicon dioxide nanoparticles dispersed in the base fluid, 60:40 ethylene glycol and water (EG/W) by mass. The computational scheme adopted was the effectiveness-Number of Transfer Unit (epsilon-NTU) method encoded in Matlab. The computational scheme was validated by comparing the predicted results with that of the base fluid reported by other researchers. Then, the scheme was adapted to compute the performance of nanofluids. Results show that a dilute 1% volumetric concentration of nanoparticles can have substantial savings in the pumping power or surface area of the heat exchanger, while transferring the same amount of heat as the base fluid. The second purpose of this research was to carry out experimental and theoretical studies for a plate heat exchanger (PHE). A benchmark test was performed with the minichannel PHE to validate the test apparatus with water. Next, using a 0.5% aluminum oxide nanoparticle concentration dispersed in EG/W preliminary correlations for the Nusselt number and the friction factor for nanofluid flow in a PHE were derived. Then, a theoretical study was conducted to compare the performance of three nanofluids comprised of aluminum oxide, copper oxide and silicon dioxide nanoparticles in EG/W. This theoretical analysis was conducted using the epsilon-NTU method. The operational parameters were set by the active thermal control system currently under design by NASA. The analysis showed that for a dilute particle volumetric concentration of 1%, all the nanofluids showed improvements in their performance over the base fluid by reducing the pumping power and surface area of the PHE.

  9. LACK OF AGREEMENT BETWEEN GAS EXCHANGE VARIABLES MEASURED BY TWO METABOLIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    DjordjeG. Jakovljevic

    2008-03-01

    Full Text Available The purpose of this study was to assess the agreement and consistency between gas exchange variables measured by two online metabolic systems during an incremental exercise test. After obtaining local ethics approval and informed consent, 15 healthy subjects performed an incremental exercise test to volitional fatigue using the Bruce protocol. The Innocor (Innovision, Denmark and CardiO2 (Medical Graphics, USA systems were placed in series, with the Innocor mouthpiece attached to the pneumotach of the CardiO2. Metabolic data were analysed during the last 30 seconds of each stage and at peak exercise. There were non- significant differences (p > 0.05 between the two systems in estimation of oxygen consumption (VO2 and in minute ventilation (VE. Mean Cronbach's alpha for VO2 and VE were 0.88 and 0.92. The Bland-Altman analysis revealed that limits of agreement were -0.52 to 0.55 l.min-1 for VO2, and -8.74 to 10.66 l.min-1 for VE. Carbon dioxide production (VCO2 and consequently respiratory exchange ratio (RER measured by the Innocor were significantly lower (p < 0.05 through all stages. The CardiO2 measured fraction of expired carbon dioxide (FeCO2 significantly higher (p < 0.05. The limits of agreement for VO2 and VE are wide and unacceptable in cardio-pulmonary exercise testing. The Innocor reported VCO2 systematically lower. Therefore the Innocor and CardiO2 metabolic systems cannot be used interchangeably without affecting the diagnosis of an individual patient. Results from the present study support previous suggestion that considerable care is needed when comparing metabolic data obtained from different automated metabolic systems.

  10. Allometric scaling of discontinuous gas exchange patterns in the locust Locusta migratoria throughout ontogeny.

    Science.gov (United States)

    Snelling, Edward P; Matthews, Philip G D; Seymour, Roger S

    2012-10-01

    The discontinuous gas exchange cycle (DGC) is a three-phase breathing pattern displayed by many insects at rest. The pattern consists of an extended breath-hold period (closed phase), followed by a sequence of rapid gas exchange pulses (flutter phase), and then a period in which respiratory gases move freely between insect and environment (open phase). This study measured CO(2) emission in resting locusts Locusta migratoria throughout ontogeny, in normoxia (21 kPa P(O2)), hypoxia (7 kPa P(O2)) and hyperoxia (40 kPa P(O2)), to determine whether body mass and ambient O(2) affect DGC phase duration. In normoxia, mean CO(2) production rate scales with body mass (M(b); g) according to the allometric power equation , closed phase duration (C; min) scales with body mass according to the equation C=8.0M(b)(0.38±0.29), closed+flutter period (C+F; min) scales with body mass according to the equation C+F=26.6M (0.20±0.25)(b) and open phase duration (O; min) scales with body mass according to the equation O=13.3M(b) (0.23±0.18). Hypoxia results in a shorter C phase and longer O phase across all life stages, whereas hyperoxia elicits shorter C, C+F and O phases across all life stages. The tendency for larger locusts to exhibit longer C and C+F phases might arise if the positive allometric scaling of locust tracheal volume prolongs the time taken to reach the minimum O(2) and maximum CO(2) set-points that determine the duration of these respective periods, whereas an increasingly protracted O phase could reflect the additional time required for larger locusts to expel CO(2) through a relatively longer tracheal pathway. Observed changes in phase duration under hypoxia possibly serve to maximise O(2) uptake from the environment, whereas the response of the DGC to hyperoxia is difficult to explain, but could be affected by elevated levels of reactive oxygen species.

  11. The Impact of a Lower Sea Ice Extent on Arctic Greenhouse Gas Exchange

    Science.gov (United States)

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Lotte Sørensen, Lise; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-04-01

    Arctic sea ice extent hit a new record low in September 2012, when it fell to a level about two times lower than the 1979-2000 average. Record low sea ice extents such as these are often hailed as an obvious example of the impact of climate change on the Arctic. Less obvious, however, are the further implications of a lower sea ice extent on Arctic greenhouse gas exchange. For example, a reduction in sea ice, in consort with a lower snow cover, has been connected to higher surface temperatures in the terrestrial part of the Arctic (Screen et al., 2012). These higher temperatures and longer growing seasons have the potential to alter the CO2 balance of Arctic tundra through enhanced photosynthesis and respiration, as well as the magnitude of methane emissions. In fact, large changes are already observed in terrestrial ecosystems (Post et al., 2009), and concerns have been raised of large releases of carbon through permafrost thaw (Schuur et al., 2011). While these changes in the greenhouse gas balance of the terrestrial Arctic are described in numerous studies, a connection with a decline in sea ice extent is nonetheless seldom made. In addition to these changes on land, a lower sea ice extent also has a direct effect on the exchange of greenhouse gases between the ocean and the atmosphere. For example, due to sea ice retreat, more ocean surface remains in contact with the atmosphere, and this has been suggested to increase the oceanic uptake of CO2 (Bates et al., 2006). However, the sustainability of this increased uptake is uncertain (Cai et al., 2010), and carbon fluxes related directly to the sea ice itself add much uncertainty to the oceanic uptake of CO2 (Nomura et al., 2006; Rysgaard et al., 2007). Furthermore, significant emissions of methane from the Arctic Ocean have been observed (Kort et al., 2012; Shakhova et al., 2010), but the consequence of a lower sea ice extent thereon is still unclear. Overall, the decline in sea ice that has been seen in recent

  12. Effects of boron deficiency on major metabolites, key enzymes and gas exchange in leaves and roots of Citrus sinensis seedlings.

    Science.gov (United States)

    Lu, Yi-Bin; Yang, Lin-Tong; Li, Yan; Xu, Jing; Liao, Tian-Tai; Chen, Yan-Bin; Chen, Li-Song

    2014-06-01

    Boron (B) deficiency is a widespread problem in many crops, including Citrus. The effects of B-deficiency on gas exchange, carbohydrates, organic acids, amino acids, total soluble proteins and phenolics, and the activities of key enzymes involved in organic acid and amino acid metabolism in 'Xuegan' [Citrus sinensis (L.) Osbeck] leaves and roots were investigated. Boron-deficient leaves displayed excessive accumulation of nonstructural carbohydrates and much lower CO2 assimilation, demonstrating feedback inhibition of photosynthesis. Dark respiration, concentrations of most organic acids [i.e., malate, citrate, oxaloacetate (OAA), pyruvate and phosphoenolpyruvate] and activities of enzymes [i.e., phosphoenolpyruvate carboxylase (PEPC), NAD-malate dehydrogenase, NAD-malic enzyme (NAD-ME), NADP-ME, pyruvate kinase (PK), phosphoenolpyruvate phosphatase (PEPP), citrate synthase (CS), aconitase (ACO), NADP-isocitrate dehydrogenase (NADP-IDH) and hexokinase] involved in glycolysis, the tricarboxylic acid (TCA) cycle and the anapleurotic reaction were higher in B-deficient leaves than in controls. Also, total free amino acid (TFAA) concentration and related enzyme [i.e., NADH-dependent glutamate 2-oxoglutarate aminotransferase (NADH-GOGAT) and glutamate OAA transaminase (GOT)] activities were enhanced in B-deficient leaves. By contrast, respiration, concentrations of nonstructural carbohydrates and three organic acids (malate, citrate and pyruvate), and activities of most enzymes [i.e., PEPC, NADP-ME, PK, PEPP, CS, ACO, NAD-isocitrate dehydrogenase, NADP-IDH and hexokinase] involved in glycolysis, the TCA cycle and the anapleurotic reaction, as well as concentration of TFAA and activities of related enzymes (i.e., nitrate reductase, NADH-GOGAT, glutamate pyruvate transaminase and glutamine synthetase) were lower in B-deficient roots than in controls. Interestingly, leaf and root concentration of total phenolics increased, whereas that of total soluble protein decreased

  13. Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies.

    Science.gov (United States)

    Mitchell, P J; O'Grady, A P; Tissue, D T; Worledge, D; Pinkard, E A

    2014-05-01

    Gas exchange, growth, water transport and carbon (C) metabolism diminish during drought according to their respective sensitivities to declining water status. The timing of this sequence of declining physiological functions may determine how water and C relations compromise plant survival. In this paper, we test the hypothesis that the degree of asynchrony between declining C supply (photosynthesis) and C demand (growth and respiration) determines the rate and magnitude of changes in whole-plant non-structural carbohydrates (NSC) during drought. Two complementary experiments using two tree species (Eucalyptus globulus Labill. and Pinus radiata D. Don) with contrasting drought response strategies were performed to (i) assess changes in radial stem growth, transpiration, leaf water potential and gas exchange in response to chronic drought, and (ii) evaluate the concomitant impacts of these drought responses on the temporal patterns of NSC during terminal drought. The three distinct phases of water stress were delineated by thresholds of growth cessation and stomatal closure that defined the 'carbon safety margin' (i.e., the difference between leaf water potential when growth is zero and leaf water potential when net photosynthesis is zero). A wider C safety margin in E. globulus was defined by an earlier cessation of growth relative to photosynthesis that reduced the demand for NSC while maintaining C acquisition. By contrast, the narrower C safety margin in P. radiata was characterized by a synchronous decline in growth and photosynthesis, whereby growth continued under a declining supply of NSC from photosynthesis. The narrower C safety margin in P. radiata was associated with declines in starch concentrations after ∼ 90 days of chronic drought and significant depletion of starch in all organs at mortality. The observed divergence in the sensitivity of drought responses is indicative of a potential trade-off between maintaining hydraulic safety and adequate C

  14. Blood lactate concentrations are mildly affected by mobile gas exchange measurements.

    Science.gov (United States)

    Scharhag-Rosenberger, F; Wochatz, M; Otto, C; Cassel, M; Mayer, F; Scharhag, J

    2014-06-01

    We sought to investigate the effects of wearing a mobile respiratory gas analysis system during a treadmill test on blood lactate (bLa) concentrations and commonly applied bLa thresholds. A total of 16 recreational athletes (31±3 years, VO2max: 58±6 ml · min(-1) · kg(-1)) performed one multistage treadmill test with and one without gas exchange measurements (GEM and noGEM). The whole bLa curve, the lactate threshold (LT), the individual anaerobic thresholds according to Stegmann (IATSt) and Dickhuth (IATDi), and a fixed bLa concentration of 4 mmol ∙ l(-1) (OBLA) were evaluated. The bLa curve was shifted slightly leftward in GEM compared to noGEM (Prate response was not different between conditions (P=0.89). There was no difference between GEM and noGEM for LT (2.61±0.34 vs. 2.64±0.39 m · s(-1), P=0.49) and IATSt (3.47±0.42 vs. 3.55±0.47 m · s(-1), P=0.12). However, IATDi (3.57±0.39 vs. 3.66±0.44 m · s(-1), Psystem. This also applies to bLa thresholds located at higher exercise intensities. While the magnitude of the effects is of little importance for recreational athletes, it might be relevant for elite athletes and scientific studies.

  15. Effects of nitric oxide inhalation on pulmonary gas exchange during exercise in highly trained athletes.

    Science.gov (United States)

    Durand, F; Mucci, P; Safont, L; Prefaut, C

    1999-02-01

    The pathophysiology of exercise-induced hypoxaemia in elite athletes is still unclear but several studies indicate that a diffusion limitation, which could be explained by an interstitial pulmonary oedema, is a major contributing factor. Stress failure would induce a haemodynamical interstitial oedema with inflammatory reaction and release of mediators like histamine. Histamine release was found to be correlated with the hypoxaemia in elite athletes. If stress failure is involved, inhalation of pulmonary vasodilatators such as nitric oxide during exercise in athletes should induce an inhibition of the histamine release and a reversal of the hypoxaemia. Nine male endurance-trained young athletes performed two randomized exercise tests: one without and the other with 15 p.p.m. of inhaled NO. Measurements of histamine release and arterial blood gas analysis were performed at rest and at 50, 75 and 100% VO2max. At rest, inhaled NO induced a decrease in PaO2 and an increase in (Ai-a)DO2 suggesting increased perfusion of units with low V(A)/Q. During exercise, NO inhalation suppressed the histamine release observed without NO and induced a moderation in the decrease in PaO2 and the increase in (Ai-a)DO2 observed between 75 and 100% of VO2max (P < 0.005). In conclusion, this study showed that NO inhalation inhibited exercise-induced histamine release in highly trained athletes, but we were unable to confirm the suppression of exercise-induced hypoxaemia (EIH). An unexpected result was that inhaled NO seemed to have a marked effect on arterial oxygenation in highly trained-athletes, by disturbing gas exchanges.

  16. Net ecosystem exchange of carbon dioxide and evapotranspiration response of a high elevation Rocky Mountain (Wyoming, USA) forest to a bark beetle epidemic

    Science.gov (United States)

    Frank, J. M.; Massman, W. J.; Ewers, B. E.

    2011-12-01

    Bark beetle epidemics have caused major disturbance in the forests of western North America where significant tree mortality alters the balance of ecosystem photosynthesis, carbon balance, and water exchange. In this study we investigate the change in the growing-season light-response of net ecosystem exchange of carbon dioxide (NEE) and evapotranspiration (ET) in a high elevation Rocky Mountain forest over the three years preceding and three years following a bark beetle outbreak. The GLEES AmeriFlux site (southeastern Wyoming, USA) is located in a high elevation subalpine forest dominated by Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) and recently experienced an epidemic of spruce beetle (Dendroctonus rufipennis). The peak beetle outbreak occurred in 2008, and has impacted 35% of the stems and 90% of the basal area of Engelmann spruce, which accounts for 30% of the trees and 70% of the basal area of the forest. Two semi-empirical light response curves for eddy-covariance carbon flux were compared, with a logistic sigmoid performing better because of residual bias than a rectangular hyperbola (Michaelis-Menten) at estimating the quantum yield of photosynthesis. In the first two years after the peak beetle outbreak the original quantum yield of 0.015 mol mol-1 was reduced by 25%. By the third year it was reduced by a half, which was composed of declines of 45% in the ecosystem's responses to diffuse radiation and 60% to direct radiation. The light-saturated rate of photosynthesis decreased by 10% in the first two years post outbreak, and fell by 40% in the third year. After the peak outbreak, the cumulative NEE over the growing season was reduced by over a half from a sink of 185 gC m-2 to 80 gC m-2, and by the third year it was reduced to near zero, or carbon neutral. The change in the ET response to light was similar in all years after the peak outbreak where the slope of the response curve was decreased by 25%. This led to a

  17. Multidimensional separations of ubiquitin conformers in the gas phase: relating ion cross sections to H/D exchange measurements.

    Science.gov (United States)

    Robinson, Errol W; Williams, Evan R

    2005-09-01

    Investigating gas-phase structures of protein ions can lead to an improved understanding of intramolecular forces that play an important role in protein folding. Both hydrogen/deuterium (H/D) exchange and ion mobility spectrometry provide insight into the structures and stabilities of different gas-phase conformers, but how best to relate the results from these two methods has been hotly debated. Here, high-field asymmetric waveform ion mobility spectrometry (FAIMS) is combined with Fourier-transform ion cyclotron resonance mass spectrometry (FT/ICR MS) and is used to directly relate ubiquitin ion cross sections and H/D exchange extents. Multiple conformers can be identified using both methods. For the 9+ charge state of ubiquitin, two conformers (or unresolved populations of conformers) that have cross sections differing by 10% are resolved by FAIMS, but only one conformer is apparent using H/D exchange at short times. For the 12+ charge state, two conformers (or conformer populations) have cross sections differing by ion collisional cross sections and H/D exchange distributions are not strongly correlated and that factors other than surface accessibility appear to play a significant role in determining rates and extents of H/D exchange. Conformers that are not resolved by one method could be resolved by the other, indicating that these two methods are highly complementary and that more conformations can be resolved with this combination of methods than by either method alone.

  18. Simulating the impacts of land use in northwest Europe on Net Ecosystem Exchange (NEE): the role of arable ecosystems, grasslands and forest plantations in climate change mitigation.

    Science.gov (United States)

    Abdalla, Mohamed; Saunders, Matthew; Hastings, Astley; Williams, Mike; Smith, Pete; Osborne, Bruce; Lanigan, Gary; Jones, Mike B

    2013-11-01

    In this study, we compared measured and simulated Net Ecosystem Exchange (NEE) values from three wide spread ecosystems in the southeast of Ireland (forest, arable and grassland), and investigated the suitability of the DNDC (the DeNitrification-DeComposition) model to estimate present and future NEE. Although, the field-DNDC version overestimated NEE at temperatures >5 °C, forest-DNDC under-estimated NEE at temperatures >5 °C. The results suggest that the field/forest DNDC models can successfully estimate changes in seasonal and annual NEE from these ecosystems. Differences in NEE were found to be primarily land cover specific. The annual NEE was similar for the grassland and arable sites, but due to the contribution of exported carbon, the soil carbon increased at the grassland site and decreased at the arable site. The NEE of the forest site was an order of magnitude larger than that of the grassland or arable ecosystems, with large amounts of carbon stored in woody biomass and the soil. The average annual NEE, GPP and Reco values over the measurement period were -904, 2379 and 1475 g C m(-2) (forest plantations), -189, 906 and 715 g C m(-2) (arable systems) and -212, 1653 and 1444 g C m(-2) (grasslands), respectively. The average RMSE values were 3.8 g C m(-2) (forest plantations), 0.12 g C m(-2) (arable systems) and 0.21 g C m(-2) (grasslands). When these models were run with climate change scenarios to 2060, predictions show that all three ecosystems will continue to operate as carbon sinks. Further, climate change may decrease the carbon sink strength in the forest plantations by up to 50%. This study supports the use of the DNDC model as a valid tool to predict the consequences of climate change on NEE from different ecosystems. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Photoautotrophic Growth and Net Photosynthetic Rate of Sweet Potato Plantlets In Vitro as Affected by the Number of Air Exchanges of the Vessel and Type of Supporting Material

    Institute of Scientific and Technical Information of China (English)

    XIAO Yulan; Kozai Toyoki

    2006-01-01

    To produce high-quality sweet potato plantlets rapidly at low production costs, single nodal leafy cuttings of sweet potato (Ipomoea batatas (L.) Lam.) plantlets were cultured in vitro for 14 days on sugar- and phytohormone-free Murashige and Skoog (MS) liquid medium, at a photosynthetic photon flux (PPF) of 200 μmol·m-2·s-1 and a CO2 concentration (v/v) of 1.8×10-3. A factorial experiment was conducted with two levels of the number of air exchanges of the vessel (NAE), 8.7-12.2 h-1 and >12.2 h-1, and two types of supporting material, vermiculite and Florialite (a porous material). The control treatment consisted of a photomixotrophic culture using a sugar- and NAA-containing agar MS medium with an NAE of 2.4 h-1. PPF and CO2 concentrations were the same as the photoautotrophic treatments. In comparison with the control treatment, the photoautotrophic treatments with NAE of 8.7-12.2 h-1 (MF treatment) and ≥12.2 h-1 (HF treatment) were, respectively, 2.2 and 2.8 times in dry weight, and 3.7 and 4.2 times in net photosynthetic rate, when Florialite was used. The survival percentages of the plantlets in the field were, respectively, 86% and 97% in the MF and HF treatments, and 35% and 46% higher than that in the control treatment. The plantlets cultured with Florialite showed greater growth, compared with those cultured with vermiculite. Photoautotrophic micropropagation system with high NAE and the use of porous supporting material can produce high-quality plantlets and make it possible to reduce production costs.

  20. The effects of clouds and aerosols on net ecosystem CO2 exchange over semi-arid Loess Plateau of Northwest China

    Directory of Open Access Journals (Sweden)

    T. Wang

    2010-09-01

    Full Text Available The impacts of clouds and atmospheric aerosols on the terrestrial carbon cycle at semi-arid Loess Plateau in Northwest China are investigated, by using the observation data obtained at the SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University site. Daytime (solar elevation angles of larger than 50° net ecosystem exchange (NEE of CO2 obtained during the midgrowing season (July–August are analyzed with respect to variations in the diffuse radiation, cloud cover and aerosol optical depth (AOD. Results show a significant impact by clouds on the CO2 uptake by the grassland (with smaller LAI values located in a semi-arid region, quite different from areas covered by forests and crops. The light saturation levels in the canopy are low, with a value of about 434.8 W m−2. Thus, under overcast conditions of optically thick clouds, the CO2 uptake increases with increasing clearness index (the ratio of global solar radiation received at the Earth surface to the extraterrestrial irradiance at a plane parallel to the Earth surface, and a maximum CO2 uptake and light use efficiency of vegetation occur with the clearness index of about 0.37 and lower air temperature. Under other sky conditions, CO2 uptake decreases with cloudiness but light use efficiency is enhanced, due to increased diffuse fraction of PAR. Additionally, under cloudy conditions, changes in the NEE of CO2 also result from the interactions of many environmental factors, especially the air temperature. In contrast to its response to changes in solar radiation, the carbon uptake shows a slightly negative response to increased AOD. The reason for the difference in the response of the semi-arid grassland from that of the forest and crop lands may be due to the difference in the canopy's architectural structure.

  1. Differences in plant cover and species composition of semiarid grassland communities of Central Mexico and its effects on net ecosystem exchange

    Directory of Open Access Journals (Sweden)

    J. Delgado-Balbuena

    2012-12-01

    Full Text Available Changes in land use across the semiarid grasslands of Northern Mexico have driven a decline of plant cover and alteration of plant species composition. A number of different plant communities have resulted from these changes, however, their implications on the carbon cycle and regional carbon balance are still poorly understood. Here, we examined the effects of plant cover loss and changes in species composition on net ecosystem CO2 exchange (NEE and their biotic and abiotic controls. Five typical plant community types were examined in the semiarid grassland by encasing the entire above-ground ecosystem using the geodesic dome method. Sites included an oat crop (crop, a moderately grazed grassland (moderate grazing, a 28 yr-old grazing exclosure (exclosure, an overgrazed site with low perennial grass cover (overgrazed, and an overgrazed site presenting shrub encroachment (shrub encroachment. For natural vegetation, rates of daytime NEE for sites with a high plant cover (exclosure and moderate grazing were similar (P>0.05 as compared to sites with low plant cover (overgrazed and shrub encroachment. However, night time NEE (carbon loss was more than double (P<0.05 for sites with high plant cover compared to sites with low cover, resulting into slight C sinks for the low plant cover sites and neutral or sources for the high plant cover sites on an annual basis. Differences in plant cover and its associated biomass defined the sensitivity to environmental controls. Thus, daytime NEE in low plant cover sites reached light compensation points at lower PPFD values than those from high plant cover sites. Differences in species composition did not influence NEE rates even though there were transient or permanent changes in C3 vs. C4 functional groups.

  2. Magnesium-deficiency-induced alterations of gas exchange, major metabolites and key enzymes differ among roots, and lower and upper leaves of Citrus sinensis seedlings.

    Science.gov (United States)

    Li, Chun-Ping; Qi, Yi-Ping; Zhang, Jiang; Yang, Lin-Tong; Wang, Dan-Hong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song

    2017-06-14

    Magnesium (Mg)-deficiency is a widespread problem adversely affecting the quality and yield of crops, including citrus. 'Xuegan' [Citrus sinensis (L.) Osbeck] seedlings were irrigated every other day with nutrient solution at an Mg concentration of 0 mM (Mg-deficiency) or 1 mM (Mg-sufficiency) for 16 weeks. Thereafter, biomass, leaf mass per area, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), pigments in the upper and lower leaves, Mg, gas exchange, organic acids, nonstructural carbohydrates, total soluble proteins, amino acids, phenolics and anthocyanins, and key enzymes related to organic acid, amino acid and phenolic metabolisms in the roots, and upper and lower leaves were assayed in order to test the hypothesis that Mg-deficiency-induced alterations of gas exchange, major metabolites and key enzymes may differ among the roots, and upper and lower leaves. Magnesium-deficiency affected the most measured parameters more in the lower than in the upper leaves except for the nonstructural carbohydrates, but the variation trends were similar between the two. Despite increased accumulation of nonstructural carbohydrates, the lower CO2 assimilation in the Mg-deficient leaves was not caused by the feedback inhibition mechanism via sugar accumulation. Both dark respiration and organic acid metabolism were elevated in the Mg-deficient lower leaves to 'consume' the excess carbohydrates, and inhibited in the Mg-deficient roots with less accumulation of nonstructural carbohydrates to keep the balance of net carbon. More total phenolics and fewer anthocyanins were accumulated in the Mg-deficient lower leaves, whereas the accumulation of both total phenolics and anthocyanins was reduced in the Mg-deficient roots. Interestingly, amino acid biosynthesis was repressed in the Mg-deficient roots and lower leaves, thus lowering the level of total free amino acids in these roots and leaves. To conclude, great differences existed in the Mg-deficiency-induced alterations

  3. Scaling of stomatal size and density optimizes allocation of leaf epidermal space for gas exchange in angiosperms

    Science.gov (United States)

    de Boer, Hugo Jan; Price, Charles A.; Wagner-Cremer, Friederike; Dekker, Stefan C.; Franks, Peter J.; Veneklaas, Erik J.

    2015-04-01

    Stomata on plant leaves are key traits in the regulation of terrestrial fluxes of water and carbon. The basic morphology of stomata consists of a diffusion pore and two guard cells that regulate the exchange of CO2 and water vapour between the leaf interior and the atmosphere. This morphology is common to nearly all land plants, yet stomatal size (defined as the area of the guard cell pair) and stomatal density (the number of stomata per unit area) range over three orders of magnitude across species. Evolution of stomatal sizes and densities is driven by selection pressure on the anatomical maximum stomatal conductance (gsmax), which determines the operational range of leaf gas exchange. Despite the importance of stomata traits for regulating leaf gas exchange, a quantitative understanding of the relation between adaptation of gsmax and the underlying co-evolution of stomatal sizes and densities is still lacking. Here we develop a theoretical framework for a scaling relationship between stomatal sizes and densities within the constraints set by the allocation of epidermal space and stomatal gas exchange. Our theory predicts an optimal scaling relationship that maximizes gsmax and minimizes epidermal space allocation to stomata. We test whether stomatal sizes and densities reflect this optimal scaling with a global compilation of stomatal trait data on 923 species reflecting most major clades. Our results show optimal scaling between stomatal sizes and densities across all species in the compiled data set. Our results also show optimal stomatal scaling across angiosperm species, but not across gymnosperm and fern species. We propose that the evolutionary flexibility of angiosperms to adjust stomatal sizes underlies their optimal allocation of leaf epidermal space to gas exchange.

  4. Effects of Drought and Rewetting on Growth and Gas Exchange of Minor European Broadleaved Tree Species

    Directory of Open Access Journals (Sweden)

    Jörg Kunz

    2016-10-01

    Full Text Available Widespread and economically important European tree species such as Norway spruce, Scots pine, and European beech are projected to be negatively affected by the increasing intensity and frequency of dry and hot conditions in a future climate. Hence, there is an increasing need to investigate the suitability of presumably more drought tolerant species to ensure future ecological stability, biodiversity, and productivity of forests. Based on their distribution patterns and climatic envelopes, the rare, minor broadleaved tree species Sorbus torminalis ((L. CRANTZ, S. domestica (L., Acer campestre (L., and A. platanoides (L. are assumed to be drought tolerant, however, there is only limited experimental basis to support that notion. This study aimed at quantifying growth and gas exchange of seedlings of these species during drought conditions, and their capacity to recover following drought. For that purpose, they were compared to the common companion species Quercus petraea ((MATTUSCHKA LIEBL. and Fagus sylvatica (L.. Here, potted seedlings of these species were exposed to water limitation followed by rewetting cycles in a greenhouse experiment. Photosynthesis and transpiration rates, stomatal conductance as well as root and shoot growth rates indicated a high drought resistance of A. campestre and A. platanoides. Sorbus domestica showed a marked ability to recover after drought stress. Therefore, we conclude that these minor tree species have the potential to enrich forests on drought-prone sites. Results from this pot experiment need to be complemented by field studies, in which the drought response of the species is not influenced by restrictions to root development.

  5. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    Science.gov (United States)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  6. In situ observation of stomatal movements and gas exchange of Aegopodium podagraria L. in the understorey.

    Science.gov (United States)

    Kaiser, H; Kappen, L

    2000-10-01

    Observations of stomata in situ while simultaneously measuring CO(2) gas exchange and transpiration were made in field experiments with Aegopodium podagraria in a highly variable light climate in the understorey of trees. The low background photosynthetic photon flux density (PPFD) caused a slight opening of the stomata and no visible response to sporadic lightflecks. However, if lightflecks were frequent and brighter, slow opening movements were observed. Small apertures were sufficient to allow maximal photosynthetic rates. Therefore, the small apertures observed in low light usually only caused minor stomatal limitations of lightfleck photosynthesis. The response of stomata to step-wise changes in PPFD under different levels of leaf to air vapour pressure difference (Delta(W)) was observed under controlled conditions. High Delta(W) influenced the stomatal response only slightly by reducing stomatal aperture in low light and causing a slight reduction in the initial capacity to utilize high PPFD levels. Under continuous high PPFD, however, stomata opened to the same degree irrespective of Delta(W). Under high Delta(W), opening and closing responses to PPFD-changes were faster, which enabled a rapid removal of the small stomatal limitations of photosynthesis initially present in high Delta(W) after longer periods in low light. It is concluded that A. podagraria maintains a superoptimal aperture in low light which leads to a low instantaneous water use efficiency, but allows an efficient utilization of randomly occurring lightflecks.

  7. Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas.

    Science.gov (United States)

    Malone, Fionn D; Blunt, N S; Brown, Ethan W; Lee, D K K; Spencer, J S; Foulkes, W M C; Shepherd, James J

    2016-09-09

    The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration path-integral formalism disagree by up to ∼10% at certain reduced temperatures T/T_{F}≤0.5 and densities r_{s}≤1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T_{F}≥1 and r_{s}≤2.

  8. Light acclimation of leaf gas exchange in two Tunisian cork oak populations from contrasting environmental conditions

    Directory of Open Access Journals (Sweden)

    Rzigui T

    2015-10-01

    Full Text Available Due to diverse environmental conditions, Mediterranean plant populations are exposed to a range of selective pressures that may lead to phenotypic plasticity and local adaptation. We examined the effect of light acclimation on photosynthetic capacity in two Quercus suber (L. populations that are native to different ecological conditions. Low-light adapted seedlings from both populations were exposed to three light treatments: full sunlight (HL, medium light (ML, 43% sunlight and low light (LL, 15% sunlight for one month. Photosynthetic performance was monitored by measuring leaf gas exchange and chlorophyll fluorescence parameters. The light environment influences light-saturated carbon assimilation (Amax in the leaves of the population inhabiting the hot and dry region (from Gaafour. In contrast, there was no significant difference in Amax between leaves grown in high light and low light from Feija (the population native to a cold and humid climate, which suggests an inability of the Feija population to adjust its photosynthesis to respond to higher irradiance. The inability of the Feija population to adjust its photosynthesis did not result from a light acclimation failure in terms of chlorophyll content and ratio compared with the Gaafour population. Instead, it seems to be the consequence of lower stomatal conductance in the Feija population at HL compared to Gaafour.

  9. Effects of elastic loading and exercise on pulmonary gas exchange in dogs.

    Science.gov (United States)

    Chonan, T; Hida, W; Kikuchi, Y; Shindoh, C; Taguchi, O; Miki, H; Takishima, T

    1991-06-01

    We assessed the effects of negative intrathoracic pressure induced by inspiratory elastic loading on pulmonary, gas exchange with and without electrically induced hindlimb exercise in 8 normal, anesthetized dogs. Two elastic loads (EL) were used; one of 81 and one of 140 cmH2O/liter. These are equivalent to doubling and tripling the normal elastance of the dog's respiratory system, respectively. Elastic loading decreased ventilation and caused hypoxemia and hypercapnia, but it did not affect systemic arterial pressure or heart rate. During exercise, increase in ventilation was limited, whereas increase in cardiac output was not affected by elastic loading. Alveolar-arterial O2 tension difference (A-aDO2) was not changed significantly by exercise alone. However, elastic loading accompanied by exercise increased A-aDO2. Although comparable end-inspiratory pleural pressure was achieved with large EL (-29 +/- 2 cmH2O, mean +/- SE) and small EL with exercise (-30 +/- 2 cmH2O), the latter increased A-aDO2 whereas the former did not. Large negative intrapleural pressure combined with increased cardiac output may have caused transient interstitial edema.

  10. Initial development and gas exchange of Talisia subalbens (Mart. Radlk. under different shading conditions

    Directory of Open Access Journals (Sweden)

    Fernanda Carlota Nery

    2011-02-01

    Full Text Available Ecophysiological studies under semi-controlled conditions in nurseries and greenhouses are essential to enable the use of native species to recover degraded areas and for commercial planting. Talisia subalbens (Mart Radlk, 'cascudo', is a native fruiting species of the Cerrado on the verge of extinction. The ecophysiological performance of this species was evaluated in nursery conditions under different levels of shading (full sunshine, 30%, 50% and 70%. Initial growth, biomass allocation, gas exchange and chlorophyll content of the plants were analyzed. Full sunshine cultivated plants showed a higher accumulation of total, shoot, and root dry biomass. There was no significant difference in the root/shoot ratio among the treatments. Seedlings cultivated under full sunshine and 30% shading showed higher values for height, basal diameter, and leaf area. Differences in stomata conductance and photosynthesis rate were not observed among the different shading levels. Plants cultivated under 70% of shading had higher contents of chlorophyll a, b, and total. During the initial phase with higher levels of radiation were fundamental for the development of T. subalbens seedlings.

  11. Influence of exercise modality on agreement between gas exchange and heart rate variability thresholds.

    Science.gov (United States)

    Cunha, F A; Montenegro, R A; Midgley, A W; Vasconcellos, F; Soares, P P; Farinatti, P

    2014-08-01

    The main purpose of this study was to investigate the level of agreement between the gas exchange threshold (GET) and heart rate variability threshold (HRVT) during maximal cardiopulmonary exercise testing (CPET) using three different exercise modalities. A further aim was to establish whether there was a 1:1 relationship between the percentage heart rate reserve (%HRR) and percentage oxygen uptake reserve (%VO2 R) at intensities corresponding to GET and HRVT. Sixteen apparently healthy men 17 to 28 years of age performed three maximal CPETs (cycling, walking, and running). Mean heart rate and VO2 at GET and HRVT were 16 bpm (P0.05). There was a strong relationship between GET and HRVT, with R2 ranging from 0.69 to 0.90. A 1:1 relationship between %HRR and % VO2 R was not observed at GET and HRVT. The %HRR was higher during cycling (GET mean difference=7%; HRVT mean difference=11%; both P<0.001), walking (GET mean difference=13%; HRVT mean difference=13%; both P<0.001), or running (GET mean difference=11%; HRVT mean difference=10%; both P<0.001). Therefore, using HRVT to prescribe aerobic exercise intensity appears to be valid. However, to assume a 1:1 relationship between %HRR and % VO2 R at HRVT would probably result in overestimation of the energy expenditure during the bout of exercise.

  12. Can Heart Rate Variability be used to Estimate Gas Exchange Threshold in Obese Adolescents?

    Science.gov (United States)

    Vasconcellos, F; Seabra, A; Montenegro, R; Cunha, F; Bouskela, E; Farinatti, P

    2015-07-01

    This study investigated the agreement and reliability of oxygen uptake (V̇O2), V̇O2 reserve (V̇O2 R), heart rate (HR) and power output at intensities corresponding to the gas exchange threshold (GET) and heart rate variability threshold (HRVT) during maximal cardiopulmonary exercise testing (CPET) in obese and eutrophic adolescents. A further aim was to establish whether the HRVT was able to detect changes in cardio-respiratory fitness in obese adolescents after 3 months of recreational soccer practice. First, 25 obese and 10 eutrophic adolescents (ages 12-17) visited the laboratory twice to perform cycling CPET to test the reliability of CPET outcomes at GET and HRVT. Furthermore, the level of agreement between GET and HRVT was determined for a subgroup of 10 obese adolescents after performing a 3-month recreational soccer program. No significant difference was found for V̇O2, %V̇O2 R, HR and power output at the GET and HRVT (P>0.05), which were equally able to detect improvements in aerobic fitness after the soccer intervention. Correlations between GET and HRVT for V̇O2 and %V̇O2 R ranged from 0.89 to 0.95 (P<0.001) and test-retest reliability ranged from 0.59 to 0.82 (P<0.006). Overall, HRVT seems to be a reliable alternative for prescribing aerobic exercise intensity in obese adolescents.

  13. Gas exchange in Paulownia species growing under different soil moisture conditions in the field.

    Science.gov (United States)

    Llano-Sotelo, J M; Alcaraz-Melendez, L; Castellanos Villegas, A E

    2010-07-01

    In order to evaluate their responses to drought, we determined the photosynthetic activity water potential, stomatal conductance, transpiration, water use efficiency photosynthetic photon flux density and leaf temperature of Paulownia imperialis, P. fortunei and P. elongata in three different soil moisture conditions in the field. Our results showed that P. imperialis had greater photosynthesis (8.86 micromol CO2 m(-2) s(-1)) and instantaneous water use efficiency (0.79 micromol CO2 mmol H2O(-1)) than either P. elongata (8.20 micromol CO2 m(-2) s(-1) and 0.71 micromol CO2 mmol H2O(-1)) or P. fortunei (3.26 micromol CO2 m(-2) s(-1) and 0.07 micromol CO2 mmol H2O(-1)). The rapid growth of Paulownia did not appear to be correlated with photosynthetic rates. Paulownia fortunei showed more transpiration (48.78 mmol H2O m(-2) s(-1)) and stomatal conductance (840 mmol m(-2) s(-1)) than P. imperialis (20 mmol H2O m(-2) s(-1) and 540 mmol m(-2) s(-1)) and P. elongata (20 mmol H2O m(-2) s(-1) and 410 mmol m(-2) s(-1)), which allowed these two Paulownia species to increase their tolerance to low soil moisture, and maintain higher water use efficiency under these conditions. According to our physiological gas exchange field tests, Paulownia imperialis does appear to be capable of successful growth in semiarid zones.

  14. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    Science.gov (United States)

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought.

  15. Gas exchange and leaf anatomy of a C3-CAM hybrid, Yucca gloriosa (Asparagaceae).

    Science.gov (United States)

    Heyduk, Karolina; Burrell, Nia; Lalani, Falak; Leebens-Mack, Jim

    2016-03-01

    While the majority of plants use the typical C3 carbon metabolic pathway, ~6% of angiosperms have adapted to carbon limitation as a result of water stress by employing a modified form of photosynthesis known as Crassulacean acid metabolism (CAM). CAM plants concentrate carbon in the cells by temporally separating atmospheric carbon acquisition from fixation into carbohydrates. CAM has been studied for decades, but the evolutionary progression from C3 to CAM remains obscure. In order to better understand the morphological and physiological characteristics associated with CAM photosynthesis, phenotypic variation was assessed in Yucca aloifolia, a CAM species, Yucca filamentosa, a C3 species, and Yucca gloriosa, a hybrid species derived from these two yuccas exhibiting intermediate C3-CAM characteristics. Gas exchange, titratable leaf acidity, and leaf anatomical traits of all three species were assayed in a common garden under well-watered and drought-stressed conditions. Yucca gloriosa showed intermediate phenotypes for nearly all traits measured, including the ability to acquire carbon at night. Using the variation found among individuals of all three species, correlations between traits were assessed to better understand how leaf anatomy and CAM physiology are related. Yucca gloriosa may be constrained by a number of traits which prevent it from using CAM to as high a degree as Y. aloifolia. The intermediate nature of Y. gloriosa makes it a promising system in which to study the evolution of CAM. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Extracorporeal gas exchange in acute lung injury: step by step towards expanded indications?

    Science.gov (United States)

    Dembinski, Rolf; Kuhlen, Ralf

    2010-01-01

    Extracorporeal membrane oxygenation (ECMO) is widely accepted as a rescue therapy in patients with acute life-threatening hypoxemia in the course of severe acute respiratory distress syndrome (ARDS). However, possible side effects and complications are considered to limit beneficial outcome effects. Therefore, widening indications with the aim of reducing ventilator induced lung injury (VILI) is still controversial. Consequently, technological progress is an important strategy. Miniaturized ECMO systems are believed to simplify handling and reduce side effects and complications. Mueller and co-workers evaluated such a small-sized device in 60 patients with severe ARDS. They accomplished both the treatment of severe hypoxemia and reduction of VILI, demonstrating feasibility, a moderate rate of severe complications, and a 45% intensive care survival rate. Although neither randomized nor controlled, this study should encourage others to implement such systems in clinical practice. From a strategic perspective, this is another small but useful step towards implementing extracorporeal gas exchange for the prevention of VILI. It is already common sense that the prevention of acute life-threatening hypoxemia usually outweighs the risks of this technique. The next step should be to prove that prevention of life-threatening VILI balances the risks too.

  17. A test of the oxidative damage hypothesis for discontinuous gas exchange in the locust Locusta migratoria.

    Science.gov (United States)

    Matthews, Philip G D; Snelling, Edward P; Seymour, Roger S; White, Craig R

    2012-08-23

    The discontinuous gas exchange cycle (DGC) is a breathing pattern displayed by many insects, characterized by periodic breath-holding and intermittently low tracheal O(2) levels. It has been hypothesized that the adaptive value of DGCs is to reduce oxidative damage, with low tracheal O(2) partial pressures (PO(2) ≈ 2-5 kPa) occurring to reduce the production of oxygen free radicals. If this is so, insects displaying DGCs should continue to actively defend a low tracheal PO(2) even when breathing higher than atmospheric levels of oxygen (hyperoxia). This behaviour has been observed in moth pupae exposed to ambient PO(2) up to 50 kPa. To test this observation in adult insects, we implanted fibre-optic oxygen optodes within the tracheal systems of adult migratory locusts Locusta migratoria exposed to normoxia, hypoxia and hyperoxia. In normoxic and hypoxic atmospheres, the minimum tracheal PO(2) that occurred during DGCs varied between 3.4 and 1.2 kPa. In hyperoxia up to 40.5 kPa, the minimum tracheal PO(2) achieved during a DGC exceeded 30 kPa, increasing with ambient levels. These results are consistent with a respiratory control mechanism that functions to satisfy O(2) requirements by maintaining PO(2) above a critical level, not defend against high levels of O(2).

  18. Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange.

    Science.gov (United States)

    García-Mata, Carlos; Lamattina, Lorenzo

    2013-03-01

    Specialized guard cells modulate plant gas exchange through the regulation of stomatal aperture. The size of the stomatal pore is a direct function of the volume of the guard cells. The transport of solutes across channels in plasma membrane is a crucial process in the maintenance of guard cell water status. The fine tuned regulation of that transport requires an integrated convergence of multiple endogenous and exogenous signals perceived at both the cellular and the whole plant level. Gasotransmitters are novel signaling molecules with key functions in guard cell physiology. Three gasotransmitters, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S) are involved in guard cell regulatory processes. These molecules are endogenously produced by plant cells and are part of the guard cells responses to drought stress conditions through ABA-dependent pathways. In this review, we summarize the current knowledge of gasotransmitters as versatile molecules interacting with different components of guard cell signaling network and propose them as players in new paradigms to study ABA-independent guard cell responses to water deficit.

  19. Effect of heat and moisture exchanger (HME positioning on inspiratory gas humidification

    Directory of Open Access Journals (Sweden)

    Nishimura Masaji

    2006-08-01

    Full Text Available Abstract Background In mechanically ventilated patients, we investigated how positioning the heat and moisture exchanger (HME at different places on the ventilator circuit affected inspiratory gas humidification. Methods Absolute humidity (AH and temperature (TEMP at the proximal end of endotracheal tube (ETT were measured in ten mechanically ventilated patients. The HME was connected either directly proximal to the ETT (Site 1 or at before the circuit Y-piece (Site 2: distance from proximal end of ETT and Site 2 was about 19 cm (Figure. 1. Two devices, Hygrobac S (Mallinckrodt Dar, Mirandola, Italy and Thermovent HEPA (Smiths Medical International Ltd., Kent, UK were tested. AH and TEMP were measured with a hygrometer (Moiscope, MERA Co., Ltd., Tokyo, Japan. Results Hygrobac S provided significantly higher AH and TEMP at both sites than Thermovent HEPA. Both Hygrobac S and with Thermovent HEPA provided significantly higher AH and TEMP when placed proximally to the ETT. Conclusion Although placement proximal to the ETT improved both AH and TEMP in both HMEs tested, one HME performed better in the distal position than the other HME in the proximal position. We conclude the both the type and placement of HME can make a significant difference in maintaining AH and TEMP during adult ventilation.

  20. Gas exchange and leaf contents in bell pepper under energized water and biofertilizer doses

    Directory of Open Access Journals (Sweden)

    Francisca R. M. Borges

    2016-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of energized water and bovine biofertilizer doses on the gas exchange and NPK contents in leaves of yellow bell pepper plants. The experiment was conducted at the experimental area of the Federal University of Ceará, in Fortaleza-CE, Brazil, from June to November 2011. The experiment was set in a randomized block design, in a split-plot scheme; the plots were composed of treatments with energized and non-energized water and the subplots of five doses of liquid biofertilizer (0, 250, 500, 750 and 1000 mL plant-1 week-1. The following variables were analyzed: transpiration, stomatal conductance, photosynthesis and leaf contents of nitrogen (N, phosphorus (P and potassium (K. Water energization did not allow significant increases in the analyzed variables. The use of biofertilizer as the only source of fertilization was sufficient to provide the nutrients N, P and K at appropriate levels for the bell pepper crop.

  1. A STUDY ON MARKET OPPORTUNITIES IN NATURAL GAS IN MULTI COMMODITY EXCHANGE

    National Research Council Canada - National Science Library

    S Saranya; K Kumutha Devi

    2016-01-01

      Commodity markets are where raw or primary products are exchanged. These raw commodities are traded on regulated commodities exchanges, in which they are bought and sold in standardized contracts...

  2. Land use change and the impact on greenhouse gas exchange in north Australian savanna soils

    Directory of Open Access Journals (Sweden)

    S. P. P. Grover

    2011-09-01

    Full Text Available Savanna ecosystems are subject to accelerating land use change as human demand for food and forest products increases. Land use change has been shown to both increase and decrease greenhouse gas fluxes from savannas and considerable uncertainty exists about the non-CO2 fluxes from the soil. We measured methane (CH4, nitrous oxide (N2O, and carbon dioxide (CO2 over a complete wet-dry seasonal cycle at three replicated sites of each of three land uses: savanna, young pasture and old pasture (converted from savanna 5–7 and 25–30 yr ago, respectively in the Douglas Daly region of northern Australia. The effect of break of season rains at the end of the dry season was investigated with two irrigation experiments.

    Land use change from savanna to pasture increased net greenhouse gas fluxes from the soil. Pasture sites were a weaker sink for CH4 than savanna sites and, under wet conditions, old pastures turned from being sinks to a significant source of CH4. Nitrous oxide emissions were generally very low, in the range of 0 to 5 μg N2O-N m−2 h−1, and under dry conditions soil uptake of N2O was apparent. Break of season rains produced a small, short lived pulse of N2O up to 20 μg N2O-N m−2 h−1, most evident in pasture soil. Annual cumulative soil CO2 fluxes increased after clearing, with savanna (14.6 t CO2-C ha−1 yr−1 having the lowest fluxes compared to old pasture (18.5 t CO2-C ha−1 yr−1 and young pasture (20.0 t CO2-C ha−1 yr−1. Clearing savanna increased soil-based greenhouse gas emissions from 53 to ~70 t CO2-equivalents, a 30% increase dominated by an increase in soil CO2 emissions and shift from soil CH4 sink to source

  3. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    Science.gov (United States)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  4. Reactant gas transport and cell performance of proton exchange membrane fuel cells with tapered flow field design

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.C.; Yan, W.M. [Department of Mechatronic Engineering, Huafan University, Shih-Ting, Taipei 223, Taiwan (ROC); Soong, C.Y. [Department of Aerospace and Systems Engineering, Feng Chia University, Seatwen, Taichung 407, Taiwan (ROC); Chen, Falin [Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan (ROC); Chu, H.S. [Department of Mechanical Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan (ROC)

    2006-07-14

    The objective of this work is to examine the reactant gas transport and the cell performance of a proton exchange membrane fuel cell (PEMFC) with a tapered flow channel design. It is expected that, with the reduction in the channel depth along the streamwise direction, the reactant fuel gas in the tapered channel can be accelerated as well as forced into the gas diffuser layer to enhance the electrochemical reaction and thus augment the cell performance. The effects of liquid water formation on the reactant gas transport are taken into account in the present study. Numerical predictions show that the cell performance can be enhanced with the fuel channel tapered, and the enhancement is more noticeable at a lower voltage. The results also reveal that the liquid water effect in general influences the cell performance and the effect becomes significant at lower voltages. (author)

  5. Reactant gas transport and cell performance of proton exchange membrane fuel cells with tapered flow field design

    Science.gov (United States)

    Liu, H. C.; Yan, W. M.; Soong, C. Y.; Chen, Falin; Chu, H. S.

    The objective of this work is to examine the reactant gas transport and the cell performance of a proton exchange membrane fuel cell (PEMFC) with a tapered flow channel design. It is expected that, with the reduction in the channel depth along the streamwise direction, the reactant fuel gas in the tapered channel can be accelerated as well as forced into the gas diffuser layer to enhance the electrochemical reaction and thus augment the cell performance. The effects of liquid water formation on the reactant gas transport are taken into account in the present study. Numerical predictions show that the cell performance can be enhanced with the fuel channel tapered, and the enhancement is more noticeable at a lower voltage. The results also reveal that the liquid water effect in general influences the cell performance and the effect becomes significant at lower voltages.

  6. Gas exchange and growth responses to nutrient enrichment in invasive Glyceria maxima and native New Zealand Carex species

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans; Fitridge, Isla

    2012-01-01

    We compared photosynthetic gas exchange, the photosynthesis-leaf nitrogen (N) relationship, and growth response to nutrient enrichment in the invasive wetland grass Glyceria maxima (Hartman) Holmburg with two native New Zealand Carex sedges (C. virgata Boott and C. secta Boott), to explore...... the ecophysiological traits contributing to invasive behaviour. The photosynthesis-nitrogen relationship was uniform across all three species, and the maximum light-saturated rate of photosynthesis expressed on a leaf area basis (Amaxa) did not differ significantly between species. However, specific leaf area (SLA...... the sedges, but correlations between leaf N, gas exchange parameters (Amaxa, Amaxm, Rd and gs) and RGR were all highly significant in G. maxima, whereas they were weak or absent in the sedges. Allocation of biomass (root:shoot ratio, leaf mass ratio, root mass ratio), plant N and P content, and allocation...

  7. Dynamics of Gas Exchange through the Fractal Architecture of the Human Lung, Modeled as an Exactly Solvable Hierarchical Tree

    Science.gov (United States)

    Mayo, Michael; Pfeifer, Peter; Gheorghiu, Stefan

    2008-03-01

    The acinar airways lie at the periphery of the human lung and are responsible for the transfer of oxygen from air to the blood during respiration. This transfer occurs by the diffusion-reaction of oxygen over the irregular surface of the alveolar membranes lining the acinar airways. We present an exactly solvable diffusion-reaction model on a hierarchically branched tree, allowing a quantitative prediction of the oxygen current over the entire system of acinar airways responsible for the gas exchange. We discuss the effect of diffusional screening, which is strongly coupled to oxygen transport in the human lung. We show that the oxygen current is insensitive to a loss of permeability of the alveolar membranes over a wide range of permeabilities, similar to a ``constant-current source'' in an electric network. Such fault tolerance has been observed in other treatments of the gas exchange in the lung and is obtained here as a fully analytical result.

  8. Alveolar recruiting maneuver in dogs under general anesthesia: effects on alveolar ventilation, gas exchange, and respiratory mechanics.

    Science.gov (United States)

    Staffieri, F; De Monte, V; De Marzo, C; Scrascia, F; Crovace, A

    2010-06-01

    The aim of this study was to evaluate the effects of a recruiting maneuver (RM) on lung aeration, gas exchange, and respiratory mechanics during general anesthesia in mechanically ventilated dogs. A thoracic computed tomography (CT) scan, an arterial blood sample, and measurement of respiratory mechanics were performed 10 min before (baseline) and both 5 and 30 min after a vital capacity RM in 10 dogs under general anesthesia. The RM was performed by inflating the lung at 40 cm H(2)O for 20 s. Lung aeration was estimated by analyzing the radiographic attenuation of the CT images. Lung aeration and gas exchange improved significantly 5 min after the RM compared to baseline and returned to values similar to baseline by 30 min. Static lung compliance was not significantly affected by the RM. An RM induces a temporary improvement in lung function in healthy dogs under general anesthesia.

  9. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury

    DEFF Research Database (Denmark)

    Nielsen, Niels Dalsgaard; Kjærgaard, Benedict; Nielsen, Jakob Koefoed

    Background and aim of study We hypothesized that continuous high airway pressure without ventilatory movements (apneic oxygenation), using an open lung approach, combined with extracorporeal, pumpless, arterio-venous, carbon dioxide (CO2) removal would provide adequate gas exchange in acute lung...... injury was induced by repeated lung lavage. Thereafter the tracheal tube was, after a lung recruitment maneuver, connected to 20 cmH2O continuous positive airway pressure (FiO2 = 1.0) for oxygenation of the blood. A pumpless membrane lung (Interventional Lung Assist, NovaLung, Germany) was connected...... In this porcine lung injury model, apneic oxygenation with arteriovenous CO2 removal provided sufficient gas exchange and stable hemodynamics, indicating that the method might have a potential in the treatment of severe ARDS.   Acknowledgements The membrane lungs were kindly provided by Novalung GmbH, Germany....

  10. The Effect of Water Stress on the Gas Exchange Parameters, Productivity and Seed Health of Buckwheat (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Agnieszka Pszczółkowska

    2012-12-01

    Full Text Available The present pot experiment studied the effect of different soil moisture contents (60 - 70% CWC (capillary water capacity - control; 30 - 35% CWC - water stress on buckwheat productivity, the gas exchange parameters and health of buckwheat nuts. It was found that water deficit affected adversely certain biometric features investigated (plant height, number of nuts per cluster and caused a decrease in seed weight per plant. It was also shown that water stress reduced the values of the investigated gas exchange parameters (photosynthesis rate, transpiration rate, intercellular-space CO2 concentration, and stomatal conductance relative to the control treatment. Different soil moisture contents did not have a clear effect on fungal colonization of seeds. The multiplex PCR assays did not enable the detection of the genes responsible for mycotoxin synthesis. Under water deficit conditions, an increase was found in the content of albumin and globulin fractions as well as of glutelin fractions.

  11. Coupling of the magnetic field and gas flows inferred from the net circular polarization in a sunspot penumbra

    OpenAIRE

    2015-01-01

    We analyze penumbral fine structure using high-resolution spectropolarimetric data obtained by the Solar Optical Telescope on board the Hinode satellite. The spatial correlation between the net circular polarization (NCP) and Evershed flow is investigated in detail. Here we obtain that negative NCP structures are correlated with the Evershed flow channels in the limb-side penumbra, and that negative NCP or depressions of positive NCP are associated with the Evershed flow channels in the disk ...

  12. Measuring air–sea gas-exchange velocities in a large-scale annular wind–wave tank

    OpenAIRE

    E. Mesarchaki; C. Kräuter; K. E. Krall; Bopp, M; Helleis, F.; Williams, J.; Jähne, B.

    2015-01-01

    In this study we present gas-exchange measurements conducted in a large-scale wind–wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.73 to 13.2 m s−1) conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface...

  13. Comparison of gas-phase acidities of some carbon acids with their rates of hydron exchange in methanolic methoxide

    NARCIS (Netherlands)

    DeTuri, V.F.; Koch, H.F.; Koch, J.G.; Lodder, G.; Mishima, M.; Zuilhof, H.; Abrams, N.M.; Anders, C.E.; Biffinger, J.C.; Han, P.; Kurland, A.R.; Nichols, J.M.; Ruminski, A.M.; Smith, P.R.; Vasey, K.D.J.

    2006-01-01

    Hydron exchange reaction rates, k(exch)M(-1) s(-1), using methanolic sodium methoxide are compared with gas-phase acidities, Delta G(Acid)(0) kcal/mol, for four 9-YPhenylfluorenes-9-H-i, seven (YC6H4CH)-H-i(CF3)(2), seven YC6H4-(CHClCF3)-H-i, and (C6F5H)-H-i. Fourteen of the fluorinated benzylic com

  14. Extracorporeal Gas Exchange and Spontaneous Breathing for the Treatment of Acute Respiratory Distress Syndrome: An Alternative to Mechanical Ventilation?

    Science.gov (United States)

    2014-03-01

    and the artificial lung (extracorporeal gas exchange) in this setting. Design: Laboratory investigation. Setting: Animal ICU of a governmental...Finally, in this sce- nario, a somewhat new player, namely spontaneous breathing, would enter in the arena of the ICUs . This study sheds light on some... rehabilitation during extracorporeal membrane oxygenation as a bridge to lung transplan- tation. Respir Care 2013; 58:1291–1298 12. Turner DA, Cheifetz IM

  15. Alveolar gas exchange and tissue oxygenation during incremental treadmill exercise, and their associations with blood O2 carrying capacity

    Directory of Open Access Journals (Sweden)

    Antti-Pekka E. Rissanen

    2012-07-01

    Full Text Available The magnitude and timing of oxygenation responses in highly active leg muscle, less active arm muscle, and cerebral tissue, have not been studied with simultaneous alveolar gas exchange measurement during incremental treadmill exercise. Nor is it known, if blood O2 carrying capacity affects the tissue-specific oxygenation responses. Thus, we investigated alveolar gas exchange and tissue (m. vastus lateralis, m. biceps brachii, cerebral cortex oxygenation during incremental treadmill exercise until volitional fatigue, and their associations with blood O2 carrying capacity in 22 healthy men. Alveolar gas exchange was measured, and near-infrared spectroscopy (NIRS was used to monitor relative concentration changes in oxy- (Δ[O2Hb], deoxy- (Δ[HHb] and total hemoglobin (Δ[tHb], and tissue saturation index (TSI. NIRS inflection points (NIP, reflecting changes in tissue-specific oxygenation, were determined and their coincidence with ventilatory thresholds (anaerobic threshold (AT, respiratory compensation point (RC; V-slope method was examined. Blood O2 carrying capacity (total hemoglobin mass (tHb-mass was determined with the CO-rebreathing method. In all tissues, NIPs coincided with AT, whereas RC was followed by NIPs. High tHb-mass associated with leg muscle deoxygenation at peak exercise (e.g., Δ[HHb] from baseline walking to peak exercise vs. tHb-mass: r = 0.64, p < 0.01, but not with arm muscle- or cerebral deoxygenation. In conclusion, regional tissue oxygenation was characterized by inflection points, and tissue oxygenation in relation to alveolar gas exchange during incremental treadmill exercise resembled previous findings made during incremental cycling. It was also found out, that O2 delivery to less active m. biceps brachii may be limited by an accelerated increase in ventilation at high running intensities. In addition, high capacity for blood O2 carrying was associated with a high level of m. vastus lateralis deoxygenation at peak

  16. 长白山针阔混交林秋季净生态系统水气交换量%Net water vapour exchange over a mixed needle and broad-leaved forest in Changbai Mountain during autumn

    Institute of Scientific and Technical Information of China (English)

    温学发; 于贵瑞; 孙晓敏

    2003-01-01

    Water vapour and CO2 fluxes were measured by the eddy-covariance technique above a mixed needle and broad-leaved forest with affiliated meteorological measurements in Changbai Mountain as part of China's FLUX projects since late August in 2002. Net water vapour exchange and environmental control over the forest were examined from September 1 to October 31 in 2002.To quantify the seasonal dynamics, the transition period was separated into leafed, leaf falling and leafless stages according to the development of leaf area. The results showed that (a) seasonal variation of water vapour exchange was mainly controlled by net radiation (Rn) which could account for 78.5%, 63.4% and 56.6% for leafed, leaf falling and leafless stages, respectively, while other environmental factors' effects varied evidently; (b) magnitude of water vapour flux decreased remarkably during autumn and daily mean of water vapour exchange was 24.2 mgm-2 s-1 (100%),14.8 mgm-2 s-1 (61.2%) and 10.3 mg m-2 s-1 (42.6%) for leafed, leaf falling and leafless stage,respectively; and (c) the budget of water vapour exchange during autumn was estimated to be 87.1 kg H2O m-2, with a mean of 1427.2 g H2O d-1 varying markedly from 3104.0 to 227.5 g H2O m-2d-1.

  17. Effective gas exchange in paralyzed juvenile rabbits using simple, inexpensive respiratory support devices.

    Science.gov (United States)

    Diblasi, Robert M; Zignego, Jay C; Smith, Charles V; Hansen, Thomas N; Richardson, C Peter

    2010-12-01

    We have developed two devices: a high-amplitude bubble continuous positive airway pressure (HAB-CPAP) and an inexpensive bubble intermittent mandatory ventilator (B-IMV) to test the hypotheses that simple, inexpensive devices can provide gas exchange similar to that of bubble CPAP (B-CPAP) and conventional mechanical ventilation (CMV). Twelve paralyzed juvenile rabbits were intubated, stabilized on CMV, and then switched to CPAP. On identical mean airway pressures (MAPs), animals were unable to maintain pulse oximeter oxygen saturation (SpO2) >80% on conventional B-CPAP, but all animals oxygenated well (97.3 ± 2.1%) on HAB-CPAP. In fact, arterial partial pressures of O2 (Pao2) were higher during HAB-CPAP than during CMV (p = 0.01). After repeated lung lavages, arterial partial pressures of CO2 (Paco2) were lower with B-IMV than with CMV (p < 0.0001), despite identical ventilator settings. In lavaged animals, when HAB-CPAP was compared with CMV at the same MAP and 100% O2, no differences were observed in Pao2, but Paco2 levels were higher with HAB-CPAP (70 ± 7 versus 50 ± 5 mm Hg; p < 0.05). Arterial blood pressures were not impaired by HAB-CPAP or B-IMV. The results confirm that simple inexpensive devices can provide respiratory support in the face of severe lung disease and could extend the use of respiratory support for preterm infants into severely resource-limited settings.

  18. Significant contribution from foliage-derived ABA in regulating gas exchange in Pinus radiata.

    Science.gov (United States)

    Mitchell, Patrick J; McAdam, Scott A M; Pinkard, Elizabeth A; Brodribb, Timothy J

    2017-02-01

    The complex regulatory system controlling stomata involves physical and chemical signals that affect guard cell turgor to bring about changes in stomatal conductance (gs). Abscisic acid (ABA) closes stomata, yet the mechanisms controlling foliar ABA status in tree species remain unclear. The importance of foliage-derived ABA in regulating gas exchange was evaluated under treatments that affected phloem export through girdling and reduced water availability in the tree species, Pinus radiata (D. Don). Branch- and whole-plant girdling increased foliar ABA levels leading to declines in gs, despite no change in plant water status. Changes in gs were largely independent of the more transient increases in foliar non-structural carbohydrates (NSC), suggesting that gradual accumulation of foliar ABA was the primary mechanism for reductions in gs and assimilation. Whole-plant girdling eventually reduced root NSC, hindering root water uptake and decreasing foliar water potential, causing a dramatic increase in ABA level in leaves and concentrations in the xylem sap of shoots (4032 ng ml-1), while root xylem sap concentrations remained low (43 ng ml-1). Contrastingly, the drought treatment caused similar increases in xylem sap ABA in both roots and shoots, suggesting that declines in water potential result in relatively consistent changes in ABA along the hydraulic pathway. ABA levels in plant canopies can be regulated independently of changes in root water status triggered by changes by both phloem export and foliar water status. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Biogenic emissions and CO 2 gas exchange investigated on four Mediterranean shrubs

    Science.gov (United States)

    Hansen, U.; van Eijk, J.; Bertin, N.; Staudt, M.; Kotzias, D.; Seufert, G.; Fugit, J.-L.; Torres, L.; Cecinato, A.; Brancaleoni, E.; Ciccioli, P.; Bomboi, T.

    In order to investigate the impact of plant physiology on emissions of biogenic volatile organic compounds monoterpene emission rates from Rosmarinus officinalis (L.) and Pistacia lentiscus (L.) and isoprene emission rates from Erica arborea (L.) and Myrtus communis (L.) were determined. The study, an activity in the framework of BEMA (Biogenic Emissions in the Mediterranean Area), was carried out in May 1994 at Castelporziano near Rome in Italy, using a dynamic enclosure technique combined with recording CO 2 gas exchange, temperature and irradiance data. The monoterpenes dominating the emission pattern were 1,8-cineol, α-pinene and β-pinene for rosemary and α-pinene, linalool and β-pinene + sabinene for pistachio. Total monoterpene emission rates standardized to 30°C of 1.84 ± 0.24 and 0.35 ± 0.04 μg Cg -1 dw h -1 were found for rosemary and pistachio, respectively (on a leaf dry weight basis). Myrtle emitted 22.2 ± 4.9 μg C g -1 dw h -1 at standard conditions (30°C, PAR 1000 μmol photons m -2 s -1 as isoprene and erica 5.61 μg C g -1 dw h -1 The carbon loss due to terpenoid emissions per photosynthetically carbon uptake was about 0.01-0.1% for the monoterpene emitters. The isoprene emitting shrubs lost 0-0.9% of the assimilated carbon. The rapid induction of emissions in the sun after temporary shading indicates that isoprene emissions were closely linked to photosynthesis. A higher proportion of the assimilated carbon was lost as isoprene under conditions of high light and temperature compared to the morning and evening hours.

  20. Prediction of normal values for lactate threshold estimated by gas exchange in men and women.

    Science.gov (United States)

    Davis, J A; Storer, T W; Caiozzo, V J

    1997-01-01

    Lactate threshold (LT) is an index of exercise capacity and can be estimated from the gas exchange consequences of a metabolic acidosis (LT(GE)). In recent years, it has emerged as a diagnostic tool in the evaluation of subjects with exercise limitation. The purpose of this study was to develop LT(GE) prediction equations on a relatively large sample of adults and to cross-validate each equation. A total of 204 healthy, sedentary, nonsmoking subjects (103 men and 101 women), aged 20-70 years, underwent graded exercise testing on a cycle ergometer. The V-slope technique was used to detect LTGE as the oxygen uptake (VO2) at the breakpoint of the carbon dioxide output versus VO2 relationship. Multiple linear regression was used to develop 12 equations with combinations of the following predictor variables: age, height, body mass, and fat-free mass. Eight of the equations are gender-specific and four are generalized with gender as a dummy variable. The equations were cross-validated using the predicted residual sum of squares (PRESS) method. The results demonstrate that the equations had relatively high multiple correlations (0.577-0.863) and low standard errors of the estimate (0.123-0.228 1 x min(-1)). The PRESS method demonstrated that the equations are generalizable, i.e., can be used in future studies without a significant loss of accuracy. Since we tested only healthy, sedentary subjects, our equations can be used to predict the lower limit of normal for a given subject. Using individual data for healthy and diseased subjects from the literature, we found that our gender-specific equations rarely miscategorized subjects unless they were obese and mass was a predictor variable. We conclude that our equations provide accurate predictions of normal values for LT(GE) and that they are generalizable to other subject populations.

  1. DMS pulse and COS valley: the effect of simulated rainfall on sulfur gas exchange in dry soils of uncultivated marine terraces

    Science.gov (United States)

    Whelan, M.; Khan, M. H.; Barnash, K.; Vollering, J.; Rhew, R.

    2011-12-01

    Atmospheric sulfur compounds regulate climate by affecting cloud dynamics and reducing the amount of solar radiation that reaches the Earth's surface. Quantifying the terrestrial-atmosphere exchanges of sulfur has been challenging as only some of the controlling factors are known. In general, oxic soils are observed to act as a sink of reduced sulfur compounds (RSCs), while anoxic soils tend to act a source. Changes in soil moisture are therefore expected to greatly influence the direction of net gas fluxes of RSCs. Here we report the effect of simulated rainfall on soil samples fr