WorldWideScience

Sample records for net cell growth

  1. Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering.

    Science.gov (United States)

    Unger, Ronald E; Wolf, Michael; Peters, Kirsten; Motta, Antonella; Migliaresi, Claudio; James Kirkpatrick, C

    2004-03-01

    We have examined a novel biomaterial consisting of a non-woven fibroin net produced from silk (Bombyx mori) cocoons for its ability to support the growth of human cells. Various human cells of different tissue and cell types (endothelial, epithelial, fibroblast, glial, keratinocyte, osteoblast) were examined for adherence and growth on the nets by confocal laser microscopy after staining of the cells with calcein-AM and by electron microscopy. All the cells readily adhered and spread over the individual fibers of the nets. Most of the cells were able to grow and survive on the nets for at least 7 weeks and growth not only covered the individual fibers of the net but generally bridged the gaps between individual fibers forming tissue-like structures. Scanning electron microscopic examination of the nets demonstrated a tight association of individual cells with the fibers and nets examined after removal of cells showed no evidence that the growth of cells in any way changed the structure of the fibers. Thus, silk fibroin nets are highly human cell-compatible and should be a useful new scaffolding biomaterial applicable for a wide range of target tissues in addition to supporting endothelial cells required for the vascularization of the newly formed tissue.

  2. Net expression inhibits the growth of pancreatic ductal adenocarcinoma cell PL45 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Baiwen Li

    Full Text Available Pancreatic ductal adenocarcinoma has a poor prognosis due to late diagnosis and a lack of effective therapeutic options. Thus, it is important to better understand its molecular mechanisms and to develop more effective treatments for the disease. The ternary complex factor Net, which exerts its strong inhibitory function on transcription of proto-oncogene gene c-fos by forming ternary complexes with a second transcription factor, has been suspected of being involved in pancreatic cancer and other tumors biology. In this study, we found that the majority of pancreatic ductal adenocarcinoma tissues and cell lines had weak or no expression of Net, whereas significantly high level of Net expression occurred in paired adjacent normal tissues we studied. Furthermore, using in vitro and in vivo model systems, we found that overexpression of Net inhibited cell growth and survival and induced cell apoptosis in human pancreatic ductal adenocarcinoma cell PL45; the mechanisms by which Net inhibited the cell cycle progression were mainly through P21-Cyclin D1/CDK4 Pathway. Our data thus suggested that Net might play an important role in pancreatic carcinogenesis, possibly by acting as a tumor suppressor gene.

  3. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells.

    Science.gov (United States)

    Unger, R E; Peters, K; Wolf, M; Motta, A; Migliaresi, C; Kirkpatrick, C J

    2004-09-01

    We have previously shown that a biomaterial consisting of a non-woven fibroin net produced from silk (Bombyx mori) cocoons is an excellent scaffolding material for a wide variety of human cells of different tissue types. Endothelialization must take place for a biomaterial to be successful after implantation. Therefore, primary human endothelial cells and the human endothelial cell lines, HPMEC-ST1.6R and ISO-HAS-1, were examined for adherence and growth patterns on the fibroin nets by confocal laser scanning microscopy after vital staining of the cells and by electron microscopy. Endothelial cells adhered and spread along individual fibers of the nets and did not fill the gaps between individual fibers. Higher attachment and growth coverage was obtained if nets were first coated with gelatin, fibronectin or collagen type I. Proinflammatory markers of endothelial cells on the fibers exhibited a non-activated state and LPS-stimulated cells exhibited activation of these markers. Furthermore, a typical PECAM-1 localization at cell-cell contacts was observed. Scanning electron microscopic examination of fibroin nets after removal of cells did not demonstrate any changes to the fibroin structure. HUVEC and HDMEC on fibroin nets embedded in collagen type I gels formed microvessel-like structures. Thus, silk fibroin nets are a highly endothelial cell-compatible scaffolding material that support the growth, normal and inducible cell functions and angiogenesis potential of human endothelial cells in vitro similar to that observed in vivo.

  4. Linking net entry to regional economic growth

    NARCIS (Netherlands)

    M.A.F.G. Dejardin (Marcus)

    2011-01-01

    textabstractRegional growth differentials could be explained by how intensively and dynamically new firms of a particular region enter expanding industries. Although the direct contribution of new firms to value creation and growth may be regarded as tautological, the aggregate impacts are largely

  5. Inclusive Growth: More than Safety Nets

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    caused that crisis and remain responsible for persistent deprivation continue to exist. 2. The need to find policies that ... debate, including questions of definition, and global challenges to address inclusive growth effectively. 4 Earlier origins of the ... debates, often with (youth) unemployment as a key concern. 12 According to ...

  6. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effect of dietary net energy concentrations on growth performance and net energy intake of growing gilts.

    Science.gov (United States)

    Lee, Gang Il; Kim, Jong Hyuk; Han, Gi Ppeum; Koo, Do Yoon; Choi, Hyeon Seok; Kil, Dong Yong

    2017-09-01

    This experiment investigated the effect of dietary net energy (NE) concentrations on growth performance and NE intake of growing gilts. Five diets were formulated to contain 9.6, 10.1, 10.6, 11.1, and 11.6 MJ NE/kg, respectively. A metabolism trial with 10 growing pigs (average body weight [BW] = 15.9±0.24 kg) was conducted to determine NE concentrations of 5 diets based on French and Dutch NE systems in a 5×5 replicated Latin square design. A growth trial also was performed with five dietary treatments and 12 replicates per treatment using 60 growing gilts (average BW = 15.9±0.55 kg) for 28 days. A regression analysis was performed to predict daily NE intake from the BW of growing gilts. Increasing NE concentrations of diets did not influence average daily gain and average daily feed intake of growing gilts. There was a quadratic relationship (p = 0.01) between dietary NE concentrations and feed efficiency (G:F), although the difference in G:F among treatment means was relatively small. Regression analysis revealed that daily NE intake was linearly associated with the BW of growing gilts. The prediction equations for NE intake with the BW of growing gilts were: NE intake (MJ/d) = 1.442+(0.562×BW, kg), R 2 = 0.796 when French NE system was used, whereas NE intake (MJ/d) = 1.533+(0.614×BW, kg), R 2 = 0.810 when Dutch NE system was used. Increasing NE concentrations of diets from 9.6 to 11.6 MJ NE/kg have little impacts on growth performance of growing gilts. Daily NE intake can be predicted from the BW between 15 and 40 kg in growing gilts.

  8. Webs, cell assemblies, and chunking in neural nets: introduction.

    Science.gov (United States)

    Wickelgren, W A

    1999-03-01

    This introduction to Wickelgren (1992), describes a theory of idea representation and learning in the cerebral cortex and seven properties of Hebb's (1949) formulation of cell assemblies that have played a major role in all such neural net models. Ideas are represented in the cerebral cortex by webs (innate cell assemblies), using sparse coding with sparse, all-or-none, innate linking. Recruiting a web to represent a new idea is called chunking. The innate links that bind the neurons of a web are basal dendritic synapses. Learning modifies the apical dendritic synapses that associate neurons in one web to neurons in another web.

  9. Initial growth of Bauhinia variegata trees under different colored shade nets and light conditions

    Directory of Open Access Journals (Sweden)

    Renata Bachin Mazzini-Guedes

    2014-12-01

    Full Text Available Bauhinia variegata and B. variegata var. candida, commonly known as orchid trees, are small sized trees widely used for urban forestry and landscaping. Adult plants grow under full sun; in Brazil, however, seedlings are generally cultivated in commercial nurseries under natural half-shading. The objective of this study was to evaluate the influence of different colored shade nets and light conditions on the initial growth of B. variegata and B. variegata var. candida. The influence of six light conditions (red net with 50% shading; blue net with 50% shading; black net with 70% shading; black net with 50% shading; black net with 30% shading; and full sun on the initial growth of B. variegata and B. variegata var. candida were evaluated along 160 days, and growth relationships were calculated. Seedlings showed more efficiency on the use of photoassimilated compounds when grown under full sun. Such condition is the most appropriate for seedling production of B. variegata and B. variegata var. candida, contradicting what has been performed in practice.

  10. Why Net Domestic Product Should Replace Gross Domestic Product as a Measure of Economic Growth

    OpenAIRE

    Roland Spant

    2003-01-01

    In the third article, Roland Spant, a Swedish trade union economist, argues that Net Domestic Product (NDP) should replace GDP as a measure of economic growth for a number of purposes. The key difference between GDP and NDP is depreciation. With the shift in investment toward information technology assets with relatively short service lives, the share of depreciation in GDP has increased in most OECD countries and GDP growth now exceeds NDP growth. Spant points out that this means that the us...

  11. Net mineral requirements for growth of Saanen goat kids in early life are similar among genders.

    Science.gov (United States)

    Mendonça, A N; Härter, C J; Souza, S F; Oliveira, D; Boaventura Neto, O; Biagioli, B; Resende, K T; Teixeira, I A M A

    2017-02-01

    The current mineral requirements for growing goat kids are based on sheep and cattle studies without differentiating between the stages of development or gender. The aims of this study were to determine the net requirements for growth of Ca, P, Mg, Na and K of Saanen goat kids during the initial stages of growth and to analyse the effect of gender on the net requirements for growth of these macrominerals. Eighteen female, 19 intact male and 10 castrated male Saanen goat kids were studied. The kids were selected applying a completely randomized design and slaughtered when their body weight (BW) reached approximately 5, 10 and 15 kg to determine the mineral requirements for growth at these stages. The net mineral requirements for growth were similar among genders. The goat kids had slightly increased net requirements of Ca, P and Mg for growth with increasing BW from 5 to 15 kg. The net requirements for growth of Ca, P, Mg, Na and K ranged from 9.61 to 9.67 g/kg of BW gain, 7.14 to 7.56 g/kg of BW gain, 0.34 to 0.37 g/kg of BW gain, 1.26 to 1.13 g/kg of BW gain, 1.88 to 1.82 g/kg of BW gain as the animals grew from 5 to 15 kg respectively. In conclusion, when formulating diets for Saanen goat kids in early growth stage mineral levels do not need to adjusted based on gender. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  12. The in situ growth of 3D net-like CNTs on C fiber

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Junfeng, E-mail: majunfeng01@sina.cn; Lan, Xuena; Niu, Bingbing; Fan, Dongxiao

    2017-05-01

    Carbon nanotubes (CNTs) with 3 dimensional net-like structure were perfectly grown on C fiber at ambient temperature and pressure using a modified electrochemical process, and their composition and morphology were characterized by Raman spectroscopy, Energy dispersive spectroscopy (EDS), High resolution transmission electron microscopy (HRTEM), and Scanning electron microscopy (SEM), respectively. This paper also reported the influence of applied voltage and reaction time on the formation and growth of CNTs, and proposed a possible growth mechanism. - Highlights: • CNTs with 3D net-like structure were grown on C fiber by an “electrochemical” route. • The formation and growth of CNTs relied on applied voltage and reaction time. • A possible growth mechanism was proposed.

  13. Photosynthetic behavior, growth and essential oil production of Melissa officinalis L. cultivated under colored shade nets

    Directory of Open Access Journals (Sweden)

    Graziele C Oliveira

    2016-03-01

    Full Text Available The modulation of light is of importance during cultivation of medicinal plants to obtain desirable morphological and physiological changes associated with the maximum production of active principles. This study aimed to evaluate the effect of the light spectrum transmitted by colored shade nets on growth, essential oil production and photosynthetic behavior in plants of lemon balm (Melissa officinalis L. Plants were cultivated in pots for 4-mo under black, red, and blue nets with 50% shading, and full sunlight exposure. Biometric and anatomical variables, essential oil yield, global solar radiation, photon flux density, chlorophyll content, and gas exchange parameters were measured in M. officinalis leaves. The results showed that despite being considered a partial shade plant, this species is able to adapt to full sunlight conditions without increasing biomass production. The spectral changes provided by colored shade nets did not caused any noticeable change in leaf anatomy of M. officinalis. However, the use of blue net resulted in increments of 116% in plant height, 168% in leaf area, 42% in chlorophyll content and 30% in yield of essential oil in lemon balm plants. These plant's qualities make the use of blue net a cultivation practice suitable for commercial use.

  14. Spatial patterns and cell surface clusters in perineuronal nets.

    Science.gov (United States)

    Arnst, Nikita; Kuznetsova, Svetlana; Lipachev, Nikita; Shaikhutdinov, Nurislam; Melnikova, Anastasiya; Mavlikeev, Mikhail; Uvarov, Pavel; Baltina, Tatyana V; Rauvala, Heikki; Osin, Yuriy N; Kiyasov, Andrey P; Paveliev, Mikhail

    2016-10-01

    Perineuronal nets (PNN) ensheath GABAergic and glutamatergic synapses on neuronal cell surface in the central nervous system (CNS), have neuroprotective effect in animal models of Alzheimer disease and regulate synaptic plasticity during development and regeneration. Crucial insights were obtained recently concerning molecular composition and physiological importance of PNN but the microstructure of the network remains largely unstudied. Here we used histochemistry, fluorescent microscopy and quantitative image analysis to study the PNN structure in adult mouse and rat neurons from layers IV and VI of the somatosensory cortex. Vast majority of meshes have quadrangle, pentagon or hexagon shape with mean mesh area of 1.29µm(2) in mouse and 1.44µm(2) in rat neurons. We demonstrate two distinct patterns of chondroitin sulfate distribution within a single mesh - with uniform (nonpolar) and node-enriched (polar) distribution of the Wisteria floribunda agglutinin-positive signal. Vertices of the node-enriched pattern match better with local maxima of chondroitin sulfate density as compared to the uniform pattern. PNN is organized into clusters of meshes with distinct morphologies on the neuronal cell surface. Our findings suggest the role for the PNN microstructure in the synaptic transduction and plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Boron Application Improves Growth, Yield and Net Economic Return of Rice

    Directory of Open Access Journals (Sweden)

    Mubshar HUSSAIN

    2012-09-01

    Full Text Available A field trial was conducted to evaluate the role of boron (B application at different growth stages in improving the growth, yield and net economic return of rice at farmer's fields during summer season, 2009. Boron was soil applied (1.5 kg/hm2 at the transplanting, tillering, flowering and grain formation stages of rice; foliar applied (1.5% B solution at the tillering, flowering and grain formation stages of rice, and dipped seedling roots in 1.5% B solution before transplanting; while control plots did not apply any B. Boron application (except dipping of seedling roots in B solution, which caused toxicity and reduced the number of tillers and straw yield than control substantially improved the rice growth and yield. However, soil application was better in improving the number of grains per panicle, 1000-grain weight, grain yield, harvest index, net economic income and ratio of benefit to cost compared with the rest of treatments. Overall, for improving rice performance and maximizing the net economic returns, B might be applied as soil application at flowering.

  16. Modeling Net Growth of Phaeocystis antarctica Based on Physiological and Optical Responses to Light and Temperature Co-limitation

    Directory of Open Access Journals (Sweden)

    Tiffany A. Moisan

    2018-02-01

    Full Text Available Temperature and light are fundamental environmental variables which regulate phytoplankton growth rates when nutrients are in excess. For polar coastal oceans that are undergoing changes in sea ice cover and warming, light, and temperature are particularly important for bloom dynamics. Using colonial Phaeocystis antarctica cultures grown at steady-state, we assessed the combined effect of these two environmental controls on net growth rate (μn, chlorophyll-specific absorption of light (aph* (λ, and quantum yields for growth (ϕμ. Specific net growth rates (μn varied from 0.04 to 0.34 day−1 within a matrix of light and temperature ranging from 14 to 542 μmol quanta m−2 s−1 and −1.5 to 4°C. Values of aph* (λ varied significantly with light but only slightly with temperature. Values of ϕμ ranged from 0.003 to 0.09 mol C (mol quanta absorbed−1 with highest values at low light and 4°C. For excess irradiances or low temperatures where growth rate is inhibited, quantum yields were low. The low ϕμ values are attributed both to increased absorption by photoprotective pigments compared to photosynthetic pigments and thermodynamic control of dark reaction enzymes. The systematic changes in photophysiological properties of P. antarctica in relation to temperature and light were used to develop a series of nested light- and temperature-dependent models for μn, aph* (λ, and ϕμ. A model for aph* (300–700 nm was developed that takes into account the systematic changes in aph* (λ due to pigment packaging effects and cellular concentrations of chlorophylls and photoprotective pigments. Also, a model for ϕμ was developed based on a cumulative one-hit Poisson probability function. These model parameterizations for absorption and quantum yield are combined into an overall model of net growth that can be applied easily to P. antarctica bloom dynamics using remote sensing data for temperature, light, and chlorophyll a. Furthermore

  17. An application programming interface for CellNetAnalyzer.

    Science.gov (United States)

    Klamt, Steffen; von Kamp, Axel

    2011-08-01

    CellNetAnalyzer (CNA) is a MATLAB toolbox providing computational methods for studying structure and function of metabolic and cellular signaling networks. In order to allow non-experts to use these methods easily, CNA provides GUI-based interactive network maps as a means of parameter input and result visualization. However, with the availability of high-throughput data, there is a need to make CNA's functionality also accessible in batch mode for automatic data processing. Furthermore, as some algorithms of CNA are of general relevance for network analysis it would be desirable if they could be called as sub-routines by other applications. For this purpose, we developed an API (application programming interface) for CNA allowing users (i) to access the content of network models in CNA, (ii) to use CNA's network analysis capabilities independent of the GUI, and (iii) to interact with the GUI to facilitate the development of graphical plugins. Here we describe the organization of network projects in CNA and the application of the new API functions to these projects. This includes the creation of network projects from scratch, loading and saving of projects and scenarios, and the application of the actual analysis methods. Furthermore, API functions for the import/export of metabolic models in SBML format and for accessing the GUI are described. Lastly, two example applications demonstrate the use and versatile applicability of CNA's API. CNA is freely available for academic use and can be downloaded from http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Generation time, net reproductive rate, and growth in stage-age-structured populations

    DEFF Research Database (Denmark)

    Steiner, Uli; Tuljapurkar, Shripad; Coulson, Tim

    2014-01-01

    Abstract Major insights into the relationship between life-history features and fitness have come from Lotka's proof that population growth rate is determined by the level (expected amount) of reproduction and the average timing of reproduction of an individual. But this classical result is limited...... to age-structured populations. Here we generalize this result to populations structured by stage and age by providing a new, unique measure of reproductive timing (Tc) that, along with net reproductive rate (R0), has a direct mathematical relationship to and approximates growth rate (r). We use simple...... features of the life history determine population growth rate r and reveal a complex interplay of trait dynamics, timing, and level of reproduction. Our results contribute to a new framework of population and evolutionary dynamics in stage-and-age-structured populations....

  19. Biomass rather than growth rate determines variation in net primary production by giant kelp.

    Science.gov (United States)

    Reed, Daniel C; Rassweiler, Andrew; Arkema, Katie K

    2008-09-01

    Net primary production (NPP) is influenced by disturbance-driven fluctuations in foliar standing crop (FSC) and resource-driven fluctuations in rates of recruitment and growth, yet most studies of NPP have focused primarily on factors influencing growth. We quantified NPP, FSC, recruitment, and growth rate for the giant kelp, Macrocystis pyrifera, at three kelp forests in southern California, U.S.A., over a 54-month period and determined the relative roles of FSC, recruitment, and growth rate in contributing to variation in annual NPP. Net primary production averaged between 0.42 and 2.38 kg dry mass x m(-2) x yr(-1) at the three sites. The initial FSC present at the beginning of the growth year and the recruitment of new plants during the year explained 63% and 21% of the interannual variation observed in NPP, respectively. The previous year's NPP and disturbance from waves collectively accounted for 80% of the interannual variation in initial FSC. No correlation was found between annual growth rate (i.e., the amount of new kelp mass produced per unit of existing kelp mass) and annual NPP (i.e., the amount of new kelp mass produced per unit area of ocean bottom), largely because annual growth rate was consistent compared to initial FSC and recruitment, which fluctuated greatly among years and sites. Although growth rate was a poor predictor of variation in annual NPP, it was principally responsible for the high mean values observed for NPP by Macrocystis. These high mean values reflected rapid growth (average of approximately 2% per day) of a relatively small standing crop (maximum annual mean = 444 g dry mass/m2) that replaced itself approximately seven times per year. Disturbance-driven variability in FSC may be generally important in explaining variation in NPP, yet it is rarely examined because cycles of disturbance and recovery occur over timescales of decades or more in many systems. Considerable insight into how variation in FSC drives variation in NPP may

  20. Effects of ozone on growth, net photosynthesis and yield of two African varieties of Vigna unguiculata.

    Science.gov (United States)

    Tetteh, Rashied; Yamaguchi, Masahiro; Wada, Yoshiharu; Funada, Ryo; Izuta, Takeshi

    2015-01-01

    To assess the effects of O(3)on growth, net photosynthesis and yield of two African varieties of cowpea(Vigna unguiculata L.), Blackeye and Asontem were exposed as potted plants to air that was either filtered to remove O(3) (FA), non-filtered air (NF), non-filtered with added O3 of approximately 50 nL L(-1) (ppb) from 11:00 to 16:00 (NF + O(3)) for 88 days in open-top chambers. The mean O(3) concentration (11:00-16:00) during the exposure period had a range from 16 ppb in the FA treatment to 118 ppb in the NF + O(3) treatment. Net photosynthetic rate and leaf area per plant were significantly reduced by exposure to O(3), reducing the growth of both varieties. Exposure to O(3) significantly reduced the 100-seed weight and number of seeds per pod. As a result, cowpea yield was significantly reduced by long-term exposure to O(3), with no difference in sensitivity between the varieties.

  1. Sex effects on net protein and energy requirements for growth of Saanen goats.

    Science.gov (United States)

    Souza, A P; St-Pierre, N R; Fernandes, M H R M; Almeida, A K; Vargas, J A C; Resende, K T; Teixeira, I A M A

    2017-06-01

    Requirements for growth in the different sexes remain poorly quantified in goats. The objective of this study was to develop equations for estimating net protein (NP G ) and net energy (NE G ) for growth in Saanen goats of different sexes from 5 to 45 kg of body weight (BW). A data set from 7 comparative slaughter studies (238 individual records) of Saanen goats was used. Allometric equations were developed to determine body protein and energy contents in the empty BW (EBW) as dependent variables and EBW as the allometric predictor. Parameter estimates were obtained using a linearized (log-transformation) expression of the allometric equations using the MIXED procedure in SAS software (SAS Institute Inc., Cary, NC). The model included the random effect of the study and the fixed effects of sex (intact male, castrated male, and female; n = 94, 73, and 71, respectively), EBW, and their interactions. Net requirements for growth were estimated as the first partial derivative of the allometric equations with respect to EBW. Additionally, net requirements for growth were evaluated based on the degree of maturity. Monte Carlo techniques were used to estimate the uncertainty of the calculated net requirement values. Sex affected allometric relationships for protein and energy in Saanen goats. The allometric equation for protein content in the EBW of intact and castrated males was log 10 protein (g) = 2.221 (±0.0224) + 1.015 (±0.0165) × log 10 EBW (kg). For females, the relationship was log 10 protein (g) = 2.277 (±0.0288) + 0.958 (±0.0218) × log 10 EBW (kg). Therefore, NP G for males was greater than for females. The allometric equation for the energy content in the EBW of intact males was log 10 energy (kcal) = 2.988 (±0.0323) + 1.240 (±0.0238) × log 10 EBW (kg); of castrated males, log 10 energy (kcal) = 2.873 (±0.0377) + 1.359 (±0.0283) × log 10 EBW (kg); and of females, log 10 energy (kcal) = 2.820 (±0.0377) + 1.442 (±0.0281) × log 10 EBW (kg). The NE G

  2. Cell Biology of Hyphal Growth.

    Science.gov (United States)

    Steinberg, Gero; Peñalva, Miguel A; Riquelme, Meritxell; Wösten, Han A; Harris, Steven D

    2017-04-01

    Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.

  3. Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species

    DEFF Research Database (Denmark)

    Arndal, M.F.; Merrild, M.P.; Michelsen, A.

    2013-01-01

    colonization, and fine root N and P uptake by root assay of Deschampsia flexuosa and Calluna vulgaris.Net root growth increased under elevated CO2, warming and drought, with additive effects among the factors. Arbuscular mycorrhizal colonization increased in response to elevated CO2, while ericoid mycorrhizal...

  4. Control of proton exchange membrane fuel cell system breathing based on maximum net power control strategy

    Science.gov (United States)

    Li, Qi; Chen, Weirong; Liu, Zhixiang; Guo, Ai; Liu, Shukui

    2013-11-01

    In order to achieve the maximum net power, the analysis for the maximum net power characterization of a proton exchange membrane fuel cell (PEMFC) system is carried out. A maximum net power control (MNPC) strategy based on an implicit generalized predictive control (IGPC) and a reference governor is proposed to keep optimal oxygen excess ratio (OER) trajectory. The IGPC based on an effective informed adaptive particle swarm optimization (EIA-PSO) algorithm is developed to solve the predictive control law and reduce the computational complexity in the rolling optimization process. The simulations of three conditional tests are implemented and the results demonstrate that the proposed strategy can track the optimal OER trajectory, reduce the parasitic power and maximize the output net power. The comprehensive comparisons based on three conditional tests verify that the MNPC-IGPC has better robust performance in the presence of large disturbances, time delay and various noises. The experimental comparison with internal control system of Ballard 1.2 kW Nexa Power Module testifies the validity of the MNPC-IGPC for increasing the net power. Hence, this proposed strategy can provide better behavior to guarantee optimal OER trajectory and the maximum net power even though the disturbances and uncertainties occur.

  5. Learning Based Frequency- and Time-Domain Inter-Cell Interference Coordination in HetNets

    OpenAIRE

    Simsek, Meryem; Bennis, Mehdi; Guvenc, Ismail

    2014-01-01

    In this article, we focus on inter-cell interference coordination (ICIC) techniques in heterogeneous network (Het-Net) deployments, whereby macro- and picocells autonomously optimize their downlink transmissions, with loose coordination. We model this strategic coexistence as a multi-agent system, aiming at joint interference management and cell association. Using tools from Reinforcement Learning (RL), agents (i.e., macro- and picocells) sense their environment, and self-adapt based on local...

  6. Energy efficiency based joint cell selection and power allocation scheme for HetNets

    Directory of Open Access Journals (Sweden)

    Kwabena Kobia Mensah

    2016-11-01

    Full Text Available Heterogeneous networks (HetNets composed of overlapped cells with different sizes are expected to improve the transmission performance of data service significantly. User equipments (UEs in the overlapped area of multiple cells might be able to access various base stations (BSs of the cells, resulting in various transmission performances due to cell heterogeneity. Hence, designing optimal cell selection scheme is of particular importance for it may affect user quality of service (QoS and network performance significantly. In this paper, we jointly consider cell selection and transmit power allocation problem in a HetNet consisting of multiple cells. For a single UE case, we formulate the energy efficiency of the UE, and propose an energy efficient optimization scheme which selects the optimal cell corresponding to the maximum energy efficiency of the UE. The problem is then extended to multiple UEs case. To achieve joint performance optimization of all the UEs, we formulate an optimization problem with the objective of maximizing the sum energy efficiency of UEs subject to QoS and power constraints. The formulated nonlinear fractional optimization problem is equivalently transformed into two subproblems, i.e., power allocation subproblem of each UE-cell pair, and cell selection subproblem of UEs. The two subproblems are solved respectively through applying Lagrange dual method and Kuhn–Munkres (K-M algorithm. Numerical results demonstrate the efficiency of the proposed algorithm.

  7. Renewable and non-renewable energy consumption and economic growth: Evidence from MENA Net Oil Importing Countries

    OpenAIRE

    Kahia, Montassar; Ben Aissa, Mohamed Safouane

    2014-01-01

    In this paper, we use panel cointegration techniques to explore the relationship between renewable and non-renewable energy consumption and economic growth in a sample of 11 MENA Net Oil Importing Countries covering the period 1980–2012. The Pedroni (1999, 2004), Kao(1999) as well as Westerlund(2007) panel cointegration tests indicate that there is a long-run equilibrium relationship between real GDP, renewable energy consumption, non-renewable energy consumption, real gross fixed capital for...

  8. Efficacy of insect-proof nets used in Tunisian tomato greenhouses against Tuta absoluta (Meyrick (Lepidoptera: Gelechiidae and potential impact on plant growth and fruit quality

    Directory of Open Access Journals (Sweden)

    A. Harbi

    2015-12-01

    Full Text Available Insect-proof screens constitute efficient physical means of protecting horticultural crops against insect pests and their use has become widespread. However, they may have a negative impact on plant growth and fruit quality by modifying climatic parameters of greenhouses. In case of tomato crops, they are used mainly against white flies and the tomato leaf miner Tuta absoluta (Meyrick. In Tunisia, tomato plastic tunnels are often netted following two modalities: i complete netting of the greenhouse under the plastic screen (total netting; or ii netting only doors and lateral aeration windows (partial netting. Weekly monitoring of T. absoluta in two tomato greenhouses with different netting setups using pheromone traps and sampling of leaves and fruits showed no differences in the levels of infestation by the pest with a maximum average values of 6.66 eggs/leaf, 4.16 larvae/leaf and 4.16 mines/leaf. The maximum infestation rate of leaves was 86.66% and that of fruits was 10.83%. No effects of the netting setup used on plant growth parameters were detected. However, the study of fruit quality parameters revealed significant decrease in sugar contents in tomato fruits when using total netting setup (4.26°Brix versus 3.68°Brix. Recommendations regarding the combined use of pheromones traps and insect-proof nets are given and possibilities to enhance the efficiency of nets as physical barrier against T. absoluta are explored.

  9. Use of CellNetAnalyzer in biotechnology and metabolic engineering.

    Science.gov (United States)

    von Kamp, Axel; Thiele, Sven; Hädicke, Oliver; Klamt, Steffen

    2017-11-10

    Mathematical models of the cellular metabolism have become an essential tool for the optimization of biotechnological processes. They help to obtain a systemic understanding of the metabolic processes in the used microorganisms and to find suitable genetic modifications maximizing the production performance. In particular, methods of stoichiometric and constraint-based modeling are frequently used in the context of metabolic and bioprocess engineering. Since metabolic networks can be complex and comprise hundreds or even thousands of metabolites and reactions, dedicated software tools are required for an efficient analysis. One such software suite is CellNetAnalyzer, a MATLAB package providing, among others, various methods for analyzing stoichiometric and constraint-based metabolic models. CellNetAnalyzer can be used via command-line based operations or via a graphical user interface with embedded network visualizations. Herein we will present key functionalities of CellNetAnalyzer for applications in biotechnology and metabolic engineering and thereby review constraint-based modeling techniques such as metabolic flux analysis, flux balance analysis, flux variability analysis, metabolic pathway analysis (elementary flux modes) and methods for computational strain design. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Growth and Maintenance of Vero Cell Lines

    OpenAIRE

    Ammerman, Nicole C.; Beier-Sexton, Magda; Azad, Abdu F.

    2008-01-01

    Vero cells are derived from the kidney of an African green monkey, and are one of the more commonly used mammalian continuous cell lines in microbiology, and molecular and cell biology research. This unit includes protocols for the growth and maintenance of Vero cell lines in a research laboratory setting.

  11. Developing Inventory Projection Models Using Empirical Net Forest Growth and Growing-Stock Density Relationships Across U.S. Regions and Species Group

    Science.gov (United States)

    Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang

    2012-01-01

    This paper describes a set of empirical net forest growth models based on forest growing-stock density relationships for three U.S. regions (North, South, and West) and two species groups (softwoods and hardwoods) at the regional aggregate level. The growth models accurately predict historical U.S. timber inventory trends when we incorporate historical timber harvests...

  12. Transforming growth factor-β-activated kinase 1 (TAK1 is required for human FcγRIIIb-induced neutrophil extracellular trap (NET formation

    Directory of Open Access Journals (Sweden)

    Omar Rafael Alemán

    2016-07-01

    Full Text Available Neutrophils (PMN are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs to kill microbes. Several stimuli, including bacteria, fungi, and parasites, and some pharmacological compounds such as PMA are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. Recently, it was reported that FcγRIIIb crosslinking induced NET formation similarly to PMA stimulation. Direct crosslinking of FcγRIIA or integrins did not promote NET formation. FcγRIIIb-induced NET formation presented different kinetics from PMA-induced NET formation, suggesting differences in signaling. Because FcγRIIIb also induces a strong activation of ERK and nuclear factor Elk-1, and the transforming growth factor-β-activated kinase 1 (TAK1 has recently been implicated in ERK signaling, in the present report, we explored the role of TAK1 in the signaling pathway activated by FcγRIIIb leading to NET formation. FcγRIIIb was stimulated by specific monoclonal antibodies and NET formation was evaluated in the presence or absence of pharmacological inhibitors. The antibiotic LL Z1640-2, a selective inhibitor of TAK1 prevented FcγRIIIb-induced, but not PMA-induced NET formation. Both PMA and FcγRIIIb crosslinkng induced phosphorylation of ERK. But, LL Z1640-2 only inhibited the FcγRIIIb-mediated activation of ERK. Also, only FcγRIIIb, similarly to transforming growth factor-β, induced TAK1 phosphorylation. A MEK (ERK kinase specific inhibitor was able to prevent ERK phosphorylation induced by both PMA and FcγRIIIb. These data show for the first time that FcγRIIIb crosslinking activates TAK1 and that this kinase is required for triggering the MEK/ERK signaling pathway to NETosis.

  13. Phytoplankton growth balanced by clam and zooplankton grazing and net transport into the low-salinity zone of the San Francisco Estuary

    Science.gov (United States)

    Kimmerer, Wim J.; Thompson, Janet K.

    2014-01-01

    We estimated the influence of planktonic and benthic grazing on phytoplankton in the strongly tidal, river-dominated northern San Francisco Estuary using data from an intensive study of the low salinity foodweb in 2006–2008 supplemented with long-term monitoring data. A drop in chlorophyll concentration in 1987 had previously been linked to grazing by the introduced clam Potamocorbula amurensis, but numerous changes in the estuary may be linked to the continued low chlorophyll. We asked whether phytoplankton continued to be suppressed by grazing and what proportion of the grazing was by benthic bivalves. A mass balance of phytoplankton biomass included estimates of primary production and grazing by microzooplankton, mesozooplankton, and clams. Grazing persistently exceeded net phytoplankton growth especially for larger cells, and grazing by microzooplankton often exceeded that by clams. A subsidy of phytoplankton from other regions roughly balanced the excess of grazing over growth. Thus, the influence of bivalve grazing on phytoplankton biomass can be understood only in the context of limits on phytoplankton growth, total grazing, and transport.

  14. Tomato fruit growth : integrating cell division, cell growth and endoreduplication by experimentation and modelling

    NARCIS (Netherlands)

    Fanwoua, J.

    2012-01-01

    Keywords: cell division, cell growth, cell endoreduplication, fruit growth, genotype, G×E interaction, model, tomato. Fruit size is a major component of fruit yield and quality of many crops. Variations in fruit size can be tremendous due to genotypic and environmental factors. The mechanisms

  15. Role of bentonite clays on cell growth.

    Science.gov (United States)

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH...... cloned a novel GH/PRL stimulated rat islet gene product, Pref-1 (preadipocyte factor-1). This protein contains six EGF-like motifs and may play a role both in embryonic pancreas differentiation and in beta cell growth and function. In summary, the increasing knowledge about the mechanisms involved...

  17. THE EFFECT OF DIFFERENT QUALITY PELLETED FEEDS ON THE GROWTH OF GREEN CATFISH (Hemibagrus nemurus IN FLOATING NET CAGE

    Directory of Open Access Journals (Sweden)

    Ningrum Suhenda

    2010-12-01

    Full Text Available The study was conducted to evaluate the different protein content of fish feed on the growth performance of green catfish (Hemibagrus nemurus. Two thousand fingerlings averaging 3.92±0.32 g of individual body weight were stocked in each floating net cage (3 m x 3 m x 3 m in Musi River, South Sumatra. They were fed daily for four months with feed protein content of 27% and 31%. The feed was given in pelleted form at 4%-8% of the total body weight. The result showed that the feed with 31% protein content gave better performance and significant different (P<0.05 than 27% protein feed. The feed content 31% protein was optimum for green catfish fingerlings and gave higher average individual weight gain (80.48 g, specific growth rate (2.67%, fat retention (29.48% and better feed conversion ratio (2.28. Survival rates were the same for 2 treatments and ranged between 94.17%-95.18%.

  18. Regression analysis to predict growth performance from dietary net energy in growing-finishing pigs.

    Science.gov (United States)

    Nitikanchana, S; Dritz, S S; Tokach, M D; DeRouchey, J M; Goodband, R D; White, B J

    2015-06-01

    Data from 41 trials with multiple energy levels (285 observations) were used in a meta-analysis to predict growth performance based on dietary NE concentration. Nutrient and energy concentrations in all diets were estimated using the NRC ingredient library. Predictor variables examined for best fit models using Akaike information criteria included linear and quadratic terms of NE, BW, CP, standardized ileal digestible (SID) Lys, crude fiber, NDF, ADF, fat, ash, and their interactions. The initial best fit models included interactions between NE and CP or SID Lys. After removal of the observations that fed SID Lys below the suggested requirement, these terms were no longer significant. Including dietary fat in the model with NE and BW significantly improved the G:F prediction model, indicating that NE may underestimate the influence of fat on G:F. The meta-analysis indicated that, as long as diets are adequate for other nutrients (i.e., Lys), dietary NE is adequate to predict changes in ADG across different dietary ingredients and conditions. The analysis indicates that ADG increases with increasing dietary NE and BW but decreases when BW is above 87 kg. The G:F ratio improves with increasing dietary NE and fat but decreases with increasing BW. The regression equations were then evaluated by comparing the actual and predicted performance of 543 finishing pigs in 2 trials fed 5 dietary treatments, included 3 different levels of NE by adding wheat middlings, soybean hulls, dried distillers grains with solubles (DDGS; 8 to 9% oil), or choice white grease (CWG) to a corn-soybean meal-based diet. Diets were 1) 30% DDGS, 20% wheat middlings, and 4 to 5% soybean hulls (low energy); 2) 20% wheat middlings and 4 to 5% soybean hulls (low energy); 3) a corn-soybean meal diet (medium energy); 4) diet 2 supplemented with 3.7% CWG to equalize the NE level to diet 3 (medium energy); and 5) a corn-soybean meal diet with 3.7% CWG (high energy). Only small differences were observed

  19. Zero net growth in a membrane bioreactor with complete sludge retention.

    Science.gov (United States)

    Laera, G; Pollice, A; Saturno, D; Giordano, C; Lopez, A

    2005-12-01

    A bench-scale membrane bioreactor was operated with complete sludge retention in order to evaluate biological processes and biomass characteristics over the long term. The investigation was carried out by feeding a bench-scale plant with real sewage under constant volumetric loading rate (VLR = 1.2 gCOD L(react)(-1) h(-1)). Biological processes were monitored by measuring substrate removal efficiencies and biomass-related parameters. The latter included bacterial activity as determined through respirometric tests specifically aimed at investigating long term heterotrophic and nitrifying activity. After about 180 days under the imposed operating conditions, the system reached equilibrium conditions with constant VSS concentration of 16-18gL(-1), organic loading rate (OLR) below 0.1 gCOD gVSS(-1) d(-1) and specific respiration rates of 2-3 mgO2 gVSS(-1) h(-1). These conditions were maintained for more than 150 days, confirming that an equilibrium had been achieved between biomass growth, endogenous metabolism, and solubilization of inorganic materials.

  20. Identification of a novel Raf-1 pathway activator that inhibits gastrointestinal carcinoid cell growth

    Science.gov (United States)

    Cook, Mackenzie R.; Pinchot, Scott N.; Jaskula-Sztul, Renata; Luo, Jie; Kunnimalaiyaan, Muthusamy; Chen, Herbert

    2010-01-01

    Carcinoids are neuroendocrine tumors (NETs) that secrete hormones, including serotonin, resulting in the malignant carcinoid syndrome. In addition to the significant morbidity associated with the syndrome, carcinoids are frequently metastatic at diagnosis and untreated mortality at 5 years tops 70%. Surgery is the only curative option and the need for other therapies is clear. We have previously shown that activation of Raf-1 inhibits carcinoid cell proliferation. We investigated the ability of Leflunomide (LFN), an FDA approved medication for the treatment of rheumatoid arthritis, and its active metabolite Teriflunomide (TFN) as a potential anti-NET treatment. LFN and TFN inhibit the in vitro proliferation of gastrointestinal carcinoid cells and induce G2/M phase arrest. Daily oral gavage of nude mice with subcutaneous xenografted carcinoid tumors confirms that LFN can inhibit NET growth in vivo. Treatment with TFN suppresses the cellular levels of serotonin and chromogranin A, a glycopeptide co-secreted with bioactive hormones. Additionally TFN reduces the level of Achaete-Scute Complex-Like 1 (ASCL1), a NET marker correlated with survival. These effects are associated with the activation of the Raf-1/MEK/ERK1/2 pathway and blockade of MEK signaling reversed the effects of TFN on markers of the cell cycle and ASCL1 expression. In summary, LFN and TFN inhibit carcinoid cell proliferation in vitro and in vivo and alter the expression of NET markers. This compound thus represents an attractive target for further clinical investigation. PMID:20103603

  1. Ocean Acidification Disrupts Prey Responses to Predator Cues but Not Net Prey Shell Growth in Concholepas concholepas (loco)

    Science.gov (United States)

    Manríquez, Patricio H.; Jara, María Elisa; Mardones, María Loreto; Navarro, Jorge M.; Torres, Rodrigo; Lardies, Marcos A.; Vargas, Cristian A.; Duarte, Cristian; Widdicombe, Stephen; Salisbury, Joseph; Lagos, Nelson A.

    2013-01-01

    Background Most research on Ocean Acidification (OA) has largely focused on the process of calcification and the physiological trade-offs employed by calcifying organisms to support the building of calcium carbonate structures. However, there is growing evidence that OA can also impact upon other key biological processes such as survival, growth and behaviour. On wave-swept rocky shores the ability of gastropods to self-right after dislodgement, and rapidly return to normal orientation, reduces the risk of predation. Methodology/Principal Findings The impacts of OA on this self-righting behaviour and other important parameters such as growth, survival, shell dissolution and shell deposition in Concholepas concholepas (loco) were investigated under contrasting pCO2 levels. Although no impacts of OA on either growth or net shell calcification were found, the results did show that OA can significantly affect self-righting behaviour during the early ontogeny of this species with significantly faster righting times recorded for individuals of C. concholepas reared under increased average pCO2 concentrations (± SE) (716±12 and 1036±14 µatm CO2) compared to those reared at concentrations equivalent to those presently found in the surface ocean (388±8 µatm CO2). When loco were also exposed to the predatory crab Acanthocyclus hassleri, righting times were again increased by exposure to elevated CO2, although self-righting times were generally twice as fast as those observed in the absence of the crab. Conclusions and Significance These results suggest that self-righting in the early ontogeny of C. concholepas will be positively affected by pCO2 levels expected by the end of the 21st century and beginning of the next one. However, as the rate of self-righting is an adaptive trait evolved to reduce lethal predatory attacks, our result also suggest that OA may disrupt prey responses to predators in nature. PMID:23844231

  2. "Prospects and Policies for the U.S. Economy: Why Net Exports Must Now Be the Motor for U.S. Growth"

    OpenAIRE

    Wynne Godley; Alex Izurieta; Gennaro Zezza

    2004-01-01

    The US economy has grown reasonably fast since the second half of 2003 and the general expectation seems to be that satisfactory growth will continue more or less indefinitely. This paper argues that the expansion may, indeed, continue through 2004 and for some time beyond. But with the government and external deficits both so large and the private sector so heavily indebted, satisfactory growth in the medium term cannot be achieved without a large, sustained and discontinuous increase in net...

  3. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.

    2014-01-01

    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by

  4. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  5. Elastic Deformations During Bacterial Cell Growth

    Science.gov (United States)

    Huang, K. C.

    2010-03-01

    The wide variety of shapes and sizes found in bacterial species is almost universally defined by the cell wall, which is a cross-linked network of the material peptidoglycan. In recent years, cell shape has been shown to play a critical role in regulating many important biological functions including attachment, dispersal, motility, polar differentiation, predation, and cellular differentiation. In previous work, we have shown that the spatial organization of the peptidoglycan network can change the mechanical equilibrium of the cell wall and result in changes in cell shape. However, experimental data on the mechanical properties of peptidoglycan is currently limited. Here, we describe a straightforward, inexpensive approach for extracting the mechanical properties of bacterial cells in gels of user-defined stiffness, using only optical microscopy to match growth kinetics to the predictions of a continuum model of cell growth. Using this simple yet general methodology, we have measured the Young's modulus for bacteria ranging across a wide variety of shapes, sizes, and cell wall thicknesses, and our method can easily be extended to other commonly studied bacteria. This method makes it possible to rapidly determine how changes in genotype and biochemistry affect the mechanical properties of the cell wall, and may be particularly relevant for studying the relationship between cell shape and structure, the genetic and molecular control of the mechanical properties of the cell wall, and the identification of antibiotics and other small molecules that affect and specifically modify the mechanical properties of the cell wall. Our work also suggests that bacteria may utilize peptidoglycan synthesis to transduce mechanosensory signals from local environment.

  6. Monitoring cell growth, viability, and apoptosis.

    Science.gov (United States)

    Butler, Michael; Spearman, Maureen; Braasch, Katrin

    2014-01-01

    The accurate determination of cell growth and viability is pivotal to monitoring a bioprocess. Direct methods to determine the cell growth and/or viability in a bioprocess include microscopic counting, electronic particle counting, image analysis, in situ biomass monitoring, and dieletrophoretic cytometry. These methods work most simply when a fixed volume sample can be taken from a suspension culture. Manual microscopic counting is laborious but affords the advantage of allowing cell viability to be determined if a suitable dye is included. Electronic particle counting is a rapid total cell count method for replicate samples, but some data distortion may occur if the sample has significant cell debris or cell aggregates. Image analysis based on the use of digital camera images acquired through a microscope has advanced rapidly with the availability of several commercially available software packages replacing manual microscopic counting and viability determination. Biomass probes detect cells by their dielectric properties or their internal concentration of NADH and can be used as a continuous monitor of the progress of a culture. While the monitoring of cell growth and viability is an integral part of a bioprocess, the monitoring of apoptosis induction is also becoming more and more important in bioprocess control to increase volumetric productivity by extending bioprocess duration. Different fluorescent assays allow for the detection of apoptotic characteristics in a cell sample.Indirect methods of cell determination involve the chemical analysis of a culture component or a measure of metabolic activity. These methods are most useful when it is difficult to obtain intact cell samples. However, the relationship between these parameters and the cell number may not be linear through the phases of a cell culture. The determination of nucleic acid (DNA) or total protein can be used as an estimate of biomass, while the depletion of glucose from the media can be used

  7. Net glutathione secretion across primary cultured rabbit conjunctival epithelial cell layers.

    Science.gov (United States)

    Gukasyan, Hovhannes J; Lee, Vincent H L; Kim, Kwang-Jin; Kannan, Ram

    2002-04-01

    permeability of GSH across RCEC layers was approximately eight times higher in the basolateral-to-apical (secretion) direction than the opposite (absorption) direction. GSH is transported across RCEC membranes by both Na(+)-dependent and -independent processes. Analysis of the Na(+)-dependent uptake process gave an approximate 1:1 coupling ratio for Na(+)-GSH cotransport. The Na(+)-independent component is highly sensitive to cell membrane potential. Net secretion of GSH into the apical fluid may play a role in the protection of conjunctival tissue and tear film from oxidant insults.

  8. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    Science.gov (United States)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  9. Early growth hormone treatment start in childhood growth hormone deficiency improves near adult height: analysis from NordiNet® International Outcome Study.

    Science.gov (United States)

    Polak, Michel; Blair, Jo; Kotnik, Primoz; Pournara, Effie; Pedersen, Birgitte Tønnes; Rohrer, Tilman R

    2017-11-01

    To investigate the effect of age at growth hormone (GH) treatment start on near adult height (NAH) in children with isolated GH deficiency (GHD). NordiNet® International Outcome Study (IOS) (Nbib960128), a non-interventional, multicentre study, evaluates the long-term effectiveness and safety of Norditropin® (somatropin) (Novo Nordisk A/S) in the real-life clinical setting. Patients ( n  = 172) treated to NAH (height at ≥18 years, or height velocity start (early (girls, 10; boys, >11)) and GHD severity (start (as a categorical and continuous variable) on NAH standard deviation score (SDS). Age at treatment start had a marked effect on NAH SDS; NAH SDS achieved by patients starting treatment early ( n  = 40 (boys, 70.0%); least squares mean (standard error) -0.76 (0.14)) exceeded that achieved by those starting later (intermediate, n  = 42 (boys, 57.1%); -1.14 (0.15); late, n  = 90 (boys, 68.9%); -1.21 (0.10)). Multiple regression analysis showed a significant association between NAH SDS and age at treatment start ( P  start. Early initiation of GH treatment in children with isolated GHD improves their chance of achieving their genetic height potential. © 2017 The authors.

  10. Nets for social safety: an analysis of the growth and changing composition of social security programmes in the fisheries sector of Kerala State, India

    OpenAIRE

    Kurien, John; Paul, Antonyto

    2000-01-01

    Nets for Social Safety is a first –of –its-kind study, specially commissioned by the International Collective in Support of Fishworkers, to focus on the growth and changing composition of social security provisions in the fisheries sector of Kerala, a small coastal State in southwest India. John Kurien and Antonyto Paul, the authors of the study, enumerate the achievements and problems confronted by a developing maritime State in trying to ensure that a section of its population, which a...

  11. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  12. Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight

    Science.gov (United States)

    Kern, Volker D.; Schwuchow, Jochen M.; Reed, David W.; Nadeau, Jeanette A.; Lucas, Jessica; Skripnikov, Alexander; Sack, Fred D.

    2005-01-01

    In addition to shoots and roots, the gravity (g)-vector orients the growth of specialized cells such as the apical cell of dark-grown moss protonemata. Each apical cell of the moss Ceratodon purpureus senses the g-vector and adjusts polar growth accordingly producing entire cultures of upright protonemata (negative gravitropism). The effect of withdrawing a constant gravity stimulus on moss growth was studied on two NASA Space Shuttle (STS) missions as well as during clinostat rotation on earth. Cultures grown in microgravity (spaceflight) on the STS-87 mission exhibited two successive phases of non-random growth and patterning, a radial outgrowth followed by the formation of net clockwise spiral growth. Also, cultures pre-aligned by unilateral light developed clockwise hooks during the subsequent dark period. The second spaceflight experiment flew on STS-107 which disintegrated during its descent on 1 February 2003. However, most of the moss experimental hardware was recovered on the ground, and most cultures, which had been chemically fixed during spaceflight, were retrieved. Almost all intact STS-107 cultures displayed strong spiral growth. Non-random culture growth including clockwise spiral growth was also observed after clinostat rotation. Together these data demonstrate the existence of default non-random growth patterns that develop at a population level in microgravity, a response that must normally be overridden and masked by a constant g-vector on earth.

  13. Cell-nanofiber-based cartilage tissue engineering using improved cell seeding, growth factor, and bioreactor technologies.

    Science.gov (United States)

    Li, Wan-Ju; Jiang, Yi Jen; Tuan, Rocky S

    2008-05-01

    Biodegradable nanofibrous scaffolds serving as an extracellular matrix substitute have been shown to be applicable for cartilage tissue engineering. However, a key challenge in using nanofibrous scaffolds for tissue engineering is that the small pore size limits the infiltration of cells, which may result in uneven cell distribution throughout the scaffold. This study describes an effective method of chondrocyte loading into nanofibrous scaffolds, which combines cell seeding, mixing, and centrifugation to form homogeneous, packed cell-nanofiber composites (CNCs). When the effects of different growth factors are compared, CNCs cultured in medium containing a combination of insulin-like growth factor-1 and transforming growth factor-beta1 express the highest mRNA levels of collagen type II and aggrecan. Radiolabeling analyses confirm the effect on collagen and sulfated-glycosaminoglycans (sGAG) production. Histology reveals chondrocytes with typical morphology embedded in lacuna-like space throughout the entire structure of the CNC. Upon culturing using a rotary wall vessel bioreactor, CNCs develop into a smooth, glossy cartilage-like tissue, compared to a rough-surface tissue when maintained in a static environment. Bioreactor-grown cartilage constructs produce more total collagen and sGAG, resulting in greater gain in net tissue weight, as well as express cartilage-associated genes, including collagen types II and IX, cartilage oligomeric matrix protein, and aggrecan. In addition, dynamic culture enhances the mechanical property of the engineered cartilage. Taken together, these results indicate the applicability of nanofibrous scaffolds, combined with efficient cell loading and bioreactor technology, for cell-based cartilage tissue engineering.

  14. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....

  15. Annuity payments can increase patient access to innovative cell and gene therapies under England’s net budget impact test

    Science.gov (United States)

    Jørgensen, Jesper; Kefalas, Panos

    2017-01-01

    ABSTRACT Background: Cell and gene therapies have the potential to provide therapeutic breakthroughs, but the high costs of researching, developing, manufacturing and delivering them translate into prices that may challenge healthcare budgets. Various measures exist that aim to address the affordability challenge, including reducing price, limiting patient numbers and/or linking remuneration to product performance. Objective: To explore how the net budget impact test recently introduced in England can affect patient access to high-value, one-off cell and gene therapies, and how managed entry agreements can improve access. Methods: We use a hypothetical example where a new high-value, one-off therapy launches in an indication where it displaces a relatively low cost chronic treatment. We calculate the number of patients that can be treated without exceeding the £20 million net budget impact threshold, and compare results for scenarios where a full upfront payment is used, and where annuity-based payments are used. Results: Charging a full upfront payment at the time of treatment can lead to suboptimal patient access. Conclusion: Annuity-based payments in combination with an outcomes-based remuneration scheme reduce consequences of decision uncertainty and can increase patient access, without exceeding the net budget impact test. PMID:28839525

  16. Annuity payments can increase patient access to innovative cell and gene therapies under England's net budget impact test.

    Science.gov (United States)

    Jørgensen, Jesper; Kefalas, Panos

    2017-01-01

    Background: Cell and gene therapies have the potential to provide therapeutic breakthroughs, but the high costs of researching, developing, manufacturing and delivering them translate into prices that may challenge healthcare budgets. Various measures exist that aim to address the affordability challenge, including reducing price, limiting patient numbers and/or linking remuneration to product performance. Objective: To explore how the net budget impact test recently introduced in England can affect patient access to high-value, one-off cell and gene therapies, and how managed entry agreements can improve access. Methods: We use a hypothetical example where a new high-value, one-off therapy launches in an indication where it displaces a relatively low cost chronic treatment. We calculate the number of patients that can be treated without exceeding the £20 million net budget impact threshold, and compare results for scenarios where a full upfront payment is used, and where annuity-based payments are used. Results: Charging a full upfront payment at the time of treatment can lead to suboptimal patient access. Conclusion: Annuity-based payments in combination with an outcomes-based remuneration scheme reduce consequences of decision uncertainty and can increase patient access, without exceeding the net budget impact test.

  17. Actin fringes of polar cell growth.

    Science.gov (United States)

    Stephan, Octavian O H

    2017-06-15

    The eukaryotic actin cytoskeleton is a highly dynamic framework that is involved in many biological processes, such as cell growth, division, morphology, and motility. G-actin polymerizes into microfilaments that associate into bundles, patches, and networks, which, in turn, organize into higher order structures that are fundamental for the course of important physiological events. Actin rings are an example for such higher order actin entities, but this term represents an actually diverse set of subcellular structures that are involved in various processes. This review especially sheds light on a crucial type of non-constricting ring-like actin networks, and categorizes them under the term 'actin fringe'. These 'actin fringes' are visualized as highly dynamic and yet steady structures in the tip of various polarized growing cells. The present comprehensive overview compares the actin fringe characteristics of rapidly elongating pollen tubes with several related actin arrays in other cell types of diverse species. The current state of knowledge about various actin fringe functions is summarized, and the key role of this structure in the polar growth process is discussed. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Monitoring of trace metals, biochemical composition and growth of Axillary seabream (Pagellus acarne Risso, 1827 in offshore Copper alloy net cage

    Directory of Open Access Journals (Sweden)

    M. YIGIT

    2016-02-01

    Full Text Available The study was conducted to assess trace metal contents, biochemical composition and growth performance of axillary seabream (Pagellus acarne Risso, 1827 cultured in a copper alloy mesh cage. A total of 400 axillary seabream (initial mean weight: 176.0±14.0 g, a new candidate species for the Mediterranean aquaculture, were stocked into a high-density polyethylene frame gravity cage and fed a commercial seabream diet for a period of 6 months. At the end of the feeding trial, fish reached a final weight of 264.8±16.8 g with a weight increase of 88.8 g and a feed conversion rate of 2.51. Overall, relative growth rate, specific growth rate and feed conversion ratio were satisfactory and comparable to the pelagic fishes such as gilthead seabream or European seabass, which are presently the main fish species for the Mediterranean aquaculture industry. Trace elements in fish grown in copper alloy net cages over a 6-month period showed satisfactory results, as the metal concentrations in fish tissues such as liver, skin, muscle and gills were below the reported upper limits for human consumption, indicating that copper alloy net is an acceptable and safe material for finfish cage aquaculture. Furthermore, from the growth performance data obtained in the present study, it can be concluded that axillary seabream showed potential for cage farming, and thus is a promising new candidate for the Mediterranean aquaculture industry.

  19. Effects of several physiochemical factors on cell growth and gallic ...

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... physiochemical factors and chemical substances effect on the cell growth and the production of gallic acid were .... Effect of different combination of 2, 4-D and KT on cell growth and gallic acid production in cell suspension culture. 0.008 mg. ..... a bottleneck in the commercialization of plant cell cultures,.

  20. Effect of hypertonic medium on human cell growth: III. Changes in cell kinetics of EUE cells.

    Science.gov (United States)

    Pellicciari, C; Mazzini, G; Fuhrman Conti, A M; De Grada, L; Manfredi Romanini, M G

    1989-04-01

    The effects of hypertonicity on cell kinetics of EUE cells in culture have been investigated. After 4 days of growth in a hypertonic medium, the plating efficiency of EUE cells was reduced and cell growth was significantly slowed. Flow cytometric measurements of DNA content in synchronized cells, as well as flow cytometric determinations of DNA content and bromodeoxyuridine incorporation in asynchronous cells, also showed that the cell cycle is slowed in a hypertonic medium. In addition, the fraction of cycling cells is smaller and their progression through the S phase slower than in an isotonic medium.

  1. N sources affect growth, nutrient content, and net photosynthesis in maté (Ilex paraguariensis St. Hil.

    Directory of Open Access Journals (Sweden)

    Sérgio Gaiad

    2006-09-01

    Full Text Available The influence of different N sources on the growth of maté (Ilex paragurariensis St.Hil. seedlings grown in greenhouse was studied. All seedlings received a base fertilization of 10 mg N.kg-1 soil as NH4NO3, 60 mg P2O5.and 40 mg K2O.kg-1 soil as KH2PO4 15 days before treatments application. Treatments were as follow: Control, with no extra N added; Urea = 100 mg N.kg-1 soil as Urea; NO3- = 100 mg N.kg-1 soil as Ca(NO32; and NH4+ = 100 mg N.kg-1 soil as (NH42SO4. It was concluded that: 1 increasing N content in leaves alone was not able to promote gain in biomass production of maté seedlings; 2 seedlings receiving N-NH4 showed a higher accumulation of P and Mg on shoot biomass; and 3 an increase in leaf area, leaf number and net photosynthesis observed at the N-NH4 treatment was coincident with an increasing absorption of P and Mg.A influência de diferentes fontes de N sobre o crescimento de mudas de erva-mate (Ilex paraguariensis St.Hil. foi estudada, em casa de vegetação. Todas as mudas receberam uma fertilização base de 10 mg N.kg-1 de solo na forma de NH4NO3, 60 mg P2O5.kg-1 e 40 mg K2O.kg-1 de solo na forma de KH2PO4 quinze dias antes da aplicação dos tratamentos. Os tratamentos foram os seguintes: Controle, sem adição extra de N; Uréia = 100 mg N.kg-1 de solo como Uréia; NO3- = 100 mg N.kg-1 de solo como Ca(NO32; e NH4+ = 100 mg N.kg-1 de solo como (NH42SO4. Concluiu-se que: 1 o aumento do conteúdo de N nas folhas, por si, não é capaz de promover ganhos na produção de biomassa em mudas de erva-mate; 2 mudas que receberam N-NH4 apresentaram maior acumulo de P e Mg na biomassa aérea; e 3 o aumento na absorção de P e Mg coincidiu com um aumento na área foliar, no número de folhas e na fotossíntese liquida na fonte N-NH4.

  2. Milk stimulates growth of prostate cancer cells in culture.

    Science.gov (United States)

    Tate, Patricia L; Bibb, Robert; Larcom, Lyndon L

    2011-11-01

    Concern has been expressed about the fact that cows' milk contains estrogens and could stimulate the growth of hormone-sensitive tumors. In this study, organic cows' milk and two commercial substitutes were digested in vitro and tested for their effects on the growth of cultures of prostate and breast cancer cells. Cows' milk stimulated the growth of LNCaP prostate cancer cells in each of 14 separate experiments, producing an average increase in growth rate of over 30%. In contrast, almond milk suppressed the growth of these cells by over 30%. Neither cows' milk nor almond milk affected the growth of MCF-7 breast cancer cells or AsPC-1 pancreatic cancer cells significantly. Soy milk increased the growth rate of the breast cancer cells. These data indicate that prostate and breast cancer patients should be cautioned about the possible promotional effects of commercial dairy products and their substitutes.

  3. Influence Analysis of Return on Assets (ROA), Return on Equity (ROE), Net Profit Margin (NPM), Debt To Equity Ratio (DER), and current ratio (CR), Against Corporate Profit Growth In Automotive In Indonesia Stock Exchange

    OpenAIRE

    Mohd. Heikal; Muammar Khaddafi; Ainatul Ummah

    2014-01-01

    The purpose of this research to analyze the effect of Return On Asset, Return On Equity, Net Profit Margin, Debt To Equity Ratio and Current Ratio toward growth income either simultaneously or partially on automotive companies that were listed in Indonesia stock exchange. Independent variables used in this research were Return On Asset, Return On Equity, Net Profit Margin, Debt To Equity Ratio and Current Ratio and dependent variable in this research was growth incom. The data used in this re...

  4. Net photosynthesis, dark respiration, specific leaf weight, and growth of young apple trees as influenced by light regime

    Energy Technology Data Exchange (ETDEWEB)

    Barden, J.A.

    1974-11-01

    Eight different light treatments did not affect shoot length, leaf number, or total leaf area of young Red Yorking apple (Malus pumila Mill.) trees grown in a greenhouse. Dry weights of leaves and stems were suppressed by 80% shade. Net photosynthesis Pn, dark respiration (Rd), and specific leaf weight (SLW) were higher in sun than in shade leaves and adaptations in all 3 parameters occurred as a result of changing light conditions, even after leaf expansion had ceased. 5 figures, 1 table.

  5. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  6. Macro Cell Muting Coordination for Non-Uniform Topologies in LTE-A HetNets

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.

    2013-01-01

    Enhanced Inter Cell Interference Coordination (eICIC) for co-channel deployments of pico cells throughout a macro cell layout is studied. In particular, we analyze a scenario where only some macro cells have picos deployed, while other macro cells have no small cells. The challenge for such highly...... irregular scenarios is how to operate eICIC, and especially how to coordinate macro-cell muting. Our analysis shows that for eICIC to provide gain in such scenarios, it is recommended to use fully time aligned traditional Almost Blank Subframes (ABS) in the macro-cells with picos, while first tier...

  7. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  8. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  9. NETS FOR PEACH PROTECTED CULTIVATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2012-06-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of coloured nets used to protect a peach cultivation. The modifications of the solar spectral distribution, mainly in the R and FR wavelength band, influence plant photomorphogenesis by means of the phytochrome and cryptochrome. The phytochrome response is characterized in terms of radiation rate in the red wavelengths (R, 600-700 nm to that in the farred radiation (FR, 700-800 nm, i.e. the R/FR ratio. The effects of the blue radiation (B, 400-500 nm is investigated by the ratio between the blue radiation and the far-red radiation, i.e. the B/FR ratio. A BLUE net, a RED net, a YELLOW net, a PEARL net, a GREY net and a NEUTRAL net were tested in Bari (Italy, latitude 41° 05’ N. Peach trees were located in pots inside the greenhouses and in open field. The growth of the trees cultivated in open field was lower in comparison to the growth of the trees grown under the nets. The RED, PEARL, YELLOW and GREY nets increased the growth of the trees more than the other nets. The nets positively influenced the fruit characteristics, such as fruit weight and flesh firmness.

  10. Control of the actin cytoskeleton in plant cell growth

    NARCIS (Netherlands)

    Hussey, P.J.; Ketelaar, M.J.; Deeks, M.J.

    2006-01-01

    Plant cells grow through increases in volume and cell wall surface area. The mature morphology of a plant cell is a product of the differential rates of expansion between neighboring zones of the cell wall during this process. Filamentous actin arrays are associated with plant cell growth, and the

  11. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions.

    Science.gov (United States)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna; Gumbiner, Barry M

    2007-06-01

    E-cadherin function leads to the density-dependent contact inhibition of cell growth. Because cadherins control the overall state of cell contact, cytoskeletal organization, and the establishment of many other kinds of cell interactions, it remains unknown whether E-cadherin directly transduces growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta-catenin-dependent mechanism. It does not affect EGF receptor autophosphorylation or activation of ERK, but it inhibits transphosphorylation of Tyr845 and activation of signal transducers and activators of transcription 5. Thus, E-cadherin homophilic binding independent of other cell contacts directly transduces growth inhibition by a beta-catenin-dependent mechanism that inhibits selective signaling functions of growth factor receptors.

  12. Surface Oxide Net Charge of a Titanium Alloy ; Modulation of Fibronectin-Activated Attachment and Spreading of Osteogenic Cells

    Science.gov (United States)

    Rapuano, Bruce E.; MacDonald, Daniel E.

    2010-01-01

    In the current study, we have altered the surface oxide properties of a Ti6Al4V alloy using heat treatment or radiofrequency glow discharge (RFGD) in order to evaluate the relationship between the physico-chemical and biological properties of the alloy's surface oxide. The effects of surface pretreatments on the attachment of cells from two osteogenic cell lines (MG63 and MC3T3) and a mesenchymal stem cell line (C3H10T1/2) to fibronectin adsorbed to the alloy were measured. Both heat and RFGD pretreatments produced a several-fold increase in the number of cells that attached to fibronectin adsorbed to the alloy (0.001 and 10 nM FN) for each cell line tested. An antibody (HFN7.1) directed against the central integrin binding domain of fibronectin produced a 65-70% inhibition of cell attachment to fibronectin-coated disks, incdicating that cell attachment to the metal discs was dependent on fibronectin binding to cell integrin receptors. Both treatments also accelerated the cell spreading response manifested by extensive flattening and an increase in mean cellular area. The treatment-induced increases in the cell attachment activity of adsorbed fibronectin were correlated with previously demonstrated increases in Ti6Al4V oxide negative net surface charge at physiological pH produced by both heat and RFGD pretreatments. Since neither treatment increased the adsorption mass of fibronectin, these findings suggest that negatively charged surface oxide functional groups in Ti6Al4V can modulate fibronectin's integrin receptor activity by altering the adsorbed protein's conformation. Our results further suggest that negatively charged functional groups in the surface oxide can play a prominent role in the osseointegration of metallic implant materials. PMID:20884181

  13. E-Cadherin Homophilic Ligation Inhibits Cell Growth and Epidermal Growth Factor Receptor Signaling Independently of Other Cell Interactions

    OpenAIRE

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna; Gumbiner, Barry M.

    2007-01-01

    E-cadherin function leads to the density-dependent contact inhibition of cell growth. Because cadherins control the overall state of cell contact, cytoskeletal organization, and the establishment of many other kinds of cell interactions, it remains unknown whether E-cadherin directly transduces growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-c...

  14. Microcystin quota, cell division and microcystin net production of precultured Microcystis aeruginosa CYA 228 (Chroococcales, Cyanophyceae) under field conditions

    DEFF Research Database (Denmark)

    Lyck, S.; Christoffersen, K.

    2003-01-01

    The relationship between the specific cell division rate (mu(c)), the specific microcystin (mcyst) production rate (mu(mcyst)) and the cellular content of mcyst (Q(mcyst)) was investigated during growth of Microcystis aeruginosa strain CYA 228 cells in the field (microcosms), and the results were...... compared with previous data obtained from batch cultures. Growth of an easily recognizable unicellular culture alga in the field made it possible to evaluate different ways of expressing mcyst field data as the ratio of mcyst to dry weight, protein or chlorophyll a (Chl a) against the mcyst quota....... The population of CYA 228 cells increased from day 1 to day 7, but decreased from day 7 to day 17. More than a threefold variation was observed in Q(mcyst) of M. aeruginosa cells under field conditions, which indicates that the relationship between mu(c) and mu(mcyst) was not strictly linear. The data from...

  15. Apple tree growth, net photosynthesis, dark respiration, and specific leaf weight as affected by continuous and intermittent shade

    Energy Technology Data Exchange (ETDEWEB)

    Barden, J.A.

    1977-07-01

    The effects of 80% shade from saran cloth and slats were very similar on young Delicious apple (Malus domestica Borkh.) trees. Shoot-length increase was suppressed about 10% by shade but leaf area was unaffected. Dry weight increase for shaded trees was about 50% of that for trees in full sun. Sun leaves required about 43.1 klx for light saturation and shade leaves needed only about 19.4 klx. Net photosynthesis (Pn) of shade leaves was about 70% of that of sun leaves at light saturation. Dark respiration (Rd) rates were also higher in sun- than shade-leaves. Specific leaf weight (SLW) of leaves near full expansion at the start of the experiment increased 15% under shade whereas sun-leaf SLW increased 40% during the experiment. For leaves unfolding under the differential light treatments, SLW of shade leaves averaged only 55% of sun leaves. 4 figures, 3 tables.

  16. Beyond growth signaling : Paneth cells metabolically support ISCs

    NARCIS (Netherlands)

    Dayton, Talya L.; Clevers, Hans

    2017-01-01

    Single Lgr5 intestinal stem cells (ISCs) can be expanded in vitro into epithelial organoids or "mini-guts", self-organizing cellular structures that recreate the intestinal differentiation program; Paneth cells, which constitute the intestinal stem cell niche, secrete stem cell growth signals, and

  17. Separating growth from elastic deformation during cell enlargement

    Energy Technology Data Exchange (ETDEWEB)

    Proseus, T.E.; Boyer, J.S. (Univ. of Delaware, Lewes, DE (United States). Coll. of Marine Studies); Ortega, J.K.E. (Univ. of Colorado, Denver, CO (United States). Dept. of Mechanical Engineering)

    1999-02-01

    Plants change size by deforming reversibly (elastically) whenever turgor pressure changes, and by growing. The elastic deformation is independent of growth because it occurs in nongrowing cells. Its occurrence with growth has prevented growth from being observed alone. The authors investigated whether the two processes could be separated in internode cells of Chara corallina Klien ex Willd., em R.D.W. by injecting or removing cell solution with a pressure probe to change turgor while the cell length was continuously measured. Cell size changed immediately when turgor changed, and growth rates appeared to be altered. Low temperature eliminated growth but did not alter the elastic effects. This allowed elastic deformation measured at low temperature to be subtracted from elongation at warm temperature in the same cell. After te subtraction, growth alone could be observed for the first time. Alternations in turgor caused growth to change rapidly to a new, steady rate with no evidence of rapid adjustments in wall properties. This turgor response, together with the marked sensitivity of growth to temperature, suggested that the growth rate was not controlled by inert polymer extension but rather by the biochemical reactions that include a turgor-sensitive step.

  18. Thrombin has a bimodal effect on glioma cell growth.

    OpenAIRE

    Schafberg, H.; Nowak, G.; Kaufmann, R.

    1997-01-01

    Using rat glioma C6 cells as a model, we have found a bimodal effect of alpha-thrombin on cell growth. In C6 cells treated with alpha-thrombin at concentrations from 0.02 nM to 1.0 nM, inhibition of cell proliferation was noted. Because the thrombin receptor agonist peptide TRAP-6 also induced inhibition of cell proliferation and the thrombin receptor antagonist peptide T1 prevented the inhibitory effect of alpha-thrombin on C6 glioma cell growth, thrombin receptor involvement in antiprolifer...

  19. On the growth of walled cells: From shells to vesicles.

    Science.gov (United States)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  20. Growth of Walled Cells: From Shells to Vesicles

    Science.gov (United States)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  1. Semi-fuel cell studies for powering underwater devices: integrated design for maximized net power output

    Science.gov (United States)

    Cardenas-Valencia, Andres M.; Short, R. Timothy; Adornato, Lori; Langebrake, Larry

    2010-04-01

    Use of sensor systems in water bodies has applications that range from environmental and oceanographic research to port and homeland security. Power sources are often the limiting component for further reduction of sensor system size and weight. We present recent investigations of metal-anode water-activated galvanic cells, specifically water-activated Alcells using inorganic alkali peroxides and solid organic oxidizers (heterocyclic halamines), in a semi-fuel cell configuration (i.e., with cathode species generated in situ and flow-through cells). The oxidizers utilized are inexpensive solid materials that are generally (1) safer to handle than liquid solutions or gases, (2) have inherently higher current and energy capacity (as they are not dissolved), and, (3) if appropriately packaged, will not degrade over time. The specific energy (S.E.) of Al-alkali peroxide was found to be 230 Wh/kg (460 Wh/kg, considering only active materials) in a seven-gram cell. Interestingly, when the cell size was increased (making more area of the catalytic cathode electrode available), the results from a single addition of water in an Al-organic oxidizer cell (weighing ~18 grams) showed an S.E. of about 200 Wh/kg. This scalability characteristic suggests that values in excess of 400 Wh/kg could be obtained in a semi-fuel-cell-like system. In this paper, we also present design considerations that take into account the energy requirements of the pumping devices and show that the proposed oxidizers, and the possible control of the chemical equilibrium of these cathodes in solution, may help reduce this power requirement and hence enhance the overall energetic balance.

  2. Homeostatic Cell Growth Is Accomplished Mechanically through Membrane Tension Inhibition of Cell-Wall Synthesis.

    Science.gov (United States)

    Rojas, Enrique R; Huang, Kerwyn Casey; Theriot, Julie A

    2017-11-30

    Feedback mechanisms are required to coordinate balanced synthesis of subcellular components during cell growth. However, these coordination mechanisms are not apparent at steady state. Here, we elucidate the interdependence of cell growth, membrane tension, and cell-wall synthesis by observing their rapid re-coordination after osmotic shocks in Gram-positive bacteria. Single-cell experiments and mathematical modeling demonstrate that mechanical forces dually regulate cell growth: while turgor pressure produces mechanical stress within the cell wall that promotes its expansion through wall synthesis, membrane tension induces growth arrest by inhibiting wall synthesis. Tension inhibition occurs concurrently with membrane depolarization, and depolarization arrested growth independently of shock, indicating that electrical signals implement the negative feedback characteristic of homeostasis. Thus, competing influences of membrane tension and cell-wall mechanical stress on growth allow cells to rapidly correct for mismatches between membrane and wall synthesis rates, ensuring balanced growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A flow cytometry-based screen of nuclear envelope transmembrane proteins identifies NET4/Tmem53 as involved in stress-dependent cell cycle withdrawal.

    Directory of Open Access Journals (Sweden)

    Nadia Korfali

    2011-04-01

    Full Text Available Disruption of cell cycle regulation is one mechanism proposed for how nuclear envelope protein mutation can cause disease. Thus far only a few nuclear envelope proteins have been tested/found to affect cell cycle progression: to identify others, 39 novel nuclear envelope transmembrane proteins were screened for their ability to alter flow cytometry cell cycle/DNA content profiles when exogenously expressed. Eight had notable effects with seven increasing and one decreasing the 4N:2N ratio. We subsequently focused on NET4/Tmem53 that lost its effects in p53(-/- cells and retinoblastoma protein-deficient cells. NET4/TMEM53 knockdown by siRNA altered flow cytometry cell cycle/DNA content profiles in a similar way as overexpression. NET4/TMEM53 knockdown did not affect total retinoblastoma protein levels, unlike nuclear envelope-associated proteins Lamin A and LAP2α. However, a decrease in phosphorylated retinoblastoma protein was observed along with a doubling of p53 levels and a 7-fold increase in p21. Consequently cells withdrew from the cell cycle, which was confirmed in MRC5 cells by a drop in the percentage of cells expressing Ki-67 antigen and an increase in the number of cells stained for ß-galactosidase. The ß-galactosidase upregulation suggests that cells become prematurely senescent. Finally, the changes in retinoblastoma protein, p53, and p21 resulting from loss of NET4/Tmem53 were dependent upon active p38 MAP kinase. The finding that roughly a fifth of nuclear envelope transmembrane proteins screened yielded alterations in flow cytometry cell cycle/DNA content profiles suggests a much greater influence of the nuclear envelope on the cell cycle than is widely held.

  4. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  5. Besnoitia besnoiti infections activate primary bovine endothelial cells and promote PMN adhesion and NET formation under physiological flow condition.

    Science.gov (United States)

    Maksimov, P; Hermosilla, C; Kleinertz, S; Hirzmann, J; Taubert, A

    2016-05-01

    Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle that mainly infects host endothelial cells during acute infection. We here analyzed early innate immune reactions of B. besnoiti-infected primary bovine umbilical vein endothelial cells (BUVEC). B. besnoiti infections significantly activated BUVEC since the gene transcripts of several adhesion molecules (P-selectin, intercellular adhesion molecule 1(ICAM-1)), chemokines (CXCL1, CXCL8, CCL5), and of COX-2 were significantly upregulated during in vitro infection. Overall, the highest upregulation of most transcripts was observed at 24 or 48 h post infection (p.i.). Enhanced adhesion molecule expression in infected host cells was confirmed by PMN adhesion assays being performed under physiological flow conditions revealing a significantly increased PMN adhesion on B. besnoiti-infected BUVEC layers at 24 h p.i. Furthermore, we were able to illustrate neutrophil extracellular traps (NETs) being released by PMN under physiological flow conditions after adhesion to B. besnoiti-infected BUVEC layers. The present study shows that B. besnoiti infections of primary BUVEC induce a cascade of pro-inflammatory reactions and triggers early innate immune responses.

  6. Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates.

    Directory of Open Access Journals (Sweden)

    Jumpei F Yamagishi

    2016-10-01

    Full Text Available As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of

  7. MHC class II molecules regulate growth in human T cells

    DEFF Research Database (Denmark)

    Nielsen, M; Odum, Niels; Bendtzen, K

    1994-01-01

    MHC-class-II-positive T cells are found in tissues involved in autoimmune disorders. Stimulation of class II molecules by monoclonal antibodies (mAbs) or bacterial superantigens induces protein tyrosine phosphorylation through activation of protein tyrosine kinases in T cells, and class II signals...... modulate several T cell responses. Here, we studied further the role of class II molecules in the regulation of T cell growth. Costimulation of class II molecules by immobilized HLA-DR mAb significantly enhanced interleukin (IL)-2-supported T cell growth of the majority of CD4+, CD45RAlow, ROhigh T cell...... lines tested. Only one of three CD4+, CD45RAhigh, ROhigh T cells responded to class II costimulation. There was no correlation between T cell responsiveness to class II and the cytokine production profile of the T cell in question. Thus, T cell lines producing interferon (IFN)-gamma but not IL-4 (TH1...

  8. Net haemoglobin increase from reinfusion of refrigerated vs. frozen red blood cells after autologous blood transfusions

    DEFF Research Database (Denmark)

    Ashenden, M; Mørkeberg, Jakob Sehested

    2011-01-01

    BACKGROUND AND OBJECTIVES  Two main blood storage procedures can be used for storing red blood cells: refrigeration and freezing. Nevertheless, the efficiency of these procedures measured as the increase in haemoglobin after reinfusion compared with baseline has never been examined. The main...... objective was to examine which storage procedure yielded the largest increase in circulating haemoglobin after reinfusion compared to baseline. MATERIALS AND METHODS  Equal volumes of blood from 15 men were withdrawn and stored either frozen or refrigerated as packed red blood cells. Serial measures...... freezing. Nevertheless, frozen storage allowed haemoglobin to fully recover before reinfusion, while the haemoglobin was 10% lower in the refrigerated group compared with baseline. After reinfusion, the haemoglobin levels were 11·5% higher than the baseline values in the group reinfused with frozen blood...

  9. Petri Nets

    Indian Academy of Sciences (India)

    Associate Professor of. Computer Science and. Automation at the Indian. Institute of Science,. Bangalore. His research interests are broadly in the areas of stochastic modeling and scheduling methodologies for future factories; and object oriented modeling. GENERAL I ARTICLE. Petri Nets. 1. Overview and Foundations.

  10. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Petri Nets - Overview and Foundations. Y Narahari. General Article Volume 4 Issue 8 August 1999 pp ... Author Affiliations. Y Narahari1. Department ot Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  11. How does cell size regulation affect population growth?

    CERN Document Server

    Lin, Jie

    2016-01-01

    The proliferation of a growing microbial colony is well characterized by the population growth rate. However, at the single-cell level, isogenic cells often exhibit different cell-cycle durations. For evolutionary dynamics, it is thus important to establish the connection between the population growth rate and the heterogeneous single-cell generation time. Existing theories often make the assumption that the generation times of mother and daughter cells are independent. However, it has been shown that to maintain a bounded cell size distribution, cells that grow exponentially at the single-cell level need to adopt cell size regulation, leading to a negative correlation of mother-daughter generation time. In this work, we construct a general framework to describe the population growth in the presence of size regulation. We derive a formula for the population growth rate, which only depends on the variability of single-cell growth rate, independent of other sources of noises. Our work shows that a population ca...

  12. Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB.

    Science.gov (United States)

    Haddad, Yazan; Heger, Zbyněk; Adam, Vojtech

    2017-01-01

    Targeted therapy is a promising approach for treatment of neuroblastoma as evident from the large number of targeting agents employed in clinical practice today. In the absence of known crystal structures, researchers rely on homology modeling to construct template-based theoretical structures for drug design and testing. Here, we discuss three candidate cell surface proteins that are suitable for homology modeling: human norepinephrine transporter (hNET), anaplastic lymphoma kinase (ALK), and neurotrophic tyrosine kinase receptor 2 (NTRK2 or TrkB). When choosing templates, both sequence identity and structure quality are important for homology modeling and pose the first of many challenges in the modeling process. Homology modeling of hNET can be improved using template models of dopamine and serotonin transporters instead of the leucine transporter (LeuT). The extracellular domains of ALK and TrkB are yet to be exploited by homology modeling. There are several idiosyncrasies that require direct attention throughout the process of model construction, evaluation and refinement. Shifts/gaps in the alignment between the template and target, backbone outliers and side-chain rotamer outliers are among the main sources of physical errors in the structures. Low-conserved regions can be refined with loop modeling method. Residue hydrophobicity, accessibility to bound metals or glycosylation can aid in model refinement. We recommend resolving these idiosyncrasies as part of "good modeling practice" to obtain highest quality model. Decreasing physical errors in protein structures plays major role in the development of targeting agents and understanding of chemical interactions at the molecular level.

  13. Enhancing circadian clock function in cancer cells inhibits tumor growth.

    Science.gov (United States)

    Kiessling, Silke; Beaulieu-Laroche, Lou; Blum, Ian D; Landgraf, Dominic; Welsh, David K; Storch, Kai-Florian; Labrecque, Nathalie; Cermakian, Nicolas

    2017-02-14

    Circadian clocks control cell cycle factors, and circadian disruption promotes cancer. To address whether enhancing circadian rhythmicity in tumor cells affects cell cycle progression and reduces proliferation, we compared growth and cell cycle events of B16 melanoma cells and tumors with either a functional or dysfunctional clock. We found that clock genes were suppressed in B16 cells and tumors, but treatments inducing circadian rhythmicity, such as dexamethasone, forskolin and heat shock, triggered rhythmic clock and cell cycle gene expression, which resulted in fewer cells in S phase and more in G1 phase. Accordingly, B16 proliferation in vitro and tumor growth in vivo was slowed down. Similar effects were observed in human colon carcinoma HCT-116 cells. Notably, the effects of dexamethasone were not due to an increase in apoptosis nor to an enhancement of immune cell recruitment to the tumor. Knocking down the essential clock gene Bmal1 in B16 tumors prevented the effects of dexamethasone on tumor growth and cell cycle events. Here we demonstrated that the effects of dexamethasone on cell cycle and tumor growth are mediated by the tumor-intrinsic circadian clock. Thus, our work reveals that enhancing circadian clock function might represent a novel strategy to control cancer progression.

  14. A computational approach to predicting cell growth on polymeric biomaterials.

    Science.gov (United States)

    Abramson, Sascha D; Alexe, Gabriela; Hammer, Peter L; Kohn, Joachim

    2005-04-01

    A predictive model that can correlate the chemical composition of a biomaterial with the biological response of cells that are in contact with that biomaterial would represent a major advance and would facilitate the rational design of new biomaterials. As a first step toward this goal, we report here on the use of Logical Analysis of Data (LAD) to model the effect of selected polymer properties on the growth of two different cell types, rat lung fibroblasts (RLF, a transformed cell line), and normal foreskin fibroblasts (NFF, nontransformed human cells), on 112 surfaces obtained from a combinatorially designed library of polymers. LAD is a knowledge extraction methodology, based on using combinatorics, optimization, and Boolean logic. LAD was trained on a subset of 62 polymers and was then used to predict cell growth on 50 previously untested polymers. Experimental validation indicated that LAD correctly predicted the high and low cell growth polymers and found optimal ranges for polymer chemical composition, surface chemistry, and bulk properties. Particularly noteworthy is that LAD correctly identified high-performing polymer surfaces, which surpassed commercial tissue culture polystyrene as growth substratum for normal foreskin fibroblasts. Our results establish the feasibility of using computational modeling of cell growth on flat polymeric surfaces to identify promising "lead" polymers for applications that require either high or low cell growth. Copyright (c) 2005 Wiley Periodicals, Inc.

  15. How closely does stem growth of adult beech (Fagus sylvatica) relate to net carbon gain under experimentally enhanced ozone stress?

    Science.gov (United States)

    Kitao, Mitsutoshi; Winkler, J Barbro; Löw, Markus; Nunn, Angela J; Kuptz, Daniel; Häberle, Karl-Heinz; Reiter, Ilja M; Matyssek, Rainer

    2012-07-01

    The hypothesis was tested that O(3)-induced changes in leaf-level photosynthetic parameters have the capacity of limiting the seasonal photosynthetic carbon gain of adult beech trees. To this end, canopy-level photosynthetic carbon gain and respiratory carbon loss were assessed in European beech (Fagus sylvatica) by using a physiologically based model, integrating environmental and photosynthetic parameters. The latter were derived from leaves at various canopy positions under the ambient O(3) regime, as prevailing at the forest site (control), or under an experimental twice-ambient O(3) regime (elevated O(3)), as released through a free-air canopy O(3) fumigation system. Gross carbon gain at the canopy-level declined by 1.7%, while respiratory carbon loss increased by 4.6% under elevated O(3). As this outcome only partly accounts for the decline in stem growth, O(3)-induced changes in allocation are referred to and discussed as crucial in quantitatively linking carbon gain with stem growth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Morphological and growth alterations in Vero cells transformed by cisplatin.

    Science.gov (United States)

    Gonçalves, Estela Maria; Ventura, Cláudio Angelo; Yano, Tomomasa; Rodrigues Macedo, Maria Lígia; Genari, Selma Candelária

    2006-06-01

    Cisplatin is an antineoplastic agent used to treat solid tumours, such as ovarian, testicular and bladder tumours. However, studies in vitro and in vivo have shown that cisplatin is mutagenic, genotoxic and tumorigenic in other tissues and organs. In this work, we examined the effect of cisplatin on Vero cells, a fibroblast-like cell line. The morphological characteristics were investigated using phase contrast microscopy, scanning electron microscopy and the actin cytoskeleton was labelled with fluorescein isothiocyanate-phalloidin. Cell proliferation was assessed based on the growth curve. Cultured Vero cells treated with cisplatin showed behavioural and morphological alterations associated with cellular transformation. The transformed cells grew in multilayers and formed cellular aggregates. The proliferation and morphological characteristics of the transformed cells were very different from those of control ones. Since transformed Vero cells showed several characteristics related to neoplastic growth, these cells could be a useful model for studying tumour cells in vitro.

  17. Telmisartan inhibits human urological cancer cell growth through early apoptosis

    Science.gov (United States)

    MATSUYAMA, MASAHIDE; FUNAO, KIYOAKI; KURATSUKURI, KATSUYUKI; TANAKA, TOMOAKI; KAWAHITO, YUTAKA; SANO, HAJIME; CHARGUI, JAMEL; TOURAINE, JEAN-LOUIS; YOSHIMURA, NORIO; YOSHIMURA, RIKIO

    2010-01-01

    Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer. PMID:22993542

  18. Growth-chart-based qualitative evaluation of height growth after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Narumi, Satoshi; Shimada, Hiroyuki; Shimasaki, Noriko; Takahashi, Takao; Hasegawa, Tomonobu; Mori, Tetsuya

    2006-02-01

    Growth failure is one of the most common late complications in children undergoing hematopoietic stem cell transplantation (SCT). The present report describes a qualitative method of evaluating height growth after SCT, using a growth chart. The patients were divided into three groups according to the shape of their growth chart: the normal growth chart group, the early-onset growth retardation group (E-group), in which a decreased growth rate was seen during the first year after SCT, and the late-onset growth retardation group (L-group), in which a decreased growth rate was seen more than 1 yr after the SCT. In the E-group, total body irradiation and prolonged steroid therapy were thought to contribute to the growth failure, whereas in the L-group, impaired pubertal development was thought to be responsible. The growth pattern in the L-group may, therefore, be of particular clinical importance, because the final stature of the subjects in this group can be improved by pharmacological adjustment of pubertal onset. Although limited by the small size and heterogeneous nature of the sample, our results suggest that growth-chart-based evaluation may provide important information to stratify subjects showing inadequate growth after SCT into two groups whose follow-up and treatment should be individualized.

  19. Linking stem cell function and growth pattern of intestinal organoids.

    Science.gov (United States)

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg

    2018-01-15

    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Insulin-like growth factors and pancreas beta cells.

    NARCIS (Netherlands)

    Haeften, T.W. van; Twickler, M.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  1. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, Th B.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  2. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    OpenAIRE

    Jean-Claude Mollet; Christelle Leroux; Flavien Dardelle; Arnaud Lehner

    2013-01-01

    The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with...

  3. Effect of inactive yeast cell wall on growth performance, survival rate and immune parameters in Pacific White Shrimp (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Rutchanee Chotikachinda

    2008-10-01

    Full Text Available Effects of dietary inactive yeast cell wall on growth performance, survival rate, and immune parameters in pacific white shrimp (Litopenaeus vannamei was investigated. Three dosages of inactive yeast cell wall (0, 1, and 2 g kg-1 were tested in three replicate groups of juvenile shrimps with an average initial weight of 7.15±0.05 g for four weeks. There was no significant difference in final weight, survival rate, specific growth rate, feed conversion ratio, feed intake, protein efficiency ratio, and apparent net protein utilization of each treatments. However, different levels of inactive yeast cell wall showed an effect on certain immune parameters (p<0.05. Total hemocyte counts, granular hemocyte count, and bacterial clearance were better in shrimp fed diets supplemented with 1 and 2 g kg-1 inactive yeast cell wall as compared with thecontrol group.

  4. [Transforming growth factor beta. A potent multifunctional growth factor for normal and malignant cells].

    Science.gov (United States)

    Nørgaard, P; Damstrup, L; Spang-Thomsen, M; Poulsen, H S

    1992-11-30

    The polypeptide growth factor transforming growth factor-beta (TGF-beta) is a multifunctional regulator of basic cellular functions: proliferation, differentiation, cell adhesion and interactions with the extracellular matrix. TGF-beta is part of a regulatory network of which our knowledge is still incomplete, together with other substances such as steroid hormones, oncogene products and integrins. Five isoforms for TGF-beta and five different TGF-beta receptors have been described. TGF-beta exhibits an antiproliferative effect in vitro and in vivo on many cells of epthelial, myeloid, lymphoid and mesenchymal origin together with a growth-stimulating effect on various cells like endothelial cells and epidermal keratinocytes. Production of TGF-beta and receptors for TGF-beta has been found in many cell types, both normal and malignant. Nevertheless the amount of in vivo data is too limited to identify possibilities for therapeutic intervention in the physiological and patophysiological functions of TGF-beta.

  5. Developmental switching in Physarum polycephalum: Petri net analysis of single cell trajectories of gene expression indicates responsiveness and genetic plasticity of the Waddington quasipotential landscape

    Science.gov (United States)

    Werthmann, Britta; Marwan, Wolfgang

    2017-11-01

    The developmental switch to sporulation in Physarum polycephalum is a phytochrome-mediated far-red light-induced cell fate decision that synchronously encompasses the entire multinucleate plasmodial cell and is associated with extensive reprogramming of the transcriptome. By repeatedly taking samples of single cells after delivery of a light stimulus pulse, we analysed differential gene expression in two mutant strains and in a heterokaryon of the two strains all of which display a different propensity for making the cell fate decision. Multidimensional scaling of the gene expression data revealed individually different single cell trajectories eventually leading to sporulation. Characterization of the trajectories as walks through states of gene expression discretized by hierarchical clustering allowed the reconstruction of Petri nets that model and predict the observed behavior. Structural analyses of the Petri nets indicated stimulus- and genotype-dependence of both, single cell trajectories and of the quasipotential landscape through which these trajectories are taken. The Petri net-based approach to the analysis and decomposition of complex cellular responses and of complex mutant phenotypes may provide a scaffold for the data-driven reconstruction of causal molecular mechanisms that shape the topology of the quasipotential landscape.

  6. Immunology and growth characteristics of ocular basal cell carcinoma.

    Science.gov (United States)

    Rohrbach, J M; Stiemer, R; Mayer, A; Riedinger, C; Duijvestijn, A; Zierhut, M

    2001-01-01

    Knowledge about immunological features and growth characteristics of palpebral (ocular) basal cell carcinomas (BCCs) is limited. In particular, it is unclear whether ocular BCC represents in this regard a special BCC entity or not. Twenty BCCs of the lid area (ocular BCCs) were investigated immunohistologically using monoclonal antibodies against CD4, CD8, CD45Ro, CD50, CD68, HECA-452, Ki67 (MIB1), and the p53 epitope. For comparison, nine BCCs excised distant from the eye (non-ocular BCCs) were evaluated. In BCCs the distribution of the immunocompetent cells investigated is markedly irregular. These cells are localized mainly around BCC islands. Only a few of them invade tumour cell aggregates. The CD4:CD8 ratio as detected by immunohistochemistry is >1 in 82% of ocular BCCs and in 88% of nonocular BCCs. Often there are dense infiltrations of CD68+ cells (macrophages) and HECA-452+ cells adjacent to tumour cell aggregates. The growth fraction [percentage of proliferating (Ki67+/MIB 1+) cells] varies from 0% to more than 30%. Proliferative activity is enhanced at the invasion front. Additionally, the amount of p53+ cells differs considerably among the BCCs. CD4+ T cells seem to be the most important cell population for BCC immunosurveillance, offering the chance for conservative interferon therapy. The role of CD68+ and HECA-452+ cells has to be further elucidated. In many tumours the large amount of proliferating cells contrasts to the usually slow growth of BCCs, indicating strong apoptotic processes. The results can be regarded only as semiquantitative. So far, ocular and nonocular BCCs exhibit no essential differences regarding immunocompetent cell infiltration and growth characteristics. According to this, palpebral BCCs are "normal" BCCs and not a special BCC variant. Therefore, results from dermatological research concerning BCC can be extended without limitations to their counterparts in the lid area.

  7. Dihydropyridine Derivatives as Cell Growth Modulators In Vitro

    Science.gov (United States)

    Bruvere, Imanta; Bisenieks, Egils; Uldrikis, Janis; Plotniece, Aiva; Pajuste, Karlis; Rucins, Martins; Vigante, Brigita; Kalme, Zenta; Gosteva, Marina; Domracheva, Ilona; Vukovic, Tea; Milkovic, Lidija

    2017-01-01

    The effects of eleven 1,4-dihydropyridine derivatives (DHPs) used alone or together with prooxidant anticancer drug doxorubicin were examined on two cancer (HOS, HeLa) and two nonmalignant cell lines (HMEC, L929). Their effects on the cell growth (3H-thymidine incorporation) were compared with their antiradical activities (DPPH assay), using well-known DHP antioxidant diludine as a reference. Thus, tested DHPs belong to three groups: (1) antioxidant diludine; (2) derivatives with pyridinium moieties at position 4 of the 1,4-DHP ring; (3) DHPs containing cationic methylene onium (pyridinium, trialkylammonium) moieties at positions 2 and 6 of the 1,4-DHP ring. Diludine and DHPs of group 3 exerted antiradical activities, unlike compounds of group 2. However, novel DHPs had cell type and concentration dependent effects on 3H-thymidine incorporation, while diludine did not. Hence, IB-32 (group 2) suppressed the growth of HOS and HeLa, enhancing growth of L929 cells, while K-2-11 (group 3) enhanced growth of every cell line tested, even in the presence of doxorubicin. Therefore, growth regulating and antiradical activity principles of novel DHPs should be further studied to find if DHPs of group 2 could selectively suppress cancer growth and if those of group 3 promote wound healing. PMID:28473879

  8. Modelling growth performance and feeding behaviour of Atlantic salmon (Salmo salar L.) in commercial-size aquaculture net pens: Model details and validation through full-scale experiments.

    Science.gov (United States)

    Føre, Martin; Alver, Morten; Alfredsen, Jo Arve; Marafioti, Giancarlo; Senneset, Gunnar; Birkevold, Jens; Willumsen, Finn Victor; Lange, Guttorm; Espmark, Åsa; Terjesen, Bendik Fyhn

    2016-11-01

    contracted a disease (PD) midway through the experiment, thus resulting in a detailed dataset containing information on how PD affects salmon growth, which can serve as a foundation to understanding disease effects better. Furthermore, the manuscript describes an integrated mathematical model that is able to predict fish behaviour, growth and energetics of salmon in response to commercial production conditions, including a dynamic model of the distribution of feed pellets in the production volume. To our knowledge, there exist no models aspiring to estimate such a broad spectre of the dynamics in commercial aquaculture production cages. We believe this model could serve as a future tool to predict the dynamics in commercial aquaculture net pens, and that it could represent a building block that can be utilised in a future development of knowledge-driven decision-support tools for the salmon industry.

  9. Effects of epidermal growth factor, platelet derived growth factor and growth hormone on cultured rat keratinocytes cells in vitro.

    Science.gov (United States)

    Safari, Manouchehr; Ghahari, Laya; Zoroufchi, M D Babak Hossein Zadeh

    2014-07-01

    Some growth factors, such as Epidermal Growth Factor (EGF), Growth Hormone (GH) and Platelet Derived Growth Factor (PDGF) have beneficial effects on keratinocyte proliferation and wound healing. Although the mechanism of these factors is unclear. In response to injury, growth factors are secreted by kinds of cutaneous cells. The goal of this project is to investigate the factors that could cause proliferate of the keratinocyte cells in vitro. The keratinocytes were removed from rat pups (10 days). Cultured in media with different concentration of GH, PDGF and EGF separately. The proliferation of cells was evaluated by the method of MTT and 3H-thymidine incorporation. Proliferation of keratinocytes was significantly higher in experimental groups than in control group. EGF maximally stimulated at 10 and 25 ng mL(-1). PDGF-BB maximally stimulated at 50 ng mL(-1), respectively. And maximal stimulation of GH was 2.5 IU L(-1). GH, PDGF-BB and EGF stimulate keratinocyte cells proliferation in different concentration. These growth factors could play in healing of the skin.

  10. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation...

  11. Inhibition of telomerase activity and cell growth by free and ...

    African Journals Online (AJOL)

    Inhibition of telomerase activity and cell growth by free and nanoliposomal forms of punicalagin in human leukemia cell line K562. ... telomerase activity, following treatment with punicalagin, of the free and nanoliposomal forms were measured by telomeric repeat amplification protocol-enzyme-linked immunosorbent assay.

  12. Cell transfection as a tool to study growth hormone action

    DEFF Research Database (Denmark)

    Norstedt, G; Enberg, B; Francis, S

    1994-01-01

    The isolation of growth hormone receptor (GHR) cDNA clones has made possible the transfection of GHRs into cultured cells. Our aim in this minireview is to show how the application of such approaches have benefited GHR research. GH stimulation of cells expressing GHR cDNAs can cause an alteration...

  13. Virtual microstructural leaf tissue generation based on cell growth modeling

    NARCIS (Netherlands)

    Abera, M.K.; Retta, M.A.; Verboven, P.; Nicolai, B.M.; Berghuijs, H.; Struik, P.

    2016-01-01

    A cell growth algorithm for virtual leaf tissue generation is presented based on the biomechanics of plant cells in tissues. The algorithm can account for typical differences in epidermal layers, palisade mesophyll layer and spongy mesophyll layer which have characteristic differences in the

  14. A new parameter of growth inhibition for cell proliferation assays.

    Science.gov (United States)

    Fiorentino, Francesco P; Bagella, Luigi; Marchesi, Irene

    2017-10-12

    Cell proliferation assays are performed by four decades to test the anti-proliferative activity of natural products and synthetic compounds in cell cultures. In cancer research, they are widely employed to evaluate drug efficacy in in vitro tumor models, such as established cell lines, primary cultures, and recently developed three-dimensional tumor organoids. In this manuscript, we demonstrated that current employed parameters used by researchers to quantify in vitro growth inhibition, IC50 and GI50 , lead to a misinterpretation of results based on the exponential, and not linear, proliferation of the cells in culture. Therefore, we introduce a new parameter for the analysis of growth inhibition in cell proliferation assays, termed relative population doubling capacity, that can be employed to properly quantify the anti-proliferative activity of tested compounds and to compare drug efficacy between distinct cell models. © 2017 Wiley Periodicals, Inc.

  15. Amygdalin inhibits the growth of renal cell carcinoma cells in vitro.

    Science.gov (United States)

    Juengel, Eva; Thomas, Anita; Rutz, Jochen; Makarevic, Jasmina; Tsaur, Igor; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-02-01

    Although amygdalin is used by many cancer patients as an antitumor agent, there is a lack of information on the efficacy and toxicity of this natural compound. In the present study, the inhibitory effect of amygdalin on the growth of renal cell carcinoma (RCC) cells was examined. Amygdalin (10 mg/ml) was applied to the RCC cell lines, Caki-1, KTC-26 and A498, for 24 h or 2 weeks. Untreated cells served as controls. Tumor cell growth and proliferation were determined using MTT and BrdU tests, and cell cycle phases were evaluated. Expression of the cell cycle activating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1 and D3 as well as of the cell cycle inhibiting proteins p19 and p27 was examined by western blot analysis. Surface expression of the differentiation markers E- and N-cadherin was also investigated. Functional blockade by siRNA was used to determine the impact of several proteins on tumor cell growth. Amygdalin treatment caused a significant reduction in RCC cell growth and proliferation. This effect was correlated with a reduced percentage of G2/M-phase RCC cells and an increased percentage of cells in the G0/1-phase (Caki-1 and A498) or cell cycle arrest in the S-phase (KTC-26). Furthermore, amygdalin induced a marked decrease in cell cycle activating proteins, in particular cdk1 and cyclin B. Functional blocking of cdk1 and cyclin B resulted in significantly diminished tumor cell growth in all three RCC cell lines. Aside from its inhibitory effects on growth, amygdalin also modulated the differentiation markers, E- and N-cadherin. Hence, exposing RCC cells to amygdalin inhibited cell cycle progression and tumor cell growth by impairing cdk1 and cyclin B expression. Moreover, we noted that amygdalin affected differentiation markers. Thus, we suggest that amygdalin exerted RCC antitumor effects in vitro.

  16. The nuclear guanine nucleotide exchange factors Ect2 and Net1 regulate RhoB-mediated cell death after DNA damage.

    Directory of Open Access Journals (Sweden)

    Melissa C Srougi

    2011-02-01

    Full Text Available Commonly used antitumor treatments, including radiation and chemotherapy, function by damaging the DNA of rapidly proliferating cells. However, resistance to these agents is a predominant clinical problem. A member of the Rho family of small GTPases, RhoB has been shown to be integral in mediating cell death after ionizing radiation (IR or other DNA damaging agents in Ras-transformed cell lines. In addition, RhoB protein expression increases after genotoxic stress, and loss of RhoB expression causes radio- and chemotherapeutic resistance. However, the signaling pathways that govern RhoB-induced cell death after DNA damage remain enigmatic. Here, we show that RhoB activity increases in human breast and cervical cancer cell lines after treatment with DNA damaging agents. Furthermore, RhoB activity is necessary for DNA damage-induced cell death, as the stable loss of RhoB protein expression using shRNA partially protects cells and prevents the phosphorylation of c-Jun N-terminal kinases (JNKs and the induction of the pro-apoptotic protein Bim after IR. The increase in RhoB activity after genotoxic stress is associated with increased activity of the nuclear guanine nucleotide exchange factors (GEFs, Ect2 and Net1, but not the cytoplasmic GEFs p115 RhoGEF or Vav2. Importantly, loss of Ect2 and Net1 via siRNA-mediated protein knock-down inhibited IR-induced increases in RhoB activity, reduced apoptotic signaling events, and protected cells from IR-induced cell death. Collectively, these data suggest a mechanism involving the nuclear GEFs Ect2 and Net1 for activating RhoB after genotoxic stress, thereby facilitating cell death after treatment with DNA damaging agents.

  17. Mechanical behavior of cells within a cell-based model of wheat leaf growth

    Directory of Open Access Journals (Sweden)

    Ulyana Zubairova

    2016-12-01

    Full Text Available Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.

  18. Exploring the Potential use of Photo-Selective Nets for Fruit Growth Regulation in Apple Explorando el uso Potencial de Mallas Foto-Selectivas para la Regulación del Crecimiento de Fruto en Manzano

    Directory of Open Access Journals (Sweden)

    Richard M Bastías

    2012-06-01

    Full Text Available The effect of shading (i.e. reduction of sunlight availability on fruit growth physiology has been widely studied in apple (Malus domestica Borkh., but little knowledge exist about fruit growth responses to changes in the light spectrum. The aim of the present research was to study the effect of use of colored nets with differential sunlight transmission in the blue (B, 400-500 nm, red (R, 600-700 nm and far-red (FR, 700-800 nm spectra on apple fruit growth and physiological associated responses. Three year old 'Fuji' apple trees were covered with 40% photo-selective blue and red shade nets, 40% neutral grey shade net, and 20% neutral white net as control. Red and blue net reduced in the same proportion (27% the photosynthetically active radiation with respect to control. However, blue net increased by 30% and reduced by 10% the B:R and R:FR the light relations, respectively. Maximal fruit growth rate under blue and grey nets was 15-20% greater than control. Fruit weight under blue net was 17% greater than control, but no significant differences in fruit weight were found among red net and control. Leaf photosynthesis and total leaf area under blue net were 28% and 30% higher than control, respectively; with ensuing positive effect on tree net C assimilation rate and total dry matter production. Results suggest that shifting the B, R, and FR light composition with photo-selective nets could be a useful tool to manipulate the photosynthetic and morphogenetic process regulating the carbohydrate availability for apple fruit growth.El efecto del sombreado (i.e. reducción de la cantidad de luz solar sobre la fisiología de crecimiento de fruto ha sido ampliamente estudiado en manzano (Malus domestica Borkh., pero existe poco conocimiento sobre respuestas de crecimiento del fruto a cambios en el espectro de la luz. El objetivo de la presente investigación fue estudiar el efecto del uso de mallas de color con transmisión diferencial de la luz en el

  19. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    , the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus......Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... previous results confirms the existence of TGF-alpha, EGF, and EGF-receptors in the majority of oral squamous cell carcinomas and their metastases....

  20. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4

    NARCIS (Netherlands)

    Todaro, Matilde; Alea, Mileidys Perez; Di Stefano, Anna B.; Cammareri, Patrizia; Vermeulen, Louis; Iovino, Flora; Tripodo, Claudio; Russo, Antonio; Gulotta, Gaspare; Medema, Jan Paul; Stassi, Giorgio

    2007-01-01

    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The

  1. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    Directory of Open Access Journals (Sweden)

    Jean-Claude Mollet

    2013-03-01

    Full Text Available The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.

  2. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth.

    Science.gov (United States)

    Mollet, Jean-Claude; Leroux, Christelle; Dardelle, Flavien; Lehner, Arnaud

    2013-03-07

    The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.

  3. IL-32 promotes breast cancer cell growth and invasiveness.

    Science.gov (United States)

    Wang, Shouman; Chen, Feiyu; Tang, Lili

    2015-01-01

    Interleukin (IL)-32 is a newly identified cytokine in humans and primates. It has been established that IL-32 may antagonize cancer growth. However, to the best of our knowledge, the direct effect of IL-32 on breast cancer cell growth has not yet been investigated. In addition, rodents lack the expression of IL-32; hence, the effects of IL-32 on breast cancer xenografts in nude mice have not been studied. The present study aimed to examine the potential regulatory effects of IL-32 on breast cancer cells in nude mice. The effects of IL-32 on tumor cell growth in cell cuture and a tumor xenograft model were investigated, as well as the effects of IL-32 on apoptosis. The effects of IL-32 on cell proliferation and apoptosis were investigated by MTT assay and TUNEL staining, respectively. The results revealed that IL-32 increases the proliferation rate of cancer cells and decreases the rate of apoptosis, In addition, IL-32 was found to enhance the growth of tumor xenografts in vivo. In summary, IL-32 may represent a useful therapeutic target for human breast cancer.

  4. Axonal branching and growth cone structure depend on target cells.

    Science.gov (United States)

    Berman, S A; Moss, D; Bursztajn, S

    1993-09-01

    Growth cones provide crucial guidance to neurons in response to appropriate targets and other environmental cues. We have cocultured ciliary neurons with myotubes and utilized antibodies to GAP-43 (a neuron-specific, growth-associated phosphoprotein) and MAP-2 (a cytoskeletal marker for dendrites) together with immunofluorescence microscopy to characterize the changes in patterns and polarity that ciliary nerve growth cones undergo when they contact a "proper" target. Our results show that ciliary neurons plated alone or cocultured with fibroblasts have one or two axons, but, when cocultured with myotubes, most cells have 4 or 5 axons showing GAP-43 immunoreactivity. The mean number of axons per cell soma was 1.9 +/- 0.9 micron2 (SEM) when ciliary neurons were plated alone and 3.4 +/- 0.1 when ciliary neurons were cocultured with myotubes. Differences in growth cone size were readily apparent in these two types of cultures. In coculture with myotubes the neuronal growth cone lamelopodia occupied 20-30 microns2 with an average area of 25.0 +/- 2.3 microns2 (SEM) whereas those neurons plated alone or in the presence of fibroblasts occupied an average area of 56.3 microns2 +/- 4.1 microns2 (SEM). The number of growth cone filopodia depended on culture condition. In nerve-muscle cocultures, the average number of filopodia per growth cone was 3.6 +/- 0.2 (SEM), whereas in ciliary cultures plated in the absence of myotubes the number of filopodia was 6.8 +/- 0.4 (SEM). These results indicate that muscle cells or the factors they release can regulate the growth and topography of axons and their growth cones.

  5. Hepatocyte growth factor-modulated rat Leydig cell functions.

    Science.gov (United States)

    Del Bravo, Jessica; Catizone, Angela; Ricci, Giulia; Galdieri, Michela

    2007-01-01

    Hepatocyte growth factor (HGF) regulates many cellular functions acting through c-Met, its specific tyrosine kinase receptor. We previously reported that in prepuberal rats HGF is secreted by the peritubular myoid cells during the entire postnatal testicular development and by the Sertoli cells only at puberty. We have also demonstrated that germ cells at different stages of development express c-Met and that HGF modulates germ cell proliferation and apoptosis. In the present article, we extend our study to the interstitial compartment of the testis and demonstrate that the c-Met protein is present on Leydig cells. The receptor is functionally active as demonstrated by the detected effects of HGF. We report in this article that HGF significantly increases the amount of testosterone secreted by the Leydig cells and decreases the number of Leydig cells undergoing apoptosis. The antiapoptotic effect of HGF is mediated by caspase-3 activity because the amount of the active fragment of the enzyme is decreased in Leydig cells cultured in the presence of HGF. However, treatment with the growth factor does not modify the expression levels of caspase-3 mRNA. These data indicate that HGF regulates the functional activities of Leydig cells. Interestingly, the steroidogenetic activity of the cells is increased by HGF in cultured explants of testicular tissues as well as the antiapoptotic effect of HGF. Therefore, our data indicate that HGF has a crucial role in the regulation of male fertility.

  6. Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells

    Directory of Open Access Journals (Sweden)

    Roshni S. Kalkur

    2014-09-01

    Full Text Available For the first time we show the effects of deuterium oxide on cell growth and vesicle transport in rat basophilic leukemia (RBL-2H3 cells. RBL-2H3 cells cultured with 15 moles/L deuterium showed decreased cell growth which was attributed to cells not doubling their DNA content. Experimental observations also showed an increase in vesicle speed for cells cultured in deuterium oxide. This increase in vesicle speed was not observed in deuterium oxide cultures treated with a microtubule-destabilizing drug, suggesting that deuterium oxide affects microtubule-dependent vesicle transport.

  7. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    Suspension cultures of Datura innoxia Mill, were successfully grown on a modified Murashige and Skoog medium with 2,4–D, NAA or BAP as growth substances, provided the micronutrient levels were reduced to 1/10. Normal amounts of micronutrients were toxic. Attempts to identify the toxic elements did...... malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities above 500...

  8. Cell longevity and sustained primary growth in palm stems.

    Science.gov (United States)

    Tomlinson, P Barry; Huggett, Brett A

    2012-12-01

    Longevity, or organismal life span, is determined largely by the period over which constituent cells can function metabolically. Plants, with modular organization (the ability continually to develop new organs and tissues) differ from animals, with unitary organization (a fixed body plan), and this difference is reflected in their respective life spans, potentially much longer in plants than animals. We draw attention to the observation that palm trees, as a group of monocotyledons without secondary growth comparable to that of lignophytes (plants with secondary growth from a bifacial cambium), retain by means of sustained primary growth living cells in their trunks throughout their organismal life span. Does this make palms the longest-lived trees because they can grow as individuals for several centuries? No conventional lignophyte retains living metabolically active differentiated cell types in its trunk for this length of time, even though the tree as a whole can exist for millennia. Does this contrast also imply that the long-lived cells in a palm trunk have exceptional properties, which allows this seeming immortality? We document the long-life of many tall palm species and their inherent long-lived stem cell properties, comparing such plants to conventional trees. We provide a summary of aspects of cell age and life span in animals and plants. Cell replacement is a feature of animal function, whereas conventional trees rely on active growth centers (meristems) to sustain organismal development. However, the long persistence of living cells in palm trunks is seen not as evidence for unique metabolic processes that sustain longevity, but is a consequence of unique constructional features. This conclusion suggests that the life span of plant cells is not necessarily genetically determined.

  9. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that coll......The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...... that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature...... can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics...

  10. PPARγ Promotes Growth and Invasion of Thyroid Cancer Cells

    Directory of Open Access Journals (Sweden)

    William M. Wood

    2011-01-01

    Full Text Available Undifferentiated (anaplastic thyroid cancer (ATC is one of the most aggressive human malignancies and no effective therapy is currently available. We show here that PPARγ levels are elevated in cells derived from ATC. Depletion of PPARγ in HTh74 ATC cells resulted in decreased cell growth, cell cycle arrest and a reduction in pRb and cyclin A and B1 levels. We further showed that both flank and orthotopic thyroid tumors derived from PPARγ-depleted cells grew more slowly than PPARγ-expressing cells. When PPARγ was overexpressed in more differentiated thyroid cancer BCPAP cells which lack PPARγ, there was increased growth and raised pRb and cyclin A and B1 levels. Finally, PPARγ depletion in ATC cells decreased their invasive capacity whereas overexpression in PTC cells increased invasiveness. These data suggest that PPARγ may play a detrimental role in thyroid cancer and that targeting it therapeutically may lead to improved treatment of advanced thyroid cancer.

  11. Opposite Effects of Coinjection and Distant Injection of Mesenchymal Stem Cells on Breast Tumor Cell Growth.

    Science.gov (United States)

    Zheng, Huilin; Zou, Weibin; Shen, Jiaying; Xu, Liang; Wang, Shu; Fu, Yang-Xin; Fan, Weimin

    2016-09-01

    : Mesenchymal stem cells (MSCs) usually promote tumor growth and metastasis. By using a breast tumor 4T1 cell-based animal model, this study determined that coinjection and distant injection of allogeneic bone marrow-derived MSCs with tumor cells could exert different effects on tumor growth. Whereas the coinjection of MSCs with 4T1 cells promoted tumor growth, surprisingly, the injection of MSCs at a site distant from the 4T1 cell inoculation site suppressed tumor growth. We further observed that, in the distant injection model, MSCs decreased the accumulation of myeloid-derived suppressor cells and regulatory T cells in tumor tissues by enhancing proinflammatory factors such as interferon-γ, tumor necrosis factor-α, Toll-like receptor (TLR)-3, and TLR-4, promoting host antitumor immunity and inhibiting tumor growth. Unlike previous reports, this is the first study reporting that MSCs may exert opposite roles on tumor growth in the same animal model by modulating the host immune system, which may shed light on the potential application of MSCs as vehicles for tumor therapy and other clinical applications. Mesenchymal stem cells (MSCs) have been widely investigated for their potential roles in tissue engineering, autoimmune diseases, and tumor therapeutics. This study explored the impact of coinjection and distant injection of allogeneic bone marrow-derived MSCs on mouse 4T1 breast cancer cells. The results showed that the coinjection of MSCs and 4T1 cells promoted tumor growth. MSCs might act as the tumor stromal precursors and cause immunosuppression to protect tumor cells from immunosurveillance, which subsequently facilitated tumor metastasis. Interestingly, the distant injection of MSCs and 4T1 cells suppressed tumor growth. Together, the results of this study revealed the dual functions of MSCs in immunoregulation. ©AlphaMed Press.

  12. Metabolic pathways promoting cancer cell survival and growth.

    Science.gov (United States)

    Boroughs, Lindsey K; DeBerardinis, Ralph J

    2015-04-01

    Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further.

  13. A European consensus report on blood cell identification: terminology utilized and morphological diagnosis concordance among 28 experts from 17 countries within the European LeukemiaNet network WP10, on behalf of the ELN Morphology Faculty

    DEFF Research Database (Denmark)

    Zini, Gina; Bain, Barbara; Bettelheim, Peter

    2010-01-01

    This paper describes the methodology used to develop a consensual glossary for haematopoietic cells within Diagnostics-WP10 of European-LeukemiaNet EU-project. This highly interactive work was made possible through the use of the net, requiring only a single two-day meeting of actual confrontatio...

  14. Growth of hollow cell spheroids in microbead templated chambers.

    Science.gov (United States)

    Wang, Eddie; Wang, Dong; Geng, Andrew; Seo, Richard; Gong, Xiaohua

    2017-10-01

    Cells form hollow, spheroidal structures during the development of many tissues, including the ocular lens, inner ear, and many glands. Therefore, techniques for in vitro formation of hollow spheroids are valued for studying developmental and disease processes. Current in vitro methods require cells to self-organize into hollow morphologies; we explored an alternative strategy based on cell growth in predefined, spherical scaffolds. Our method uses sacrificial, gelatin microbeads to simultaneously template spherical chambers within a hydrogel and deliver cells into the chambers. We use mouse lens epithelial cells to demonstrate that cells can populate the internal surfaces of the chambers within a week to create numerous hollow spheroids. The platform supports manipulation of matrix mechanics, curvature, and biochemical composition to mimic in vivo microenvironments. It also provides a starting point for engineering organoids of tissues that develop from hollow spheroids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Leptin is a growth factor for colonic epithelial cells

    NARCIS (Netherlands)

    Hardwick, J. C.; van den Brink, G. R.; Offerhaus, G. J.; van Deventer, S. J.; Peppelenbosch, M. P.

    2001-01-01

    Obesity increases the risk of colon cancer, whereas physical activity reduces the risk. Plasma levels of leptin increase in proportion to the level of obesity and are reduced by physical activity. Leptin acts as a growth factor for several cell types and thus may provide a biological explanation for

  16. Fluoxetine regulates cell growth inhibition of interferon-α.

    Science.gov (United States)

    Lin, Yu-Min; Yu, Bu-Chin; Chiu, Wen-Tai; Sun, Hung-Yu; Chien, Yu-Chieh; Su, Hui-Chen; Yen, Shu-Yang; Lai, Hsin-Wen; Bai, Chyi-Huey; Young, Kung-Chia; Tsao, Chiung-Wen

    2016-10-01

    Fluoxetine, a well-known anti-depression agent, may act as a chemosensitizer to assist and promote cancer therapy. However, how fluoxetine regulates cellular signaling to enhance cellular responses against tumor cell growth remains unclear. In the present study, addition of fluoxetine promoted growth inhibition of interferon-alpha (IFN-α) in human bladder carcinoma cells but not in normal uroepithelial cells through lessening the IFN-α-induced apoptosis but switching to cause G1 arrest, and maintaining the IFN-α-mediated reduction in G2/M phase. Activations and signal transducer and transactivator (STAT)-1 and peroxisome proliferator-activated receptor alpha (PPAR-α) were involved in this process. Chemical inhibitions of STAT-1 or PPAR-α partially rescued bladder carcinoma cells from IFN-α-mediated growth inhibition via blockades of G1 arrest, cyclin D1 reduction, p53 downregulation and p27 upregulation in the presence of fluoxetine. However, the functions of both proteins were not involved in the control of fluoxetine over apoptosis and maintained the declined G2/M phase of IFN-α. These results indicated that activation of PPAR-α and STAT-1 participated, at least in part, in growth inhibition of IFN-α in the presence of fluoxetine.

  17. Mitotic Gene Bookmarking: An Epigenetic Mechanism for Coordination of Lineage Commitment, Cell Identity and Cell Growth.

    Science.gov (United States)

    Zaidi, Sayyed K; Lian, Jane B; van Wijnen, Andre; Stein, Janet L; Stein, Gary S

    2017-01-01

    Epigenetic control of gene expression contributes to dynamic responsiveness of cellular processes that include cell cycle, cell growth and differentiation. Mitotic gene bookmarking, retention of sequence-specific transcription factors at target gene loci, including the RUNX regulatory proteins, provide a novel dimension to epigenetic regulation that sustains cellular identity in progeny cells following cell division. Runx transcription factor retention during mitosis coordinates physiological control of cell growth and differentiation in a broad spectrum of biological conditions, and is associated with compromised gene expression in pathologies that include cancer.

  18. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity.

    Science.gov (United States)

    Martínez-Ballesta, M Carmen; Zapata, Lavinia; Chalbi, Najla; Carvajal, Micaela

    2016-06-08

    Carbon nanotubes have been shown to improve the germination and growth of some plant species, extending the applicability of the emerging nano-biotechnology field to crop science. In this work, exploitation of commercial multiwalled carbon nanotubes (MWCNTs) in control and 100 mM NaCl-treated broccoli was performed. Transmission electron microscopy demonstrated that MWCNTs can enter the cells in adult plants with higher accumulation under salt stress. Positive effect of MWCNTs on growth in NaCl-treated plants was consequence of increased water uptake, promoted by more-favourable energetic forces driving this process, and enhanced net assimilation of CO2. MWCNTs induced changes in the lipid composition, rigidity and permeability of the root plasma membranes relative to salt-stressed plants. Also, enhanced aquaporin transduction occurred, which improved water uptake and transport, alleviating the negative effects of salt stress. Our work provides new evidences about the effect of MWCNTs on plasma membrane properties of the plant cell. The positive response to MWCNTs in broccoli plants opens novel perspectives for their technological uses in new agricultural practices, especially when 1plants are exposed to saline environments.

  19. Targeting glutamine transport to suppress melanoma cell growth.

    Science.gov (United States)

    Wang, Qian; Beaumont, Kimberley A; Otte, Nicholas J; Font, Josep; Bailey, Charles G; van Geldermalsen, Michelle; Sharp, Danae M; Tiffen, Jessamy C; Ryan, Renae M; Jormakka, Mika; Haass, Nikolas K; Rasko, John E J; Holst, Jeff

    2014-09-01

    Amino acids, especially leucine and glutamine, are important for tumor cell growth, survival and metabolism. A range of different transporters deliver each specific amino acid into cells, some of which are increased in cancer. These amino acids consequently activate the mTORC1 pathway and drive cell cycle progression. The leucine transporter LAT1/4F2hc heterodimer assembles as part of a large complex with the glutamine transporter ASCT2 to transport amino acids. In this study, we show that the expression of LAT1 and ASCT2 is significantly increased in human melanoma samples and is present in both BRAF(WT) (C8161 and WM852) and BRAF(V600E) mutant (1205Lu and 451Lu) melanoma cell lines. While inhibition of LAT1 by BCH did not suppress melanoma cell growth, the ASCT2 inhibitor BenSer significantly reduced both leucine and glutamine transport in melanoma cells, leading to inhibition of mTORC1 signaling. Cell proliferation and cell cycle progression were significantly reduced in the presence of BenSer in melanoma cells in 2D and 3D cell culture. This included reduced expression of the cell cycle regulators CDK1 and UBE2C. The importance of ASCT2 expression in melanoma was confirmed by shRNA knockdown, which inhibited glutamine uptake, mTORC1 signaling and cell proliferation. Taken together, our study demonstrates that ASCT2-mediated glutamine transport is a potential therapeutic target for both BRAF(WT) and BRAF(V600E) melanoma. © 2014 UICC.

  20. Effect of acute exercise on prostate cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Helene Rundqvist

    Full Text Available Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum and after completed exercise (exercise serum. The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.

  1. Imprint lithography provides topographical nanocues to guide cell growth in primary cortical cell culture

    NARCIS (Netherlands)

    Xie, Sijia; Lüttge, Regina

    2014-01-01

    In this paper, we describe a technology platform to study the effect of nanocues on the cell growth direction in primary cortical cell culture. Topographical cues to cells are provided using nanoscale features created by Jet and Flash Imprint Lithography, coated with polyethylenimine. We

  2. Arecoline inhibits endothelial cell growth and migration and the attachment to mononuclear cells

    Directory of Open Access Journals (Sweden)

    Shuei-Kuen Tseng

    2014-09-01

    Conclusion: Arecoline impaired vascular endothelial cells by inhibiting their growth and migration and their adhesion to U937 mononuclear cells. These results reveal that arecoline may contribute to the pathogenesis of oral submucous fibrosis and cardiovascular diseases by affecting endothelial cell function in BQ chewers.

  3. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data demonstr...

  4. Growth and development after hematopoietic cell transplant in children.

    Science.gov (United States)

    Sanders, J E

    2008-01-01

    Hematopoietic cell transplantation (HCT) following high-dose chemotherapy or chemoradiotherapy for children with malignant or nonmalignant hematologic disorders has resulted in an increasing number of long-term disease-free survivors. The preparative regimens include high doses of alkylating agents, such as CY with or without BU, and may include TBI. These agents impact the neuroendocrine system in growing children and their subsequent growth and development. Children receiving high-dose CY or BUCY have normal thyroid function, but those who receive TBI-containing regimens may develop thyroid function abnormalities. Growth is not impacted by chemotherapy-only preparative regimens, but TBI is likely to result in growth hormone deficiency and decreased growth rates that need to be treated with synthetic growth hormone therapy. Children who receive high-dose CY-only have normal development through puberty, whereas those who receive BUCY have a high incidence of delayed pubertal development. Following fractionated TBI preparative regimens, approximately half of the patients have normal pubertal development. These data demonstrate that the growth and development problems after HCT are dependent upon the preparative regimen received. All children should be followed for years after HCT for detection of growth and development abnormalities that are treatable with appropriate hormone therapy.

  5. Local Anesthetics Inhibit the Growth of Human Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Le Gac, Grégoire; Angenard, Gaëlle; Clément, Bruno; Laviolle, Bruno; Coulouarn, Cédric; Beloeil, Hélène

    2017-11-01

    Hepatocellular carcinoma (HCC) is an aggressive cancer with limited therapeutic options. Retrospective studies have shown that the administration of local anesthetics (LAs) during cancer surgery could reduce cancer recurrence. Besides, experimental studies reported that LAs could inhibit the growth of cancer cells. Thus, the purpose of this study was to investigate the effects of LAs on human HCC cells. The effects of 2 LAs (lidocaine and ropivacaine) (10 to 10 M) were studied after an incubation of 48 hours on 2 HCC cell lines, namely HuH7 and HepaRG. Cell viability, cell cycle analysis, and apoptosis and senescence tests were performed together with unsupervised genome-wide expression profiling and quantitative real-time polymerase chain reaction for relevant genes. We showed that LAs decreased viability and proliferation of HuH7 cells (from 92% [P lidocaine) and HepaRG progenitor cells (from 58% at 5 × 10 M [P lidocaine and 59% [P Lidocaine had no specific effect on cell cycle but increased by 10× the mRNA level of adenomatous polyposis coli (P < .01), which acts as an antagonist of the Wnt/β-catenin pathway. Both LAs increased apoptosis in Huh7 and HepaRG progenitor cells (P < .01). The data demonstrate that LAs induced profound modifications in gene expression profiles of tumor cells, including modulations in the expression of cell cycle-related genes that result in a cytostatic effect and induction of apoptosis.

  6. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  7. Lineage-Specific Restraint of Pituitary Gonadotroph Cell Adenoma Growth

    Science.gov (United States)

    Chesnokova, Vera; Zonis, Svetlana; Zhou, Cuiqi; Ben-Shlomo, Anat; Wawrowsky, Kolja; Toledano, Yoel; Tong, Yunguang; Kovacs, Kalman; Scheithauer, Bernd; Melmed, Shlomo

    2011-01-01

    Although pituitary adenomas are usually benign, unique trophic mechanisms restraining cell proliferation are unclear. As GH-secreting adenomas are associated with p53/p21-dependent senescence, we tested mechanisms constraining non-functioning pituitary adenoma growth. Thirty six gonadotroph-derived non-functioning pituitary adenomas all exhibited DNA damage, but undetectable p21 expression. However, these adenomas all expressed p16, and >90% abundantly expressed cytoplasmic clusterin associated with induction of the Cdk inhibitor p15 in 70% of gonadotroph and in 26% of somatotroph lineage adenomas (p = 0.006). Murine LβT2 and αT3 gonadotroph pituitary cells, and αGSU.PTTG transgenic mice with targeted gonadotroph cell adenomas also abundantly expressed clusterin and exhibited features of oncogene-induced senescence as evidenced by C/EBPβ and C/EBPδ induction. In turn, C/EBPs activated the clusterin promoter ∼5 fold, and elevated clusterin subsequently elicited p15 and p16 expression, acting to arrest murine gonadotroph cell proliferation. In contrast, specific clusterin suppression by RNAis enhanced gonadotroph proliferation. FOXL2, a tissue-specific gonadotroph lineage factor, also induced the clusterin promoter ∼3 fold in αT3 pituitary cells. As nine of 12 pituitary carcinomas were devoid of clusterin expression, this protein may limit proliferation of benign adenomatous pituitary cells. These results point to lineage-specific pathways restricting uncontrolled murine and human pituitary gonadotroph adenoma cell growth. PMID:21464964

  8. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    Science.gov (United States)

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  9. Cell growth on different types of ultrananocrystalline diamond thin films.

    Science.gov (United States)

    Shi, Bing; Jin, Qiaoling; Chen, Liaohai; Woods, Amina S; Schultz, Albert J; Auciello, Orlando

    2012-08-16

    Unique functional materials provide a platform as scaffolds for cell/tissue regeneration. Investigation of cell-materials' chemical and biological interactions will enable the application of more functional materials in the area of bioengineering, which provides a pathway to the novel treatment for patients who suffer from tissue/organ damage and face the limitation of donation sources. Many studies have been made into tissue/organ regeneration. Development of new substrate materials as platforms for cell/tissue regeneration is a key research area. Studies discussed in this paper focus on the investigation of novel ultrananocrystalline diamond (UNCD) films as substrate/scaffold materials for developmental biology. Specially designed quartz dishes have been coated with different types of UNCD films and cells were subsequently seeded on those films. Results showed the cells' growth on UNCD-coated culture dishes are similar to cell culture dishes with little retardation, indicating that UNCD films have no or little inhibition on cell proliferation and are potentially appealing as substrate/scaffold materials. The mechanisms of cell adhesion on UNCD surfaces are proposed based on the experimental results. The comparisons of cell cultures on diamond-powder-seeded culture dishes and on UNCD-coated dishes with matrix-assisted laser desorption/ionization-time-of-flight mass spectroscopy (MALDI-TOF MS) and X-ray photoelectron spectroscopy (XPS) analyses provided valuable data to support the mechanisms proposed to explain the adhesion and proliferation of cells on the surface of the UNCD platform.

  10. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    Science.gov (United States)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  11. Growth differentiation factor 15 stimulates rapamycin-sensitive ovarian cancer cell growth and invasion.

    Science.gov (United States)

    Griner, Samantha E; Joshi, Jayashree P; Nahta, Rita

    2013-01-01

    Identification of novel molecular markers and therapeutic targets may improve survival rates for patients with ovarian cancer. In the current study, immunohistochemical (IHC) analysis of two human ovarian tumor tissue arrays showed high staining for GDF15 in a majority of tissues. Exogenous stimulation of ovarian cancer cell lines with recombinant human GDF15 (rhGDF15) or stable over-expression of a GDF15 expression plasmid promoted anchorage-independent growth, increased invasion, and up-regulation of matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF). MMP inhibition suppressed GDF15-mediated invasion. In addition, IHC analysis of human ovarian tumor tissue arrays indicated that GDF15 expression correlated significantly with high MMP2 and MMP9 expression. Exogenous and endogenous GDF15 over-expression stimulated phosphorylation of p38, Erk1/2, and Akt. Pharmacologic inhibition of p38, MEK, or PI3K suppressed GDF15-stimulated growth. Further, proliferation, growth, and invasion of GDF15 stable clones were blocked by rapamycin. IHC analysis demonstrated significant correlation between GDF15 expression and phosphorylation of mTOR. Finally, knockdown of endogenous GDF15 or neutralization of secreted GDF15 suppressed invasion and growth of a GDF15-over-expressing ovarian cancer cell line. These data indicate that GDF15 over-expression, which occurred in a majority of human ovarian cancers, promoted rapamycin-sensitive invasion and growth of ovarian cancer cells. Inhibition of mTOR may be an effective therapeutic strategy for ovarian cancers that over-express GDF15. Future studies should examine GDF15 as a novel molecular target for blocking ovarian cancer progression. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Modeling bacterial population growth from stochastic single-cell dynamics.

    Science.gov (United States)

    Alonso, Antonio A; Molina, Ignacio; Theodoropoulos, Constantinos

    2014-09-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  13. Probabilistic model of microbial cell growth, division, and mortality.

    Science.gov (United States)

    Horowitz, Joseph; Normand, Mark D; Corradini, Maria G; Peleg, Micha

    2010-01-01

    After a short time interval of length deltat during microbial growth, an individual cell can be found to be divided with probability Pd(t)deltat, dead with probability Pm(t)deltat, or alive but undivided with the probability 1-[Pd(t)+Pm(t)]deltat, where t is time, Pd(t) expresses the probability of division for an individual cell per unit of time, and Pm(t) expresses the probability of mortality per unit of time. These probabilities may change with the state of the population and the habitat's properties and are therefore functions of time. This scenario translates into a model that is presented in stochastic and deterministic versions. The first, a stochastic process model, monitors the fates of individual cells and determines cell numbers. It is particularly suitable for small populations such as those that may exist in the case of casual contamination of a food by a pathogen. The second, which can be regarded as a large-population limit of the stochastic model, is a continuous mathematical expression that describes the population's size as a function of time. It is suitable for large microbial populations such as those present in unprocessed foods. Exponential or logistic growth with or without lag, inactivation with or without a "shoulder," and transitions between growth and inactivation are all manifestations of the underlying probability structure of the model. With temperature-dependent parameters, the model can be used to simulate nonisothermal growth and inactivation patterns. The same concept applies to other factors that promote or inhibit microorganisms, such as pH and the presence of antimicrobials, etc. With Pd(t) and Pm(t) in the form of logistic functions, the model can simulate all commonly observed growth/mortality patterns. Estimates of the changing probability parameters can be obtained with both the stochastic and deterministic versions of the model, as demonstrated with simulated data.

  14. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  15. Anisotropic cell growth-regulated surface micropatterns in flower petals

    Directory of Open Access Journals (Sweden)

    Xiao Huang

    2017-05-01

    Full Text Available Flower petals have not only diverse macroscopic morphologies but are rich in microscopic surface patterns, which are crucial to their biological functions. Both experimental measurements and theoretical analysis are conducted to reveal the physical mechanisms underlying the formation of minute wrinkles on flower petals. Three representative flowers, daisy, kalanchoe blossfeldiana, and Eustoma grandiflorum, are investigated as examples. A surface wrinkling model, incorporating the measured mechanical properties and growth ratio, is used to elucidate the difference in their surface morphologies. The mismatch between the anisotropic epidermal cell growth and the isotropic secretion of surficial wax is found to dictate the surface patterns.

  16. Loss of growth homeostasis by genetic decoupling of cell division from biomass growth: implication for size control mechanisms.

    Science.gov (United States)

    Schmidt-Glenewinkel, Hannah; Barkai, Naama

    2014-12-23

    Growing cells adjust their division time with biomass accumulation to maintain growth homeostasis. Size control mechanisms, such as the size checkpoint, provide an inherent coupling of growth and division by gating certain cell cycle transitions based on cell size. We describe genetic manipulations that decouple cell division from cell size, leading to the loss of growth homeostasis, with cells becoming progressively smaller or progressively larger until arresting. This was achieved by modulating glucose influx independently of external glucose. Division rate followed glucose influx, while volume growth was largely defined by external glucose. Therefore, the coordination of size and division observed in wild-type cells reflects tuning of two parallel processes, which is only refined by an inherent feedback-dependent coupling. We present a class of size control models explaining the observed breakdowns of growth homeostasis. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  17. Deregulation of the CEACAM expression pattern causes undifferentiated cell growth in human lung adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Bernhard B Singer

    Full Text Available CEACAM1, CEA/CEACAM5, and CEACAM6 are cell adhesion molecules (CAMs of the carcinoembryonic antigen (CEA family that have been shown to be deregulated in lung cancer and in up to 50% of all human cancers. However, little is known about the functional impact of these molecules on undifferentiated cell growth and tumor progression. Here we demonstrate that cell surface expression of CEACAM1 on confluent A549 human lung adenocarcinoma cells plays a critical role in differentiated, contact-inhibited cell growth. Interestingly, CEACAM1-L, but not CEACAM1-S, negatively regulates proliferation via its ITIM domain, while in proliferating cells no CEACAM expression is detectable. Furthermore, we show for the first time that CEACAM6 acts as an inducer of cellular proliferation in A549 cells, likely by interfering with the contact-inhibiting signal triggered by CEACAM1-4L, leading to undifferentiated anchorage-independent cell growth. We also found that A549 cells expressed significant amounts of non-membrane anchored variants of CEACAM5 and CEACAM6, representing a putative source for the increased CEACAM5/6 serum levels frequently found in lung cancer patients. Taken together, our data suggest that post-confluent contact inhibition is established and maintained by CEACAM1-4L, but disturbances of CEACAM1 signalling by CEACAM1-4S and other CEACAMs lead to undifferentiated cell growth and malignant transformation.

  18. Morphological and Cell Growth Assessment in Near Dense Hydroxyapatite Scaffold

    Directory of Open Access Journals (Sweden)

    Florencia Edith Wiria

    2013-01-01

    Full Text Available This paper reports the preliminary results on the morphology of low porosity hydroxyapatite scaffold and its compatibility as a substrate for osteoblast cells. Although having low porosity, the hydroxyapatite scaffold was found to be capable of sustaining cell growth and thus assisting bone ingrowth. Due to the low porosity nature, the scaffold provides higher strength and therefore more suitable for applications with load-bearing requirements such as spinal spacer. The hydroxyapatite scaffolds are prepared via powder processing techniques, using a combination of wet mixing, powder compaction, and sintering processes. The scaffold porosity is estimated via image analysis and micro-CT, which detect porosity level of approximately 16% and pore size of 13 μm. Cell culture investigation demonstrates that the hydroxyapatite substrate is able to provide favourable cell attachment and collagen matrix production, as compared to the commonly used cell culture control substrates. These results indicate that despite the low porosity in the hydroxyapatite scaffolds, they do not hinder being a preferred substrate to provide conducive environment osteoblast cell growth.

  19. Hepatocyte growth factor (HGF) modulates Leydig cell extracellular matrix components.

    Science.gov (United States)

    Catizone, A; Ricci, G; Tufano, M A; Perfetto, B; Canipari, R; Galdieri, M

    2010-01-01

    Hepatocyte growth factor (HGF) is a pleiotropic factor that plays multiple roles during mammalian development. We previously demonstrated that in the postnatal testes, the HGF receptor, c-met, is expressed by Leydig cells and HGF increases the steroidogenetic activity of the cells. In the present article, we report that HGF modifies the composition of the extracellular matrix of cultured Leydig cells. We show that HGF increases the metabolic activity of isolated Leydig cells; in particular, the factor increases urokinase plasminogen activator and matrix metalloproteinase 2 secretion. We have also shown that the levels of active transforming growth factor beta are increased by HGF. On the contrary, using the Western blotting technique, a strong reduction in the amount of fibronectin present in the culture medium of cells cultured in the presence of HGF has been detected. The presented data demonstrate that HGF modulates several functional activities of Leydig cells, further supporting the hypothesis that this factor has a relevant role in the regulation of mammalian spermatogenesis.

  20. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  1. Controlled Cell Growth and Cell Migration in Periodic Mesoporous Organosilica/Alginate Nanocomposite Hydrogels.

    Science.gov (United States)

    Seda Kehr, Nermin; Riehemann, Kristina

    2016-01-21

    Nanocomposite (NC) hydrogels with different periodic mesoporous organosilica (PMO) concentrations and a NC hydrogel bilayer with various PMO concentrations inside the layers of the hydrogel matrix are prepared. The effect of the PMO concentration on cell growth and migration of cells is reported. The cells migrate in the bilayer NC hydrogel towards higher PMO concentrations and from cell culture plates to NC hydrogel scaffolds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of Tobacco Smoke (TS) on Growth of Clear Cell Renal Cell Carcinoma (ccRCC)

    Science.gov (United States)

    2015-10-01

    AD_________________ Award Number: W81XWH-14-1-0347 TITLE: Effects of Tobacco Smoke ( TS ) on growth...0347 Effects of Tobacco Smoke ( TS ) on growth of clear cell renal cell carcinoma (ccRCC) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...males than in females1. Tobacco smoking ( TS ), obesity, hypertension, and age are established risk factors for ccRCC development1. Despite the well

  3. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  4. Cell Growth on Different Types of Ultrananocrystalline Diamond Thin Films

    Directory of Open Access Journals (Sweden)

    Orlando Auciello

    2012-08-01

    Full Text Available Unique functional materials provide a platform as scaffolds for cell/tissue regeneration. Investigation of cell-materials’ chemical and biological interactions will enable the application of more functional materials in the area of bioengineering, which provides a pathway to the novel treatment for patients who suffer from tissue/organ damage and face the limitation of donation sources. Many studies have been made into tissue/organ regeneration. Development of new substrate materials as platforms for cell/tissue regeneration is a key research area. Studies discussed in this paper focus on the investigation of novel ultrananocrystalline diamond (UNCD films as substrate/scaffold materials for developmental biology. Specially designed quartz dishes have been coated with different types of UNCD films and cells were subsequently seeded on those films. Results showed the cells’ growth on UNCD-coated culture dishes are similar to cell culture dishes with little retardation, indicating that UNCD films have no or little inhibition on cell proliferation and are potentially appealing as substrate/scaffold materials. The mechanisms of cell adhesion on UNCD surfaces are proposed based on the experimental results. The comparisons of cell cultures on diamond-powder-seeded culture dishes and on UNCD-coated dishes with matrix-assisted laser desorption/ionization—time-of-flight mass spectroscopy (MALDI-TOF MS and X-ray photoelectron spectroscopy (XPS analyses provided valuable data to support the mechanisms proposed to explain the adhesion and proliferation of cells on the surface of the UNCD platform.

  5. Cdc5 influences phosphorylation of Net1 and disassembly of the RENT complex.

    Science.gov (United States)

    Shou, Wenying; Azzam, Ramzi; Chen, Susan L; Huddleston, Michael J; Baskerville, Christopher; Charbonneau, Harry; Annan, Roland S; Carr, Steve A; Deshaies, Raymond J

    2002-04-17

    In S. cerevisiae, the mitotic exit network (MEN) proteins, including the Polo-like protein kinase Cdc5 and the protein phosphatase Cdc14, are required for exit from mitosis. In pre-anaphase cells, Cdc14 is sequestered to the nucleolus by Net1 as a part of the RENT complex. When cells are primed to exit mitosis, the RENT complex is disassembled and Cdc14 is released from the nucleolus. Here, we show that Cdc5 is necessary to free nucleolar Cdc14 in late mitosis, that elevated Cdc5 activity provokes ectopic release of Cdc14 in pre-anaphase cells, and that the phosphorylation state of Net1 is regulated by Cdc5 during anaphase. Furthermore, recombinant Cdc5 and Xenopus Polo-like kinase can disassemble the RENT complex in vitro by phosphorylating Net1 and thereby reducing its affinity for Cdc14. Surprisingly, although RENT complexes containing Net1 mutants (Net1(7m) and Net1(19m') lacking sites phosphorylated by Cdc5 in vitro are refractory to disassembly by Polo-like kinases in vitro, net1(7m) and net1(19m') cells grow normally and exhibit only minor defects in releasing Cdc14 during anaphase. However, net1(19m') cells exhibit a synergistic growth defect when combined with mutations in CDC5 or DBF2 (another MEN gene). We propose that although Cdc5 potentially disassembles RENT by directly phosphorylating Net1, Cdc5 mediates exit from mitosis primarily by phosphorylating other targets. Our study suggests that Cdc5/Polo is unusually promiscuous and highlights the need to validate Cdc5/Polo in vitro phosphorylation sites by direct in vivo mapping experiments.

  6. Blue light inhibits the growth of B16 melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Kawashima, Yuzo [Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima (Japan)

    2002-05-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm{sup 2}) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  7. Longitudinal Bioluminescent Quantification of Three Dimensional Cell Growth.

    Science.gov (United States)

    Wendt, Michael K; Schiemann, William P

    2013-12-05

    The use of three-dimensional (3D) cell culture systems is widely accepted as representing a more physiologically relevant means to propagate mammary epithelial and breast cancer cells. However, 3D cultures systems are plagued by several experimental and technical limitations as compared to their traditional 2D counterparts. For instance, quantifying the growth of mammary epithelial or breast cancer organoids longitudinally is particularly troublesome using standard [3H]thymidine or MTT assay systems, or using computer-assisted area calculations. Likewise, the nature of the multicellular aggregates and organoids formed by breast cancer cells under 3D conditions precludes efficient recovery of the cells from 3D matrices, an event that is time consuming and leads to spurious results. The assay described here utilizes stable expression of firefly luciferase as means to quantify the longitudinal outgrowth of cells propagated within a 3D matrices. The major advantages of this technique include its high-throughput nature and ability to longitudinally track single wells over a defined period of time, thereby decreasing the costs associated with assay performance. Finally, this technique can be readily combined with drug treatments and/or genetic manipulations to assay their effects on the growth of 3D organoids.

  8. In Vitro plant cell growth in microgravity and on clinostat

    Science.gov (United States)

    Laurinavicius, R.; Kenstaviciene, P.; Rupainiene, O.; Necitailo, G.

    1994-08-01

    For the study of gravity's role in the processes of plant cell differentiation in vitro, a model ``seed-seedling-callus'' has been used. Experiments were carried out on board the orbital stations Salyut-7 and Mir as well as on clinostat. They lasted from 18 to 72 days. It was determined that the exclusion of a one-sided action of gravity vector by means of clinostat and spaceflight conditions does not impede the formation and growth of callus tissue; however, at cell and subcellular levels structural and functional changes do take place. No significant changes were observed either on clinostat or in space concerning the accumulation of fresh biomass, while the percentage of dry material in space is lower than in control. Both in microgravity (MG) and in control, even after 72 days of growth, cells with a normally developed ultrastructure are present. In space, however, callus tissue more often contains cells in which the cross-section area of a cells, a nuclei and of mitochondria are smaller and the vacuole area - bigger than in controls. In microgravity a considerable decrease in the number of starch-containing cells and a reduction in the mean area of starch grains in amyloplasts is observed. In space the amount of soluble proteins in callus tissue is 1.5 times greater than in control. However, no differences were observed in fractions when separated by the SDS-PAGE method. In microgravity the changes in cell wall material components was noted. In the space-formed callus changes in the concentration of ions K, Na, Mg, Ca and P were observed. However, the direction of these changes depends on the age of callus. Discussed are the possible reasons for modification of morphological and metabolic parameters of callus cells when grown under changed gravity conditions.

  9. Growth differentiation factor 15 stimulates rapamycin-sensitive ovarian cancer cell growth and invasion

    OpenAIRE

    Griner, Samantha E.; Joshi, Jayashree P.; Nahta, Rita

    2013-01-01

    Identification of novel molecular markers and therapeutic targets may improve survival rates for patients with ovarian cancer. In the current study, immunohistochemical (IHC) analysis of two human ovarian tumor tissue arrays showed high staining for GDF15 in a majority of tissues. Exogenous stimulation of ovarian cancer cell lines with recombinant human GDF15 (rhGDF15) or stable overexpression of a GDF15 expression plasmid promoted anchorage-independent growth, increased invasion, and up-regu...

  10. Systems-biology dissection of eukaryotic cell growth

    Directory of Open Access Journals (Sweden)

    Andrews Justen

    2010-05-01

    Full Text Available Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  11. Growth dynamics of cancer cell colonies and their comparison with noncancerous cells

    Science.gov (United States)

    Huergo, M. A. C.; Pasquale, M. A.; González, P. H.; Bolzán, A. E.; Arvia, A. J.

    2012-01-01

    The two-dimensional (2D) growth dynamics of HeLa (cervix cancer) cell colonies was studied following both their growth front and the pattern morphology evolutions utilizing large population colonies exhibiting linearly and radially spreading fronts. In both cases, the colony profile fractal dimension was df=1.20±0.05 and the growth fronts displaced at the constant velocity 0.90±0.05 μm min-1. Colonies showed changes in both cell morphology and average size. As time increased, the formation of large cells at the colony front was observed. Accordingly, the heterogeneity of the colony increased and local driving forces that set in began to influence the dynamics of the colony front. The dynamic scaling analysis of rough colony fronts resulted in a roughness exponent α = 0.50±0.05, a growth exponent β = 0.32±0.04, and a dynamic exponent z=1.5±0.2. The validity of this set of scaling exponents extended from a lower cutoff lc≈60 μm upward, and the exponents agreed with those predicted by the standard Kardar-Parisi-Zhang continuous equation. HeLa data were compared with those previously reported for Vero cell colonies. The value of df and the Kardar-Parisi-Zhang-type 2D front growth dynamics were similar for colonies of both cell lines. This indicates that the cell colony growth dynamics is independent of the genetic background and the tumorigenic nature of the cells. However, one can distinguish some differences between both cell lines during the growth of colonies that may result from specific cooperative effects and the nature of each biosystem.

  12. Growth suppression by transforming growth factor beta 1 of human small-cell lung cancer cell lines is associated with expression of the type II receptor.

    OpenAIRE

    N?rgaard, P.; Damstrup, L; Rygaard, K; Spang-Thomsen, M.; Skovgaard Poulsen, H.

    1994-01-01

    Nine human small-cell lung cancer cell lines were treated with transforming growth factor beta 1 (TGF-beta 1). Seven of the cell lines expressed receptors for transforming growth factor beta (TGF-beta-r) in different combinations between the three human subtypes I, II and III, and two were receptor negative. Growth suppression was induced by TGF-beta 1 exclusively in the five cell lines expressing the type II receptor. For the first time growth suppression by TGF-beta 1 of a cell line express...

  13. Effect of arginase II on L-arginine depletion and cell growth in murine cell lines of renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Patterson John R

    2008-09-01

    Full Text Available Abstract Background L-arginine is the common substrate for the two isoforms of arginase. Arginase I, highly expressed in the liver and arginase II mainly expressed in the kidney. Arginase I-producing myeloid derived suppressor cells have been shown to inhibit T-cell function by the depletion of L-arginine. On the other hand, arginase II has been detected in patients with cancer and is thought to metabolize L-arginine to L-ornithine needed to sustain rapid tumor growth; however its role in L-arginine depletion is unclear. Thus, in tumor biology, L-arginine metabolism may play a dual role in tumor growth and in the induction of T cell dysfunction. Therefore, we studied in murine renal cell carcinoma (RCC cell lines, the effect of arginase II on tumor cell proliferation and L-arginine depletion. The effect of arginase inhibitors on cell proliferation was also tested. Methods Three murine renal cell carcinoma (mRCC cell lines were tested for the presence of arginase. nor-NOHA, an arginase inhibitor was used to substantiate the effect of arginase on cell growth and L-arginine depletion. Amino acid levels were tested by HPLC. Results Our results show that mRCC cell lines express only arginase II and were able to deplete L-arginine from the medium. Cell growth was independent of the amount of arginase activity expressed by the cells. nor-NOHA significantly (P = 0.01 reduced arginase II activity and suppressed cell growth in cells exhibiting high arginase activity. The depletion of L-arginine by mRCC induced the decrease expression of CD3ζ a key element for T-cell function. Conclusion The results of this study show for the first time that arginase II produced by RCC cell lines depletes L-arginine resulting in decreased expression of CD3ζ. These results indicate that RCC cell lines expressing arginase II can modulate the L-arginine metabolic pathway to regulate both cell growth and T-cell function. Blocking arginase may lead to a decrease in RCC cell

  14. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells

    Science.gov (United States)

    Rhode, Jennifer; Fogoros, Sarah; Zick, Suzanna; Wahl, Heather; Griffith, Kent A; Huang, Jennifer; Liu, J Rebecca

    2007-01-01

    Background Ginger (Zingiber officinale Rosc) is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells in vitro. Methods The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger. Results Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that in vitro, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8. Conclusion Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer. PMID:18096028

  15. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Jennifer

    2007-12-01

    Full Text Available Abstract Background Ginger (Zingiber officinale Rosc is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells in vitro. Methods The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger. Results Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that in vitro, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8. Conclusion Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer.

  16. CellNetVis: a web tool for visualization of biological networks using force-directed layout constrained by cellular components.

    Science.gov (United States)

    Heberle, Henry; Carazzolle, Marcelo Falsarella; Telles, Guilherme P; Meirelles, Gabriela Vaz; Minghim, Rosane

    2017-09-13

    The advent of "omics" science has brought new perspectives in contemporary biology through the high-throughput analyses of molecular interactions, providing new clues in protein/gene function and in the organization of biological pathways. Biomolecular interaction networks, or graphs, are simple abstract representations where the components of a cell (e.g. proteins, metabolites etc.) are represented by nodes and their interactions are represented by edges. An appropriate visualization of data is crucial for understanding such networks, since pathways are related to functions that occur in specific regions of the cell. The force-directed layout is an important and widely used technique to draw networks according to their topologies. Placing the networks into cellular compartments helps to quickly identify where network elements are located and, more specifically, concentrated. Currently, only a few tools provide the capability of visually organizing networks by cellular compartments. Most of them cannot handle large and dense networks. Even for small networks with hundreds of nodes the available tools are not able to reposition the network while the user is interacting, limiting the visual exploration capability. Here we propose CellNetVis, a web tool to easily display biological networks in a cell diagram employing a constrained force-directed layout algorithm. The tool is freely available and open-source. It was originally designed for networks generated by the Integrated Interactome System and can be used with networks from others databases, like InnateDB. CellNetVis has demonstrated to be applicable for dynamic investigation of complex networks over a consistent representation of a cell on the Web, with capabilities not matched elsewhere.

  17. Impact of permethrin-treated bed nets on malaria, anemia, and growth in infants in an area of intense perennial malaria transmission in western Kenya

    NARCIS (Netherlands)

    ter Kuile, Feiko O.; Terlouw, Dianne J.; Kariuki, Simon K.; Phillips-Howard, Penelope A.; Mirel, Lisa B.; Hawley, William A.; Friedman, Jennifer F.; Shi, Ya Ping; Kolczak, Margarette S.; Lal, Altaf A.; Vulule, John M.; Nahlen, Bernard L.

    2003-01-01

    As part of a community-based, group-randomized, controlled trial of insecticide-treated bed nets (ITNs) in an area with intense malaria transmission in western Kenya, a birth cohort (n = 833) was followed monthly until the age of 24 months to determine the potential beneficial and adverse effects of

  18. Griseofulvin inhibits the growth of adrenocortical cancer cells in vitro.

    Science.gov (United States)

    Bramann, E L; Willenberg, H S; Hildebrandt, B; Müller-Mattheis, V; Schott, M; Scherbaum, W A; Haase, M

    2013-04-01

    Supernumerary centrosomes and aneuploidy are associated with a malignant phenotype of tumor cells. Centrosomal clustering is a mechanism used by cancer cells with supernumerary centrosomes to solve the threatening problem of multipolar spindles. Griseofulvin is an antifungal substance that interferes with the microtubule apparatus and inhibits centrosomal clustering. It has also been demonstrated that griseofulvin inhibits the growth of tumor cells in vitro and in vivo. However, it is not yet known whether treatment with griseofulvin inhibits growth of adrenocortical tumor cells. We studied the viability and antiproliferative effects of griseofulvin on cultured NCI-H295R adrenocortical carcinoma cells using Wst-1-, BrdUrd-, and [³H]-thymidine assays. For the detection of apoptosis we used a caspase 3/7 cleavage assay and light microscopy techniques. We observed that incubation with griseofulvin for 24-48 h leads to a decrease in the viability and proliferation of NCI-H295R cells in a dose-dependent manner. Significant effects could be observed after incubation with griseofulvin as measured by Wst-1-, BrdUrd-, and [³H]dT- uptake assays. Apoptosis of NCI-H295R cells was increased in a dose-dependent manner up to 4.5-fold after incubation with griseofulvin 40 μM for 24 h as shown by caspase 3/7 cleavage assay and light microscopy. With regard to new treatment strategies for adrenocortical cancer, griseofulvin, and possibly other agents, which interfere with the microtubule apparatus and inhibit centrosomal clustering, may turn out to be interesting targets for further research. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Methyl-donor nutrients inhibit breast cancer cell growth.

    Science.gov (United States)

    Park, Chung S; Cho, Kyongshin; Bae, Dong R; Joo, Nam E; Kim, Hyung H; Mabasa, Lawrence; Fowler, Andrea W

    2008-01-01

    Lipotropes (methyl group containing nutrients, including methionine, choline, folate, and vitamin B(12)) are dietary methyl donors and cofactors that are involved in one-carbon metabolism, which is important for genomic DNA methylation reactions and nucleic acid synthesis. One-carbon metabolism provides methyl groups for all biological methylation pathways and is highly dependent on dietary supplementation of methyl nutrients. Nutrition is an important determinant of breast cancer risk and tumor behavior, and dietary intervention may be an effective approach to prevent breast cancer. Apoptosis is important for the regulation of homeostasis and tumorigenesis. The anti-apoptotic protein Bcl-2 may be a regulatory target in cancer therapy; controlling or modulating its expression may be a therapeutic strategy against breast cancer. In this study, the effects of lipotrope supplementation on the growth and death of human breast cancer cell lines T47D and MCF-7 were examined and found to inhibit growth of both T47D and MCF-7 cells. Furthermore, the ratios of apoptotic cells to the total number of cells were approximately 44% and 34% higher in the lipotrope-supplemented treatments of T47D and MCF-7 cancer cells, respectively, compared with the control treatments. More importantly, Bcl-2 protein expression was decreased by approximately 25% from lipotrope supplementation in T47D cells, suggesting that lipotropes can induce breast cancer cell death by direct downregulation of Bcl-2 protein expression. Cancer treatment failure is often correlated with Bcl-2 protein upregulation. These data may be useful in the development of effective nutritional strategies to prevent and reduce breast cancer in humans.

  20. Directing neuronal cell growth on implant material surfaces by microstructuring.

    Science.gov (United States)

    Reich, Uta; Fadeeva, Elena; Warnecke, Athanasia; Paasche, Gerrit; Müller, Peter; Chichkov, Boris; Stöver, Timo; Lenarz, Thomas; Reuter, Günter

    2012-05-01

    For best hearing sensation, electrodes of auditory prosthesis must have an optimal electrical contact to the respective neuronal cells. To improve the electrode-nerve interface, microstructuring of implant surfaces could guide neuronal cells toward the electrode contact. To this end, femtosecond laser ablation was used to generate linear microgrooves on the two currently relevant cochlear implant materials, silicone elastomer and platinum. Silicone surfaces were structured by two different methods, either directly, by laser ablation or indirectly, by imprinting using laser-microstructured molds. The influence of surface structuring on neurite outgrowth was investigated utilizing a neuronal-like cell line and primary auditory neurons. The pheochromocytoma cell line PC-12 and primary spiral ganglion cells were cultured on microstructured auditory implant materials. The orientation of neurite outgrowth relative to the microgrooves was determined. Both cell types showed a preferred orientation in parallel to the microstructures on both, platinum and on molded silicone elastomer. Interestingly, microstructures generated by direct laser ablation of silicone did not influence the orientation of either cell type. This shows that differences in the manufacturing procedures can affect the ability of microstructured implant surfaces to guide the growth of neurites. This is of particular importance for clinical applications, since the molding technique represents a reproducible, economic, and commercially feasible manufacturing procedure for the microstructured silicone surfaces of medical implants. Copyright © 2012 Wiley Periodicals, Inc.

  1. Models of lipid droplets growth and fission in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  2. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  3. Inhibition by ganciclovir of cell growth and DNA synthesis of cells biochemically transformed with herpesvirus genetic information.

    OpenAIRE

    St Clair, M H; Lambe, C U; Furman, P A

    1987-01-01

    The ability of LM cells, thymidine kinase-deficient LM cells (LMTK-), and LMTK- cells transformed to the LMTK+ phenotype by herpes simplex virus type 1 genetic information (LH7 cells) to anabolize the acyclovir congener ganciclovir was examined. About 50-fold more ganciclovir triphosphate was produced by LH7 cells than by either LM or LMTK- cells. Growth inhibition studies indicated that 180 and 120 microM ganciclovir were required to achieve 50% growth inhibition of LM and LMTK- cells, respe...

  4. Cell and molecular biology of epidermal growth factor receptor.

    Science.gov (United States)

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  5. Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis

    Directory of Open Access Journals (Sweden)

    Liu W

    2017-01-01

    Full Text Available Weifeng Liu,1 Xinshuai Wang,2 Junjun Sun,1 Yanhui Yang,1 Wensheng Li,1 Junxin Song1 1Department of Hepatobiliary Surgery, 2Department of Oncology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luo Yang, China Abstract: Pancreatic cancer is an aggressive malignancy and is unresponsive to conventional chemotherapies. Parthenolide, a sesquiterpene lactone isolated from feverfew, has exhibited potent anticancer effects against various cancers. The purpose of this report was to investigate the effect and underlying mechanism of parthenolide in human pancreatic cancer Panc-1 and BxPC3 cells. The results demonstrated that parthenolide suppressed the growth and induced apoptosis of Panc-1 and BxPC3 pancreatic cancer cells with the half maximal inhibitory concentration (IC50 ranging between 7 and 9 µM after 24 h of treatment. Significant autophagy was induced by parthenolide treatment in pancreatic cancer cells. Parthenolide treatment concentration-dependently increased the percentage of autophagic cells and significantly increased the expression levels of p62/SQSTM1, Beclin 1, and LC3II in Panc-1 cells. Punctate LC3II staining confirmed autophagy. Furthermore, inhibiting autophagy by chloroquine, 3-methyladenine, or LC3II siRNA significantly blocked parthenolide-induced apoptosis, suggesting that parthenolide induced apoptosis through autophagy in this study. In conclusion, these studies established that parthenolide inhibits pancreatic cell growth by autophagy-mediated apoptosis. Data of the present study suggest that parthenolide can serve as a potential chemotherapeutic agent for pancreatic cancer. Keywords: parthenolide, pancreatic cancer, autophagy, apoptosis, P62, cleaved PAPRP

  6. 1-Dimensional Zinc Oxide Nanomaterial Growth and Solar Cell Applications

    Science.gov (United States)

    Choi, Hyung Woo

    Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. Furthermore, ZnO is a potential material for transparent conducting oxide material competing with indium tin oxide (ITO), graphene, and carbon nanotube film. It has been known as a conductive material when doped with elements such as indium, gallium and aluminum. The solubility of those dopant elements in ZnO is still debatable; but, it is necessary to find alternative conducting materials when their form is film or nanostructure for display devices. This is a consequence of the ever increasing price of indium. In addition, a new generation solar cell (nanostructured or hybrid photovoltaics) requires compatible materials which are capable of free standing on substrates without seed or buffer layers and have the ability introduce electrons or holes pathway without blocking towards electrodes. The nanostructures for solar cells using inorganic materials such as silicon (Si), titanium oxide (TiO2), and ZnO have been an interesting topic for research in solar cell community in order to overcome the limitation of efficiency for organic solar cells. This dissertation is a study of the rational solution-based synthesis of 1-dimentional ZnO nanomaterial and its solar cell applications. These results have implications in cost effective and uniform nanomanufacturing for the next generation solar cells application by controlling growth condition and by doping transition metal element in solution.

  7. Chromosome replication, cell growth, division and shape: a personal perspective

    Directory of Open Access Journals (Sweden)

    Arieh eZaritsky

    2015-08-01

    Full Text Available The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the Bacterial Cell Division Cycle (BCD, described as The Central Dogma in Bacteriology, is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that nucleoid complexity, defined as the weighted-mean DNA content associated with the replication terminus, is directly related to cell shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, eg stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids.

  8. Glutamine Transport and Mitochondrial Metabolism in Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Mariafrancesca Scalise

    2017-12-01

    Full Text Available The concept that cancer is a metabolic disease is now well acknowledged: many cancer cell types rely mostly on glucose and some amino acids, especially glutamine for energy supply. These findings were corroborated by overexpression of plasma membrane nutrient transporters, such as the glucose transporters (GLUTs and some amino acid transporters such as ASCT2, LAT1, and ATB0,+, which became promising targets for pharmacological intervention. On the basis of their sodium-dependent transport modes, ASCT2 and ATB0+ have the capacity to sustain glutamine need of cancer cells; while LAT1, which is sodium independent will have the role of providing cancer cells with some amino acids with plausible signaling roles. According to the metabolic reprogramming of many types of cancer cells, glucose is mainly catabolized by aerobic glycolysis in tumors, while the fate of Glutamine is completed at mitochondrial level where the enzyme Glutaminase converts Glutamine to Glutamate. Glutamine rewiring in cancer cells is heterogeneous. For example, Glutamate is converted to α-Ketoglutarate giving rise to a truncated form of Krebs cycle. This reprogrammed pathway leads to the production of ATP mainly at substrate level and regeneration of reducing equivalents needed for cells growth, redox balance, and metabolic energy. Few studies on hypothetical mitochondrial transporter for Glutamine are reported and indirect evidences suggested its presence. Pharmacological compounds able to inhibit Glutamine metabolism may represent novel drugs for cancer treatments. Interestingly, well acknowledged targets for drugs are the Glutamine transporters of plasma membrane and the key enzyme Glutaminase.

  9. Overexpression of stefin A in human esophageal squamous cell carcinoma cells inhibits tumor cell growth, angiogenesis, invasion, and metastasis.

    Science.gov (United States)

    Li, Wendong; Ding, Fang; Zhang, Liyong; Liu, Zhongmin; Wu, Yu; Luo, Aiping; Wu, Min; Wang, Mingrong; Zhan, Qimin; Liu, Zhihua

    2005-12-15

    Evidence is accumulating that an inverse correlation exists between stefin A level and malignant progression. The aim of this study is to investigate the role of stefin A in human esophageal squamous cell carcinoma cells and to evaluate the possibility of stefin A for cancer therapy. We stably transfected stefin A cDNA into human EC9706 or KYSE150 esophageal squamous cell carcinoma cells. Subsequently, we evaluated the effect of stefin A overexpression on cell growth, cathepsin B activity, cell motility and invasion, tumor growth, and metastasis. Immunoanalysis was done to assess the expression of factor VIII and to support the localization of stefin A and cathepsin B. We also evaluated the effect of CA074Me, a selective membrane-permeant cathepsin B inhibitor. Both transfection of stefin A and treatment with 10 micromol/L CA074Me significantly reduced cathepsin B activity and inhibited the Matrigel invasion. Combination of both further reduced cathepsin B activity and inhibited the Matrigel invasion. Overexpression of stefin A delayed the in vitro and in vivo growth of cells and significantly inhibited lung metastasis compared with 50% of lung metastasis in xenograft mice from EC9706 or empty vector cells. Transfection with stefin A showed a dramatic reduction of factor VIII staining in the tumors of xenograft mice. Our data strongly indicate that stefin A plays an important role in the growth, angiogenesis, invasion, and metastasis of human esophageal squamous cell carcinoma cells and suggest that stefin A may be useful in cancer therapy.

  10. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  11. Crystal growth within a phase change memory cell.

    Science.gov (United States)

    Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel

    2014-07-07

    In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.

  12. The architecture of polarized cell growth: the unique status of elongating plant cells.

    Science.gov (United States)

    Baluska, Frantisek; Wojtaszek, Przemysław; Volkmann, Dieter; Barlow, Peter

    2003-06-01

    Polarity is an inherent feature of almost all prokaryotic and eukaryotic cells. In most eukaryotic cells, growth polarity is due to the assembly of actin-based growing domains at particular locations on the cell periphery. A contrasting scenario is that growth polarity results from the establishment of non-growing domains, which are actively maintained at opposite end-poles of the cell. This latter mode of growth is common in rod-shaped bacteria and, surprisingly, also in the majority of plant cells, which elongate along the apical-basal axes of plant organs. The available data indicate that the non-growing end-pole domains of plant cells are sites of intense endocytosis and recycling. These actin-enriched end-poles serve also as signaling platforms, allowing bidirectional exchange of diverse signals along the supracellular domains of longitudinal cell files. It is proposed that these actively remodeled end-poles of elongating plant cells remotely resemble neuronal synapses. Copyright 2003 Wiley Periodicals, Inc.

  13. Praziquantel synergistically enhances paclitaxel efficacy to inhibit cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Zhen Hua Wu

    Full Text Available The major challenges we are facing in cancer therapy with paclitaxel (PTX are the drug resistance and severe side effects. Massive efforts have been made to overcome these clinical challenges by combining PTX with other drugs. In this study, we reported the first preclinical data that praziquantel (PZQ, an anti-parasite agent, could greatly enhance the anticancer efficacy of PTX in various cancer cell lines, including PTX-resistant cell lines. Based on the combination index value, we demonstrated that PZQ synergistically enhanced PTX-induced cell growth inhibition. The co-treatment of PZQ and PTX also induced significant mitotic arrest and activated the apoptotic cascade. Moreover, PZQ combined with PTX resulted in a more pronounced inhibition of tumor growth compared with either drug alone in a mouse xenograft model. We tried to investigate the possible mechanisms of this synergistic efficacy induced by PZQ and PTX, and we found that the co-treatment of the two drugs could markedly decrease expression of X-linked inhibitor of apoptosis protein (XIAP, an anti-apoptotic protein. Our data further demonstrated that down-regulation of XIAP was required for the synergistic interaction between PZQ and PTX. Together, this study suggested that the combination of PZQ and PTX may represent a novel and effective anticancer strategy for optimizing PTX therapy.

  14. Nerve growth factor: role in growth, differentiation and controlling cancer cell development.

    Science.gov (United States)

    Aloe, Luigi; Rocco, Maria Luisa; Balzamino, Bijorn Omar; Micera, Alessandra

    2016-07-21

    Recent progress in the Nerve Growth Factor (NGF) research has shown that this factor acts not only outside its classical domain of the peripheral and central nervous system, but also on non-neuronal and cancer cells. This latter observation has led to divergent hypothesis about the role of NGF, its specific distribution pattern within the tissues and its implication in induction as well as progression of carcinogenesis. Moreover, other recent studies have shown that NGF has direct clinical relevance in certain human brain neuron degeneration and a number of human ocular disorders. These studies, by suggesting that NGF is involved in a plethora of physiological function in health and disease, warrant further investigation regarding the true role of NGF in carcinogenesis. Based on our long-lasting experience in the physiopathology of NGF, we aimed to review previous and recent in vivo and in vitro NGF studies on tumor cell induction, progression and arrest. Overall, these studies indicate that the only presence of NGF is unable to generate cell carcinogenesis, both in normal neuronal and non-neuronal cells/tissues. However, it cannot be excluded the possibility that the co-expression of NGF and pro-carcinogenic molecules might open to different consequence. Whether NGF plays a direct or an indirect role in cell proliferation during carcinogenesis remains to demonstrate.

  15. Stromal interaction molecule 1 regulates growth, cell cycle, and apoptosis of human tongue squamous carcinoma cells.

    Science.gov (United States)

    Cui, Xiaobo; Song, Laixiao; Bai, Yunfei; Wang, Yaping; Wang, Boqian; Wang, Wei

    2017-04-30

    Oral tongue squamous cell carcinoma (OTSCC) is the most common type of oral carcinomas. However, the molecular mechanism by which OTSCC developed is not fully identified. Stromal interaction molecule 1 (STIM1) is a transmembrane protein, mainly located in the endoplasmic reticulum (ER). STIM1 is involved in several types of cancers. Here, we report that STIM1 contributes to the development of human OTSCC. We knocked down STIM1 in OTSCC cell line Tca-8113 with lentivirus-mediated shRNA and found that STIM1 knockdown repressed the proliferation of Tca-8113 cells. In addition, we also showed that STIM1 deficiency reduced colony number of Tca-8113 cells. Knockdown of STIM1 repressed cells to enter M phase of cell cycle and induced cellular apoptosis. Furthermore, we performed microarray and bioinformatics analysis and found that STIM1 was associated with p53 and MAPK pathways, which may contribute to the effects of STIM1 on cell growth, cell cycle, and apoptosis. Finally, we confirmed that STIM1 controlled the expression of MDM2, cyclin-dependent kinase 4 (CDK4), and growth arrest and DNA damage inducible α (GADD45A) in OTSCC cells. In conclusion, we provide evidence that STIM1 contributes to the development of OTSCC partially through regulating p53 and MAPK pathways to promote cell cycle and survival. © 2017 The Author(s).

  16. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    Science.gov (United States)

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  17. DNA Walker-Regulated Cancer Cell Growth Inhibition.

    Science.gov (United States)

    Li, Feiran; Cha, Tae-Gon; Pan, Jing; Ozcelikkale, Altug; Han, Bumsoo; Choi, Jong Hyun

    2016-06-16

    We demonstrate a DNAzyme-based walker system as a controlled oligonucleotide drug AS1411 release platform for breast cancer treatment. In this system, AS1411 strands are released from fuel strands as a walker moves along its carbon nanotube track. The release rate and amount of anticancer oligonucleotides are controlled by the walker operation. With a walker system embedded within the collagen extracellular matrix, we show that this drug release system can be used for in situ cancer cell growth inhibition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Growth suppression by transforming growth factor beta 1 of human small-cell lung cancer cell lines is associated with expression of the type II receptor.

    Science.gov (United States)

    Nørgaard, P; Damstrup, L; Rygaard, K; Spang-Thomsen, M; Skovgaard Poulsen, H

    1994-05-01

    Nine human small-cell lung cancer cell lines were treated with transforming growth factor beta 1 (TGF-beta 1). Seven of the cell lines expressed receptors for transforming growth factor beta (TGF-beta-r) in different combinations between the three human subtypes I, II and III, and two were receptor negative. Growth suppression was induced by TGF-beta 1 exclusively in the five cell lines expressing the type II receptor. For the first time growth suppression by TGF-beta 1 of a cell line expressing the type II receptor without coexpression of the type I receptor is reported. No effect on growth was observed in two cell lines expressing only type III receptor and in TGF-beta-r negative cell lines. In two cell lines expressing all three receptor types, growth suppression was accompanied by morphological changes. To evaluate the possible involvement of the retinoblastoma protein (pRb) in mediating the growth-suppressive effect of TGF-beta 1, the expression of functional pRb, as characterised by nuclear localisation, was examined by immunocytochemistry. Nuclear association of pRb was only seen in two of the five TGF-beta 1-responsive cell lines. These results indicate that in SCLC pRb is not required for mediation of TGF-beta 1-induced growth suppression.

  19. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Rosener, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  20. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science Oak Ridge National Lab., TN (United States)); Rosener, B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  1. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2.

    Science.gov (United States)

    Miyahara, Daichi; Oishi, Isao; Makino, Ryuichi; Kurumisawa, Nozomi; Nakaya, Ryuma; Ono, Tamao; Kagami, Hiroshi; Tagami, Takahiro

    2016-04-22

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2.

  2. Lipid raft involvement in yeast cell growth and death

    Directory of Open Access Journals (Sweden)

    Faustino eMollinedo

    2012-10-01

    Full Text Available The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Crytococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+ and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  3. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Payton-Stewart, Florastina [Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA (United States); Tilghman, Syreeta L. [Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA (United States); Williams, LaKeisha G. [Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA (United States); Winfield, Leyte L., E-mail: lwinfield@spelman.edu [Department of Chemistry, Spelman College, Atlanta, GA (United States)

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  4. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Deng, Tianzheng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Zhang Yongjie [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Feng Feng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Yan [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)], E-mail: yanjin@fmmu.edu.cn

    2008-07-28

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 {mu}m) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering.

  5. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Directory of Open Access Journals (Sweden)

    Seyhan Turk

    2017-02-01

    Full Text Available Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

  6. A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space

    Science.gov (United States)

    Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian

    2008-08-01

    Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

  7. Acute cholesterol depletion leads to net loss of the organic osmolyte taurine in Ehrlich Lettré tumor cells

    DEFF Research Database (Denmark)

    Villumsen, Kasper Rømer; Duelund, Lars; Lambert, Ian Henry

    2010-01-01

    In mammalian cells, the organic osmolyte taurine is accumulated by the Na-dependent taurine transporter TauT and released though the volume- and DIDS-sensitive organic anion channel. Incubating Ehrlich Lettré tumor cells with methyl-ß-cyclodextrin (5 mM, 1 h) reduces the total cholesterol pool to...

  8. Models of lipid droplets growth and fission in adipocyte cells.

    Science.gov (United States)

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the catabolism

  9. Why Cells Grow and Divide? General Growth Mechanism and How it Defines Cells’ Growth, Reproduction and Metabolic Properties

    Science.gov (United States)

    Shestopaloff, Yuri K.

    2015-02-01

    We consider a general growth mechanism, which acts at cellular level and above (organs, systems and whole organisms). Using its mathematical representation, the growth equation, we study the growth and division mechanisms of amoeba and fission yeast Schizosaccharomyces pombe. We show how this mechanism, together with biomolecular machinery, governs growth and reproduction of cells, and these organisms in particular. This mechanism provides revealing answers to fundamental questions of biology, like why cells grow and divide, why and when cells’ growth stops. It also sheds light on questions like why and how life originated and developed. Solving the growth equation, we obtain analytical expression for the growth curve of fission yeast as a function of geometrical characteristics and nutrient influxes for RNA and protein synthesis, and compare the computed growth curves with 85 experiments. Statistical evaluation shows that these growth curves correspond to experimental data significantly better than all previous approximations. Also, using the general growth mechanism, we show how metabolic characteristics of cells, their size and evolutionary traits relate, considering fission yeast. In particular, we found that fission yeast S. pombe consumes about 16-18 times more nutrients for maintenance needs than for biomass synthesis.

  10. Low-Dose Paclitaxel Inhibits Tumor Cell Growth by Regulating Glutaminolysis in Colorectal Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chaoxiang Lv

    2017-05-01

    Full Text Available Paclitaxel (PTX is a natural alkaloid isolated from the bark of a tree, Taxus brevifolia, and is currently used to treat a variety of tumors. Recently, it has been found that low-dose PTX is a promising treatment for some cancers, presenting few side effects. However, antitumor mechanisms of low-dose PTX (<1 nM have rarely been illuminated. Here we report a new antitumor mechanism of low-dose PTX in colorectal carcinoma cells. We treated colorectal carcinoma HCT116 cells with PTX at 0.1 and 0.3 nM for 0, 1, 2, or 3 days, and found that low-dose PTX inhibits cell growth without altering cell morphology and cell cycle. There was a significant decrease of pH in culture media with 0.3 nM PTX for 3 days. Also, lactate production was significantly increased in a dose- and time-dependent manner. Furthermore, expression of glutaminolysis-related genes GLS, SLC7A11 and SLC1A5 were significantly decreased in the colorectal carcinoma cells treated with low-dose PTX. Meanwhile, protein expression levels of p53 and p21 increased significantly in colorectal carcinoma cells so treated. In summary, low-dose PTX down-regulated glutaminolysis-related genes and increased their lactate production, resulting in decreased pH of tumor microenvironments and inhibition of tumor cell growth. Up-regulation of p53 and p21 in colorectal carcinoma cells treated with low-dose PTX also contributed to inhibition of tumor cell growth.

  11. Glucose Signaling-Mediated Coordination of Cell Growth and Cell Cycle in Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Stefano Busti

    2010-06-01

    Full Text Available Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module, the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.

  12. Direct chemical measurement of DNA synthesis and net rates of differentiation of rat lens epithelial cells in vivo: applied to the selenium cataract.

    Science.gov (United States)

    Cenedella, R J

    1987-05-01

    This report describes a direct chemical method for rapidly estimating DNA synthesis and net rates of epithelial cell differentiation in the ocular lens in vivo. DNA synthesis in the lens of control and selenium-treated rats (12- or 13 days of age) was estimated by chemically isolating and measuring trichloroacetic acid (TCA)-insoluble 3H from the lens following injection of [3H]thymidine. Labeled substrate for DNA synthesis peaked in the lens at 1 hr after injection, decreased markedly by the third hour and was essentially gone by hour 12. Synthesis of labeled DNA in the lens was largely complete by about 3 hr. The [3H]DNA content of the whole lens, measured as TCA-insoluble 3H, remained constant for at least 4 months. The distribution of labeled epithelial cells between the epithelial-cell layer and fiber-cell mass was followed for up to 1 month after injection by measuring the ratio of [3H]DNA in the capsule (epithelial-cell layer) to lens body. Between days 2-3 and day 14 after injection, the ratio of [3H]DNA in the epithelial-cell layer to lens fiber cells decreased linearly in a semilogarithmic plot of the ratio vs. time; i.e. the rate of change of the ratio followed first-order kinetics. Thus, the rate constant (k) for the rate of change in the ratio of [3H]DNA in the capsule layer to lens body can provide an estimate of the percentage of the labeled epithelial cells which leave the capsule per day through differentiation into fiber cells. An apparent rate constant of 0.27 day-1 was estimated from the mean of five experiments; i.e. 27% of labeled epithelial cells were differentiating into cortical fiber cells per day. Therefore, about 70% of the germinative epithelial cells would be replaced every 4 days in these rats. This value is in good agreement with results of studies using autoradiographic technics. The selenium cataract is reported to involve rapid damage to lens epithelial cells. Incorporation of [3H]thymidine into DNA was decreased by at least 60

  13. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  14. Effect of ambient-level gas-phase peroxides on foliar injury, growth, and net photosynthesis in Japanese radish (Raphanus sativus)

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuan, E-mail: xuan66chen@yahoo.co.j [Chinese Research Academy of Environmental Science, No.8, Dayangfang, Anwai, Chaoyang District, Beijing 100012 (China); Aoki, Masatoshi [Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu-shi, Tokyo 183-8509 (Japan); Takami, Akinori [National Institute for Environmental Studies, Onogawa 16-2, Tsukuba-shi, Ibaraki 305-8506 (Japan); Chai Fahe [Chinese Research Academy of Environmental Science, No.8, Dayangfang, Anwai, Chaoyang District, Beijing 100012 (China); Hatakeyama, Shiro [Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu-shi, Tokyo 183-8509 (Japan)

    2010-05-15

    To investigate the effects of ambient-level gas-phase peroxides concurrent with O{sub 3} on foliar injury, photosynthesis, and biomass in herbaceous plants, we exposed Japanese radish (Raphanus sativus) to clean air, 50 ppb O{sub 3}, 100 ppb O{sub 3}, and 2-3 ppb peroxides + 50 ppb O{sub 3} in outdoor chambers. Compared with exposure to 100 ppb O{sub 3}, exposure to 2-3 ppb peroxides + 50 ppb O{sub 3} induced greater damage in foliar injury, net photosynthetic rates and biomass; the pattern of foliar injury and the cause of net photosynthetic rate reduction also differed from those occurring with O{sub 3} exposure alone. These results indicate for the first time that sub-ppb peroxides + 50 ppb O{sub 3} can cause more severe damage to plants than 100 ppb O{sub 3}, and that not only O{sub 3}, but also peroxides, could be contributing to the herbaceous plant damage and forest decline observed in Japan's air-polluted urban and remote mountains areas. - Ambient-level gas-phase peroxides coexisted with 50 ppb O{sub 3} may contribute to the herbaceous plants damage and forest decline observed in Japan.

  15. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  16. Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro.

    Science.gov (United States)

    Makarević, Jasmina; Tsaur, Igor; Juengel, Eva; Borgmann, Hendrik; Nelson, Karen; Thomas, Christian; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A

    2016-02-15

    Despite impressive survival benefits from new agents to treat metastasized prostate cancer (PCa), progressive drug resistance hinders long-term response and restricts the efficacy of subsequent therapy. Due to reported antitumor activity of amygdalin and growing popularity for complementary and alternative medicine the potential of this natural, widely used substance to exert antineoplastic effects on prostate cancer cells has been assessed. LNCaP (castration-sensitive), DU-145 and PC3 cells (castration-resistant) were exposed to different concentrations of amygdalin for 24h or 2weeks. Cell growth was measured by the MTT test, clonal formation by the clonogenic assay. Flow cytometry served to investigate apoptosis and cell cycle phases. Cell cycle regulating proteins and the mTOR-akt signaling axis were analyzed by western blotting. Amygdalin dose-dependently diminished tumor cell growth with maximum effects at 10mg/ml. Apoptosis of PC3 and LNCaP but not of DU-145 cells was reduced, whereas colony formation was suppressed in all cell lines. A decrease in the number of G2/M- and S-phase cells along with an elevated number of G0/G1-phase cells was recorded. The cell cycle proteins cdk 1, cdk 2 and cdk 4 as well as cyclin A, cyclin B and cyclin D3 were modulated by amygdalin after both 24h and 2weeks. Distinct effects on p19 and p27 expression and on Akt, Rictor and Raptor activation became evident only after 2weeks. Amygdalin exhibits significant antitumor activity in both castration-sensitive and castration-resistant PCa cell lines and merits further evaluation for therapeutic purposes. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Understanding pollen tube growth: the hydrodynamic model versus the cell wall model

    NARCIS (Netherlands)

    Zonia, L.; Munnik, T.

    2011-01-01

    Scientific progress stimulates the evolution of models used to understand and conceptualize biological behaviors. The widely accepted cell wall model of pollen tube growth explains stochastic growth of the apical pectin wall, but fails to explain the mechanism driving oscillations in growth and cell

  18. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonon, Anna; Mangolini, Alessandra [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Pinton, Paolo [Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, 44121 Ferrara (Italy); Senno, Laura del [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Aguiari, Gianluca, E-mail: dsn@unife.it [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy)

    2013-11-22

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new

  19. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    Science.gov (United States)

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. © 2015 Poultry Science Association Inc.

  20. Feeder Cell Type Affects the Growth of In Vitro Cultured Bovine Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Islam M. Saadeldin

    2017-01-01

    Full Text Available Trophectoderm cells are the foremost embryonic cells to differentiate with prospective stem-cell properties. In the current study, we aimed at improving the current approach for trophoblast culture by using granulosa cells as feeders. Porcine granulosa cells (PGCs compared to the conventional mouse embryonic fibroblasts (MEFs were used to grow trophectoderm cells from hatched bovine blastocysts. Isolated trophectoderm cells were monitored and displayed characteristic epithelial/cuboidal morphology. The isolated trophectoderm cells expressed mRNA of homeobox protein (CDX2, cytokeratin-8 (KRT8, and interferon tau (IFNT. The expression level was higher on PGCs compared to MEFs throughout the study. In addition, primary trophectoderm cell colonies grew faster on PGCs, with a doubling time of approximately 48 hrs, compared to MEFs. PGCs feeders produced a fair amount of 17β-estradiol and progesterone. We speculated that the supplementation of sex steroids and still-unknown factors during the trophoblasts coculture on PGCs have helped to have better trophectoderm cell’s growth than on MEFs. This is the first time to use PGCs as feeders to culture trophectoderm cells and it proved superior to MEFs. We propose PGCs as alternative feeders for long-term culture of bovine trophectoderm cells. This model will potentially benefit studies on the early trophoblast and embryonic development in bovines.

  1. Suramin inhibits growth and transforming growth factor-beta 1 (TGF-beta 1) binding in osteosarcoma cell lines

    NARCIS (Netherlands)

    Kloen, P.; Jennings, C. L.; Gebhardt, M. C.; Springfield, D. S.; Mankin, H. J.

    1994-01-01

    Autocrine production of growth factors has been shown to be involved in the multistep process of tumorigenesis. The ability of suramin, a polyanionic anti-parasitic drug, to block growth factor-induced cell proliferation makes it a potential antineoplastic drug. We studied the effects of suramin on

  2. Knockdown of asparagine synthetase (ASNS) suppresses cell proliferation and inhibits tumor growth in gastric cancer cells.

    Science.gov (United States)

    Yu, Qingxiang; Wang, Xiaoyu; Wang, Li; Zheng, Jia; Wang, Jiang; Wang, Bangmao

    2016-10-01

    Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine. ASNS is deemed as a promising therapeutic target and its expression is associated with the chemotherapy resistance in several human cancers. However, its role in gastric cancer tumorigenesis has not been investigated. In this study, we employed small interfering RNA (siRNA) to transiently knockdown ASNS in two gastric cancer cell lines, AGS and MKN-45, followed by growth rate assay and colony formation assay. Dose response curve analysis was performed in AGS and MKN-45 cells with stable ASNS knockdown to assess sensitivity to cisplatin. Xenograft experiment was performed to examine in vivo synergistic effects of ASNS depletion and cisplatin on tumor growth. Expression level of ASNS was evaluated in human patient samples using quantitative PCR. Kaplan-Meier curve analysis was performed to evaluate association between ASNS expression and patient survival. Transient knockdown of ASNS inhibited cell proliferation and colony formation in AGS and MKN-45 cells. Stable knockdown of ASNS conferred sensitivity to cisplatin in these cells. Depletion of ASNS and cisplatin treatment exerted synergistic effects on tumor growth in AGS xenografts. Moreover, ASNS was found to be up-regulated in human gastric cancer tissues compared with matched normal colon tissues. Low expression of ASNS was significantly associated with better survival in gastric cancer patients. ASNS may contribute to gastric cancer tumorigenesis and may represent a novel therapeutic target for prevention or intervention of gastric cancer.

  3. Modeling safety requirements of an FMS using Petri-nets

    Science.gov (United States)

    Hanna, Moheb M.; Buck, A. A.; Smith, R.

    1993-08-01

    This paper is concerned with the modelling of safety requirements using Petri nets as a tool to model and simulate a Flexible Manufacturing System (FMS). The FMS cell described comprises a pick and place robot, a multi-head drilling machine together with a vision system and illustrates how the hierarchical structure of Petri nets can be used to ensure that all fail- safe requirements are satisfied; block diagrams together with fully detailed example Petri nets are given. The work demonstrates the use of cell and robot control Petro nets together with robot subnets for the x, y and z axes and associated output nets; the control and output nets are linked together with a safety net. Individual machines are linked with the control and safety nets of an FMS at cell level. The paper also illustrates how a Petri net can act as a decision maker during image inspection and identifies the unsafe conditions that can arise within an FMS.

  4. Engagement of SIRPα inhibits growth and induces programmed cell death in acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Mahban Irandoust

    Full Text Available BACKGROUND: Recent studies show the importance of interactions between CD47 expressed on acute myeloid leukemia (AML cells and the inhibitory immunoreceptor, signal regulatory protein-alpha (SIRPα on macrophages. Although AML cells express SIRPα, its function has not been investigated in these cells. In this study we aimed to determine the role of the SIRPα in acute myeloid leukemia. DESIGN AND METHODS: We analyzed the expression of SIRPα, both on mRNA and protein level in AML patients and we further investigated whether the expression of SIRPα on two low SIRPα expressing AML cell lines could be upregulated upon differentiation of the cells. We determined the effect of chimeric SIRPα expression on tumor cell growth and programmed cell death by its triggering with an agonistic antibody in these cells. Moreover, we examined the efficacy of agonistic antibody in combination with established antileukemic drugs. RESULTS: By microarray analysis of an extensive cohort of primary AML samples, we demonstrated that SIRPα is differentially expressed in AML subgroups and its expression level is dependent on differentiation stage, with high levels in FAB M4/M5 AML and low levels in FAB M0-M3. Interestingly, AML patients with high SIRPα expression had a poor prognosis. Our results also showed that SIRPα is upregulated upon differentiation of NB4 and Kasumi cells. In addition, triggering of SIRPα with an agonistic antibody in the cells stably expressing chimeric SIRPα, led to inhibition of growth and induction of programmed cell death. Finally, the SIRPα-derived signaling synergized with the activity of established antileukemic drugs. CONCLUSIONS: Our data indicate that triggering of SIRPα has antileukemic effect and may function as a potential therapeutic target in AML.

  5. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells.

    Science.gov (United States)

    Lukhele, Sindiswa T; Motadi, Lesetja R

    2016-09-01

    Cervical cancer remains a global health related issue among females of Sub-Saharan Africa, with over half a million new cases reported each year. Different therapeutic regimens have been suggested in various regions of Africa, however, over a quarter of a million women die of cervical cancer, annually. This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies. In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines. To achieve our aim, phytochemical screening, MTT assay, cell growth analysis, flow cytometry, morphology analysis, Western blot, caspase 3/7 assay, and ATP measurement assay were conducted. Results obtained indicate that both cannabidiol and Cannabis sativa extracts were able to halt cell proliferation in all cell lines at varying concentrations. They further revealed that apoptosis was induced by cannabidiol as shown by increased subG0/G1 and apoptosis through annexin V. Apoptosis was confirmed by overexpression of p53, caspase 3 and bax. Apoptosis induction was further confirmed by morphological changes, an increase in Caspase 3/7 and a decrease in the ATP levels. In conclusion, these data suggest that cannabidiol rather than Cannabis sativa crude extracts prevent cell growth and induce cell death in cervical cancer cell lines.

  6. Professional Enterprise NET

    CERN Document Server

    Arking, Jon

    2010-01-01

    Comprehensive coverage to help experienced .NET developers create flexible, extensible enterprise application code If you're an experienced Microsoft .NET developer, you'll find in this book a road map to the latest enterprise development methodologies. It covers the tools you will use in addition to Visual Studio, including Spring.NET and nUnit, and applies to development with ASP.NET, C#, VB, Office (VBA), and database. You will find comprehensive coverage of the tools and practices that professional .NET developers need to master in order to build enterprise more flexible, testable, and ext

  7. Growth Hormone differentially modulates chemoresistance in human endometrial adenocarcinoma cell lines.

    Science.gov (United States)

    Gentilin, Erica; Minoia, Mariella; Bondanelli, Marta; Tagliati, Federico; Degli Uberti, Ettore C; Zatelli, Maria Chiara

    2017-06-01

    Growth Hormone may influence neoplastic development of endometrial epithelium towards endometrial adenocarcinoma, which is one of the most occurring tumors in acromegalic patients. Since chemoresistance often develops in advanced endometrial adenocarcinoma, we investigated whether Growth Hormone might influence the development of chemoresistance to drugs routinely employed in endometrial adenocarcinoma treatment, such as Doxorubicin, Cisplatin, and Paclitaxel. Growth Hormone and Growth Hormone receptor expression was assessed by immunofluorescence in two endometrial adenocarcinoma cell lines, AN3 CA and HEC-1-A cells. Growth Hormone effects were assessed investigating cell viability, caspase3/7 activation, ERK1/2, and protein kinase C delta protein expression. AN3 CA and HEC-1-A cells display Growth Hormone and Growth Hormone receptor. Growth Hormone does not influence cell viability in both cells lines, but significantly reduces caspase 3/7 activation in AN3 CA cells, an effect blocked by a Growth Hormone receptor antagonist. Growth Hormone rescues AN3 CA cells from the inhibitory effects of Doxorubicin and Cisplatin on cell viability, while it has no effect on Paclitaxel. Growth Hormone does not influence the pro-apoptotic effects of Doxorubicin, but is capable of rescuing AN3 CA cells from the pro-apoptotic effects of Cisplatin. On the other hand, Growth Hormone did not influence the effects of Doxorubicin and Paclitaxel on HEC-1A cell viability. The protective action of Growth Hormone towards the effects of Doxorubicin may be mediated by ERK1/2 activation, while the pro-apoptotic effects of Cisplatin may be mediated by protein kinase C delta inhibition. All together our results indicate that Growth Hormone may differentially contribute to endometrial adenocarcinoma chemoresistance. This may provide new insights on novel therapies against endometrial adenocarcinoma chemoresistant aggressive tumors.

  8. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice.

    Science.gov (United States)

    König, Simone; Nitzki, Frauke; Uhmann, Anja; Dittmann, Kai; Theiss-Suennemann, Jennifer; Herrmann, Markus; Reichardt, Holger M; Schwendener, Reto; Pukrop, Tobias; Schulz-Schaeffer, Walter; Hahn, Heidi

    2014-01-01

    Basal cell carcinoma (BCC) belongs to the group of non-melanoma skin tumors and is the most common tumor in the western world. BCC arises due to mutations in the tumor suppressor gene Patched1 (Ptch). Analysis of the conditional Ptch knockout mouse model for BCC reveals that macrophages and dendritic cells (DC) of the skin play an important role in BCC growth restraining processes. This is based on the observation that a clodronate-liposome mediated depletion of these cells in the tumor-bearing skin results in significant BCC enlargement. The depletion of these cells does not modulate Ki67 or K10 expression, but is accompanied by a decrease in collagen-producing cells in the tumor stroma. Together, the data suggest that cutaneous macrophages and DC in the tumor microenvironment exert an antitumor effect on BCC.

  9. Plasticity in sunflower leaf and cell growth under high salinity.

    Science.gov (United States)

    Céccoli, G; Bustos, D; Ortega, L I; Senn, M E; Vegetti, A; Taleisnik, E

    2015-01-01

    A group of sunflower lines that exhibit a range of leaf Na(+) concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na(+) accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt-treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na(+) accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na(+) -including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na(+) -excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw-puzzle shape, whereas in treated plants, they tended to retain closer-to-circular shapes and a lower number of lobes. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Danshen extract circumvents drug resistance and represses cell growth in human oral cancer cells.

    Science.gov (United States)

    Yang, Cheng-Yu; Hsieh, Cheng-Chih; Lin, Chih-Kung; Lin, Chun-Shu; Peng, Bo; Lin, Gu-Jiun; Sytwu, Huey-Kang; Chang, Wen-Liang; Chen, Yuan-Wu

    2017-12-29

    Danshen is a common traditional Chinese medicine used to treat neoplastic and chronic inflammatory diseases in China. However, the effects of Danshen on human oral cancer cells remain relatively unknown. This study investigated the antiproliferative effects of a Danshen extract on human oral cancer SAS, SCC25, OEC-M1, and KB drug-resistant cell lines and elucidated the possible underlying mechanism. We investigated the anticancer potential of the Danshen extract in human oral cancer cell lines and an in vivo oral cancer xenograft mouse model. The expression of apoptosis-related molecules was evaluated through Western blotting, and the concentration of in vivo apoptotic markers was measured using immunohistochemical staining. The antitumor effects of 5-fluorouracil and the Danshen extract were compared. Cell proliferation assays revealed that the Danshen extract strongly inhibited oral cancer cell proliferation. Cell morphology studies revealed that the Danshen extract inhibited the growth of SAS, SCC25, and OEC-M1 cells by inducing apoptosis. The Flow cytometric analysis indicated that the Danshen extract induced cell cycle G0/G1 arrest. Immunoblotting analysis for the expression of active caspase-3 and X-linked inhibitor of apoptosis protein indicated that Danshen extract-induced apoptosis in human oral cancer SAS cells was mediated through the caspase pathway. Moreover, the Danshen extract significantly inhibited growth in the SAS xenograft mouse model. Furthermore, the Danshen extract circumvented drug resistance in KB drug-resistant oral cancer cells. The study results suggest that the Danshen extract could be a potential anticancer agent in oral cancer treatment.

  11. Regulation of DU145 prostate cancer cell growth by Scm-like with ...

    Indian Academy of Sciences (India)

    2012-12-08

    Dec 8, 2012 ... Collectively, our findings indicate that human SFMBT2 may regulate cell growth via epigenetic regulation of HOXB13 gene expression in DU145 prostate cancer cells. [Lee K, Na W , Maeng J-H, Wu H and Ju B-G 2013 Regulation of DU145 prostate cancer cell growth by Scm-like with four mbt domains 2. J.

  12. Breviscapine suppresses the growth of non-small cell lung cancer ...

    Indian Academy of Sciences (India)

    Breviscapine (BVP) has previously been shown to inhibit the proliferation of hepatocellular carcinoma cells.However, little is known about the effects of BVP on non-small cell lung cancer (NSCLC) growth. Here, we aimedto study the effects of BVP on human NSCLC growth. We employed A549, NCL-H460 and A549 cells ...

  13. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... and immunocytochemical staining of cell nuclei. After 6 days in culture in the absence of growth factors, nuclear BrdUrd incorporation was detected in 30% of fetal chromaffin cells, 1.5% of neonatal cells, and 0.1% of adult cells. Addition of 10 nM IGF-I or IGF-II increased the fraction of BrdUrd-labeled nuclei to 50...... and 10- to 20-fold in adult chromaffin cells compared with the effect of each growth factor alone. In contrast, the action of bFGF and NGF added together in the absence of IGFs was not synergistic or additive. IGF-II acted also as a survival factor on neonatal chromaffin cells and the cell survival...

  14. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    Science.gov (United States)

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  15. CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth

    Directory of Open Access Journals (Sweden)

    Vita Golubovskaya

    2017-10-01

    Full Text Available CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer.

  16. CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth.

    Science.gov (United States)

    Golubovskaya, Vita; Berahovich, Robert; Zhou, Hua; Xu, Shirley; Harto, Hizkia; Li, Le; Chao, Cheng-Chi; Mao, Mike Ming; Wu, Lijun

    2017-10-21

    CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor)-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment) from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer.

  17. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco A, H.; Cardona, W. [Universidad Andres Bello, Vina del Mar (Chile). Dept. de Ciencias Quimicas]. E-mail: hcarrasco@unab.cl; Espinoza C, L.; Gallardo, C.; Catalan M, K. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Quimica; Cardile, V.; Lombardo, L. [University of Catania (Italy). Dept. of Physiological Sciences; Cuellar F, M. [Universidad de Valparaiso (Chile). Facultad de Farmacia; Russo, A. [University of Catania (Italy). Dept. of Biological Chemistry, Medical Chemistry and Molecular Biology

    2008-07-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p < 0,001) more active than eugenol, with IC{sub 50} values in DU-145 cells of 19.02 x 10{sup -6} and 21.5 x 10{sup -6} mol L{sup -1}, respectively, and in KB cells of 18.11 x 10{sup -6} and 21.26 x 10{sup -6} mol L{sup -1}, respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  18. Combined Effects of Growth Hormone and Mineral Trioxide Aggregate on Growth, Differentiation, and Angiogenesis in Human Dental Pulp Cells.

    Science.gov (United States)

    Yun, Hyung-Mun; Chang, Seok-Woo; Park, Kyung-Ran; Herr, Lan; Kim, Eun-Cheol

    2016-02-01

    The aim of this study was to evaluate the effects of growth hormone (GH) on mineral trioxide aggregate (MTA) with regard to cell adhesion, growth, odontoblastic differentiation, and angiogenesis in human dental pulp cells and the underlying signal pathway mechanisms. Cell adhesion and proliferation were assessed by adhesion analysis and cell counting. Differentiation was examined by alkaline phosphatase activity, alizarin red staining, and reverse transcriptase polymerase chain reaction for marker genes. Angiogenesis was evaluated by human umbilical vein endothelial cell migration and capillary tube formation assays. Signaling pathways were analyzed by Western blotting and confocal microscopy. Combined treatment with GH and MTA enhanced cell adhesion, growth, alkaline phosphatase activity, calcified nodules, expression of marker mRNAs, migration, and capillary tube formation, compared with treatment with MTA or GH alone. In addition, GH plus MTA increased expression of bone morphogenetic protein-2 mRNA, phosphorylation of Smad 1/5/8, extracellular signal-regulated kinase, JNK, and p38 MAPK, and increased the levels of the transcription factors Runx2 and Osterix, compared with MTA alone. Collectively, our results demonstrate that a combination of MTA and GH promotes cell adhesion, growth, differentiation, and angiogenesis of MTA in human dental pulp cells via the activation of bone morphogenetic protein and MAPK pathway. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Regulation of growth of LNCaP human prostate tumor cells by growth factors and steroid hormones

    NARCIS (Netherlands)

    A.L.G. Schuurmans (Alex); J. Bolt (Joan); J. Veldscholte (Jos); E. Mulder (Eppo)

    1991-01-01

    markdownabstract__Abstract__ The mitogenic activity of several growth factors on androgen responsive LNCaP human prostate tumor cells was studied. A two-fold stimulation of cell proliferation was observed after a culture period of 6 days in 1 ng EGF/ml, 10 ng TGF-α/ml or 20 ng basic FGF/ml. TGF-β

  20. Cell-to-Cell Heterogeneity in Growth Rate and Gene Expression in Methylobacterium extorquens AM1▿

    OpenAIRE

    Strovas, Tim J.; Sauter, Linda M.; Guo, Xiaofeng; Lidstrom, Mary E.

    2007-01-01

    Cell-to-cell heterogeneity in gene expression and growth parameters was assessed in the facultative methylotroph Methylobacterium extorquens AM1. A transcriptional fusion between a well-characterized methylotrophy promoter (PmxaF) and gfpuv (encoding a variant of green fluorescent protein [GFPuv]) was used to assess single-cell gene expression. Using a flowthrough culture system and laser scanning microscopy, data on fluorescence and cell size were obtained over time through several growth cy...

  1. Cell growth and cell cycle in Saccharomyces cerevisiae: basic regulatory design and protein-protein interaction network.

    Science.gov (United States)

    Alberghina, Lilia; Mavelli, Gabriella; Drovandi, Guido; Palumbo, Pasquale; Pessina, Stefania; Tripodi, Farida; Coccetti, Paola; Vanoni, Marco

    2012-01-01

    In this review we summarize the major connections between cell growth and cell cycle in the model eukaryote Saccharomyces cerevisiae. In S. cerevisiae regulation of cell cycle progression is achieved predominantly during a narrow interval in the late G1 phase known as START (Pringle and Hartwell, 1981). At START a yeast cell integrates environmental and internal signals (such as nutrient availability, presence of pheromone, attainment of a critical size, status of the metabolic machinery) and decides whether to enter a new cell cycle or to undertake an alternative developmental program. Several signaling pathways, that act to connect the nutritional status to cellular actions, are briefly outlined. A Growth & Cycle interaction network has been manually curated. More than one fifth of the edges within the Growth & Cycle network connect Growth and Cycle proteins, indicating a strong interconnection between the processes of cell growth and cell cycle. The backbone of the Growth & Cycle network is composed of middle-degree nodes suggesting that it shares some properties with HOT networks. The development of multi-scale modeling and simulation analysis will help to elucidate relevant central features of growth and cycle as well as to identify their system-level properties. Confident collaborative efforts involving different expertises will allow to construct consensus, integrated models effectively linking the processes of cell growth and cell cycle, ultimately contributing to shed more light also on diseases in which an altered proliferation ability is observed, such as cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Crescimento, teor e composição do óleo essencial de melissa cultivada sob malhas fotoconversoras Growth, content and composition of lemon balm essential oil cultivated under color shading nets

    Directory of Open Access Journals (Sweden)

    Renata da Silva Brant

    2009-08-01

    Full Text Available A utilização de malhas fotoconversoras para o cultivo de algumas espécies ornamentais e olerícolas tornou-se comum. Diante da grande influência que a radiação solar exerce sobre os vegetais, esta pesquisa foi realizada com o objetivo de avaliar o efeito da intensidade e da qualidade espectral da luz transmitida pelas malhas fotoconversoras (Chromatinet® em relação a aspectos fisiológicos de crescimento (teor, rendimento e composição química do óleo essencial de Melissa officinalis L. Em delineamento inteiramente casualizado, foram dispostos quatro tratamentos e cinco repetições, sendo cada parcela composta de quatro vasos (uma planta por vaso. Os tratamentos foram caracterizados por plantas de melissa cultivadas a pleno sol, em malha preta (50%, em malha Chromatinet® vermelha (50% e em Chromatinet® azul (50%. As características avaliadas consistiram em: fitomassa seca de folhas, caules, parte aérea, raízes e total; razão raiz/parte aérea; área foliar total; razão de área foliar; razão de peso foliar; área foliar específica; teor, rendimento e composição química do óleo essencial. A utilização de malhas no cultivo de melissa favoreceu o crescimento, independentemente da cor, em relação ao cultivo a pleno sol. Sob a malha vermelha houve menores teor e rendimento óleo essencial, porém apresentou o maior teor de citral.The use of color shading nets for cultivation of some ornamentals and vegetables has become common. Thus, observing the great influence of the solar radiation on the plant physiology, the objective of this research was to evaluate the the quantity and quality effects of spectral light transmitted through color shading nets (Chromatinet® in Melissa officinalis L., including physiological aspects as:growth ,content and chemistry composition. Four treatments and five replications were disposed in a completely randomized design, being each experimental unit composed by four pots (one plant per pot

  3. Growth of normal mouse vaginal epithelial cells in and on collagen gels.

    OpenAIRE

    Iguchi, T.; Uchima, F D; Ostrander, P L; Bern, H A

    1983-01-01

    Sustained growth in primary culture of vaginal epithelial cells from ovariectomized adult BALB/cCrgl mice embedded within or seeded on collagen gel matrix was achieved in a serum-free medium composed of Ham's F-12 medium/Dulbecco's modified Eagle's medium, 1:1 (vol/vol), supplemented with insulin, bovine serum albumin fraction V, epidermal growth factor, cholera toxin, and transferrin. Three-dimensional growth of vaginal epithelial cells occurred inside the collagen gel matrix. Cell numbers i...

  4. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells.

    Science.gov (United States)

    Li, Hui; Zhou, Fusheng; Du, Wenhui; Dou, Jinfa; Xu, Yu; Gao, Wanwan; Chen, Gang; Zuo, Xianbo; Sun, Liangdan; Zhang, Xuejun; Yang, Sen

    2016-05-01

    Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  5. Plasticity of tumor cell invasion: governance by growth factors and cytokines

    NARCIS (Netherlands)

    Odenthal, J.; Takes, R.P.; Friedl, P.

    2016-01-01

    Tumor cell migration, the basis for metastatic dissemination, is an adaptive process which depends upon coordinated cell interaction with the environment, influencing cell-matrix and cell-cell adhesion, cytoskeletal dynamics and extracellular matrix remodeling. Growth factors and cytokines, released

  6. Effect of Different Feeding on Feed Conversion and Growth of Common Carp (Cyprinus carpio in Floating Net Cage Culture at Jatiluhur Dike

    Directory of Open Access Journals (Sweden)

    N.B.P Utomo

    2007-01-01

    Full Text Available This experiment was conducted to evaluate the effectiveness of two feeding methods commonly used in cage culture of carp Cyprinus carpio at Jatiluhur Lake, Purwakarta. Common carp in mean weight of 24.29±4.29 gram were reared in floating net cage 7×7×3 m3, for 70 days rearing.  Fish were fed on a commercial diet containing 30% protein at 5 times daily.  Experimental treatment was feeding technique, i.e., by 6% of body weight, and at satiation for the second treatment.  The results showed that the application of "at satiation feeding method" was more effective than "fixed method" (6% of body weight indicating with food conversion ratio of 1.86 versus 1.91. Production of fish fed on the diet using at satiation method for 70 days was 1,241 kg/cage. Keywords: common carp, Cyprinus carpio, FCR, floating net cage, at satiation   ABSTRAK Salah satu cara untuk menekan biaya dalam usaha budidaya ikan secara intensif adalah dengan penggunaan pakan secera efisien agar ikan tumbuh optimal dan pakan yang terbuang seminimal mungkin. Penelitian dilakukan di Waduk Jatiluhur, Purwakarta.  Ikan mas (Cyprinus carpio ukuran bobot awal rata-rata 24,29±4,29 gram dipelihara dalam jaring apung ukuran 7×7×3 m3, selama 70 hari.  Ikan diberi pakan dengan frekuensi yang sama sebanyak 5 kali/hari. Perlakuan pada penelitian ini adalah teknik pemberian pakan, yaitu ikan pada jaring pertama diberi pakan sebanyak 6% dari bobot biomassa, sementara pada jaring kedua ikan diberi pakan sekenyangnya (at satiation.  Hasil penelitian menunjukkan bahwa pemberian pakan dengan metode sekenyangnya (at satiation menghasilkan nilai FCR sebesar 1,86 yang relatif lebih efisien dibandingkan dengan sebanyak 6% berdasarkan bobot biomassa (1,91. Produktivitas akhir ikan dengan pemberian pakan sekenyangnya 70 hari pemeliharaan dalam jaring apung di waduk Jatiluhur mencapai 1.241 kg. Kata kunci: ikan mas, Cyprinus carpio, FCR, Keramba jaring apung, at satiation

  7. Expression of transforming growth factor-beta (TGF-beta) receptors, TGF-beta 1 and TGF-beta 2 production and autocrine growth control in osteosarcoma cells

    NARCIS (Netherlands)

    Kloen, P.; Jennings, C. L.; Gebhardt, M. C.; Springfield, D. S.; Mankin, H. J.

    1994-01-01

    Transforming growth factor-beta (TGF-beta) is a polypeptide with multiple physiological functions. Isoforms of this growth factor have important roles in control of the cell cycle, in regulation of cell-cell interactions and in growth and development. Malignant transformation has been shown to be

  8. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines.

    Science.gov (United States)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M; Poulsen, H S

    1992-06-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell lung cancer cell lines express the EGF receptor.

  9. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth

    Science.gov (United States)

    Feillet, Celine; van der Horst, Gijsbertus T. J.; Levi, Francis; Rand, David A.; Delaunay, Franck

    2015-01-01

    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer. PMID:26029155

  10. Raman Spectral Dynamics of Single Cells in the Early Stages of Growth Factor Stimulation

    OpenAIRE

    Takanezawa, Sota; Morita, Shin-ichi; Ozaki, Yukihiro; Sako, Yasushi

    2015-01-01

    Cell fates change dynamically in response to various extracellular signals, including growth factors that stimulate differentiation and proliferation. The processes underlying cell-fate decisions are complex and often include large cell-to-cell variations, even within a clonal population in the same environment. To understand the origins of these cell-to-cell variations, we must detect the internal dynamics of single cells that reflect their changing chemical milieu. In this study, we used th...

  11. Growth suppression by transforming growth factor beta 1 of human small-cell lung cancer cell lines is associated with expression of the type II receptor

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K

    1994-01-01

    was observed in two cell lines expressing only type III receptor and in TGF-beta-r negative cell lines. In two cell lines expressing all three receptor types, growth suppression was accompanied by morphological changes. To evaluate the possible involvement of the retinoblastoma protein (pRb) in mediating...... the growth-suppressive effect of TGF-beta 1, the expression of functional pRb, as characterised by nuclear localisation, was examined by immunocytochemistry. Nuclear association of pRb was only seen in two of the five TGF-beta 1-responsive cell lines. These results indicate that in SCLC pRb is not required...

  12. Unmasking a Growth-promoting Effect of the Adrenocorticotropic Hormone in Y1 Mouse Adrenocortical Tumor Cells

    National Research Council Canada - National Science Library

    Claudimara F. P. Lotfi; Zana Todorovic; Hugo A. Armelin; Bernard P. Schimmer

    1997-01-01

    The adrenocorticotropic hormone (ACTH) inhibits the growth of Y1 mouse adrenocortical tumor cells as well as normal adrenocortical cells in culture but stimulates adrenocortical cell growth in vivo...

  13. WaveNet

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with a...data from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  14. Dominant suppressor mutation bypasses the sphingolipid requirement for growth of Saccharomyces cells at low pH: role of the CWP2 gene.

    Science.gov (United States)

    Skrzypek, M; Lester, R L; Spielmann, P; Zingg, N; Shelling, J; Dickson, R C

    2000-11-01

    Strains of Saccharomyces cerevisiae termed sphingolipid compensatory (SLC) do not grow at low pH when the cells lack sphingolipids. To begin to understand why sphingolipids are required for growth at low pH, we isolated derivatives of SLC strains, termed low pH resistant (LprR), carrying the LPR suppressor gene that allows growth at pH 4.1 when cells lack sphingolipids. Suppression is due to mutation of a single nuclear gene. The LPR suppressor gene functions, at least in part, by enhancing the ability of cells lacking sphingolipids to generate a net efflux of protons in suspension fluid with a pH range of 4.0-6.0. The LPR suppressor gene also enables cells lacking sphingolipids to maintain their intracellular pH near neutrality when the pH of the suspension fluid is low, unlike cells lacking the suppressor gene, which cannot maintain their intracellular pH in the face of a low external pH. These results demonstrate that some functions(s) of sphingolipids necessary for growth at low pH can be bypassed by a suppressor mutation. Attempts to clone the LPR suppressor gene were not successful, but they led to the isolation of the CWP2 gene, which encodes a major mannoprotein component of the outer cell wall. It was isolated because an increased copy number has the unusual property of increasing the frequency at which LprR strains arise. As we show here, part of the reason for this effect is that the CWP2 gene is essential for generating a net efflux of protons and for controlling intracellular pH in LprR strains that lack sphingolipids. These results suggest new cellular functions for the Cwp2 protein.

  15. [Grape seed extract inhibits the growth of prostate cancer PC-3 cells].

    Science.gov (United States)

    Huang, Ting-Ting; Shang, Xue-Jun; Yao, Gen-Hong; Ge, Jing-Ping; Teng, Wen-Hui; Sun, Yi; Huang, Yu-Feng

    2008-04-01

    To investigate the inhibitory effect of grape seed extract (GSE) on the growth of prostate cancer PC-3 cells. PC-3 cells were treated with GSE at the concentration of 100, 200 and 300 microg/ml for 24, 48 and 72 hours, respectively. The the inhibitory effect of GSE on the growth of the PC-3 cells and the kidney cells of SD rats was determined by MTT reduction assay, with primarily cultured kidney cells of 1-3 days old SD rats as the normal control. GSE significantly inhibited the growth of PC-3 cells in a concentration- and time-dependent manner, but had only a mild inhibitory effect on the kidney cells. GSE inhibits the growth of prostate cancer PC-3 cells and can be used as a new drug for the treatment of prostate cancer.

  16. Control of Vascular Smooth Muscle Cell Growth by Connexin 43

    Directory of Open Access Journals (Sweden)

    Chintamani eJoshi

    2012-06-01

    Full Text Available Connexin 43 (Cx43, the principal gap junction protein in vascular smooth muscle cells (VSMCs, regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC stimulator BAY 41-2272 (BAY, or the Cx inducer diallyl disulfide (DADS significantly reduced proliferation after 72 h compared to vehicle controls. Bromodeoxyuridine uptake revealed reduction (p<.001 in DNA synthesis after 6 h and flow cytometry showed reduced (40% S phase cell numbers after 16 h in DADS-treated cells compared to controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at the MAPK-sensitive serine (Ser255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and the PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared to controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays an important role in regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSMCs.

  17. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...... use of CP-nets — because it means that the function representation and the translations (which are a bit mathematically complex) no longer are parts of the basic definition of CP-nets. Instead they are parts of the invariant method (which anyway demands considerable mathematical skills...

  18. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  19. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  20. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    -net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...

  1. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Carol Ann, E-mail: carol.greene@auckland.ac.nz; Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  2. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2.Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation.These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  3. How cotton fibers elongate: a tale of linear cell-growth mode.

    Science.gov (United States)

    Qin, Yong-Mei; Zhu, Yu-Xian

    2011-02-01

    Cotton fibers (cotton lint) are single-celled trichomes that differentiate from the ovule epidermis. Unidirectional and fast-growing cells generally expand at the dome-shaped apical zone (tip-growth mode); however, previous studies suggest that elongating fiber cells expand via a diffuse-growth mode. Tip-localized Ca(2+) gradient and active secretary vesicle trafficking are two important phenomena of tip-growth. Recently, a high Ca(2+) gradient is found in the cytoplasm of fast-elongating cotton fiber cells near the growing tip. Several protein coding genes participating in vesicle coating and transport are highly expressed in elongating fiber cells. Taken together with the observation that ethylene acts as a positive regulator for cotton fiber and several Arabidopsis tissues that are known to elongate via tip growth prompted us to propose a linear-growth mode for similar cell types. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Targeted disruption of EBNA1 in EBV-infected cells attenuated cell growth.

    Science.gov (United States)

    Noh, Ka-Won; Park, Jihyun; Kang, Myung-Soo

    2016-04-01

    Epstein Barr virus (EBV)-encoded nuclear antigen-1 (EBNA1) plays a pivotal in an EBV episome replication and persistence. Despite considerable attempts, there are no EBV drugs or vaccines. We attempted to eradicate EBV episomes by targeting EBNA1 using the transcription activator-like effector nucleases (TALEN) (E1TN). E1TN-mediated transient knockout (KO) of EBNA1 reduced EBNA1 expression, and caused significant loss of EBV genomes and progressive death of EBV-infected cells. Furthermore, when a mixture of EBV-infected Burkitt's lymphoma (BL) cells and EBV-negative BL cells was targeted by E1TN, EBV-negative cells were counter-selected while most EBV-infected cells died, further substantiating that EBNA1 KO caused selective death of EBV-infected cells. TALEN-mediated transient targeting of EBNA1 attenuated the growth of EBV-infected cells, implicating a possible therapeutic application of E1TN for EBV-associated disorders. [BMB Reports 2016; 49(4): 226-231].

  5. PAX2 regulates ADAM10 expression and mediates anchorage-independent cell growth of melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sophia Boyoung Lee

    Full Text Available PAX transcription factors play an important role during development and carcinogenesis. In this study, we investigated PAX2 protein levels in melanocytes and melanoma cells by Western Blot and immunofluorescence analysis and characterized the role of PAX2 in the pathogenesis of melanoma. In vitro we found weak PAX2 protein expression in keratinocytes and melanocytes. Compared to melanocytes increased PAX2 protein levels were detectable in melanoma cell lines. Interestingly, in tissue sections of melanoma patients nuclear PAX2 expression strongly correlated with nuclear atypia and the degree of prominent nucleoli, indicating an association of PAX2 with a more atypical cellular phenotype. In addition, with chromatin immunoprecipitation assay, PAX2 overexpression and PAX2 siRNA we present compelling evidence that PAX2 can regulate ADAM10 expression, a metalloproteinase known to play important roles in melanoma metastasis. In human tissue samples we found co-expression of PAX2 and ADAM10 in melanocytes of benign nevi and in melanoma cells of patients with malignant melanoma. Importantly, the downregulation of PAX2 by specific siRNA inhibited the anchorage independent cell growth and decreased the migratory and invasive capacity of melanoma cells. Furthermore, the downregulation of PAX2 abrogated the chemoresistance of melanoma cells against cisplatin, indicating that PAX2 expression mediates cell survival and plays important roles during melanoma progression.

  6. Comparison of growth and efficiency of dietary energy utilization by growing pigs offered feeding programs based on the metabolizable energy or the net energy system.

    Science.gov (United States)

    Acosta, J; Patience, J F; Boyd, R D

    2016-04-01

    The NE system describes the useful energy available for growth better than the ME system. The use of NE in diet formulation should maintain growth performance and carcass parameters when diets contain a diversity of ingredients. This study compared the growth performance of pigs on diets formulated using either the ME or the NE system. A total of 944 gilts and 1,110 castrates (40.8 ± 2.0 kg initial BW) were allotted to group pens and assigned to 1 of 5 different feeding programs according to a randomized complete block design. The 5 treatments included: a corn-soybean meal control diet (CTL), a corn-soybean meal diet plus corn distiller's dried grains with solubles (DDGS), formulated to be equal in ME to the CTL diet (ME-D), a corn-soybean meal diet plus corn DDGS, formulated to be equal in NE to the CTL diet (NE-D), a corn-soybean meal diet plus corn DDGS and corn germ meal, to be equal in ME to the CTL diet (ME-DC) and a corn-soybean meal diet plus corn DDGS and corn germ meal, formulated to be equal in NE to the CTL diet (NE-DC). When required, fat was added as an energy source. Pigs were harvested at an average BW of 130.3 ± 4.0 kg. Growth performance was not affected by treatment ( = 0.581, = 0. 177, and = 0.187 for ADG, ADFI, and G:F, respectively). However, carcass growth decreased with the addition of coproducts except for the NE-D treatment ( = 0.016, = 0.001, = 0.018, = 0.010, and = 0.010 for dressing percentage, HCW, carcass ADG, back fat, and loin depth, respectively). Carcass G:F and lean percentage did not differ among treatments ( = 0.109 and = 0.433, respectively). On the other hand, NE intake decreased ( = 0.035) similarly to that of carcass gain, suggesting a relationship between NE intake and energy retention. Calculations of NE per kilogram of BW gain differed among treatments ( = 0.010), but NE per kilogram of carcass was similar among treatments ( = 0.640). This suggests that NE may be better than ME at explaining the carcass results

  7. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  8. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  9. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    Science.gov (United States)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  10. Control of cell growth on 3D-printed cell culture platforms for tissue engineering.

    Science.gov (United States)

    Tan, Zhikai; Liu, Tong; Zhong, Juchang; Yang, Yikun; Tan, Weihong

    2017-12-01

    Biocompatible tissue growth has excellent prospects for tissue engineering. These tissues are built over scaffolds, which can influence aspects such as cell adhesion, proliferation rate, morphology, and differentiation. However, the ideal 3D biological structure has not been developed yet. Here, we applied the electro-hydrodynamic jet (E-jet) 3D printing technology using poly-(lactic-co-glycolic acid, PLGA) solution to print varied culture platforms for engineered tissue structures. The effects of different parameters (electrical voltage, plotting speed, and needle sizes) on the outcome were investigated. We compared the biological compatibility of the 3D printed culture platforms with that of random fibers. Finally, we used the 3D-printed PLGA platforms to culture fibroblasts, the main cellular components of loose connective tissue. The results show that the E-jet printed platforms could guide and improve cell growth. These highly aligned fibers were able to support cellular alignment and proliferation. Cell angle was consistent with the direction of the fibers, and cells cultured on these fibers showed a much faster migration, potentially enhancing wound healing performance. Thus, the potential of this technology for 3D biological printing is large. This process can be used to grow biological scaffolds for the engineering of tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3281-3292, 2017. © 2017 Wiley Periodicals, Inc.

  11. Arsenic trioxide inhibits cell growth and motility via up-regulation of let-7a in breast cancer cells.

    Science.gov (United States)

    Shi, Ying; Cao, Tong; Huang, Hua; Lian, Chaoqun; Yang, Ying; Wang, Zhiwei; Ma, Jia; Xia, Jun

    2017-10-05

    Arsenic trioxide (ATO) has been reported to exert its anti-cancer activities in human cancers. However, the molecular mechanism of ATO-triggered anti-tumor activity has not been fully elucidated. Recently, multiple studies demonstrated that ATO could regulate miRNAs in human cancers. Therefore, in this study, we investigated whether ATO regulated let-7a in breast cancer cells. We found that ATO upregulated let-7a level in breast cancer cells. We also found that up-regulation of let-7a inhibited cell growth and induced apoptosis and retarded cell migration and invasion. We also observed that up-regulation of let-7a enhanced cell growth inhibition and invasion suppression induced by ATO treatment. Our findings suggest that ATO suppressed cell growth, stimulated apoptosis, and retarded cell invasion partly via upregulation of let-7a in breast cancer cells. Our study provides a new anti-tumor mechanism of ATO treatment in breast cancer.

  12. Growth techniques used to develop CDS/CDTE thin film solar cells ...

    African Journals Online (AJOL)

    The method used to grow thin film CdS/CdTe solar cells has been described. Electronic material layers usually grow in three different modes; layer-by-layer growth mode, layer and cluster growth mode (Stransky-Krastanov) and cluster formation growth mode. Techniques such as molecular beam epitaxy (MBE), metal ...

  13. The effects of stochasticity at the single-cell level and cell size control on the population growth

    OpenAIRE

    Lin, Jie; Amir, Ariel

    2016-01-01

    Establishing a quantitative connection between the population growth rate and the generation times of single cells is a prerequisite for understanding evolutionary dynamics of microbes. However, existing theories fail to account for the experimentally observed correlations between mother-daughter generation times that are unavoidable when cell size is controlled for - which is essentially always the case. Here, we study population-level growth in the presence of cell size control and corrobor...

  14. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth

    Science.gov (United States)

    Reactive stromal cells are an integral part of tumor microenvironment (TME) and interact with cancer cells to regulate their growth. Although targeting stromal cells could be a viable therapy to regulate the communication between TME and cancer cells, identification of stromal targets that make canc...

  15. Human chromosome 21 determines growth factor dependence in human/mouse B-cell hybridomas

    NARCIS (Netherlands)

    Ebeling, S. B.; Bos, H. M.; Slater, R.; Overkamp, W. J.; Cuthbert, A. P.; Newbold, R. F.; Zdzienicka, M. Z.; Aarden, L. A.

    1998-01-01

    Interleukin 6 (IL-6) serves as a growth factor for mouse plasmacytomas. As a model for IL-6-mediated growth of plasmacytomas, we study IL-6-dependent B-cell hybridomas, which can be generated through fusion of B lymphocytes with a plasmacytoma cell line, e.g., SP2/0. In the present report, we have

  16. Breviscapine suppresses the growth of non-small cell lung cancer ...

    Indian Academy of Sciences (India)

    2017-02-10

    Feb 10, 2017 ... Breviscapine (BVP) has previously been shown to inhibit the proliferation of hepatocellular carcinoma cells. However, little is known about the effects of BVP on non-small cell lung cancer (NSCLC) growth. Here, we aimed to study the effects of BVP on human NSCLC growth. We employed A549, NCL-H460 ...

  17. Compounds in a particular production lot of tryptic soy broth inhibit Staphylococcus aureus cell growth.

    Science.gov (United States)

    Ishii, Masaki; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2015-06-01

    Staphylococcus aureus Newman strain and several methicillin-resistant S. aureus (MRSA) clinical isolates were grown on agar plates prepared with conventional lots of tryptic soy broth (TSB). Cell growth of these strains was inhibited on agar plates containing TSB of a particular product lot (lot A), whereas the cell growth of S. aureus RN4220 strain and several other MRSA clinical isolates was not inhibited. The cell growth of a strain of S. epidermidis was also inhibited on agar plates containing TSB of lot A, whereas the cell growth of Bacillus subtilis, Lactococcus lactis, Klebsiella pneumonia, Salmonella enterica, Serratia marcescens, Pseudomonas aeruginosa, and Escherichia coli was not inhibited. Although cell growth of the Newman strain was inhibited on agar plates containing TSB of lot A that was autoclaved in stainless steel or glass containers, cell growth inhibition was not observed when the medium was autoclaved in polypropylene containers. Compounds that inhibited the cell growth of the Newman strain were extracted from a polypropylene tube that was preincubated with liquid medium prepared from TSB of lot A. These findings suggest that polypropylene-binding compounds in TSB of lot A inhibited the cell growth of S. aureus Newman strain, some MRSA clinical isolates, and S. epidermidis.

  18. Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth.

    Science.gov (United States)

    Song, Yan

    2016-01-01

    Muscle growth can be divided into embryonic and postnatal periods. During the embryonic period, mesenchymal stem cells proliferate and differentiate to form muscle fibers. Postnatal muscle growth (hypertrophy) is characterized by the enlargement of existing muscle fiber size. Satellite cells (also known as adult myoblasts) are responsible for hypertrophy. The activity of satellite cells can be regulated by their extracellular matrix (ECM). The ECM is composed of collagens, proteoglycans, non-collagenous glycoproteins, cytokines and growth factors. Proteoglycans contain a central core protein with covalently attached glycosaminoglycans (GAGs: chondroitin sulfate, keratan sulfate, dermatan sulfate, and heparan sulfate) and N- or O-linked glycosylation chains. Membrane-associated proteoglycans attach to the cell membrane either through a glycosylphosphatidylinositol anchor or transmembrane domain. The GAGs can bind proteins including cytokines and growth factors. Both cytokines and growth factors play important roles in regulating satellite cell growth and development. Cytokines are generally associated with immune cells. However, cytokines can also affect muscle cell development. For instance, interleukin-6, tumor necrosis factor-α, and leukemia inhibitory factor have been reported to affect the proliferation and differentiation of satellite cells and myoblasts. Growth factors are potent stimulators or inhibitors of satellite cell proliferation and differentiation. The proper function of some cytokines and growth factors requires an interaction with the cell membrane-associated proteoglycans to enhance the affinity to bind to their primary receptors to initiate downstream signal transduction. This chapter is focused on the interaction of membrane-associated proteoglycans with cytokines and growth factors, and their role in satellite cell growth and development.

  19. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available Is it possible to develop a building that uses a net zero amount of water? In recent years it has become evident that it is possible to have buildings that use a net zero amount of electricity. This is possible when the building is taken off...

  20. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris

    2014-01-01

    SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...

  1. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  2. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  3. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    Science.gov (United States)

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  4. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Hwang, Pyoung-Han [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Yi, Ho-Keun [Department of Biochemistry, School of Dentistry, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Nam, Sang-Yun [Department of Alternative Therapy, School of Alternative Medicine and Health Science, Jeonju University, Jeonju 561-712 (Korea, Republic of); Lee, Dae-Yeol, E-mail: leedy@chonbuk.ac.kr [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of)

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  5. Growth control of the eukaryote cell: a systems biology study in yeast

    Directory of Open Access Journals (Sweden)

    Castrillo Juan I

    2007-04-01

    Full Text Available Abstract Background Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Results Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. Conclusion This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for

  6. Apoptotic cells activate AMP-activated protein kinase (AMPK) and inhibit epithelial cell growth without change in intracellular energy stores.

    Science.gov (United States)

    Patel, Vimal A; Massenburg, Donald; Vujicic, Snezana; Feng, Lanfei; Tang, Meiyi; Litbarg, Natalia; Antoni, Angelika; Rauch, Joyce; Lieberthal, Wilfred; Levine, Jerrold S

    2015-09-11

    Apoptosis plays an indispensable role in the maintenance and development of tissues. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits the proliferation and survival of PTECs. Here, we examined the effect of apoptotic targets on PTEC cell growth (cell size during G1 phase of the cell cycle). Using a cell culture model, we show that apoptotic cells potently activate AMP-activated protein kinase (AMPK), a highly sensitive sensor of intracellular energy stores. AMPK activation leads to decreased activity of its downstream target, ribosomal protein p70 S6 kinase (p70S6K), and concomitant inhibition of cell growth. Importantly, these events occur without detectable change in intracellular levels of AMP, ADP, or ATP. Inhibition of AMPK, either pharmacologically by compound C or molecularly by shRNA, diminishes the effects of apoptotic targets and largely restores p70S6K activity and cell size to normal levels. Apoptotic targets also inhibit Akt, a second signaling pathway regulating cell growth. Expression of a constitutively active Akt construct partially relieved cell growth inhibition but was less effective than inhibition of AMPK. Inhibition of cell growth by apoptotic targets is dependent on physical interaction between apoptotic targets and PTECs but independent of phagocytosis. We conclude that receptor-mediated recognition of apoptotic targets mimics the effects of intracellular energy depletion, activating AMPK and inhibiting cell growth. By acting as sentinels of environmental change, apoptotic death may enable nearby viable cells, especially nonmigratory epithelial cells, to monitor and adapt to local stresses. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    OpenAIRE

    Kimitoshi Kohno; Noriaki Kitamura; Akihiro Kuma; Yoshihiro Yasuniwa; Takahiro Yamaguchi; Masaki Akiyama; Hiroto Izumi

    2011-01-01

    We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143) regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-li...

  8. Single-Cell Microfluidics to Study the Effects of Genome Deletion on Bacterial Growth Behavior.

    Science.gov (United States)

    Yuan, Xiaofei; Couto, Jillian M; Glidle, Andrew; Song, Yanqing; Sloan, William; Yin, Huabing

    2017-09-05

    By directly monitoring single cell growth in a microfluidic platform, we interrogated genome-deletion effects in Escherichia coli strains. We compared the growth dynamics of a wild type strain with a clean genome strain, and their derived mutants at the single-cell level. A decreased average growth rate and extended average lag time were found for the clean genome strain, compared to those of the wild type strain. Direct correlation between the growth rate and lag time of individual cells showed that the clean genome population was more heterogeneous. Cell culturability (the ratio of growing cells to the sum of growing and nongrowing cells) of the clean genome population was also lower. Interestingly, after the random mutations induced by a glucose starvation treatment, for the clean genome population mutants that had survived the competition of chemostat culture, each parameter markedly improved (i.e., the average growth rate and cell culturability increased, and the lag time and heterogeneity decreased). However, this effect was not seen in the wild type strain; the wild type mutants cultured in a chemostat retained a high diversity of growth phenotypes. These results suggest that quasi-essential genes that were deleted in the clean genome might be required to retain a diversity of growth characteristics at the individual cell level under environmental stress. These observations highlight that single-cell microfluidics can reveal subtle individual cellular responses, enabling in-depth understanding of the population.

  9. Appropriate nonwoven filters effectively capture human peripheral blood cells and mesenchymal stem cells, which show enhanced production of growth factors.

    Science.gov (United States)

    Hori, Hideo; Iwamoto, Ushio; Niimi, Gen; Shinzato, Masanori; Hiki, Yoshiyuki; Tokushima, Yasuo; Kawaguchi, Kazunori; Ohashi, Atsushi; Nakai, Shigeru; Yasutake, Mikitomo; Kitaguchi, Nobuya

    2015-03-01

    Scaffolds, growth factors, and cells are three essential components in regenerative medicine. Nonwoven filters, which capture cells, provide a scaffold that localizes and concentrates cells near injured tissues. Further, the cells captured on the filters are expected to serve as a local supply of growth factors. In this study, we investigated the growth factors produced by cells captured on nonwoven filters. Nonwoven filters made of polyethylene terephthalate (PET), biodegradable polylactic acid (PLA), or chitin (1.2-22 μm fiber diameter) were cut out as 13 mm disks and placed into cell-capturing devices. Human mesenchymal stem cells derived from adipose tissues (h-ASCs) and peripheral blood cells (h-PBCs) were captured on the filter and cultured to evaluate growth factor production. The cell-capture rates strongly depended on the fiber diameter and the number of filter disks. Nonwoven filter disks were composed of PET or PLA fibers with fiber diameters of 1.2-1.8 μm captured over 70% of leukocytes or 90% of h-ASCs added. The production of vascular endothelial growth factor (VEGF), transforming growth factor β1, and platelet-derived growth factor AB were significantly enhanced by the h-PBCs captured on PET or PLA filters. h-ASCs on PLA filters showed significantly enhanced production of VEGF. These enhancements varied with the combination of the nonwoven filter and cells. Because of the enhanced growth factor production, the proliferation of human fibroblasts increased in conditioned medium from h-PBCs on PET filters. This device consisting of nonwoven filters and cells should be investigated further for possible use in the regeneration of impaired tissues.

  10. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    Energy Technology Data Exchange (ETDEWEB)

    Taub, Mary, E-mail: biochtau@buffalo.edu

    2016-03-11

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10{sup −5} M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  11. Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Yan

    2011-09-01

    Full Text Available Abstract Background Connective tissue growth factor (CTGF has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. Results In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P 1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. Conclusions These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.

  12. Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation.

    Science.gov (United States)

    Li, Ding; Zhong, Qi; Liu, Tingting; Wang, Jufang

    2016-06-01

    In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production.

  13. AP-2γ Induces p21 Expression, Arrests Cell Cycle, Inhibits the Tumor Growth of Human Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hualei Li

    2006-07-01

    Full Text Available Activating enhancer-binding protein 2γ (AP-2γ is a member of the developmentally regulated AP-2 transcription factor family that regulates the expression of many downstream genes. Whereas the effects of AP-2α overexpression on cell growth are fairly well established, the cellular effects of AP-2γ overexpression are less well studied. Our new findings show that AP-2γ significantly upregulates p21 mRNA and proteins, inhibits cell growth, decreases clonogenic survival. Cell cycle analysis revealed that forced AP-2γ expression induced G1-phase arrest, decreased DNA synthesis, decreased the fraction of cells in S phase. AP-2γ expression also led to cyclin D1 repression, decreased Rb phosphorylation, decreased E2F activity in breast carcinoma cells. AP-2γ binding to the p21 promoter was observed in vivo, the absence of growth inhibition in response to AP-2γ expression in p21 (-/- cells demonstrated that p21 caused, at least in part, AP-2-induced cell cycle arrest. Finally, the tumor growth of human breast carcinoma cells in vivo was inhibited by the expression of AP-2γ relative to empty vector-infected cells, suggesting that AP-2γ acts as a tumor suppressor. In summary, expression of either AP-2γ or AP-2α inhibited breast carcinoma cell growth; thus, these genes may be therapeutic targets for breast cancer.

  14. Overexpression of phytosulfokine-α induces male sterility and cell growth by regulating cell wall development in Arabidopsis.

    Science.gov (United States)

    Yu, Liangliang; Liu, Yan; Liu, Yumin; Li, Qiong; Tang, Guirong; Luo, Li

    2016-12-01

    Over-production of functional PSK-α in Arabidopsis caused increases in both plant cell growth and biomass and induced male sterility by regulating cell wall development. Phytosulfokine-α (PSK-α) is a novel disulfated pentapeptide hormone that is involved in promoting plant cell growth. Although a role for PSK-α in stimulating protoplast expansion has been suggested, how PSK-α regulates cell growth in planta remains poorly understood. In this study, we found that overexpression of the normal PSK-α precursor gene AtPSK4, which resulted in high levels of PSK-α, caused longer roots and larger leaves with enlarged cells. As expected, these changes were not observed in transgenic plants overexpressing mutated AtPSK4, which generated unsulfated PSK-α. These findings confirmed the role of PSK-α in promoting plant cell growth. Furthermore, we found that overexpressing AtPSK4, but not mutated AtPSK4, induced a phenotype of male sterility that resulted from the failure of fibrous cell wall development in the endothecium. In addition, overexpressing AtPSK4 enhanced expression of a number of genes encoding expansins, which are involved in cell wall loosening. Accordingly, in addition to its role in cell growth, we propose a novel function for PSK-α signaling in the modulation of plant male sterility via regulation of cell wall development.

  15. Planning long lasting insecticide treated net campaigns: should households' existing nets be taken into account?

    Science.gov (United States)

    Yukich, Joshua; Bennett, Adam; Keating, Joseph; Yukich, Rudy K; Lynch, Matt; Eisele, Thomas P; Kolaczinski, Kate

    2013-06-14

    Mass distribution of long-lasting insecticide treated bed nets (LLINs) has led to large increases in LLIN coverage in many African countries. As LLIN ownership levels increase, planners of future mass distributions face the challenge of deciding whether to ignore the nets already owned by households or to take these into account and attempt to target individuals or households without nets. Taking existing nets into account would reduce commodity costs but require more sophisticated, and potentially more costly, distribution procedures. The decision may also have implications for the average age of nets in use and therefore on the maintenance of universal LLIN coverage over time. A stochastic simulation model based on the NetCALC algorithm was used to determine the scenarios under which it would be cost saving to take existing nets into account, and the potential effects of doing so on the age profile of LLINs owned. The model accounted for variability in timing of distributions, concomitant use of continuous distribution systems, population growth, sampling error in pre-campaign coverage surveys, variable net 'decay' parameters and other factors including the feasibility and accuracy of identifying existing nets in the field. Results indicate that (i) where pre-campaign coverage is around 40% (of households owning at least 1 LLIN), accounting for existing nets in the campaign will have little effect on the mean age of the net population and (ii) even at pre-campaign coverage levels above 40%, an approach that reduces LLIN distribution requirements by taking existing nets into account may have only a small chance of being cost-saving overall, depending largely on the feasibility of identifying nets in the field. Based on existing literature the epidemiological implications of such a strategy is likely to vary by transmission setting, and the risks of leaving older nets in the field when accounting for existing nets must be considered. Where pre-campaign coverage

  16. Planning long lasting insecticide treated net campaigns: should households’ existing nets be taken into account?

    Science.gov (United States)

    2013-01-01

    Background Mass distribution of long-lasting insecticide treated bed nets (LLINs) has led to large increases in LLIN coverage in many African countries. As LLIN ownership levels increase, planners of future mass distributions face the challenge of deciding whether to ignore the nets already owned by households or to take these into account and attempt to target individuals or households without nets. Taking existing nets into account would reduce commodity costs but require more sophisticated, and potentially more costly, distribution procedures. The decision may also have implications for the average age of nets in use and therefore on the maintenance of universal LLIN coverage over time. Methods A stochastic simulation model based on the NetCALC algorithm was used to determine the scenarios under which it would be cost saving to take existing nets into account, and the potential effects of doing so on the age profile of LLINs owned. The model accounted for variability in timing of distributions, concomitant use of continuous distribution systems, population growth, sampling error in pre-campaign coverage surveys, variable net ‘decay’ parameters and other factors including the feasibility and accuracy of identifying existing nets in the field. Results Results indicate that (i) where pre-campaign coverage is around 40% (of households owning at least 1 LLIN), accounting for existing nets in the campaign will have little effect on the mean age of the net population and (ii) even at pre-campaign coverage levels above 40%, an approach that reduces LLIN distribution requirements by taking existing nets into account may have only a small chance of being cost-saving overall, depending largely on the feasibility of identifying nets in the field. Based on existing literature the epidemiological implications of such a strategy is likely to vary by transmission setting, and the risks of leaving older nets in the field when accounting for existing nets must be considered

  17. Cell aggregation induces phosphorylation of PECAM-1 and Pyk2 and promotes tumor cell anchorage-independent growth

    Directory of Open Access Journals (Sweden)

    Yu Qiang

    2010-01-01

    Full Text Available Abstract Background Apoptosis caused by inadequate or inappropriate cell-matrix interactions is defined as anoikis. Although transformed cells are known to be anoikis-resistant, the underlying mechanisms have not been well understood. We investigated the mechanisms of anoikis resistance of tumor cells. Results We observed that cell aggregation in suspension promoted cell survival and proliferation. We demonstrated a correlation between tumor cell aggregation in suspension and cell growth in soft agar. Analysis of tyrosine kinase-mediated cell survival and growth signaling pathways revealed increased levels of tyrosine-phosphorylation of PECAM-1 and Pyk2 in cell aggregates. We also showed that PECAM-1 and Pyk2 physically interact with each other, and that PECAM-1 carrying a deletion of exons 11-16 could no longer bind to Pyk2. Furthermore, RNA interference-mediated reduction of Pyk2 and PECAM-1 protein levels reduced cell aggregation and inhibited the growth of tumor cells in soft agar. Conclusions The data demonstrated that Pyk2 and PECAM-1 were critical mediators of both anchorage-independent growth and anoikis resistance in tumor cells.

  18. Caught in the Net: Perineuronal Nets and Addiction

    Directory of Open Access Journals (Sweden)

    Megan Slaker

    2016-01-01

    Full Text Available Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM. Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs. This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.

  19. Osmotic stress confers enhanced cell integrity to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2

    Directory of Open Access Journals (Sweden)

    Alberto eScoma

    2016-05-01

    Full Text Available Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea contaminated environments is negligible. Recent laboratory evidences highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs. In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain A. borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg-1, respectively were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg-1, or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively, under atmospheric or increased HP (0.1 and 10MPa. Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1MPa in hyperosmosis-acclimated cells and at 10MPa under isosmotic conditions, supporting the hypothesis that ectoine synthesis may be primarily triggered by HP rather than osmotic stress. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-day incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in

  20. Negative growth regulation of SK-N-MC cells by bFGF defines a growth factor-sensitive point in G2

    NARCIS (Netherlands)

    Smits, V.A.J.; Peer, M.A. van; Essers, M.A.G.; Klompmaker, R.; Rijksen, G.; Medema, R.H.

    2000-01-01

    Basic fibroblast growth factor (bFGF) has been shown to induce growth inhibition of the neuroepithelioma cell line SK-N-MC. Here we show that this growth inhibition occurs in G2. We show that bFGF is active on these cells during S and early G2 phase. Therefore, this constitutes a rather unusual

  1. Pharmacological targeting of the KIT growth factor receptor: a therapeutic consideration for mast cell disorders

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Akin, C; Gilfillan, A M

    2008-01-01

    KIT is a member of the tyrosine kinase family of growth factor receptors which is expressed on a variety of haematopoietic cells including mast cells. Stem cell factor (SCF)-dependent activation of KIT is critical for mast cell homeostasis and function. However, when KIT is inappropriately...... activated, accumulation of mast cells in tissues results in mastocytosis. Such dysregulated KIT activation is a manifestation of specific activating point mutations within KIT, with the human D816V mutation considered as a hallmark of human systemic mastocytosis. A number of other activating mutations...... in KIT have recently been identified and these mutations may also contribute to aberrant mast cell growth. In addition to its role in mast cell growth, differentiation and survival, localized concentration gradients of SCF may control the targeting of mast cells to specific tissues and, once resident...

  2. Epidermal Growth Factor-Like Growth Factors Prevent Apoptosis of Alcohol-Exposed Human Placental Cytotrophoblast Cells1

    Science.gov (United States)

    Wolff, Garen S.; Chiang, Po Jen; Smith, Susan M.; Romero, Roberto; Armant, D. Randall

    2007-01-01

    Maternal alcohol abuse during pregnancy can produce an array of birth defects comprising fetal alcohol syndrome. A hallmark of fetal alcohol syndrome is intrauterine growth retardation, which is associated with elevated apoptosis of placental cytotrophoblast cells. Using a human first trimester cytotrophoblast cell line, we examined the relationship between exposure to ethanol and cytotrophoblast survival, as well as the ameliorating effects of epidermal growth factor (EGF)-like growth factors produced by human cytotrophoblast cells. After exposure to 0–100 mM ethanol, cell death was quantified by the TUNEL method, and expression of the nuclear proliferation marker, Ki67, was measured by immunohistochemistry. The mode of cell death was determined by assessing annexin V binding, caspase 3 activation, pyknotic nuclear morphology, reduction of TUNEL by caspase inhibition, and cellular release of lactate dehydrogenase. Ethanol significantly reduced proliferation and increased cell death approximately 2.5-fold through the apoptotic pathway within 1–2 h of exposure to 50 mM alcohol. Exposure to 25–50 mM ethanol significantly increased transforming growth factor alpha (TGFA) and heparin-binding EGF-like growth factor (HBEGF), but not EGF or amphiregulin (AREG). When cytotrophoblasts were exposed concurrently to 100 mM ethanol and 1 nM HBEGF or TGFA, the increase in apoptosis was prevented, while EGF ameliorated at 10 nM and AREG was weakly effective. HBEGF survival-promoting activity required ligation of either of its cognate receptors, HER1 or HER4. These findings reveal the potential for ethanol to rapidly induce cytotrophoblast apoptosis. However, survival factor induction could provide cytotrophoblasts with an endogenous cytoprotective mechanism. PMID:17392498

  3. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-05-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of /sup 125/I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound /sup 125/I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients.

  4. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Maravillas Mellado-López

    2017-01-01

    Full Text Available Adipose-derived stem cells (ASCs are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  5. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Hiroto, E-mail: h-izumi@med.uoeh-u.ac.jp; Yasuniwa, Yoshihiro; Akiyama, Masaki; Yamaguchi, Takahiro; Kuma, Akihiro; Kitamura, Noriaki; Kohno, Kimitoshi [Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 (Japan)

    2011-10-19

    We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143) regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1), aurora kinase B (AURKB) and some minichromosome maintenance complex components (MCM). However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells) and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.

  6. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Kimitoshi Kohno

    2011-10-01

    Full Text Available We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143 regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1, aurora kinase B (AURKB and some minichromosome maintenance complex components (MCM. However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.

  7. Forced Expression of ZNF143 Restrains Cancer Cell Growth.

    Science.gov (United States)

    Izumi, Hiroto; Yasuniwa, Yoshihiro; Akiyama, Masaki; Yamaguchi, Takahiro; Kuma, Akihiro; Kitamura, Noriaki; Kohno, Kimitoshi

    2011-10-19

    We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143) regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1), aurora kinase B (AURKB) and some minichromosome maintenance complex components (MCM). However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells) and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.

  8. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    Science.gov (United States)

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  9. One year growth hormone replacement therapy does not alter colonic epithelial cell proliferation in growth hormone deficient adults

    NARCIS (Netherlands)

    Beentjes, JAM; van Gorkom, BAP; Sluiter, WJ; de Vries, Emma; Kleibeuker, JH; Dullaart, RPF

    OBJECTIVE Increased colonic epithelial cell proliferation has been found in various conditions associated with increased risk of colorectal cancer including acromegaly. In a placebo-controlled study we determined the effect of growth hormone (GH) replacement therapy in GH deficient adults on the

  10. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  11. Bergenin suppresses the growth of colorectal cancer cells by ...

    African Journals Online (AJOL)

    Purpose: To investigate anticancer effects of bergenin on human colorectal cancer cell lines. Methods: Human colorectal adenocarcinoma cell line HCT116 was treated with various concentrations of bergenin for 24 and 48 h. Cell viability, apoptosis, cell cycle arrest and reactive oxygen species (ROS) level were analyzed ...

  12. The aqueous extract of Brucea javanica suppresses cell growth and alleviates tumorigenesis of human lung cancer cells by targeting mutated epidermal growth factor receptor

    Directory of Open Access Journals (Sweden)

    Kim SH

    2016-11-01

    Full Text Available Seung-Hun Kim,1,* Chun-Yen Liu,1,* Po-Wei Fan,1 Chang-Heng Hsieh,1 Hsuan-Yuan Lin,1 Ming-Chung Lee,2 Kang Fang1 1Department of Life Science, National Taiwan Normal University, Taipei, 2Brion Research Institute of Taiwan, New Taipei City, Taiwan *These authors contributed equally to this work Abstract: As a practical and safe herbal medicine, the seeds of Brucea javanica (L. Merr., were used to cure patients suffering from infectious diseases such as malaria. Recent advances revealed that the herb could also be a useful cancer therapy agent. The study demonstrated that aqueous B. javanica (BJ extract attenuated the growth of human non-small-lung cancer cells bearing mutant L858R/T790M epidermal growth factor receptor (EGFR. The reduced cell viability in H1975 cells was attributed to apoptosis. Transfection of EGFR small hairpin RNA reverted the sensitivities. When nude mice were fed BJ extract, the growth of xenograft tumors, as established by H1975 cells, was suppressed. Additional histological examination and fluorescence analysis of the resected tissues proved that the induced apoptosis mitigated tumor growth. The work proved that the BJ extract exerted its effectiveness by targeting lung cancer cells carrying mutated EGFR while alleviating tumorigenesis. Aqueous BJ extract is a good candidate to overcome drug resistance in patients undergoing target therapy. Keywords: Brucea javanica, target therapy, epidermal growth factor receptor, human lung, herbal medicine, apoptosis

  13. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D

    2011-01-01

    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  14. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  15. Instant Lucene.NET

    CERN Document Server

    Heydt, Michael

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A step-by-step guide that helps you to index, search, and retrieve unstructured data with the help of Lucene.NET.Instant Lucene.NET How-to is essential for developers new to Lucene and Lucene.NET who are looking to get an immediate foundational understanding of how to use the library in their application. It's assumed you have programming experience in C# already, but not that you have experience with search techniques such as information retrieval theory (although there will be a l

  16. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    Science.gov (United States)

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  17. Inhibition of Virus Growth by Ouabain: Effect of Ouabain on the Growth of HVJ in Chick Embryo Cells

    Science.gov (United States)

    Nagai, Yoshiyuki; Maeno, Koichiro; Iinuma, Masao; Yoshida, Tetsuya; Matsumoto, Toshisada

    1972-01-01

    The effect of ouabain (g-strophanthin), a cardiac glycoside, on the growth of several enveloped viruses was examined. It was found that the growth of HVJ (Sendai virus) in chick embryo cells was markedly inhibited by the drug at a concentration as low as 5 × 10−5m. A virus-inhibitory concentration of ouabain did not cause morphological changes in uninfected cells, nor did it have the capacity to inactivate virus infectivity. Ouabain interfered with the intracellular synthesis of viral macromolecules. Although viral ribonucleic acid and viral antigens were synthesized by the ouabain-treated cells, the rate of synthesis was slower, and the total amounts of these macromolecules were smaller than those in the untreated control cells. It is suggested that ouabain inhibits the function of membrane-bound Na, K-adenosine triphosphatase of the chick embryo cells and thus prevents accumulation of K ion in them. Accumulation of intracellular K ion to a certain level would be needed for events of exponential growth of virus to proceed, and ouabain might inhibit this step by preventing such accumulation of K ion. This view was supported by the finding that the concentration of K ion in the HVJ-infected cells was rapidly reduced by the treatment with ouabain, and that, when the ouabain-treated culture was shifted to a medium containing a higher concentration of K ion than normal medium, virus production started in parallel with the increase of intracellular K ion. The fact that the concentration of K ion in BHK-21 cells, which support virus growth in the presence of ouabain, is not reduced by the treatment with the drug also suggested this possibility. Images PMID:4335518

  18. Entropy production of a steady-growth cell with catalytic reactions

    Science.gov (United States)

    Himeoka, Yusuke; Kaneko, Kunihiko

    2014-10-01

    Cells generally convert external nutrient resources to support metabolism and growth. Understanding the thermodynamic efficiency of this conversion is essential to determine the general characteristics of cellular growth. Using a simple protocell model with catalytic reaction dynamics to synthesize the necessary enzyme and membrane components from nutrients, the entropy production per unit-cell-volume growth is calculated analytically and numerically based on the rate equation for chemical kinetics and linear nonequilibrium thermodynamics. The minimal entropy production per unit-cell growth is found to be achieved at a nonzero nutrient uptake rate rather than at a quasistatic limit as in the standard Carnot engine. This difference appears because the equilibration mediated by the enzyme exists only within cells that grow through enzyme and membrane synthesis. Optimal nutrient uptake is also confirmed by protocell models with many chemical components synthesized through a catalytic reaction network. The possible relevance of the identified optimal uptake to optimal yield for cellular growth is also discussed.

  19. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-01-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24–36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection. PMID:29022904

  20. Regulation of Cell Component Production by Growth Rate in the Group B Streptococcus

    Science.gov (United States)

    Ross, Robin A.; Madoff, Lawrence C.; Paoletti, Lawrence C.

    1999-01-01

    Group B Streptococcus (GBS) is the leading cause of bacterial sepsis and meningitis among neonates. While the capsular polysaccharide (CPS) is an important virulence factor of GBS, other cell surface components, such as C proteins, may also play a role in GBS disease. CPS production by GBS type III strain M781 was greater when cells were held at a fast (1.4-h mass-doubling time [td]) than at a slow (11-h td) rate of growth. To further investigate growth rate regulation of CPS production and to investigate production of other cell components, different serotypes and strains of GBS were grown in continuous culture in a semidefined and a complex medium. Samples were obtained after at least five generations at the selected growth rate. Cells and cell-free supernatants were processed immediately, and results from all assays were normalized for cell dry weight. All serotypes (Ia, Ib, and III) and strains (one or two strains per serotype) tested produced at least 3.6-fold more CPS at a td of 1.4 h than at a td of 11 h. Production of beta C protein by GBS type Ia strain A909 and type Ib strain H36B was also shown to increase at least 5.5-fold with increased growth rate (production at a td of 1.4 h versus 11 h). The production of alpha C protein by the same strains did not significantly change with increased growth rate. The effect of growth rate on other cell components was also investigated. Production of group B antigen did not change with growth rate, while alkaline phosphatase decreased with increased growth rate. Both CAMP factor and beta-hemolysin production increased fourfold with increased growth rate. Growth rate regulation is specific for select cell components in GBS, including beta C protein, alkaline phosphatase, beta-hemolysin, and CPS production. PMID:10464211

  1. Expression of insulin-like growth factor-2 receptors on EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Farmer, John T; Weigent, Douglas A

    2007-01-01

    In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.

  2. Priming Mesenchymal Stem Cells with Endothelial Growth Medium Boosts Stem Cell Therapy for Systemic Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Lucas Felipe de Oliveira

    2015-01-01

    Full Text Available Systemic arterial hypertension (SAH, a clinical syndrome characterized by persistent elevation of arterial pressure, is often associated with abnormalities such as microvascular rarefaction, defective angiogenesis, and endothelial dysfunction. Mesenchymal stem cells (MSCs, which normally induce angiogenesis and improve endothelial function, are defective in SAH. The central aim of this study was to evaluate whether priming of MSCs with endothelial growth medium (EGM-2 increases their therapeutic effects in spontaneously hypertensive rats (SHRs. Adult female SHRs were administered an intraperitoneal injection of vehicle solution n=10, MSCs cultured in conventional medium (DMEM plus 10% FBS, n=11, or MSCs cultured in conventional medium followed by 72 hours in EGM-2 (pMSC, n=10. Priming of the MSCs reduced the basal cell death rate in vitro. The administration of pMSCs significantly induced a prolonged reduction (10 days in arterial pressure, a decrease in cardiac hypertrophy, an improvement in endothelium-dependent vasodilation response to acetylcholine, and an increase in skeletal muscle microvascular density compared to the vehicle and MSC groups. The transplanted cells were rarely found in the hearts and kidneys. Taken together, our findings indicate that priming of MSCs boosts stem cell therapy for the treatment of SAH.

  3. The status of silicon ribbon growth technology for high-efficiency silicon solar cells

    Science.gov (United States)

    Ciszek, T. F.

    1985-01-01

    More than a dozen methods have been applied to the growth of silicon ribbons, beginning as early as 1963. The ribbon geometry has been particularly intriguing for photovoltaic applications, because it might provide large area, damage free, nearly continuous substrates without the material loss or cost of ingot wafering. In general, the efficiency of silicon ribbon solar cells has been lower than that of ingot cells. The status of some ribbon growth techniques that have achieved laboratory efficiencies greater than 13.5% are reviewed, i.e., edge-defined, film-fed growth (EFG), edge-supported pulling (ESP), ribbon against a drop (RAD), and dendritic web growth (web).

  4. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription.

    Science.gov (United States)

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; Da Silva, Daniel; Roeder, Robert G; Teichmann, Martin

    2010-09-15

    RNA polymerase III transcribes small untranslated RNAs that fulfill essential cellular functions in regulating transcription, RNA processing, translation and protein translocation. RNA polymerase III transcription activity is tightly regulated during the cell cycle and coupled to growth control mechanisms. Furthermore, there are reports of changes in RNA polymerase III transcription activity during cellular differentiation, including the discovery of a novel isoform of human RNA polymerase III that has been shown to be specifically expressed in undifferentiated human H1 embryonic stem cells. Here, we review major regulatory mechanisms of RNA polymerase III transcription during the cell cycle, cell growth and cell differentiation.

  5. Attenuated hepatitis A virus: genetic determinants of adaptation to growth in MRC-5 cells.

    OpenAIRE

    Funkhouser, A W; Purcell, R H; D'hondt, E.; Emerson, S. U.

    1994-01-01

    A live candidate hepatitis A virus vaccine, developed from the HM-175 strain and adapted to growth in primary African green monkey kidney (AGMK) cells, was adapted to growth in MRC-5 cells. The nucleotide sequence of the MRC-5 cell-adapted virus was determined and compared with the known sequence of the AGMK cell-adapted virus. Thirteen unique mutations, which occurred during passage in MRC-5 cells, were identified. Four of the unique mutations were located in a cluster in the 5' noncoding re...

  6. Expression of galectin-3 modulates T-cell growth and apoptosis.

    OpenAIRE

    Yang, R.Y.; Hsu, D K; Liu, F T

    1996-01-01

    Galectin-3 is a member (if a large family of beta-galactoside-binding animal lectins. It has been shown that the expression of galectin-3 is upregulated in proliferating cells, suggesting a possible role for this lectin in regulation of cell growth. Previously, we have shown that T cells infected with human T-cell leukemia virus type I express high levels of galectin-3, in contrast to uninfected cells, which do not express detectable amounts of this protein. In this study, we examined growth ...

  7. Optimization of dairy sludge for growth of Rhizobium cells.

    Science.gov (United States)

    Singh, Ashok Kumar; Singh, Gauri; Gautam, Digvijay; Bedi, Manjinder Kaur

    2013-01-01

    In this study dairy sludge was evaluated as an alternative cultivation medium for Rhizobium. Growth of bacterial strains at different concentrations of Dairy sludge was monitored. Maximum growth of all strains was observed at 60% Dairy sludge concentration. At 60% optical density (OD) values are 0.804 for Rhizobium trifolii (MTCC905), 0.825 for Rhizobium trifolii (MTCC906), and 0.793 for Rhizobium meliloti (MTCC100). Growth pattern of strains was observed at 60% Dairy sludge along with different synthetic media (tryptone yeast, Rhizobium minimal medium and yeast extract mannitol). Growth in 60% Dairy sludge was found to be superior to standard media used for Rhizobium. Media were optimized using 60% dairy sludge along with different concentrations of yeast extract (1-7 g/L) and mannitol (7-13 g/L) in terms of optical density at different time intervals, that is, 24, 48 and 72 hours. Maximum growth was observed in 6 g/L of yeast extract and 12 g/L of mannitol at 48-hour incubation period in all strains. The important environmental parameters such as pH were optimized using 60% dairy sludge, 60% dairy sludge +6 g/L yeast extract, and 60% dairy sludge +12 g/L mannitol. The maximum growth of all strains was found at pH 7.0. The present study recommends the use of 60% dairy sludge as a suitable growth medum for inoculant production.

  8. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  9. PhysioNet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  10. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R

    2018-01-01

    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  11. Effects of heat treatment and concentration of fish serum on cell growth in adhesion culture of Chinese hamster ovary cells

    OpenAIRE

    Fujiwara, Masashi; Tsukada, Ryohei; Shioya, Itaru; Takagi, Mutsumi

    2009-01-01

    The effects of heat treatment and concentration of fish serum (FS) on cell growth and human granulocyte-macrophage colony-stimulating factor (hGM-CSF) production in an adhesion culture of recombinant Chinese hamster ovary (CHO) cells, DR1000L4N, were investigated. The addition of heat treated FS instead of non-heat-treated FS improved cell growth in terms of cell density, which reached 60% that in 10% fetal calf serum (FCS)-containing medium (FCS medium). A decrease in FS concentration from 1...

  12. Growth of Chlamydia pneumoniae Is Enhanced in Cells with Impaired Mitochondrial Function.

    Science.gov (United States)

    Käding, Nadja; Kaufhold, Inga; Müller, Constanze; Szaszák, Marta; Shima, Kensuke; Weinmaier, Thomas; Lomas, Rodrigo; Conesa, Ana; Schmitt-Kopplin, Philippe; Rattei, Thomas; Rupp, Jan

    2017-01-01

    Effective growth and replication of obligate intracellular pathogens depend on host cell metabolism. How this is connected to host cell mitochondrial function has not been studied so far. Recent studies suggest that growth of intracellular bacteria such as Chlamydia pneumoniae is enhanced in a low oxygen environment, arguing for a particular mechanistic role of the mitochondrial respiration in controlling intracellular progeny. Metabolic changes in C. pneumoniae infected epithelial cells were analyzed under normoxic (O2 ≈ 20%) and hypoxic conditions (O2 pneumoniae under normoxia impaired mitochondrial function characterized by an enhanced mitochondrial membrane potential and ROS generation. Knockdown and mutation of the host cell ATP synthase resulted in an increased chlamydial replication already under normoxic conditions. As expected, mitochondrial hyperpolarization was observed in non-infected control cells cultured under hypoxic conditions, which was beneficial for C. pneumoniae growth. Taken together, functional and genetically encoded mitochondrial dysfunction strongly promotes intracellular growth of C. pneumoniae.

  13. Arsenic trioxide suppresses cell growth and migration via inhibition of miR-27a in breast cancer cells.

    Science.gov (United States)

    Zhang, Shunhua; Ma, Cong; Pang, Haijie; Zeng, Fanpeng; Cheng, Long; Fang, Binbin; Ma, Jia; Shi, Ying; Hong, Haiyu; Chen, Jianyan; Wang, Zhiwei; Xia, Jun

    2016-01-01

    Accumulating evidence has demonstrated that arsenic trioxide (ATO) exhibits its anti-cancer activities in a variety of human malignancies. Recent studies have revealed that ATO regulated multiple microRNAs (miRNAs) in human cancers. However, the exact mechanism of ATO-mediated tumor suppressive function has not been fully elucidated. In the present study, we explore whether ATO governed oncogenic miR-27a in breast cancer cells by multiple methods such as MTT assay, RT-PCR, Wound healing assay, Western blotting analysis, migration, Transwell invasion assay, and transfection. Our results showed that ATO inhibited cell growth, migration, invasion, and induced cell apoptosis in breast cancer cells. Further molecular analysis dissected that ATO inhibited miR-27a expression in breast cancer cells. Moreover, inhibition of miR-27a suppressed cell growth, migration, invasion, and trigged cell apoptosis, whereas overexpression of miR-27a enhanced cell growth, motility, and inhibited apoptosis in breast cancer cells. Notably, we found that miR-27a inhibitor treatment potentiates ATO-induced breast cancer cell growth inhibition, apoptosis and motility inhibition. However, overexpression of miR-27a partly abrogated ATO-mediated anti-tumor activity. Our findings provide a novel anti-tumor mechanism of ATO involved in miR-27a for the treatment of breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The intrusive growth of initial cells in re-arangement of cells in cambium of Tilia cordata Mill.

    Directory of Open Access Journals (Sweden)

    Wiesław Włoch

    2014-01-01

    Full Text Available In the cambium of linden producing wood with short period of grain inclination change (2-4 years, the intensive reorientation of cells takes place. This is possible mainly through an intrusive growth of cell ends from one radial file entering space between tangential walls of neighboring file and through unequal periclinal divisions that occur in the "initial surface". The intrusive growth is located on the longitudinal edge of a fusiform cell close to the end, and causes deviation of cell ends in a neighbouring file from the initial surface. Unequal periclinal division divides a cell with a deviated end into two derivatives, unequal in size. The one of them, which inherits the deviated end, leaves the initial surface becoming a xylem or phloem mother cell. This means that the old end is eliminated. The intensity of intrusive growth and unequal periclinal divisions is decisive for the velocity of cambial cell reorientation. The oriented intrusive growth occurs only in the initial cells. For that reason, changes in cell-ends position do not occur within one packet of cells but are distinct between neighbouring packets.

  15. Manipulation of the sodium-potassium ratio as a lever for controlling cell growth and improving cell specific productivity in perfusion CHO cell cultures.

    Science.gov (United States)

    Wang, Samantha B; Lee-Goldman, Alexandria; Ravikrishnan, Janani; Zheng, Lili; Lin, Henry

    2017-12-26

    Perfusion processes typically require removal of a continuous or semi-continuous volume of cell culture in order to maintain a desired target cell density. For fast growing cell lines, the product loss from this stream can be upwards of 35%, significantly reducing the overall process yield. As volume removed is directly proportional to cell growth, the ability to modulate growth during perfusion cell culture production thus becomes crucial. Leveraging existing media components to achieve such control without introducing additional supplements is most desirable because it decreases process complexity and eliminates safety and clearance concerns. Here, the impact of extracellular concentrations of sodium (Na) and potassium (K) on cell growth and productivity is explored. High throughput small-scale models of perfusion revealed Na:K ratios below 1 can significantly suppress cell growth by inducing cell cycle arrest in the G0/1 phase. A concomitant increase in cell specific productivity was also observed, reaching as high as 115 pg/cell/day for one cell line studied. Multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrated similar responses to lower Na:K media, indicating the universal applicability of such an approach. Product quality attributes were also assessed and revealed that effects were cell line specific, and can be acceptable or manageable depending on the phase of the drug development. Drastically altering Na and K levels in perfusion media as a lever to impact cell growth and productivity is proposed. © 2017 Wiley Periodicals, Inc.

  16. cgCorrect: a method to correct for confounding cell-cell variation due to cell growth in single-cell transcriptomics

    Science.gov (United States)

    Blasi, Thomas; Buettner, Florian; Strasser, Michael K.; Marr, Carsten; Theis, Fabian J.

    2017-06-01

    Accessing gene expression at a single-cell level has unraveled often large heterogeneity among seemingly homogeneous cells, which remains obscured when using traditional population-based approaches. The computational analysis of single-cell transcriptomics data, however, still imposes unresolved challenges with respect to normalization, visualization and modeling the data. One such issue is differences in cell size, which introduce additional variability into the data and for which appropriate normalization techniques are needed. Otherwise, these differences in cell size may obscure genuine heterogeneities among cell populations and lead to overdispersed steady-state distributions of mRNA transcript numbers. We present cgCorrect, a statistical framework to correct for differences in cell size that are due to cell growth in single-cell transcriptomics data. We derive the probability for the cell-growth-corrected mRNA transcript number given the measured, cell size-dependent mRNA transcript number, based on the assumption that the average number of transcripts in a cell increases proportionally to the cell’s volume during the cell cycle. cgCorrect can be used for both data normalization and to analyze the steady-state distributions used to infer the gene expression mechanism. We demonstrate its applicability on both simulated data and single-cell quantitative real-time polymerase chain reaction (PCR) data from mouse blood stem and progenitor cells (and to quantitative single-cell RNA-sequencing data obtained from mouse embryonic stem cells). We show that correcting for differences in cell size affects the interpretation of the data obtained by typically performed computational analysis.

  17. TideNet

    Science.gov (United States)

    2015-10-30

    query tide data sources in a desired geographic region of USA and its territories (Figure 1). Users can select a tide data source through the Google Map ...select data sources according to the desired geographic region. It uses the Google Map interface to display data from different sources. Recent...Coastal Inlets Research Program TideNet The TideNet is a web-based Graphical User Interface (GUI) that provides users with GIS mapping tools to

  18. Building Neural Net Software

    OpenAIRE

    Neto, João Pedro; Costa, José Félix

    1999-01-01

    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  19. Interaction Nets in Russian

    OpenAIRE

    Salikhmetov, Anton

    2013-01-01

    Draft translation to Russian of Chapter 7, Interaction-Based Models of Computation, from Models of Computation: An Introduction to Computability Theory by Maribel Fernandez. "In this chapter, we study interaction nets, a model of computation that can be seen as a representative of a class of models based on the notion of 'computation as interaction'. Interaction nets are a graphical model of computation devised by Yves Lafont in 1990 as a generalisation of the proof structures of linear logic...

  20. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  1. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    Directory of Open Access Journals (Sweden)

    Kanakubo Emi

    2005-09-01

    Full Text Available Abstract Background The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. Methods We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7, a powerful, heparin-binding growth factor for breast epithelial cells. Results Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Conclusion Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors.

  2. Chemotherapy drug shuts down cell growth by triggering a natural checkpoint | Center for Cancer Research

    Science.gov (United States)

    In a new study published November 23, 2016, in Molecular Cell, researchers in the CCR’s Laboratory of Cell and Developmental Signaling reported the discovery of a previously unknown route for blocking cell growth that can be activated by certain chemotherapy drugs to fight cancer. Read more...

  3. In vitro growth characteristics of human lymphoid malignancies in primary cell culture

    NARCIS (Netherlands)

    I.P. Touw (Ivo)

    1986-01-01

    textabstractThe experimental work presented in this thesis deals with the analysis of the in vitro growth and differentiation characteristics of acute lymphoblastic leukemia ( T end non-T), T cell non Hodgkin's lymphoma and B cell chronic lymphocytic leukemia in primary cell culture. For

  4. Modulation of CXCL-8 expression in human melanoma cells regulates tumor growth, angiogenesis, invasion, and metastasis.

    Science.gov (United States)

    Wu, Sheng; Singh, Seema; Varney, Michelle L; Kindle, Scott; Singh, Rakesh K

    2012-12-01

    CXCL-8, a chemokine secreted by melanoma and stromal cells, serves as a growth and angiogenic factor for melanoma progression. This study evaluated how modulation of CXCL-8 levels in melanoma cell lines with different tumorigenic and metastatic potentials affected multiple tumor phenotypes. A375P cells (CXCL-8 low expressor) were stably transfected with a CXCL-8 mammalian expression vector to overexpress CXCL-8, whereas A375SM cells (CXCL-8 high expressor) were transfected with a CXCL-8 antisense expression vector to suppress CXCL-8 expression. Subsequent cell proliferation, migration, invasion, and soft-agar colony formation were analyzed, and in vivo tumor growth and metastasis were evaluated using mouse xenograft models. Our data demonstrate that overexpression of CXCL-8 significantly enhanced primary tumor growth and lung metastasis, accompanied by increased microvessel density in vivo, as compared with vector control-transfected cells. We also observed increased clonogenic ability, growth, and invasive potential of CXCL-8 overexpressing cells in vitro. Knockdown of CXCL-8 using an antisense vector resulted in increased cell death and reduced tumor growth relative to control. Taken together, these data confirm that CXCL-8 expression plays a critical role in regulating multiple cellular phenotypes associated with melanoma growth and metastasis.

  5. Biomaterials for the programming of cell growth in oral tissues: The possible role of APA.

    Science.gov (United States)

    Salerno, Marco; Giacomelli, Luca; Larosa, Claudio

    2011-01-06

    Examples of programmed tissue response after the interaction of cells with biomaterials are a hot topic in current dental research. We propose here the use of anodic porous alumina (APA) for the programming of cell growth in oral tissues. In particular, APA may trigger cell growth by the controlled release of specific growth factors and/or ions. Moreover, APA may be used as a scaffold to promote generation of new tissue, due to the high interconnectivity of pores and the high surface roughness displayed by this material.

  6. Bone marrow-derived cells and tumor growth : Contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells

    NARCIS (Netherlands)

    Roorda, Berber D.; ter Elst, Arja; Kamps, Willem A.; de Bont, Eveline S. J. M.

    Research has provided evidence that tumor growth depends on the interaction of tumor cells with stromal cells, as already suggested in 1889 by Paget. Experimental and clinical studies have revealed that tumor stromal cells can be derived from bone marrow (BM)-derived progenitor cells, such as

  7. Exposure to Nerve Growth Factor Worsens Nephrotoxic Effect Induced by Cyclosporine A in HK-2 Cells

    Science.gov (United States)

    Lofaro, Danilo; Toteda, Giuseppina; Lupinacci, Simona; Leone, Francesca; Gigliotti, Paolo; Papalia, Teresa; Bonofiglio, Renzo

    2013-01-01

    Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkANTR and p75NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A. PMID:24244623

  8. Exposure to nerve growth factor worsens nephrotoxic effect induced by Cyclosporine A in HK-2 cells.

    Directory of Open Access Journals (Sweden)

    Donatella Vizza

    Full Text Available Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkA(NTR and p75(NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 (NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75(NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A.

  9. Multiple Mechanisms are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.; Opresko, Lee; Coffey, Robert J.; Zangar, Richard C.; Wiley, H. S.

    2008-11-14

    REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...

  10. Organotypic Cultures of Intervertebral Disc Cells: Responses to Growth Factors and Signaling Pathways Involved

    Directory of Open Access Journals (Sweden)

    Harris Pratsinis

    2015-01-01

    Full Text Available Intervertebral disc (IVD degeneration is strongly associated with low back pain, a major cause of disability worldwide. An in-depth understanding of IVD cell physiology is required for the design of novel regenerative therapies. Accordingly, aim of this work was the study of IVD cell responses to mitogenic growth factors in a three-dimensional (3D organotypic milieu, comprising characteristic molecules of IVD’s extracellular matrix. In particular, annulus fibrosus (AF cells were cultured inside collagen type-I gels, while nucleus pulposus (NP cells in chondroitin sulfate A (CSA supplemented collagen gels, and the effects of Platelet-Derived Growth Factor (PDGF, basic Fibroblast Growth Factor (bFGF, and Insulin-Like Growth Factor-I (IGF-I were assessed. All three growth factors stimulated DNA synthesis in both AF and NP 3D cell cultures, with potencies similar to those observed previously in monolayers. CSA supplementation inhibited basal DNA synthesis rates, without affecting the response to growth factors. ERK and Akt were found to be phosphorylated following growth factor stimulation. Blockade of these two signaling pathways using pharmacologic inhibitors significantly, though not completely, inhibited growth factor-induced DNA synthesis. The proposed culture systems may prove useful for further in vitro studies aiming at future interventions for IVD regeneration.

  11. Soft fibrin gels promote selection and growth of tumourigenic cells

    Science.gov (United States)

    Liu, Jing; Tan, Youhua; Zhang, Huafeng; Zhang, Yi; Xu, Pingwei; Chen, Junwei; Poh, Yeh-Chuin; Tang, Ke; Wang, Ning; Huang, Bo

    2012-01-01

    The identification of stem-cell-like cancer cells through conventional methods that depend on stem-cell markers is often unreliable. We developed a mechanical method of selecting tumourigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem-cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe-combined-immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as 10 such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice. PMID:22751180

  12. Growth factor and ultrasound-assisted bioreactor synergism for human mesenchymal stem cell chondrogenesis

    Directory of Open Access Journals (Sweden)

    Sanjukta Guha Thakurta

    2015-01-01

    Full Text Available Ultrasound at 5.0 MHz was noted to be chondro-inductive, with improved SOX-9 gene and COL2A1 protein expression in constructs that allowed for cell-to-cell contact. To achieve tissue-engineered cartilage using macroporous scaffolds, it is hypothesized that a combination of ultrasound at 5.0 MHz and transforming growth factor-β3 induces human mesenchymal stem cell differentiation to chondrocytes. Expression of miR-145 was used as a metric to qualitatively assess the efficacy of human mesenchymal stem cell conversion. Our results suggest that in group 1 (no transforming growth factor-β3, no ultrasound, as anticipated, human mesenchymal stem cells were not efficiently differentiated into chondrocytes, judging by the lack of decrease in the level of miR-145 expression. Human mesenchymal stem cells differentiated into chondrocytes in group 2 (transforming growth factor-β3, no ultrasound and group 3 (transforming growth factor-β3, ultrasound with group 3 having a 2-fold lower miR-145 when compared to group 2 at day 7, indicating a higher conversion to chondrocytes. Transforming growth factor-β3–induced chondrogenesis with and without ultrasound stimulation for 14 days in the ultrasound-assisted bioreactor was compared and followed by additional culture in the absence of growth factors. The combination of growth factor and ultrasound stimulation (group 3 resulted in enhanced COL2A1, SOX-9, and ACAN protein expression when compared to growth factor alone (group 2. No COL10A1 protein expression was noted. Enhanced cell proliferation and glycosaminoglycan deposition was noted with the combination of growth factor and ultrasound stimulation. These results suggest that ultrasound at 5.0 MHz could be used to induce chondrogenic differentiation of mesenchymal stem cells for cartilage tissue engineering.

  13. Trichosanthes kirilowii fruits inhibit non-small cell lung cancer cell growth through mitotic cell-cycle arrest.

    Science.gov (United States)

    Ni, Lulu; Zhu, Xiaowen; Gong, Chenyuan; Luo, Yinbin; Wang, Lixin; Zhou, Wuxiong; Zhu, Shiguo; Li, Yan

    2015-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Non-small cell lung cancer (NSCLC) accounts for 80% of lung cancer cases and the reported overall 5-year survival rate is less than 5%. Natural medicines have attracted much attention due to their lower toxicity and fewer side effects. Trichosanthes kirilowii Maxim (TKM) fruits are commonly used in cancer treatment in combination with other Chinese medicinal herbs. However, little is known about their biological functions and mechanisms in NSCLC cells. In this study, we investigated the efficacy of TKM fruits in NSCLC cells using cell proliferation, invasion, migration, and anchorage independent assays and a Xenograft NSCLC tumor model, and explored the possible biological mechanism by flow cytometric analysis, cDNA microarray and real-time PCR. Results showed that TKM fruits significantly suppressed NSCLC cell proliferation, migration, invasion, tumorigenicity and tumor growth, and significantly extended the survival time of NSCLC-bearing mice. Flow cytometric analysis showed that TKM fruits significantly induced G2-M arrest, necrosis and apoptosis in NSCLC cells. cDNA microarray analysis revealed that TKM fruits regulated the differential expression of 544 genes, and the differential expression of selected genes was also confirmed. Gene ontology (GO) analysis showed that 18 of first 20 biological processes were involved in cell cycle and mitosis. These results indicate that TKM fruits have certain inhibitory effect on NSCLC cells through cell-cycle and mitosis arrest, and suggest that TKM fruits may be an important resource for developing new antitumor drugs, and a potent natural product for treating patients with NSCLC.

  14. Gefitinib causes growth arrest and inhibition of metastasis in human chondrosarcoma cells.

    Science.gov (United States)

    Song, Jian; Zhu, Jiaxue; Zhao, Qiang; Tian, Baofang

    2015-01-01

    Chondrosarcomas are primary malignant cartilage-forming tumors of bone which are not responsive either to chemotherapy or radiation treatment and display potent capacity to invade locally and cause distant metastasis. Epidermal growth factor receptor (EGFR) pathway plays an important role in the development and progression of many cancers. However, the effect of EGFR inhibitor gefitinib on cell growth and metastasis in human chondrosarcoma cells is largely unknown. Features of the protein expression of EGFR in 3 human chondrosarcoma cell lines JJ2012, SW1353 and OUMS27 were analyzed. The inhibitory effects of EGFR inhibitor gefitinib on cell proliferation, cell cycle and metastasis were assessed by using MTS, flow cytometry and migration assays, respectively. The expression of metastasis-related proteins was evaluated by western blotting. All the three human chondrosarcoma cell lines expressed EGFR protein. Gefitinib significantly inhibited the growth, induced cell cycle arrest and decreased the migra- tion ability of human chondrosarcoma cells. In addition, gefitinib also reduced the expression of metastasis-related proteins, basic fibroblast growth factor (bFGF), matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9). The discovery that gefitinib inhibited the proliferation and reduced the metastatic capacity of chondrosarcoma cells may help increase the understanding of the mechanism underlying human chondrosarcoma growth and metastasis. Thus, gefitinib may represent a promising agent for controlling chondrosarcoma proliferation and metastasis.

  15. Simulation-based model checking approach to cell fate specification during Caenorhabditis elegans vulval development by hybrid functional Petri net with extension.

    Science.gov (United States)

    Li, Chen; Nagasaki, Masao; Ueno, Kazuko; Miyano, Satoru

    2009-04-27

    Model checking approaches were applied to biological pathway validations around 2003. Recently, Fisher et al. have proved the importance of model checking approach by inferring new regulation of signaling crosstalk in C. elegans and confirming the regulation with biological experiments. They took a discrete and state-based approach to explore all possible states of the system underlying vulval precursor cell (VPC) fate specification for desired properties. However, since both discrete and continuous features appear to be an indispensable part of biological processes, it is more appropriate to use quantitative models to capture the dynamics of biological systems. Our key motivation of this paper is to establish a quantitative methodology to model and analyze in silico models incorporating the use of model checking approach. A novel method of modeling and simulating biological systems with the use of model checking approach is proposed based on hybrid functional Petri net with extension (HFPNe) as the framework dealing with both discrete and continuous events. Firstly, we construct a quantitative VPC fate model with 1761 components by using HFPNe. Secondly, we employ two major biological fate determination rules - Rule I and Rule II - to VPC fate model. We then conduct 10,000 simulations for each of 48 sets of different genotypes, investigate variations of cell fate patterns under each genotype, and validate the two rules by comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo experiments. In particular, an evaluation was successfully done by using our VPC fate model to investigate one target derived from biological experiments involving hybrid lineage observations. However, the understandings of hybrid lineages are hard to make on a discrete model because the hybrid lineage occurs when the system comes close to certain thresholds as discussed by Sternberg and Horvitz in 1986. Our simulation results suggest that: Rule I

  16. Stem Cells in Tooth Development, Growth, Repair, and Regeneration.

    Science.gov (United States)

    Yu, Tian; Volponi, Ana Angelova; Babb, Rebecca; An, Zhengwen; Sharpe, Paul T

    2015-01-01

    Human teeth contain stem cells in all their mesenchymal-derived tissues, which include the pulp, periodontal ligament, and developing roots, in addition to the support tissues such as the alveolar bone. The precise roles of these cells remain poorly understood and most likely involve tissue repair mechanisms but their relative ease of harvesting makes teeth a valuable potential source of mesenchymal stem cells (MSCs) for therapeutic use. These dental MSC populations all appear to have the same developmental origins, being derived from cranial neural crest cells, a population of embryonic stem cells with multipotential properties. In rodents, the incisor teeth grow continuously throughout life, a feature that requires populations of continuously active mesenchymal and epithelial stem cells. The discrete locations of these stem cells in the incisor have rendered them amenable for study and much is being learnt about the general properties of these stem cells for the incisor as a model system. The incisor MSCs appear to be a heterogeneous population consisting of cells from different neural crest-derived tissues. The epithelial stem cells can be traced directly back in development to a Sox10(+) population present at the time of tooth initiation. In this review, we describe the basic biology of dental stem cells, their functions, and potential clinical uses. © 2015 Elsevier Inc. All rights reserved.

  17. Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding.

    Science.gov (United States)

    Marinari, Eliana; Mehonic, Aida; Curran, Scott; Gale, Jonathan; Duke, Thomas; Baum, Buzz

    2012-04-15

    The development and maintenance of an epithelium requires finely balanced rates of growth and cell death. However, the mechanical and biochemical mechanisms that ensure proper feedback control of tissue growth, which when deregulated contribute to tumorigenesis, are poorly understood. Here we use the fly notum as a model system to identify a novel process of crowding-induced cell delamination that balances growth to ensure the development of well-ordered cell packing. In crowded regions of the tissue, a proportion of cells undergo a serial loss of cell-cell junctions and a progressive loss of apical area, before being squeezed out by their neighbours. This path of delamination is recapitulated by a simple computational model of epithelial mechanics, in which stochastic cell loss relieves overcrowding as the system tends towards equilibrium. We show that this process of delamination is mechanistically distinct from apoptosis-mediated cell extrusion and precedes the first signs of cell death. Overall, this analysis reveals a simple mechanism that buffers epithelia against variations in growth. Because live-cell delamination constitutes a mechanistic link between epithelial hyperplasia and cell invasion, this is likely to have important implications for our understanding of the early stages of cancer development.

  18. CAM and Cell Fate Targeting: Molecular and Energetic Insights into Cell Growth and Differentiation

    Directory of Open Access Journals (Sweden)

    Carlo Ventura

    2005-01-01

    Full Text Available Evidence-based medicine is switching from the analysis of single diseases at a time toward an integrated assessment of a diseased person. Complementary and alternative medicine (CAM offers multiple holistic approaches, including osteopathy, homeopathy, chiropractic, acupuncture, herbal and energy medicine and meditation, all potentially impacting on major human diseases. It is now becoming evident that acupuncture can modify the expression of different endorphin genes and the expression of genes encoding for crucial transcription factors in cellular homeostasis. Extremely low frequency magnetic fields have been found to prime the commitment to a myocardial lineage in mouse embryonic stem cells, suggesting that magnetic energy may direct stem cell differentiation into specific cellular phenotypes without the aid of gene transfer technologies. This finding may pave the way to novel approaches in tissue engineering and regeneration. Different ginseng extracts have been shown to modulate growth and differentiation in pluripotent cells and to exert wound-healing and antitumor effects through opposing activities on the vascular system, prompting the hypothesis that ancient compounds may be the target for new logics in cell therapy. These observations and the subtle entanglement among different CAM systems suggest that CAM modalities may deeply affect both the signaling and transcriptional level of cellular homeostasis. Such a perception holds promises for a new era in CAM, prompting reproducible documentation of biological responses to CAM-related strategies and compounds. To this end, functional genomics and proteomics and the comprehension of the cell signaling networks may substantially contribute to the development of a molecular evidence–based CAM.

  19. CAM and cell fate targeting: molecular and energetic insights into cell growth and differentiation.

    Science.gov (United States)

    Ventura, Carlo

    2005-09-01

    Evidence-based medicine is switching from the analysis of single diseases at a time toward an integrated assessment of a diseased person. Complementary and alternative medicine (CAM) offers multiple holistic approaches, including osteopathy, homeopathy, chiropractic, acupuncture, herbal and energy medicine and meditation, all potentially impacting on major human diseases. It is now becoming evident that acupuncture can modify the expression of different endorphin genes and the expression of genes encoding for crucial transcription factors in cellular homeostasis. Extremely low frequency magnetic fields have been found to prime the commitment to a myocardial lineage in mouse embryonic stem cells, suggesting that magnetic energy may direct stem cell differentiation into specific cellular phenotypes without the aid of gene transfer technologies. This finding may pave the way to novel approaches in tissue engineering and regeneration. Different ginseng extracts have been shown to modulate growth and differentiation in pluripotent cells and to exert wound-healing and antitumor effects through opposing activities on the vascular system, prompting the hypothesis that ancient compounds may be the target for new logics in cell therapy. These observations and the subtle entanglement among different CAM systems suggest that CAM modalities may deeply affect both the signaling and transcriptional level of cellular homeostasis. Such a perception holds promises for a new era in CAM, prompting reproducible documentation of biological responses to CAM-related strategies and compounds. To this end, functional genomics and proteomics and the comprehension of the cell signaling networks may substantially contribute to the development of a molecular evidence-based CAM.

  20. Raman spectrum reveals Mesenchymal stem cells inhibiting HL60 cells growth

    Science.gov (United States)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; Lu, Xiaoxu; Tian, Jindong; Fan, Jinping; Zhong, Liyun

    2017-04-01

    Though some research results reveals that Mesenchymal stem cells (MSCs) have the ability of inhibiting tumor cells proliferation, it remains controversial about the precise interaction mechanism during MSCs and tumor cells co-culture. In this study, combing Raman spectroscopic data and principle component analysis (PCA), the biochemical changes of MSCs or Human promyelocytic leukemia (HL60) cells during their co-culture were presented. The obtained results showed that some main Raman peaks of HL60 assigned to nucleic acids or proteins were greatly higher in intensity in the late stage of co-culture than those in the early stage of co-culture while they were still lower relative to the control group, implicating that the effect of MSCs inhibiting HL60 proliferation appeared in the early stage but gradually lost the inhibiting ability in the late stage of co-culture. Moreover, some other peaks of HL60 assigned to proteins were decreased in intensity in the early stage of co-culture relative to the control group but rebounded to the level similar to the control group in the late stage, showing that the content and structure changes of these proteins might be generated in the early stage but returned to the original state in the late stage of co-culture. As a result, in the early stage of MSCs-HL60 co-culture, along with the level of Akt phosphorylation of HL60 was lowered relative to its control group, the proliferation rate of HL60 cells was decreased. And in the late stage of co-culture, along with the level of Akt phosphorylation was rebounded, the reverse transfer of Raman peaks within 875-880 cm- 1 appeared, thus MSCs lost the ability to inhibit HL60 growth and HL60 proliferation was increased. In addition, it was observed that the peak at 811 cm- 1, which is a marker of RNA, was higher in intensity in the late stage than that in the control group, indicating that MSCs might be differentiated into myofibroblast-like MSCs. In addition, PCA results also exhibited

  1. Id-1 promotes osteosarcoma cell growth and inhibits cell apoptosis via PI3K/AKT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang; Liao, Qi; Tang, Qiang [Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 300006 (China); Deng, Huan [Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang 330006 (China); Chen, Lu, E-mail: chenlu0578@163.com [Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 300006 (China)

    2016-02-12

    Accumulating evidence reveals that Id-1 is upregulated and functions as a potential tumor promoter in several human cancer types. However, the role of Id-1 in osteosarcoma (OS) is unknown. In present study, we found that Id-1 expression was elevated in OS tissues than adjacent normal bone tissues. More importantly, we demonstrated that overexpression of Id-1 is significantly correlated with tumor progression and poor survival in OS patients. Furthermore, increased expression of Id-1 was observed in OS cell lines and ectopic expression of Id-1 significantly enhanced in vitro cell proliferation and promoted in vivo tumor growth, whereas knockdown of Id-1 suppressed OS cells growth. Moreover, our experimental data revealed that Id-1 promotes cell proliferation by facilitating cell cycle progression and inhibits cell apoptosis. Mechanistically, the effects of Id-1 in OS cells is at least partly through activation of PI3K/Akt signaling pathway. Therefore, we identified a tumorigenic role of Id-1 in OS and suggested a potential therapeutic target for OS patients. - Highlights: • Id-1 expression is positively correlated in OS patients with poor prognosis. • Overexpression of Id-1 promotes OS cell growth in vitro and in vivo. • Id-1induces cell cycle progression and inhibits cell apoptosis. • PI3K/Akt signaling pathway contributed to the oncogenic effects of Id-1 in OS cells.

  2. Cyclosporine decreases vascular progenitor cell numbers after cardiac transplantation and attenuates progenitor cell growth in vitro.

    Science.gov (United States)

    Davies, William R; Wang, Shaohua; Oi, Keiji; Bailey, Kent R; Tazelaar, Henry D; Caplice, Noel M; McGregor, Christopher G A

    2005-11-01

    Recent experimental evidence suggests that the neointimal proliferation seen in cardiac allograft vasculopathy may in part derive from recipient progenitor cells. The effect of cyclosporine on these circulating progenitors in the setting of cardiac transplantation is currently unknown. Three surgical series were performed: sham operation alone, sham operation with immunosuppression, and heterotopic porcine cardiac transplantation with immunosuppression. The sham operation involved laparotomy and consecutive clamping of the abdominal aorta and inferior vena cava. Post-operative immunosuppression consisted of cyclosporine at therapeutic levels (100-300 ng/ml) and 0.5 mg/kg methylprednisolone. Endothelial outgrowth colony numbers (EOC(CFU)) and smooth muscle outgrowth colony numbers (SOC(CFU)) were quantified weekly for 4 weeks post-operatively. A series of in vitro experiments were performed to determine the effect of cyclosporine on the differentiation, migration, and proliferation of EOCs and SOCs. In the sham alone series there were no changes to either EOC(CFU) or SOC(CFU). In the sham with immunosuppression and the transplant series, both EOC(CFU) and SOC(CFU) fell in the first 2 weeks (p Cyclosporine, even at a low dose, prevented differentiation, inhibited proliferation, and attenuated migration of both EOCs and SOCs. Immunosuppression in the setting of cardiac transplantation causes a profound reduction in circulating progenitor cells capable of differentiating into endothelial and smooth muscle cells. This effect can in part be explained by the inhibitory effects of cyclosporine on progenitor growth and differentiation seen in this study.

  3. Stem cells: comprehensive treatments for amyotrophic lateral sclerosis in conjunction with growth factor delivery.

    Science.gov (United States)

    Lunn, J Simon; Hefferan, Michael P; Marsala, Martin; Feldman, Eva L

    2009-06-01

    Amyotrophic lateral sclerosis (ALS) is characterized by loss of both upper and lower motor neurons. ALS progression is complex and likely due to cellular dysfunction at multiple levels, including mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress, axonal dysfunction, reactive astrocytosis, and mutant superoxide dismutase expression, therefore, treatment must provide neuronal protection from multiple insults. A significant amount of ALS research focuses on growth factor-based therapies. Growth factors including insulin-like growth factor-I, vascular endothelial growth factor, brain-derived neurotrophic factor, and glial-derived neurotrophic factor exhibit robust neuroprotective effects on motor neurons in ALS models. Issues concerning growth factor delivery, stability and unwanted side effects slow the transfer of these treatments to human ALS patients. Stem cells represent a new therapeutic approach offering both cellular replacement and trophic support for the existing population. Combination therapy consisting of stem cells expressing beneficial growth factors may provide a comprehensive treatment for ALS.

  4. Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Zihe; Hou, Jin; Martinez Ruiz, José Luis

    2013-01-01

    .g., metabolic and cellular stresses have a strong impact on recombinant protein production. In this work, we investigated the effect of the specific growth rate on the production of two different recombinant proteins. Our results show that human insulin precursor is produced in a growth-associated manner......, whereas α-amylase tends to have a higher yield on substrate at low specific growth rates. Based on transcriptional analysis, we found that the difference in the production of the two proteins as function of the specific growth rate is mainly due to differences in endoplasmic reticulum processing, protein...... turnover, cell cycle, and global stress response. We also found that there is a shift at a specific growth rate of 0.1 h−1 that influences protein production. Thus, for lower specific growth rates, the α-amylase and insulin precursor-producing strains present similar cell responses and phenotypes, whereas...

  5. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  6. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  7. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs.

    Science.gov (United States)

    Dowling, Ryan J O; Topisirovic, Ivan; Alain, Tommy; Bidinosti, Michael; Fonseca, Bruno D; Petroulakis, Emmanuel; Wang, Xiaoshan; Larsson, Ola; Selvaraj, Anand; Liu, Yi; Kozma, Sara C; Thomas, George; Sonenberg, Nahum

    2010-05-28

    The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogen and nutrient signals to control cell proliferation and cell size. Hence, mTORC1 is implicated in a large number of human diseases--including diabetes, obesity, heart disease, and cancer--that are characterized by aberrant cell growth and proliferation. Although eukaryotic translation initiation factor 4E-binding proteins (4E-BPs) are critical mediators of mTORC1 function, their precise contribution to mTORC1 signaling and the mechanisms by which they mediate mTORC1 function have remained unclear. We inhibited the mTORC1 pathway in cells lacking 4E-BPs and analyzed the effects on cell size, cell proliferation, and cell cycle progression. Although the 4E-BPs had no effect on cell size, they inhibited cell proliferation by selectively inhibiting the translation of messenger RNAs that encode proliferation-promoting proteins and proteins involved in cell cycle progression. Thus, control of cell size and cell cycle progression appear to be independent in mammalian cells, whereas in lower eukaryotes, 4E-BPs influence both cell growth and proliferation.

  8. Using biomaterials to study stem cell mechanotransduction, growth and differentiation.

    Science.gov (United States)

    McMurray, Rebecca J; Dalby, Matthew J; Tsimbouri, P Monica

    2015-05-01

    Self-renewal and differentiation are two fundamental characteristics of stem cells. Stem cell self-renewal is critical for replenishing the stem cell population, while differentiation is necessary for maintaining tissue homeostasis. Over the last two decades a great deal of effort has been applied to discovering the processes that control these opposing stem cell fates. One way of examining the role of the physical environment is the use of biomaterial strategies that have the ability to manipulate cells without any requirement for chemical factors. The mechanism whereby cells have been found to respond to a mechanical stimulus is termed mechanotransduction, the process by which a mechanical cue (or alteration in cell spreading changing internal cellular mechanics, i.e. intracellular tension) is transduced into a chemical signal inside the cell, eliciting changes in gene expression. This can occur either directly, as a result of changes in the cell cytoskeleton, or indirectly through a series of biochemical signalling cascades. The main focus of this review is to examine the role of mechanotransduction in the differentiation and self-renewal of stem cells. In particular, we will focus on the use of biomaterials as a tool for examining mechanotrandsuctive effects on self-renewal and differentiation. © 2014 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.

  9. Growth and differentiation of human lens epithelial cells in vitro on matrix

    Science.gov (United States)

    Blakely, E. A.; Bjornstad, K. A.; Chang, P. Y.; McNamara, M. P.; Chang, E.; Aragon, G.; Lin, S. P.; Lui, G.; Polansky, J. R.

    2000-01-01

    PURPOSE: To characterize the growth and maturation of nonimmortalized human lens epithelial (HLE) cells grown in vitro. METHODS: HLE cells, established from 18-week prenatal lenses, were maintained on bovine corneal endothelial (BCE) extracellular matrix (ECM) in medium supplemented with basic fibroblast growth factor (FGF-2). The identity, growth, and differentiation of the cultures were characterized by karyotyping, cell morphology, and growth kinetics studies, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and Western blot analysis. RESULTS: HLE cells had a male, human diploid (2N = 46) karyotype. The population-doubling time of exponentially growing cells was 24 hours. After 15 days in culture, cell morphology changed, and lentoid formation was evident. Reverse transcription-polymerase chain reaction (RT-PCR) indicated expression of alphaA- and betaB2-crystallin, fibroblast growth factor receptor 1 (FGFR1), and major intrinsic protein (MIP26) in exponential growth. Western analyses of protein extracts show positive expression of three immunologically distinct classes of crystallin proteins (alphaA-, alphaB-, and betaB2-crystallin) with time in culture. By Western blot analysis, expression of p57(KIP2), a known marker of terminally differentiated fiber cells, was detectable in exponential cultures, and levels increased after confluence. MIP26 and gamma-crystallin protein expression was detected in confluent cultures, by using immunofluorescence, but not in exponentially growing cells. CONCLUSIONS: HLE cells can be maintained for up to 4 months on ECM derived from BCE cells in medium containing FGF-2. With time in culture, the cells demonstrate morphologic characteristics of, and express protein markers for, lens fiber cell differentiation. This in vitro model will be useful for investigations of radiation-induced cataractogenesis and other studies of lens toxicity.

  10. Autonomous growth potential of leukemia blast cells is associated with poor prognosis in human acute leukemias

    Directory of Open Access Journals (Sweden)

    Jakubowski Ann A

    2009-12-01

    Full Text Available Abstract We have described a severe combined immunodeficiency (SCID mouse model that permits the subcutaneous growth of primary human acute leukemia blast cells into a measurable subcutaneous nodule which may be followed by the development of disseminated disease. Utilizing the SCID mouse model, we examined the growth potential of leukemic blasts from 133 patients with acute leukemia, (67 acute lymphoblastic leukemia (ALL and 66 acute myeloid leukemia (AML in the animals after subcutaneous inoculation without conditioning treatment. The blasts displayed three distinct growth patterns: "aggressive", "indolent", or "no tumor growth". Out of 133 leukemias, 45 (33.8% displayed an aggressive growth pattern, 14 (10.5% displayed an indolent growth pattern and 74 (55.6% did not grow in SCID mice. The growth probability of leukemias from relapsed and/or refractory disease was nearly 3 fold higher than that from patients with newly diagnosed disease. Serial observations found that leukemic blasts from the same individual, which did not initiate tumor growth at initial presentation and/or at early relapse, may engraft and grow in the later stages of disease, suggesting that the ability of leukemia cells for engraftment and proliferation was gradually acquired following the process of leukemia progression. Nine autonomous growing leukemia cell lines were established in vitro. These displayed an aggressive proliferation pattern, suggesting a possible correlation between the capacity of human leukemia cells for autonomous proliferation in vitro and an aggressive growth potential in SCID mice. In addition, we demonstrated that patients whose leukemic blasts displayed an aggressive growth and dissemination pattern in SClD mice had a poor clinical outcome in patients with ALL as well as AML. Patients whose leukemic blasts grew indolently or whose leukemia cells failed to induce growth had a significantly longer DFS and more favorable clinical course.

  11. Microvesicles derived from human Wharton's jelly mesenchymal stem cells promote human renal cancer cell growth and aggressiveness through induction of hepatocyte growth factor.

    Directory of Open Access Journals (Sweden)

    Tao Du

    Full Text Available In our previous study, microvesicles (MVs released from human Wharton's jelly mesenchymal stem cells (hWJ-MSCs retard the growth of bladder cancer cells. We would like to know if MVs have a similar effect on human renal cell carcinoma (RCC. By use of cell culture and the BALB/c nu/nu mice xeno-graft model, the influence of MVs upon the growth and aggressiveness of RCC (786-0 was assessed. Cell counting kit-8 (CCK-8 assay, incidence of tumor, tumor size, Ki-67 or TUNEL staining was used to evaluate tumor cell growth in vitro or in vivo. Flow cytometry assay (in vitro or examination of cyclin D1 expression (in vivo was carried out to determine the alteration of cell cycle. The aggressiveness was analyzed by Wound Healing Assay (in vitro or MMP-2 and MMP-9 expression (in vivo. AKT/p-AKT, ERK1/2/p-ERK1/2 or HGF/c-MET expression was detected by real-time PCR or western blot. Our data demonstrated that MVs promote the growth and aggressiveness of RCC both in vitro and in vivo. In addition, MVs facilitated the progression of cell cycle from G0/1 to S. HGF expression in RCC was greatly induced by MVs, associated with activation of AKT and ERK1/2 signaling pathways. RNase pre-treatment abrogated all effects of MVs. In summary, induction of HGF synthesis via RNA transferred by MVs activating AKT and ERK1/2 signaling is one of crucial contributors to the pro-tumor effect.

  12. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation

    DEFF Research Database (Denmark)

    Søndergaard, Chris Bath; Yang, Sufang; Muttuvelu, Danson V.

    2013-01-01

    The aim of this study was to determine whether the growth and differentiation of limbal epithelial stem cell cultures could be controlled through manipulation of the oxygen tension. Limbal epithelial cells were isolated from corneoscleral disks, and cultured using either feeder cells in a growth......, progression through cell cycle, colony forming efficiency (CFE), and expression of stem cell (ABCG2 and p63α) and differentiation (CK3) markers was determined throughout the culture period of up to 18 days. Low oxygen levels favored a stem cell phenotype with a lower proliferative rate, high CFE......, and a relatively higher expression of ABCG2 and p63α, while higher levels of oxygen led not only to decreased CFE but also to increased proportion of differentiated cells positive for CK3. Hypoxic cultures may thus potentially improve stem cell grafts for cultured limbal epithelial transplantation (CLET)....

  13. The TOR Signaling Pathway in Spatial and Temporal Control of Cell Size and Growth

    Directory of Open Access Journals (Sweden)

    Suam Gonzalez

    2017-06-01

    Full Text Available Cell size is amenable by genetic and environmental factors. The highly conserved nutrient-responsive Target of Rapamycin (TOR signaling pathway regulates cellular metabolic status and growth in response to numerous inputs. Timing and duration of TOR pathway activity is pivotal for both cell mass built up as well as cell cycle progression and is controlled and fine-tuned by the abundance and quality of nutrients, hormonal signals, growth factors, stress, and oxygen. TOR kinases function within two functionally and structurally discrete multiprotein complexes, TORC1 and TORC2, that are implicated in temporal and spatial control of cell size and growth respectively; however, recent data indicate that such functional distinctions are much more complex. Here, we briefly review roles of the two complexes in cellular growth and cytoarchitecture in various experimental model systems.

  14. Effects of arecoline on cell growth, migration, and differentiation in cementoblasts

    Directory of Open Access Journals (Sweden)

    Yi-Juai Chen

    2015-12-01

    Conclusion: Taken together, these results suggest that arecoline could inhibit cell growth, migration, and differentiation in cementoblasts. Areca quid chewers might be more susceptible to the destruction of periodontium and less responsive to regenerative procedure during periodontal therapy.

  15. Mullerian Inhibiting Substances (MIS) Augments IFN-gamma Mediated Inhibition of Breast Cancer Cell Growth

    National Research Council Canada - National Science Library

    Gupta, Vandana

    2006-01-01

    MIS is a member of the TGF family. The purpose of this study is to test the hypothesis that MIS and IFN-gamma might be more effective in the inhibition of breast cancer cell growth than either agent alone...

  16. Growth in Agarose of Human Cells Infected with Cytomegalovirus

    Science.gov (United States)

    Lang, David J.; Montagnier, Luc; Latarjet, Raymond

    1974-01-01

    After infection by human cytomegalovirus (CMV), human diploid fibroblasts could grow in agarose medium for several generations. Clones of infected cells grew for weeks, although in every case they ultimately underwent lysis owing to the cytopathic effect of the virus. Virus was inoculated at high dilution and after UV irradiation in an effort to derive cells infected with noninfectious defective particles still capable of inducing cell stimulation. Dilute or irradiated virus occasionally yielded large colonies of replicating cells, although permanent transformation was not observed. One clone derived from UV-CMV-infected cells was passaged four times before undergoing lysis. During these passages the cells exhibited alterations in morphology and orientation. Images PMID:4367907

  17. Airway epithelial cell-derived insulin-like growth factor-1 triggers skewed CD8(+) T cell polarization.

    Science.gov (United States)

    Zou, Jian-Yong; Huang, Shao-hong; Li, Yun; Chen, Hui-guo; Rong, Jian; Ye, Sheng

    2014-10-01

    Skewed CD8(+) T cell responses are important in airway inflammation. This study investigates the role of the airway epithelial cell-derived insulin-like growth factor 1 (IGF1) in contributing to CD8(+) T cell polarization. Expression of IGF1 in the airway epithelial cell line, RPMI2650 cells, was assessed by quantitative real time RT-PCR and Western blotting. The role of IGF1 in regulating CD8(+) T cell activation was observed by coculture of mite allergen-primed RPMI2650 cells and naïve CD8(+) T cells. CD8(+) T cell polarization was assessed by the carboxyfluorescein succinimidyl ester-dilution assay and the determination of cytotoxic cytokine levels in the culture medium. Exposure to mite allergen, Der p1, increased the expression of IGF1 by RPMI2650 cells. The epithelial cell-derived IGF1 prevented the activation-induced cell death by inducing the p53 gene hypermethylation. Mite allergen-primed RPMI2650 cells induced an antigen-specific CD8(+) T cell polarization. We conclude that mite allergens induce airway epithelial cell line, RPMI2650 cells, to produce IGF1; the latter contributes to antigen-specific CD8(+) T cell polarization. © 2014 International Federation for Cell Biology.

  18. MITOGENIC SIGNALS CONTROL TRANSLATION OF THE EARLY GROWTH-RESPONSE GENE-1 IN MYOGENIC CELLS

    NARCIS (Netherlands)

    MAASS, A; GROHE, C; OBERDORF, S; SUKHATME, VP; VETTER, H; NEYSES, L

    1994-01-01

    Muscle is a major site of expression of the early growth reponse gene-1 (Egr-1). To investigate its role in muscle proliferation and/or differentiation we studied the effect of a variety of growth factors on cultured mouse muscle So18 cells. Three groups of responses could be distinguished: 1. AII,

  19. Human growth hormone binding and stimulation of insulin biosynthesis in cloned rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, Nils

    1985-01-01

    Binding of 125I labelled human growth hormone to cloned insulin producing RIN-5AH cells is described. Binding was specific for somatotropic hormones since both human and rat growth hormone could compete for binding sites, whereas much higher concentrations of lactogenic hormones were needed...

  20. New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell

    NARCIS (Netherlands)

    Helder, M.; Strik, D.P.B.T.B.; Hamelers, H.V.M.; Kuijken, R.C.P.; Buisman, C.J.N.

    2012-01-01

    In a Plant-Microbial Fuel Cell anode-conditions must be created that are favorable for plant growth and electricity production. One of the major aspects in this is the composition of the plant-growth medium. Hoagland medium has been used until now, with added phosphate buffer to reduce potential

  1. THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN

    Science.gov (United States)

    THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN.Harland and Liburdy (1) reported that 1.2-uT, 60-Hz magnetic fields could significantly block the inhibitory action of pharmacological levels of tamoxifen (10-7 M) on the growth of MCF-7 human br...

  2. Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating.

    Science.gov (United States)

    Rosman, Christina; Pierrat, Sebastien; Tarantola, Marco; Schneider, David; Sunnick, Eva; Janshoff, Andreas; Sönnichsen, Carsten

    2014-01-01

    In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, respectively, for the surfactant particle coating was observed, whereas the amino-terminated polymer induced a reduction by 30% and 40%, respectively, which is absent for the carboxy-terminated polymer. Furthermore, interface-sensitive impedance spectroscopy (electric cell-substrate impedance sensing, ECIS) was employed in order to investigate the micromotility of cells added to substrates decorated with various amounts of surfactant-coated particles. A surface density of 65 particles/µm(2) (which corresponds to 0.5% of surface coverage with nanoparticles) diminishes micromotion by 25% as compared to bare substrates after 35 hours of incubation. We conclude that the surface coating of the gold nanorods, which were applied to the basolateral side of the cells, has a recognizable influence on the growth behavior and thus the coating should be carefully selected for biomedical applications of nanoparticles.

  3. Protein turnover and cellular autophagy in growing and growth-inhibited 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, T.; Pfeifer, U. (Univ. of Wuerzburg (West Germany))

    1987-07-01

    The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with ({sup 14}C)thymidine and ({sup 3}H)leucine. The evaluation of the DNA turnover and additional ({sup 3}H)thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.

  4. Effects of l-Glutamine Deprivation on Growth of HVJ (Sendai Virus) in BHK Cells

    Science.gov (United States)

    Ito, Yasuhiko; Kimura, Yoshinobu; Nagata, Ikuya; Kunii, Akira

    1974-01-01

    l-Glutamine requirement for viral maturation was found in BHK-HVJ cells, a cell line of baby hamster kidney cells persistently infected with HVJ (Sendai virus). Synthesis of envelope protein in BHK-HVJ cells was markedly suppressed by deprivation of l-glutamine, whereas development of nucleocapsid (S) antigen was less affected. More detailed examination of this phenomenon was carried out by using a cytolytic system. Growth of HVJ in BHK cells cultured in media deprived of various amino acids was investigated, and omission of l-glutamine from culture medium resulted in a marked inhibitory effect on the release of infectious virus and synthesis of envelope protein, although synthesis of virus-specific RNA and nucleocapsid antigen in the cells was readily detected. When l-glutamine was restored to the culture medium, infectious virus and envelope protein could be detected. l-Glutamic acid, l-aspartic acid, or l-alanine could be substituted for l-glutamine. Effects of l-glutamine deprivation on HVJ growth in several other cells were also investigated. The growth of HVJ in the cells other than BHK and FL cells was not suppressed by lack of l-glutamine. Growth of Sindbis virus in BHK cells was also markedly retarded in the absence of l-glutamine. PMID:4362861

  5. Piperine inhibits the growth and motility of triple-negative breast cancer cells.

    Science.gov (United States)

    Greenshields, Anna L; Doucette, Carolyn D; Sutton, Kimberly M; Madera, Laurence; Annan, Henry; Yaffe, Paul B; Knickle, Allison F; Dong, Zhongmin; Hoskin, David W

    2015-02-01

    Piperine, an alkaloid from black pepper, is reported to have anticancer activities. In this study, we investigated the effect of piperine on the growth and motility of triple-negative breast cancer (TNBC) cells. Piperine inhibited the in vitro growth of TNBC cells, as well as hormone-dependent breast cancer cells, without affecting normal mammary epithelial cell growth. Exposure to piperine decreased the percentage of TNBC cells in the G2 phase of the cell cycle. In addition, G1- and G2-associated protein expression was decreased and p21(Waf1/Cip1) expression was increased in piperine-treated TNBC cells. Piperine also inhibited survival-promoting Akt activation in TNBC cells and caused caspase-dependent apoptosis via the mitochondrial pathway. Interestingly, combined treatment with piperine and γ radiation was more cytotoxic for TNBC cells than γ radiation alone. The in vitro migration of piperine-treated TNBC cells was impaired and expression of matrix metalloproteinase-2 and -9 mRNA was decreased, suggesting an antimetastatic effect by piperine. Finally, intratumoral administration of piperine inhibited the growth of TNBC xenografts in immune-deficient mice. Taken together, these findings suggest that piperine may be useful in the treatment of TNBC. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. HMGN2 protein inhibits the growth of infected T24 cells in vitro.

    Science.gov (United States)

    Wei, Danfeng; Zhang, Ping; Zhou, Min; Feng, Yun; Chen, Qianming

    2014-01-01

    Natural killer (NK) cells and cytolytic T lymphocytes (CTL) have been implicated as important effectors of antitumor defense. High mobility group nucleosomal-binding domain 2 (HMGN2) may be one of the effector molecules of CTL and NK cells. The antitumor effect and mechanism of HMGN2 was investigated in this study. HMGN2 was isolated and purified from the human monocyte cell line THP-1 and then characterized by Tricine-SDS-PAGE, western blot, and mass spectrum determination. Confluent T24 cells were incubated with Klebsiella pneumoniae for 2 h, after which the extracellular bacteria were killed by the addition of gentamicin. The cells then were treated with a variety of concentrations of HMGN2. The effect of HMGN2 on the proliferation of T24 cells was analyzed with MTT, Hoechst and flow cytometry assays. Cell growth assay results demonstrated that HMGN2 significantly inhibited the growth of T24 bladder cancer cell lines infected by K. pneumoniae. Furthermore, results of the Hoechst and flow cytometry assays indicated that HMGN2 may promote apoptosis in this experimental model. These results suggest HMGN2 could inhibit the growth of the infected human bladder cancer cells in vitro. HMGN2 protein could inhibit the growth of infected T24 cells in vitro, and the anti-tumor action of HMGN2 was due to induce apoptosis.

  7. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells.

    Science.gov (United States)

    Centomani, Isabella; Sgobba, Alessandra; D'Addabbo, Pietro; Dipierro, Nunzio; Paradiso, Annalisa; De Gara, Laura; Dipierro, Silvio; Viggiano, Luigi; de Pinto, Maria Concetta

    2015-11-01

    The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.

  8. CELL-DENSITY MODULATES GROWTH, EXTRACELLULAR-MATRIX, AND PROTEIN-SYNTHESIS OF CULTURED RAT MESANGIAL CELLS

    NARCIS (Netherlands)

    WOLTHUIS, A; BOES, A

    1993-01-01

    Mesangial cell (MC) hyperplasia and accumulation of extracellular matrix are hallmarks of chronic glomerular disease. The present in vitro study examined the effects of cell density on growth, extracellular matrix formation, and protein synthesis of cultured rat MCs. A negative linear relationship

  9. Growth suppression activity of bradykinin antagonists in glioma cells

    Directory of Open Access Journals (Sweden)

    Avdieiev S. S.

    2014-01-01

    Full Text Available The present study was Aimed at analyzing the effect of bradykinin (BK antagonists on proliferation of the human glioblastoma cells U373. Methods. MTT-based cell proliferation assay. Results. BKM-570 revealed a significant antiproliferative activity in the U373 cells with LC50 3,8 M. Conclusions. The antiproliferative properties of BK antagonists were shown in vitro using the glioma cells. Further investigations of the molecular mechanisms of their action and pre-clinical studies on animal models are needed for the evaluation of these compounds as new anti-cancer drugs.

  10. Phenotypic and growth characterization of human mesenchymal stem cells cultured from permanent and deciduous teeth

    Directory of Open Access Journals (Sweden)

    Revathi Shekar

    2012-01-01

    Conclusions: Permanent and deciduous teeth are both viable sources of stem cells. The permanent teeth were easier to culture because of a lower chance of contamination with oral microflora. The growth characteristics of the cells obtained from both these sources were similar. However, there was a difference in the ratio of fibroblastoid cells to epithelioid cells between the cultures obtained from the permanent and deciduous teeth.

  11. Transforming growth factor-β signaling is constantly shaping memory T-cell population

    OpenAIRE

    Ma, Chaoyu; Zhang, Nu

    2015-01-01

    A persistent memory T-cell population is the basis for successful T-cell–based vaccine against pathogens. Numerous extracellular and intracellular molecules have been demonstrated to play critical roles in the differentiation of memory T cells; however, the mechanisms that control the long-term maintenance of memory T cells remain incompletely understood. Here we show that continuous transforming growth factor-β signaling is required to maintain the identity of memory T cells.

  12. Epidermal growth factor promotes proliferation of dermal papilla cells via Notch signaling pathway.

    Science.gov (United States)

    Zhang, Haihua; Nan, Weixiao; Wang, Shiyong; Zhang, Tietao; Si, Huazhe; Wang, Datao; Yang, Fuhe; Li, Guangyu

    2016-08-01

    The effect of epidermal growth factor (EGF) on the development and growth of hair follicle is controversial. In the present study, 2-20 ng/ml EGF promoted the growth of mink hair follicles in vitro, whereas 200 ng/ml EGF inhibited follicle growth. Further, dermal papilla (DP) cells, a group of mesenchymal cells that govern hair follicle development and growth, were isolated and cultured in vitro. Treatment with or forced expression of EGF accelerated proliferation and induced G1/S transition in DP cells. Moreover, EGF upregulated the expression of DP mesenchymal genes, such as alkaline phosphatase (ALP) and insulin-like growth factor (IGF-1), as well as the Notch pathway molecules including Notch1, Jagged1, Hes1 and Hes5. In addition, inhibition of Notch signaling pathway by DAPT significantly reduced the basal and EGF-enhanced proliferation rate, and also suppressed cell cycle progression. We also show that the expression of several follicle-regulatory genes, such as Survivin and Msx2, were upregulated by EGF, and was inhibited by DAPT. In summary, our study demonstrates that the concentration of EGF is critical for the switch between hair follicle growth and inhibition, and EGF promotes DP cell proliferation via Notch signaling pathway. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. The Big Bang of tissue growth: Apical cell constriction turns into tissue expansion.

    Science.gov (United States)

    Janody, Florence

    2018-01-31

    How tissue growth is regulated during development and cancer is a fundamental question in biology. In this issue, Tsoumpekos et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201705104) and Forest et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201705107) identify Big bang (Bbg) as an important growth regulator of the Drosophila melanogaster wing imaginal disc. © 2018 Janody.

  14. Growth factors enhance endothelial progenitor cell proliferation under high-glucose conditions.

    Science.gov (United States)

    Li, Wei; Yang, Shiyu Y; Hu, Zhong F; Winslet, Marc C; Wang, Wen; Seifalian, Alexander M

    2009-12-01

    The purpose of this study was to investigate the impact of growth regulators, including growth hormone (GH), insulin-like growth factor 1 (IGF-1), and mechano growth factor (MGF), on endothelial progenitor cell (EPC) proliferation at different glucose concentrations. EPCs were isolated and cultured from peripheral blood samples of healthy volunteers and immunocytochemically characterized after 7 days. The effects of glucose and growth regulators on EPC proliferation were determined with the Alamar Blue and Trypan Blue assays. The effect of glucose supplementation at 2.5, 11.1, and 25.0 mM was examined using cells seeded at densities of 15000, 30000, and 45000 cells/ml. For the GH-treated cells, enhancement of EPC proliferation was detected in the samples supplemented with 11.1 and 25.0 mM glucose. A slight elevation in EPC proliferation was only observed in the IGF-1-treated cells supplemented with 25.0 mM glucose. Significant enhancement of EPC proliferation was observed in MGF-treated cells supplemented with 11.1 and 25.0 mM glucose. All three growth factors demonstrated enhancement of cellular proliferation when the cells were supplemented with 25.0 mM glucose. No enhancement of EPC proliferation by the growth factors was detected in any of the cells supplemented with 2.5 mM glucose. GH, IGF-1, and MGF enhance EPC proliferation under 25.0 mM glucose conditions. The presence of these growth regulators in EPC culture may contribute to protecting EPCs from high-glucose conditions. This action may be of therapeutic relevance contributing to beneficial cardiovascular effects for diabetic patient.

  15. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  16. Importance of cell damage causing growth delay for high pressure inactivation of Saccharomyces cerevisiae

    Science.gov (United States)

    Nanba, Masaru; Nomura, Kazuki; Nasuhara, Yusuke; Hayashi, Manabu; Kido, Miyuki; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru; Hirayama, Masao; Ueno, Shigeaki; Fujii, Tomoyuki

    2013-06-01

    A high pressure (HP) tolerant (barotolerant) mutant a2568D8 and a variably barotolerant mutant a1210H12 were generated from Saccharomyces cerevisiae using ultra-violet mutagenesis. The two mutants, a barosensitive mutant a924E1 and the wild-type strain, were pressurized (225 MPa), and pressure inactivation behavior was analyzed. In the wild-type strain, a proportion of the growth-delayed cells were detected after exposure to HP. In a924E1, the proportion of growth-delayed cells significantly decreased compared with the wild-type. In a2568D8, the proportion of growth-delayed cells increased and the proportion of inactivated cells decreased compared with the wild-type. In a1210H12, the growth-delayed cells could not be detected within 120 s of exposure to HP. The proportion of growth-delayed cells, which incurred the damage, would affect the survival ratio by HP. These results suggested that cellular changes in barotolerance caused by mutations are remarkably affected by the ability to recover from cellular damage, which results in a growth delay.

  17. Growth and death of animal cells in bioreactors

    NARCIS (Netherlands)

    Martens, D.E.

    1996-01-01


    Animal-cell cultivation is becoming increasingly important especially for the area of hunian- health products. The products range from vaccines to therapeutic proteins and the cells themselves. The therapeutic application of proteins puts high demands upon their quality with respect to

  18. Growth and metabolism of mesenchymal stem cells cultivated on microcarriers

    NARCIS (Netherlands)

    Schop, Deborah

    2010-01-01

    Mesenchymal stem cells, MSCs, are a great potential source for clinical applications in the field of tissue regeneration. Although MSCs can be isolated from several tissues of the human body, e.g. the bone marrow, the tissues does not contain clinically relevant amounts of MSCs for cell therapeutic

  19. Effects of hemopoietic growth factors on stem cells in vitro.

    Science.gov (United States)

    Ogawa, M

    1989-09-01

    The central feature of hemopoiesis is the lifelong, stable cell renewal. This process is supported by hemopoietic stem cells, which in the steady-state appear to be dormant in cell cycling. The entry into cell cycle of the dormant stem cells may be promoted by such factors as IL-1, IL-6, and G-CSF. Available evidence indicates that the effects of IL-1 on stem cells are indirectly mediated in part by IL-6 and G-CSF. Once the stem cells leave G0 and begin proliferation, the subsequent process is characterized by continued proliferation and differentiation. While several models of stem cell differentiation have been proposed, micromanipulation studies of individual progenitors suggest that the commitment of multipotential progenitors to single lineages is a stochastic (random) process. The proliferation of early hemopoietic progenitors appears to be supported by IL-3, IL-4, and/or GM-CSF. Once the progenitors are committed to individual lineages, the subsequent maturation process appears to be supported by late-acting, lineage-specific factors such as Ep (for erythropoiesis), G-CSF (for neutrophil production), and IL-5 (for eosinophilopoiesis). Thus, hemopoietic proliferation appears to be regulated by a cascade of factors directed at different developmental stages.

  20. Inhibition of telomerase activity and cell growth by free and ...

    African Journals Online (AJOL)

    of various immune pathologies [22]. Moreover, punicalagin has an inhibitory effect on some cancer cells, including HT-29 and HCT116 colon cancer cells .... A contributory and interactive factor in aging, disease risks, and protection. Science 2015; 350: 1193-1198. 2. Teralı K, Yilmazer A. New surprises from an old favourite:.

  1. Porous biodegradable EW62 medical implants resist tumor cell growth.

    Science.gov (United States)

    Hakimi, O; Ventura, Y; Goldman, J; Vago, R; Aghion, E

    2016-04-01

    Magnesium alloys have been widely investigated for biodegradable medical applications. However, the shielding of harmful cells (eg. bacteria or tumorous cells) from immune surveillance may be compounded by the increased porosity of biodegradable materials. We previously demonstrated the improved corrosion resistance and mechanical properties of a novel EW62 (Mg-6%Nd-2%Y-0.5%Zr)) magnesium alloy by rapid solidification followed by extrusion (RS) compared to its conventional counterpart (CC). The present in vitro study evaluated the influence of rapid solidification on cytotoxicity to murine osteosarcoma cells. We found that CC and RS corrosion extracts significantly reduced cell viability over a 24-h exposure period. Cell density was reduced over 48 h following direct contact on both CC and RS surfaces, but was further reduced on the CC surface. The direct presence of cells accelerated corrosion for both materials. The corroded RS material exhibited superior mechanical properties relative to the CC material. The data show that the improved corrosion resistance of the rapidly solidified EW62 alloy (RS) resulted in a relatively reduced cytotoxic effect on tumorous cells. Hence, the tested alloy in the form of a rapidly solidified substance may introduce a good balance between its biodegradation characteristics and cytotoxic effect towards cancerous and normal cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Mevastatin-induced inhibition of cell growth in avocado suspension ...

    African Journals Online (AJOL)

    Cell suspension cultures were established using soft, friable callus derived from nucellar tissue of 'Hass' avocado (Persea americana Mill.) seed from fruit harvested 190 days after full bloom. Cell cultures were maintained in liquid medium supplemented with naphthalene acetic acid (NAA), isopentenyl adenine (iP) and ...

  3. Nutrients released by gastric epithelial cells enhance Helicobacter pylori growth

    NARCIS (Netherlands)

    van Amsterdam, Karin; van der Ende, Arie

    2004-01-01

    Background. Helicobacter pylori survives and proliferates in the human gastric mucosa. In this niche, H. pylori adheres to the gastric epithelial cells near the tight junctions. In vitro, H. pylori proliferated well in tissue-culture medium near gastric epithelial cells. However, in the absence of

  4. Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar Blue.

    Science.gov (United States)

    Gloeckner, H; Jonuleit, T; Lemke, H D

    2001-06-01

    We describe a method for monitoring cell proliferation in a small-scale hollow-fiber bioreactor (culture volume: 1 ml) by use of the Alamar Blue dye. Alamar Blue is a non-fluorescent compound, which yields a fluorescent product after reduction, e.g. by living cells. In contrast to the MTT-assay, the Alamar Blue assay does not lead to cell death. However, when not removed from the cells, the Alamar Blue dye shows a reversible, time- and concentration-dependent growth inhibition as observed for the leukemic cell lines CCRF-CEM, HL-60 and REH. When applied in the medium compartment of a hollow-fiber bioreactor system, the dye is delivered to the cells across the hollow-fiber membrane, reduced by the cells and released from the cell into the medium compartment back again. Thus, fluorescence intensity can be measured in medium samples reflecting growth of the cells in the cell compartment. This procedure offers several advantages. First, exposure of the cells to the dye can be reduced compared to conventional culture in plates. Second, handling steps are minimized since no sample of the cells needs to be taken for readout. Moreover, for the exchange of medium, a centrifugation step can be avoided and the cells can be cultivated further. Third, the method allows discriminating between cell densities of 10(5), 10(6) and 10(7) of proliferating HL-60 cells cultivated in the cell compartment of the bioreactor. Measurement of fluorescence in the medium compartment is more sensitive compared to glucose or lactate measurement for cell counts below 10(6) cells/ml, in particular. We conclude that the Alamar Blue-assay combined with a hollow-fiber bioreactor offers distinct advantages for the non-invasive monitoring of cell viability and proliferation in a closed system.

  5. Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth

    DEFF Research Database (Denmark)

    Green, M R; Basketter, D A; Couchman, J R

    1983-01-01

    , and keratinisation when injected into neonatal mice (S. Cohen and G.A. Elliott, 1963, J. Invest. Dermatol, 40, 1-5). We have determined the distribution of the available receptors for epidermal growth factor in rat skin using autoradiography following incubation of explants with 125I-labelled mouse EGF. EGF...

  6. Müller Glia, Vision-Guided Ocular Growth, Retinal Stem Cells, and a Little Serendipity

    Science.gov (United States)

    2011-01-01

    Hypothesis-driven science is expected to result in a continuum of studies and findings along a discrete path. By comparison, serendipity can lead to new directions that branch into different paths. Herein, I describe a diverse series of findings that were motivated by hypotheses, but driven by serendipity. I summarize how investigations into vision-guided ocular growth in the chick eye led to the identification of glucagonergic amacrine cells as key regulators of ocular elongation. Studies designed to assess the impact of the ablation of different types of neurons on vision-guided ocular growth led to the finding of numerous proliferating cells within damaged retinas. These proliferating cells were Müller glia–derived retinal progenitors with a capacity to produce new neurons. Studies designed to investigate Müller glia–derived progenitors led to the identification of a domain of neural stem cells that form a circumferential marginal zone (CMZ) that lines the periphery of the retina. Accelerated ocular growth, caused by visual deprivation, stimulated the proliferation of CMZ progenitors. We formulated a hypothesis that growth-regulating glucagonergic cells may regulate both overall eye size (scleral growth) and the growth of the retina (proliferation of CMZ cells). Subsequent studies identified unusual types of glucagonergic neurons with terminals that ramify within the CMZ; these cells use visual cues to control equatorial ocular growth and the proliferation of CMZ cells. Finally, while studying the signaling pathways that stimulate CMZ and Müller glia–derived progenitors, serendipity led to the discovery of a novel type of glial cell that is scattered across the inner retinal layers. PMID:21960640

  7. Bergenin suppresses the growth of colorectal cancer cells by ...

    African Journals Online (AJOL)

    mTOR signaling pathway ... Interestingly, bergenin inhibited PI3K/AKT/mTOR pathway. Conclusion: Bergenin effectively suppresses the growth of ..... Clin Interv Aging 2016; 11: 967-976. 3. Peeters M, Oliner KS, Price TJ, Cervantes A, Sobrero.

  8. Kinetic models of cell growth, substrate utilization and bio ...

    African Journals Online (AJOL)

    Bio-decolorization kinetic studies of distillery effluent in a batch culture were conducted using Aspergillus fumigatus. A simple model was proposed using the Logistic Equation for the growth, Leudeking-Piret kinetics for bio-decolorization, and also for substrate utilization. The proposed models appeared to provide a suitable ...

  9. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion

    Science.gov (United States)

    Gorin, Caroline; Rochefort, Gael Y.; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Germain, Stéphane

    2016-01-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. Significance The results from the present study show that fibroblast growth factor-2 (FGF-2) priming is more

  10. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII......-beta receptor proteins beta-glycan mRNA was rapidly down-regulated and this effect was sustained throughout the 24 h observation period. RI and RII mRNAs were slightly increased 24 h after treatment. In one cell line sensitive to growth inhibition by TGF-beta, 1 but lacking beta-glycan expression, and one cell...

  11. The synthetic inhibitor of Fibroblast Growth Factor Receptor PD166866 controls negatively the growth of tumor cells in culture

    Directory of Open Access Journals (Sweden)

    Castelli Mauro

    2009-12-01

    Full Text Available Abstract Background Many experimental data evidence that over-expression of various growth factors cause disorders in cell proliferation. The role of the Fibroblast Growth Factors (FGF in growth control is indisputable: in particular, FGF1 and its tyrosine kinase receptor (FGFR1 act through a very complex network of mechanisms and pathways. In this work we have evaluated the antiproliferative activity effect of PD166866, a synthetic molecule inhibiting the tyrosin kinase action of FGFR1. Methods Cells were routinely grown in Dulbecco Modified Eagle's medium supplemented with newborn serum and a penicillin-streptomycin mixture. Cell viability was evaluated by Mosmann assay and by trypan blue staining. DNA damage was assessed by in situ fluorescent staining with Terminal Deoxynucleotidyl Transferase dUTP nick end labeling (TUNEL assay. Assessment of oxidative stress at membrane level was measured by quantitative analysis of the intra-cellular formation of malonyl-dialdheyde (MDA deriving from the decomposition of poly-unsaturated fatty acids. The expression of Poly-ADP-Ribose-Polymerase (PARP, consequent to DNA fragmentation, was evidenced by immuno-histochemistry utilizing an antibody directed against an N-terminal fragment of the enzyme. Results The bioactivity of the drug was investigated on Hela cells. Cytoxicity was assessed by the Mosmann assay and by vital staining with trypan blue. The target of the molecule is most likely the cell membrane as shown by the significant increase of the intracellular concentration of malonyl-dihaldheyde. The increase of this compound, as a consequence of the treatment with PD166866, is suggestive of membrane lipoperoxidation. The TUNEL assay gave a qualitative, though clear, indication of DNA damage. Furthermore we demonstrate intracellular accumulation of poly-ADP-ribose polymerase I. This enzyme is a sensor of nicks on the DNA strands and this supports the idea that treatment with the drug induces cell

  12. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Yu [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Department of Cardivascular Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Nakahama, Ken-ichi, E-mail: nakacell@tmd.ac.jp [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Isobe, Mitsuaki [Department of Cardivascular Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Morita, Ikuo [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan)

    2014-03-28

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These

  13. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks

    Science.gov (United States)

    Huang, S.; Ingber, D. E.

    2000-01-01

    Development of characteristic tissue patterns requires that individual cells be switched locally between different phenotypes or "fates;" while one cell may proliferate, its neighbors may differentiate or die. Recent studies have revealed that local switching between these different gene programs is controlled through interplay between soluble growth factors, insoluble extracellular matrix molecules, and mechanical forces which produce cell shape distortion. Although the precise molecular basis remains unknown, shape-dependent control of cell growth and function appears to be mediated by tension-dependent changes in the actin cytoskeleton. However, the question remains: how can a generalized physical stimulus, such as cell distortion, activate the same set of genes and signaling proteins that are triggered by molecules which bind to specific cell surface receptors. In this article, we use computer simulations based on dynamic Boolean networks to show that the different cell fates that a particular cell can exhibit may represent a preprogrammed set of common end programs or "attractors" which self-organize within the cell's regulatory networks. In this type of dynamic network model of information processing, generalized stimuli (e.g., mechanical forces) and specific molecular cues elicit signals which follow different trajectories, but eventually converge onto one of a small set of common end programs (growth, quiescence, differentiation, apoptosis, etc.). In other words, if cells use this type of information processing system, then control of cell function would involve selection of preexisting (latent) behavioral modes of the cell, rather than instruction by specific binding molecules. Importantly, the results of the computer simulation closely mimic experimental data obtained with living endothelial cells. The major implication of this finding is that current methods used for analysis of cell function that rely on characterization of linear signaling pathways or

  14. Mathematical modelling of cell layer growth in a hollow fibre bioreactor.

    Science.gov (United States)

    Chapman, Lloyd A C; Whiteley, Jonathan P; Byrne, Helen M; Waters, Sarah L; Shipley, Rebecca J

    2017-04-07

    Generating autologous tissue grafts of a clinically useful volume requires efficient and controlled expansion of cell populations harvested from patients. Hollow fibre bioreactors show promise as cell expansion devices, owing to their potential for scale-up. However, further research is required to establish how to specify appropriate hollow fibre bioreactor operating conditions for expanding different cell types. In this study we develop a simple model for the growth of a cell layer seeded on the outer surface of a single fibre in a perfused hollow fibre bioreactor. Nutrient-rich culture medium is pumped through the fibre lumen and leaves the bioreactor via the lumen outlet or passes through the porous fibre walls and cell layer, and out via ports on the outer wall of the extra-capillary space. Stokes and Darcy equations for fluid flow in the fibre lumen, fibre wall, cell layer and extra-capillary space are coupled to reaction-advection-diffusion equations for oxygen and lactate transport through the bioreactor, and to a simple growth law for the evolution of the free boundary of the cell layer. Cells at the free boundary are assumed to proliferate at a rate that increases with the local oxygen concentration, and to die and detach from the layer if the local fluid shear stress or lactate concentration exceed critical thresholds. We use the model to predict operating conditions that maximise the cell layer growth for different cell types. In particular, we predict the optimal flow rate of culture medium into the fibre lumen and fluid pressure imposed at the lumen outlet for cell types with different oxygen demands and fluid shear stress tolerances, and compare the growth of the cell layer when the exit ports on the outside of the bioreactor are open with that when they are closed. Model simulations reveal that increasing the inlet flow rate and outlet fluid pressure increases oxygen delivery to the cell layer and, therefore, the growth rate of cells that are

  15. Influence of growth conditions on the performance of InP nanowire solar cells

    Science.gov (United States)

    Cavalli, Alessandro; Cui, Yingchao; Kölling, Sebastian; Verheijen, Marcel A.; Plissard, Sebastien R.; Wang, Jia; Koenraad, Paul M.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2016-11-01

    Nanowire based solar cells have attracted great attention due to their potential for high efficiency and low device cost. Photovoltaic devices based on InP nanowires now have characteristics comparable to InP bulk solar cells. A detailed and direct correlation of the influence of growth conditions on performance is necessary to improve efficiency further. We explored the effects of the growth temperature, and of the addition of HCl during growth, on the efficiency of nanowire array based solar cell devices. By increasing HCl, the saturation dark current was reduced, and thereby the nanowire solar cell efficiency was enhanced from less than 1% to 7.6% under AM 1.5 illumination at 1 sun. At the same time, we observed that the solar cell efficiency decreased by increasing the tri-methyl-indium content, strongly suggesting that these effects are carbon related.

  16. Atrial natriuretic factor inhibits mitogen-induced growth in aortic smooth muscle cells.

    Science.gov (United States)

    Baldini, P M; De Vito, P; Fraziano, M; Mattioli, P; Luly, P; Di Nardo, P

    2002-10-01

    Atrial natriuretic factor (ANF) is a polypeptide able to affect cardiovascular homeostasis exhibiting diuretic, natriuretic, and vasorelaxant activities. ANF shows antimitogenic effects in different cell types acting through R(2) receptor. Excessive proliferation of smooth muscle cells is a common phenomenon in diseases such as atherosclerosis, but the role of growth factors in the mechanism which modulate this process has yet to be clarified. The potential antimitogenic role of ANF on the cell growth induced by growth factors appears very intriguing. Aim of the present study was to investigate the possible involvement of ANF on rat aortic smooth muscle (RASM) cells proliferation induced by known mitogens and the mechanism involved. Our data show that ANF, at physiological concentration range, inhibits RASM cell proliferation induced by known mitogens such as PDGF and insulin, and the effect seems to be elicited through the modulation of phosphatidic acid (PA) production and MAP kinases involvement. Copyright 2002 Wiley-Liss, Inc.

  17. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor.

    OpenAIRE

    Damstrup, L; Rude Voldborg, B.; Spang-Thomsen, M.; Br?nner, N; Skovgaard Poulsen, H.

    1998-01-01

    Formation of metastasis is a multistep process involving attachment to the basement membrane, local proteolysis and migration into surrounding tissues, lymph or bloodstream. In the present study, we have analysed the correlation between in vitro invasion and presence of the epidermal growth factor receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labe...

  18. Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

    Directory of Open Access Journals (Sweden)

    Christina Rosman

    2014-12-01

    Full Text Available In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, respectively, for the surfactant particle coating was observed, whereas the amino-terminated polymer induced a reduction by 30% and 40%, respectively, which is absent for the carboxy-terminated polymer. Furthermore, interface-sensitive impedance spectroscopy (electric cell–substrate impedance sensing, ECIS was employed in order to investigate the micromotility of cells added to substrates decorated with various amounts of surfactant-coated particles. A surface density of 65 particles/µm2 (which corresponds to 0.5% of surface coverage with nanoparticles diminishes micromotion by 25% as compared to bare substrates after 35 hours of incubation. We conclude that the surface coating of the gold nanorods, which were applied to the basolateral side of the cells, has a recognizable influence on the growth behavior and thus the coating should be carefully selected for biomedical applications of nanoparticles.

  19. Cholecystokinin and Somatostatin Negatively Affect Growth of the Somatostatin-RIN-14B Cells

    Directory of Open Access Journals (Sweden)

    Karim El-Kouhen

    2009-01-01

    Full Text Available With the exclusive presence of the pancreatic CCK-2 receptors on the pancreatic delta cells of six different species, this study was undertaken to determine the role of cholecystokinin and gastrin on growth of these somatostatin (SS cells. For this study, the SS-RIN-14B cells were used in culture and their growth was evaluated by cell counting. Results. To our surprise, we established by Western blot that these RIN cells possess the two CCK receptor subtypes, CCK-1 and CCK-2. Occupation of the CCK-1 receptors by caerulein, a CCK analog, led to inhibition of cell proliferation, an effect prevented by a specific CCK-1 receptor antagonist. Occupation of the CCK-2 receptors by the gastrin agonist pentagastrin had no effect on cell growth. Proliferation was not affected by SS released from these cells but was inhibited by exogenous SS. Conclusions. Growth of the SS-RIN-14B cells can be negatively affected by occupation of their CCK-1 receptors and by exogenous somatostatin.

  20. Acetylsalicylic acid inhibits cell proliferation by involving transforming growth factor-beta.

    Science.gov (United States)

    Redondo, Santiago; Santos-Gallego, Carlos G; Ganado, Patricia; García, Marta; Rico, Laura; Del Rio, Marcela; Tejerina, Teresa

    2003-02-04

    Acetylsalicylic acid (ASA) inhibits cell proliferation. This may be mediated by transforming growth factor-beta (TGF-beta). TGF-beta directly stops cell proliferation, restrains cells in G(0), and inhibits the uptake of platelet-derived growth factor and insulin-like growth factor. These effects are identical to those observed with ASA treatment. We cultured rat thoracic aorta vascular smooth muscle cells and measured cytotoxicity, cell proliferation, cell cycle, transcription of TGF-beta1, and concentration of TGF-beta1 in supernatant medium. ASA dose-dependently restrained cells in G(0) phase with no cytotoxic effect and inhibited cell proliferation by 30.86%. Anti-TGF-beta1 reversed this inhibition by 30.21%. However, ASA treatment decreased TGF-beta1 transcription and had no significant effect on TGF-beta1 concentration. TGF-beta seems to play an important role in ASA-mediated inhibition of cell proliferation. Therefore, treatment with ASA prevents coronary disease not only by means of its antiplatelet properties but also by an important inhibition of plaque growth. This relationship between ASA and TGF-beta explains many other effects, such as cancer chemoprevention, immunomodulation, and wound healing. The aim of this study was to demonstrate this link.

  1. Targeting thioredoxin reductase 1 reduction in cancer cells inhibits self-sufficient growth and DNA replication.

    Directory of Open Access Journals (Sweden)

    Min-Hyuk Yoo

    2007-10-01

    Full Text Available Thioredoxin reductase 1 (TR1 is a major redox regulator in mammalian cells. As an important antioxidant selenoprotein, TR1 is thought to participate in cancer prevention, but is also known to be over-expressed in many cancer cells. Numerous cancer drugs inhibit TR1, and this protein has been proposed as a target for cancer therapy. We previously reported that reduction of TR1 levels in cancer cells reversed many malignant characteristics suggesting that deficiency in TR1 function is antitumorigenic. The molecular basis for TR1's role in cancer development, however, is not understood. Herein, we found that, among selenoproteins, TR1 is uniquely overexpressed in cancer cells and its knockdown in a mouse cancer cell line driven by oncogenic k-ras resulted in morphological changes characteristic of parental (normal cells, without significant effect on cell growth under normal growth conditions. When grown in serum-deficient medium, TR1 deficient cancer cells lose self-sufficiency of growth, manifest a defective progression in their S phase and a decreased expression of DNA polymerase alpha, an enzyme important in DNA replication. These observations provide evidence that TR1 is critical for self-sufficiency in growth signals of malignant cells, that TR1 acts largely as a pro-cancer protein and it is indeed a primary target in cancer therapy.

  2. Analysis of collagen and glucose modulated cell growth within tissue engineered scaffolds.

    Science.gov (United States)

    Chung, C A; Ho, Szu-Ying

    2010-04-01

    The strategy of tissue engineering includes seeding cells onto porous scaffolds. The cellular construct is cultured in vitro for a period of time before transplantation for the patient. Because of the intrinsic complexity of biological systems, it is valuable to have models of simulation that can assess the culture conditions and optimize experiments. This work presents a mathematical model to account for the effects of glucose and type II collagen on chondrocyte growth under static culture conditions. Dependence of cell growth on collagen was assumed as a biphasic function of collagen quantity, whereby the cell growth rate increases and then decreases with increasing collagen content. Results from simulation were compared with experimental data in literature. The model was then applied to investigate the effects of cell seeding area, demonstrating the spatiotemporal evolution of cell distribution in scaffolds. Results show that the conventional uniform seeding method may not be a good way of gaining uniform and large cell number densities at the final stage of cultivation. A seeding mode that has cells reside initially in the middle area of scaffold was shown to be able to not only reduce the diffusion limitation of nutrients but also weaken the inhibiting impact of aggregated collagen on cell growth. Therefore the middle seeding mode may result in better cell amounts and uniformities for developing tissue engineered constructs.

  3. La plataforma .NET

    OpenAIRE

    Fornas Estrada, Miquel

    2008-01-01

    L'aparició de la plataforma .NET Framework ha suposat un canvi molt important en la forma de crear i distribuir aplicacions, degut a que incorpora una sèrie d'innovacions tècniques i productives que simplifiquen molt les tasques necessàries per desenvolupar un projecte. La aparición de la plataforma. NET Framework ha supuesto un cambio muy importante en la forma de crear y distribuir aplicaciones, debido a que incorpora una serie de innovaciones técnicas y productivas que simplifican mucho...

  4. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  5. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  6. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms

    DEFF Research Database (Denmark)

    Rohde, Mikkel; Daugaard, Mads; Jensen, Mette Hartvig

    2005-01-01

    the survival of tumorigenic as well as nontumorigenic cells depended on Hsc70. Cancer cells depleted for Hsp70 and Hsp70-2 displayed strikingly different morphologies (detached and round vs. flat senescent-like), cell cycle distributions (G2/M vs. G1 arrest) and gene expression profiles. Only Hsp70-2 depletion...... induced the expression of macrophage inhibitory cytokine-1 that was identified as a target of P53 tumor-suppressor protein and a mediator of the G1 arrest and the senescent phenotype. Importantly, concomitant depletion of Hsp70 and Hsp70-2 had a synergistic antiproliferative effect on cancer cells. Thus...... proteins in human cancer cells and identify Hsp70-2, a protein essential for spermatogenesis, as an important regulator of cancer cell growth. Targeted knock-down of the individual family members by RNA interference revealed that both Hsp70 and Hsp70-2 were required for cancer cell growth, whereas...

  7. Tumor growth effects of rapamycin on human biliary tract cancer cells

    Directory of Open Access Journals (Sweden)

    Heuer Matthias

    2012-06-01

    Full Text Available Abstract Background Liver transplantation is an important treatment option for patients with liver-originated tumors including biliary tract carcinomas (BTCs. Post-transplant tumor recurrence remains a limiting factor for long-term survival. The mammalian target of rapamycin-targeting immunosuppressive drug rapamycin could be helpful in lowering BTC recurrence rates. Therein, we investigated the antiproliferative effect of rapamycin on BTC cells and compared it with standard immunosuppressants. Methods We investigated two human BTC cell lines. We performed cell cycle and proliferation analyses after treatment with different doses of rapamycin and the standard immunosuppressants, cyclosporine A and tacrolimus. Results Rapamycin inhibited the growth of two BTC cell lines in vitro. By contrast, an increase in cell growth was observed among the cells treated with the standard immunosuppressants. Conclusions These results support the hypothesis that rapamycin inhibits BTC cell proliferation and thus might be the preferred immunosuppressant for patients after a liver transplantation because of BTC.

  8. Growth arrest and apoptosis of human hepatocellular carcinoma cells induced by hexamethylene bisacetamide

    Science.gov (United States)

    Ouyang, Gao-Liang; Cai, Qiu-Feng; Liu, Min; Chen, Rui-Chuan; Huang, Zhi; Jiang, Rui-Sheng; Chen, Fu; Hong, Shui-Gen; Bao, Shi-Deng

    2004-01-01

    AIM: To investigate the cellular effects of hybrid polar compound hexamethylene bisacetamide (HMBA) on the growth and apoptosis of human hepatocellular carcinoma cells and to provide the molecular mechanism for potential application of HMBA in the treatment of liver cancer. METHODS: Effects of HMBA on the growth of human hepatocellular carcinoma SMMC-7721 cells were assayed by MTT chronometry. Apoptosis induced by HMBA was detected by phase-contrast microscopy, flow cytometry, propidium iodide staining and immunocytochemical analysis. RESULTS: The growth of SMMC-7721 cells was significantly inhibited by HMBA, and the growth inhibitory rate was 51.1%, 62.6%, 68.7% and 73.9% respectively after treatment with 5.0, 7.5, 10.0 and 12.5 mmol/L of HMBA. In the cells treated with 10 mmol/L of HMBA for 72 h, the population of cells at sub-G1 phase significantly increased, and the apoptotic bodies and condensed nuclei were detected. Moreover, treatment of SMMC-7721 cells with 10 mmol/L of HMBA down-regulated the expression of Bcl-2 anti-apoptotic protein, while slightly up-regulated the level of pro-apoptotic protein Bax. CONCLUSION: Treatment with 10.0 mmol/L of HMBA can significantly inhibit the growth and induce apoptosis of human hepatocellular carcinoma SMMC-7721 cells by decreasing the ratio of Bcl-2 to Bax. PMID:15052673

  9. Growth of Normal Mouse Vaginal Epithelial Cells in and on Collagen Gels

    Science.gov (United States)

    Iguchi, Taisen; Uchima, Francis-Dean A.; Ostrander, Patricia L.; Bern, Howard A.

    1983-06-01

    Sustained growth in primary culture of vaginal epithelial cells from ovariectomized adult BALB/cCrg1 mice embedded within or seeded on collagen gel matrix was achieved in a serum-free medium composed of Ham's F-12 medium/Dulbecco's modified Eagle's medium, 1:1 (vol/vol), supplemented with insulin, bovine serum albumin fraction V, epidermal growth factor, cholera toxin, and transferrin. Three-dimensional growth of vaginal epithelial cells occurred inside the collagen gel matrix. Cell numbers increased 4- to 8-fold in collagen gel and about 4-fold on collagen gel after 9-10 days in culture. The effect of 17β -estradiol (0.00018-180 nM in gel or 0.018-180 nM on gel) and diethylstilbestrol (DES; 0.0186-186 nM in gel) on the growth of vaginal epithelial cells was examined. The addition of estrogen did not enhance the growth of vaginal epithelial cells during this time period either in the complete medium or in a suboptimal medium. Cultures on floating collagen gels in the serum-free medium are composed of 1-3 cell layers with superficial cornification. Estrogen does not appear to be a direct mitogen for vaginal epithelial cells, at least in this system.

  10. Transforming growth factor-β signaling is constantly shaping memory T-cell population.

    Science.gov (United States)

    Ma, Chaoyu; Zhang, Nu

    2015-09-01

    The long-term maintenance of memory T cells is essential for successful vaccines. Both the quantity and the quality of the memory T-cell population must be maintained. The signals that control the maintenance of memory T cells remain incompletely identified. Here we used two genetic models to show that continuous transforming growth factor-β signaling to antigen-specific T cells is required for the differentiation and maintenance of memory CD8(+) T cells. In addition, both infection-induced and microbiota-induced inflammation impact the phenotypic and functional identity of memory CD8(+) T cells.

  11. Dynamics and morphology characteristics of cell colonies with radially spreading growth fronts

    Science.gov (United States)

    Huergo, M. A. C.; Pasquale, M. A.; González, P. H.; Bolzán, A. E.; Arvia, A. J.

    2011-08-01

    The dynamics of two-dimensional (2D) radially spreading growth fronts of Vero cell colonies was investigated utilizing two types of colonies, namely type I starting from clusters with a small number of cells, which initially exhibited arbitrary-shaped rough growth fronts and progressively approached quasicircular ones as the cell population increased; and type II colonies, starting from a relatively large circular three-dimensional (3D) cell cluster. For large cell population colonies, the fractal dimension of the fronts was DF=1.20±0.05. For low cell populations, the mean colony radius increased exponentially with time, but for large ones the constant radial front velocity 0.20±0.02 μm min-1 was reached. Colony spreading was accompanied by changes in both cell morphology and average size, and by the formation of very large cells, some of them multinuclear. Therefore the heterogeneity of colonies increased and local driving forces that set in began to influence the 2D growth front kinetics. The retardation effect related to the exponential to constant radial front velocity transition was assigned to a number of possible interferences including the cell duplication and 3D growth in the bulk of the colony. The dynamic scaling analysis of overhang-corrected rough colony fronts, after arc-radius coordinate system transformation, resulted in roughness exponent α = 0.50±0.05 and growth exponent β = 0.32±0.04, for arc lengths greater than 100 μm. This set of scaling exponents agreed with that predicted by the Kardar, Parisi, and Zhang continuous equation. For arc lengths shorter than 2-3 cell diameters, the value α = 0.85±0.05 would be related to a cell front roughening caused by temporarily membrane deformations occasionally interfered by cell proliferation.

  12. Gene expression signatures of extracellular matrix and growth factors during embryonic stem cell differentiation.

    Science.gov (United States)

    Nair, Rekha; Ngangan, Alyssa V; Kemp, Melissa L; McDevitt, Todd C

    2012-01-01

    Pluripotent stem cells are uniquely capable of differentiating into somatic cell derivatives of all three germ lineages, therefore holding tremendous promise for developmental biology studies and regenerative medicine therapies. Although temporal patterns of phenotypic gene expression have been relatively well characterized during the course of differentiation, coincident patterns of endogenous extracellular matrix (ECM) and growth factor expression that accompany pluripotent stem cell differentiation remain much less well-defined. Thus, the objective of this study was to examine the global dynamic profiles of ECM and growth factor genes associated with early stages of pluripotent mouse embryonic stem cell (ESC) differentiation. Gene expression analysis of ECM and growth factors by ESCs differentiating as embryoid bodies for up to 14 days was assessed using PCR arrays (172 unique genes total), and the results were examined using a variety of data mining methods. As expected, decreases in the expression of genes regulating pluripotent stem cell fate preceded subsequent increases in morphogen expression associated with differentiation. Pathway analysis generated solely from ECM and growth factor gene expression highlighted morphogenic cell processes within the embryoid bodies, such as cell growth, migration, and intercellular signaling, that are required for primitive tissue and organ developmental events. In addition, systems analysis of ECM and growth factor gene expression alone identified intracellular molecules and signaling pathways involved in the progression of pluripotent stem cell differentiation that were not contained within the array data set. Overall, these studies represent a novel framework to dissect the complex, dynamic nature of the extracellular biochemical milieu of stem cell microenvironments that regulate pluripotent cell fate decisions and morphogenesis.

  13. Growth on elastic silicone substrate elicits a partial myogenic response in periodontal ligament derived stem cells

    Directory of Open Access Journals (Sweden)

    Daniel Pelaez

    2016-12-01

    Full Text Available The processes of cellular differentiation and phenotypic maintenance can be influenced by stimuli from a variety of different factors. One commonly overlooked factor is the mechanical properties of the growth substrate in which stem cells are maintained or differentiated down various lineages. Here we explored the effect that growth on an elastic silicone substrate had on the myogenic expression and cytoskeletal morphology of periodontal ligament derived stem cells. Cells were grown on either collagen I coated tissue culture polystyrene plates or collagen I coated elastic silicone membranes for a period of 4 days without further induction from soluble factors in the culture media. Following the 4-day growth, gene expression and immunohistochemical analysis for key cardiomyogenic markers was performed along with a morphological assessment of cytoskeletal organization. Results show that cells grown on the elastic substrate significantly upregulate key markers associated with contractile activity in muscle tissues. Namely, the myosin light chain polypeptides 2 and 7, as well as the myosin heavy chain polypeptide 7 genes underwent a statistically significant upregulation in the cells grown on elastic silicone membranes. Similarly, the cells on the softer elastic substrate stained positive for both sarcomeric actin and cardiac troponin t proteins following just 4 days of growth on the softer material. Cytoskeletal analysis showed that substrate stiffness had a marked effect on the organization and distribution of filamentous actin fibers within the cell body. Growth on silicone membranes produced flatter and shorter cellular morphologies with filamentous actin fibers projecting anisotropically throughout the cell body. These results demonstrate how crucial the mechanical properties of the growth substrate of cells can be on the ultimate cellular phenotype. These observations highlight the need to further optimize differentiation protocols to enhance

  14. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells

    Directory of Open Access Journals (Sweden)

    A R Jafari

    2016-01-01

    Conclusion: Although Ag NPs exhibited low cytotoxicity, they were unable to inhibit Mtb growth in vitro. ZnO NPs exhibited strong anti-Mtb activity and inhibited bacterial growth, but exhibited high cytotoxicity to human macrophage cells. By mixing Ag and ZnO NPs at a ratio of 8ZnO/2Ag, we acquired a mixture that exhibited potent antibacterial activity against Mtb and no cytotoxic effects on THP-1 cells, resulting in inhibition of both in vitro and ex vivo Mtb growth [Figure 1],[Figure 2],[Figure 3], [Table 1],[Table 2],[Table 3].{Figure 1}{Figure 2}{Figure 3} {Table 1}{Table 2}{Table 3}

  15. Peptidoglycan synthesis machinery in Agrobacterium tumefaciens during unipolar growth and cell division.

    Science.gov (United States)

    Cameron, Todd A; Anderson-Furgeson, James; Zupan, John R; Zik, Justin J; Zambryski, Patricia C

    2014-05-27

    The synthesis of peptidoglycan (PG) in bacteria is a crucial process controlling cell shape and vitality. In contrast to bacteria such as Escherichia coli that grow by dispersed lateral insertion of PG, little is known of the processes that direct polar PG synthesis in other bacteria such as the Rhizobiales. To better understand polar growth in the Rhizobiales Agrobacterium tumefaciens, we first surveyed its genome to identify homologs of (~70) well-known PG synthesis components. Since most of the canonical cell elongation components are absent from A. tumefaciens, we made fluorescent protein fusions to other putative PG synthesis components to assay their subcellular localization patterns. The cell division scaffolds FtsZ and FtsA, PBP1a, and a Rhizobiales- and Rhodobacterales-specific l,d-transpeptidase (LDT) all associate with the elongating cell pole. All four proteins also localize to the septum during cell division. Examination of the dimensions of growing cells revealed that new cell compartments gradually increase in width as they grow in length. This increase in cell width is coincident with an expanded region of LDT-mediated PG synthesis activity, as measured directly through incorporation of exogenous d-amino acids. Thus, unipolar growth in the Rhizobiales is surprisingly dynamic and represents a significant departure from the canonical growth mechanism of E. coli and other well-studied bacilli. Many rod-shaped bacteria, including pathogens such as Brucella and Mycobacteriu, grow by adding new material to their cell poles, and yet the proteins and mechanisms contributing to this process are not yet well defined. The polarly growing plant pathogen Agrobacterium tumefaciens was used as a model bacterium to explore these polar growth mechanisms. The results obtained indicate that polar growth in this organism is facilitated by repurposed cell division components and an otherwise obscure class of alternative peptidoglycan transpeptidases (l

  16. Reduction of Nup107 attenuates the growth factor signaling in the senescent cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Young; Kang, Hyun Tae; Choi, Hae Ri [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2010-10-08

    Research highlights: {yields} Decreased expression of Nup107 in aged cells and organs. {yields} Depletion of Nup107 results in impaired nuclear translocation of p-ERK. {yields} Depletion of Nup107 affects downstream effectors of ERK signaling. {yields} Depletion of Nup107 inhibits cell proliferation of oligodendroglioma cells. -- Abstract: Hypo-responsiveness to growth factors is a fundamental feature of cellular senescence. In this study, we found markedly decreased level of Nup107, a key scaffold protein in nuclear pore complex assembly, in senescent human diploid fibroblasts as well as in organs of aged mice. Depletion of Nup107 by specific siRNA in young human diploid fibroblasts prevented the effective nuclear translocation of phosphorylated extracellular signal-regulated kinase (ERK) following epidermal growth factor (EGF) stimulation, and decreased the expression of c-Fos in consequence. The disturbances in ERK signaling in Nup107 depleted cells closely mirror the similar changes in senescent cells. Knockdown of Nup107 in anaplastic oligodendroglioma cells caused cell death, rather than growth retardation, indicating a greater sensitivity to Nup107 depletion in cancer cells than in normal cells. These findings support the notion that Nup107 may contribute significantly to the regulation of cell fate in aged and transformed cells by modulating nuclear trafficking of signal molecules.

  17. Rapamycin causes growth arrest and inhibition of invasion in human chondrosarcoma cells.

    Science.gov (United States)

    Song, Jian; Wang, Xiaobo; Zhu, Jiaxue; Liu, Jun

    2016-01-01

    Chondrosarcoma is a highly malignant tumor that is characterized by a potent capacity to invade locally and cause distant metastasis and notable for its lack of response to conventional chemotherapy or radiotherapy. Rapamycin, the inhibitor of mammalian target of rapamycin (mTOR), is a valuable drug with diverse clinical applications and regulates many cellular processes. However, the effects of rapamycin on cell growth and invasion of human chondrosarcoma cells are not well known. We determined the effect of rapamycin on cell proliferation, cell cycle arrest and invasion by using MTS, flow cytometry and invasion assays in two human chondrosarcoma cell lines, SW1353 and JJ012. Cell cycle regulatory and invasion-related genes' expression analysis was performed by quantitative RT-PCR (qRT-PCR). We also evaluated the effect of rapamycin on tumor growth by using mice xenograph models. Rapamycin significantly inhibited the cell proliferation, induced cell cycle arrest and decreased the invasion ability of human chondrosarcoma cells. Meanwhile, rapamycin modulated the cell cycle regulatory and invasion-related genes' expression. Furthermore, the tumor growth of mice xenograph models with human chondrosarcoma cells was significantly inhibited by rapamycin. These results provided further insight into the role of rapamycin in chondrosarcoma. Therefore, rapamycin targeted therapy may be a potential treatment strategy for chondrosarcoma.

  18. No Stress! Relax! Mechanisms Governing Growth and Shape in Plant Cells

    Directory of Open Access Journals (Sweden)

    Gea Guerriero

    2014-03-01

    Full Text Available The mechanisms through which plant cells control growth and shape are the result of the coordinated action of many events, notably cell wall stress relaxation and turgor-driven expansion. The scalar nature of turgor pressure would drive plant cells to assume spherical shapes; however, this is not the case, as plant cells show an amazing variety of morphologies. Plant cell walls are dynamic structures that can display alterations in matrix polysaccharide composition and concentration, which ultimately affect the wall deformation rate. The wide varieties of plant cell shapes, spanning from elongated cylinders (as pollen tubes and jigsaw puzzle-like epidermal cells, to very long fibres and branched stellate leaf trichomes, can be understood if the underlying mechanisms regulating wall biosynthesis and cytoskeletal dynamics are addressed. This review aims at gathering the available knowledge on the fundamental mechanisms regulating expansion, growth and shape in plant cells by putting a special emphasis on the cell wall-cytoskeleton system continuum. In particular, we discuss from a molecular point of view the growth mechanisms characterizing cell types with strikingly different geometries and describe their relationship with primary walls. The purpose, here, is to provide the reader with a comprehensive overview of the multitude of events through which plant cells manage to expand and control their final shapes.

  19. Raman spectral dynamics of single cells in the early stages of growth factor stimulation.

    Science.gov (United States)

    Takanezawa, Sota; Morita, Shin-ichi; Ozaki, Yukihiro; Sako, Yasushi

    2015-05-05

    Cell fates change dynamically in response to various extracellular signals, including growth factors that stimulate differentiation and proliferation. The processes underlying cell-fate decisions are complex and often include large cell-to-cell variations, even within a clonal population in the same environment. To understand the origins of these cell-to-cell variations, we must detect the internal dynamics of single cells that reflect their changing chemical milieu. In this study, we used the Raman spectra of single cells to trace their internal dynamics during the early stages of growth factor stimulation. This method allows nondestructive and inclusive time-series analyses of chemical compositions of the same single cells. Applying a Gaussian mixture model to the major principal components of the single-cell Raman spectra, we detected the dynamics of the chemical states in MCF-7 cancer-derived cells in the absence and presence of differentiation and proliferation factors. The dynamics displayed characteristic variations according to the functions of the growth factors. In the differentiation pathway, the chemical composition changed directionally between multiple states, including both reversible and irreversible state transitions. In contrast, in the proliferation pathway, the chemical composition was homogenized into a single state. The differentiation factor also stimulated fluctuations in the chemical composition, whereas the proliferation factor did not. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo

    Science.gov (United States)

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M.; Brennan, Patrick J.; Banerjee, Pinaki P.; Wiener, Susan J.; Orange, Jordan S.; Brenner, Michael B.; Grupp, Stephan A.; Nichols, Kim E.

    2013-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we find that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially-induced by iNKT cell agonists of varying TCR affinities, such as OCH, α-galactosyl ceramide and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of T cell receptor (TCR) signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell-deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T-lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T-lymphoma. PMID:24563871

  1. Model of fission yeast cell shape driven by membrane-bound growth factors and the cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Tyler Drake

    Full Text Available Fission yeast serves as a model for how cellular polarization machinery consisting of signaling molecules and the actin and microtubule cytoskeleton regulates cell shape. In this work, we develop mathematical models to investigate how these cells maintain a tubular shape of approximately constant diameter. Many studies identify active Cdc42, found in a cap at the inner membrane of growing cell tips, as an important regulator of local cell wall remodeling, likely through control of exocyst tethering and the targeting of other polarity-enhancing structures. First, we show that a computational model with Cdc42-dependent local cell wall remodeling under turgor pressure predicts a relationship between spatial extent of growth signal and cell diameter that is in agreement with prior experiments. Second, we model the consequences of feedback between cell shape and distribution of Cdc42 growth signal at cell tips. We show that stability of cell diameter over successive cell divisions places restrictions on their mutual dependence. We argue that simple models where the spatial extent of the tip growth signal relies solely on geometrical alignment of confined microtubules might lead to unstable width regulation. Third, we study a computational model that combines a growth signal distributed over a characteristic length scale (as, for example, by a reaction-diffusion mechanism with an axis-sensing microtubules system that places landmarks at positions where microtubule tips touch the cortex. A two-dimensional implementation of this model leads to stable cell diameter for a wide range of parameters. Changes to the parameters of this model reproduce straight, bent, and bulged cell shapes, and we discuss how this model is consistent with other observed cell shapes in mutants. Our work provides an initial quantitative framework for understanding the regulation of cell shape in fission yeast, and a scaffold for understanding this process on a more molecular

  2. Molecular beam epitaxy growth of germanium junctions for multi-junction solar cell applications

    Science.gov (United States)

    Masuda, T.; Faucher, J.; Lee, M. L.

    2016-11-01

    We report on the molecular beam epitaxy (MBE) growth and device characteristics of Ge solar cells. Integrating a Ge bottom cell beneath a lattice-matched triple junction stack grown by MBE could enable ultra-high efficiencies without metamorphic growth or wafer bonding. However, a diffused junction cannot be readily formed in Ge by MBE due to the low sticking coefficient of group-V molecules on Ge surfaces. We therefore realized Ge junctions by growth of homo-epitaxial n-Ge on p-Ge wafers within a standard III-V MBE system. We then fabricated Ge solar cells, finding growth temperature and post-growth annealing to be key factors for achieving high efficiency. Open-circuit voltage and fill factor values of ~0.175 V and ~0.59 without a window layer were obtained, both of which are comparable to diffused Ge junctions formed by metal-organic vapor phase epitaxy. We also demonstrate growth of high-quality, single-domain GaAs on the Ge junction, as needed for subsequent growth of III-V subcells, and that the surface passivation afforded by the GaAs layer slightly improves the Ge cell performance.

  3. Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Zihe; Hou, Jin; Martínez, José L; Petranovic, Dina; Nielsen, Jens

    2013-10-01

    With the increasing demand for biopharmaceutical proteins and industrial enzymes, it is necessary to optimize the production by microbial fermentation or cell cultures. Yeasts are well established for the production of a wide range of recombinant proteins, but there are also some limitations; e.g., metabolic and cellular stresses have a strong impact on recombinant protein production. In this work, we investigated the effect of the specific growth rate on the production of two different recombinant proteins. Our results show that human insulin precursor is produced in a growth-associated manner, whereas α-amylase tends to have a higher yield on substrate at low specific growth rates. Based on transcriptional analysis, we found that the difference in the production of the two proteins as function of the specific growth rate is mainly due to differences in endoplasmic reticulum processing, protein turnover, cell cycle, and global stress response. We also found that there is a shift at a specific growth rate of 0.1 h(-1) that influences protein production. Thus, for lower specific growth rates, the α-amylase and insulin precursor-producing strains present similar cell responses and phenotypes, whereas for higher specific growth rates, the two strains respond differently to changes in the specific growth rate.

  4. Hyaluronan Tumor Cell Interactions in Prostate Cancer Growth and Survival

    Science.gov (United States)

    2008-12-01

    hyaluronidase pretreatment or by using RNAi for the hyaluronan synthase enzymes expressed by these cells. The prediction, again, is that limiting HA...vertebrates and is not found in lower organisms or in insects (Fig. 9.2). Given its roles in such important cellular processes as motility and cell division in...cancer. Gut Zlobec, I., et al. (2008b). Node-negative colorectal cancer at high risk of distant metastasis identified by combined analysis of lymph

  5. Directing neuronal cell growth on implant material surfaces by microstructuring.

    OpenAIRE

    Reich, Uta; Fadeeva, Elena; Warnecke, Athanasia; Paasche, Gerrit; Müller, Peter; Chichkov, Boris; Stöver, Timo; Lenarz, Thomas; Reuter, Günter

    2012-01-01

    For best hearing sensation, electrodes of auditory prosthesis must have an optimal electrical contact to the respective neuronal cells. To improve the electrode-nerve interface, microstructuring of implant surfaces could guide neuronal cells toward the electrode contact. To this end, femtosecond laser ablation was used to generate linear microgrooves on the two currently relevant cochlear implant materials, silicone elastomer and platinum. Silicone surfaces were structured by two different me...

  6. Understanding and Targeting Cell Growth Networks in Breast Cancer

    Science.gov (United States)

    2013-04-01

    phosphorylation. Mol. Cell. Biol. 19:2872– 2879. 43. Venema, J., and D. Tollervey. 1999. Ribosome synthesis in Saccharomyces cerevisiae . Annu. Rev. Genet...blasts for all described genotypes were established as previously described (21) and maintained in Dulbecco’s modified Eagle’s medium supple- mented...Louis, MO) was added to the culturing medium for 2, 18 or 24 h, as indicated in the figure legends, at a final concentration of 10 M. Cells were

  7. Growth inhibition and cell cycle arrest effects of epigallocatechin gallate in the NBT-II bladder tumour cell line.

    Science.gov (United States)

    Chen, J J; Ye, Z-Q; Koo, M W L

    2004-05-01

    To examine the growth inhibition and cell cycle arrest effects of epigallocatechin gallate (EGCG), a major constituent of green tea polyphenols, on the NBT-II bladder tumour cell line. Growth inhibition and cell cycle arrest effects of EGCG were evaluated by the tetrazolium assay, flow cytometry and apoptotic DNA ladder tests. The cell cycle-related oncogene and protein expressions in NBT-II bladder tumour cells, when incubated with EGCG, were detected with reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. EGCG inhibited growth of the NBT-II bladder tumour cells in a dose- and time-dependent manner. Flow cytometry showed a G0/G1 arrest in cells when cultured with EGCG at doses of 10, 20 or 40 micro mol/L for 48 or 72 h. The apoptotic DNA ladder test showed that EGCG at 10 micro mol/L induced early apoptosis after 48 h of incubation. A down-regulation of cyclin D1 was detected by RT-PCR when the cells were incubated with EGCG (20 micro mol/L for 48 h. EGCG also down-regulated protein expression of cyclin D1, cyclin-dependent kinase 4/6 and phosphorylated retinoblastoma protein, in both a time- and dose-dependent manner, when detected by Western blot. EGCG had growth inhibition and cell-cycle arrest effects in NBT-II bladder tumour cells by down-regulating the cyclin D1, cyclin-dependent kinase 4/6 and retinoblastoma protein machinery for regulating cell-cycle progression.

  8. Role of NF-κB-dependent signaling in the growth capacity of mesenchymal progenitor cells under the influence of basic fibroblast growth factor.

    Science.gov (United States)

    Zyuz'kov, G N; Danilets, M G; Ligacheva, A A; Zhdanov, V V; Udut, E V; Miroshnichenko, L A; Chaikovskii, A V; Simanina, E V; Mova, E S Trofi; Minakova, M Yu; Losev, E A; Udut, V V; Dygai, A M

    2014-07-01

    We studied the in vitro role of NF-κB-dependent signaling in the growth capacity of mesenchymal progenitor cells upon stimulation by basic fibroblast growth factor. Proliferative activity of progenitor cells was suppressed by specifi c inhibitors of this transcription factor (NF-κB), oridonin and aurothiomalate. These inhibitors had no effect on differentiation of fibroblast CFU.

  9. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.

    Science.gov (United States)

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Reiter, Michael; Tsaur, Igor; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.

  10. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.

    Directory of Open Access Journals (Sweden)

    Jasmina Makarević

    Full Text Available Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP. Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.

  11. Effect of Brugia malayi on the growth and proliferation of endothelial cells in vitro.

    Science.gov (United States)

    Rao, U R; Zometa, C S; Vickery, A C; Kwa, B H; Nayar, J K; Sutton, E T

    1996-08-01

    Athymic mice (C3H/HeN) parasitized by Brugia malayi develop massively dilated lymphatics. The lymphatic endothelial lining is perturbed, and numerous mononuclear and giant cells are closely apposed to the endothelium. The hyperplastic endothelial cells and low opening pressure of the lymphatics suggest abnormal multiplication of these cells may be important in the dilation. We studied the in vitro growth rate of human umbilical vein endothelial cells cultured with adult worms and microfilariae of B. malayi. The tetrazolium salt reduction assays were used to quantify possible direct mitogenic or inhibitory effects. The growth factor-induced proliferation of endothelial cells was significantly suppressed by 44-51% on day 1, 46-81% on day 3, and 45-79% on day 5 in cultures containing adult female worms, which had greater suppressor activity on endothelial cell proliferation than male worms, microfilariae, or soluble adult worm extract. Culture supernatant containing female worm excretory-secretory products significantly inhibited the growth and multiplication of cells, suggesting that adult female worms release antigens or proteins that have inhibitory activity on growth factors necessary for endothelial cell proliferation in vitro. Excess human recombinant epidermal growth factor and bovine brain extract partly reversed the inhibitory activity of worms in culture and restored the endothelial cell proliferation when incubated with worm culture supernatant. Indomethacin and BW 775Hcl failed to restore normal endothelial proliferation in the presence of female worms, suggesting that parasite-derived prostanoids and cyclooxygenase products did not cause the inhibition. Lymph from dilated lymphatics, but not serum from infected mice, increased the proliferation of cells in vitro. Together, these data demonstrate that excretory-secretory products of B. malayi parasites suppress vascular endothelial proliferation in vitro. Furthermore, increases in the number of these cells

  12. Cyclic stretch of human lung cells induces an acidification and promotes bacterial growth.

    Science.gov (United States)

    Pugin, Jérôme; Dunn-Siegrist, Irène; Dufour, Julien; Tissières, Pierre; Charles, Pierre-Emmanuel; Comte, Rachel

    2008-03-01

    The reasons for bacterial proliferation in the lungs of mechanically ventilated patients are poorly understood. We hypothesized that prolonged cyclic stretch of lung cells influenced bacterial growth. Human alveolar type II-like A549 cells were submitted in vitro to prolonged cyclic stretch. Bacteria were cultured in conditioned supernatants from cells submitted to stretch and from control static cells. Escherichia coli had a marked growth advantage in conditioned supernatants from stretched A549 cells, but also from stretched human bronchial BEAS-2B cells, human MRC-5 fibroblasts, and murine RAW 264.7 macrophages. Stretched cells compared with control static cells acidified the milieu by producing increased amounts of lactic acid. Alkalinization of supernatants from stretched cells blocked E. coli growth. In contrast, acidification of supernatants from control cells stimulated bacterial growth. The effect of various pharmacological inhibitors of metabolic pathways was tested in this system. Treatment of A549 cells and murine RAW 264.7 macrophages with the Na(+)/K(+)-ATPase pump inhibitor ouabain during cyclic stretch blocked both the acidification of the milieu and bacterial growth. Several pathogenic bacteria originating from lungs of patients with ventilator-associated pneumonia (VAP) also grow better in vitro at slightly acidic pH (pH 6-7.2), pH similar to those measured in the airways from ventilated patients. This novel metabolic pathway stimulated by cyclic stretch may represent an important pathogenic mechanism of VAP. Alkalinization of the airways may represent a promising preventive strategy in ventilated critically ill patients.

  13. Survivin gene silencing sensitizes prostate cancer cells to selenium growth inhibition

    Directory of Open Access Journals (Sweden)

    Liu Xichun

    2010-08-01

    Full Text Available Abstract Background Prostate cancer is a leading cause of cancer-related death in men worldwide. Survivin is a member of the inhibitor of apoptosis (IAP protein family that is expressed in the majority of human tumors including prostate cancer, but is barely detectable in terminally differentiated normal cells. Downregulation of survivin could sensitize prostate cancer cells to chemotherapeutic agents in vitro and in vivo. Selenium is an essential trace element. Several studies have shown that selenium compounds inhibit the growth of prostate cancer cells. The objective of this study is to investigate whether survivin gene silencing in conjunction with selenium treatment could enhance the therapeutic efficacy for prostate cancer and to elucidate the underlying mechanisms. Methods Expression of survivin was analyzed in a collection of normal and malignant prostatic tissues by immunohistochemical staining. In vitro studies were conducted in PC-3M, C4-2B, and 22Rv1 prostate cancer cells. The effect of selenium on survivin expression was analyzed by Western blotting and semi-quantitative RT-PCR. Survivin gene knockdown was carried out by transfecting cells with a short hairpin RNA (shRNA designed against survivin. Cell proliferation was quantitated by the 3-(4,5-Dimethylthiazol-2-yl- 2,5-Diphenyltetrazolium Bromide (MTT assay and apoptosis by propidium iodide staining followed by flow cytometry analysis. Finally, in vivo tumor growth assay was performed by establishing PC-3M xenograft in nude mice and monitoring tumor growth following transfection and treatment. Results We found that survivin was undetectable in normal prostatic tissues but was highly expressed in prostate cancers. Survivin knockdown or selenium treatment inhibited the growth of prostate cancer cells, but the selenium effect was modest. In contrast to what have been observed in other cell lines, selenium treatment had little or no effect on survivin expression in several androgen

  14. Selection of Brain Metastasis-Initiating Breast Cancer Cells Determined by Growth on Hard Agar

    Science.gov (United States)

    Guo, Lixia; Fan, Dominic; Zhang, Fahao; Price, Janet E.; Lee, Ju-Seog; Marchetti, Dario; Fidler, Isaiah J.; Langley, Robert R.

    2011-01-01

    An approach that facilitates rapid isolation and characterization of tumor cells with enhanced metastatic potential is highly desirable. Here, we demonstrate that plating GI-101A human breast cancer cells on hard (0.9%) agar selects for the subpopulation of metastasis-initiating cells. The agar-selected cells, designated GI-AGR, were homogeneous for CD44+ and CD133+ and five times more invasive than the parental GI-101A cells. Moreover, mice injected with GI-AGR cells had significantly more experimental brain metastases and shorter overall survival than did mice injected with GI-101A cells. Comparative gene expression analysis revealed that GI-AGR cells were markedly distinct from the parental cells but shared an overlapping pattern of gene expression with the GI-101A subline GI-BRN, which was generated by repeated in vivo recycling of GI-101A cells in an experimental brain metastasis model. Data mining on 216 genes shared between GI-AGR and GI-BRN breast cancer cells suggested that the molecular phenotype of these cells is consistent with that of cancer stem cells and the aggressive basal subtype of breast cancer. Collectively, these results demonstrate that analysis of cell growth in a hard agar assay is a powerful tool for selecting metastasis-initiating cells in a heterogeneous population of breast cancer cells, and that such selected cells have properties similar to those of tumor cells that are selected based on their potential to form metastases in mice. PMID:21514446

  15. Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants

    DEFF Research Database (Denmark)

    Samuelsen, Grethe B; Pakkenberg, Bente; Bogdanović, Nenad

    2007-01-01

    with controls. The daily increase in brain cells in the future cortex was only half of that of the controls. In the 3 other developmental zones, no significant differences in cell numbers could be demonstrated. CONCLUSIONS: IUGR in humans is associated with a severe reduction in cortical growth...

  16. EFFECT OF PHOSPHORUS CONCENTRATION ON THE GROWTH OF CATTAIL CALLUS CELLS

    Science.gov (United States)

    This investigation examined the growth of Typha latifolia (cattail) callus cells grown in 5 different (0, 11, 22, 33, 44, jg/L(-1) phosphosur concentrations. The cells were grown for two successive subcultures on semi-solid media, and subsequently in suspension culture with the s...

  17. Fibroblast growth factors as regulators of stem cell self-renewal and aging

    NARCIS (Netherlands)

    Yeoh, Joyce S. G.; de Haan, Gerald

    Organ and tissue dysfunction which is readily observable during aging results from a loss of cellular homeostasis and reduced stem cell self-renewal. Over the past 10 years, studies have been aimed at delineating growth factors that will sustain and promote the self-renewal potential of stem cells

  18. Cancer Stem Cell Plasticity as Tumor Growth Promoter and Catalyst of Population Collapse

    Directory of Open Access Journals (Sweden)

    Jan Poleszczuk

    2016-01-01

    Full Text Available It is increasingly argued that cancer stem cells are not a cellular phenotype but rather a transient state that cells can acquire, either through intrinsic signaling cascades or in response to environmental cues. While cancer stem cell plasticity is generally associated with increased aggressiveness and treatment resistance, we set out to thoroughly investigate the impact of different rates of plasticity on early and late tumor growth dynamics and the response to therapy. We develop an agent-based model of cancer stem cell driven tumor growth, in which plasticity is defined as a spontaneous transition between stem and nonstem cancer cell states. Simulations of the model show that plasticity can substantially increase tumor growth rate and invasion. At high rates of plasticity, however, the cells get exhausted and the tumor will undergo spontaneous remission in the long term. In a series of in silico trials, we show that such remission can be facilitated through radiotherapy. The presented study suggests that stem cell plasticity has rather complex, nonintuitive implications on tumor growth and treatment response. Further theoretical, experimental, and integrated studies are needed to fully decipher cancer stem cell plasticity and how it can be harnessed for novel therapeutic approaches.

  19. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth

    Science.gov (United States)

    Juan Du; Shawn D. Mansfield; Andrew T. Groover

    2009-01-01

    The stem cells of the vascular cambium divide to produce daughter cells, which in turn divide before undergoing differentiation during the radial growth of woody stems. The genetic regulation of these developmental events is poorly understood, however. We report here the cloning and functional characterization of a Populus class-I KNOX...

  20. Cultivation in different growth media affects the expression of the cell ...

    African Journals Online (AJOL)

    Environmental factors may greatly influence the expression of cell surface components of bacterial pathogens. Few studies have described the effect of growth conditions on the cell surface hydrophobicity of bacterial isolates of certain Gramnegative and Gram-positive bacteria. The present study describes the effects of ...

  1. Synergistic growth inhibition of cancer cells harboring the RET/PTC1 ...

    Indian Academy of Sciences (India)

    Synergistic growth inhibition of cancer cells harboring the RET/PTC1 oncogene by staurosporine and rotenone involves enhanced cell death. ANTÓNIO PEDRO GONÇALVES, ARNALDO VIDEIRA, VALDEMAR MÁXIMO and PAULA SOARES. J. Biosci. 36(4), September 2011, 639-648, © Indian Academy of Sciences.

  2. Synergistic growth inhibition of cancer cells harboring the RET/PTC1 ...

    Indian Academy of Sciences (India)

    Synergistic growth inhibition of cancer cells harboring the RET/PTC1 oncogene by staurosporine and rotenone involves enhanced cell death. ANTÓNIO PEDRO GONÇALVES. 1,2,*, ARNALDO VIDEIRA. 1,2. , VALDEMAR MÁXIMO. 3,4 and PAULA SOARES. 3,4. 1Instituto de Biologia Molecular e Celular, Universidade do ...

  3. In Vivo Cell Wall Loosening by Hydroxyl Radicals during Cress Seed Germination and Elongation Growth

    NARCIS (Netherlands)

    Muller, K.; Linkies, A.; Vreeburg, R.A.M.; Fry, S.C.; Krieger-Liszkay, A.; Leubner-Metzger, G.

    2009-01-01

    Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical (·OH)-mediated cell wall loosening during plant seed germination and

  4. Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin).

    Science.gov (United States)

    Caveda, L; Martin-Padura, I; Navarro, P; Breviario, F; Corada, M; Gulino, D; Lampugnani, M G; Dejana, E

    1996-01-01

    Endothelial cell proliferation is inhibited by the establishment of cell to cell contacts. Adhesive molecules at junctions could therefore play a role in transferring negative growth signals. The transmembrane protein VE-cadherin (vascular endothelial cadherin/cadherin-S) is selectively expressed at intercellular clefts in the endothelium. The intracellular domain interacts with cytoplasmic proteins called catenins that transmit the adhesion signal and contribute to the anchorage of the protein to the actin cytoskeleton. Transfection of VE-cadherin in both Chinese hamster ovary (CHO) and L929 cells confers inhibition of cell growth. Truncation of VE-cadherin cytoplasmic region, responsible for linking catenins, does not affect VE-cadherin adhesive properties but abolishes its effect on cell growth. Seeding human umbilical vein endothelial cells or VE-cadherin transfectants on a recombinant VE-cadherin amino-terminal fragment inhibited their proliferation. These data show that VE-cadherin homotypic engagement at junctions participates in density dependent inhibition of cell growth. This effect requires both the extracellular adhesive domain and the intracellular catenin binding region of the molecule. PMID:8770858

  5. Aerobic expression of Vitreoscilla hemoglobin improves the growth performance of CHO-K1 cells.

    Science.gov (United States)

    Juárez, Mariana; González-De la Rosa, Claudia H; Memún, Elisa; Sigala, Juan-Carlos; Lara, Alvaro R

    2017-03-01

    Inefficient carbon metabolism is a relevant issue during the culture of mammalian cells for the production of biopharmaceuticals. Therefore, cell engineering strategies to improve the metabolic and growth performance of cell lines are needed. The expression of Vitreoscilla stercoraria hemoglobin (VHb) has been shown to significantly reduce overflow metabolism and improve the aerobic growth of bacteria. However, the effects of VHb on mammalian cells have been rarely studied. Here, the impact of VHb on growth and lactate accumulation during CHO-K1 cell culture was investigated. For this purpose, CHO-K1 cells were transfected with plasmids carrying the vgb or gfp gene to express VHb or green fluorescence protein (GFP), respectively. VHb expression increased the specific growth rate and biomass yields on glucose and glutamine by 60 %, and reduced the amount of lactate produced per cell by 40 %, compared to the GFP-expression controls. Immunofluorescence microscopy showed that VHb is distributed in the cytoplasm and organelles, which support the hypothesis that VHb could serve as an oxygen carrier, enhancing aerobic respiration. These results are useful for the development of better producing cell lines for industrial applications. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell line...

  7. the non-genomic effects of high doses of rosiglitazone on cell growth

    African Journals Online (AJOL)

    DR. AMINU

    Received: April, 2009. Accepted: July, 2009. THE NON-GENOMIC EFFECTS OF HIGH DOSES OF ROSIGLITAZONE ON. CELL GROWTH AND APOPTOSIS IN CULTURED MONOCYTIC CELLS. *S.A. Isa, L.S. Mainwaring, R. Webb, and A.W. Thomas. Centre for Biomedical Sciences, University of Wales Institute, Cardiff CF5 ...

  8. Petri Nets-Applications

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/09/0044-0052. Author Affiliations. Y Narahari ...

  9. Safety nets or straitjackets?

    DEFF Research Database (Denmark)

    Ilsøe, Anna

    2012-01-01

    Does regulation of working hours at national and sector level impose straitjackets, or offer safety nets to employees seeking working time flexibility? This article compares legislation and collective agreements in the metal industries of Denmark, Germany and the USA. The industry has historically...

  10. Coloured Petri Nets

    CERN Document Server

    Jensen, Kurt

    2009-01-01

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. This book introduces the constructs of the CPN modelling language and presents the related analysis methods. It provides a comprehensive road map for the practical use of CPN.

  11. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian

    1999-01-01

    of an existing Internet radio station; Boom Booom Net Radio. Whilst necessity dictates some use of technology-related terminology, wherever possible we have endeavoured to keep such jargon to a minimum and to either explain it in the text or to provide further explanation in the appended glossary....

  12. Game Theory .net.

    Science.gov (United States)

    Shor, Mikhael

    2003-01-01

    States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  13. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...

  14. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates.

    Science.gov (United States)

    Kavanová, Monika; Lattanzi, Fernando Alfredo; Schnyder, Hans

    2008-06-01

    Nitrogen deficiency severely inhibits leaf growth. This response was analysed at the cellular level by growing Lolium perenne L. under 7.5 mM (high) or 1 mM (low) nitrate supply, and performing a kinematic analysis to assess the effect of nitrogen status on cell proliferation and cell growth in the leaf blade epidermis. Low nitrogen supply reduced leaf elongation rate (LER) by 43% through a similar decrease in the cell production rate and final cell length. The former was entirely because of a decreased average cell division rate (0.023 versus 0.032 h(-1)) and thus longer cell cycle duration (30 versus 22 h). Nitrogen status did not affect the number of division cycles of the initial cell's progeny (5.7), and accordingly the meristematic cell number (53). Meristematic cell length was unaffected by nitrogen deficiency, implying that the division and mitotic growth rates were equally impaired. The shorter mature cell length arose from a considerably reduced post-mitotic growth rate (0.033 versus 0.049 h(-1)). But, nitrogen stress did not affect the position where elongation stopped, and increased cell elongation duration. In conclusion, nitrogen deficiency limited leaf growth by increasing the cell cycle duration and decreasing mitotic and post-mitotic elongation rates, delaying cell maturation.

  15. Modeling Cancer Cell Growth Dynamics In vitro in Response to Antimitotic Drug Treatment

    KAUST Repository

    Lorz, Alexander

    2017-08-30

    Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle parameters and apoptosis is a crucial step toward better informing drug administration. Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis. In this paper, we developed a physiologically motivated mathematical framework for describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in the time individual cells spend in the cell-cycle and apoptosis process. More precisely, our model comprises two age-structured partial differential equations for the proliferative and apoptotic cell compartments and one ordinary differential equation for the quiescent compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics, proliferative and apoptotic cells are structured in “age,” i.e., the amount of time remaining to be spent in each respective compartment. In our model, we considered an antimitotic drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest threshold. We studied the drug\\'s effect on the long-term cancer cell growth dynamics using different durations of prolonged mitotic arrest induced by the drug. Our numerical simulations suggest that at confluence and in the absence of the drug, quiescence is the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This pattern is maintained in the presence of small increases in the average cell-cycle length. However, intermediate increases in cell-cycle length markedly decrease the total number of cells and can drive the cancer population to extinction. Intriguingly, a large “switch-on/ switch-off” increase in the average

  16. Modeling Cancer Cell Growth Dynamics In vitro in Response to Antimitotic Drug Treatment

    Directory of Open Access Journals (Sweden)

    Alexander Lorz

    2017-08-01

    Full Text Available Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle parameters and apoptosis is a crucial step toward better informing drug administration. Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis. In this paper, we developed a physiologically motivated mathematical framework for describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in the time individual cells spend in the cell-cycle and apoptosis process. More precisely, our model comprises two age-structured partial differential equations for the proliferative and apoptotic cell compartments and one ordinary differential equation for the quiescent compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics, proliferative and apoptotic cells are structured in “age,” i.e., the amount of time remaining to be spent in each respective compartment. In our model, we considered an antimitotic drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest threshold. We studied the drug’s effect on the long-term cancer cell growth dynamics using different durations of prolonged mitotic arrest induced by the drug. Our numerical simulations suggest that at confluence and in the absence of the drug, quiescence is the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This pattern is maintained in the presence of small increases in the average cell-cycle length. However, intermediate increases in cell-cycle length markedly decrease the total number of cells and can drive the cancer population to extinction. Intriguingly, a large

  17. Reproductive stem cell differentiation: extracellular matrix, tissue microenvironment, and growth factors direct the mesenchymal stem cell lineage commitment.

    Science.gov (United States)

    Vidane, Atanásio S; Zomer, Helena D; Oliveira, Bruna M M; Guimarães, Carina F; Fernandes, Cláudia B; Perecin, Felipe; Silva, Luciano A; Miglino, Maria A; Meirelles, Flávio V; Ambrósio, Carlos E

    2013-10-01

    The mesenchymal stem cells (MSCs) have awakened interest in regenerative medicine due to its high capability to proliferate and differentiate in multiple specialized lineages under defined conditions. The reproductive system is considered a valuable source of MSCs, which needs further investigations. Many factors have been reported as critical for these cell lineage specification and determination. In this review, we discuss the main effects of extracellular matrix or tissue environment and growth factors in the cell lineage commitment, including the reproductive stem cells. The MSCs responses to culture medium stimuli or to soluble factors probably occur through several intracellular activation pathways. However, the molecular mechanisms in which the cells respond to these mechanical or chemical perturbations remain elusive. Recent findings suggest a synergic effect of microenvironment and soluble cell culture factors affecting cell differentiation. For future applications in cell therapy, protocols of reproductive MSCs differentiation must be established.

  18. Retracted: Knockdown of tumor protein D52-like 2 induces cell growth inhibition and apoptosis in oral squamous cell carcinoma.

    Science.gov (United States)

    2016-03-01

    The above article, published online on 13 October 2014 in Wiley Online Library (http://onlinelibrary.wiley.com/doi/10.1002/cbin.10388/abstract), has been retracted by agreement between the authors, the journal Editor, Sergio Schenkman, and John Wiley & Sons Ltd. The retraction has been agreed because the authors discovered after publication that one of the cell lines described in the article had been unintentionally misidentified. The experiments described in the article as being conducted on Human Oral Squamous Cell Carcinoma cell line KB were in fact conducted on a Human Oral Epidermal-like Cancer cell line. The authors and publisher apologise for any inconvenience. References He Y, Chen F, Cai Y and Chen S (2015) Knockdown of tumor protein D52-like 2 induces cell growth inhibition and apoptosis in oral squamous cell carcinoma. Cell Biology International 39: 264-271. doi: 10.1002/cbin.10388. © 2016 International Federation for Cell Biology.

  19. Evaluation of the influence of growth medium composition on cell elasticity.

    Science.gov (United States)

    Nikkhah, Mehdi; Strobl, Jeannine S; Schmelz, Eva M; Agah, Masoud

    2011-02-24

    Recently, there has been an increasing interest in using the biomechanical properties of cells as biomarkers to discriminate between normal and cancerous cells. However, few investigators have considered the influence of the growth medium composition when evaluating the biomechanical properties of the normal and diseased cells. In this study, we investigated the variation in Young's modulus of non-malignant MCF10A and malignant MDA-MB-231 breast cells seeded in five different growth media under controlled experimental conditions. The average Young's modulus of MDA-MB-231 cells was significantly lower (pmodulus of MCF10A cells when compared in identical medium compositions. However, we found that growth medium composition affected the elasticity of MCF10A and MDA-MB-231 cells. The average Young's modulus of both cell lines decreased by 10-18% when the serum was reduced from 10% to 5% and upon addition of epidermal growth factor (EGF, 20 ng/ml) to the medium. Though these elasticity changes might have some biological impact, none was statistically significant. However, the elasticity of MCF10A was significantly more responsive than MDA-MB-231 cells to the medium composition supplemented with EGF, cholera toxin (CT), insulin (INS) and hydrocortisone (HC), which are recommended for routine cultivation of MCF10A cells (M5). MCF10A cells were significantly softer (p<0.002) when grown in medium M5 compared to a standard MDA-MB-231 medium (M1). The investigation of the effects of culture medium composition on the elastic properties of cells highlights the need to take these effects into consideration when interpreting elasticity measurements in cells grown in different media. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Angiogenic factors stimulate growth of adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    2010-02-01

    Full Text Available The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools.Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes.We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.