WorldWideScience

Sample records for net carbon flux

  1. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  2. Net carbon flux in organic and conventional olive production systems

    Science.gov (United States)

    Saeid Mohamad, Ramez; Verrastro, Vincenzo; Bitar, Lina Al; Roma, Rocco; Moretti, Michele; Chami, Ziad Al

    2014-05-01

    Agricultural systems are considered as one of the most relevant sources of atmospheric carbon. However, agriculture has the potentiality to mitigate carbon dioxide mainly through soil carbon sequestration. Some agricultural practices, particularly fertilization and soil management, can play a dual role in the agricultural systems regarding the carbon cycle contributing to the emissions and to the sequestration process in the soil. Good soil and input managements affect positively Soil Organic Carbon (SOC) changes and consequently the carbon cycle. The present study aimed at comparing the carbon footprint of organic and conventional olive systems and to link it to the efficiency of both systems on carbon sequestration by calculating the net carbon flux. Data were collected at farm level through a specific and detailed questionnaire based on one hectare as a functional unit and a system boundary limited to olive production. Using LCA databases particularly ecoinvent one, IPCC GWP 100a impact assessment method was used to calculate carbon emissions from agricultural practices of both systems. Soil organic carbon has been measured, at 0-30 cm depth, based on soil analyses done at the IAMB laboratory and based on reference value of SOC, the annual change of SOC has been calculated. Substracting sequestrated carbon in the soil from the emitted on resulted in net carbon flux calculation. Results showed higher environmental impact of the organic system on Global Warming Potential (1.07 t CO2 eq. yr-1) comparing to 0.76 t CO2 eq. yr-1 in the conventional system due to the higher GHG emissions caused by manure fertilizers compared to the use of synthetic foliar fertilizers in the conventional system. However, manure was the main reason behind the higher SOC content and sequestration in the organic system. As a resultant, the organic system showed higher net carbon flux (-1.7 t C ha-1 yr-1 than -0.52 t C ha-1 yr-1 in the conventional system reflecting higher efficiency as a

  3. Net carbon flux from agricultural ecosystems: methodology for full carbon cycle analyses.

    Science.gov (United States)

    West, T O; Marland, G

    2002-01-01

    Agricultural ecosystems have the potential to sequester carbon in soils by altering agricultural management practices (i.e. tillage practice, cover crops, and crop rotation) and using agricultural inputs (i.e. fertilizers and irrigation) more efficiently. Changes in agricultural practices can also cause changes in CO2 emissions associated with these practices. In order to account for changes in net CO2 emissions, and thereby estimate the overall impact of carbon sequestration initiatives on the atmospheric CO2 pool, we use a methodology for full carbon cycle analysis of agricultural ecosystems. The analysis accounts for changes in carbon sequestration and emission rates with time, and results in values representing a change in net carbon flux. Comparison among values of net carbon flux for two or more systems, using the initial system as a baseline value, results in a value for relative net carbon flux. Some results from using the full carbon cycle methodology, along with US national average values for agricultural inputs, indicate that the net carbon flux averaged over all crops following conversion from conventional tillage to no-till is -189 kg C ha(-1) year(-1) (a negative value indicates net transfer of carbon from the atmosphere). The relative net carbon flux, using conventional tillage as the baseline, is -371 kg C ha(-1) year(-1), which represents the total atmospheric CO2 reduction caused by changing tillage practices. The methodology used here illustrates the importance of (1) delineating system boundaries, (2) including CO2 emissions associated with sequestration initiatives in the accounting process, and (3) comparing the new management practices associated with sequestration initiatives with the original management practices to obtain the true impact of sequestration projects on the atmospheric CO2 pool.

  4. Development of an ensemble-adjoint optimization approach to derive uncertainties in net carbon fluxes

    Directory of Open Access Journals (Sweden)

    T. Ziehn

    2011-11-01

    Full Text Available Accurate modelling of the carbon cycle strongly depends on the parametrization of its underlying processes. The Carbon Cycle Data Assimilation System (CCDAS can be used as an estimator algorithm to derive posterior parameter values and uncertainties for the Biosphere Energy Transfer and Hydrology scheme (BETHY. However, the simultaneous optimization of all process parameters can be challenging, due to the complexity and non-linearity of the BETHY model. Therefore, we propose a new concept that uses ensemble runs and the adjoint optimization approach of CCDAS to derive the full probability density function (PDF for posterior soil carbon parameters and the net carbon flux at the global scale. This method allows us to optimize only those parameters that can be constrained best by atmospheric carbon dioxide (CO2 data. The prior uncertainties of the remaining parameters are included in a consistent way through ensemble runs, but are not constrained by data. The final PDF for the optimized parameters and the net carbon flux are then derived by superimposing the individual PDFs for each ensemble member. We find that the optimization with CCDAS converges much faster, due to the smaller number of processes involved. Faster convergence also gives us much increased confidence that we find the global minimum in the reduced parameter space.

  5. [Net CO2 exchange and carbon isotope flux in Acacia mangium plantation].

    Science.gov (United States)

    Zou, Lu-Liu; Sun, Gu-Chou; Zhao, Ping; Cai, Xi-An; Zeng, Xiao-Ping; Wang, Quan

    2009-11-01

    By using stable carbon isotope technique, the leaf-level 13C discrimination was integrated to canopy-scale photosynthetic discrimination (Deltacanopy) through weighted the net CO2 assimilation (Anet) of sunlit and shaded leaves and the stand leaf area index (L) in an A. mangium plantation, and the carbon isotope fluxes from photosynthesis and respiration as well as their net exchange flux were obtained. There was an obvious diurnal variation in Deltacanopy, being lower at dawn and at noon time (18.47 per thousand and 19.87 per thousand, respectively) and the highest (21.21 per thousand) at dusk. From the end of November to next May, the Deltacanopy had an increasing trend, with an annual average of (20.37 +/- 0.29) per thousand. The carbon isotope ratios of CO2 from autotrophic respiration (excluding daytime foliar respiration) and heterotrophic respiration were respectively (- 28.70 +/- 0.75) per thousand and (- 26.75 +/- 1.3) per thousand in average. The delta13 C of nighttime ecosystem-respired CO2 in May was the lowest (-30.14 per thousand), while that in November was the highest (-28.01 per thousand). The carbon isotope flux of CO2 between A. mangium forest and atmosphere showed a midday peak of 178.5 and 217 micromol x m(-2) x s(-1) x per thousand in May and July, with the daily average of 638.4 and 873.2 micromol x m(-2) x s(-1) x per thousand, respectively. The carbon isotope flux of CO2 absorbed by canopy leaves was 1.6-2.5 times higher than that of CO2 emitted from respiration, suggesting that a large sum of CO2 was absorbed by A. mangium, which decreased the atmospheric CO2 concentration and improved the environment.

  6. Biogenic carbon fluxes from global agricultural production and consumption: Gridded, annual estimates of net ecosystem carbon exchange

    Science.gov (United States)

    Wolf, J.; West, T. O.; le Page, Y.; Thomson, A. M.

    2014-12-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate globally consistent bottom-up estimates for carbon monitoring and model input. We quantify agricultural carbon fluxes associated with annual (starting in 1961) crop net primary productivity (NPP), harvested biomass, and human and livestock consumption and emissions, with estimates of uncertainty, by applying region- and species-specific carbon parameters to annual crop, livestock, food and trade inventory data, and generate downscaled, gridded (0.05 degree resolution) representations of these fluxes. In 2011, global crop NPP was 5.25 ± 0.46 Pg carbon (excluding root exudates), of which 2.05 ± 0.051 Pg carbon was harvested as primary crops; an additional 0.54 Pg of crop residue carbon was collected for livestock fodder. In 2011, total livestock feed intake was 2.42 ± 0.21 Pg carbon, of which 2.31 ± 0.21 Pg carbon was emitted as carbon dioxide and 0.072 ± 0.005 Pg carbon was emitted as methane. We estimate that livestock grazed 1.18 Pg carbon from non-crop lands in 2011, representing 48.5 % of global total feed intake. In 2009, the latest available data year, we estimate global human food intake (excluding seafood and orchard fruits and nuts) at 0.52 ± 0.03 Pg carbon, with an additional 0.24 ± 0.01 Pg carbon of food supply chain losses. Trends in production and consumption of agricultural carbon between 1961 and recent years, such as increasing dominance of oilcrops and decreasing percent contribution of pasturage to total livestock feed intake, are discussed, and accounting of all agricultural carbon was done for the years 2005 and 2009. Gridded at 0.05 degree resolution, these quantities represent local uptake and release of agricultural biogenic carbon (e.g. biomass production and removal, residue and manure inputs to soils) and may be used with other gridded data to help estimate current and future changes in soil organic carbon.

  7. Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates

    Science.gov (United States)

    Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry

    2018-01-01

    Modeling net ecosystem exchange (NEE) at the regional scale with land surface models (LSMs) is relevant for the estimation of regional carbon balances, but studies on it are very limited. Furthermore, it is essential to better understand and quantify the uncertainty of LSMs in order to improve them. An important key variable in this respect is the prognostic leaf area index (LAI), which is very sensitive to forcing data and strongly affects the modeled NEE. We applied the Community Land Model (CLM4.5-BGC) to the Rur catchment in western Germany and compared estimated and default ecological key parameters for modeling carbon fluxes and LAI. The parameter estimates were previously estimated with the Markov chain Monte Carlo (MCMC) approach DREAM(zs) for four of the most widespread plant functional types in the catchment. It was found that the catchment-scale annual NEE was strongly positive with default parameter values but negative (and closer to observations) with the estimated values. Thus, the estimation of CLM parameters with local NEE observations can be highly relevant when determining regional carbon balances. To obtain a more comprehensive picture of model uncertainty, CLM ensembles were set up with perturbed meteorological input and uncertain initial states in addition to uncertain parameters. C3 grass and C3 crops were particularly sensitive to the perturbed meteorological input, which resulted in a strong increase in the standard deviation of the annual NEE sum (σ ∑ NEE) for the different ensemble members from ˜ 2 to 3 g C m-2 yr-1 (with uncertain parameters) to ˜ 45 g C m-2 yr-1 (C3 grass) and ˜ 75 g C m-2 yr-1 (C3 crops) with perturbed forcings. This increase in uncertainty is related to the impact of the meteorological forcings on leaf onset and senescence, and enhanced/reduced drought stress related to perturbation of precipitation. The NEE uncertainty for the forest plant functional type (PFT) was considerably lower (σ ∑ NEE ˜ 4.0-13.5 g C

  8. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  9. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn

    DEFF Research Database (Denmark)

    Wu, Chaoyang; Chen, Xi Jing; Black, T. Andrew

    2013-01-01

    ) and 13 evergreen needleleaf forests (ENF) across North America and Europe (212 site‐years) were used to explore the relationships between the yearly anomalies of annual NEP and several carbon flux based phenological indicators, including the onset/end of the growing season, onset/end of the carbon uptake...... period, the spring lag (time interval between the onset of growing season and carbon uptake period) and the autumn lag (time interval between the end of the carbon uptake period and the growing season). Meteorological variables, including global shortwave radiation, air temperature, soil temperature...

  10. Estimation of Net Ecosystem Carbon Exchange for the Conterminous UnitedStates by Combining MODIS and AmeriFlux Data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.

    2009-03-06

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.

  11. Eddy covariance flux measurements of net ecosystem carbon dioxide exchange from a lowland peatland flux tower network in England and Wales

    Science.gov (United States)

    Morrison, Ross; Balzter, Heiko; Burden, Annette; Callaghan, Nathan; Cumming, Alenander; Dixon, Simon; Evans, Jonathan; Kaduk, Joerg; Page, Susan; Pan, Gong; Rayment, Mark; Ridley, Luke; Rylett, Daniel; Worrall, Fred; Evans, Christopher

    2016-04-01

    Peatlands store disproportionately large amounts of soil carbon relative to other terrestrial ecosystems. Over recent decades, the large amount of carbon stored as peat has proved vulnerable to a range of land use pressures as well as the increasing impacts of climate change. In temperate Europe and elsewhere, large tracts of lowland peatland have been drained and converted to agricultural land use. Such changes have resulted in widespread losses of lowland peatland habitat, land subsidence across extensive areas and the transfer of historically accumulated soil carbon to the atmosphere as carbon dioxide (CO2). More recently, there has been growth in activities aiming to reduce these impacts through improved land management and peatland restoration. Despite a long history of productive land use and management, the magnitude and controls on greenhouse gas emissions from lowland peatland environments remain poorly quantified. Here, results of surface-atmosphere measurements of net ecosystem CO2 exchange (NEE) from a network of seven eddy covariance (EC) flux towers located at a range of lowland peatland ecosystems across the United Kingdom (UK) are presented. This spatially-dense peatland flux tower network forms part of a wider observation programme aiming to quantify carbon, water and greenhouse gas balances for lowland peatlands across the UK. EC measurements totalling over seventeen site years were obtained at sites exhibiting large differences in vegetation cover, hydrological functioning and land management. The sites in the network show remarkable spatial and temporal variability in NEE. Across sites, annual NEE ranged from a net sink of -194 ±38 g CO2-C m-2 yr-1 to a net source of 784±70 g CO2-C m-2 yr-1. The results suggest that semi-natural sites remain net sinks for atmospheric CO2. Sites that are drained for intensive agricultural production range from a small net sink to the largest observed source for atmospheric CO2 within the flux tower network

  12. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    Science.gov (United States)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  13. CMS: Forest Carbon Stocks, Emissions, and Net Flux for the Conterminous US: 2005-2010

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides maps of estimated carbon in forests of the 48 continental states of the US for the years 2005-2010. Carbon (termed committed carbon) stocks...

  14. Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites

    Science.gov (United States)

    Post, Hanna; Vrugt, Jasper A.; Fox, Andrew; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2017-03-01

    The Community Land Model (CLM) contains many parameters whose values are uncertain and thus require careful estimation for model application at individual sites. Here we used Bayesian inference with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5 ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of four central European sites with different plant functional types (PFTs). The posterior CLM parameter distributions of each site were estimated per individual season and on a yearly basis. These estimates were then evaluated using NEE data from an independent evaluation period and data from "nearby" FLUXNET sites at 600 km distance to the original sites. Latent variables (multipliers) were used to treat explicitly uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their default values in their ability to track and explain the measured NEE data of each site. The seasonal parameter values reduced with more than 50% (averaged over all sites) the bias in the simulated NEE values. The most consistent performance of CLM during the evaluation period was found for the posterior parameter values of the forest PFTs, and contrary to the C3-grass and C3-crop sites, the latent variables of the initial pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon stocks and fluxes require careful consideration of uncertain ecological parameters and initial states.

  15. Interacting effects of elevated temperature and additional water on plant physiology and net ecosystem carbon fluxes in a high Arctic ecosystem

    Science.gov (United States)

    Maseyk, Kadmiel; Seibt, Ulrike; Lett, Céline; Lupascu, Massimo; Czimczik, Claudia; Sullivan, Patrick; Welker, Jeff

    2013-04-01

    Arctic ecosystems are experiencing temperature increases more strongly than the global average, and increases in precipitation are also expected amongst the climate impacts on this region in the future. These changes are expected to strongly influence plant physiology and soil biogeochemistry with subsequent implications for system carbon balance. We have investigated the effects of a long-term (10 years) increase in temperature, soil water and the combination of both on a tundra ecosystem at a field manipulation experiment in NW Greenland. Leaf gas exchange, chlorophyll fluorescence, carbon (C) and nitrogen (N) content and leaf isotopic composition, and leaf morphology were measured on Salix arctica plants in treatment and control plots in June-July 2011, and continuous measurements of net plant and soil fluxes of CO2 and water were made using automatic chambers coupled to a trace gas laser analyzer. Plants in the elevated temperature (T2) treatment had the highest photosynthetic capacity in terms of net CO2 assimilation rates and photosystem II efficiencies, and lowest rates of non-photochemical energy dissipation during photosynthesis. T2 plants also had the highest leaf N content, specific leaf area (SLA) and saturation light level of photosynthesis. It appears that warming increases soil N availability, which the plants direct towards increasing photosynthetic capacity and producing larger thinner leaves. On the other hand, the plants in the plots with both elevated temperatures and additional water (T2W) had the lowest photosystem II efficiencies and the highest rates of non-photochemical energy dissipation, due more to higher levels of constitutive energy dissipation than regulated thermal quenching. Watering, both in combination with higher temperatures and alone (W treatment), also reduced leaf SLA and leaf N relative to control plots. However, net photosynthetic rates remained similar to control plants, due in part to higher stomatal conductance (W) and

  16. Atmospheric 14CO2 Constraints on and Modeling of Net Carbon Fluxes 06-ERD-031 An LLNL Exploratory Research in the Directorate's Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Guilderson, T P; Cameron-Smith, P; Bergmann, D; Graven, H D; Keeling, R; Boering, K; Caldeira, K

    2009-03-18

    A critical scientific question is: 'what are the present day sources and sinks of carbon dioxide (CO{sub 2}) in the natural environment, and how will these sinks evolve under rising CO{sub 2} concentrations and expected climate change and ecosystem response'? Sources and sinks of carbon dioxide impart their signature on the distribution, concentration, and isotopic composition of CO{sub 2}. Spatial and temporal trends (variability) provide information on the net surface (atmosphere to ocean, atmosphere to terrestrial biosphere) fluxes. The need to establish more reliable estimates of sources and sinks of CO{sub 2} has lead to an expansion of CO{sub 2} measurement programs over the past decade and the development of new methodologies for tracing carbon flows. These methodologies include high-precision pCO{sub 2}, {delta}{sup 13}CO{sub 2}, and [O{sub 2}/N{sub 2}] measurements on atmospheric constituents that, when combined, have allowed estimates of the net terrestrial and oceanic fluxes at decadal timescales. Major gaps in our understanding remain however, and resulting flux estimates have large errors and are comparatively unconstrained. One potentially powerful approach to tracking carbon flows is based on observations of the {sup 14}C/{sup 12}C ratio of atmospheric CO{sub 2}. This ratio can be used to explicitly distinguish fossil-fuel CO{sub 2} from other sources of CO{sub 2} and also provide constraints on the mass and turnover times of carbon in land ecosystems and on exchange rates of CO{sub 2} between air and sea. Here we demonstrated measurement of {sup 14}C/{sup 12}C ratios at 1-2{per_thousand} on archived and currently collected air samples. In parallel we utilized the LLNL-IMPACT global atmospheric chemistry transport model and the TransCom inversion algorithm to utilize these data in inversion estimates of carbon fluxes. This project has laid the foundation for a more expanded effort in the future, involving collaborations with other air

  17. A Comparison of Three Gap Filling Techniques for Eddy Covariance Net Carbon Fluxes in Short Vegetation Ecosystems

    Directory of Open Access Journals (Sweden)

    Xiaosong Zhao

    2015-01-01

    Full Text Available Missing data is an inevitable problem when measuring CO2, water, and energy fluxes between biosphere and atmosphere by eddy covariance systems. To find the optimum gap-filling method for short vegetations, we review three-methods mean diurnal variation (MDV, look-up tables (LUT, and nonlinear regression (NLR for estimating missing values of net ecosystem CO2 exchange (NEE in eddy covariance time series and evaluate their performance for different artificial gap scenarios based on benchmark datasets from marsh and cropland sites in China. The cumulative errors for three methods have no consistent bias trends, which ranged between −30 and +30 mgCO2 m−2 from May to October at three sites. To reduce sum bias in maximum, combined gap-filling methods were selected for short vegetation. The NLR or LUT method was selected after plant rapidly increasing in spring and before the end of plant growing, and MDV method was used to the other stage. The sum relative error (SRE of optimum method ranged between −2 and +4% for four-gap level at three sites, except for 55% gaps at soybean site, which also obviously reduced standard deviation of error.

  18. Modelling daily to seasonal carbon fluxes and annual net ecosystem carbon balance of cereal grain-cropland using DailyDayCent: A model data comparison

    OpenAIRE

    Chabbi, Abad; Smith, Pete

    2018-01-01

    Croplands are important not only for food and fibre, but also for their global climate change mitigation and carbon (C) sequestration potentials. Measurements and modelling of daily C fluxes and annual C balance, which are needed for optimizing such global potentials in croplands, are difficult since many measurements, and the correct simulation of different ecosystem processes are needed. In the present study, a biogeochemical ecosystem model (DailyDayCent) was applied to simulate daily to s...

  19. Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Science.gov (United States)

    Jingfeng Xiaoa; Qianlai Zhuang; Beverly E. Law; Dennis D. Baldocchi; Jiquan Chen; al. et.

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a...

  20. NACP North American 8-km Net Ecosystem Exchange and Component Fluxes, 2004

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides modeled carbon flux estimates at 8-km spatial resolution over North America for the year 2004 of (1) net ecosystem exchange (NEE) of carbon...

  1. GALILEO PROBE NET FLUX RADIOMETER DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Galileo Probe Net Flux Radiometer (NFR) measured net and upward radiation fluxes in Jupiter's atmosphere between about 0.44 bars and 14 bars, using five spectral...

  2. Mapping Daily Net CO2 Flux From Grasslands Using Remote Sensing

    Science.gov (United States)

    Holifield, C.; Emmerich, W.; Moran, M. S.; Bryant, R.; Verdugo, C.

    2003-12-01

    The daily net carbon dioxide (CO2) flux from extensive grassland ecosystems is an important component of the global carbon cycle. In previous studies, instantaneous net CO2 flux was estimated using a Water Deficit Index (WDI) determined from the relation between surface reflectance and temperature. The mean absolute difference between measured and WDI-derived CO2 flux was 0.23 over a range of CO2 flux values from -0.10 to 1.10 (mg m-2 s-1). The objective of this study was to determine daily net CO2 flux from instantaneous estimates for a semiarid grassland site in Southeast Arizona. This objective was reached through two main steps. First, a linear relationship (R2 = 0.95) was found between instantaneous net CO2 flux and net daytime (6 a.m. to 6 p.m.) flux and used to generate maps of daytime CO2 flux. Second, a field study was conducted to relate night time flux measurements to daytime measurements. These relations made it possible to map daily (24-hour) net CO2 flux from a single satellite image and basic meteorological information. A limitation of this approach is the dependence upon empirical relations for deriving daytime and night time estimates from instantaneous measurements. On the other hand, the empirical relations derived at this location were strong and consistent for the six-year study period.

  3. Reduced uncertainty of regional scale CLM predictions of net carbon fluxes and leaf area indices with estimated plant-specific parameters

    Science.gov (United States)

    Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry

    2016-04-01

    Reliable estimates of carbon fluxes and states at regional scales are required to reduce uncertainties in regional carbon balance estimates and to support decision making in environmental politics. In this work the Community Land Model version 4.5 (CLM4.5-BGC) was applied at a high spatial resolution (1 km2) for the Rur catchment in western Germany. In order to improve the model-data consistency of net ecosystem exchange (NEE) and leaf area index (LAI) for this study area, five plant functional type (PFT)-specific CLM4.5-BGC parameters were estimated with time series of half-hourly NEE data for one year in 2011/2012, using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, a Markov Chain Monte Carlo (MCMC) approach. The parameters were estimated separately for four different plant functional types (needleleaf evergreen temperate tree, broadleaf deciduous temperate tree, C3-grass and C3-crop) at four different sites. The four sites are located inside or close to the Rur catchment. We evaluated modeled NEE for one year in 2012/2013 with NEE measured at seven eddy covariance sites in the catchment, including the four parameter estimation sites. Modeled LAI was evaluated by means of LAI derived from remotely sensed RapidEye images of about 18 days in 2011/2012. Performance indices were based on a comparison between measurements and (i) a reference run with CLM default parameters, and (ii) a 60 instance CLM ensemble with parameters sampled from the DREAM posterior probability density functions (pdfs). The difference between the observed and simulated NEE sum reduced 23% if estimated parameters instead of default parameters were used as input. The mean absolute difference between modeled and measured LAI was reduced by 59% on average. Simulated LAI was not only improved in terms of the absolute value but in some cases also in terms of the timing (beginning of vegetation onset), which was directly related to a substantial improvement of the NEE estimates in

  4. Net ecosystem exchange from five land-use transitions to bioenergy crops from four locations across the UK - The Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project.

    Science.gov (United States)

    Xenakis, Georgios; Perks, Mike; Harris, Zoe M.; McCalmont, Jon; Rylett, Daniel; Brooks, Milo; Evans, Jonathan G.; Finch, Jon; Rowe, Rebecca; Morrison, Ross; Alberti, Giorgio; Donnison, Ian; Siebicke, Lukas; Morison, James; Taylor, Gail; McNamara, Niall P.

    2016-04-01

    A major part of international agreements on combating climate change is the conversion from a fossil fuel economy to a low carbon economy. Bioenergy crops have been proposed as a way to improve energy security while reducing CO2 emissions to help mitigate the effects of climate change. However, the impact of land-use change from a traditional land use (e.g., arable and grassland) to bioenergy cropping systems on greenhouse gas balance (GHG) and carbon stocks are poorly quantified at this time. The Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project was commissioned and funded by the Energy Technologies Institute (ETI) to provide scientific evidence within the UK on a range of land-use conversions (LUC) to bioenergy crops. The ELUM network consists of seven partners investigating five LUCs in four locations including Scotland, Wales, North and South England. Transitions included grasslands to short rotation forestry (SRF), to short rotation coppice willow (SRC) and to Miscanthus and arable to SRC and Miscanthus Measurements of net ecosystem exchange (NEE) along with continuous measurements of meteorological conditions were made at seven sub-sites over a two-year period. Results showed that, over two years, two of the land-uses, a grassland in South England and a grassland conversion to Miscanthus in Wales were net sources of carbon. The greatest carbon sink was into the SRF site in Scotland followed by the SRC willow in South England. The annual terrestrial ecosystem respiration (TER) for the SRC willow in North and South Sussex sites were similar, but the annual GPP at the South England site was about 27% higher than that the North England site. Establishing a long term network will allow us to continue monitoring the effects of land use change on whole ecosystem carbon balance, providing an insight into which types of LUC are suitable for bioenergy cropping in the UK.

  5. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over four flux towers in the United States

    Science.gov (United States)

    Xueri Dang; Chun-Ta Lai; David Y. Hollinger; Andrew J. Schauer; Jingfeng Xiao; J. William Munger; Clenton Owensby; James R. Ehleringer

    2011-01-01

    We evaluated an idealized boundary layer (BL) model with simple parameterizations using vertical transport information from community model outputs (NCAR/NCEP Reanalysis and ECMWF Interim Analysis) to estimate regional-scale net CO2 fluxes from 2002 to 2007 at three forest and one grassland flux sites in the United States. The BL modeling...

  6. Thermal net flux measurements on the Pioneer Venus entry probes

    Science.gov (United States)

    Revercomb, H. E.; Sromovsky, L. A.; Suomi, V. E.; Boese, R. W.

    1985-01-01

    Corrected thermal net (upward minus downward flux) radiation data from four Pioneer Venus probes at latitudes of 4 deg and 60 deg N, and 27 deg and 31 deg S, are presented. Comparisons of these fluxes with radiative transfer calculations were interpreted in terms of cloud properties and the global distribution of water vapor in the lower atmosphere of Venus. The presence of an as yet undetected source of IR opacity is implied by the fluxes in the upper cloud range. It was also shown that beneath the clouds the fluxes at a given altitude increase with latitude, suggesting greater IR cooling below the clouds at high latitudes and a decrease of the water vapor mixing ratios toward the equator.

  7. Spatial-temporal variability in GHG fluxes and their functional interpretation in RusFluxNet

    Science.gov (United States)

    Vasenev, Ivan; Meshalkina, Julia; Sarzhanov, Dmitriy; Mazirov, Ilia; Yaroslavtsev, Alex; Komarova, Tatiana; Tikhonova, Maria

    2016-04-01

    High spatial and temporal variability is mutual feature for most modern boreal landscapes in the European Territory of Russia. This variability is result of their relatively young natural and land-use age with very complicated development stories. RusFluxNet includes a functionally-zonal set of representative natural, agricultural and urban ecosystems from the Central Forest Reserve in the north till the Central Chernozemic Reserve in the south (more than 1000 km distance). Especial attention has been traditionally given to their soil cover and land-use detailed variability, morphogenetic and functional dynamics. Central Forest Biosphere Reserve (360 km to North-West from Moscow) is the principal southern-taiga one in the European territory of Russia with long history of mature spruce ecosystem structure and dynamics investigation. Our studies (in frame of RF Governmental projects #11.G34.31.0079 and #14.120.14.4266) have been concentrated on the soil carbon stocks and GHG fluxes spatial variability and dynamics due to dominated there windthrow and fallow-forest successions. In Moscow RTSAU campus gives a good possibility to develop the ecosystem and soil monitoring of GHG fluxes in the comparable sites of urban forest, field crops and lawn ecosystems taking especial attention on their meso- and micro-relief, soil cover patterns and subsoil, vegetation and land-use technologies, temperature and moisture spatial and temporal variability. In the Central Chernozemic Biosphere Reserve and adjacent areas we do the comparative analysis of GHG fluxes and balances in the virgin and mowed meadow-steppe, forest, pasture, cropland and three types of urban ecosystems with similar subsoil and relief conditions. The carried out researches have shown not only sharp (in 2-5 times) changes in GHG ecosystem and soil fluxes and balances due to seasonal and daily microclimate variation, vegetation and crop development but their essential (in 2-4 times) spatial variability due to

  8. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    Science.gov (United States)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  9. Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds

    Directory of Open Access Journals (Sweden)

    Cristina eBarron

    2014-10-01

    Full Text Available Estimates of dissolved organic carbon (DOC release by marine macrophyte communities (seagrass meadows and macroalgal beds based on in situ benthic chambers from published and unpublished are compiled in this study. The effect of temperature and light availability on DOC release by macrophyte communities was examined. Almost 85 % of the seagrass communities and all of macroalgal communities examined acted as net sources of DOC. Net DOC fluxes in seagrass communities increase positively with water temperature. In macroalgal communities net DOC fluxes under light exceeded those under dark condition, however, this trend was weaker in seagrass communities. Shading of a mixed seagrass meadow in The Philippines led to a significant reduction on the net DOC release when shading was maintained for 6 days compared to only 2 days of shading. Net DOC fluxes increased with increasing community respiration, but were independent of primary production or net community production. The estimated global net DOC flux, and hence export, from marine macrophytes is about 0.158 ± 0.055 Pg C yr-1 or 0.175 ± 0.056 Pg C yr-1 depending on the global extent of seagrass meadows considered.

  10. MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis.

    Science.gov (United States)

    Lee, Dong-Yup; Yun, Hongsoek; Park, Sunwon; Lee, Sang Yup

    2003-11-01

    MetaFluxNet is a program package for managing information on the metabolic reaction network and for quantitatively analyzing metabolic fluxes in an interactive and customized way. It allows users to interpret and examine metabolic behavior in response to genetic and/or environmental modifications. As a result, quantitative in silico simulations of metabolic pathways can be carried out to understand the metabolic status and to design the metabolic engineering strategies. The main features of the program include a well-developed model construction environment, user-friendly interface for metabolic flux analysis (MFA), comparative MFA of strains having different genotypes under various environmental conditions, and automated pathway layout creation. http://mbel.kaist.ac.kr/ A manual for MetaFluxNet is available as PDF file.

  11. Anthropogenic And Biogenic Carbon Dioxide Fluxes in Urban Houston

    Science.gov (United States)

    Werner, N. D.; Schade, G. W.; Savage, J.; Hale, M.

    2011-12-01

    Approximately 5% of North American land cover is characterized as urban, representing a large source of anthropogenic carbon to the atmosphere but also an unknown sink in urban vegetation and its management. We present measurements of energy and trace gas fluxes from a unique urban research site in Houston, Texas, with a focus on evaluating the anthropogenic and biogenic contributions to the measured net CO2 exchange at this site. Eddy covariance carbon dioxide flux measurements, and CO2 and NOx flux gradient measurements have been operated (with a one-year gap) since mid 2007 from a commercial communications tower north of downtown Houston. In addition, leaf-level and soil CO2 efflux measurements were carried out in the tower's footprint region in 2011. Bottom-up estimates were developed for anthropogenic CO2 fluxes through correlation with CO, traffic count and natural gas use data, and for biogenic CO2 fluxes through modeling soil and plant respiration, and photosynthesis. CO, NO¬x, and CO2 data were strongly correlated during the morning rush hours, and were used to extrapolate CO2 emissions from traffic using measured biweekly to monthly CO (NOx) flux averages. CO emissions from natural gas use were extrapolated from monthly gas consumption data. The results will be compared to a top-down flux estimate that uses quadrant analysis of CO2 fluxes with simultaneously acquired heat and water vapor fluxes to distinguish biogenic (high q'C' correlation) from anthropogenic (high T'C' correlation) carbon flux contributions. First results from both bottom-up and top-down flux estimates will be presented. The successful implementation of this new analysis may allow us to better judge the importance of constantly growing urban areas in the North American carbon cycle. It addresses identified gaps in carbon cycle knowledge and can help in validating inventories and improving estimates of carbon cycling.

  12. CMS: Carbon Fluxes from Global Agricultural Production and Consumption, 2005-2011

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides global estimates of carbon fluxes associate with annual crop net primary production (NPP) and harvested biomass, annual uptake and release by...

  13. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    Science.gov (United States)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  14. Net ecosystem carbon exchange of a dry temperate eucalypt forest

    Science.gov (United States)

    Hinko-Najera, Nina; Isaac, Peter; Beringer, Jason; van Gorsel, Eva; Ewenz, Cacilia; McHugh, Ian; Exbrayat, Jean-François; Livesley, Stephen J.; Arndt, Stefan K.

    2017-08-01

    Forest ecosystems play a crucial role in the global carbon cycle by sequestering a considerable fraction of anthropogenic CO2, thereby contributing to climate change mitigation. However, there is a gap in our understanding about the carbon dynamics of eucalypt (broadleaf evergreen) forests in temperate climates, which might differ from temperate evergreen coniferous or deciduous broadleaved forests given their fundamental differences in physiology, phenology and growth dynamics. To address this gap we undertook a 3-year study (2010-2012) of eddy covariance measurements in a dry temperate eucalypt forest in southeastern Australia. We determined the annual net carbon balance and investigated the temporal (seasonal and inter-annual) variability in and environmental controls of net ecosystem carbon exchange (NEE), gross primary productivity (GPP) and ecosystem respiration (ER). The forest was a large and constant carbon sink throughout the study period, even in winter, with an overall mean NEE of -1234 ± 109 (SE) g C m-2 yr-1. Estimated annual ER was similar for 2010 and 2011 but decreased in 2012 ranging from 1603 to 1346 g C m-2 yr-1, whereas GPP showed no significant inter-annual variability, with a mean annual estimate of 2728 ± 39 g C m-2 yr-1. All ecosystem carbon fluxes had a pronounced seasonality, with GPP being greatest during spring and summer and ER being highest during summer, whereas peaks in NEE occurred in early spring and again in summer. High NEE in spring was likely caused by a delayed increase in ER due to low temperatures. A strong seasonal pattern in environmental controls of daytime and night-time NEE was revealed. Daytime NEE was equally explained by incoming solar radiation and air temperature, whereas air temperature was the main environmental driver of night-time NEE. The forest experienced unusual above-average annual rainfall during the first 2 years of this 3-year period so that soil water content remained relatively high and the forest

  15. Net ecosystem carbon exchange of a dry temperate eucalypt forest

    Directory of Open Access Journals (Sweden)

    N. Hinko-Najera

    2017-08-01

    Full Text Available Forest ecosystems play a crucial role in the global carbon cycle by sequestering a considerable fraction of anthropogenic CO2, thereby contributing to climate change mitigation. However, there is a gap in our understanding about the carbon dynamics of eucalypt (broadleaf evergreen forests in temperate climates, which might differ from temperate evergreen coniferous or deciduous broadleaved forests given their fundamental differences in physiology, phenology and growth dynamics. To address this gap we undertook a 3-year study (2010–2012 of eddy covariance measurements in a dry temperate eucalypt forest in southeastern Australia. We determined the annual net carbon balance and investigated the temporal (seasonal and inter-annual variability in and environmental controls of net ecosystem carbon exchange (NEE, gross primary productivity (GPP and ecosystem respiration (ER. The forest was a large and constant carbon sink throughout the study period, even in winter, with an overall mean NEE of −1234 ± 109 (SE g C m−2 yr−1. Estimated annual ER was similar for 2010 and 2011 but decreased in 2012 ranging from 1603 to 1346 g C m−2 yr−1, whereas GPP showed no significant inter-annual variability, with a mean annual estimate of 2728 ± 39 g C m−2 yr−1. All ecosystem carbon fluxes had a pronounced seasonality, with GPP being greatest during spring and summer and ER being highest during summer, whereas peaks in NEE occurred in early spring and again in summer. High NEE in spring was likely caused by a delayed increase in ER due to low temperatures. A strong seasonal pattern in environmental controls of daytime and night-time NEE was revealed. Daytime NEE was equally explained by incoming solar radiation and air temperature, whereas air temperature was the main environmental driver of night-time NEE. The forest experienced unusual above-average annual rainfall during the first 2 years of this 3-year period so

  16. Biogenic carbon fluxes from global agricultural production and consumption

    Science.gov (United States)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick; Kyle, G. Page; Zhang, Xuesong; Collatz, G. James; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange and spatially distributed to 0.05° resolution using Moderate Resolution Imaging Spectroradiometer satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which was respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of approximately 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  17. Zero-Net Mass-Flux Actuator Cavity Vortex

    Science.gov (United States)

    Krieg, Michael; Mohseni, Kamran

    2013-11-01

    Zero-Net Mass-Flux (ZNMT) devices are used commonly as synthetic jet actuators for flow control in various applications. The authors have recently proposed using larger ZNMF jet actuators for underwater propulsion; similar to squid and jellyfish. Generally the external flow generated by these devices is characterized according to momentum and energy transfer rates, and little attention is paid to the dynamics of flow inside the cavity. In fact the flow inside the cavity, especially during the refilling phase is not only highly dynamic but greatly influences the pressure distribution at the opening as well as the external flow during the following jetting phase. A completely transparent axisymmetric ZNMF cavity was constructed in order to investigate the internal vortex dynamics. The flow is seeded with reflective particles and illumined with a laser sheet bisecting the axis of symmetry. Standard 2D DPIV techniques are used to recover the velocity field in this cross section. During filling it is observed that a starting jet extending from the opening to the inside of the cavity rolls into a vortex ring much like the jetting phase. However, the effect of the cavity walls becomes apparent almost immediately. In this talk we characterize how the circulation within the cavity decays as a function of both cavity/orifice geometry and the mass flux program. In addition a load cell measures the total thrust acting on the device which is used to validate pressure calculations performed on the moving surface inside the cavity, showing excellent agreement. This work is supported by a grant from the Office of Naval Research.

  18. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders

    2011-01-01

    Carbon dioxide (CO2) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO2 concentration from c. 380 μmol...... concentration, and the flux also decreased in FACE plots, to 0.79 times that at low concentration. Similar SR in control plots was decreased 0.94 times in control plots and 0.88 times in FACE plots. We found that a useful method to achieve stable and reproducible chamber headspace and soil CO2 concentration...... prior to commencement of flux measurements was to turn off the FACE system at least 10 min in advance. Within 10 min a new equilibrium was established between the soil and atmosphere, apparently due to CO2 degassing from the top soil. The observed increase in SR in response to increased CO2 persisted...

  19. Respiratory carbon fluxes in leaves.

    Science.gov (United States)

    Tcherkez, Guillaume; Boex-Fontvieille, Edouard; Mahé, Aline; Hodges, Michael

    2012-06-01

    Leaf respiration is a major metabolic process that drives energy production and growth. Earlier works in this field were focused on the measurement of respiration rates in relation to carbohydrate content, photosynthesis, enzymatic activities or nitrogen content. Recently, several studies have shed light on the mechanisms describing the regulation of respiration in the light and in the dark and on associated metabolic flux patterns. This review will highlight advances made into characterizing respiratory fluxes and provide a discussion of metabolic respiration dynamics in relation to important biological functions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Net ecosystem productivity, net primary productivity and ecosystem carbon sequestration in a Pinus radiata plantation subject to soil water deficit

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A.; Kelleher, F. M. [Lincoln Univ., Soil Sience Dept., Lincoln, (New Zealand); McSeveny, T. M. [Manaaki Whenua-Landcare Research, Lincoln, (New Zealand); Byers, J. N. [Almuth Arneth Landcare Research, Lincoln (New Zealand)

    1998-12-01

    Tree carbon uptake (net primary productivity excluding fine root turnover, NPP`) in pine trees growing in a region of New Zealand subject to summer soil water deficit was investigated jointly with canopy assimilation (A{sub c}) and ecosystem-atmosphere carbon exchange rate (net ecosystem productivity, NEP). Canopy assimilation and NEP were used to drive a biochemically-based and environmentally constrained model validated by seasonal eddy covariance measurements. Over a three year period with variable rainfall annual NPP` and NEP showed significant variations. At the end of the growing season, carbon was mostly allocated to wood, with nearly half to stems and about a quarter to coarse roots. On a biweekly basis NPP` lagged behind A{sub c}, suggesting the occurrence of intermediate carbon storage. On an annual basis, however the NPP`/A{sub c} ratio indicated a conservative allocation of carbon to autotrophic respiration. The combination of data from measurements with canopy and ecosystem carbon fluxes yielded an estimate of heterotrophic respiration (NPP`-NEP) of approximately 30 per cent of NPP` and 50 per cent NEP. The annual values of NEP and NPP` can also be used to derive a `best guess` estimate of the annual below-ground carbon turnover rate, assuming that the annual changes in the soil carbon content is negligible. 46 refs., 7 figs.

  1. Benchmarking carbon fluxes of the ISIMIP2a biome models

    Science.gov (United States)

    Chang, Jinfeng; Ciais, Philippe; Wang, Xuhui; Piao, Shilong; Asrar, Ghassem; Betts, Richard; Chevallier, Frédéric; Dury, Marie; François, Louis; Frieler, Katja; García Cantú Ros, Anselmo; Henrot, Alexandra-Jane; Hickler, Thomas; Ito, Akihiko; Morfopoulos, Catherine; Munhoven, Guy; Nishina, Kazuya; Ostberg, Sebastian; Pan, Shufen; Peng, Shushi; Rafique, Rashid; Reyer, Christopher; Rödenbeck, Christian; Schaphoff, Sibyll; Steinkamp, Jörg; Tian, Hanqin; Viovy, Nicolas; Yang, Jia; Zeng, Ning; Zhao, Fang

    2017-04-01

    The purpose of this study is to evaluate the eight ISIMIP2a biome models against independent estimates of long-term net carbon fluxes (i.e. Net Biome Productivity, NBP) over terrestrial ecosystems for the recent four decades (1971-2010). We evaluate modeled global NBP against 1) the updated global residual land sink (RLS) plus land use emissions (E LUC) from the Global Carbon Project (GCP), presented as R + L in this study by Le Quéré et al (2015), and 2) the land CO2 fluxes from two atmospheric inversion systems: Jena CarboScope s81_v3.8 and CAMS v15r2, referred to as F Jena and F CAMS respectively. The model ensemble-mean NBP (that includes seven models with land-use change) is higher than but within the uncertainty of R + L, while the simulated positive NBP trend over the last 30 yr is lower than that from R + L and from the two inversion systems. ISIMIP2a biome models well capture the interannual variation of global net terrestrial ecosystem carbon fluxes. Tropical NBP represents 31 ± 17% of global total NBP during the past decades, and the year-to-year variation of tropical NBP contributes most of the interannual variation of global NBP. According to the models, increasing Net Primary Productivity (NPP) was the main cause for the generally increasing NBP. Significant global NBP anomalies from the long-term mean between the two phases of El Niño Southern Oscillation (ENSO) events are simulated by all models (p < 0.05), which is consistent with the R + L estimate (p = 0.06), also mainly attributed to NPP anomalies, rather than to changes in heterotrophic respiration (Rh). The global NPP and NBP anomalies during ENSO events are dominated by their anomalies in tropical regions impacted by tropical climate variability. Multiple regressions between R + L, F Jena and F CAMS interannual variations and tropical climate variations reveal a significant negative response of global net terrestrial ecosystem carbon fluxes to tropical mean annual temperature variation

  2. MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli.

    Science.gov (United States)

    Lee, Sang Yup; Lee, Dong-Yup; Hong, Soon Ho; Kim, Tae Yong; Yun, Hongsoek; Oh, Young-Gyun; Park, Sunwon

    2003-01-01

    We have developed MetaFluxNet which is a stand-alone program package for the management of metabolic reaction information and quantitative metabolic flux analysis. It allows users to interpret and examine metabolic behavior in response to genetic and/or environmental modifications. As a result, quantitative in silico simulations of metabolic pathways can be carried out to understand the metabolic status and to design the metabolic engineering strategies. The main features of the program include a well-developed model construction environment, user-friendly interface for metabolic flux analysis (MFA), comparative MFA of strains having different genotypes under various environmental conditions, and automated pathway layout creation. The usefulness and functionality of the program are demonstrated by applying to metabolic pathways in E. coli. First, a large-scale in silico E. coli model is constructed using MetaFluxNet, and then the effects of carbon sources on intracellular flux distributions and succinic acid production were investigated on the basis of the uptake and secretion rates of the relevant metabolites. The results indicated that among three carbon sources available, the most reduced substrate is sorbitol which yields efficient succinic acid production. The software can be downloaded from http://mbel.kaist.ac.kr/.

  3. Thermal Acclimation and Adaptation of Net Ecosystem Carbon Exchange (Invited)

    Science.gov (United States)

    Luo, Y.; Niu, S.; Fei, S.; Yuan, W.; Zhang, Z.; Schimel, D.; Fluxnet Pis, .

    2010-12-01

    Ecosystem responses to temperature change are collectively determined by its constituents, which are plants, animals, microbes, and their interactions. It has been long documented that all plant, animals, and microbial carbon metabolism (photosynthesis, respiration) can acclimate and respond to changing temperatures, influencing the response of ecosystem carbon fluxes to climate change. Climate change also can induce competition between species with different thermal responses leading to changes in community composition. While a great deal of research has been done on species-level responses to temperature, it is yet to examine thermal acclimation of adaptation of ecosystem carbon processes to temperature change. With the advent of eddy flux measurements, it is possible to directly characterize the ecosystem-scale temperature response of carbon storage. In this study, we quantified the temperature response functions of net ecosystem carbon exchange (NEE), from which the responses of apparent optimal temperatures across broad spatial and temporal scales were examined. While temperature responses are normally parameterized in terms of the physiological variables describing photosynthesis and respiration, we focus on the apparent optimal behavior of NEE. Because the measurement integrated over multiple individuals and species within the footprint of the measurement (100s to 1000s of ha), it is challenging to interpret this measurement in terms of classical physiological variables such as the Q10. Rather we focus on the realized behavior of the ecosystem and its sensitivity to temperature. These empirical response functions can then be used as a benchmark for model evaluation and testing. Our synthesis of 656 site-years of eddy covariance data over the world shows that temperature response curves of NEE are parabolic, with their optima temperature strongly correlated with site growing season temperature across the globe and with annual mean temperature over years at

  4. The Role of Anode Manufacturing Processes in Net Carbon Consumption

    Directory of Open Access Journals (Sweden)

    Khalil Khaji

    2016-05-01

    Full Text Available Carbon anodes are consumed in electrolysis cells during aluminum production. Carbon consumption in pre-bake anode cells is 400–450 kg C/t Al, considerably higher than the theoretical consumption of 334 kg C/t Al. This excess carbon consumption is partly due to the anode manufacturing processes. Net carbon consumption over the last three years at Emirates Aluminium (EMAL, also known as Emirates Global Aluminium (EGA Al Taweelah was analyzed with respect to anode manufacturing processes/parameters. The analysis indicates a relationship between net carbon consumption and many manufacturing processes, including anode desulfurization during anode baking. Anode desulfurization appears to increase the reaction surface area, thereby helping the Boudouard reaction between carbon and carbon dioxide in the electrolysis zone, as well as reducing the presence of sulfur which could inhibit this reaction. This paper presents correlations noted between anode manufacturing parameters and baked anode properties, and their impact on the net carbon consumption in electrolytic pots. Anode reactivities affect the carbon consumption in the pots during the electrolysis of alumina. Pitch content in anodes, impurities in anodes, and anode desulfurization during baking were studied to find their influence on anode reactivities. The understanding gained through this analysis helped reduce net carbon consumption by adjusting manufacturing processes. For an aluminum smelter producing one million tonnes of aluminum per year, the annual savings could be as much as US $0.45 million for every kg reduction in net carbon consumption.

  5. Forest carbon stocks and fluxes in physiographic zones of India

    Directory of Open Access Journals (Sweden)

    Sheikh Mehraj A

    2011-12-01

    Full Text Available Abstract Background Reducing carbon Emissions from Deforestation and Degradation (REDD+ is of central importance to combat climate change. Foremost among the challenges is quantifying nation's carbon emissions from deforestation and degradation, which requires information on forest carbon storage. Here we estimated carbon storage in India's forest biomass for the years 2003, 2005 and 2007 and the net flux caused by deforestation and degradation, between two assessment periods i.e., Assessment Period first (ASP I, 2003-2005 and Assessment Period second (ASP II, 2005-2007. Results The total estimated carbon stock in India's forest biomass varied from 3325 to 3161 Mt during the years 2003 to 2007 respectively. There was a net flux of 372 Mt of CO2 in ASP I and 288 Mt of CO2 in ASP II, with an annual emission of 186 and 114 Mt of CO2 respectively. The carbon stock in India's forest biomass decreased continuously from 2003 onwards, despite slight increase in forest cover. The rate of carbon loss from the forest biomass in ASP II has dropped by 38.27% compared to ASP I. Conclusion With the Copenhagen Accord, India along with other BASIC countries China, Brazil and South Africa is voluntarily going to cut emissions. India will voluntary reduce the emission intensity of its GDP by 20-25% by 2020 in comparison to 2005 level, activities like REDD+ can provide a relatively cost-effective way of offsetting emissions, either by increasing the removals of greenhouse gases from the atmosphere by afforestation programmes, managing forests, or by reducing emissions through deforestation and degradation.

  6. Sol-Rad Net Flux (L 1.0, 1.5, 2.0)

    Data.gov (United States)

    National Aeronautics and Space Administration — SolRad-Net (Solar Radiation Network) is an established network of ground-based sensors providing high-frequency solar flux measurements in quasi-realtime to the...

  7. Diversity-Carbon Flux Relationships in a Northwest Forest

    Directory of Open Access Journals (Sweden)

    Rachael E. Kelm

    2011-12-01

    Full Text Available While aboveground biomass and forest productivity can vary over abiotic gradients (e.g., temperature and moisture gradients, biotic factors such as biodiversity and tree species stand dominance can also strongly influence biomass accumulation. In this study we use a permanent plot network to assess variability in aboveground carbon (C flux in forest tree annual aboveground biomass increment (ABI, tree aboveground net primary productivity (ANPPtree, and net soil CO2 efflux in relation to diversity of coniferous, deciduous, and a nitrogen (N-fixing tree species (Alnus rubra. Four major findings arose: (1 overstory species richness and indices of diversity explained between one third and half of all variation in measured aboveground C flux, and diversity indices were the most robust models predicting measured aboveground C flux; (2 trends suggested decreases in annual tree biomass increment C with increasing stand dominance for four of the five most abundant tree species; (3 the presence of an N-fixing tree species (A. rubra was not related to changes in aboveground C flux, was negatively related to soil CO2 efflux, and showed only a weak negative relationship with aboveground C pools; and (4 stands with higher overstory richness and diversity typically had higher soil CO2 efflux. Interestingly, presence of the N-fixing species was not correlated with soil inorganic N pools, and inorganic N pools were not correlated with any C flux or pool measure. We also did not detect any strong patterns between forest tree diversity and C pools, suggesting potential balancing of increased C flux both into and out of diverse forest stands. These data highlight variability in second-growth forests that may have implications for overstory community drivers of C dynamics.

  8. Carbon balance and energy fluxes of a Mediterranean crop

    Directory of Open Access Journals (Sweden)

    Simona Consoli

    2013-09-01

    Full Text Available This paper is based on the analysis of a long-term mass (carbon dioxide, water vapour and energy (solar radiation balance monitoring programme carried out during years 2010 and 2012 in an irrigated orange orchard in Sicily, using the Eddy Covariance (EC method. Orange (Citrus sinensis L. is one of the main fruit crops worldwide and its evergreen orchard may have a great potential for carbon sequestration, but few data are currently available. In the study, the role of the orchard system in sequestering atmospheric CO2 was analyzed, thus contributing to assess the carbon balance of the specie in the specific environment.Vertical energy fluxes of net radiation, soil heat, sensible heat and latent heat fluxes were measured at orchard scale by EC. Evapotranspiration (ET values were compared with upscaled transpiration data determined by the sap flow heat pulse technique, evidencing the degree of correspondence between instantaneous transpirational flux at tree level and the micrometeorological measurement of ET at orchard level.

  9. Statistical partitioning of a three-year time series of direct urban net CO2 flux measurements into biogenic and anthropogenic components

    Science.gov (United States)

    Menzer, Olaf; McFadden, Joseph P.

    2017-12-01

    Eddy covariance flux measurements are increasingly used to quantify the net carbon dioxide exchange (FC) in urban areas. FC represents the sum of anthropogenic emissions, biogenic carbon release from plant and soil respiration, and carbon uptake by plant photosynthesis. When FC is measured in natural ecosystems, partitioning into respiration and photosynthesis is a well-established procedure. In contrast, few studies have partitioned FC at urban flux tower sites due to the difficulty of accounting for the temporal and spatial variability of the multiple sources and sinks. Here, we partitioned a three-year time series of flux measurements from a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. We segregated FC into one subset that captured fluxes from a residential neighborhood and into another subset that covered a golf course. For both land use types we modeled anthropogenic flux components based on winter data and extrapolated them to the growing season, to estimate gross primary production (GPP) and ecosystem respiration (Reco) at half-hourly, daily, monthly and annual scales. During the growing season, GPP had the largest magnitude (up to - 9.83 g C m-2 d-1) of any component CO2 flux, biogenic or anthropogenic, and both GPP and Reco were more dynamic seasonally than anthropogenic fluxes. Owing to the balancing of Reco against GPP, and the limitations of the growing season in a cold temperate climate zone, the net biogenic flux was only 1.5%-4.5% of the anthropogenic flux in the dominant residential land use type, and between 25%-31% of the anthropogenic flux in highly managed greenspace. Still, the vegetation sink at our site was stronger than net anthropogenic emissions on 16-20 days over the residential area and on 66-91 days over the recreational area. The reported carbon flux sums and dynamics are a critical step toward developing models of urban CO2 fluxes within and across cities that differ in vegetation cover.

  10. Carbon dioxide fluxes over an urban park area

    Science.gov (United States)

    Kordowski, Klaus; Kuttler, Wilhelm

    2010-07-01

    From September 2006 to October 2007 turbulent fluxes of carbon dioxide were measured at an urban tower station (26 m above ground level, z/z h = 1.73) in Essen, Germany, using the eddy covariance technique. The site was located at the border between a public park area (70 ha) in the south-west of the station and suburban/urban residential as well as light commercial areas in the north and east of the tower. Depending on the land-use two different sectors ( park and urban) were identified showing distinct differences in the temporal evolution of the surface-atmosphere exchange of CO 2. While urban fluxes appear to be governed by anthropogenic emissions from domestic heating and traffic (average flux 9.3 μmol m -2 s -1), the exchange of CO 2 was steered by biological processes when the park contributed to the flux footprint. The diurnal course during the vegetation period exhibited negative daytime fluxes up to -10 μmol m -2 s -1 on average in summer. Nevertheless, with a mean of 0.8 μmol m -2 s -1 park sector fluxes were slightly positive, thus no net carbon uptake by the surface occurred throughout the year. In order to sum the transport of CO 2 a gap-filling procedure was performed by means of artificial neural network generalisation. Using additional meteorological inputs the daily exchange of CO 2 was reproduced using radial basis function networks (RBF). The resulting yearly sum of 6031 g m -2 a -1 indicates the entire study site to be a considerable source of CO 2.

  11. Urban Evapotranspiration and Carbon Dioxide Flux in Miami - Dade, Florida

    Science.gov (United States)

    Bernier, T.; Hopper, W.

    2010-12-01

    Atmospheric Carbon Dioxide (CO2) concentrations are leading indicators of secular climate change. With increasing awareness of the consequences of climate change, methods for monitoring this change are becoming more important daily. Of particular interest is the carbon dioxide exchange between natural and urban landscapes and the correlation of atmospheric CO2 concentrations. Monitoring Evapotranspiration (ET) is important for assessments of water availability for growing populations. ET is surprisingly understudied in the hydrologic cycle considering ET removes as much as 80 to over 100% of precipitation back into the atmosphere as water vapor. Lack of understanding in spatial and temporal ET estimates can limit the credibility of hydrologic water budgets designed to promote sustainable water use and resolve water-use conflicts. Eddy covariance (EC) methods are commonly used to estimate ET and CO2 fluxes. The EC platform consist of a (CSAT) 3-D Sonic Anemometer and a Li-Cor Open Path CO2/ H2O Analyzer. Measurements collected at 10 Hz create a very large data sets. A EC flux tower located in the Snapper Creek Well Field as part of a study to estimate ET for the Miami Dade County Water and Sewer project. Data has been collected from December 17, 2009 to August 30, 2010. QA/QC is performed with the EdiRe data processing software according to Ameri-flux protocols. ET estimates along with other data--latent-heat flux, sensible-heat flux, rainfall, air temperature, wind speed and direction, solar irradiance, net radiation, soil-heat flux and relative humidity--can be used to aid in the development of water management policies and regulations. Currently, many financial institutions have adopted an understanding about baseline environmental monitoring. The “Equator Principle” is an example of a voluntary standard for managing social and environmental risk in project financing and has changed the way in which projects are financed.

  12. Historic simulation of net ecosystem carbon balance for the Great Dismal Swamp

    Science.gov (United States)

    Sleeter, Rachel

    2017-01-01

    Estimating ecosystem carbon (C) balance relative to natural disturbances and land management strengthens our understanding of the benefits and tradeoffs of carbon sequestration. We conducted a historic model simulation of net ecosystem C balance in the Great Dismal Swamp, VA. for the 30-year time period of 1985-2015. The historic simulation of annual carbon flux was calculated with the Land Use and Carbon Scenario Simulator (LUCAS) model. The LUCAS model utilizes a state-and-transition simulation model coupled with a carbon stock-flow accounting model to estimate net ecosystem C balance, and long term sequestration rates under various ecological conditions and management strategies. The historic model simulation uses age-structured forest growth curves for four forest species, C stock and flow rates for 8 pools and 14 fluxes, and known data for disturbance and management. The annualized results of C biomass are provided in this data release in the following categories: Growth, Heterotrophic Respiration (Rh), Net Ecosystem Production (NEP), Net Biome Production (NBP), Below-ground Biomass (BGB) Stock, Above-ground Biomass (AGB) Stock, AGB Carbon Loss from Fire, BGB Carbon Loss from Fire, Deadwood Carbon Loss from Management, and Total Carbon Loss. The table also includes the area (annually) of each forest type in hectares: Atlantic white cedar Area (hectares); Cypress-gum Area (hectares); Maple-gum Area (hectares); Pond pine Area (hectares). Net ecosystem production for the Great Dismal Swamp (~ 54,000 ha), from 1985 to 2015 was estimated to be a net sink of 0.97 Tg C. When the hurricane and six historic fire events were modeled, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and belowground C loss estimated from the South One in 2008 and Lateral West fire in 2011 totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The C loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C

  13. Carbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R.A.

    2001-02-22

    The database documented in this numeric data package, a revision to a database originally published by the Carbon Dioxide Information Analysis Center (CDIAC) in 1995, consists of annual estimates, from 1850 through 1990, of the net flux of carbon between terrestrial ecosystems and the atmosphere resulting from deliberate changes in land cover and land use, especially forest clearing for agriculture and the harvest of wood for wood products or energy. The data are provided on a year-by-year basis for nine regions (North America, South and Central America, Europe, North Africa and the Middle East, Tropical Africa, the Former Soviet Union, China, South and Southeast Asia, and the Pacific Developed Region) and the globe. Some data begin earlier than 1850 (e.g., for six regions, areas of different ecosystems are provided for the year 1700) or extend beyond 1990 (e.g., fuelwood harvest in South and Southeast Asia, by forest type, is provided through 1995). The global net flux during the period 1850 to 1990 was 124 Pg of carbon (1 petagram = 10{sup 15} grams). During this period, the greatest regional flux was from South and Southeast Asia (39 Pg of carbon), while the smallest regional flux was from North Africa and the Middle East (3 Pg of carbon). For the year 1990, the global total net flux was estimated to be 2.1 Pg of carbon.

  14. Deciphering the components of regional net ecosystem fluxes following a bottom-up approach for the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    N. Carvalhais

    2010-11-01

    Full Text Available Quantification of ecosystem carbon pools is a fundamental requirement for estimating carbon fluxes and for addressing the dynamics and responses of the terrestrial carbon cycle to environmental drivers. The initial estimates of carbon pools in terrestrial carbon cycle models often rely on the ecosystem steady state assumption, leading to initial equilibrium conditions. In this study, we investigate how trends and inter-annual variability of net ecosystem fluxes are affected by initial non-steady state conditions. Further, we examine how modeled ecosystem responses induced exclusively by the model drivers can be separated from the initial conditions. For this, the Carnegie-Ames-Stanford Approach (CASA model is optimized at set of European eddy covariance sites, which support the parameterization of regional simulations of ecosystem fluxes for the Iberian Peninsula, between 1982 and 2006.

    The presented analysis stands on a credible model performance for a set of sites, that represent generally well the plant functional types and selected descriptors of climate and phenology present in the Iberian region – except for a limited Northwestern area. The effects of initial conditions on inter-annual variability and on trends, results mostly from the recovery of pools to equilibrium conditions; which control most of the inter-annual variability (IAV and both the magnitude and sign of most of the trends. However, by removing the time series of pure model recovery from the time series of the overall fluxes, we are able to retrieve estimates of inter-annual variability and trends in net ecosystem fluxes that are quasi-independent from the initial conditions. This approach reduced the sensitivity of the net fluxes to initial conditions from 47% and 174% to −3% and 7%, for strong initial sink and source conditions, respectively.

    With the aim to identify and improve understanding of the component fluxes that drive the observed trends, the

  15. Inverse carbon dioxide flux estimates for the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Meesters, A.G.C.A.; Tolk, L.F.; Dolman, A.J. [Faculty of Earth and Life Sciences, VU University, Amsterdam (Netherlands); Peters, W.; Hutjes, R.W.A.; Vellinga, O.S.; Elbers, J.A. [Department Meteorology and Air Quality, Wageningen University and Research Centre, Wageningen (Netherlands); Vermeulen, A.T. [Biomass, Coal and Environmental Research, Energy research Center of the Netherlands ECN, Petten (Netherlands); Van der Laan, S.; Neubert, R.E.M.; Meijer, H.A.J. [Centre for Isotope Research, Energy and Sustainability Research Institute Groningen, University of Groningen, Groningen (Netherlands)

    2012-10-26

    CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from concentration measurements at four towers, using an inverse model. The results are compared to direct CO2 flux measurements by aircraft, for 6 flight tracks over the Netherlands, flown multiple times in each season. We applied the Regional Atmospheric Mesoscale Modeling system (RAMS) coupled to a simple carbon flux scheme (including fossil fuel), which was run at 10 km resolution, and inverted with an Ensemble Kalman Filter. The domain had 6 eco-regions, and inversions were performed for the four seasons separately. Inversion methods with pixel-dependent and -independent parameters for each eco-region were compared. The two inversion methods, in general, yield comparable flux averages for each eco-region and season, whereas the difference from the prior flux may be large. Posterior fluxes co-sampled along the aircraft flight tracks are usually much closer to the observations than the priors, with a comparable performance for both inversion methods, and with best performance for summer and autumn. The inversions showed more negative CO2 fluxes than the priors, though the latter are obtained from a biosphere model optimized using the Fluxnet database, containing observations from more than 200 locations worldwide. The two different crop ecotypes showed very different CO2 uptakes, which was unknown from the priors. The annual-average uptake is practically zero for the grassland class and for one of the cropland classes, whereas the other cropland class had a large net uptake, possibly because of the abundance of maize there.

  16. Inverse carbon dioxide flux estimates for the Netherlands

    Science.gov (United States)

    Meesters, A. G. C. A.; Tolk, L. F.; Peters, W.; Hutjes, R. W. A.; Vellinga, O. S.; Elbers, J. A.; Vermeulen, A. T.; van der Laan, S.; Neubert, R. E. M.; Meijer, H. A. J.; Dolman, A. J.

    2012-10-01

    CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from concentration measurements at four towers, using an inverse model. The results are compared to direct CO2flux measurements by aircraft, for 6 flight tracks over the Netherlands, flown multiple times in each season. We applied the Regional Atmospheric Mesoscale Modeling system (RAMS) coupled to a simple carbon flux scheme (including fossil fuel), which was run at 10 km resolution, and inverted with an Ensemble Kalman Filter. The domain had 6 eco-regions, and inversions were performed for the four seasons separately. Inversion methods with pixel-dependent and -independent parameters for each eco-region were compared. The two inversion methods, in general, yield comparable flux averages for each eco-region and season, whereas the difference from the prior flux may be large. Posterior fluxes co-sampled along the aircraft flight tracks are usually much closer to the observations than the priors, with a comparable performance for both inversion methods, and with best performance for summer and autumn. The inversions showed more negative CO2 fluxes than the priors, though the latter are obtained from a biosphere model optimized using the Fluxnet database, containing observations from more than 200 locations worldwide. The two different crop ecotypes showed very different CO2uptakes, which was unknown from the priors. The annual-average uptake is practically zero for the grassland class and for one of the cropland classes, whereas the other cropland class had a large net uptake, possibly because of the abundance of maize there.

  17. A systematic approach for comparing modeled biospheric carbon fluxes across regional scales

    Directory of Open Access Journals (Sweden)

    D. N. Huntzinger

    2011-06-01

    Full Text Available Given the large differences between biospheric model estimates of regional carbon exchange, there is a need to understand and reconcile the predicted spatial variability of fluxes across models. This paper presents a set of quantitative tools that can be applied to systematically compare flux estimates despite the inherent differences in model formulation. The presented methods include variogram analysis, variable selection, and geostatistical regression. These methods are evaluated in terms of their ability to assess and identify differences in spatial variability in flux estimates across North America among a small subset of models, as well as differences in the environmental drivers that best explain the spatial variability of predicted fluxes. The examined models are the Simple Biosphere (SiB 3.0, Carnegie Ames Stanford Approach (CASA, and CASA coupled with the Global Fire Emissions Database (CASA GFEDv2, and the analyses are performed on model-predicted net ecosystem exchange, gross primary production, and ecosystem respiration. Variogram analysis reveals consistent seasonal differences in spatial variability among modeled fluxes at a 1° × 1° spatial resolution. However, significant differences are observed in the overall magnitude of the carbon flux spatial variability across models, in both net ecosystem exchange and component fluxes. Results of the variable selection and geostatistical regression analyses suggest fundamental differences between the models in terms of the factors that explain the spatial variability of predicted flux. For example, carbon flux is more strongly correlated with percent land cover in CASA GFEDv2 than in SiB or CASA. Some of the differences in spatial patterns of estimated flux can be linked back to differences in model formulation, and would have been difficult to identify simply by comparing net fluxes between models. Overall, the systematic approach presented here provides a set of tools for comparing

  18. Multi-year net ecosystem carbon balance at a horticulture-extracted restored peatland

    Science.gov (United States)

    Nugent, Kelly; Strachan, Ian; Strack, Maria

    2017-04-01

    Restoration of previously extracted peatlands is essential to minimize the impact of drainage and peat removal. Best practices restoration methods have been developed that include ditch blocking, site leveling and reintroducing bog vegetation using the moss layer transfer technique. A long term goal of restoration is the return to a peat accumulating ecosystem. Bois-des-Bel is a cool-temperate bog, located in eastern Quebec, Canada, that was vacuum harvested until 1980 and restored in 1999. While several studies have used discrete (chamber) methods to determine the net carbon exchange from rewetted or restored peatlands, ours appears to be the first to have multiple complete years of net ecosystem carbon exchange from a restored northern peatland. An eddy covariance flux tower instrumented with a sonic anemometer and open-path CO2/H2O and CH4 analyzers was operated continuously over three years to produce a robust estimate of net carbon sequestration. Our initial results indicate that this restored peatland was a consistent moderate annual net sink for CO2, a moderate source of CH4 and had low losses of dissolved organic carbon compared to undisturbed northern latitude peatlands. Closed chambers combined with a fast response CO2/H2O/CH4 analyzer were used to investigate ecohydrological controls on net ecosystem exchange of CO2 (NEE) and CH4 flux from the restored fields and remnant ditches at the site. CH4 release was found to be an order of magnitude higher in the ditches compared to the fields, with non-vegetated ditch showing a greater range in flux compared to areas invaded by Typha latifolia. Bubble magnitude and count were highest in the non-vegetated ditch, followed by Typha plots and were undetectable in the restored fields. The latter may be partially attributed to the high cover of Eriophorum vaginatum in the restored fields, plants that have aerenchymous tissue, as well as a much deeper water table level. While the non-vegetated ditch areas were a steady

  19. Carbon fluxes in an eutrophic urban lake

    Science.gov (United States)

    Barros, Nathan; Mendonça, Raquel; Huszar, Vera; Roland, Fábio; Kosten, Sarian

    2014-05-01

    Eutrophic lakes have a still unknown net effect on greenhouse gas emission. On one hand, the high photosynthetic rates enhance the freshwater carbon dioxide (CO2) sink. On the other hand, the intense organic matter decomposition may lead to high CO2 release and, when the sediment becomes anoxic, also to more methane (CH4) production. Here, we measured CO2 and CH4 emissions from a highly eutrophic urban lake monthly during summer, autumn and winter, over 24 hour periods. The lake was predominantly a net carbon source to the atmosphere. On the few periods when the lake was a CO2 sink, the magnitude of CO2 influx to the water was small. The CO2 diffusive emission at night was higher than during the day due to daytime CO2 uptake by photosynthesis. The same pattern was not found for CH4 diffusive emission, which was high both during the day and night even though CH4 oxidation reduced the CH4 emission in almost 50%. CH4 emission through bubbles was proven highly dependent on temperature and no bubbles were emitted during colder months. In our study lake, CO2 and CH4 production through mineralization in the water column and in the sediment should be offsetting CO2 fixation by primary production. The greenhouse emission from this system can be even higher considering CO2-equivalents. As conclusion, our data confront the usually accepted idea that eutrophic lakes are carbon sinks.

  20. Age-dependent changes in ecosystem carbon fluxes in managed forests in Northern Wisconsin, USA

    Science.gov (United States)

    Asko Noormets; Jiquan Chen; Thomas R. Crow

    2007-01-01

    The age-dependent variability of ecosystem carbon (C) fluxes was assessed by measuring the net ecosystem exchange of C (NEE) in five managed forest stands in northern Wisconsin, USA. The study sites ranged in age from 3-year-old clearcut to mature stands (65 years). All stands, except the clearcut, accumulated C over the study period from May to October 2002. Seasonal...

  1. Nitrogen and carbon interactions in controlling terrestrial greenhouse gas fluxes

    Science.gov (United States)

    Ineson, Phil; Toet, Sylvia; Christiansen, Jesper

    2016-04-01

    The increased input of N to terrestrial systems may have profound impacts on net greenhouse gas (GHGs) fluxes and, consequently, our future climate; however, fully capturing and quantifying these interactions under field conditions urgently requires new, more efficient, measurement approaches. We have recently developed and deployed a novel system for the automation of terrestrial GHG flux measurements at the chamber and plot scales, using the approach of 'flying' a single measurement chamber to multiple points in an experimental field arena. As an example of the value of this approach, we shall describe the results from a field experiment investigating the interactions between increasing inorganic nitrogen (N) and carbon (C) additions on net ecosystem exchanges of N2O, CH4 and CO2, enabling the simultaneous application of 25 treatments, replicated five times in a fully replicated block field design. We will describe how the ability to deliver automated GHG flux measurements, highly replicated in space and time, has revealed hitherto unreported findings on N and C interactions in field soil. In our experiments we found insignificant N2O fluxes from bare field soil, even at very high inorganic N addition rates, but the interactive addition of even small amounts of available C resulted in very large and rapid N2O fluxes. The SkyGas experimental system enabled investigation of the underlying interacting response surfaces on the fluxes of the major soil-derived GHGs (CO2, CH4 and N2O) to increasing N and C inputs, and revealed unexpected interactions. In addition to these results we will also discuss some of the technical problems which have been overcome in developing these 'flying' systems and the potential of the systems for automatically screening the impacts of large numbers of treatments on GHG fluxes, and other ecosystem responses, under field conditions. We describe here technological advances that can facilitate the development of more robust GHG mitigation

  2. Squaroglitter: A 3,4-Connected Carbon Net

    KAUST Repository

    Prasad, Dasari L. V. K.

    2013-08-13

    Theoretical calculations are presented on a new hypothetical 3,4-connected carbon net (called squaroglitter) incorporating 1,4 cyclohexadiene units. The structure has tetragonal space group P4/mmm (No. 123) symmetry. The optimized geometry shows normal distances, except for some elongated bonds in the cyclobutane ring substructures in the network. Squaroglitter has an indirect bandgap of about 1.0 eV. The hypothetical lattice, whose density is close to graphite, is more stable than other 3,4-connected carbon nets. A relationship to a (4,4)nanotube is explored, as is a potential threading of the lattice with metal needles. © 2013 American Chemical Society.

  3. Evaluation of satellite and reanalysis-based global net surface energy flux and uncertainty estimates

    Science.gov (United States)

    Allan, Richard; Liu, Chunlei

    2017-04-01

    The net surface energy flux is central to the climate system yet observational limitations lead to substantial uncertainty (Trenberth and Fasullo, 2013; Roberts et al., 2016). A combination of satellite-derived radiative fluxes at the top of atmosphere (TOA) adjusted using the latest estimation of the net heat uptake of the Earth system, and the atmospheric energy tendencies and transports from the ERA-Interim reanalysis are used to estimate surface energy flux globally (Liu et al., 2015). Land surface fluxes are adjusted through a simple energy balance approach using relations at each grid point with the consideration of snowmelt to improve regional realism. The energy adjustment is redistributed over the oceans using a weighting function to avoid meridional discontinuities. Uncertainties in surface fluxes are investigated using a variety of approaches including comparison with a range of atmospheric reanalysis input data and products. Zonal multiannual mean surface flux uncertainty is estimated to be less than 5 Wm-2 but much larger uncertainty is likely for regional monthly values. The meridional energy transport is calculated using the net surface heat fluxes estimated in this study and the result shows better agreement with observations in Atlantic than before. The derived turbulent fluxes (difference between the net heat flux and the CERES EBAF radiative flux at surface) also have good agreement with those from OAFLUX dataset and buoy observations. Decadal changes in the global energy budget and the hemisphere energy imbalances are quantified and present day cross-equator heat transports is re-evaluated as 0.22±0.15 PW southward by the atmosphere and 0.32±0.16 PW northward by the ocean considering the observed ocean heat sinks (Roemmich et al., 2006) . Liu et al. (2015) Combining satellite observations and reanalysis energy transports to estimate global net surface energy fluxes 1985-2012. J. Geophys. Res., Atmospheres. ISSN 2169-8996 doi: 10.1002/2015JD

  4. Net Ecosystem Fluxes of Hydrocarbons from a Ponderosa Pine Forest in Colorado

    Science.gov (United States)

    Rhew, R. C.; Turnipseed, A. A.; Ortega, J. V.; Smith, J. N.; Guenther, A. B.; Shen, S.; Martinez, L.; Koss, A.; Warneke, C.; De Gouw, J. A.; Deventer, M. J.

    2015-12-01

    Light (C2-C4) alkenes, light alkanes and isoprene (C5H8) are non-methane hydrocarbons that play important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. Natural terrestrial fluxes of the light hydrocarbons are poorly characterized, with global emission estimates based on limited field measurements. In 2014, net fluxes of these compounds were measured at the Manitou Experimental Forest Observatory, a semi-arid ponderosa pine forest in the Colorado Rocky Mountains and site of the prior BEACHON campaigns. Three field intensives were conducted between June 17 and August 10, 2014. Net ecosystem flux measurements utilized a relaxed eddy accumulation system coupled to an automated gas chromatograph. Summertime average emissions of ethene and propene were up to 90% larger than those observed from a temperate deciduous forest. Ethene and propene fluxes were also correlated to each other, similar to the deciduous forest study. Emissions of isoprene were small, as expected for a coniferous forest, and these fluxes were not correlated with either ethene or propene. Unexpected emissions of light alkanes were also observed, and these showed a distinct diurnal cycle. Understory flux measurements allowed for the partitioning of fluxes between the surface and the canopy. Full results from the three field intensives will be compared with environmental variables in order to parameterize the fluxes for use in modeling emissions.

  5. Comparing methods for partitioning a decade of carbon dioxide and water vapor fluxes in a temperate forest

    Science.gov (United States)

    Benjamin N. Sulman; Daniel Tyler Roman; Todd M. Scanlon; Lixin Wang; Kimberly A. Novick

    2016-01-01

    The eddy covariance (EC) method is routinely used to measure net ecosystem fluxes of carbon dioxide (CO2) and evapotranspiration (ET) in terrestrial ecosystems. It is often desirable to partition CO2 flux into gross primary production (GPP) and ecosystem respiration (RE), and to partition ET into evaporation and...

  6. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance

    NARCIS (Netherlands)

    Kindler, R.; Siemens, J.; Kaiser, K.; Moors, E.J.

    2011-01-01

    Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and

  7. Channelling can affect concentrations of metabolic intermediates at constant net flux: artefact or reality?

    Science.gov (United States)

    Cornish-Bowden, A; Cárdenas, M L

    1993-04-01

    We show that if a metabolic intermediate is directly transferred ('channelled') from an enzyme that catalyses its production to another that uses it as substrate, there is no change in its free concentration compared with a system with the same net flux in which there is no direct transfer. Thus the widespread idea that channelling provides a mechanism for decreasing metabolite concentrations at constant flux is false. Results from computer simulation that suggest otherwise [Mendes, P., Kell, D. B. & Westerhoff, H. V. (1992) Eur. J. Biochem. 204, 257-266] are artefacts either of variations in flux or of alterations in opposite directions of the activities of the relevant enzymes.

  8. Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia.

    Directory of Open Access Journals (Sweden)

    Marcelo Zeri

    Full Text Available The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010 and a flooding year (2009. The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha(-1 year(-1, but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change.

  9. Validation of a minimum microclimate disturbance chamber for net ecosystem flux measurements

    NARCIS (Netherlands)

    Graf, A.; Werner, J.; Langensiepen, M.; Boer, van de A.; Schmidt, M.; Kupisch, M.; Vereecken, H.

    2013-01-01

    A minimum-disturbance chamber for canopy net CO2 and H2O flux measurements is described. The system is a passively (optionally actively) ventilated tunnel with large (similar to 0.14 m2) in- and outlet cross sections covering a surface area of approximately 1.6 m2. A differential, non-drying

  10. Salt Marsh Net Ecosystem Carbon Balance: Improving Methods to Quantify the Role of Lateral (Tidal) Exchanges

    Science.gov (United States)

    Kroeger, K. D.

    2016-02-01

    Coastal wetlands are prime candidates for greenhouse gas emission offsets as they display extraordinarily high rates of carbon (C) sequestration. However, lack of data about rates of and controls on C sequestration in tidal wetlands, as well as substantial temporal and spatial heterogeneity, complicate development of both models and a methodology for use by C registries. The goals of our field research are to improve understanding of the climatic role of coastal wetlands, quantify potential for GHG emission offsets through restoration or preservation, and quantify impacts of eutrophication and other environmental factors. Among our objectives is to construct C and greenhouse gas (GHG) budgets for salt marshes, based on measurements of GHG exchanges with the atmosphere, C storage in soils, and lateral (tidal) exchanges of gases, C, and sediment. In this presentation, emphasis is on rate and source of tidal exchanges between salt marshes and adjacent estuaries. We measured fluxes by collecting high frequency data on tidal water flows and physical and chemical conditions in wetland channels using acoustic and optical sensors, as well as laser absorption spectrometry. To provide site-specific calibrations of sensors, we collected water samples across tidal cycles and seasons. Source investigations include analysis of stable isotope and lipid compositions. We used multiple regressions to estimate dissolved organic (DOC) and inorganic carbon (DIC) concentrations at high frequency over extended time. Carbon flux was calculated as the product of concentration and water flux, corrected for modeled flow outside of the tidal creek. Annual rates of net C flux from wetland to estuary indicate that both DOC and DIC are large terms in the salt marsh carbon budget relative to net exchange with the atmosphere and rate of storage in soil, and that DIC flux may have been underestimated in previous studies.

  11. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.

  12. Net Ecosystem Fluxes of Methyl Halides from a Coastal Salt Marsh with Invasive Pepperweed

    Science.gov (United States)

    Deventer, M. J.; Jiao, Y.; Lewis, J. A.; Weiss, R. F.; Rhew, R. C.; Turnipseed, A. A.

    2016-12-01

    Terrestrial emissions of methyl bromide (CH3Br) and methyl chloride (CH3Cl) are believed to constitute the `missing' source of these compounds to the atmosphere, but the variability of emission rates from natural ecosystems has led to large uncertainties in scaling up. Since April 2016, surface-atmosphere fluxes for methyl halides have been measured at Suisun Marsh, a coastal salt marsh in northern California, USA. Flux measurements are performed in two ways: tower based relaxed eddy accumulation (REA) for net ecosystem fluxes and static flux chamber measurements for plant-scale fluxes. The study site is invaded by perennial pepperweed (Lepidium latifolium), a methyl halide emitting species, covering a significant part of the flux source area. Both, REA and chamber samples are analyzed for methyl chloride (CH3Cl) and methyl bromide (CH3Br) using gas chromatography with electron capture detector (GC-ECD). The analytical precision [ppt] and REA flux detection limits [μmol m-2 d-1] are on the order of 3.9/0.6 for CH3Cl and 0.01/0.2 for CH3Br. Chamber measurements confirmed that methyl halide emissions of pepperweed are large, but that the native alkali heath (Frankenia salina) is a much stronger emitter, when normalized by biomass. REA measurements show that during the summer, the studied marsh is a substantial methyl halide source with net fluxes of 20 μmol m-2 d-1 (CH3Cl) and 1 μmol m-2 d-1 (CH3Br). Notably, these fluxes are comparable with reported chamber based emissions from southern California salt marshes. Furthermore, a positive response to light and temperature was found. The presentation will also expand on the diurnal variability and seasonality of the measured fluxes.

  13. Carbon fluxes of Kobresia pygmaea pastures on the Tibetan Plateau

    Science.gov (United States)

    Babel, Wolfgang; Biermann, Tobias; Falge, Eva; Ingrisch, Johannes; Leonbacher, Jürgen; Schleuss, Per; Kuzyakov, Yakov; Ma, Yaoming; Miehe, Georg; Foken, Thomas

    2014-05-01

    the vegetation cover, net ecosystem exchange and respiration decreased from IRM over DRM to BS while ratio respiration/assimilation increased. Since measurements were conducted in succession and not parallel, a direct comparison would need further investigation. On the basis of the eddy-covariance data set measured in 2010, two models were applied and tested for Kobresia pastures: one for sensible and latent heat flux and one for carbon dioxide flux. Therefore continuously modelled fluxes were available for the chamber experiment in 2012. Significant differences were found in the carbon uptake, with the highest values on IRM and the lowest on BS. Conclusion: Kobresia pastures are an ecological system characterized by limited grazing by yaks (nomads). No grazing: other species will dominate; over-grazing: degradation. The preservation of Kobresia pastures is an ecological and political problem!

  14. Methane Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Methane (CH4) flux is the net rate of methane exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS LandCarbon project...

  15. Constraining future terrestrial carbon cycle projections using observation-based water and carbon flux estimates.

    Science.gov (United States)

    Mystakidis, Stefanos; Davin, Edouard L; Gruber, Nicolas; Seneviratne, Sonia I

    2016-06-01

    The terrestrial biosphere is currently acting as a sink for about a third of the total anthropogenic CO2  emissions. However, the future fate of this sink in the coming decades is very uncertain, as current earth system models (ESMs) simulate diverging responses of the terrestrial carbon cycle to upcoming climate change. Here, we use observation-based constraints of water and carbon fluxes to reduce uncertainties in the projected terrestrial carbon cycle response derived from simulations of ESMs conducted as part of the 5th phase of the Coupled Model Intercomparison Project (CMIP5). We find in the ESMs a clear linear relationship between present-day evapotranspiration (ET) and gross primary productivity (GPP), as well as between these present-day fluxes and projected changes in GPP, thus providing an emergent constraint on projected GPP. Constraining the ESMs based on their ability to simulate present-day ET and GPP leads to a substantial decrease in the projected GPP and to a ca. 50% reduction in the associated model spread in GPP by the end of the century. Given the strong correlation between projected changes in GPP and in NBP in the ESMs, applying the constraints on net biome productivity (NBP) reduces the model spread in the projected land sink by more than 30% by 2100. Moreover, the projected decline in the land sink is at least doubled in the constrained ensembles and the probability that the terrestrial biosphere is turned into a net carbon source by the end of the century is strongly increased. This indicates that the decline in the future land carbon uptake might be stronger than previously thought, which would have important implications for the rate of increase in the atmospheric CO2 concentration and for future climate change. © 2016 John Wiley & Sons Ltd.

  16. Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China

    Science.gov (United States)

    Yang, Dongxu; Zhang, Huifang; Liu, Yi; Chen, Baozhang; Cai, Zhaonan; Lü, Daren

    2017-08-01

    Monitoring atmospheric carbon dioxide (CO2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS), and CarbonTracker-China (CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite (GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%-30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO2 (column-averaged CO2 dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO2 product is used in carbon flux estimation by CT-China. The net ecosystem CO2 exchange is -0.34 Pg C yr-1 (±0.08 Pg C yr-1), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.

  17. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  18. Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A

    2009-02-26

    The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.

  19. Temporal and spatial changes in mixed layer properties and atmospheric net heat flux in the Nordic Seas

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A; Alekseev, G [SI ' Arctic and Antarctic Research Institute' , St. Petersburg (Russian Federation); Korablev, A; Esau, I, E-mail: avsmir@aari.nw.r [Nansen Environmental and Remote Sensing Centre, Bergen (Norway)

    2010-08-15

    The Nordic Seas are an important area of the World Ocean where warm Atlantic waters penetrate far north forming the mild climate of Northern Europe. These waters represent the northern rim of the global thermohaline circulation. Estimates of the relationships between the net heat flux and mixed layer properties in the Nordic Seas are examined. Oceanographic data are derived from the Oceanographic Data Base (ODB) compiled in the Arctic and Antarctic Research Institute. Ocean weather ship 'Mike' (OWS) data are used to calculate radiative and turbulent components of the net heat flux. The net shortwave flux was calculated using a satellite albedo dataset and the EPA model. The net longwave flux was estimated by Southampton Oceanography Centre (SOC) method. Turbulent fluxes at the air-sea interface were calculated using the COARE 3.0 algorithm. The net heat flux was calculated by using oceanographic and meteorological data of the OWS 'Mike'. The mixed layer depth was estimated for the period since 2002 until 2009 by the 'Mike' data as well. A good correlation between these two parameters has been found. Sensible and latent heat fluxes controlled by surface air temperature/sea surface temperature gradient are the main contributors into net heat flux. Significant correlation was found between heat fluxes variations at the OWS 'Mike' location and sea ice export from the Arctic Ocean.

  20. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    Science.gov (United States)

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P < 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid-marshes relative to the high marsh (P < 0.001). Net N2 O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m(-2)  h(-1) , -2.2 ± 0.9 μg N m(-2)  h(-1) , and 0.67 ± 0.57 μg N m(-2)  h(-1) in the low, mid, and high marshes, respectively. Both net N2 O release and uptake were observed in the low and high marshes, but the mid-marsh was consistently a net N2 O sink. Gross N2 O production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise. © 2015 John Wiley & Sons Ltd.

  1. Modeling and Predicting Carbon and Water Fluxes Using Data-Driven Techniques in a Forest Ecosystem

    Directory of Open Access Journals (Sweden)

    Xianming Dou

    2017-12-01

    Full Text Available Accurate estimation of carbon and water fluxes of forest ecosystems is of particular importance for addressing the problems originating from global environmental change, and providing helpful information about carbon and water content for analyzing and diagnosing past and future climate change. The main focus of the current work was to investigate the feasibility of four comparatively new methods, including generalized regression neural network, group method of data handling (GMDH, extreme learning machine and adaptive neuro-fuzzy inference system (ANFIS, for elucidating the carbon and water fluxes in a forest ecosystem. A comparison was made between these models and two widely used data-driven models, artificial neural network (ANN and support vector machine (SVM. All the models were evaluated based on the following statistical indices: coefficient of determination, Nash-Sutcliffe efficiency, root mean square error and mean absolute error. Results indicated that the data-driven models are capable of accounting for most variance in each flux with the limited meteorological variables. The ANN model provided the best estimates for gross primary productivity (GPP and net ecosystem exchange (NEE, while the ANFIS model achieved the best for ecosystem respiration (R, indicating that no single model was consistently superior to others for the carbon flux prediction. In addition, the GMDH model consistently produced somewhat worse results for all the carbon flux and evapotranspiration (ET estimations. On the whole, among the carbon and water fluxes, all the models produced similar highly satisfactory accuracy for GPP, R and ET fluxes, and did a reasonable job of reproducing the eddy covariance NEE. Based on these findings, it was concluded that these advanced models are promising alternatives to ANN and SVM for estimating the terrestrial carbon and water fluxes.

  2. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling.

    Science.gov (United States)

    Potter, Christopher; Klooster, Steven; Crabtree, Robert; Huang, Shengli; Gross, Peggy; Genovese, Vanessa

    2011-08-11

    A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas. Rates of

  3. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling

    Directory of Open Access Journals (Sweden)

    Huang Shengli

    2011-08-01

    Full Text Available Abstract Background A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP. The CASA (Carnegie Ames Stanford Approach model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP and soil respiration components. Predicted net ecosystem production (NEP flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire disturbance histories. Monthly Enhanced Vegetation Index (EVI image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS instrument (from 2000 to 2006 were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD in areas burned by wildfires over the past two decades. Results Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink

  4. Ozone flux over a Norway spruce forest and correlation with net ecosystem production

    Energy Technology Data Exchange (ETDEWEB)

    Zapletal, Milos, E-mail: milos.zapletal@ekotoxa.cz [Ekotoxa s.r.o. - Centre for Environment and Land Assessment, Oticka 37, 746 01 Opava (Czech Republic); Silesian University at Opava, Faculty of Philosophy and Science, Masarykova 37, 746 01 Opava (Czech Republic); Cudlin, Pavel [Institute of Systems Biology and Ecology of the AS CR, v.v.i., Na Sadkach 7, 37005 Ceske Budejovice (Czech Republic); Chroust, Petr [Ekotoxa s.r.o. - Centre for Environment and Land Assessment, Oticka 37, 746 01 Opava (Czech Republic); Urban, Otmar; Pokorny, Radek [Institute of Systems Biology and Ecology of the AS CR, v.v.i., Porici 3b, 60300 Brno (Czech Republic); Edwards-Jonasova, Magda [Institute of Systems Biology and Ecology of the AS CR, v.v.i., Na Sadkach 7, 37005 Ceske Budejovice (Czech Republic); Czerny, Radek; Janous, Dalibor; Taufarova, Klara [Institute of Systems Biology and Ecology of the AS CR, v.v.i., Porici 3b, 60300 Brno (Czech Republic); Vecera, Zbynek; Mikuska, Pavel [Institute of Analytical Chemistry of the AS CR, v.v.i., Veveri 97, 60200 Brno (Czech Republic); Paoletti, Elena [Institute of Plant Protection, National Research Council of Italy, via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2011-05-15

    Daily ozone deposition flux to a Norway spruce forest in Czech Republic was measured using the gradient method in July and August 2008. Results were in good agreement with a deposition flux model. The mean daily stomatal uptake of ozone was around 47% of total deposition. Average deposition velocity was 0.39 cm s{sup -1} and 0.36 cm s{sup -1} by the gradient method and the deposition model, respectively. Measured and modelled non-stomatal uptake was around 0.2 cm s{sup -1}. In addition, net ecosystem production (NEP) was measured by using Eddy Covariance and correlations with O{sub 3} concentrations at 15 m a.g.l., total deposition and stomatal uptake were tested. Total deposition and stomatal uptake of ozone significantly decreased NEP, especially by high intensities of solar radiation. - Highlights: > We estimate ozone deposition flux to a Norway spruce forest using the gradient method and model. > The mean stomatal uptake of ozone is approximately 47% of the total deposition. > We measure net ecosystem production (NEP) using Eddy Covariance. > We test whether elevated total deposition and stomatal uptake of O{sub 3} imply a reduction of NEP. > Deposition and stomatal uptake of O{sub 3} decrease NEP, especially by high intensities of solar radiation. - Net ecosystem production of a Norway spruce forest decreases with increasing deposition and stomatal uptake of ozone.

  5. Net primary production and seasonal CO2 and CH4 fluxes in a Trapa natans L. meadow

    Directory of Open Access Journals (Sweden)

    Marco BARTOLI

    2010-08-01

    Full Text Available The main hypothesis of this work is that Trapa natans L. and similar floating leaved macrophytes are only temporary sinks of atmospheric carbon dioxide and that they favour water hypoxia and large methane efflux from sediment to the atmosphere, due to their shading effect and scarce ability to transfer oxygen to submerged tissues. For this purpose, from April to August 2005, T. natans production, dissolved O2, CO2 and CH4 concentrations in the water column and CO2 and CH4 fluxes across the wateratmosphere interface were measured in an oxbow lake (Lanca di Po, Northern Italy where a monospecific floating mat of water chestnut develops. Net primary production by T. natans was determined via biomass harvesting while gas fluxes were determined via short-term incubations of light and dark floating chambers. From July onwards, when the water surface of the oxbow lake was entirely colonized by the plant, the dense canopy resulted in a physical barrier for light and water reareation. As a consequence of sediment and plant respiration, persistent hypoxia and often anoxia, and CO2 and CH4 supersaturation occurred in the water column. Net primary production of T. natans, calculated at peak biomass, was 13.05 ± 0.32 mol CO2 m-2. The T. natans mat was a net sink for atmospheric CO2 from mid June to mid August, with an uptake peak measured at the beginning of July (229 mmol m-2 d-1; estimated net ecosystem metabolism was ≤10.09 ± 1.90 mol CO2 m-2. Contextually, during the vegetative period of T. natans, the oxbow lake was a net source of methane (9.52 ± 2.10 mol m-2, and the resulting CH4 to CO2 flux ratio across the water-atmosphere interface was ≥0.94. The large methane release was probably due to the persistent hypoxia and anoxia induced by the T. natans meadow, which uncoupled methane production from methane oxidation.

  6. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Directory of Open Access Journals (Sweden)

    P. Alekseychik

    2017-08-01

    Full Text Available Very few studies of ecosystem–atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2 and energy budgets in a typical bog of the western Siberian middle taiga based on May–August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pine-covered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to 202 gC m−2 for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.

  7. Forest cockchafer larvae as methane production hotspots in soils and their importance for net soil methane fluxes

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Murphy, Paul; Müller, Christoph

    2016-04-01

    Certain groups of soil invertebrates, namely scarab beetles and millipedes, are capable of emitting considerable amounts of methane due to methanogens inhabiting their gut system. It was already pointed out in the early 1990's, that these groups of invertebrates may represent a globally important source of methane. However, apart from termites, the importance of invertebrates for the soil methane budget is still unknown. Here, we present preliminary results of a laboratory soil incubation experiment elucidating the influence of forest cockchafer larvae (Melolontha hippocastani FABRICIUS) on soil methane cycling. In January/February 2016, two soils from two different management systems - one from a pine forest (extensive use) and one from a vegetable field (intensive use) - were incubated for 56 days either with or without beetle larvae. Net soil methane fluxes and larvae methane emissions together with their stable carbon isotope signatures were quantified at regular intervals to estimate gross methane production and gross methane oxidation in the soils. The results of this experiment will contribute to testing the hypothesis of whether methane production hotspots can significantly enhance the methane oxidation capacity of soils. Forest cockchafer larvae are only found in well-aerated sandy soils where one would usually not suspect relevant gross methane production. Thus, besides quantifying their contribution to net soil methane fluxes, they are also ideal organisms to study the effect of methane production hotspots on overall soil methane cycling. Funding support: Reintegration grant of the German Academic Exchange Service (DAAD) (#57185798).

  8. Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme.

    Science.gov (United States)

    Roy, Jacques; Picon-Cochard, Catherine; Augusti, Angela; Benot, Marie-Lise; Thiery, Lionel; Darsonville, Olivier; Landais, Damien; Piel, Clément; Defossez, Marc; Devidal, Sébastien; Escape, Christophe; Ravel, Olivier; Fromin, Nathalie; Volaire, Florence; Milcu, Alexandru; Bahn, Michael; Soussana, Jean-François

    2016-05-31

    Extreme climatic events (ECEs) such as droughts and heat waves are predicted to increase in intensity and frequency and impact the terrestrial carbon balance. However, we lack direct experimental evidence of how the net carbon uptake of ecosystems is affected by ECEs under future elevated atmospheric CO2 concentrations (eCO2). Taking advantage of an advanced controlled environment facility for ecosystem research (Ecotron), we simulated eCO2 and extreme cooccurring heat and drought events as projected for the 2050s and analyzed their effects on the ecosystem-level carbon and water fluxes in a C3 grassland. Our results indicate that eCO2 not only slows down the decline of ecosystem carbon uptake during the ECE but also enhances its recovery after the ECE, as mediated by increases of root growth and plant nitrogen uptake induced by the ECE. These findings indicate that, in the predicted near future climate, eCO2 could mitigate the effects of extreme droughts and heat waves on ecosystem net carbon uptake.

  9. Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models

    Directory of Open Access Journals (Sweden)

    M. Vetter

    2008-04-01

    Full Text Available Globally, the year 2003 is associated with one of the largest atmospheric CO2 rises on record. In the same year, Europe experienced an anomalously strong flux of CO2 from the land to the atmosphere associated with an exceptionally dry and hot summer in Western and Central Europe. In this study we analyze the magnitude of this carbon flux anomaly and key driving ecosystem processes using simulations of seven terrestrial ecosystem models of different complexity and types (process-oriented and diagnostic. We address the following questions: (1 how large were deviations in the net European carbon flux in 2003 relative to a short-term baseline (1998–2002 and to longer-term variations in annual fluxes (1980 to 2005, (2 which European regions exhibited the largest changes in carbon fluxes during the growing season 2003, and (3 which ecosystem processes controlled the carbon balance anomaly .

    In most models the prominence of 2003 anomaly in carbon fluxes declined with lengthening of the reference period from one year to 16 years. The 2003 anomaly for annual net carbon fluxes ranged between 0.35 and –0.63 Pg C for a reference period of one year and between 0.17 and –0.37 Pg C for a reference period of 16 years for the whole Europe.

    In Western and Central Europe, the anomaly in simulated net ecosystem productivity (NEP over the growing season in 2003 was outside the 1σ variance bound of the carbon flux anomalies for 1980–2005 in all models. The estimated anomaly in net carbon flux ranged between –42 and –158 Tg C for Western Europe and between 24 and –129 Tg C for Central Europe depending on the model used. All models responded to a dipole pattern of the climate anomaly in 2003. In Western and Central Europe NEP was reduced due to heat and drought. In contrast, lower than normal temperatures and higher air humidity decreased NEP over Northeastern Europe. While models agree on the sign of changes in

  10. Adaptive Rule-Based Piece-Wise Regression Models for Estimating Regional Net Ecosystem Exchange in Grassland and Shrubland Ecoregions Using Regional and Flux Tower Data

    Science.gov (United States)

    Fosnight, E. A.; Wylie, B. K.; Zhang, L.

    2005-12-01

    The scientific understanding of the global carbon cycle requires quantitative documentation, monitoring, and projection of carbon stocks and fluxes at various scales across the landscape. The challenge is to develop predictive models using carbon flux towers at site-specific locations, and to extrapolate these models to landscapes and regions. We use remote sensing and national climate and soil databases within data-driven models to estimate carbon fluxes. To accommodate the study of coupled human-environmental relationships and their influences on carbon dynamics, a coherent suite of models is being developed for agricultural, wooded and wetland ecosystems within predominantly grassland and shrubland ecoregions. In previous work, we have mapped carbon fluxes in terms of Net Ecosystem Exchange (NEE), Gross Primary Production (GPP), and Respiration (Re) in the Northern Great Plains, the Sagebrush Steppes and the Kazakh Steppes at 1-km resolution and 10-day time steps. We now extend this work beyond fairly uniform ecological conditions to accommodate more complex spatial mixtures of ecological types within ecoregions. The models need to adapt to both the complexity of the environmental variables and the land cover patterns. Our rule-based models adapt to local climatic, soil and phenology through the definition of piece-wise regression models. A suite of such models is needed to capture the phenologic and climatic variability across the wide range of shrubland and grassland ecoregions that exist. The result is a multi-year time series of 1-km maps of carbon flux that are suitable for trend and anomaly analysis. We seek sensitive models that permit the effective study of localized carbon dynamics while avoiding over-fitting the available carbon flux tower measurement data. Two critical components of the project are (1) sensitivity and cross-validation studies to evaluate the internal consistencies of the models and (2) intercomparison studies to help isolate

  11. Global and regional fluxes of carbon from land use and land cover change 1850-2015

    Science.gov (United States)

    Houghton, R. A.; Nassikas, Alexander A.

    2017-03-01

    The net flux of carbon from land use and land cover change (LULCC) is an important term in the global carbon balance. Here we report a new estimate of annual fluxes from 1850 to 2015, updating earlier analyses with new estimates of both historical and current rates of LULCC and including emissions from draining and burning of peatlands in Southeast Asia. For most of the 186 countries included we relied on data from Food and Agriculture Organization to document changes in the areas of croplands and pastures since 1960 and changes in the areas of forests and "other land" since 1990. For earlier years we used other sources of information. We used a bookkeeping model that prescribed changes in carbon density of vegetation and soils for 20 types of ecosystems and five land uses. The total net flux attributable to LULCC over the period 1850-2015 is calculated to have been 145 ± 16 Pg C (1 standard deviation). Most of the emissions were from the tropics (102 ± 5.8 Pg C), generally increasing over time to a maximum of 2.10 Pg C yr-1 in 1997. Outside the tropics emissions were roughly constant at 0.5 Pg C yr-1 until 1940, declined to zero around 1970, and then became negative. For the most recent decade (2006-2015) global net emissions from LULCC averaged 1.11 (±0.35) Pg C yr-1, consisting of a net source from the tropics (1.41 ± 0.17 Pg C yr-1), a net sink in northern midlatitudes (-0.28 ± 0.21 Pg C yr-1), and carbon neutrality in southern midlatitudes.

  12. Effect of site of starch digestion on portal nutrient net fluxes in steers.

    Science.gov (United States)

    Nozière, Pierre; Rémond, Didier; Lemosquet, Sophie; Chauveau, Béatrice; Durand, Denys; Poncet, Claude

    2005-08-01

    Processing of maize grain is known to modulate the site of starch digestion, thus the nature and amount of nutrients delivered for absorption. We assessed the effect of site of starch digestion on nutrient net fluxes across portal-drained viscera (PDV). Three steers, fitted with permanent digestive cannulas and blood catheters, successively received two diets containing 35 % starch as dent maize grain. Diets differed according to maize presentation: dry and cracked (by-pass, BP) v. wet and ground (control, C). Ruminal physicochemical parameters were not significantly affected. Between C and BP, the decrease in ruminal starch digestion was compensated by an increase in starch digestion in the small intestine. The amount of glucose and soluble alpha-glucoside reaching the ileum was not affected. The amount of glucose disappearing in the small intestine increased from 238 to 531 g/d between C and BP, but portal net flux of glucose remained unchanged (-97 g/d). The portal O2 consumption and net energy release were not significantly affected, averaging 16 % and 57 % of metabolizable energy intake, respectively. The whole-body glucose appearance rate, measured by jugular infusion of [6,6-2H2]glucose, averaged 916 g/d. The present study shows that the increase in the amount of glucose disappearing in the small intestine of conventionally fed cattle at a moderate intake level induces no change in portal net flux of glucose, reflecting an increase in glucose utilization by PDV. That could contribute to the low response of whole-body glucose appearance rate observed at this moderate level of intestinal glucose supply.

  13. Variability in carbon dioxide fluxes for dense urban, suburban and woodland environments in southern England

    Science.gov (United States)

    Ward, Helen; Kotthaus, Simone; Grimmond, C. Sue; Bjorkegren, Alex; Wilkinson, Matt; Morrison, Will; Evans, Jon; Morison, James; Christen, Andreas

    2014-05-01

    The net exchange of carbon dioxide between the surface and atmosphere can be measured using the eddy covariance technique. Fluxes from a dense urban environment (central London), a suburban landscape (Swindon) and a woodland ecosystem (Alice Holt) are compared. All sites are located in southern England and experience similar climatic and meteorological conditions, yet have very different land cover. The signatures of anthropogenic and biogenic processes are explored at various (daily, seasonal and annual) timescales. Particular emphasis is placed on identifying the mixture of controls that determine the flux. In summer, there are clear similarities between the suburban and woodland sites, as the diurnal behaviour is dominated by photosynthetic uptake. In winter, however, vegetation is largely dormant and human activity determines the pattern of fluxes at the urban and suburban sites. Emissions from building heating augment the net release of carbon dioxide in cold months. Road use is a major contributor to the total emissions, and the diurnal cycle in the observed fluxes reflects this: in central London roads are busy throughout the day, whereas in Swindon a double-peaked rush-hour signal is evident. The net exchange of carbon dioxide is estimated for each site and set in context with other studies around the world. Central London has the smallest proportion of vegetation and largest emissions amongst study sites in the literature to date. Although Swindon's appreciable vegetation fraction helps to offset the anthropogenic emissions, even in summertime the 24h total flux is usually positive, indicating carbon release. Comparison of these three sites in a similar region demonstrates the effects of increasing urban density and changing land use on the atmosphere. Findings are relevant in terms of characterising the behaviour of urban surfaces and for quantifying the impact of anthropogenic activities.

  14. Simulated Net Ecosystem Carbon Balance of Western US Forests Under Contemporary Climate and Management

    Science.gov (United States)

    Yang, Z.; Law, B. E.; Jones, M. O.

    2015-12-01

    Previous projections of the contemporary forest carbon balance in the western US showed uncertainties associated with impacts of climate extremes and a coarse spatio-temporal resolution implemented over heterogeneous mountain regions. We modified the Community Land Model (CLM) 4.5 to produce 4km resolution forest carbon changes with drought, fire and management in the western US. We parameterized the model with species data using local plant trait observations for 30 species. To quantify uncertainty, we evaluated the model with data from flux sites, inventories and ancillary data in the region. Simulated GPP was lower than the measurements at our AmeriFlux sites by 17-22%. Simulated burned area was generally higher than Landsat observations, suggesting the model overestimates fire emissions with the new fire model. Landsat MTBS data show high severity fire represents only a small portion of the total burnt area (12-14%), and no increasing trend from 1984 to 2011. Moderate severity fire increased ~0.23%/year due to fires in the Sierra Nevada (Law & Waring 2014). Oregon, California, and Washington were a net carbon sink, and net ecosystem carbon balance (NECB) declined in California over the past 15 years, partly due to drought impacts. Fire emissions were a small portion of the regional carbon budget compared with the effect of harvest removals. Fossil fuel emissions in CA are more than 3x that of OR and WA combined, but are lower per capita. We also identified forest regions that are most vulnerable to climate-driven transformations and to evaluate the effects of management strategies on forest NECB. Differences in forest NECB among states are strongly influenced by the extent of drought (drier longer in the SW) and management intensity (higher in the PNW).

  15. Assessment of Carbon Flux and Soil Moisture in Wetlands Applying Sentinel-1 Data

    OpenAIRE

    Katarzyna Dabrowska-Zielinska; Maria Budzynska; Monika Tomaszewska; Alicja Malinska; Martyna Gatkowska; Maciej Bartold; Iwona Malek

    2016-01-01

    The objectives of the study were to determine the spatial rate of CO2 flux (Net Ecosystem Exchange) and soil moisture in a wetland ecosystem applying Sentinel-1 IW (Interferometric Wide) data of VH (Vertical Transmit/Horizontal Receive—cross polarization) and VV (Vertical Transmit/Vertical Receive—like polarization) polarization. In-situ measurements of carbon flux, soil moisture, and LAI (Leaf Area Index) were carried out over the Biebrza Wetland in north-eastern Poland. The impact of soil m...

  16. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  17. Linking Carbon Flux Dynamics and Soil Structure in Dryland Soils

    Science.gov (United States)

    DeCarlo, K. F.; Caylor, K. K.

    2016-12-01

    Biological sources in the form of microbes and plants play a fundamental role in determining the magnitude of carbon flux. However, the geophysical structure of the soil (which the carbon must pass through before entering the atmosphere) often serves as a constraining entity, which has the potential to serve as instigators or mitigators of those carbon and hydrologic flux processes. We characterized soil carbon dynamics in three dryland soil systems: bioturbated soils, biocompacted soils, and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer (IRGA). Structure of the soil systems, with a focus on the macro-crack structure, were characterized using a combined resin-casting/X-ray imaging technique. Results show fundamental differences in carbon dynamics between the different soil systems/structures: control soils have gaussian distributions of carbon flux that decrease with progressive drying of the soil, while biocompacted soils exhibit exponentially distributed fluxes that do not regularly decrease with increased drying of the soil. Bioturbated soils also exhibit an exponential distribution of carbon flux, though at a much higher magnitude. These differences are evaluated in the context of the underlying soil structure: while the control soils exhibit a shallow and narrow crack structure, the biocompacted soils exhibit a "systematic" crack network with moderate cracking intensity and large depth. The deep crack networks of the biocompacted soils may serve to physically enhance an otherwise weak source of carbon via advection and/or convection, inducing fluxes that are equal or greater than an otherwise carbon-rich soil. The bioturbated soils exhibit a "surficial" crack network that is shallow but extensive, but additionally have deep holes known to convectively vent carbon, which may explain their periodically large carbon fluxes. Our results

  18. Carbon Dioxide Flux in Mixed-grass Prairie: Response to Interannual Variation in Rainfall and Grazing History

    Science.gov (United States)

    Esposito, D.

    2002-12-01

    Grasslands are an important biome in the exchange of carbon between the biosphere and the atmosphere. However, our understanding of how carbon flux varies due to changes in precipitation, including drought conditions and land use history (grazing intensity) is only rudimentary. In this study we have evaluated the effects of adequate precipitation versus drought on net carbon flux, ecosystem respiration, and gross photosynthesis over three years (1998, 1999, and 2002) using chamber techniques. In addition, during 2002 measurements were taken across three grazing regimes (light, heavy, and ungrazed). Precipitation, or lack thereof, in 2002 made for a drought year compared to 1998 and 1999. The maximum rate of net carbon flux was lowest in 2002 at 3 mmol m-2 s-1 and highest in 1998 at 9 mmol m-2 s-1. Due to the drought conditions of 2002 grazing history had no affect on net flux rates. We propose that precipitation is the overriding factor that controls carbon flux in the mixed-grass prairie ecosystem, while land use has only marginal effects. Further data collected in a non-drought year is needed to corroborate this land use hypothesis.

  19. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

    Science.gov (United States)

    Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.; Ichii, Kazuhito; Camps-Valls, Gustau; Ráduly, Botond; Reichstein, Markus; Altaf Arain, M.; Cescatti, Alessandro; Kiely, Gerard; Merbold, Lutz; Serrano-Ortiz, Penelope; Sickert, Sven; Wolf, Sebastian; Papale, Dario

    2016-07-01

    Spatio-temporal fields of land-atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes across different ecosystem types with 11 machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data and (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. The patterns of predictions from different ML and experimental setups were highly consistent. There were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange (R2 0.6), gross primary production (R2> 0.7), latent heat (R2 > 0.7), sensible heat (R2 > 0.7), and net radiation (R2 > 0.8). The ML methods predicted the across-site variability and the mean seasonal cycle of the observed fluxes very well (R2 > 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted (R2 predicted at forested and temperate climate sites than at sites in extreme climates or less represented by training data (e.g., the tropics). The evaluated large ensemble of ML-based models will be the basis of new global flux products.

  20. Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems – the effect of drought

    Directory of Open Access Journals (Sweden)

    T. S. David

    2007-09-01

    Full Text Available Droughts reduce gross primary production (GPP and ecosystem respiration (Reco, contributing to most of the inter-annual variability in terrestrial carbon sequestration. In seasonally dry climates (Mediterranean, droughts result from reductions in annual rainfall and changes in rain seasonality. We compared carbon fluxes measured by the eddy covariance technique in three contrasting ecosystems in southern Portugal: an evergreen oak woodland (savannah-like with ca.~21% tree crown cover, a grassland dominated by herbaceous annuals and a coppiced short-rotation eucalyptus plantation. During the experimental period (2003–2006 the eucalyptus plantation was always the strongest sink for carbon: net ecosystem exchange rate (NEE between −861 and −399 g C m−2 year−1. The oak woodland and the grassland were much weaker sinks for carbon: NEE varied in the oak woodland between −140 and −28 g C m−2 year−1 and in the grassland between −190 and +49 g C m−2 year−1. The eucalyptus stand had higher GPP and a lower proportion of GPP spent in respiration than the other systems. The higher GPP resulted from high leaf area duration (LAD, as a surrogate for the photosynthetic photon flux density absorbed by the canopy. The eucalyptus had also higher rain use efficiency (GPP per unit of rain volume and light use efficiency (the daily GPP per unit incident photosynthetic photon flux density than the other two ecosystems. The effects of a severe drought could be evaluated during the hydrological-year (i.e., from October to September of 2004–2005. Between October 2004 and June 2005 the precipitation was only 40% of the long-term average. In 2004–2005 all ecosystems had GPP lower than in wetter years and carbon sequestration was strongly restricted (less negative NEE. The grassland was a net source of carbon dioxide (+49 g C m−2 year−1. In the oak woodland a large proportion of GPP resulted from carbon assimilated by its annual vegetation

  1. Sustained Magnetorotational Turbulence in Local Simulations of Stratified Disks with Zero Net Magnetic Flux

    DEFF Research Database (Denmark)

    W. Davis, S.; M. Stone, J.; Pessah, Martin Elias

    2010-01-01

    We examine the effects of density stratification on magnetohydrodynamic turbulence driven by the magnetorotational instability in local simulations that adopt the shearing box approximation. Our primary result is that, even in the absence of explicit dissipation, the addition of vertical gravity...... leads to convergence in the turbulent energy densities and stresses as the resolution increases, contrary to results for zero net flux, unstratified boxes. The ratio of total stress to midplane pressure has a mean of ~0.01, although there can be significant fluctuations on long (>~50 orbit) timescales...

  2. Carbon dioxide and water fluxes in grasslands of Inner Mongolia (China)

    Science.gov (United States)

    Vetter, S.; Ketzer, B.; Grünwald, T.; Bernhofer, Ch.

    2009-04-01

    Grasslands are one of the dominating vegetation types in the world. In China grasslands capture 400 Mha. This huge area has great influence on water and carbon stocks and fluxes. Water and carbon exchange influence the local concentration of greenhouse gases. In the steppe of Inner Mongolia there are problems of overgrazing, erosion and ongoing desertification. Through these processes the seasonal patterns of the water and carbon cycles are changed. Within the project MAGIM (Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate), which is a multidisciplinary project bringing together German and Chinese expertise, matter fluxes were measured with eddy covariance method. In this study the results of MAGIM concerning the carbon dioxide and water fluxes were presented. The study site is in the Xilin River catchment in the Northeast of Inner Mongolia Autonomous Region, China. The region is a continental temperate semiarid zone with cold dry winters and warm humid summers. The annual mean temperature is about 2 °C and the annual precipitation is 350 mm. The EC-measurements include measurements at different steppe types (Leymus chinensis, Stipa grandis) and various land use (overgrazed, winter grazed, continuously crazed, ungrazed since 1979) by one permanent and by two roving towers. From 2002 to 2004 there were continuous measurements at the ungrazed site (Leymus chinensis). The roving tower was used in the vegetation period at the other sites. From 2005 a third tower was available to measure at the overgrazed site continuously. The results show large differences in the carbon dioxide fluxes of the various land use. In general the carbon dioxide fluxes are small in Inner Mongolia. At the ungrazed site the results show negative net carbon exchange (CO2 sink). The positive net carbon exchange at overgrazed site indicates a CO2 source. The partially grazed sites switch between CO2 sink and source dependent on the environmental conditions. Lower

  3. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance

    DEFF Research Database (Denmark)

    Kindler, Reimo; Siemens, Jan; Kaiser, Klaus

    2011-01-01

    Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands......, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its d13C signature. Leaching of biogenic DIC was 8.34.9 gm2 yr1 for forests, 24.17.2 gm2 yr1 for grasslands, and 14.64.8 gm2 yr1 for croplands. DOC leaching equalled 3.51.3 gm2 yr1 for forests, 5.32.0 gm2 yr1 for grasslands...... ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small...

  4. Diurnal and seasonal variation of various carbon fluxes from an urban tower platform in Houston, TX

    Science.gov (United States)

    Schade, G. W.; Werner, N.; Hale, M. C.

    2013-12-01

    We measured carbon fluxes (CO2, CO, VOCs) from a tall lattice tower in Houston between 2007 and 2009, and 2011-2013. We present results from various analyses of (i) anthropogenic and biogenic CO2 fluxes using a quadrant segregation technique, (ii) seasonal and multi-year changes of CO fluxes as related to car traffic and industrial sources, and (iii) the accuracy of, and usefulness of a bulk flux footprint model to quantify pentane emissions form a distant source in comparison to permitted emission levels. Segregated and net anthropogenic CO2 fluxes were dominated by car traffic but industrial sources were identified as well. Emissions sank to minimal levels after hurricane Ike had passed over Houston, causing a traffic shutdown and lower population density. Segregated biogenic fluxes showed a clear seasonal variation with photosynthetic activity between April and November, and large effects of the 2011 Texas drought due to negligible irrigation in the study area. Carbon monoxide fluxes, measured via a flux gradient technique, are even stronger dominated by car traffic than CO2 fluxes and serve as a traffic tracer. Our data show a continued drop in emissions over time, seasonal changes with higher emissions during winter, and local influences due to industrial emissions. Lastly, we present the results of a tracer release study and a single point source quantification to test a bulk footprint model in this complex urban area. Known releases of volatile acetone and MEK were compered to measured fluxes using a REA-GC-FID system, and permit emissions of pentane from a foam plastics manufacturing facility were compared to measured pentane fluxes. Both comparisons reveal a surprisingly accurate performance of the footprint model within a factor of 2.

  5. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Keppel-Aleks, G [California Institute of Technology, Pasadena; Wennberg, PO [California Institute of Technology, Pasadena; Washenfelder, RA [National Oceanic and Atmospheric Admin; Wunch, D [California Institute of Technology, Pasadena; Schneider, T [California Institute of Technology, Pasadena; Toon, GC [Jet Propulsion Laboratory, Pasadena, CA; Andres, Robert Joseph [ORNL; Blavier, J-F [Jet Propulsion Laboratory, Pasadena, CA; Connor, B [BC Consulting; Davis, K. J. [Pennsylvania State University; Desai, Desai Ankur R. [University of Wisconsin, Madison; Messerschmidt, J [University of Bremen, Bremen, Germany; Notholt, J [University of Bremen, Bremen, Germany; Roehl, CM [California Institute of Technology, Pasadena; Sherlock, V [National Institue of Water and Atmospheric Research, New Zealand; Stephens, BB [National Center for Atmospheric Research (NCAR); Vay, SA [NASA Langley Research Center; Wofsy, Steve [Harvard University

    2012-01-01

    New observations of the vertically integrated CO{sub 2} mixing ratio, , from ground-based remote sensing show that variations in are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both and CO{sub 2} concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO{sub 2}, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in from covariations in and potential temperature, {theta}, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65{sup o} N) by {approx}40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  6. Anthropogenic perturbation of the carbon fluxes from land to ocean

    KAUST Repository

    Regnier, Pierre

    2013-06-09

    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr -1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (∼0.4 Pg C yr -1) or sequestered in sediments (∼0.5 Pg C yr -1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ∼0.1 Pg C yr -1 to the open ocean. According to our analysis, terrestrial ecosystems store ∼0.9 Pg C yr -1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr -1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land-ocean aquatic continuum need to be included in global carbon dioxide budgets.

  7. Anthropogenic perturbation of the carbon fluxes from land to ocean

    Science.gov (United States)

    Regnier, Pierre; Friedlingstein, Pierre; Ciais, Philippe; MacKenzie, Fred T.; Gruber, Nicolas; Janssens, Ivan A.; Laruelle, Goulven G.; Lauerwald, Ronny; Luyssaert, Sebastiaan; Andersson, Andreas J.; Arndt, Sandra; Arnosti, Carol; Borges, Alberto V.; Dale, Andrew W.; Gallego-Sala, Angela; Goddéris, Yves; Goossens, Nicolas; Hartmann, Jens; Heinze, Christoph; Ilyina, Tatiana; Joos, Fortunat; Larowe, Douglas E.; Leifeld, Jens; Meysman, Filip J. R.; Munhoven, Guy; Raymond, Peter A.; Spahni, Renato; Suntharalingam, Parvadha; Thullner, Martin

    2013-08-01

    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr-1) or sequestered in sediments (~0.5 Pg C yr-1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr-1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr-1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr-1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land-ocean aquatic continuum need to be included in global carbon dioxide budgets.

  8. Carbon and Water Vapor Fluxes of Different Ecosystems in Oklahoma

    Science.gov (United States)

    Wagle, P.; Gowda, P. H.; Northup, B. K.

    2016-12-01

    Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspiration (ET) models, and to better understand the potential of terrestrial ecosystems to mitigate rising atmospheric CO2 concentration and climate change. A network (GRL-FLUXNET) of nine eddy flux towers has been established over a diverse range of terrestrial ecosystems, including native and improved perennial grasslands [unburned and grazed tallgrass prairie, burned and grazed tallgrass prairie, and burned Bermuda grass (Cynodon dactylon L.)], grazed and non-grazed winter wheat (Triticum aestivum L.), till and no-till winter wheat and canola (Brassica napus L.), alfalfa (Medicago sativa L.), and soybean (Glycine max L.), at the USDA-ARS, Grazinglands Research Laboratory, El Reno, OK. In this presentation, we quantify and compare net ecosystem CO2 exchange (NEE) and ET between recently burned and grazed tallgrass prairie and burned and non-grazed Bermuda grass pastures, alfalfa, and soybean. Preliminary results show monthly ensembles average NEE reached seasonal peak values of -29, -35, -25, and -20 µmol m-2 s-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Similarly, monthly ensembles average ET reached seasonal peak values of 0.22, 0.27, 0.25, 0.28 mm 30-min-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Seasonal patterns and daily magnitudes of NEE and ET and their responses to the similar climatic conditions will be further investigated.

  9. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  10. Net anthropogenic nitrogen inputs and nitrogen fluxes from Indian watersheds: An initial assessment

    Science.gov (United States)

    Swaney, D. P.; Hong, B.; Paneer Selvam, A.; Howarth, R. W.; Ramesh, R.; Purvaja, R.

    2015-01-01

    In this paper, we apply an established methodology for estimating Net Anthropogenic Nitrogen Inputs (NANI) to India and its major watersheds. Our primary goal here is to provide initial estimates of major nitrogen inputs of NANI for India, at the country level and for major Indian watersheds, including data sources and parameter estimates, making some assumptions as needed in areas of limited data availability. Despite data limitations, we believe that it is clear that the main anthropogenic N source is agricultural fertilizer, which is being produced and applied at a growing rate, followed by N fixation associated with rice, leguminous crops, and sugar cane. While India appears to be a net exporter of N in food/feed as reported elsewhere (Lassaletta et al., 2013b), the balance of N associated with exports and imports of protein in food and feedstuffs is sensitive to protein content and somewhat uncertain. While correlating watershed N inputs with riverine N fluxes is problematic due in part to limited available riverine data, we have assembled some data for comparative purposes. We also suggest possible improvements in methods for future studies, and the potential for estimating riverine N fluxes to coastal waters.

  11. Seasonal Variations of Carbon Dioxide, Water Vapor and Energy Fluxes in Tropical Indian Mangroves

    Directory of Open Access Journals (Sweden)

    Suraj Reddy Rodda

    2016-02-01

    Full Text Available We present annual estimates of the net ecosystem exchange (NEE of carbon dioxide (CO2 accumulated over one annual cycle (April 2012 to March 2013 in the world’s largest mangrove ecosystem, Sundarbans (India, using the eddy covariance method. An eddy covariance flux tower was established in April 2012 to study the seasonal variations of carbon dioxide fluxes due to soil and vegetation-atmosphere interactions. The half-hourly maximum of the net ecosystem exchange (NEE varied from −6 µmol·m−2·s−1 during the summer (April to June 2012 to −10 µmol·m−2·s−1 during the winter (October to December 2012, whereas the half-hourly maximum of H2O flux varied from 5.5 to 2.5 mmol·m−2·s−1 during October 2013 and July 2013, respectively. During the study period, the study area was a carbon dioxide sink with an annual net ecosystem productivity (NEP = −NEE of 249 ± 20 g·C m−2·year−1. The mean annual evapotranspiration (ET was estimated to be 1.96 ± 0.33 mm·day−1. The gap-filled NEE was also partitioned into Gross Primary Productivity (GPP and Ecosystem Respiration (Re. The total GPP and Re over the study area for the annual cycle were estimated to be1271 g C m−2·year−1 and 1022 g C m−2·year−1, respectively. The closure of the surface energy balance accounted for of about 78% of the available energy during the study period. Our findings suggest that the Sundarbans mangroves are currently a substantial carbon sink, indicating that the protection and management of these forests would lead as a strategy towards reduction in carbon dioxide emissions.

  12. Using Carbon flux network data to investigate the impact of new European greening rules on carbon budgets - a case study.

    Science.gov (United States)

    Schmidt, Marius; Graf, Alexander; Carsten, Montzka; Vereecken, Harry

    2017-04-01

    In 2015 the European Commission introduced new greening payments as part of their common agricultural practices to address environmental and sustainability issues. The payment is worth about 30% of the total subsidies for European farmers. Sowing nitrogen fixing catch/cover crops in the off season (generally in fall and winter) is one way to achieve the prerequisite for the greening payments. Therefore it is expected that the proportion of catch/cover crops will increase from 2015 onwards at the expense of bare soil fields. In particular, with regard to more frequently occurring mild weather conditions during fall and winter, we assume that the extensive shift to catch/cover crops will have a significant impact on the carbon cycle of agricultural areas. In this study we aim to evaluate this change in agricultural practice on local and regional CO2 fluxes and carbon budgets of the intensively used northern Rur catchment in Germany. In a preliminary study, we observed the daily courses of net CO2 flux and soil respiration of three different catch/cover crops: greening mix, oil radish, and white mustard (Sinapis alba), by means of a net flux chamber and a soil respiration chamber and compared them against Eddy covariance flux data from fields cultivated with (i) winter barley (Hordeum vulgare), and (ii) without vegetation. In the main study, we compare multi-year measurements of carbon fluxes from a regional network of Eddy Covariance sites, partly included in larger networks like Fluxnet, European Fluxes Database Cluster or ICOS. We especially used site data where comparisons of catch crop seasons and conventional seasons between different sites or years were possible. To allow an assessment of the change in carbon fluxes and budgets on regional scale, a land use comparison based on satellite images for the years 2014 to 2016 was applied. With these results, a first regional evaluation of the impact of the new greening policies on carbon fluxes and budgets for the

  13. Nutrient fluxes and net metabolism in a coastal lagoon SW peninsula of Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    Cervantes Duarte, R.

    2016-09-01

    Full Text Available Fluxes of nutrients and net metabolism were estimated in coastal lagoon Magdalena Bay using LOICZ biogeochemical model. In situ data were obtained from 14 sites in the lagoon and also from a fixed site in the adjacent ocean area. Intense upwelling (February to July and faint upwelling (August to January were analyzed from monthly time series. The Temperature, nitrite + nitrate, ammonium and phosphate within the lagoon showed significant differences (p<0.05 between the two periods. Salinity (p=0.408 was more homogeneous (no significantly different due to mixing processes. During the intense upwelling period, nutrients increased in and out of the lagoon due to the influence of Transitional Water and Subartic Water transported by the California Current. However, during the faint upwelling, from August to January, the Transition Water and Subtropical Surface Water were predominant. Magdalena Bay showed denitrification processes of throughout the year as it occurred in other semi-arid coastal lagoons. It also showed a net autotrophic metabolism during intense upwelling and heterotrophic metabolism during faint upwelling. Understanding nutrient flows and net metabolism through simple biogeochemical models can provide tools for better management of the coastal zone.

  14. Evaluation of simulated biospheric carbon dioxide fluxes and atmospheric concentrations using global in situ observations

    Science.gov (United States)

    Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.

    2016-12-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in

  15. Carbon dioxide and methane fluxes in grazed and undisturbed mountain peatlands in the Ecuadorian Andes

    Directory of Open Access Journals (Sweden)

    M.E. Sánchez

    2017-10-01

    Full Text Available Peatlands are widespread throughout the tropical Andean páramo. Despite the large carbon stocks in these ecosystems, carbon dioxide (CO2 and methane (CH4 flux data are lacking. In addition, cattle grazing is widespread in the páramo and could alter gas fluxes. Therefore, our objectives were to measure CO2 and CH4 fluxes with the static chamber technique in an undisturbed and in an intensively cattle grazed peatland in the mountains of Ecuador. We found that hummocks in the undisturbed site had higher net ecosystem exchange (NEE, gross primary production (GPP, ecosystem respiration (ER, and CH4 fluxes, compared to lawns. In contrast, microtopography at the grazed site did not predict CO2 fluxes, whereas vegetation cover was correlated for all three metrics (NEE, ER, and GPP. At low vegetation cover, NEE was positive (losing carbon. CH4 emissions in the undisturbed site were low (8.1 mg CH4 m-2 d-1. In contrast, CH4 emissions at the grazed site were much greater (132.3 mg CH4 m-2 d-1. This is probably attributable to trampling and nutrient inputs from cattle. In summary, the two peatlands differed greatly in CO2 and CH4 exchange rates, which could be due to the variation in climate and hydrology, or alternatively to intensive grazing by cattle.

  16. Assessing the net effect of long-term drainage on a permafrost ecosystem through year-round eddy-covariance flux measurements

    Science.gov (United States)

    Kittler, F.; Heimann, M.; Goeckede, M.; Zimov, S. A.; Zimov, N.

    2014-12-01

    Permafrost regions in the Northern high latitudes play a key role in the carbon budget of the earth system because of their massive carbon reservoir and the uncertain feedback processes with future climate change. For an improved understanding of mechanisms and drivers dominating permafrost carbon cycling, more observations in high-latitude regions are needed. Particularly the contribution of wintertime fluxes to the annual carbon budget and the impact of disturbances on biogeochemical and biogeophysical ecosystem properties, and the resulting modification of the carbon cycle, have rarely been studied to date. In summer of 2013, we established a new eddy-covariance station for continuous, year-round monitoring of carbon fluxes and their environmental drivers near Cherskii in Northeast Siberia (68.75°N, 161.33°E). Parts of the observation area have been disturbed by drainage since 2004, altering the soil water conditions in a way that is expected for degrading ice-rich permafrost under a warming climate. With two eddy-covariance towers running in parallel over the disturbed (drained) area and a reference area nearby, respectively, we can directly infer the disturbance effect on the carbon cycle budgets and the dominating biogeochemical mechanisms. This study presents findings based on 16 months of continuous eddy-covariance CO2 flux measurements (July 2013 - October 2014) for both observation areas. At both towers, we observed systematic, non-zero flux contributions outside the growing seasons that significantly altered annual CO2 budgets. A direct comparison of fluxes between the two disturbance regimes indicates a net reduction of the sink strength for CO2 in the disturbed area during the growing season, mostly caused by reduced CO2 uptake with low water levels in late summer. Moreover, shifts in soil temperatures and snow cover caused by reduced soil water levels result in lower net CO2 emissions during the winter at the drained area, which is partly

  17. Comparing simulated carbon budget of a Lei bamboo forest with flux tower data

    Science.gov (United States)

    Li, Xuehe; Jiang, Hong; Liu, Jinxun; Sun, Cheng; Wang, Ying; Jin, Jiaxin

    2014-01-01

    Bamboo forest ecosystem is the part of the forest ecosystem. The distribution area of bamboo forest is limited, but in somewhere, like south China, it has been cultivate for a long time with human management. As the climate change has been take great effect on forest carbon budget, many researchers pay attention to the carbon budget in bamboo forest. Moreover cultivative management had a significant impact on the bamboo forest carbon budget. In this study, we modified a terrestrial ecosystem model named Integrated Biosphere Simulator (IBIS) according the management of Lei bamboo forest. Some management, like fertilization, shoots harvesting and organic mulching in winter, had been incorporated into model. Then we had compared model results with the observation data from a Lei bamboo flux tower. The simulated and observed results had achieved good consistency. Our simulated Lei bamboo forest yearly net ecosystem productivity (NEP) was 0.41 kgC a-1 of carbon, which is very close to the observation data 0.45 kgC a-1 of carbon. And the monthly simulated results can take the change of carbon budget in each month, similar to the data we got from flux tower. It reflects that the modified IBIS model can characterize the growth of bamboo forest and perform the simulation well. And then two groups of simulations were set to evaluate effects of cultivative managements on Lei bamboo forests carbon budget. And results showed that both fertilization and organic mulching had taken positive effects on Lei bamboo forests carbon sequestration.

  18. Forest disturbance and North American carbon flux

    Science.gov (United States)

    S. N. Goward; J. G. Masek; W. Cohen; G. Moisen; G. J. Collatz; S. Healey; R. A. Houghton; C. Huang; R. Kennedy; B. Law; S. Powell; D. Turner; M. A. Wulder

    2008-01-01

    North America's forests are thought to be a significant sink for atmospheric carbon. Currently, the rate of sequestration by forests on the continent has been estimated at 0.23 petagrams of carbon per year, though the uncertainty about this estimate is nearly 50%. This offsets about 13% of the fossil fuel emissions from the continent [Pacala et al., 2007]. However...

  19. Multiple independent constraints help resolve net ecosystem carbon exchange under nutrient limitation

    Science.gov (United States)

    Thornton, P. E.; Metcalfe, D.; Oren, R.; Ricciuto, D. M.

    2014-12-01

    The magnitude, spatial distribution, and variability of land net ecosystem exchange of carbon (NEE) are important determinants of the trajectory of atmospheric carbon dioxide concentration. Independent observational constraints provide important clues regarding NEE and its component fluxes, with information available at multiple spatial scales: from cells, to leaves, to entire organisms and collections of organisms, to complex landscapes and up to continental and global scales. Experimental manipulations, ecosystem observations, and process modeling all suggest that the components of NEE (photosynthetic gains, and respiration and other losses) are controlled in part by the availability of mineral nutrients, and that nutrient limitation is a common condition in many biomes. Experimental and observational constraints at different spatial scales provide a complex and sometimes puzzling picture of the nature and degree of influence of nutrient availability on carbon cycle processes. Photosynthetic rates assessed at the cellular and leaf scales are often higher than the observed accumulation of carbon in plant and soil pools would suggest. We infer that a down-regulation process intervenes between carbon uptake and plant growth under conditions of nutrient limitation, and several down-regulation mechanisms have been hypothesized and tested. A recent evaluation of two alternative hypotheses for down-regulation in the light of whole-plant level flux estimates indicates that some plants take up and store extra carbon, releasing it to the environment again on short time scales. The mechanism of release, either as additional autotrophic respiration or as exudation belowground is unclear, but has important consequences for long-term ecosystem state and response to climate change signals. Global-scale constraints from atmospheric concentration and isotopic composition data help to resolve this question, ultimately focusing attention on land use fluxes as the most uncertain

  20. Chamber and Diffusive Based Carbon Flux Measurements in an Alaskan Arctic Ecosystem

    Science.gov (United States)

    Wilkman, E.; Oechel, W. C.; Zona, D.

    2013-12-01

    Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil flux work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil Flux System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 fluxes from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and fluxes of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, measuring soil gas concentration over a diffusive gradient in this way allows one to separate both net production and

  1. The fluvial flux of particulate organic matter from the UK: Quantifying in-stream losses and carbon sinks

    Science.gov (United States)

    Worrall, Fred; Burt, Tim P.; Howden, Nicholas J. K.

    2014-11-01

    This study considers records of fluvial suspended sediment concentration and its organic matter content from across the United Kingdom from 1974 to 2010. Suspended sediment, mineral concentration and river flow data were used to estimate the particulate organic matter (POM) concentration and flux. Median annual POM flux from the UK was 1596 ktonnes/yr. The POM concentration significantly declined after the European Commission's Urban Wastewater Directive was adopted in 1991 although the POM flux after 1992 was significantly higher. Estimates of POM flux were compared to a range of catchment properties to estimate the flux of particulate organic carbon (POC) and particulate organic nitrogen (PON) as they entered rivers and thus estimate the net catchment losses. The total fluvial flux of N from the soil source to rivers was 2209 ktonnes N/yr with 814 ktonnes N lost at the tidal limit, and so leaving 1395 ktonnes N/yr loss to atmosphere from across UK catchments - equivalent to an N2O flux from UK rivers of between 33 and 154 ktonnes (N2O)/yr. The total fluvial flux of carbon from the soil source to rivers for the UK was 5020 ktonnes C/yr; the flux at the tidal limit was 1508 ktonnes C/yr, equivalent to 6.5 tonnes C/km2/yr. Assuming that all the net catchment loss goes into the atmosphere, then the impact of rivers on the atmosphere is 3512 ktonnes C/yr, equivalent to 15.2 tonnes C/km2/yr. The loss of POM from the UK suggests that soil erosion in the UK prevents soil being a net sink of CO2 and is instead a small net source to the atmosphere.

  2. Net Fluorescein Flux Across Corneal Endothelium Strongly Suggests Fluid Transport is due to Electro-osmosis.

    Science.gov (United States)

    Sanchez, J M; Cacace, V; Kusnier, C F; Nelson, R; Rubashkin, A A; Iserovich, P; Fischbarg, J

    2016-08-01

    We have presented prior evidence suggesting that fluid transport results from electro-osmosis at the intercellular junctions of the corneal endothelium. Such phenomenon ought to drag other extracellular solutes. We have investigated this using fluorescein-Na2 as an extracellular marker. We measured unidirectional fluxes across layers of cultured human corneal endothelial (HCE) cells. SV-40-transformed HCE layers were grown to confluence on permeable membrane inserts. The medium was DMEM with high glucose and no phenol red. Fluorescein-labeled medium was placed either on the basolateral or the apical side of the inserts; the other side carried unlabeled medium. The inserts were held in a CO2 incubator for 1 h (at 37 °C), after which the entire volume of the unlabeled side was collected. After that, label was placed on the opposite side, and the corresponding paired sample was collected after another hour. Fluorescein counts were determined with a (Photon Technology) DeltaScan fluorometer (excitation 380 nm; emission 550 nm; 2 nm bwth). Samples were read for 60 s. The cells utilized are known to transport fluid from the basolateral to the apical side, just as they do in vivo in several species. We used 4 inserts for influx and efflux (total: 20 1-h periods). We found a net flux of fluorescein from the basolateral to the apical side. The flux ratio was 1.104 ± 0.056. That difference was statistically significant (p = 0.00006, t test, paired samples). The endothelium has a definite restriction at the junctions. Hence, an asymmetry in unidirectional fluxes cannot arise from osmosis, and can only point instead to paracellular solvent drag. We suggest, once more, that such drag is due to electro-osmotic coupling at the paracellular junctions.

  3. Effects of tropospheric ozone on methane and carbon dioxide fluxes from peatland mesocosms

    Science.gov (United States)

    Toet, Sylvia; Oliver, Vikki; Helgason, Thorunn; Peacock, Simon; Barnes, Jeremy; Ineson, Phil; Ashmore, Mike

    2010-05-01

    gross photosynthesis has been enhanced by elevated ozone up till now. The latter may partly be explained by higher net biomass Sphagnum production observed at elevated ozone. Leaf biomass and stomatal conductance of Schoenus nigricans were not affected by ozone. Additional soil and plant data will be presented that may help unravel the mechanisms underling the observed changes in greenhouse gas fluxes. Hence, the results imply that increases in global background ozone concentrations that are predicted by models in the northern hemisphere over the 21st century may lead to a negative feedback on methane emissions from peatland ecosystems. This study will be continued with methane emission and high-frequency carbon dioxide flux measurements and more detailed process studies, including stable isotope tracer studies, providing key information for long-term predictions of ozone impacts on carbon dynamics in peatland ecosystems.

  4. Predicting carbon dioxide and energy fluxes with empirical approaches in FLUXNET.

    Science.gov (United States)

    Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.; Ichii, Kazuhito; Camps-Valls, Gustau; Ráduly, Botond; Reichstein, Markus; Altaf Arain, M.; Cescatti, Alessandro; Kiely, Gerard; Merbold, Lutz; Serrano-Ortiz, Penelope; Sickert, Sven; Wolf, Sebastian; Papale, Dario

    2017-04-01

    Global spatio-temporal fields of land-atmosphere fluxes derived from data-driven models and eddy covariance measurements can complement simulations by process-based Land Surface Models. Furthermore, they are also increasingly used for analyzing variations of the global carbon and energy cycles. However, while a number of strategies for empirical models with eddy covariance flux data have been applied, a systematic intercomparison of these methods is missing so far. Here, we report the results of a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes, across different ecosystem types. That experiment was performed in the context of the FLUXCOM activities that aims at providing an array of improved data-driven flux products. Empirical models were derived by eleven machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). Fluxes data were taken by more than 200 eddy covariance study sites over the globe. Two complementary experimental setups have been carried out: (1) 8-day average fluxes based on remotely sensed data, and (2) daily mean fluxes based on meteorological data and mean seasonal cycle of remotely sensed variables. The pattern of predictions from different ML and experimental setups were highly consistent. Instead there were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange (R20.6), gross primary production (R2>0.7), latent heat (R2>0.7), sensible heat (R2>0.7), net radiation (R2>0.8). The ML methods predicted very well the across site variability and the mean seasonal cycle of the observed fluxes (R2> 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted (R2extreme climates or less represented by training data (e.g. the tropics). The evaluated large ensemble of ML based empirical models were used to derive two complementary sets of

  5. Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa

    DEFF Research Database (Denmark)

    Tagesson, Torbern; Fensholt, Rasmus; Cropley, Ford

    2015-01-01

    The main aim of this paper is to study land-atmosphere exchange of carbon dioxide (CO2) for semi-arid savanna ecosystems of the Sahel region and its response to climatic and environmental change. A subsidiary aim is to study and quantify the seasonal dynamics in light use efficiency (ε) being a key...... variable in scaling carbon fluxes from ground observations using earth observation data. The net ecosystem exchange of carbon dioxide (NEE) 2010-2013 was measured using the eddy covariance technique at a grazed semi-arid savanna site in Senegal, West Africa. Night-time NEE was not related to temperature......, confirming that care should be taken before applying temperature response curves for hot dry semi-arid regions when partitioning NEE into gross primary productivity (GPP) and ecosystem respiration (Reco). Partitioning was instead done using light response curves. The values of ε ranged between 0.02g carbon...

  6. SMAP L4 Global Daily 9 km Carbon Net Ecosystem Exchange V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The Level-4 (L4) carbon product (SPL4CMDL) provides global gridded daily estimates of net ecosystem carbon (CO2) exchange derived using a satellite data based...

  7. A Compact, Multi-view Net Flux Radiometer for Future Uranus and Neptune Probes

    Science.gov (United States)

    Aslam, S.; Amato, M.; Atkinson, D. H.; Hewagama, T.; Jennings, D. E.; Nixon, C. A.; Mousis, O.

    2017-01-01

    A Net Flux Radiometer (NFR) is presented that can be included in an atmospheric structure instrument suite for future probe missions to the icy giants Uranus and Neptune. The baseline design has two spectral channels i.e., a solar channel (0.4-to-3.5 m) and a thermal channel (4-to-300 m). The NFR is capable of viewing five distinct viewing angles during the descent. Non-imaging Winston cones with band-pass filters are used for each spectral channel and to define a 5 angular acceptance. Uncooled thermopile detectors are used in each spectral channel and are read out using a custom radiation hard application specific integrated circuit (ASIC). The baseline design can easily be changed to increase the number of detector channels from two to seven.

  8. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent.

    Science.gov (United States)

    Wu, Haiming; Lin, Li; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Liu, Hai

    2016-11-01

    In this study, a two-year experiment was carried out to investigate variation of carbon dioxide (CO2) flux from free water surface constructed wetlands (FWS CW) systems treating sewage treatment plant effluent, and treatment performance was also evaluated. The better 74.6-76.6% COD, 92.7-94.4% NH4(+)-N, 60.1-84.7% TN and 49.3-70.7% TP removal efficiencies were achieved in planted CW systems compared with unplanted systems. The planted CW was a net CO2 sink, while the unplanted CW was a net CO2 source in the entire study period. An obvious annual and seasonal variability of CO2 fluxes from different wetland systems was also presented with the average CO2 flux ranging from -592.83mgm(-2)h(-1) to 553.91mgm(-2)h(-1) during 2012-2013. In addition, the net exchange of CO2 between CW systems and the atmosphere was significantly affected by air temperature, and the presence of plants also had the significant effect on total CO2 emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of "emissions from land-use change"

    Directory of Open Access Journals (Sweden)

    T. Gasser

    2013-06-01

    Full Text Available We develop a theoretical framework and analysis of the net land-to-atmosphere CO2 flux in order to discuss possible definitions of "emissions from land-use change". The terrestrial biosphere is affected by two perturbations: the perturbation of the global carbon-climate-nitrogen system (CCN with elevated atmospheric CO2, climate change and nitrogen deposition; and the land-use change perturbation (LUC. Here, we progressively establish mathematical definitions of four generic components of the net land-to-atmosphere CO2 flux. The two first components are the fluxes that would be observed if only one perturbation occurred. The two other components are due to the coupling of the CCN and LUC perturbations, which shows the non-linear response of the terrestrial carbon cycle. Thanks to these four components, we introduce three possible definitions of "emissions from land-use change" that are indeed used in the scientific literature, often without clear distinctions, and we draw conclusions as for their absolute and relative behaviors. Thanks to the OSCAR v2 model, we provide quantitative estimates of the differences between the three definitions, and we find that comparing results from studies that do not use the same definition can lead to a bias of up to 20% between estimates of those emissions. After discussion of the limitations of the framework, we conclude on the three major points of this study that should help the community to reconcile modeling and observation of emissions from land-use change. The appendix mainly provides more detailed mathematical expressions of the four components of the net land-to-atmosphere CO2 flux.

  10. A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of "emissions from land-use change"

    Science.gov (United States)

    Gasser, T.; Ciais, P.

    2013-06-01

    We develop a theoretical framework and analysis of the net land-to-atmosphere CO2 flux in order to discuss possible definitions of "emissions from land-use change". The terrestrial biosphere is affected by two perturbations: the perturbation of the global carbon-climate-nitrogen system (CCN) with elevated atmospheric CO2, climate change and nitrogen deposition; and the land-use change perturbation (LUC). Here, we progressively establish mathematical definitions of four generic components of the net land-to-atmosphere CO2 flux. The two first components are the fluxes that would be observed if only one perturbation occurred. The two other components are due to the coupling of the CCN and LUC perturbations, which shows the non-linear response of the terrestrial carbon cycle. Thanks to these four components, we introduce three possible definitions of "emissions from land-use change" that are indeed used in the scientific literature, often without clear distinctions, and we draw conclusions as for their absolute and relative behaviors. Thanks to the OSCAR v2 model, we provide quantitative estimates of the differences between the three definitions, and we find that comparing results from studies that do not use the same definition can lead to a bias of up to 20% between estimates of those emissions. After discussion of the limitations of the framework, we conclude on the three major points of this study that should help the community to reconcile modeling and observation of emissions from land-use change. The appendix mainly provides more detailed mathematical expressions of the four components of the net land-to-atmosphere CO2 flux.

  11. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    Science.gov (United States)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  12. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    Science.gov (United States)

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp2 hybridized carbon sheets as well as sp3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m3 (STP)/(m2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Carbon Fluxes in Dissolved and Gaseous Forms for a Restored Peatland in British Columbia, Canada

    Science.gov (United States)

    D'Acunha, B.; Johnson, M. S.; Lee, S. C.; Christen, A.

    2016-12-01

    Peatlands are wetlands where gross primary production exceeds organic matter decomposition causing an accumulation of partially decomposed matter, also called peat. These ecosystems can accumulate more carbon than tropical rainforests. However, dissolved and gaseous fluxes of carbon (as dissolved organic carbon (DOC), CO2 and methane (CH4)) must also be considered to determine if these ecosystems are net sinks or sources of greenhouse gases (GHGs) to the atmosphere, which depends in part on the environmental conditions and the state of the ecosystem. We conducted research in Burns Bog, Delta, BC, Canada, a raised domed peat bog located in the Fraser River Delta and one of the largest raised peat bogs on the west coast of the Americas, but which has been heavily impacted by a range of human activities. Currently, ecological restoration efforts are underway by a large-scale ditch blocking program, with the aim to re-establish a high water table. This is approached in partnership with research on the ecosystem services that the bog provides, including its role in a regional GHG inventory. Here we present data on ecosystem-scale fluxes of CO2 and CH4 determined by eddy covariance (EC) on a floating tower platform, and complementary data on (i) evasion fluxes of CO2, CH4 and nitrous oxide (N2O) from the water surface to the atmosphere, and (ii) the flux and composition of dissolved organic carbon in water draining Burns Bog. Concentrations of dissolved CO2, CH4 and N2O were determined by headspace equilibration, and evasion rates from the water surface were quantified and are used to estimate the role of the hydrosphere in the ecosystem-scale measurements. Water samples collected from five saturated areas in the flux tower footprint were analyzed for DOC concentrations and composition. Results indicated that, even though the whole system is a net C sink, the water surface behaved as a source of CO2 and CH4, and a sink for N2O throughout the study period. Drainage waters

  14. Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China

    Science.gov (United States)

    Jingfeng Xiao; Ge Sun; Jiquan Chen; Hui Chen; Shiping Chen; Gang Dong

    2013-01-01

    The magnitude, spatial patterns, and controlling factors of the carbon and water fluxes of terrestrial ecosystems in China are not well understood due to the lack of ecosystem-level flux observations. We synthesized flux and micrometeorological observations from 22 eddy covariance flux sites across China,and examined the carbon fluxes, evapotranspiration (ET), and...

  15. Time dependences of atmospheric Carbon dioxide fluxes

    CERN Document Server

    DeSalvo, Riccardo

    2014-01-01

    Understanding the lifetime of CO2 in the atmosphere is critical for predictions regarding future climate changes. A simple mass conservation analysis presented here generates tight estimations for the atmosphere's retention time constant. The analysis uses a leaky integrator model that combines the observed deficit (only less than 40% of CO2 produced from combustion of fossil fuels is actually retained in the atmosphere, while more than 60% is continuously shed) with the exponential growth of fossil fuel burning. It reveals a maximum characteristic time of less than 23 year for the transfer of atmospheric CO2 to a segregation sink. This time constant is further constrained by the rapid disappearance of 14C after the ban of atmospheric atomic bomb tests, which provides a lower limit of 18 years for this transfer. The study also generates evaluations of other CO2 fluxes, exchange time constants and volumes exchanged. Analysis of large harmonic oscillations of atmospheric CO2 concentration, often neglected in th...

  16. The flux of carbonyl sulfide and carbon disulfide between the atmosphere and a spruce forest

    Directory of Open Access Journals (Sweden)

    X. Xu

    2002-01-01

    Full Text Available Turbulent fluxes of carbonyl sulfide (COS and carbon disulfide (CS2 were measured over a spruce forest in Central Germany using the relaxed eddy accumulation (REA technique. A REA sampler was developed and validated using simultaneous measurements of CO2 fluxes by REA and by eddy correlation. REA measurements were conducted during six campaigns covering spring, summer, and fall between 1997 and 1999. Both uptake and emission of COS and CS2 by the forest were observed, with deposition occurring mainly during the sunlit period and emission mainly during the dark period. On the average, however, the forest acts as a sink for both gases. The average fluxes for COS and CS2 are  -93 ± 11.7 pmol m-2 s-1 and  -18 ± 7.6 pmol m-2 s-1, respectively. The fluxes of both gases appear to be correlated to photosynthetically active radiation and to the CO2 and chem{H_2O} fluxes, supporting the idea that the air-vegetation exchange of both gases is controlled by stomata. An uptake ratio COS/CO2 of 10 ± 1.7 pmol m mol-1 has been derived from the regression line for the correlation between the COS and CO2 fluxes. This uptake ratio, if representative for the global terrestrial net primary production, would correspond to a sink of 2.3 ± 0.5 Tg COS yr-1.

  17. Attribution of Net Carbon Change by Disturbance Type across Forest Lands of the Continental United States

    Science.gov (United States)

    Hagen, S. C.; Harris, N.; Saatchi, S. S.; Domke, G. M.; Woodall, C. W.; Pearson, T.

    2016-12-01

    We generated spatially comprehensive maps of carbon stocks and net carbon changes from US forestlands between 2005 and 2010 and attributed the changes to natural and anthropogenic processes. The prototype system created to produce these maps is designed to assist with national GHG inventories and support decisions associated with land management. Here, we present the results and methodological framework of our analysis. In summary, combining estimates of net C losses and gains results in net carbon change of 269±49 Tg C yr-1 (sink) in the coterminous US forest land, with carbon loss from harvest acting as the predominent source process.

  18. Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes

    NARCIS (Netherlands)

    Luyssaert, S.; Janssens, I.A.; Sulkava, M.; Papale, D.; Dolman, A.J.; Reichstein, M.; Hollmén, J.; Martin, J.G.; Suni, T.; Vesala, T.; Loustau, D.; Law, B.E.; Moors, E.J.

    2007-01-01

    The growth rate of atmospheric CO2 exhibits large temporal variation that is largely determined by year-to-year fluctuations in land¿atmosphere CO2 fluxes. This land¿atmosphere CO2-flux is driven by large-scale biomass burning and variation in net ecosystem exchange (NEE). Between- and within years,

  19. Carbon dioxide, water vapour and energy fluxes over a semi ...

    Indian Academy of Sciences (India)

    42

    Key words: Eddy covariance; semi-evergreen forest; surface energy balance; Carbon dioxide. 25 flux; Indian .... following forest types and biomes (Champion and Seth 1968), namely Eastern wet alluvial. 86 grasslands ..... Turbulence characteristics of the site were analyzed (table 2 a-b)during whole period. 197 and four ...

  20. Soil carbon pools and fluxes in urban ecosystems

    Science.gov (United States)

    R. Pouyat; P. Groffman; I Yesilonis; L. Hernandez

    2002-01-01

    The transformation of landscapes from non-urban to urban land use has the potential to greatly modify soil carbon (C) pools and fluxes. For urban ecosystems, very little data exists to assess whether urbanization leads to an increase or decrease in soil C pools. We analyzed three data sets to assess the potential for urbanization to affect soil organic C. These...

  1. Recovery of ecosystem carbon fluxes and storage from herbivory

    NARCIS (Netherlands)

    Sjoegersten, Sofie; van der Wal, Rene; Loonen, Maarten J. J. E.; Woodin, Sarah J.

    2011-01-01

    The carbon (C) sink strength of arctic tundra is under pressure from increasing populations of arctic breeding geese. In this study we examined how CO(2) and CH(4) fluxes, plant biomass and soil C responded to the removal of vertebrate herbivores in a high arctic wet moss meadow that has been

  2. Carbon flux bias estimation employing Maximum Likelihood Ensemble Filter (MLEF)

    NARCIS (Netherlands)

    Zupanski, Dusanka; Denning, A. Scott; Uliasz, Marek; Zupanski, Milija; Schuh, Andrew E.; Rayner, Peter J.; Peters, Wouter; Corbin, Katherine D.

    2007-01-01

    We evaluate the capability of an ensemble based data assimilation approach, referred to as Maximum Likelihood Ensemble Filter (MLEF), to estimate biases in the CO2 photosynthesis and respiration fluxes. We employ an off-line Lagrangian Particle Dispersion Model (LPDM), which is driven by the carbon

  3. CO2-dependent carbon isotope fractionation in dinoflagellates relates to their inorganic carbon fluxes

    NARCIS (Netherlands)

    Hoins, Mirja; Eberlein, Tim; Van de Waal, Dedmer B.; Sluijs, Appy; Reichart, Gert-Jan; Rost, Björn

    Carbon isotope fractionation (εp) between the inorganic carbon source and organic matter has been proposed to be a function of pCO2. To understand the CO2-dependency of εp and species-specific differences therein, inorganic carbon fluxes in the four dinoflagellate species Alexandrium fundyense,

  4. Tropical forests are a net carbon source based on aboveground measurements of gain and loss

    Science.gov (United States)

    Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. A.

    2017-10-01

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year–1). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year–1 and gains of 436.5 ± 31.0 Tg C year–1. Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses.

  5. Marine Ecosystem Modeling Beyond the Box: Using GIS to Study Carbon Fluxes in a Coastal Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Wijnbladh, Erik [Swedish Nuclear Fuel and Waste Management Co., Figeholm (Sweden). Site Investigations Oskarshamn; Joensson, Bror Fredrik [Boston Univ., MA (United States). Dept. of Earth Sciences; Kumblad, Linda [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    2006-12-15

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phyto benthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  6. A data assimilation framework for constraining upscaled cropland carbon flux seasonality and biometry with MODIS

    Directory of Open Access Journals (Sweden)

    O. Sus

    2013-04-01

    Full Text Available Agroecosystem models are strongly dependent on information on land management patterns for regional applications. Land management practices play a major role in determining global yield variability, and add an anthropogenic signal to the observed seasonality of atmospheric CO2 concentrations. However, there is still little knowledge on spatial and temporal variability of important farmland activities such as crop sowing dates, and thus these remain rather crudely approximated within carbon cycle studies. In this study, we present a framework allowing for spatio-temporally resolved simulation of cropland carbon fluxes under observational constraints on land management and canopy greenness. We apply data assimilation methodology in order to explicitly account for information on sowing dates and model leaf area index. MODIS 250 m vegetation index data were assimilated both in batch-calibration for sowing date estimation and sequentially for improved model state estimation, using the ensemble Kalman filter (EnKF, into a crop carbon mass balance model (SPAc. In doing so, we are able to quantify the multiannual (2000–2006 regional carbon flux and biometry seasonality of maize–soybean crop rotations surrounding the Bondville Ameriflux eddy covariance site, averaged over 104 pixel locations within the wider area. (1 Validation at the Bondville site shows that growing season C cycling is simulated accurately with MODIS-derived sowing dates, and we expect that this framework allows for accurate simulations of C cycling at locations for which ground-truth data are not available. Thus, this framework enables modellers to simulate current (i.e. last 10 yr carbon cycling of major agricultural regions. Averaged over the 104 field patches analysed, relative spatial variability for biometry and net ecosystem exchange ranges from ∼7% to ∼18%. The annual sign of net biome productivity is not significantly different from carbon neutrality. (2 Moreover

  7. Inverse modeling of carbon monoxide fluxes

    Science.gov (United States)

    Hooghiemstra, Pim; Krol, Maarten

    2010-05-01

    An inverse modeling framework is used to estimate global emissions of carbon monoxide (CO). In particular, we intend to estimate the magnitude and variability of biomass burning CO emissions because the source strength of these emissions is highly uncertain, and the interannual variability is large. Observations from the National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) surface network are assimilated using a four-dimensional variational (4DVAR) data assimilation system with the transport model TM5 and its adjoint for 2 years. The biomass burning emissions in the model are not released in the lowest layer of the model, but a vertical distribution is applied and 40% of the emissions is released above 1000 m. The optimized emissions are validated with a separate set of surface station data and the new version 4 product of the satellite instrument MOPITT. A sensitivity test will be presented in which the biomass burning emissions are released in the surface layer.

  8. 10Be/9Be Evidence For Stable Quaternary Weathering Fluxes and Carbon Cycle Mass Balance

    Science.gov (United States)

    von Blanckenburg, F.; Bouchez, J.; Ibarra, D. E.; Maher, K.

    2016-12-01

    Removal of atmospheric CO2 by silicate weathering is thought to have balanced the inputs of carbon to within 2% of net CO2 degassing when averaged over the last 600 kyr [1]. Small imbalances, of 0.0-0.5%/Myr (relative to modern inputs) are also thought to characterize the Cenozoic carbon cycle [2]. However, due to the lack of proxies that directly quantify past weathering fluxes, our ability to test these hypotheses has been limited. Moreover, we do not know whether imbalances between CO2 outgassing and withdrawal have prevailed within Quaternary glacial-interglacial oscillations [1]. Relative changes in silicate weathering fluxes can be estimated from the ratio of cosmogenic beryllium-10, produced in the atmosphere, to the stable isotope beryllium-9, introduced into the oceans by the riverine silicate weathering flux. The ratio is preserved by the authigenic phase of well-dated marine sedimentary records [3]. We show that over multiple glacial-interglacial cycles, shifts in global silicate weathering inputs are not detectable beyond the ca. 10% resolution of the proxy, even in areas close to glacial erosion [4]. Hence it is likely that CO2 fluxes were also balanced within a given glacial cycle [1]. Well-dated records also indicate that over the last 2 Myr weathering inputs were constant on average. Because over >10kyr time scales the 10Be/9Be dates the weathering front advance rates, the ratio provides evidence that global weathering rates did not shift during the last 10 Myr [5]. Collectively, the 10Be/9Be supports stable weathering fluxes, and assuming relatively constant degassing rates, balanced CO2 fluxes over these multiple time scales. [1] Zeebe, R.E. and Caldeira, K., 2008. Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records. Nat. Geosc., 1. [2] Caves, J.K., et al.., 2016. Cenozoic carbon cycle imbalances and a variable weathering feedback. EPSL, 450. [3] von Blanckenburg, F. and Bouchez, J., 2014. River fluxes to

  9. Exploring the ecosystem engineering ability of Red Sea shallow benthic habitats using stocks and fluxes in carbon biogeochemistry

    KAUST Repository

    Baldry, Kimberlee

    2017-12-01

    The coastal ocean is a marginal region of the global ocean, but is home to metabolically intense ecosystems which increase the structural complexity of the benthos. These ecosystems have the ability to alter the carbon chemistry of surrounding waters through their metabolism, mainly through processes which directly release or consume carbon dioxide. In this way, coastal habitats can engineer their environment by acting as sources or sinks of carbon dioxide and altering their environmental chemistry from the regional norm. In most coastal water masses, it is difficult to resolve the ecosystem effect on coastal carbon biogeochemistry due to the mixing of multiple offshore end members, complex geography or the influence of variable freshwater inputs. The Red Sea provides a simple environment for the study of ecosystem processes at a coastal scale as it contains only one offshore end-member and negligible freshwater inputs due to the arid climate of adjacent land. This work explores the ability of three Red Sea benthic coastal habitats (coral reefs, seagrass meadows and mangrove forests) to create characteristic ecosystem end-members, which deviate from the biogeochemistry of offshore source waters. This is done by both calculating non-conservative deviations in carbonate stocks collected over each ecosystem, and by quantifying net carbonate fluxes (in seagrass meadows and mangrove forests only) using 24 hour incubations. Results illustrate that carbonate stocks over ecosystems conform to broad ecosystem trends, which are different to the offshore end-member, and are influenced by inherited properties from surrounding ecosystems. Carbonate fluxes also show ecosystem dependent trends and further illustrate the importance of sediment processes in influencing CaCO3 fluxes in blue carbon benthic habitats, which warrants further attention. These findings show the respective advantages of studying both carbonate stocks and fluxes of coastal benthic ecosystems in order to

  10. A Mechanistically Informed User-Friendly Model to Predict Greenhouse Gas (GHG) Fluxes and Carbon Storage from Coastal Wetlands

    Science.gov (United States)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2015-12-01

    We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.

  11. Carbon Monitoring System Carbon Flux for Fire L4 V1 (CMSFluxFire) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides the Carbon Flux for Fires. The NASA Carbon Monitoring System (CMS) is designed to make significant contributions in characterizing,...

  12. Carbon Monitoring System Flux for Posterior Fire Carbon L4 V1 (CMSFluxFirepost) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides the Carbon Flux for Fires. The NASA Carbon Monitoring System (CMS) is designed to make significant contributions in characterizing,...

  13. Seasonal carbon fluxes for an old-growth temperate forest inferred from carbonyl sulphide

    Science.gov (United States)

    Rastogi, Bharat; Jiang, Yueyang; Berkelhammer, Maxwell; Wharton, Sonia; Noone, David; Still, Christopher

    2017-04-01

    Characterizing and quantifying the processes that control terrestrial ecosystem exchanges of carbon and water are critical for understanding how forested ecosystems respond to a changing climate. A small but increasing number of studies has identified carbonyl sulfide (OCS) as a potential tracer of canopy photosynthesis and stomatal function. Here we present seasonal fluxes of OCS from a 60m tall old-growth temperate forest. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W) in 2014 and 2015. GPP (Gross Primary Production) is inferred from OCS fluxes and compared with estimates derived from measurements of NEE (Net Ecosystem Exchange) from eddy flux data as well as GPP predictions using a process based model. Our findings seek to resolve scientific questions regarding ecosystem carbon exchange from tall old growth forests, which have a complicated vertical leaf area structure, high above ground biomass and amount and aerial cover of epiphytic vegetation. Estimates of canopy conductance calculated using tower flux data are also combined with measurements of stable isotopologues of CO2 to infer emergent ecosystem properties such as canopy ci/ca and water use efficiency.

  14. Rerouting Carbon Flux To Enhance Photosynthetic Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Ducat, DC; Avelar-Rivas, JA; Way, JC; Silver, PA

    2012-03-23

    The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-expressing cyanobacteria export sucrose irreversibly to concentrations of >10 mM without culture toxicity. Moreover, sucrose-exporting cyanobacteria exhibit increased biomass production rates relative to wild-type strains, accompanied by enhanced photosystem II activity, carbon fixation, and chlorophyll content. The genetic modification of sucrose biosynthesis pathways to minimize competing glucose-or sucrose-consuming reactions can further improve sucrose production, allowing the export of sucrose at rates of up to 36.1 mg liter(-1) h illumination(-1). This rate of production exceeds that of previous reports of targeted, photobiological production from microbes. Engineered S. elongatus produces sucrose in sufficient quantities (up to similar to 80% of total biomass) such that it may be a viable alternative to sugar synthesis from terrestrial plants, including sugarcane.

  15. Carbon stocks and fluxes in managed peatlands in northern Borneo

    Science.gov (United States)

    Arn Teh, Yit; Manning, Frances; Cook, Sarah; Zin Zawawi, Norliyana; Sii, Longwin; Hill, Timothy; Page, Susan; Whelan, Mick; Evans, Chris; Gauci, Vincent; Chocholek, Melanie; Khoon Kho, Lip

    2017-04-01

    Oil palm is the largest agricultural crop in the tropics and accounts for 13 % of current tropical land area. Patterns of land-atmosphere exchange from oil palm ecosystems therefore have potentially important implications for regional and global C budgets due to the large scale of land conversion. This is particularly true for oil palm plantations on peat because of the large C stocks held by tropical peat soils that are potential sensitivity to human disturbance. Here we report preliminary findings on C stocks and fluxes from a long-term, multi-scale project in Sarawak, Malaysia that aims to quantify the impacts of oil palm conversion on C and greenhouse gas fluxes from oil palm recently established on peat. Land-atmosphere fluxes were determined using a combination of top-down and bottom-up methods (eddy covariance, canopy/stem and soil flux measurements, net primary productivity). Fluvial fluxes were determined by quantifying rates of dissolved and particulate organic C export. Ecosystem C dynamics were determined using the intensive C plot method, which quantified all major C stocks and fluxes, including plant and soil stocks, leaf litterfall, aboveground biomass production, root production, stem/canopy respiration, root-rhizosphere respiration, and heterotrophic soil respiration. Preliminary analysis indicates that vegetative aboveground biomass in these 7 year old plantations was 8.9-11.9 Mg C ha-1, or approximately one-quarter of adjacent secondary forest. Belowground biomass was 5.6-6.5 Mg C ha-1; on par with secondary forests. Soil C stocks in the 0-30 cm depth was 233.1-240.8 Mg C ha-1, or 32-36% greater than soil C stocks in secondary forests at the same depth (176.8 Mg C ha-1). Estimates of vegetative aboveground and belowground net primary productivity were 1.3-1.7 Mg C ha-1 yr-1 and 0.8-0.9 Mg C ha-1 yr-1, respectively. Fruit brunch production was approximately 67 Mg C ha-1over 7 yearsor 9.6 Mg C ha-1 yr-1. Total soil respiration rates were 18 Mg C ha

  16. Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Gaye, B.

    , coccolithophorid carbonate SBBT, EIOT, WAST and EAST in the northern Indian Ocean. id carbonate monsoon, both coccolithophorid and foraminifera carbonate fluxes increase. Foraminifera carbonate fluxes increase from around 25mgm C02 d C01 to over 100mgm C02 d C01... 26-Jun 5-Aug 14-Sep 24-Oct-90 6-Nov-97 16-Dec-97 25-Jan-98 Opal Wast 6 M Wast 13 D Wast 13 D Foraminifera carbonate id carbonate Foraminifera carbonate Coccolithophorid carbonate carbonate, coccolithophorid carbonate and diatom opal flux in ARTICLE...

  17. Carbon, water, and energy fluxes in a semiarid cold desert grassland during and following multiyear drought

    Science.gov (United States)

    Bowling, David R.; Bethers-Marchetti, S.; Lunch, C.K.; Grote, E.E.; Belnap, J.

    2010-01-01

    The net exchanges of carbon dioxide, water vapor, and energy were examined in a perennial Colorado Plateau grassland for 5 years. The study began within a multiyear drought and continued as the drought ended. The grassland is located near the northern boundary of the influence of the North American monsoon, a major climatic feature bringing summer rain. Following rain, evapotranspiration peaked above 8 mm d-1 but was usually much smaller (2-4 mm d-1). Net productivity of the grassland was low compared to other ecosystems, with peak hourly net CO2 uptake in the spring of 4 (mu or u)mol m-2 s-1 and springtime carbon gain in the range of 42 + or - 11 g C m-2 (based on fluxes) to 72 + or - 55 g C m-2 (based on carbon stocks; annual carbon gain was not quantified). Drought decreased gross ecosystem productivity (GEP) and total ecosystem respiration, with a much larger GEP decrease. Monsoon rains led to respiratory pulses, lasting a few days at most, and only rarely resulted in net CO2 gain, despite the fact that C4 grasses dominated plant cover. Minor CO2 uptake was observed in fall following rain. Spring CO2 uptake was regulated by deep soil moisture, which depended on precipitation in the prior fall and winter. The lack of CO2 uptake during the monsoon and the dependence of GEP on deep soil moisture are in contrast with arid grasslands of the warm deserts. Cold desert grasslands are most likely to be impacted by future changes in winter and not summer precipitation.

  18. Impact of a Regional Drought on Terrestrial Carbon Fluxes and Atmospheric Carbon: Results from a Coupled Carbon Cycle Model

    Science.gov (United States)

    Lee, Eunjee; Koster, Randal D.; Ott, Lesley E.; Weir, Brad; Mahanama, Sarith; Chang, Yehui; Zeng, Fan-Wei

    2017-01-01

    Understanding the underlying processes that control the carbon cycle is key to predicting future global change. Much of the uncertainty in the magnitude and variability of the atmospheric carbon dioxide (CO2) stems from uncertainty in terrestrial carbon fluxes, and the relative impacts of temperature and moisture variations on regional and global scales are poorly understood. Here we investigate the impact of a regional drought on terrestrial carbon fluxes and CO2 mixing ratios over North America using the NASA Goddard Earth Observing System (GEOS) Model. Results show a sequence of changes in carbon fluxes and atmospheric CO2, induced by the drought. The relative contributions of meteorological changes to the neighboring carbon dynamics are also presented. The coupled modeling approach allows a direct quantification of the impact of the regional drought on local and proximate carbon exchange at the land surface via the carbon-water feedback processes.

  19. Drivers of seasonality in Arctic carbon dioxide fluxes

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe

    and the potential for widespread feedbacks with global consequences. In this thesis, I present and discuss the findings of an investigation of comparable drivers of the seasonality in carbon dioxide (CO2) fluxes across heterogeneous Arctic tundra ecosystems. Due to the remoteness and the harsh climatic conditions...... that monitoring, modelling and manipulation experiments of drivers of greenhouse gas fluxes be intensified across the globe. The Arctic tundra represents an important biome in the context of global climate change. This is because of the highly sensitive nature of the Arctic tundra to climatic perturbations...

  20. Development of a Net Flux Radiometer for the Hera Saturn Probe Mission

    Science.gov (United States)

    Aslam, Shahid; Amato, Michael; Atkinson, David; Mousis, Olivier; Nixon, Conor; Simon, Amy A.; Hera Probe Mission Team

    2016-10-01

    In situ exploration of all the giant planets in the outer solar system is an imperative and a Saturn probe is the next compelling step beyond Galileo's in situ exploration of Jupiter, the remote investigation of its interior, gravity, and magnetic fields by the Juno mission, and the Cassini spacecraft's similar orbital reconnaissance of Saturn. One such proposed future mission is "HERA: an international atmospheric probe to unveil the depths of Saturn" a nominal configuration is a combined ESA/Class-M probe mission accompanied by a launch vehicle and carrier relay spacecraft provided by NASA. One of the instruments being considered for inclusion on the probe is a Net Flux Radiometer (NFR) to unravel the vertical structure and properties of Saturn's cloud and haze layers. A NFR concept is presented that can be included in an atmospheric structure instrument suite for the Hera mission. The current design has two spectral channels i.e., a solar channel (0.4-to-5 µm) and a thermal channel (4-to-50 µm). The NFR is capable of viewing five distinct viewing angles during the descent. Non-imaging Winston cones with window and filter combinations define the spectral channels with a 5° Field-Of View (FOV). Uncooled thermopile detectors are used in each spectral channel and are read out using a custom designed radiation-hard Application Specific Integrated Circuit (ASIC).

  1. Carbon dioxide fluxes over an ancient broadleaved deciduous woodland in southern England

    Directory of Open Access Journals (Sweden)

    M. V. Thomas

    2011-06-01

    Full Text Available We present results from a study of canopy-atmosphere fluxes of carbon dioxide from 2007 to 2009 above a site in Wytham Woods, an ancient temperate broadleaved deciduous forest in southern England. Gap-filled net ecosystem exchange (NEE data were partitioned into gross primary productivity (GPP and ecosystem respiration (Re and analysed on daily, monthly and annual timescales. Over the continuous 24 month study period annual GPP was estimated to be 21.1 Mg C ha−1 yr−1 and Re to be 19.8 Mg C ha−1 yr−1; net ecosystem productivity (NEP was 1.2 Mg C ha−1 yr−1. These estimates were compared with independent bottom-up estimates derived from net primary productivity (NPP and flux chamber measurements recorded at a plot within the flux footprint in 2008 (GPP = 26.5 ± 6.8 Mg C ha−1 yr−1, Re = 24.8 ± 6.8 Mg C ha−1 yr−1, biomass increment = ~1.7 Mg C ha−1 yr−1. Over the two years the difference in seasonal NEP was predominantly caused by changes in ecosystem respiration, whereas GPP remained similar for equivalent months in different years. Although solar radiation was the largest influence on daily values of CO2 fluxes (R2 = 0.53 for the summer months for a linear regression, variation in Re appeared to be driven by temperature. Our findings suggest that this ancient woodland site is currently a substantial sink for carbon, resulting from continued growth that is probably a legacy of past management practices abandoned over 40 years ago. Our GPP and Re values are generally higher than other broadleaved temperate deciduous woodlands and may represent the influence of the UK's maritime climate, or the particular species composition of this site. The carbon sink value of Wytham Woods

  2. Assessing net carbon sequestration on urban and community forests of northern New England, USA

    Science.gov (United States)

    Daolan Zheng; Mark J. Ducey; Linda S. Heath

    2013-01-01

    Urban and community forests play an important role in the overall carbon budget of the USA. Accurately quantifying carbon sequestration by these forests can provide insight for strategic planning to mitigate greenhouse gas effects on climate change. This study provides a new methodology to estimate net forest carbon sequestration (FCS) in urban and community lands of...

  3. Carbon dioxide fluxes from a degraded woodland in West Africa and their responses to main environmental factors.

    Science.gov (United States)

    Ago, Expedit Evariste; Serça, Dominique; Agbossou, Euloge Kossi; Galle, Sylvie; Aubinet, Marc

    2015-12-01

    In West Africa, natural ecosystems such as woodlands are the main source for energy, building poles and livestock fodder. They probably behave like net carbon sinks, but there are only few studies focusing on their carbon exchange with the atmosphere. Here, we have analyzed CO2 fluxes measured for 17 months by an eddy-covariance system over a degraded woodland in northern Benin. Specially, temporal evolution of the fluxes and their relationships with the main environmental factors were investigated between the seasons. This study shows a clear response of CO2 absorption to photosynthetic photon flux density (Qp), but it varies according to the seasons. After a significant and long dry period, the ecosystem respiration (R) has increased immediately to the first significant rains. No clear dependency of ecosystem respiration on temperature has been observed. The degraded woodlands are probably the "carbon neutral" at the annual scale. The net ecosystem exchange (NEE) was negative during wet season and positive during dry season, and its annual accumulation was equal to +29 ± 16 g C m-2. The ecosystem appears to be more efficient in the morning and during the wet season than in the afternoon and during the dry season. This study shows diurnal and seasonal contrasted variations in the CO2 fluxes in relation to the alternation between dry and wet seasons. The Nangatchori site is close to the equilibrium state according to its carbon exchanges with the atmosphere. The length of the observation period was too short to justify the hypothesis about the "carbon neutrality" of the degraded woodlands at the annual scale in West Africa. Besides, the annual net ecosystem exchange depends on the intensity of disturbances due to the site management system. Further research works are needed to define a woodland management policy that might keep these ecosystems as carbon sinks.

  4. Scaling-up of CO2 fluxes to assess carbon sequestration in rangelands of Central Asia

    Science.gov (United States)

    Bruce K. Wylie; Tagir G. Gilmanov; Douglas A. Johnson; Nicanor Z. Saliendra; Larry L. Tieszen; Ruth Anne F. Doyle; Emilio A. Laca

    2006-01-01

    Flux towers provide temporal quantification of local carbon dynamics at specific sites. The number and distribution of flux towers, however, are generally inadequate to quantify carbon fluxes across a landscape or ecoregion. Thus, scaling up of flux tower measurements through use of algorithms developed from remote sensing and GIS data is needed for spatial...

  5. Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model

    Energy Technology Data Exchange (ETDEWEB)

    Veroustraete, F.; Patyn, J. [Flemish Inst. for Technological Research, Boeretang (Belgium); Myneni, R.B.

    1996-10-01

    The evaluation and prediction of changes in carbon dynamics at the ecosystem level is a key issue in studies of global change. An operational concept for the determination of carbon fluxes for the Belgian territory is the goal of the presented study. The approach is based on the integration of remotely sensed data into ecosystem models in order to evaluate photosynthetic assimilation and net ecosystem exchange (NEE). Remote sensing can be developed as an operational tool to determine the fraction of absorbed photosynthetically active radiation (fPAR). A review of the methodological approach of mapping fPAR dynamics at the regional scale by means of NOAA11-AVHRR/2 data for the year 1990 is given. The processing sequence from raw radiance values to fPAR is presented. An interesting aspect of incorporating remote sensing derived fPAR in ecosystem models is the potential for modeling actual as opposed to potential vegetation. Further work should prove whether the concepts presented and the assumptions made in this study are valid.

  6. Determination of the carbon budget of a pasture: effect of system boundaries and flux uncertainties

    Science.gov (United States)

    Felber, Raphael; Bretscher, Daniel; Münger, Andreas; Neftel, Albrecht; Ammann, Christof

    2016-05-01

    Carbon (C) sequestration in the soil is considered as a potential important mechanism to mitigate greenhouse gas (GHG) emissions of the agricultural sector. It can be quantified by the net ecosystem carbon budget (NECB) describing the change of soil C as the sum of all relevant import and export fluxes. NECB was investigated here in detail for an intensively grazed dairy pasture in Switzerland. Two budget approaches with different system boundaries were applied: NECBtot for system boundaries including the grazing cows and NECBpast for system boundaries excluding the cows. CO2 and CH4 exchange induced by soil/vegetation processes as well as direct emissions by the animals were derived from eddy covariance measurements. Other C fluxes were either measured (milk yield, concentrate feeding) or derived based on animal performance data (intake, excreta). For the investigated year, both approaches resulted in a small near-neutral C budget: NECBtot -27 ± 62 and NECBpast 23 ± 76 g C m-2 yr-1. The considerable uncertainties, depending on the approach, were mainly due to errors in the CO2 exchange or in the animal-related fluxes. The comparison of the NECB results with the annual exchange of other GHG revealed CH4 emissions from the cows to be the major contributor in terms of CO2 equivalents, but with much lower uncertainty compared to NECB. Although only 1 year of data limit the representativeness of the carbon budget results, they demonstrate the important contribution of the non-CO2 fluxes depending on the chosen system boundaries and the effect of their propagated uncertainty in an exemplary way. The simultaneous application and comparison of both NECB approaches provides a useful consistency check for the carbon budget determination and can help to identify and eliminate systematic errors.

  7. [Simulation of water and carbon fluxes in harvard forest area based on data assimilation method].

    Science.gov (United States)

    Zhang, Ting-Long; Sun, Rui; Zhang, Rong-Hua; Zhang, Lei

    2013-10-01

    Model simulation and in situ observation are the two most important means in studying the water and carbon cycles of terrestrial ecosystems, but have their own advantages and shortcomings. To combine these two means would help to reflect the dynamic changes of ecosystem water and carbon fluxes more accurately. Data assimilation provides an effective way to integrate the model simulation and in situ observation. Based on the observation data from the Harvard Forest Environmental Monitoring Site (EMS), and by using ensemble Kalman Filter algorithm, this paper assimilated the field measured LAI and remote sensing LAI into the Biome-BGC model to simulate the water and carbon fluxes in Harvard forest area. As compared with the original model simulated without data assimilation, the improved Biome-BGC model with the assimilation of the field measured LAI in 1998, 1999, and 2006 increased the coefficient of determination R2 between model simulation and flux observation for the net ecosystem exchange (NEE) and evapotranspiration by 8.4% and 10.6%, decreased the sum of absolute error (SAE) and root mean square error (RMSE) of NEE by 17.7% and 21.2%, and decreased the SAE and RMSE of the evapotranspiration by 26. 8% and 28.3%, respectively. After assimilated the MODIS LAI products of 2000-2004 into the improved Biome-BGC model, the R2 between simulated and observed results of NEE and evapotranspiration was increased by 7.8% and 4.7%, the SAE and RMSE of NEE were decreased by 21.9% and 26.3%, and the SAE and RMSE of evapotranspiration were decreased by 24.5% and 25.5%, respectively. It was suggested that the simulation accuracy of ecosystem water and carbon fluxes could be effectively improved if the field measured LAI or remote sensing LAI was integrated into the model.

  8. Annual benthic metabolism and organic carbon fluxes in a semi-enclosed Mediterranean bay dominated by the macroalgae Caulerpa prolifera.

    Directory of Open Access Journals (Sweden)

    Sergio eRuiz-Halpern

    2014-12-01

    Full Text Available Coastal areas play an important role on carbon cycling. Elucidating the dynamics on the production, transport and fate of organic carbon is relevant to gain a better understanding of the role coastal areas play in the global carbon budget. Here, we assess the metabolic status and associated organic carbon fluxes of a semi-enclosed Mediterranean bay supporting a meadow of Caulerpa prolifera. We test whether the EDOC pool is a significant component of the organic carbon pool and associated fluxes in this ecosystem. The Bay of Portocolom was in net metabolic balance on a yearly basis, but heterotrophic during the summer months. Community respiration (CR was positively correlated to C. prolifera biomass, while net community production (NCP had a negative correlation. The benthic compartment represented, on average, 72.6 ± 5.2 % of CR and 86.8 ± 4.5 % of gross primary production (GPP. Dissolved organic carbon (DOC production peaked in summer and was always positive, with the incubations performed in the dark almost doubling the flux of those performed in the light. Exchangeable dissolved organic carbon (EDOC, however, oscillated between production and uptake, being completely recycled within the system and representing around 14% of the DOC flux. The pools of bottom and surface DOC were high for an oligotrophic environment, and were positively correlated to the pool of EDOC. Thus, despite being in metabolic balance, this ecosystem acted as a conduit for organic carbon (OC, as it is able to export OC to adjacent areas derived from allochtonous inputs during heterotrophic conditions. These inputs likely come from groundwater discharge, human activity in the watershed, delivered to the sediments through the high capacity of C. prolifera to remove particles from the water column, and from the air-water exchange of EDOC, demonstrating that these communities are a major contributor to the cycling of OC in coastal embayments.

  9. Net coal thickness in the Johnson-107 coal zone, South Carbon coalfield, Wyoming (sccat)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a representation of the Johnson-107 coal zone net coal thickness. The Johnson-107 coal zone is in the South Carbon coalfield in the...

  10. Why and when channelling can decrease pool size at constant net flux in a simple dynamic channel.

    Science.gov (United States)

    Mendes, P; Kell, D B; Westerhoff, H V

    1996-03-15

    Cornish-Bowden and Cárdenas (Cornish-Bowden, A. and Cárdenas M.L. (1993) Eur. J. Biochem. 213, 87-92) have suggested that simulation results peviously published by us (Mendes, P., Kell, D.B. and Westerhoff, H.V. (1992) Eur. J. Biochem. 204, 255-266) which had demonstrated that large reductions of intermediate pool sizes could be accompanied by increasing channel flux in a model metabolic pathway, were an artefact of changes in the pathway's overall flux of the order of 0.0075%, or of inappropriate alterations of enzyme activities. They also asserted to prove that the "channelling of an intermediate cannot affect its free concentration at constant net flux". We consider the co-response of the intermediate metabolite concentration ('pool') and the channel flux to changes in kinetic (or thermodynamic) parameters. Both by analytical proofs and by numerical examples we show that this co-response can be positive, negative or null, depending on the parameter change. In particular, we prove that there is always a number of ways of changing parameters such that the intermediate metabolite concentration decreases with increasing channel flux, whether the total flux varies or is constant. We also show that increased stability of the (dynamic) enzyme-intermediate-enzyme complex, as well as a single parameter change that similarly displays no cross-over effects, can lead to decreased intermediate metabolite concentration and increased channel flux at constant total flux. In general, a non-zero co-response of the intermediate metabolite concentration ('pool') and the channel flux to changes in kinetic (or other) parameters is the rule rather than the exception. More specifically: (i) The algebraic analysis ('general proof') given in Cornish-Bowden and Cárdenas (1993) contains the constraint that the elasticities of various steps to the modulation parameters which were used to vary the channel flux at constant net flux were unity. This is an unfortunate and unnecessary

  11. Evaluation of the DayCent model to predict carbon fluxes in French crop sites

    Science.gov (United States)

    Fujisaki, Kenji; Martin, Manuel P.; Zhang, Yao; Bernoux, Martial; Chapuis-Lardy, Lydie

    2017-04-01

    Croplands in temperate regions are an important component of the carbon balance and can act as a sink or a source of carbon, depending on pedoclimatic conditions and management practices. Therefore the evaluation of carbon fluxes in croplands by modelling approach is relevant in the context of global change. This study was part of the Comete-Global project funded by the multi-Partner call FACCE JPI. Carbon fluxes, net ecosystem exchange (NEE), leaf area index (LAI), biomass, and grain production were simulated at the site level in three French crop experiments from the CarboEurope project. Several crops were studied, like winter wheat, rapeseed, barley, maize, and sunflower. Daily NEE was measured with eddy covariance and could be partitioned between gross primary production (GPP) and total ecosystem respiration (TER). Measurements were compared to DayCent simulations, a process-based model predicting plant production and soil organic matter turnover at daily time step. We compared two versions of the model: the original one with a simplified plant module and a newer version that simulates LAI. Input data for modelling were soil properties, climate, and management practices. Simulations of grain yields and biomass production were acceptable when using optimized crop parameters. Simulation of NEE was also acceptable. GPP predictions were improved with the newer version of the model, eliminating temporal shifts that could be observed with the original model. TER was underestimated by the model. Predicted NEE was more sensitive to soil tillage and nitrogen applications than measured NEE. DayCent was therefore a relevant tool to predict carbon fluxes in French crops at the site level. The introduction of LAI in the model improved its performance.

  12. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands.

    Science.gov (United States)

    Cobb, Alexander R; Hoyt, Alison M; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su'ut, Nur Salihah; Harvey, Charles F

    2017-06-27

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage.

  13. Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa.

    Science.gov (United States)

    Quansah, Emmanuel; Mauder, Matthias; Balogun, Ahmed A; Amekudzi, Leonard K; Hingerl, Luitpold; Bliefernicht, Jan; Kunstmann, Harald

    2015-12-01

    The terrestrial land surface in West Africa is made up of several types of savanna ecosystems differing in land use changes which modulate gas exchanges between their vegetation and the overlying atmosphere. This study compares diurnal and seasonal estimates of CO2 fluxes from three contrasting ecosystems, a grassland, a mixture of fallow and cropland, and nature reserve in the Sudanian Savanna and relate them to water availability and land use characteristics. Over the study period, and for the three study sites, low soil moisture availability, high vapour pressure deficit and low ecosystem respiration were prevalent during the dry season (November to March), but the contrary occurred during the rainy season (May to October). Carbon uptake predominantly took place in the rainy season, while net carbon efflux occurred in the dry season as well as the dry to wet and wet to dry transition periods (AM and ND) respectively. Carbon uptake decreased in the order of the nature reserve, a mixture of fallow and cropland, and grassland. Only the nature reserve ecosystem at the Nazinga Park served as a net sink of CO2, mostly by virtue of a several times larger carbon uptake and ecosystem water use efficiency during the rainy season than at the other sites. These differences were influenced by albedo, LAI, EWUE, PPFD and climatology during the period of study. These results suggest that land use characteristics affect plant physiological processes that lead to flux exchanges over the Sudanian Savanna ecosystems. It affects the diurnal, seasonal and annual changes in NEE and its composite signals, GPP and RE. GPP and NEE were generally related as NEE scaled with photosynthesis with higher CO2 assimilation leading to higher GPP. However, CO2 effluxes over the study period suggest that besides biomass regrowth, other processes, most likely from the soil might have also contributed to the enhancement of ecosystem respiration.

  14. Carbon Monitoring System Flux for Ocean Carbon L4 V1 (CMSFluxOcean) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides the Carbon Flux for Ocean Carbon. The NASA Carbon Monitoring System (CMS) is designed to make significant contributions in characterizing,...

  15. Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: patterns and causes

    Science.gov (United States)

    Song, Bing; Sun, Jian; Zhou, Qingping; Zong, Ning; Li, Linghao; Niu, Shuli

    2017-09-01

    Increases in nitrogen (N) deposition can greatly stimulate ecosystem net carbon (C) sequestration through positive N-induced effects on plant productivity. However, how net ecosystem CO2 exchange (NEE) and its components respond to different N addition rates remains unclear. Using an N addition gradient experiment (six levels: 0, 2, 4, 8, 16, 32 gN m-2 yr-1) in an alpine meadow on the Qinghai-Tibetan Plateau, we explored the responses of different ecosystem C fluxes to an N addition gradient and revealed mechanisms underlying the dynamic responses. Results showed that NEE, ecosystem respiration (ER), and gross ecosystem production (GEP) all increased linearly with N addition rates in the first year of treatment but shifted to N saturation responses in the second year with the highest NEE (-7.77 ± 0.48 µmol m-2 s-1) occurring under an N addition rate of 8 gN m-2 yr-1. The saturation responses of NEE and GEP were caused by N-induced accumulation of standing litter, which limited light availability for plant growth under high N addition. The saturation response of ER was mainly due to an N-induced saturation response of aboveground plant respiration and decreasing soil microbial respiration along the N addition gradient, while decreases in soil microbial respiration under high N addition were caused by N-induced reductions in soil pH. We also found that various components of ER, including aboveground plant respiration, soil respiration, root respiration, and microbial respiration, responded differentially to the N addition gradient. These results reveal temporal dynamics of N impacts and the rapid shift in ecosystem C fluxes from N limitation to N saturation. Our findings bring evidence of short-term initial shifts in responses of ecosystem C fluxes to increases in N deposition, which should be considered when predicting long-term changes in ecosystem net C sequestration.

  16. Influence of the extreme weather events on carbon fluxes in southern European taiga

    Science.gov (United States)

    Kurbatova, J.; Shalukhina, N.; Tatarinov, F.; Varlagin, A.

    2009-04-01

    The question on an arrangement, scales and the factors determining ground sink of CO2 in a forest zone of Russia is opened and discussed. To estimate of global and regional fluxes of carbon for the different periods of time various methods and modeling calculations are used. For an experimental estimation of carbon fluxes for ecosystem level of averaging the eddy covariance method now is widely used. It allows continuously, all-the-year-round, with the high time sanction to register net ecosystem exchange (NEE), fluxes of a water and heat between forest and an atmosphere. Registration of meteorological parameters of an atmosphere is simultaneously carried out. It allows to find the dependence of deposition or issue of carbon on environmental factors. In territory of Russia the observation of carbon fluxes were begun within the framework of the international projects of EU in 1998. Now there is the eddy covariance complex in a southern European taiga, in territory Central Forest Reserve. The measurements are carried out in uneven-age spruce forest (Sphagnum-Vaccinium myrtillus ). The choice of object of supervision was caused by a wide circulation of similar types of forest in the European taiga. In general the 10-years period of measurements has captured a wide range of changes of climatic conditions. The years with extreme - droughty and damp vegetative seasons and also years approached to average climatic norms for this region were during the observations. The high daily, seasonal and annual variability of deposition and issue of carbon is characteristic for spruce forests. The results of measurements of NEE have shown that southern taiga can function during the vegetative period both as a source, and as a sink of carbon for an atmosphere. The cumulative fluxes of NEE for the period April - October depend first of all on temperature and precipitation in the spring period with temperature in a range 5-10C and from duration of this period, and for the period of

  17. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, Joy S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  18. Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs.

    Science.gov (United States)

    Johnson, David; Vachon, Jérémie; Britton, Andrea J; Helliwell, Rachel C

    2011-05-01

    • Climate change is predicted to increase the frequency of drought events in alpine ecosystems with the potential to affect carbon turnover. • We removed intact turfs from a Nardus stricta alpine snowbed community and subjected half of them to two drought events of 8 d duration under controlled conditions. Leachate dissolved organic carbon (DOC) was measured throughout the 6 wk study period, and a (13)CO(2) pulse enabled quantification of fluxes of recent assimilate into shoots, roots and leachate and ecosystem CO(2) exchange. • The amount of DOC in leachate from droughted cores was 62% less than in controls. Drought reduced graminoid biomass, increased forb biomass, had no effect on bryophytes, and led to an overall decrease in total above-ground biomass compared with controls. Net CO(2) exchange, gross photosynthesis and the amount of (13)CO(2) fixed were all significantly less in droughted turfs. These turfs also retained proportionally more (13)C in shoots, allocated less (13)C to roots, and the amount of dissolved organic (13)C recovered in leachate was 57% less than in controls. • Our data show that drought events can have significant impacts on ecosystem carbon fluxes, and that the principal mechanism behind this is probably changes in the relative abundance of forbs and grasses. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  19. ISLSCP II Global River Fluxes of Carbon and Sediments to the Oceans

    Data.gov (United States)

    National Aeronautics and Space Administration — The River Carbon Flux data set represents estimates for the riverine export of carbon and of sediments. This data set includes the amounts of carbon and of sediments...

  20. ISLSCP II Global River Fluxes of Carbon and Sediments to the Oceans

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The River Carbon Flux data set represents estimates for the riverine export of carbon and of sediments. This data set includes the amounts of carbon and of...

  1. Leaf day respiration: low CO2 flux but high significance for metabolism and carbon balance.

    Science.gov (United States)

    Tcherkez, Guillaume; Gauthier, Paul; Buckley, Thomas N; Busch, Florian A; Barbour, Margaret M; Bruhn, Dan; Heskel, Mary A; Gong, Xiao Ying; Crous, Kristine Y; Griffin, Kevin; Way, Danielle; Turnbull, Matthew; Adams, Mark A; Atkin, Owen K; Farquhar, Graham D; Cornic, Gabriel

    2017-12-01

    Contents 986 I. 987 II. 987 III. 988 IV. 991 V. 992 VI. 995 VII. 997 VIII. 998 References 998 SUMMARY: It has been 75 yr since leaf respiratory metabolism in the light (day respiration) was identified as a low-flux metabolic pathway that accompanies photosynthesis. In principle, it provides carbon backbones for nitrogen assimilation and evolves CO2 and thus impacts on plant carbon and nitrogen balances. However, for a long time, uncertainties have remained as to whether techniques used to measure day respiratory efflux were valid and whether day respiration responded to environmental gaseous conditions. In the past few years, significant advances have been made using carbon isotopes, 'omics' analyses and surveys of respiration rates in mesocosms or ecosystems. There is substantial evidence that day respiration should be viewed as a highly dynamic metabolic pathway that interacts with photosynthesis and photorespiration and responds to atmospheric CO2 mole fraction. The view of leaf day respiration as a constant and/or negligible parameter of net carbon exchange is now outdated and it should now be regarded as a central actor of plant carbon-use efficiency. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Partitioning the net ecosystem carbon balance of a semiarid steppe into biological and geological components

    NARCIS (Netherlands)

    Rey, A.; Belelli Marchesini, L.; Etiope, G.; Papale, D.; Canfora, E.; Valentini, R.; Pegoraro, E.

    2014-01-01

    Recent studies have highlighted the need to consider geological carbon sources when estimating the net ecosystem carbon balance (NECB) of terrestrial ecosystems located in areas potentially affected by geofluid circulation. We propose a new methodology using physical parameters of the atmospheric

  3. Synthesizing Global and Local Datasets to Estimate Jurisdictional Forest Carbon Fluxes in Berau, Indonesia.

    Science.gov (United States)

    Griscom, Bronson W; Ellis, Peter W; Baccini, Alessandro; Marthinus, Delon; Evans, Jeffrey S; Ruslandi

    2016-01-01

    Forest conservation efforts are increasingly being implemented at the scale of sub-national jurisdictions in order to mitigate global climate change and provide other ecosystem services. We see an urgent need for robust estimates of historic forest carbon emissions at this scale, as the basis for credible measures of climate and other benefits achieved. Despite the arrival of a new generation of global datasets on forest area change and biomass, confusion remains about how to produce credible jurisdictional estimates of forest emissions. We demonstrate a method for estimating the relevant historic forest carbon fluxes within the Regency of Berau in eastern Borneo, Indonesia. Our method integrates best available global and local datasets, and includes a comprehensive analysis of uncertainty at the regency scale. We find that Berau generated 8.91 ± 1.99 million tonnes of net CO2 emissions per year during 2000-2010. Berau is an early frontier landscape where gross emissions are 12 times higher than gross sequestration. Yet most (85%) of Berau's original forests are still standing. The majority of net emissions were due to conversion of native forests to unspecified agriculture (43% of total), oil palm (28%), and fiber plantations (9%). Most of the remainder was due to legal commercial selective logging (17%). Our overall uncertainty estimate offers an independent basis for assessing three other estimates for Berau. Two other estimates were above the upper end of our uncertainty range. We emphasize the importance of including an uncertainty range for all parameters of the emissions equation to generate a comprehensive uncertainty estimate-which has not been done before. We believe comprehensive estimates of carbon flux uncertainty are increasingly important as national and international institutions are challenged with comparing alternative estimates and identifying a credible range of historic emissions values.

  4. A more accurate formula for calculating the net longwave radiation flux in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Tomasz Zapadka

    2007-12-01

    Full Text Available A new, more accurate formula for calculating the net longwave radiation fluxLW ↑↓ has been devised for the Baltic Sea region. To this end,the following sets of simultaneously measured data regarding the longwave radiation of the sea andthe atmosphere were used: the temperatures of the sea surface and its contiguous air layer,the water vapour pressure in the air above the water, and the cloud cover.These data were gathered during numerous research cruises in the Baltic in 2000-03 and were supplemented by satellitedata from Karlsson (2001 characterising the cloud cover over the whole Baltic. The formulaestablished for LW ↑↓ can be written in the form of three alternative equations,differing with respect to their cloud cover functions:LW ↑↓ =0.985σT4s - σT4a (0.685+0.00452e{(1 + d n2 average for all cloud types (Z1(1 + din2 separately for low-, mid- and high-level clouds (Z2(1 + dinϒi separately for low-, mid- and high-level clouds (Z3where σ - Stefan-Boltzmann constant; Ts - sea surface temperature [K]; Ta - air temperature [K]; e - water vapour pressure [mbar]; n - total cloud amount [0 - 1]; d - mean empirical dimensionless coefficient, determined for all cloud types or for particular months (see Tables 3 and 4; da - empirical coefficient determined for the quadratic function: d1 = 0.39 for low-level clouds, d2 = 0.305 for mid-level clouds, d3 = 0.22 for high-level clouds; di - empirical coefficient determined as follows: d1 = 0.39 for low-level clouds when γ1 = 1.3, d2 = 0.29 for mid-level clouds when γ2 = 1.1; d3 = 0.17 for high-level clouds when γ3 = 0.96. The improved accuracy of this formula (RMSE ≅ 10 W m-2 is due chiefly to the establishment of functions and coefficients characterising the cloud cover over the Baltic in particular months of the year and their incorporation into it.

  5. An experimental investigation of flows from zero-net mass-flux actuators

    Science.gov (United States)

    Holman, Ryan Jay

    Zero-net mass-flux (ZNMF) devices consist of an oscillating driver, a cavity, and a small opening such as a rectangular slot or a circular orifice. The driver produces a series of vortex pairs (or rings) at the slot/orifice which add momentum and circulation to the flow. ZNMF devices are useful tools for flow control applications such as heat transfer, mixing enhancement, and boundary layer separation control. To date much research has been done to qualify and quantify the effects of ZNMF devices in many applications, both experimental and computational. However, a number of issues still remain. First, there is no universally accepted dimensionless parameter space, which makes device characterization and comparison between studies difficult. Second, most experimental studies do not sufficiently quantify the nearfield behavior, which hinders the fundamental understanding of the underlying flow physics. Of particular interest are the regimes of jet formation, and transition from laminar to turbulent-like flow, which are not well understood. Finally, the accuracy of experimental measurements are seldom reported in the literature. This study unifies the experimental and numerical data presented in the literature for ZNMF flowfields exhausting into a quiescent medium. A quantitative experimental database is also generated to completely characterize the topological regions of ZNMF flows over a useful range of the dimensionless parameter space. The database is derived chiefly from two-dimensional velocity field measurements using particle image velocimetry and laser Doppler anemometry. Vorticity, circulation, Reynolds stress, and turbulent kinetic energy is acquired to characterize the resulting flowfield. Significant insight into the behavior of voice coil driven ZNMF devices is uncovered. Design improvements are made by implementing a sinusoidal controller for piston motion and eliminating the need for a sealing membrane in the cavity. It is shown that the proper

  6. A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of "emissions from land-use change"

    OpenAIRE

    T. Gasser; Ciais, P

    2013-01-01

    We develop a theoretical framework and analysis of the net land-to-atmosphere CO2 flux in order to discuss possible definitions of "emissions from land-use change". The terrestrial biosphere is affected by two perturbations: the perturbation of the global carbon-climate-nitrogen system (CCN) with elevated atmospheric CO2, climate change and nitrogen deposition; and the land-use change perturbation (LUC). Here, we progressively establish mathematical definitions of four gener...

  7. A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of "emissions from land-use change"

    OpenAIRE

    T. Gasser; Ciais, P

    2013-01-01

    We develop a theoretical framework and analysis of the net land-to-atmosphere CO2 flux in order to discuss possible definitions of "emissions from land-use change". The terrestrial biosphere is affected by two perturbations: the perturbation of the global Carbon-Climate-Nitrogen system (CCN) with elevated atmospheric CO2, climate change and nitrogen deposition; and the Land-Use Change perturbation (LUC). Here, we progressively establish mathematical definitions of four generic components of t...

  8. Integrative measurements focusing on carbon, energy and water fluxes at the forest site 'Hohes Holz' and the grassland 'Grosses Bruch'

    Science.gov (United States)

    Rebmann, Corinna; Claudia, Schütze; Sara, Marañón-Jiménez; Sebastian, Gimper; Matthias, Zink; Luis, Samaniego; Matthias, Cuntz

    2017-04-01

    The reduction of greenhouse gas (GHG) emissions and the optimization of Carbon sequestration by ecosystems have become priority objectives for current climate change policies. In this context, the long term research project TERENO and the research infrastructure ICOS have been established. The eddy covariance technique allows obtaining an integrative estimate of the ecosystem carbon, water and energy balances at the ecosystem level. The relative contributions of evaporation and transpiration as well as carbon sources and sinks need, however, to be determined separately for thorough process understanding. Two different ecosystem observatories have recently been established in the Magdeburger Börde: a deciduous forest (Hohes Holz) and a meadow (Grosses Bruch). A comprehensive system of instrumentation provides continuous data for the evaluation of energy, water and carbon fluxes at the 1500 ha large forest site, including a 50 m high eddy covariance (EC) tower for micrometeorological investigations in different heights above and below canopy, throughfall and stem flow sensors, a soil moisture and temperature sensor network, soil respiration chambers, sap flow sensors, and ancillary analysis of trees such a dendrometer and leaf area index measurements. Eddy covariance measurements allow the assessment of the carbon (Net Ecosystem Exchange, NEE) and water balance at the ecosystem scale. To better understand the contributing processes we partition water und carbon fluxes of the forest ecosystem by different methods. Tower-based data of NEE are therefore complemented and validated by continuous automatic and manual campaign measurements of soil effluxes and their drivers. Water fluxes into the ecosystem are partitioned by stem flow and throughfall measurements and a distributed soil moisture network. Gap fraction in the forest has a strong influence on the distribution on the water fluxes and is therefore determined on a regular basis. Since the establishment of the

  9. Multi-property modeling of ocean basin carbon fluxes

    Science.gov (United States)

    Volk, Tyler

    1988-01-01

    The objectives of this project were to elucidate the causal mechanisms in some of the most important features of the global ocean/atomsphere carbon system. These included the interaction of physical and biological processes in the seasonal cycle of surface water pCo2, and links between productivity, surface chlorophyll, and the carbon cycle that would aid global modeling efforts. In addition, several other areas of critical scientific interest involving links between the marine biosphere and the global carbon cycle were successfully pursued; specifically, a possible relation between phytoplankton emitted DMS and climate, and a relation between the location of calcium carbonate burial in the ocean and metamorphic source fluxes of CO2 to the atmosphere. Six published papers covering the following topics are summarized: (1) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary; (2) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial; (3) Controls on CO2 sources and sinks in the earthscale surface ocean; (4) pre-anthropogenic, earthscale patterns of delta pCO2 between ocean and atmosphere; (5) Effect on atmospheric CO2 from seasonal variations in the high latitude ocean; and (6) Limitations or relating ocean surface chlorophyll to productivity.

  10. A comparison of different inverse carbon flux estimation approaches for application on a regional domain

    Science.gov (United States)

    Tolk, L. F.; Dolman, A. J.; Meesters, A. G. C. A.; Peters, W.

    2011-10-01

    We have implemented six different inverse carbon flux estimation methods in a regional carbon dioxide (CO2) flux modeling system for the Netherlands. The system consists of the Regional Atmospheric Mesoscale Modeling System (RAMS) coupled to a simple carbon flux scheme which is run in a coupled fashion on relatively high resolution (10 km). Using an Ensemble Kalman filter approach we try to estimate spatiotemporal carbon exchange patterns from atmospheric CO2 mole fractions over the Netherlands for a two week period in spring 2008. The focus of this work is the different strategies that can be employed to turn first-guess fluxes into optimal ones, which is known as a fundamental design choice that can affect the outcome of an inversion significantly. Different state-of-the-art approaches with respect to the estimation of net ecosystem exchange (NEE) are compared quantitatively: (1) where NEE is scaled by one linear multiplication factor per land-use type, (2) where the same is done for photosynthesis (GPP) and respiration (R) separately with varying assumptions for the correlation structure, (3) where we solve for those same multiplication factors but now for each grid box, and (4) where we optimize physical parameters of the underlying biosphere model for each land-use type. The pattern to be retrieved in this pseudo-data experiment is different in nearly all aspects from the first-guess fluxes, including the structure of the underlying flux model, reflecting the difference between the modeled fluxes and the fluxes in the real world. This makes our study a stringent test of the performance of these methods, which are currently widely used in carbon cycle inverse studies. Our results show that all methods struggle to retrieve the spatiotemporal NEE distribution, and none of them succeeds in finding accurate domain averaged NEE with correct spatial and temporal behavior. The main cause is the difference between the structures of the first-guess and true CO2 flux

  11. The influence of cockchafer larvae on net soil methane fluxes under different vegetation types - a mesocosm study

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Chesmore, David; Müller, Christoph

    2017-04-01

    The influence of land-use associated pest insects on net soil CH4 fluxes has received little attention thus far, although e.g. soil-dwelling Scarabaeidae larvae are qualitatively known to emit CH4. The project "CH4ScarabDetect" aims to provide the first quantitative estimate of the importance of soil-dwelling larvae of two important European agricultural and forest pest insect species - the common cockchafer (Melolontha melolontha) and the forest cockchafer (M. hippocastani) - for net soil CH4 fluxes. Here we present a mesocosm study within "CH4ScarabDetect" which tests the influence of different abundances of common cockchafer larvae on net soil CH4 fluxes under different vegetation types. In August 2016, 27 PVC boxes with a base area of 50 cm x 50 cm and a height of 40 cm were buried in planting beds previously used for cultivating vegetables. The bottom of each box was filled with a 10 cm thick layer of loam which was then covered with a 25 cm thick layer of loamy sand. The soil was hand-sieved prior to filling the boxes to remove any macrofauna. The mesocosms were planted with either turf, carrots or a combination of both. Of the resulting nine replicates per vegetation type, six were infested with one cockchafer larvae each in November 2016. In three of these infested mesocosms, the larvae abundance will be further increased to three in May 2017. This mesocosm study will continue until October 2017 during which measurements of net soil CH4 fluxes will be conducted with the chamber flux method twice per month. For the in situ separation of gross CH4 production and gross CH4 oxidation, the chamber method will be combined with a 13CH4 isotope pool dilution technique. Methane concentrations and their isotopic signatures in the collected gas samples will be analysed with a state-of-the-art CRDS analyzer (cavity ring-down spectroscopy, G2201-i) equipped with the Small Sample Isotope Module 2 - A0314 (Picarro Inc., USA). Different combinations of larvae abundance and

  12. Correction to ``Forest disturbance and North American carbon flux''

    Science.gov (United States)

    Goward, Samuel N.; Masek, Jeffrey G.; Cohen, Warren; Moisen, Gretchen; Collatz, G. James; Healey, Sean; Houghton, R. A.; Huang, Chengquan; Kennedy, Robert; Law, Beverly; Powell, Scott; Turner, David; Wulder, Michael A.

    2008-07-01

    In the article ``Forest disturbance and North American carbon flux,'' published in the 11 March 2008 issue of Eos (89(11)), several author affiliations were incorrect. The corrected affiliations are as follows: Sean Healey, Rocky Mountain Research Station, U.S. Forest Service, Ogden, Utah; R. A. Houghton, Woods Hole Research Center, Woods Hole, Mass; and David Turner, Department of Forest Science, Oregon State University, Corvallis. The authors would also like to acknowledge the NASA Terrestrial Ecosystems and Applied Sciences Programs for providing support for the NAFD and LEDAPS projects discussed in the article.

  13. Molecular dynamics simulations of amorphous hydrogenated carbon under high hydrogen fluxes

    NARCIS (Netherlands)

    de Rooij, E. D.; von Toussaint, U.; Kleyn, A. W.; W. J. Goedheer,

    2009-01-01

    We study the flux dependence of the carbon erosion yield and the hydrogen enrichment of the surface in the high flux regime at 10(28) ions per m(2) s and higher by using molecular dynamics (MD). We simulate an amorphous hydrogenated carbon sample exposed to high flux hydrogen bombardment with a

  14. A Decade of Carbon Flux Measurements with Annual and Perennial Crop Rotations on the Canadian Prairies

    Science.gov (United States)

    Amiro, B. D.; Tenuta, M.; Gao, X.; Gervais, M.

    2016-12-01

    The Fluxnet database has over 100 cropland sites, some of which have long-term (over a decade) measurements. Carbon neutrality is one goal of sustainable agriculture, although measurements over many annual cropping systems have indicated that soil carbon is often lost. Croplands are complex systems because the CO2 exchange depends on the type of crop, soil, weather, and management decisions such as planting date, nutrient fertilization and pest management strategy. Crop rotations are often used to decrease pest pressure, and can range from a simple 2-crop system, to have 4 or more crops in series. Carbon dioxide exchange has been measured using the flux-gradient technique since 2006 in agricultural systems in Manitoba, Canada. Two cropping systems are being followed: one that is a rotation of annual crops (corn, faba bean, spring wheat, rapeseed, barley, spring wheat, corn, soybean, spring wheat, soybean); and the other with a perennial phase of alfalfa/grass in years 3 to 6. Net ecosystem production ranged from a gain of 330 g C m-2 y-1 in corn to a loss of 75 g C m-2 y-1 in a poor spring-wheat crop. Over a decade, net ecosystem production for the annual cropping system was not significantly different from zero (carbon neutral), but the addition of the perennial phase increased the sink to 130 g C m-2 y-1. Once harvest removals were included, there was a net loss of carbon ranging from 77 g C m-2 y-1 in the annual system to 52 g C m-2 y-1 in the annual-perennial system; but neither of these were significantly different from zero. Termination of the perennial phase of the rotation only caused short-term increases in respiration. We conclude that both these systems were close to carbon-neutral over a decade even though they were tilled with a short growing season (90 to 130 days). We discuss the need for more datasets on agricultural systems to inform management options to increase the soil carbon sink.

  15. Comparisons of seasonal water and carbon flux dynamics between temperate natural mixed broadleaved forest and Korean pine (Pinus koraiensis) plantation

    Science.gov (United States)

    Cho, S.; Kim, H.; Park, J.; Park, M.; Kang, M.; Choi, S. W.; Kim, H. S.

    2016-12-01

    Plantation forests with proper management are considered as the solution to forest destruction by increasing the productivity and reducing the water use. However, the assumptions on plantation forests' efficiency in carbon assimilation and water use are facing a lot questions, recently. To answer these questions, we compared the carbon assimilation and water use between two nearby and similar aged forests. One is a young natural mixed broadleaved forests, which are composed of various oak species and the other was 50-year-old Pinus koraiensis with proper management including thinning and weeding. We compared the seasonal changes of water and carbon flux and their use efficiencies. To compare net ecosystem carbon dioxide and water vapor exchange between to different forest, eddy covariance (EC) system and sap flow measurement have been installed. Also, the contribution of different species of carbon and water fluxes partitioned. As a preliminary result, annual estimated of ET was 491.44 mm in TMK and 446.65 mm in TCK, and annual net ecosystem CO2 exchange (NEE) was 531.66 gC m-2 year-1, 698.58 gC m-2 year-1 in 2015. Water use efficiency of TMK was 3.25 gC Kg-1 H2O and TCK was 4.05 gC Kg-1 H2O. This study will provide key information on plantation forests' efficiency be comparing the nearby and similar aged natural and well-managed plantation forest.

  16. Mesure des flux de CO2 et bilan carboné de grandes cultures : état de la question et méthodologie

    Directory of Open Access Journals (Sweden)

    Bodson B.

    2008-01-01

    Full Text Available CO2 flux measurement and carbon balance of agricultural crops. The increase of carbon dioxide (CO2 atmospheric concentration, which is a greenhouse gas, put in stress the need of a better understanding of the carbon cycle and its dynamic. In particular, the exchanges between ecosystems and atmosphere are characterized by large uncertainties. Regional networks were set up to study these CO2 fluxes. In Europe, the CarboEurope-IP network studies the exchanges between terrestrial ecosystems and the atmosphere. It includes more than 100 sites of forests, croplands or grasslands. This article presents the project " CO2 flux measurement and carbon balance of agricultural crops " which was developed in this frame. The main aim of this project is to quantify the CO2 flux evolution of Belgian crops and understand its response to biotic and abiotic factors. In order to meet this goal, measurements are carried out at different spatial and temporal scales. Net ecosystem exchange measurements are carried out every half-hour at the parcel scale. Soil respiration is measured at the soil plot scale with the same frequency. At the leaf scale, net assimilation measurements are performed once a week. Moreover, plant samplings are carried out to determine the crop carbon content. After presenting the objectives of the project, this paper presents the measurement techniques and the fluxes they allow obtaining. The procedures used to combine the measurements in order to assess a complete crop carbon balance are also detailed.

  17. B33C-0612: Evaluation of Simulated Biospheric Carbon Dioxide Fluxes and Atmospheric Concentrations Using Global in Situ Observations

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.; Potter, Christopher S.; Genovese, Vanessa

    2016-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in

  18. Changes in the net carbon balance following a shelterwood harvest at Howland Forest in central Maine seven years after harvest

    Science.gov (United States)

    Scott, N. A.; Hollinger, D.; Davidson, E. A.; Rodrigues, C.; Hughes, H.; Lee, J. T.; Richardson, A. D.; Dail, B.

    2009-12-01

    As CO2 emissions continue to increase, policy-makers are considering various ways to help slow the rise in atmospheric CO2 concentrations. Forests exchange significant quantities of carbon with the atmosphere, so any measures that increase carbon storage in forests could help mitigate rising CO2 emissions. Some proposed C trading markets include payments for enhanced C storage due to changes in forest management, but others exclude management of existing forests due to large uncertainties in sequestration rates, validation, and leakage. Ideally, forest management practices could be designed to provide multiple benefits to society, including provision of wood and paper products, creating economic returns from natural resources, and sequestering C from the atmosphere. To evaluate the impact of a forest management practice on C storage, it is important to quantify both on-site and off-site C fluxes. We began studying changes in C sequestration following a shelterwood harvest at the Howland Forest in central Maine in 2000. Shelterwood harvesting removed about 30% of live aboveground biomass from the forest (15 Mg C ha-1), reduced leaf area by about 40%, and created detrital carbon pools of about 10.5 Mg C ha-1. Net ecosystem carbon storage (NEE), measured using eddy covariance, went from about 1.9 Mg C ha-1y-1 to almost zero in both 2003 and 2004. Live trees, however, stored about 1.5 Mg C ha-1y-1 in 2003 - this was only slightly lower than C storage in live vegetation in the control (unharvested) stand. In 2005, NEE increased to about 1.5 Mg C ha-1y-1 and tree growth increased to about 2.2 Mg C ha-1y-1 in spite of the fact that leaf-area index (LAI) remained about 25% lower in the harvested stand. Soil respiration was significantly lower in the harvested stand, but only in areas impacted heavily by harvest. This is likely due to decreased root respiration as a result of tree removal. When accounting for both on- and off-site carbon pools, this forest returned to being

  19. Carbon dioxide fluxes over a raised open bog at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES)

    Science.gov (United States)

    Neumann, H. H.; Den Hartog, G.; King, K. M.; Chipanshi, A. C.

    1994-01-01

    Measurements of carbon dioxide concentration and flux were made above a raised open bog at Lake Kinosheo in the southern Hudson Bay lowlands during the Northern Wetlands Study (NOWES) experiment in 1990. The flux measurements were made using micrometeorological techniques. They provide the first nondisturbing, larger-scale CO2 flux measurements for this ecosystem and are the first to integrate the exchange over the whole 24 hours of the day. Continuous concentration measurements by infrared gas analyzers (IRGA) and spot flask samples were taken over the period July 1 to July 29. Afternoon CO2 values were only 5 to 7 parts per million by volume (ppmv) lower than measurements over the same period at Canadian background monitoring stations. This suggested that there was little draw-down by local photosynthetic sinks. CO2 fluxes were measured at 8 and 18 m by Bowen ratio and eddy correlation methods, respectively. The methods produced comparable results on averaged data but often diverged considerably on individual half-hour results. Fluxes were small. Daytime values averaged to -0.068 mg/sq m/s by eddy correlation and -0.077 mg/sq m/s by Bowen ratio over the period June 25 to July 28 (negative denotes downward flux), while at night, flux densities were +0.062 mg/sq m/s and +0.085 mg/sq m/s. Integration of the mean diurnal curve gave a net flux of -1.7 g/sq m/d. Comparable data for this type of ecosystem were not found. However, Coyne and Kelley (1975), measuring near Barrow, Alaska, over wet meadow tundra dominated by sedges and grasses, found net fluxes of -7.2 g/sq m/d. Typical net CO2 fluxes from other active temperature ecosystems have been found to be -10 to -20 g/sq m/d (Monteith, 1976). Mean half hourly fluxes were almost constant at +0.06 mg/sq m/s through the nighttime hours. About one half-hour after sunrise the flux reversed direction. Uptake peaked about 0900 eastern daylight time (EDT) and then gradually declined but remained downward until near sunset

  20. Evaluation of carbon fluxes and trends (2000-2008) in the Greater Platte River Basin: a sustainability study on the potential biofuel feedstock development

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Zhang, Li; Gilmanov, Tagir G.

    2012-01-01

    This study evaluates the carbon fluxes and trends and examines the environmental sustainability (e.g., carbon budget, source or sink) of the potential biofuel feedstock sites identified in the Greater Platte River Basin (GPRB). A 9-year (2000–2008) time series of net ecosystem production (NEP), a measure of net carbon absorption or emission by ecosystems, was used to assess the historical trends and budgets of carbon flux for grasslands in the GPRB. The spatially averaged annual NEP (ANEP) for grassland areas that are possibly suitable for biofuel expansion (productive grasslands) was 71–169 g C m−2 year−1 during 2000–2008, indicating a carbon sink (more carbon is absorbed than released) in these areas. The spatially averaged ANEP for areas not suitable for biofuel feedstock development (less productive or degraded grasslands) was −47 to 69 g C m−2 year−1 during 2000–2008, showing a weak carbon source or a weak carbon sink (carbon emitted is nearly equal to carbon absorbed). The 9-year pre-harvest cumulative ANEP was 1166 g C m−2 for the suitable areas (a strong carbon sink) and 200 g C m−2 for the non-suitable areas (a weak carbon sink). Results demonstrate and confirm that our method of dynamic modeling of ecosystem performance can successfully identify areas desirable and sustainable for future biofuel feedstock development. This study provides useful information for land managers and decision makers to make optimal land use decisions regarding biofuel feedstock development and sustainability.

  1. BOREAS RSS-8 BIOME-BGC SSA Simulation of Annual Water and Carbon Fluxes

    Science.gov (United States)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Kimball, John

    2000-01-01

    The BOREAS RSS-8 team performed research to evaluate the effect of seasonal weather and landcover heterogeneity on boreal forest regional water and carbon fluxes using a process-level ecosystem model, BIOME-BGC, coupled with remote sensing-derived parameter maps of key state variables. This data set contains derived maps of landcover type and crown and stem biomass as model inputs to determine annual evapotranspiration, gross primary production, autotrophic respiration, and net primary productivity within the BOREAS SSA-MSA, at a 30-m spatial resolution. Model runs were conducted over a 3-year period from 1994-1996; images are provided for each of those years. The data are stored in binary image format. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs.

    Science.gov (United States)

    Zheng, Liufeng; Zuo, Fangrui; Zhao, Shengjun; He, Pingli; Wei, Hongkui; Xiang, Quanhang; Pang, Jiaman; Peng, Jian

    2017-04-01

    Branched-chain amino acids (BCAA) have been clearly demonstrated to have anabolic effects on muscle protein synthesis. However, little is known about their roles in the regulation of net AA fluxes across skeletal muscle in vivo. This study was aimed to investigate the effect and related mechanisms of dietary supplementation of BCAA on muscle net amino acid (AA) fluxes using the hindlimb flux model. In all fourteen 4-week-old barrows were fed reduced-protein diets with or without supplemental BCAA for 28 d. Pigs were implanted with carotid arterial, femoral arterial and venous catheters, and fed once hourly with intraarterial infusion of p-amino hippurate. Arterial and venous plasma and muscle samples were obtained for the measurement of AA, branched-chain α-keto acids (BCKA) and 3-methylhistidine (3-MH). Metabolomes of venous plasma were determined by HPLC-quadrupole time-of-flight-MS. BCAA-supplemented group showed elevated muscle net fluxes of total essential AA, non-essential AA and AA. As for individual AA, muscle net fluxes of each BCAA and their metabolites (alanine, glutamate and glutamine), along with those of histidine, methionine and several functional non-essential AA (glycine, proline and serine), were increased by BCAA supplementation. The elevated muscle net AA fluxes were associated with the increase in arterial and intramuscular concentrations of BCAA and venous metabolites including BCKA and free fatty acids, and were also related to the decrease in the intramuscular concentration of 3-MH. Correlation analysis indicated that muscle net AA fluxes are highly and positively correlated with arterial BCAA concentrations and muscle net BCKA production. In conclusion, supplementing BCAA to reduced-protein diet increases the arterial concentrations and intramuscular catabolism of BCAA, both of which would contribute to an increase of muscle net AA fluxes in young pigs.

  3. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Science.gov (United States)

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  4. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems

    Science.gov (United States)

    Wei Ren; Hanqin Tian; Bo Tao; Art Chappelka; Ge Sun; et al

    2011-01-01

    Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China’s forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10-km-resolution gridded historical data sets (...

  5. Threshold of soil water content for ecosystem carbon fluxes and their response to climate warming in an alpine meadow

    Science.gov (United States)

    Quan, Quan

    2017-04-01

    1. Soil water content (SWC) has been recognized to largely regulate ecosystem carbon (C) fluxes and their responses to climate change. However, it remains unclear whether there exists a SWC threshold for ecosystem C fluxes and their responses to climate warming. 2. Based on a field warming experiment in an alpine meadow on the Qinghai-Tibet Plateau (QTP), we examined how SWC regulates ecosystem C fluxes in response to experimental warming. 3. We first detected a SWC threshold of 27.3 ± 5.2% for all the C flux variables except root respiration. This threshold did not change over years in 2014 or 2015 across all the warming or clipping treatments. C fluxes increased with SWC below the threshold but significantly decreased with SWC above it. Warming effects on C fluxes varied with seasons and years due to the changes in SWC. Experimental warming stimulated C fluxes when SWC was above the threshold but depressed C fluxes when SWC was below the threshold. C fluxes were always positively correlated with soil temperature when SWC was above its threshold. When SWC was below its threshold, net ecosystem exchange (NEE) and gross ecosystem production (GEP) decreased but root respiration, soil respiration, and ecosystem respiration increased with soil temperature. 4. This study provided field evidence on the traditionally speculated concept of SWC threshold and revealed how SWC threshold regulates responses of different ecosystem C fluxes to climate warming. The findings offer mechanistic explanations for ecosystem C fluxes in response to climate warming under varying SWC status and changing precipitation regimes.

  6. Phytolith-Occluded Carbon Pools and Fluxes: New Estimates

    Science.gov (United States)

    Reyerson, P. E.; Alexandre, A. E.; Santos, G.

    2015-12-01

    Phytoliths are microscopic grains of silica (SiO2•nH2O) formed within plants. The biomineralization process typically encapsulates small quantities of carbon termed phytC. Upon decomposition, phytoliths are released from biomass and into soils. Recent research has suggested that phytC may be a large sink of atmospheric CO2 in soils. Important steps, therefore, are to quantify phytC cycling across ecosystems and to measure it's importance relative to the organic C cycle as a whole. Thus, information regarding phytC pool sizes and flux rates are needed. To an extent this has been performed. PhytC quantities can be easily estimated as long as 1) phytolith quantities and 2) the amount of C present in phytoliths are known. The quantity of C within phytoliths is still a subject of debate, but recent work has found quantities of less than 0.22%. Older studies, which rely on extraction methods which are now known to incompletely remove surface organic residues, have found phytC quantities from 1% to 20%. Hence, studies of phytC cycling using outdated methods may lead to overestimates. In order to re-estimate phytC dynamics, we compiled an extensive list of published works which document phytolith pools in above-ground biomass and soils, as well as flux rates. From these data phytC quantities were calculated using revised estimates of phytolith C percentages. PhytC quantities were also compared to total organic C (TOC) pools and fluxes. These calculations were then extrapolated to biome and global scales. At the biome scale, our results indicate that phytC within living biomass and soil pools as well as fluxes are one to two orders of magnitude smaller than previously estimated. PhytC is generally less than 0.01% of biomass TOC, and less than 1% of soil TOC. Annual phytC fluxes are less than 0.01% of TOC fluxes. At the global scale, annual phytC production is approximately 0.01% to 0.10% of gross C production. The findings of the present study suggest that direct C

  7. Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources.

    Science.gov (United States)

    Chu, Housen; Gottgens, Johan F; Chen, Jiquan; Sun, Ge; Desai, Ankur R; Ouyang, Zutao; Shao, Changliang; Czajkowski, Kevin

    2015-03-01

    Freshwater marshes are well-known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4 ) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2 ) and CH4 ] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011-2013). Carbon accumulation in the sediments suggested that the marsh was a long-term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m(-2)  yr(-1) during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m(-2)  yr(-1) ). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (-78.8 ± 33.6 g C m(-2)  yr(-1) ), near CO2 -neutral in 2012 (29.7 ± 37.2 g C m(-2)  yr(-1) ), and a CO2 source in 2013 (92.9 ± 28.0 g C m(-2)  yr(-1) ). The CH4 emission was consistently high with a three-year average of 50.8 ± 1.0 g C m(-2)  yr(-1) . Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m(-2)  yr(-1) , respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m(-2)  yr(-1) to the three-year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow-through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years. © 2014 John Wiley & Sons Ltd.

  8. Estimating carbon flux phenology with satellite-derived land surface phenology and climate drivers for different biomes: a synthesis of AmeriFlux observations.

    Directory of Open Access Journals (Sweden)

    Wenquan Zhu

    Full Text Available Carbon Flux Phenology (CFP can affect the interannual variation in Net Ecosystem Exchange (NEE of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands, using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU by more than 70% and End of Carbon Uptake (ECU by more than 60%. The Root Mean Square Error (RMSE of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.

  9. Management effects on net ecosystem carbon and GHG budgets at European crop sites

    DEFF Research Database (Denmark)

    Ceschia, Eric; Bêziat, P; Dejoux, J.F.

    2010-01-01

    , with or without irrigation, etc.) and were cultivated with 15 representative crop species common to Europe. At all sites, carbon inputs (organic fertilisation and seeds), carbon exports (harvest or fire) and net ecosystem production (NEP), measured with the eddy covariance technique, were calculated...... were estimated from the literature for the rice crop site only. At the other sites, CH4 emissions/oxidation were assumed to be negligible compared to other contributions to the net GHGB. Finally, we evaluated crop efficiencies (CE) in relation to global warming potential as the ratio of C exported from...

  10. Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China.

    Directory of Open Access Journals (Sweden)

    Jianbo Wang

    Full Text Available BACKGROUND: Increasing atmospheric CO2 and nitrogen (N deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. METHODOLOGY/PRINCIPAL FINDINGS: Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP was higher than ecosystem respiration (ER, leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. CONCLUSION/SIGNIFICANCE: In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition.

  11. [Effect of seasonal high temperature and drought on carbon flux of bamboo forest ecosystem in subtropical region].

    Science.gov (United States)

    Chen, Xiao-feng; Jiang, Hong; Niu, Xiao-dong; Zhang, Jin-meng; Liu, Yu-li; Fang, Cheng-yuan

    2016-02-01

    The carbon flux of subtropical bamboo forest ecosystem was continuously measured using eddy covariance technique in Anji County of Zhejiang Province, China. The monthly net ecosystem productivity (NEP), ecosystem respiration (Re) and gross ecosystem productivity (GEP) data from 2011 to 2013 were selected to analyze the impacts of seasonal high temperature and drought on the carbon flux of bamboo forest ecosystem. The results showed that there were big differences among annual NEP of bamboo forest from 2011 to 2013. Because of the asynchronization of precipitation and heat, the seasonal high temperature and drought in July and August of 2013 caused significant decline in NEP by 59.9% and 80.0% when compared with the same months in 2011. Correlation analysis of the NEP, Re, GEP and environmental factors suggested that the atmosphere temperatures were significantly correlated with Re and GEP in 2011 and 2013 (Pecosystem in Anji, from July to August in 2013.

  12. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan

    Directory of Open Access Journals (Sweden)

    El-Tahir Bashir

    2008-12-01

    Full Text Available Abstract Background Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD. Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle. Results The dry season (represented by Julian day 35–46, February 2005 was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1 was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere. The water use efficiency (WUE was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266–273, September 2005 was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 μmol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 μmol m-2s-1 and then levels off. Conclusion Based on data collected during two short periods, the studied ecosystem

  13. Carbon and energy fluxes in cropland ecosystems: a model-data comparison

    Science.gov (United States)

    Lokupitiya, E.; Denning, A.S.; Schaefer, K.; Ricciuto, D.; Anderson, R.; Arain, M. A.; Baker, I.; Barr, A. G.; Chen, G.; Chen, J.M.; Ciais, P.; Cook, D.R.; Dietze, M.C.; El Maayar, M.; Fischer, M.; Grant, R.; Hollinger, D.; Izaurralde, C.; Jain, A.; Kucharik, C.J.; Li, Z.; Liu, S.; Li, L.; Matamala, R.; Peylin, P.; Price, D.; Running, S. W.; Sahoo, A.; Sprintsin, M.; Suyker, A.E.; Tian, H.; Tonitto, Christina; Torn, M.S.; Verbeeck, Hans; Verma, S.B.; Xue, Y.

    2016-01-01

    Croplands are highly productive ecosystems that contribute to land–atmosphere exchange of carbon, energy, and water during their short growing seasons. We evaluated and compared net ecosystem exchange (NEE), latent heat flux (LE), and sensible heat flux (H) simulated by a suite of ecosystem models at five agricultural eddy covariance flux tower sites in the central United States as part of the North American Carbon Program Site Synthesis project. Most of the models overestimated H and underestimated LE during the growing season, leading to overall higher Bowen ratios compared to the observations. Most models systematically under predicted NEE, especially at rain-fed sites. Certain crop-specific models that were developed considering the high productivity and associated physiological changes in specific crops better predicted the NEE and LE at both rain-fed and irrigated sites. Models with specific parameterization for different crops better simulated the inter-annual variability of NEE for maize-soybean rotation compared to those models with a single generic crop type. Stratification according to basic model formulation and phenological methodology did not explain significant variation in model performance across these sites and crops. The under prediction of NEE and LE and over prediction of H by most of the models suggests that models developed and parameterized for natural ecosystems cannot accurately predict the more robust physiology of highly bred and intensively managed crop ecosystems. When coupled in Earth System Models, it is likely that the excessive physiological stress simulated in many land surface component models leads to overestimation of temperature and atmospheric boundary layer depth, and underestimation of humidity and CO2 seasonal uptake over agricultural regions.

  14. Carbon and energy fluxes in cropland ecosystems: a model-data comparison

    Energy Technology Data Exchange (ETDEWEB)

    Lokupitiya, E.; Denning, A. S.; Schaefer, K.; Ricciuto, D.; Anderson, R.; Arain, M. A.; Baker, I.; Barr, A. G.; Chen, G.; Chen, J. M.; Ciais, P.; Cook, D. R.; Dietze, M.; El Maayar, M.; Fischer, M.; Grant, R.; Hollinger, D.; Izaurralde, C.; Jain, A.; Kucharik, C.; Li, Z.; Liu, S.; Li, L.; Matamala, R.; Peylin, P.; Price, D.; Running, S. W.; Sahoo, A.; Sprintsin, M.; Suyker, A. E.; Tian, H.; Tonitto, C.; Torn, M.; Verbeeck, Hans; Verma, S. B.; Xue, Y.

    2016-06-03

    Croplands are highly productive ecosystems that contribute to land–atmosphere exchange of carbon, energy, and water during their short growing seasons. We evaluated and compared net ecosystem exchange (NEE), latent heat flux (LE), and sensible heat flux (H) simulated by a suite of ecosystem models at five agricultural eddy covariance flux tower sites in the central United States as part of the North American Carbon Program Site Synthesis project. Most of the models overestimated H and underestimated LE during the growing season, leading to overall higher Bowen ratios compared to the observations. Most models systematically under predicted NEE, especially at rain-fed sites. Certain crop-specific models that were developed considering the high productivity and associated physiological changes in specific crops better predicted the NEE and LE at both rain-fed and irrigated sites. Models with specific parameterization for different crops better simulated the inter-annual variability of NEE for maize-soybean rotation compared to those models with a single generic crop type. Stratification according to basic model formulation and phenological methodology did not explain significant variation in model performance across these sites and crops. The under prediction of NEE and LE and over prediction of H by most of the models suggests that models developed and parameterized for natural ecosystems cannot accurately predict the more robust physiology of highly bred and intensively managed crop ecosystems. When coupled in Earth System Models, it is likely that the excessive physiological stress simulated in many land surface component models leads to overestimation of temperature and atmospheric boundary layer depth, and underestimation of humidity and CO2 seasonal uptake over agricultural regions.

  15. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities

    DEFF Research Database (Denmark)

    Baldocchi, D.; Falge, E.; Gu, L.

    2001-01-01

    , the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists...... of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil-plant-atmosphere trace gas exchange models. Findings so far include 1) net CO2 exchange...

  16. Soil erosion and significance for carbon fluxes in a mountainous Mediterranean-climate watershed.

    Science.gov (United States)

    Smith, S V; Bullock, S H; Hinojosa-Corona, A; Franco-Vizcaíno, E; Escoto-Rodríguez, M; Kretzschmar, T G; Farfán, L M; Salazar-Ceseña, J M

    2007-07-01

    In topographically complex terrains, downslope movement of soil organic carbon (OC) can influence local carbon balance. The primary purpose of the present analysis is to compare the magnitude of OC displacement by erosion with ecosystem metabolism in such a complex terrain. Does erosion matter in this ecosystem carbon balance? We have used the Revised Universal Soil Loss Equation (RUSLE) erosion model to estimate lateral fluxes of OC in a watershed in northwestern Mexico. The watershed (4900 km2) has an average slope of 10 degrees +/- 9 degrees (mean +/- SD); 45% is >10 degrees, and 3% is >30 degrees. Land cover is primarily shrublands (69%) and agricultural lands (22%). Estimated bulk soil erosion averages 1350 Mg x km(-2) x yr(-1). We estimate that there is insignificant erosion on slopes erosion rates are 10 Mg x km(-2) x yr(-1) for areas steeper than 2 degrees. Over the entire area, erosion is approximately 50% higher on shrublands than on agricultural lands, but within slope classes, erosion rates are more rapid on agricultural areas. For the whole system, estimated OC erosion is approximately 2% of net primary production (NPP), increasing in high-slope areas to approximately 3% of NPP. Deposition of eroded OC in low-slope areas is approximately 10% of low-slope NPP. Soil OC movement from erosional slopes to alluvial fans alters the mosaic of OC metabolism and storage across the landscape.

  17. Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords

    Science.gov (United States)

    Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.

    2017-11-01

    Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.

  18. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China

    Science.gov (United States)

    Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.

    2014-10-01

    Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but little information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during the typhoon season. Daily total NEE values decreased by 26-50% following some typhoons (e.g., W28-Nockten, W35-Molave and W35-Lio-Fan), but significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings indicate that different types of typhoon disturbances can exert very different effects on CO2 fluxes of mangrove ecosystems and that typhoon will likely have larger impacts on carbon cycle processes in subtropical mangrove ecosystems as the intensity and frequency of typhoons are predicted to increase under future global climate change scenarios.

  19. Metabolic flux analysis: recent advances in carbon metabolism in plants.

    Science.gov (United States)

    Dieuaide-Noubhani, Martine; Alonso, Ana-Paula; Rolin, Dominique; Eisenreich, Wolfgang; Raymond, Philippe

    2007-01-01

    Isotopic tracers are used to both trace metabolic pathways and quantify fluxes through these pathways. The use of different labeling methods recently led to profound changes in our views of plant metabolism. Examples are taken from primary metabolism, with sugar interconversions, carbon partitioning between glycolysis and the pentose phosphate pathway, or metabolite inputs into the tricarboxylic acid (TCA) cycle, as well as from secondary metabolism with the relative contribution of the plastidial and cytosolic pathways to the biosynthesis of terpenoids. While labeling methods are often distinguished according to the instruments used for label detection, emphasis is put here on labeling duration. Short time labeling is adequate to study limited areas of the metabolic network. Long-term labeling, when designed to obtain metabolic and isotopic steady-state, allows to calculate various fluxes in large areas ofcentral metabolism. After longer labeling periods, large amounts of label accumulate in structural or storage compounds: their detailed study through the retrobiosynthetic method gives access to the biosynthetic pathways of otherwise undetectable precursors. This chapter presents the power and limits of the different methods, and illustrates how they can be associated with each other and with other methods of cell biology, to provide the information needed for a rational approach of metabolic engineering.

  20. The European forest sector: past and future carbon budget and fluxes under different management scenarios

    Science.gov (United States)

    Pilli, Roberto; Grassi, Giacomo; Kurz, Werner A.; Fiorese, Giulia; Cescatti, Alessandro

    2017-05-01

    The comprehensive analysis of carbon stocks and fluxes of managed European forests is a prerequisite to quantify their role in biomass production and climate change mitigation. We applied the Carbon Budget Model (CBM) to 26 European countries, parameterized with country information on the historical forest age structure, management practices, harvest regimes and the main natural disturbances. We modeled the C stocks for the five forest pools plus harvested wood products (HWPs) and the fluxes among these pools from 2000 to 2030. The aim is to quantify, using a consistent modeling framework for all 26 countries, the main C fluxes as affected by land-use changes, natural disturbances and forest management and to assess the impact of specific harvest and afforestation scenarios after 2012 on the mitigation potential of the EU forest sector. Substitution effects and the possible impacts of climate are not included in this analysis. Results show that for the historical period from 2000 to 2012 the net primary productivity (NPP) of the forest pools at the EU level is on average equal to 639 Tg C yr-1. The losses are dominated by heterotrophic respiration (409 Tg C yr-1) and removals (110 Tg C yr-1), with direct fire emissions being only 1 Tg C yr-1, leading to a net carbon stock change (i.e., sink) of 110 Tg C yr-1. Fellings also transferred 28 Tg C yr-1 of harvest residues from biomass to dead organic matter pools. The average annual net sector exchange (NSE) of the forest system, i.e., the carbon stock changes in the forest pools including HWP, equals a sink of 122 Tg C yr-1 (i.e., about 19 % of the NPP) for the historical period, and in 2030 it reaches 126, 101 and 151 Tg C yr-1, assuming constant, increasing (+20 %) and decreasing (-20 %) scenarios, respectively, of both harvest and afforestation rates compared to the historical period. Under the constant harvest rate scenario, our findings show an incipient aging process of the forests existing in 1990: although NPP

  1. Narrowband Bio-Indicator Monitoring of Temperate Forest Carbon Fluxes in Northeastern China

    Directory of Open Access Journals (Sweden)

    Quanzhou Yu

    2014-09-01

    Full Text Available Developments in hyperspectral remote sensing techniques during the last decade have enabled the use of narrowband indices to evaluate the role of forest ecosystem variables in estimating carbon (C fluxes. In this study, narrowband bio-indicators derived from EO-1 Hyperion data were investigated to determine whether they could capture the temporal variation and estimate the spatial variability of forest C fluxes derived from eddy covariance tower data. Nineteen indices were divided into four categories of optical indices: broadband, chlorophyll, red edge, and light use efficiency. Correlation tests were performed between the selected vegetation indices, gross primary production (GPP, and ecosystem respiration (Re. Among the 19 indices, five narrowband indices (Chlorophyll Index RedEdge 710, scaled photochemical reflectance index (SPRI*enhanced vegetation index (EVI, SPRI*normalized difference vegetation index (NDVI, MCARI/OSAVI[705, 750] and the Vogelmann Index, and one broad band index (EVI had R-squared values with a good fit for GPP and Re. The SPRI*NDVI has the highest significant coefficients of determination with GPP and Re (R2 = 0.86 and 0.89, p < 0.0001, respectively. SPRI*NDVI was used in atmospheric inverse modeling at regional scales for the estimation of C fluxes. We compared the GPP spatial patterns inversed from our model with corresponding results from the Vegetation Photosynthesis Model (VPM, the Boreal Ecosystems Productivity Simulator model, and MODIS MOD17A2 products. The inversed GPP spatial patterns from our model of SPRI*NDVI had good agreement with the output from the VPM model. The normalized difference nitrogen index was well correlated with measured C net ecosystem exchange. Our findings indicated that narrowband bio-indicators based on EO-1 Hyperion images could be used to predict regional C flux variations for Northeastern China’s temperate broad-leaved Korean pine forest ecosystems.

  2. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing

    DEFF Research Database (Denmark)

    Johansson, T.; Malmer, N.; Crill, P. M.

    2006-01-01

    SUB-ARCTIC MIRE; CLIMATE-CHANGE; BOREAL PEATLANDS; METHANE EMISSIONS; VASCULAR PLANTS; CARBON-DIOXIDE; PERMAFROST THAW; CO2 EXCHANGE; WATER-TABLE......SUB-ARCTIC MIRE; CLIMATE-CHANGE; BOREAL PEATLANDS; METHANE EMISSIONS; VASCULAR PLANTS; CARBON-DIOXIDE; PERMAFROST THAW; CO2 EXCHANGE; WATER-TABLE...

  3. Combining MODIS data and tower based measurements to estimate net ecosystem carbon exchange for the Republic of Ireland

    Science.gov (United States)

    Murphy, K.; Clement, F.; Kiely, G.

    2012-04-01

    A number of previous studies have employed Fluxnet data in developing models to upscale localised eddy covariance (EC) footprints in order to determine net ecosystem carbon exchange (NEE) over regional or national scales. This study combined measured EC flux data (from three EC stations in Ireland over the period 2002-2007) with data from the Moderate Resolution Imaging Spectrometer (MODIS) onboard the Terra (EOS-AM) Satellite, and land cover maps (Corine Land Cover for 2006) to develop predictive NEE models using an adapted regression tree method allowing upscaling to wider areas with MODIS products. Separate models were developed for the four main ecosystem types found in the Republic of Ireland: grassland, peatland, forestry and cropland. The NEE models showed promising correlations with the EC measurements of NEE for training and predictive data sets. Excluding urban and water areas, the results indicate that Ireland's terrestrial ecosystems are a sink for CO2 of -1.3Mg C-CO2 ha-1 y-1 giving a national estimate of -9.3 Tg C-CO2 y-1. This uptake compares to the national inventory estimate for emissions from agriculture of 5.03 Tg C-CO2 eq y-1. The models also captured well the spatiotemporal variations over the Republic of Ireland relative to the measured NEE in different ecosystem types over different seasons. The method shows potential in accounting for carbon fluxes over large areas.

  4. Typhoons exert significant but differential impact on net carbon ecosystem exchange of subtropical mangrove ecosystems in China

    Science.gov (United States)

    Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.

    2014-06-01

    Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but litter information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during typhoon season. Daily total NEE values were decreased by 26-50% following some typhoons (e.g. W28-Nockten, W35-Molave and W35-Lio-Fan), but were significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings not only indicate that mangrove ecosystems have strong resilience to the frequent typhoon disturbances, but also demonstrate the damage of increasing typhoon intensity and frequency on subtropical mangrove ecosystems under future global climate change scenarios.

  5. Uncovering the Minor Contribution of Land-Cover Change in Upland Forests to the Net Carbon Footprint of a Boreal Hydroelectric Reservoir.

    Science.gov (United States)

    Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude

    2015-07-01

    Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Trophic pathways and carbon flux patterns in the Laptev Sea

    Science.gov (United States)

    Schmid, Michael K.; Piepenburg, Dieter; Golikov, Alexander A.; Juterzenka, Karen von; Petryashov, Victor V.; Spindler, Michael

    2006-10-01

    The Laptev Sea is a high-Arctic epicontinental sea north of Siberia (Russia) that is one of the least understood regions of the world’s ocean. It is characterized by a shallow and broad shelf plateau, high influx of river water, sediments and nutrients during summer, long-lasting sea-ice cover from October to May, and the formation of a narrow flaw-lead polynya off the fast-ice edge during winter. Here, we describe results of a German-Russian research project (1993-present), presenting the distribution patterns and dynamics of its marine flora and fauna, as well as pathways and processes of coupling between sea-ice, water-column and sea-floor biota. Three ecological zones are distinguished along a combined east-west and Lena-impact gradient, differing in the composition of pelagic and benthic communities. In general, high Chl a concentrations in the sediments indicate a tight coupling between sympagic and pelagic primary production and nutrient supply to the benthos throughout the entire Laptev Sea. However, there were pronounced regional differences between the ecological zones in magnitude of primary production and trophic dynamics. Primary production during the ice-free summer was highest in the estuarine zone most strongly influenced by the Lena River (210 mg C m -2 day -1). The western and northeastern Laptev Sea yielded 55 and 95 mg C m -2 day -1, respectively. Moreover, the zones differed in the partitioning of carbon flux between zooplankton and benthic food webs. In the Lena zone zooplankton carbon demand was about 31 mg C m -2 day -1 whereas in the western zone it was 21 mg C m -2 day -1 and in the eastern zone 4 mg C m -2 day -1. Total benthic carbon demand was 32 mg C m -2 day -1 for the Lena zone, 56 mg C m -2 day -1 in the western zone and 100 mg C m -2 day -1 in the northeastern zone. A carbon budget constructed for the Laptev Sea indicates that (1) a high proportion of primary production is channelled through the benthic trophic web, bypassing the

  7. Attribution of net carbon change by disturbance type across forest lands of the conterminous United States

    Science.gov (United States)

    N. L. Harris; S. C. Hagen; S. S. Saatchi; T. R. H. Pearson; Christopher W. Woodall; Grant M. Domke; B. H. Braswell; Brian F. Walters; S. Brown; W. Salas; A. Fore; Y. Yu

    2016-01-01

    Background: Locating terrestrial sources and sinks of carbon (C) will be critical to developing strategies that contribute to the climate change mitigation goals of the Paris Agreement. Here we present spatially resolved estimates of net C change across United States (US) forest lands between 2006 and 2010 and attribute them to natural and anthropogenic processes....

  8. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    Science.gov (United States)

    Zhang, M.; Yu, G.-R.; Zhang, L.-M.; Sun, X.-M.; Wen, X.-F.; Han, S.-J.; Yan, J.-H.

    2010-02-01

    Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE) in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS) and a subtropical evergreen broad-leaved forest at Dinghushan (DHS), based on the flux data obtained during June-August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR) differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max) at CBS under cloudy skies during mid-growing season (from June to August) increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt) ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD) and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP) and greater increase in ecosystem respiration (Re) at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in cloudiness is an important factor that should be included in evaluating regional carbon budgets under climate change

  9. Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: patterns and causes

    Directory of Open Access Journals (Sweden)

    B. Song

    2017-09-01

    Full Text Available Increases in nitrogen (N deposition can greatly stimulate ecosystem net carbon (C sequestration through positive N-induced effects on plant productivity. However, how net ecosystem CO2 exchange (NEE and its components respond to different N addition rates remains unclear. Using an N addition gradient experiment (six levels: 0, 2, 4, 8, 16, 32 gN m−2 yr−1 in an alpine meadow on the Qinghai–Tibetan Plateau, we explored the responses of different ecosystem C fluxes to an N addition gradient and revealed mechanisms underlying the dynamic responses. Results showed that NEE, ecosystem respiration (ER, and gross ecosystem production (GEP all increased linearly with N addition rates in the first year of treatment but shifted to N saturation responses in the second year with the highest NEE (−7.77 ± 0.48 µmol m−2 s−1 occurring under an N addition rate of 8 gN m−2 yr−1. The saturation responses of NEE and GEP were caused by N-induced accumulation of standing litter, which limited light availability for plant growth under high N addition. The saturation response of ER was mainly due to an N-induced saturation response of aboveground plant respiration and decreasing soil microbial respiration along the N addition gradient, while decreases in soil microbial respiration under high N addition were caused by N-induced reductions in soil pH. We also found that various components of ER, including aboveground plant respiration, soil respiration, root respiration, and microbial respiration, responded differentially to the N addition gradient. These results reveal temporal dynamics of N impacts and the rapid shift in ecosystem C fluxes from N limitation to N saturation. Our findings bring evidence of short-term initial shifts in responses of ecosystem C fluxes to increases in N deposition, which should be considered when predicting long-term changes in ecosystem net C sequestration.

  10. A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux.

    Science.gov (United States)

    Jena, Prakrit V; Roxbury, Daniel; Galassi, Thomas V; Akkari, Leila; Horoszko, Christopher P; Iaea, David B; Budhathoki-Uprety, Januka; Pipalia, Nina; Haka, Abigail S; Harvey, Jackson D; Mittal, Jeetain; Maxfield, Frederick R; Joyce, Johanna A; Heller, Daniel A

    2017-11-28

    Lipid accumulation within the lumen of endolysosomal vesicles is observed in various pathologies including atherosclerosis, liver disease, neurological disorders, lysosomal storage disorders, and cancer. Current methods cannot measure lipid flux specifically within the lysosomal lumen of live cells. We developed an optical reporter, composed of a photoluminescent carbon nanotube of a single chirality, that responds to lipid accumulation via modulation of the nanotube's optical band gap. The engineered nanomaterial, composed of short, single-stranded DNA and a single nanotube chirality, localizes exclusively to the lumen of endolysosomal organelles without adversely affecting cell viability or proliferation or organelle morphology, integrity, or function. The emission wavelength of the reporter can be spatially resolved from within the endolysosomal lumen to generate quantitative maps of lipid content in live cells. Endolysosomal lipid accumulation in cell lines, an example of drug-induced phospholipidosis, was observed for multiple drugs in macrophages, and measurements of patient-derived Niemann-Pick type C fibroblasts identified lipid accumulation and phenotypic reversal of this lysosomal storage disease. Single-cell measurements using the reporter discerned subcellular differences in equilibrium lipid content, illuminating significant intracellular heterogeneity among endolysosomal organelles of differentiating bone-marrow-derived monocytes. Single-cell kinetics of lipoprotein-derived cholesterol accumulation within macrophages revealed rates that differed among cells by an order of magnitude. This carbon nanotube optical reporter of endolysosomal lipid content in live cells confers additional capabilities for drug development processes and the investigation of lipid-linked diseases.

  11. Investigation into the flux distribution of central carbon metabolism in Corynebacterium glutamicum using principal component analysis

    Directory of Open Access Journals (Sweden)

    Shang Chuanyu

    2015-01-01

    Full Text Available Central carbon metabolism is the main source of energy required by organisms and it provides precursors for other in vivo metabolic processes. The flux flowing through the pathways involved in central carbon metabolism characterizes its biological function and genetic readout between species or environments. In recent years, using a 13C tracer technique, researchers have measured the flux of central carbon metabolism in Corynebacterium glutamicum under a variety of nutritional and environmental changes or genetic modifications. However, there is no integrated and comparative analysis of these measured flux values. In this study, the flux values of central carbon metabolism in Corynebacterium glutamicum that were obtained in other recent studies were consolidated. A preliminary examination of the distribution characteristics of flux values in each metabolic pathway was conducted and the regression relationship between different fluxes was investigated. The principal components of the flux vector were further extracted and aggregated based on the components, and the general features of flux distribution of central carbon metabolism as well as the influence of environmental and genetic factors on the flux distribution were determined. This study provides a foundation for further investigation into the flux distribution and regulation characteristics of central carbon metabolism.

  12. Baseline and projected future carbon storage and carbon fluxes in ecosystems of Hawai‘i

    Science.gov (United States)

    Selmants, Paul C.; Giardina, Christian P.; Jacobi, James D.; Zhu, Zhiliang

    2017-05-04

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to improve understanding of factors influencing carbon balance in ecosystems of Hawai‘i. Ecosystem carbon storage, carbon fluxes, and carbon balance were examined for major terrestrial ecosystems on the seven main Hawaiian islands in two time periods: baseline (from 2007 through 2012) and future (projections from 2012 through 2061). The assessment incorporated observed data, remote sensing, statistical methods, and simulation models. The national assessment has been completed for the conterminous United States, using methodology described in SIR 2010-5233, with results provided in three regional reports (PP 1804, PP 1797, and PP 1897), and for Alaska, with results provided in PP 1826.

  13. Long-term increase in forest water-use efficiency observed across ecosystem carbon flux networks

    Science.gov (United States)

    Keenan, Trevor; Bohrer, Gil; Dragoni, Danilo; Hollinger, David; Munger, James W.; Schmid, Hans Peter; Richardson, Andrew

    2014-05-01

    Terrestrial plants remove CO2 from the atmosphere through photo- synthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata - small pores on the leaf surface that regulate gas exchange - to maintain a near- constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings demonstrate the utility of maintaining long-term eddy-covariance flux measurement sites. The results suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.

  14. Analysis of carbon dioxide, water vapour and energy fluxes over an ...

    Indian Academy of Sciences (India)

    Analysis of carbon dioxide, water vapour and energy fluxes over an Indian teak mixed deciduous forest for winter and summer months using eddy covariance technique ... Eddy covariance; Indian deciduous forests; CO2 flux; heat flux. ... National Remote Sensing Centre (ISRO), Balanagar, Hyderabad 500 037, India.

  15. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Boston Univ., MA (United States); Wehr, Richdard [Harvard Univ., Cambridge, MA (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States)

    2016-01-28

    1. Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2). 2. Highlights Accomplishments: • Our isotopic eddy flux record has completed its 5th full year and has been used to independently estimate ecosystem-scale respiration and photosynthesis. • Soil surface chamber isotopic flux measurements were carried out during three growing seasons, in conjunction with a trenching manipulation. Key findings to date (listed by objective): A. Partitioning of Net Ecosystem Exchange: 1. Ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light (the “Kok effect”) at the ecosystem scale. 2. Because it neglects the Kok effect, the standard NEE partitioning approach overestimates ecosystem photosynthesis (by ~25%) and

  16. Modelling the decadal trend of ecosystem carbon fluxes demonstrates the important role of functional changes in a temperate deciduous forest

    DEFF Research Database (Denmark)

    Wu, Jian; Jansson, P.E.; van der Linden, Leon

    2013-01-01

    –2009) trend in carbon uptake when global parameter estimates were used. Annual parameter estimates were able to reproduce the decadal scale trend; the yearly fitted posterior parameters (e.g. the light use efficiency) indicated a role for changes in the ecosystem functional properties. A possible role......Temperate forests are globally important carbon sinks and stocks. Trends in net ecosystem exchange have been observed in a Danish beech forest and this trend cannot be entirely attributed to changing climatic drivers. This study sought to clarify the mechanisms responsible for the observed trend...... for nitrogen demand during mast years is supported by the inter-annual variability in the estimated parameters. The inter-annual variability of photosynthesis parameters was fundamental to the simulation of the trend in carbon fluxes in the investigated beech forest and this demonstrates the importance...

  17. Drought impact on forest carbon dynamics and fluxes in Amazonia.

    Science.gov (United States)

    Doughty, Christopher E; Metcalfe, D B; Girardin, C A J; Amézquita, F Farfán; Cabrera, D Galiano; Huasco, W Huaraca; Silva-Espejo, J E; Araujo-Murakami, A; da Costa, M C; Rocha, W; Feldpausch, T R; Mendoza, A L M; da Costa, A C L; Meir, P; Phillips, O L; Malhi, Y

    2015-03-05

    In 2005 and 2010 the Amazon basin experienced two strong droughts, driven by shifts in the tropical hydrological regime possibly associated with global climate change, as predicted by some global models. Tree mortality increased after the 2005 drought, and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the

  18. Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.

    Science.gov (United States)

    Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby

    2015-04-01

    Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.

  19. Wall-to-wall assessment of carbon stock and flux consequences of forest disturbances in the Pacific Northwest United States using remote sensing and forest inventory data

    Science.gov (United States)

    Gu, H.; Williams, C. A.; Collatz, G. J.; Masek, J. G.; Moisen, G.; Schleeweis, K.; Ghimire, B.; Zhao, F. A.; Huang, C.; Saatchi, S. S.

    2015-12-01

    Disturbances profoundly alter the structure and function of forests, imposing long lasting carbon legacies and strongly influencing rates of terrestrial carbon exchange with the atmosphere. Disturbance legacies vary across ecoregions, by forest types, and with disturbance severity and type. The complexity presents a significant challenge for observing and modeling carbon exchange, and hinders assessments of current and likely future states of the global carbon cycle. We demonstrate how carbon legacies vary following harvest, fire and bark beetle for forests in Pacific Norwest (PNW) United States, and how these processes influence carbon stocks and fluxes at pixel and regional scales. This study involves the use of satellite and aerial remote sensing products to characterize the frequency and severity of fire, harvest and insects over the past three decades. We use forest inventory data (FIA) to parameterize a carbon cycle model to represent post-disturbance carbon trajectories of carbon pools and fluxes for harvest, fire and bark beetle disturbances of varying severity across forest types and site productivity. We infer forest stand age and associated uncertainty based on maps of aboveground biomass, disturbance and forest types derived from remote sensing data, as well as carbon stock trajectories and stand productivity map derived from FIA. We then apply the group of carbon flux trajectories to the forest stand age map throughout the study area. Finally, we summarize the net carbon uptake as a consequence of disturbance and regrowth at pixel and regional scales. As such, this study represents a first demonstration of a spatially explicit assessment of carbon stock and flux responses to disturbances by linking remote sensing disturbance products, biomass maps and forest inventory data in a carbon cycle modeling framework. The methodology will be further applied across the conterminous US to provide a comprehensive forest carbon budget assessment.

  20. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Science.gov (United States)

    Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.

    2017-12-01

    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high

  1. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2017-12-01

    Full Text Available Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado, as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry

  2. On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning

    Science.gov (United States)

    Lasslop, G.; Migliavacca, M.; Bohrer, G.; Reichstein, M.; Bahn, M.; Ibrom, A.; Jacobs, C.; Kolari, P.; Papale, D.; Vesala, T.; Wohlfahrt, G.; Cescatti, A.

    2012-12-01

    Networks that merge and harmonise eddy-covariance measurements from many different parts of the world have become an important observational resource for ecosystem science. Empirical algorithms have been developed which combine direct observations of the net ecosystem exchange of carbon dioxide with simple empirical models to disentangle photosynthetic (GPP) and respiratory fluxes (Reco). The increasing use of these estimates for the analysis of climate sensitivities, model evaluation and calibration demands a thorough understanding of assumptions in the analysis process and the resulting uncertainties of the partitioned fluxes. The semi-empirical models used in flux partitioning algorithms require temperature observations as input, but as respiration takes place in many parts of an ecosystem, it is unclear which temperature input - air, surface, bole, or soil at a specific depth - should be used. This choice is a source of uncertainty and potential biases. In this study, we analysed the correlation between different temperature observations and nighttime NEE (which equals nighttime respiration) across FLUXNET sites to understand the potential of the different temperature observations as input for the flux partitioning model. We found that the differences in the correlation between different temperature data streams and nighttime NEE are small and depend on the selection of sites. We investigated the effects of the choice of the temperature data by running two flux partitioning algorithms with air and soil temperature. We found the time lag (phase shift) between air and soil temperatures explains the differences in the GPP and Reco estimates when using either air or soil temperatures for flux partitioning. The impact of the source of temperature data on other derived ecosystem parameters was estimated, and the strongest impact was found for the temperature sensitivity. Overall, this study suggests that the choice between soil or air temperature must be made on site

  3. On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning

    Directory of Open Access Journals (Sweden)

    G. Lasslop

    2012-12-01

    Full Text Available Networks that merge and harmonise eddy-covariance measurements from many different parts of the world have become an important observational resource for ecosystem science. Empirical algorithms have been developed which combine direct observations of the net ecosystem exchange of carbon dioxide with simple empirical models to disentangle photosynthetic (GPP and respiratory fluxes (Reco. The increasing use of these estimates for the analysis of climate sensitivities, model evaluation and calibration demands a thorough understanding of assumptions in the analysis process and the resulting uncertainties of the partitioned fluxes. The semi-empirical models used in flux partitioning algorithms require temperature observations as input, but as respiration takes place in many parts of an ecosystem, it is unclear which temperature input – air, surface, bole, or soil at a specific depth – should be used. This choice is a source of uncertainty and potential biases. In this study, we analysed the correlation between different temperature observations and nighttime NEE (which equals nighttime respiration across FLUXNET sites to understand the potential of the different temperature observations as input for the flux partitioning model. We found that the differences in the correlation between different temperature data streams and nighttime NEE are small and depend on the selection of sites. We investigated the effects of the choice of the temperature data by running two flux partitioning algorithms with air and soil temperature. We found the time lag (phase shift between air and soil temperatures explains the differences in the GPP and Reco estimates when using either air or soil temperatures for flux partitioning. The impact of the source of temperature data on other derived ecosystem parameters was estimated, and the strongest impact was found for the temperature sensitivity. Overall, this study suggests that the

  4. Water-carbon Links in a Tropical Forest: How Interbasin Groundwater Flow Affects Carbon Fluxes and Ecosystem Carbon Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, David [North Carolina State Univ., Raleigh, NC (United States); Osburn, Christopher [North Carolina State Univ., Raleigh, NC (United States); Oberbauer, Steven [Florida Intl Univ., Miami, FL (United States); Oviedo Vargas, Diana [North Carolina State Univ., Raleigh, NC (United States); Dierick, Diego [Florida Intl Univ., Miami, FL (United States)

    2017-03-27

    This report covers the outcomes from a quantitative, interdisciplinary field investigation of how carbon fluxes and budgets in a lowland tropical rainforest are affected by the discharge of old regional groundwater into streams, springs, and wetlands in the forest. The work was carried out in a lowland rainforest of Costa Rica, at La Selva Biological Station. The research shows that discharge of regional groundwater high in dissolved carbon dioxide represents a significant input of carbon to the rainforest "from below", an input that is on average larger than the carbon input "from above" from the atmosphere. A stream receiving discharge of regional groundwater had greatly elevated emissions of carbon dioxide (but not methane) to the overlying air, and elevated downstream export of carbon from its watershed with stream flow. The emission of deep geological carbon dioxide from stream water elevates the carbon dioxide concentrations in air above the streams. Carbon-14 tracing revealed the presence of geological carbon in the leaves and stems of some riparian plants near streams that receive inputs of regional groundwater. Also, discharge of regional groundwater is responsible for input of dissolved organic matter with distinctive chemistry to rainforest streams and wetlands. The discharge of regional groundwater in lowland surface waters has a major impact on the carbon cycle in this and likely other tropical and non-tropical forests.

  5. Integration of ground and satellite data to estimate the forest carbon fluxes of a Mediterranean region

    Science.gov (United States)

    Chiesi, M.; Maselli, F.; Moriondo, M.; Fibbi, L.; Bindi, M.; Running, S. W.

    2009-04-01

    reference series of monthly gross primary production (GPP) estimates. In particular this model estimates forest GPP as function of photosynthetically active radiation absorbed by vegetation (Veroustraete et al., 2002) combined with ground based estimates of incoming solar radiation and air temperature. These GPP values are used as reference data to both calibrate and integrate the functions of a more complex bio-geochemical model, BIOME-BGC, which is capable of simulating all main ecosystem processes. This model requires: daily climate data, information on the general environment (i.e. soil, vegetation and site conditions) and parameters describing the ecophysiological characteristics of vegetation. Both C-Fix and BIOME-BGC compute GPP as an expression of total, or potential, productivity of an ecosystem in equilibrium with the environment. This makes the GPP estimates of the two models practically inter-comparable and opens the possibility of using the more accurate GPP estimates of C-Fix to both calibrate BIOME-BGC and stabilize its outputs (Chiesi et al., 2007). In particular, by integrating BIOME-BGC respiration estimates to those of C-Fix, forest fluxes for the entire region are obtained, which are referable to ecosystems at equilibrium (climax) condition. These estimates are converted into NPP and NEE of real forests relying on a specifically developed conceptual framework which uses the ratio of actual over potential stand volume as indicator of ecosystem distance from climax. The accuracy of the estimated net carbon exchanges is finally evaluated against ground data derived from a recent forest inventory and from two eddy covariance flux towers located in Tuscany (San Rossore and Lecceto). The results of both these comparisons were quite positive, indicating the good capability of the method for forest carbon flux estimation in Mediterranean areas.

  6. Net Greenhouse Gas Budget and Soil Carbon Storage in a Field with Paddy–Upland Rotation with Different History of Manure Application

    Directory of Open Access Journals (Sweden)

    Fumiaki Takakai

    2017-06-01

    Full Text Available Methane (CH4 and nitrous oxide (N2O fluxes were measured from paddy–upland rotation (three years for soybean and three years for rice with different soil fertility due to preceding compost application for four years (i.e., 3 kg FW m−2 year−1 of immature or mature compost application plots and a control plot without compost. Net greenhouse gas (GHG balance was evaluated by integrating CH4 and N2O emissions and carbon dioxide (CO2 emissions calculated from a decline in soil carbon storage. N2O emissions from the soybean upland tended to be higher in the immature compost plot. CH4 emissions from the rice paddy increased every year and tended to be higher in the mature compost plot. Fifty-two to 68% of the increased soil carbon by preceding compost application was estimated to be lost during soybean cultivation. The major component of net GHG emission was CO2 (82–94% and CH4 (72–84% during the soybean and rice cultivations, respectively. Net GHG emissions during the soybean and rice cultivations were comparable. Consequently, the effects of compost application on the net GHG balance from the paddy–upland rotation should be carefully evaluated with regards to both advantages (initial input to the soil and disadvantages (following increases in GHG.

  7. Using lidar data and a height-structured ecosystem model to estimate forest carbon stocks and fluxes over mountainous terrain

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.Q.; Hurtt, G.C.; Schilz, M.H. [New Hampshire Univ., Durham, NH (United States). Dept. of Natural Resources, Inst. for the Study of Earth Oceans; Dubayah, R. [Maryland Univ., College Park, MD (United States). Dept. of Geography

    2008-07-01

    The exchange of carbon between forest ecosystems and the atmosphere should be accurately predicted in order to determine energy flow into forested landscapes. The current state of ecosystems and the underlying processes and environmental conditions that influence the ecosystem processes must be well understood to predict forest dynamics and associated carbon fluxes. This study investigated the patterns of aboveground carbon stocks and fluxes at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains of new Hampshire. The highly varied forest structure in this mountainous ecosystem is due to patterns in climate, soil characteristics, natural disturbance regimes and historical land use. The purpose of this study was to use data on vegetation structure to improve model estimates over mountainous terrain and to assess how model predictions depend on data of vegetation structure and underlying environmental and disturbance heterogeneity. The researchers used a combination of light detection and ranging (lidar) remote sensing (LVIS), an individual-based height-structured ecosystem model (ED), and detailed topographic and climate data. Lidar data provided substantial constraints on model estimates of carbon stocks and annual net ecosystem production (ANEP). Lidar-initialized model estimates of carbon stocks were within 5 per cent of the field estimates and accounted for a 44 per cent decrease in carbon stocks observed between minimum and maximum elevation at HBEF. Lidar-initialized model estimates of ANEP were in good agreement with recent field estimates. The study showed that a combination of lidar data and a height-structured ecosystem model can be a powerful tool for estimating forest carbon stocks and fluxes, even in complex mountainous environments. The study identified an important spatial scale for combining data on vegetation structure and models, notably the scale at which heterogeneity in environmental factors influences plant vital rates and other

  8. Constraining Daily-To-Annual Carbon Budgets in a Brackish Tidal Marsh in the San Francisco Bay Delta: Insights on Methane and Carbon Dioxide Fluxes from Eddy Covariance Measurements

    Science.gov (United States)

    Saraceno, J.; Anderson, F. E.; Knox, S.; Windham-Myers, L.; Bergamaschi, B. A.

    2016-12-01

    Carbon cycling in coastal wetlands is difficult to measure and model due to extremely dynamic atmospheric (vertical) and hydrologic (lateral) fluxes, as well as sensitivities to dynamic land- and ocean-based drivers. Whereas atmospheric carbon is sequestered in accreted carbon stocks over millennia to maintain balance with sea level rise, annual or seasonal carbon fluxes from tidal wetlands can become net negative or net positive, as key drivers of carbon cycling, such as inundation area, soil and air temperature and salinity change over short time periods. Few studies have documented the interannual variability in the net ecosystem carbon balance for tidal-driven ecosystems. Using the eddy covariance technique, we present 2.5 years (March 2014-September 2016) of net ecosystem exchanges (NEE) for CO2 and CH4 from a historic wetland (the National Estuarine Research Reserve's Rush Ranch) in the Suisun Marsh complex of San Francisco Bay, California, where salinity ranges from oligohaline to mesohaline. Preliminary estimates show that daily rates of CO2 NEE were approximately -15 gC m-2 d-1 during the peak growing season in the summer to +10 gC m-2 d-1 during the winter months. CH4 emissions, ranged from 0 to +30 mgC m-2 d-1, a small fraction of observed rates from neighboring freshwater marshes. We have also found that using standard parameters (e.g. temperature and radiation) in an artificial neural network approach to gap-fill missing fluxes and estimate random error uncertainty were insufficient, suggesting that daily and seasonal shifts in salinity, water levels, and plant community phenology may help to reduce uncertainty in estimated values of both CO2 and CH4 fluxes. An additional aspect of this study is to investigate the significance of carbon exported through tidal exchanges, especially considering that regional estimates of carbon accretion in the soils to be only 100 gC m-2. Here we will estimate the aquatic carbon flux using proxies for dissolved

  9. Coupling soil Carbon Fluxes, Soil Microbes, and High-Resolution Carbon Profiling in Permafrost Transitions

    Science.gov (United States)

    Anderson, C.; Stegen, J.; Bond-Lamberty, B. P.; Tfaily, M. M.; Huang, M.; Liu, Y.

    2015-12-01

    Microbial communities play a central role in the functioning of natural ecosystems by heavily influencing biogeochemical cycles. Understanding how shifts in the environment are tied to shifts in biogeochemical rates via changes in microbial communities is particularly relevant in high latitude terrestrial systems underlain by permafrost due to vast carbon stocks currently stored within thawing permafrost. There is limited understanding, however, of the interplay among soil-atmosphere CO2 fluxes, microbial communities, and SOM chemical composition. To address this knowledge gap, we leverage the distinct spatial transitions in permafrost-affected soils at the Caribou Poker Creek Research Watershed, a 104 km2 boreal watershed ~50 km north of Fairbanks, AK. We integrate a variety of data to gain new knowledge of the factors that govern observed patterns in the rates of soil CO2 fluxes associated with permafrost to non-permafrost transition zones. We show that nonlinearities in fluxes are influenced by depth to permafrost, tree stand structure, and soil C composition. Further, using 16S sequencing methods we explore microbial community assembly processes and their connection to CO2 flux across spatial scales, and suggest a path to more mechanistically link microbes to large-scale biogeochemical cycles. Lastly, we use the Community Land Model (CLM) to compare Earth System Model predictions of soil C cycling with empirical measurements. Deviations between CLM predictions and field observations of CO2 flux and soil C stocks will provide insight for how the model may be improved through inclusion of additional biotic (e.g., microbial community composition) and abiotic (e.g., organic carbon composition) features, which will be critical to improve the predictive power of climate models in permafrost-affected regions.

  10. Reviews and syntheses: An empirical spatiotemporal description of the global surface-atmosphere carbon fluxes: opportunities and data limitations

    Science.gov (United States)

    Zscheischler, Jakob; Mahecha, Miguel D.; Avitabile, Valerio; Calle, Leonardo; Carvalhais, Nuno; Ciais, Philippe; Gans, Fabian; Gruber, Nicolas; Hartmann, Jens; Herold, Martin; Ichii, Kazuhito; Jung, Martin; Landschützer, Peter; Laruelle, Goulven G.; Lauerwald, Ronny; Papale, Dario; Peylin, Philippe; Poulter, Benjamin; Ray, Deepak; Regnier, Pierre; Rödenbeck, Christian; Roman-Cuesta, Rosa M.; Schwalm, Christopher; Tramontana, Gianluca; Tyukavina, Alexandra; Valentini, Riccardo; van der Werf, Guido; West, Tristram O.; Wolf, Julie E.; Reichstein, Markus

    2017-08-01

    Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface-atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface-atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr-1, positive numbers are sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr-1), East Asia (1.6 ± 0.3 PgC yr-1), South Asia (0.3 ± 0

  11. Carbonyl Sulfide for Tracing Carbon Fluxes Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. Elliott [Univ. of California, Merced, CA (United States); Berry, Joseph A. [Carnegie Inst. of Science, Stanford, CA (United States); Billesbach, Dave [Univ. of Nebraska, Lincoln, NE (United States); Torn, Margaret S [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zahniser, Mark [Aerodyne Research, Inc., Billerica, MA (United States); Seibt, Ulrike [Univ. of California, Los Angeles, CA (United States); Maseyk, Kadmiel [Pierre and Marie Curie Univ., Paris (France)

    2016-04-01

    The April-June 2012 campaign was located at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site Central Facility and had three purposes. One goal was to demonstrate the ability of current instrumentation to correctly measure fluxes of atmospheric carbonyl sulfide (COS). The approach has been describe previously as a critical approach to advancing carbon cycle science1,2, but requires further investigation at the canopy scale to resolve ecosystem processes. Previous canopy-scale efforts were limited to data rates of 1Hz. While 1 Hz measurements may work in a few ecosystems, it is widely accepted that data rates of 10 to 20 Hz are needed to fully capture the exchange of traces gases between the atmosphere and vegetative canopy. A second goal of this campaign was to determine if canopy observations could provide information to help interpret the seasonal double peak in airborne observations at SGP of CO2 and COS mixing ratios. A third goal was to detect potential sources and sinks of COS that must be resolved before using COS as a tracer of gross primary productivity (GPP).

  12. Estimation of net ecosystem exchange at the Skukuza flux site, Kruger National Park, South Africa

    CSIR Research Space (South Africa)

    Nickless, A

    2011-03-01

    Full Text Available Ground-based remote sensing of atmospheric trace 43 gases in the tropics using FTIR-spectroscopy 3 SOIL AND VEGETATION: CARBON AND GREENHOUSE GAS EMISSIONS 53 IN AFRICA West Africa?s savannahs under change: integrated view 55 on positive... FLEGT Forest Law Enforcement Governance and Trade FMC fuel moisture content FRLF Free light fraction FRP fire radiative power FTIR-spectroscopy Fourier Transform Infra-red (FTIR) Spectroscopy GCMs General Circulation Models GEF Global...

  13. Carbon Fluxes in a Managed Landscape: Assessing the Drivers of Temporal and Spatial Variability in Flux Tower, MODIS and Forest Inventory Data of the Pacific Northwest

    Science.gov (United States)

    Wharton, S.; Bible, K.; Falk, M.; Paw U, K.

    2010-12-01

    This research focuses on the Wind Late Successional Reserve of Southern Washington where clear-cut logging over the past 100 years has created a fragmented landscape of coniferous forests that range in age from 0 to 500 years. In this study, we integrate several datasets to examine the environmental drivers of carbon exchange in this region across time and space. These sources include: (1) network of flux towers across a disturbance choronosequence, (2) MODIS Enhanced Vegetation Index, (3) aboveground net primary production (ANPP) from forest inventories, (4) and regional precipitation and air temperature measurements from the NOAA network of weather stations and PRISM reanalysis data. Net ecosystem exchange of carbon (NEE) has been measured at the Wind River Canopy Crane AmeriFlux site since 1998. The canopy crane is located in an old-growth forest composed of late seral Douglas-fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla). Two flux towers were erected in early seral stands to study the effects of silviculture on net ecosystem exchange. CO2 uptake at the old-growth stand is highest in the spring before bud break when air and soil temperatures and vapor pressure deficit are relatively low, and soil moisture and light levels are favorable for photosynthesis, while maximum CO2 uptake is observed two to three months later at the early seral stands and coincide with peak leaf area index. This CO2 pattern is driven by different water conserving strategies. A reduction in carbon exchange is observed at the old-growth forest when moisture becomes limiting and canopy conductance rates drop sharply after mid-morning in the summer. In contrast, inhibition in canopy conductance rates and CO2 exchange is not observed at the early seral stands until soil moisture levels become critically low at the very end of the summer. The regional MODIS data (200 km X 200 km area) from 2000-2008 show that annual variability in the Enhanced Vegetation Index (EVI) also

  14. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-01-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  15. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-14

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  16. Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks

    NARCIS (Netherlands)

    Papale, Dario; Black, T.A.; Carvalhais, Nuno; Cescatti, Alessandro; Chen, Jiquan; Jung, Martin; Kiely, Gerard; Lasslop, Gitta; Mahecha, Miguel D.; Margolis, Hank; Merbold, Lutz; Montagnani, Leonardo; Moors, Eddy; Olesen, J.E.; Reichstein, Markus; Tramontana, Gianluca; Gorsel, Van Eva; Wohlfahrt, Georg; Ráduly, Botond

    2015-01-01

    Empirical modeling approaches are frequently used to upscale local eddy covariance observations of carbon, water, and energy fluxes to regional and global scales. The predictive capacity of such models largely depends on the data used for parameterization and identification of input-output

  17. Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX

    Science.gov (United States)

    Martin, Patrick; van der Loeff, Michiel Rutgers; Cassar, Nicolas; Vandromme, Pieter; d'Ovidio, Francesco; Stemmann, Lars; Rengarajan, R.; Soares, Melena; González, Humberto E.; Ebersbach, Friederike; Lampitt, Richard S.; Sanders, Richard; Barnett, Bruce A.; Smetacek, Victor; Naqvi, S. Wajih A.

    2013-09-01

    closed eddy core in the Subantarctic Atlantic Ocean was fertilized twice with two tons of iron (as FeSO4), and the 300 km2 fertilized patch was studied for 39 days to test whether fertilization enhances downward particle flux into the deep ocean. Chlorophyll a and primary productivity doubled after fertilization, and photosynthetic quantum yield (FV/FM) increased from 0.33 to ≥0.40. Silicic acid (artificially fertilized bloom with very low diatom biomass. Net community production (NCP) inside the patch, estimated from O2:Ar ratios, averaged 21 mmol POC m-2 d-1, probably ±20%. 234Th profiles implied constant export of 6.3 mmol POC m-2 d-1 in the patch, similar to unfertilized waters. The difference between NCP and 234Th-derived export partly accumulated in the mixed layer and was partly remineralized between the mixed layer and 100 m. Neutrally buoyant sediment traps at 200 and 450 m inside and outside the patch caught mostly fertilization. Our data thus indicate intense flux attenuation between 100 and 200 m, and probably between the mixed layer and 100 m. We attribute the lack of fertilization-induced export to silicon limitation of diatoms and reprocessing of sinking particles by detritus feeders. Our data are consistent with the view that nitrate-rich but silicate-deficient waters are not poised for enhanced particle export upon iron addition.

  18. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years.

    Science.gov (United States)

    Ballantyne, A P; Alden, C B; Miller, J B; Tans, P P; White, J W C

    2012-08-02

    One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.

  19. Moist synoptic transport of carbon dioxide along midlatitude storm tracks, transport uncertainty, and implications for carbon dioxide flux estimation

    Science.gov (United States)

    Parazoo, Nicholas C.

    Mass transport along moist isentropic surfaces on baroclinic waves represents an important component of the atmospheric heat engine that operates between the equator and poles. This is also an important vehicle for tracer transport, and is correlated with ecosystem metabolism because large-scale baroclinicity and photosynthesis are both driven seasonally by variations in solar radiation. In this research, I pursue a dynamical framework for explaining atmospheric transport of CO2 by synoptic weather systems at middle and high latitudes. A global model of atmospheric tracer transport, driven by meteorological analysis in combination with a detailed description of surface fluxes, is used to create time varying CO2 distributions in the atmosphere. Simulated mass fluxes of CO2 are then decomposed into a zonal monthly mean component and deviations from the monthly mean in space and time. Mass fluxes of CO2 are described on moist isentropic surfaces to represent frontal transport along storm tracks. Forward simulations suggest that synoptic weather systems transport large amounts of CO2 north and south in northern mid-latitudes, up to 1 PgC month-1 during winter when baroclinic wave activity peaks. During boreal winter when northern plants respire, warm moist air, high in CO2, is swept upward and poleward along the east side of baroclinic waves and injected into the polar vortex, while cold dry air, low in CO 2, that had been transported into the polar vortex earlier in the year is advected equatorward. These synoptic eddies act to strongly reduce seasonality of CO2 in the biologically active mid-latitudes by 50% of that implied by local net ecosystem exchange while correspondingly amplifying seasonality in the Arctic. Transport along stormtracks is correlated with rising, moist, cloudy air, which systematically hides this CO2 transport from satellite observing systems. Meridional fluxes of CO2 are of comparable magnitude as surface exchange of CO2 in mid-latitudes, and

  20. Net change in carbon emissions with increased wood energy use in the United States

    Science.gov (United States)

    Prakash Nepal; David N. Wear; Kenneth E. Skog

    2014-01-01

    Use of wood biomass for energy results in carbon (C) emissions at the time of burning and alters C stocks on the land because of harvest, regrowth, and changes in land use or management. This study evaluates the potential effects of expanded woody biomass energy use (for heat and power) on net C emissions over time. A scenario with increased wood energy use is compared...

  1. Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo.

    Directory of Open Access Journals (Sweden)

    Philippe Saner

    Full Text Available Deforestation in the tropics is an important source of carbon C release to the atmosphere. To provide a sound scientific base for efforts taken to reduce emissions from deforestation and degradation (REDD+ good estimates of C stocks and fluxes are important. We present components of the C balance for selectively logged lowland tropical dipterocarp rainforest in the Malua Forest Reserve of Sabah, Malaysian Borneo. Total organic C in this area was 167.9 Mg C ha⁻¹±3.8 (SD, including: Total aboveground (TAGC: 55%; 91.9 Mg C ha⁻¹±2.9 SEM and belowground carbon in trees (TBGC: 10%; 16.5 Mg C ha⁻¹±0.5 SEM, deadwood (8%; 13.2 Mg C ha⁻¹±3.5 SEM and soil organic matter (SOM: 24%; 39.6 Mg C ha⁻¹±0.9 SEM, understory vegetation (3%; 5.1 Mg C ha⁻¹±1.7 SEM, standing litter (<1%; 0.7 Mg C ha⁻¹±0.1 SEM and fine root biomass (<1%; 0.9 Mg C ha⁻¹±0.1 SEM. Fluxes included litterfall, a proxy for leaf net primary productivity (4.9 Mg C ha⁻¹ yr⁻¹±0.1 SEM, and soil respiration, a measure for heterotrophic ecosystem respiration (28.6 Mg C ha⁻¹ yr⁻¹±1.2 SEM. The missing estimates necessary to close the C balance are wood net primary productivity and autotrophic respiration.Twenty-two years after logging TAGC stocks were 28% lower compared to unlogged forest (128 Mg C ha⁻¹±13.4 SEM; a combined weighted average mean reduction due to selective logging of -57.8 Mg C ha⁻¹ (with 95% CI -75.5 to -40.2. Based on the findings we conclude that selective logging decreased the dipterocarp stock by 55-66%. Silvicultural treatments may have the potential to accelerate the recovery of dipterocarp C stocks to pre-logging levels.

  2. Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink

    Directory of Open Access Journals (Sweden)

    A. Lohila

    2011-11-01

    Full Text Available Drainage for forestry purposes increases the depth of the oxic peat layer and leads to increased growth of shrubs and trees. Concurrently, the production and uptake of the greenhouse gases carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O change: due to the accelerated decomposition of peat in the presence of oxygen, drained peatlands are generally considered to lose peat carbon (C. We measured CO2 exchange with the eddy covariance (EC method above a drained nutrient-poor peatland forest in southern Finland for 16 months in 2004–2005. The site, classified as a dwarf-shrub pine bog, had been ditched about 35 years earlier. CH4 and N2O fluxes were measured at 2–5-week intervals with the chamber technique. Drainage had resulted in a relatively little change in the water table level, being on average 40 cm below the ground in 2005. The annual net ecosystem exchange was −870 ± 100 g CO2 m−2 yr−1 in the calendar year 2005, indicating net CO2 uptake from the atmosphere. The site was a small sink of CH4 (−0.12 g CH4 m−2 yr−1 and a small source of N2O (0.10 g N2O m−2 yr−1. Photosynthesis was detected throughout the year when the air temperature exceeded −3 °C. As the annual accumulation of C in the above and below ground tree biomass (175 ± 35 g C m−2 was significantly lower than the accumulation observed by the flux measurement (240 ± 30 g C m−2, about 65 g C m−2 yr−1 was likely to have accumulated as organic matter into the peat soil. This is a higher average accumulation rate than previously reported for natural northern peatlands, and the first time C accumulation has been shown by EC measurements to occur in a forestry-drained peatland. Our results suggest that forestry

  3. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Monique Y. [The University of Georgia Research Foundation, Athens, GA (United States)

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  4. Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural network

    DEFF Research Database (Denmark)

    Papale, D.; Black, T Andrew; Carvalhais, Nuno

    2015-01-01

    Empirical modeling approaches are frequently used to upscale local eddy covariance observations of carbon, water, and energy fluxes to regional and global scales. The predictive capacity of such models largely depends on the data used for parameterization and identification of input......-output relationships, while prediction for conditions outside the training domain is generally uncertain. In this work, artificial neural networks (ANNs) were used for the prediction of gross primary production (GPP) and latent heat flux (LE) on local and European scales with the aim to assess the portion...

  5. Inverse carbon dioxide flux estimates for the Netherlands

    NARCIS (Netherlands)

    Meesters, A. G. C. A.; Tolk, L. F.; Peters, W.; Hutjes, R. W. A.; Vellinga, O. S.; Elbers, J. A.; Vermeulen, A. T.; van der Laan, S.; Neubert, R. E. M.; Meijer, H. A. J.; Dolman, A. J.

    2012-01-01

    CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from concentration measurements at four towers, using an inverse model. The results are compared to direct CO2flux measurements by aircraft, for 6 flight tracks over the Netherlands, flown multiple times in each season.

  6. Inverse carbon dioxide flux estimates for the Netherlands

    NARCIS (Netherlands)

    Meesters, A.G.C.A.; Tolk, L.F.; Peters, W.; Hutjes, R.W.A.; Vellinga, O.S.; Elbers, J.A.; Vermeulen, A.T.; Laan, van der S.; Neubert, R.; Meijer, H.A.J.; Dolman, A.J.

    2012-01-01

    CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from concentration measurements at four towers, using an inverse model. The results are compared to direct CO2 flux measurements by aircraft, for 6 flight tracks over the Netherlands, flown multiple times in each

  7. Inverse carbon dioxide flux estimates for the Netherlands

    NARCIS (Netherlands)

    Meesters, A.G.C.A.; Tolk, L.F.; Peters, W.; Hutjes, R.W.A.; Vellinga, O.S.; Elbers, J.A.; Vermeulen, A.T.; van der Laan, S.; Neubert, R.E.M.; Meijer, H.A.J.; Dolman, A.J.

    2012-01-01

    [1] CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from concentration measurements at four towers, using an inverse model. The results are compared to direct CO2 flux measurements by aircraft, for 6 flight tracks over the Netherlands, flown

  8. Effect of resistant starch on net portal-drained viscera flux of glucose, volatile fatty acids, urea, and ammonia in growing pigs

    NARCIS (Netherlands)

    Meulen, van der J.; Bakker, G.C.M.; Bakker, J.G.M.; Visser, de H.; Jongbloed, A.W.; Everts, H.

    1997-01-01

    Net portal-drained viscera (PDV) flux of glucose, VFA, ammonia, and urea was determined in pigs fed diets with or without resistant starch. Diets consisted of 65% cornstarch (diet CS), 32.5% cornstarch and 32.5% raw potato starch (diet CPS), or 65% raw potato starch (diet PS); the remaining 35%

  9. Carbon dioxide flux from rice paddy soils in central China: effects of intermittent flooding and draining cycles.

    Science.gov (United States)

    Liu, Yi; Wan, Kai-yuan; Tao, Yong; Li, Zhi-guo; Zhang, Guo-shi; Li, Shuang-lai; Chen, Fang

    2013-01-01

    A field experiment was conducted to (i) examine the diurnal and seasonal soil carbon dioxide (CO(2)) fluxes pattern in rice paddy fields in central China and (ii) assess the role of floodwater in controlling the emissions of CO(2) from soil and floodwater in intermittently draining rice paddy soil. The soil CO(2) flux rates ranged from -0.45 to 8.62 µmol.m(-2).s(-1) during the rice-growing season. The net effluxes of CO(2) from the paddy soil were lower when the paddy was flooded than when it was drained. The CO(2) emissions for the drained conditions showed distinct diurnal variation with a maximum efflux observed in the afternoon. When the paddy was flooded, daytime soil CO(2) fluxes reversed with a peak negative efflux just after midday. In draining/flooding alternating periods, a sudden pulse-like event of rapidly increasing CO(2) efflux occured in response to re-flooding after draining. Correlation analysis showed a negative relation between soil CO(2) flux and temperature under flooded conditions, but a positive relation was found under drained conditions. The results showed that draining and flooding cycles play a vital role in controlling CO(2) emissions from paddy soils.

  10. ISLSCP II Carbon Dioxide Flux at Harvard Forest and Northern BOREAS Sites

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon dioxide flux and meteorological data for the Harvard Forest, MA (1992-95) and BOREAS Northern Study Area, Old Black Spruce (Alberta, Canada; 1994-95) FLUXNET...

  11. ISLSCP II Carbon Dioxide Flux at Harvard Forest and Northern BOREAS Sites

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Carbon dioxide flux and meteorological data for the Harvard Forest, MA (1992-95) and BOREAS Northern Study Area, Old Black Spruce (Alberta, Canada;...

  12. Study of water vapor, carbon dioxide and methane fluxes in mid-latitude prairie wetlands

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This proposal is for a research/management study that will provide urgently needed information on carbon dioxide, methane and energy fluxes from mid-latitude...

  13. CMS: Global Carbon Fluxes Associated with Livestock Feed and Emissions, 2000-2013

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides global annual carbon flux estimates, at 0.05-degree resolution, associated with livestock feed, intake, manure, manure management,...

  14. LBA-ECO LC-39 Modeled Carbon Flux from Deforestation, Mato Grosso, Brazil: 2000-2006

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains modeled estimates of carbon flux, biomass, and annual burning emissions across the Brazilian state of Mato Grosso from 2000-2006. The model,...

  15. LBA-ECO LC-39 Modeled Carbon Flux from Deforestation, Mato Grosso, Brazil: 2000-2006

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains modeled estimates of carbon flux, biomass, and annual burning emissions across the Brazilian state of Mato Grosso from 2000-2006....

  16. Modelling the impact of soil Carbonic Anhydrase on the net ecosystem exchange of OCS at Harvard forest using the MuSICA model

    Science.gov (United States)

    Launois, Thomas; Ogée, Jérôme; Commane, Roisin; Wehr, Rchard; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Wofsy, Steve; Zahniser, Mark; Wingate, Lisa

    2016-04-01

    The exchange of CO2 between the terrestrial biosphere and the atmosphere is driven by photosynthetic uptake and respiratory loss, two fluxes currently estimated with considerable uncertainty at large scales. Model predictions indicate that these biosphere fluxes will be modified in the future as CO2 concentrations and temperatures increase; however, it still unclear to what extent. To address this challenge there is a need for better constraints on land surface model parameterisations. Additional atmospheric tracers of large-scale CO2 fluxes have been identified as potential candidates for this task. In particular carbonyl sulphide (OCS) has been proposed as a complementary tracer of gross photosynthesis over land, since OCS uptake by plants is dominated by carbonic anhydrase (CA) activity, an enzyme abundant in leaves that catalyses CO2 hydration during photosynthesis. However, although the mass budget at the ecosystem is dominated by the flux of OCS into leaves, some OCS is also exchanged between the atmosphere and the soil and this component of the budget requires constraining. In this study, we adapted the process-based isotope-enabled model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of OCS within a forested ecosystem. This model was combined with 3 years (2011-2013) of in situ measurements of OCS atmospheric concentration profiles and fluxes at the Harvard Forest (Massachussets, USA) to test hypotheses on the mechanisms responsible for CA-driven uptake by leaves and soils as well as possible OCS emissions during litter decomposition. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem OCS flux. A sensitivity analysis on soil CA activity and soil OCS emission rates was also performed to quantify their impact on the vertical profiles of OCS inside the

  17. Carbonyl sulfide (COS) as a tracer to constrain surface carbon fluxes

    Science.gov (United States)

    Yakir, Dan; Berkelhammer, Max; Miller, John; Montzka, Steve; Chen, Huilin

    2014-05-01

    The potential use of COS as tracer of CO2 flux into leaves associated gross primary productivity (GPP), and separately from CO2 flux associated with ecosystem respiration (Re), stimulate research on COS-CO2 interactions during biosphere-atmosphere gas exchange. This is based on the observation that COS co-diffuse with CO2 into vegetation, but without an emission outflux. Recent advances in laser spectroscopy and the availability of high precision field deployable quantum cascade laser systems resulted in accumulation of new results from laboratory-scale control experiments, field studies, atmospheric measurements and, in turn, large scale modeling. These studies demonstrate the potential in the COS application to carbon cycle research, but also highlight key uncertainties, such as associated with soil uptake of COS. Soil uptake is based on dissolution and hydrolysis in soil moisture, which can be enhanced by carbonic anhydrase (CA) that can exist in soil and litter and microorganisms. Our recent in-situ measurements over the diurnal cycle and across a range of ecosystems and tree species supported the idea of a robust COS to CO2 uptake ratio of near 1.6, and indicated that soils act mostly as a relatively small COS sink, equivalent to 2-6% of canopy uptake during peak activity period. The results also indicated that small soil net COS emission can be observed under certain conditions. The importance of CA activities has been demonstrated in soils in CO2 studies using stable isotopes (18O), and for COS in leaves using anti-sense lines, but quantifying its importance for soil COS uptake is still lacking. Measurements in canopy air showed that the daily co-variation between COS and CO2 reflects the interplay among the effects of soil, leaf and atmospheric boundary layer dynamics. Further extending observations to background tropospheric measurements of the seasonal drawdown in CO2 and in COS demonstrates that comparing the drawdowns of COS, CO2 and its 13C, could

  18. Complementarity of flux- and biometric-based data to constrain parameters in a terrestrial carbon model

    Directory of Open Access Journals (Sweden)

    Zhenggang Du

    2015-03-01

    Full Text Available To improve models for accurate projections, data assimilation, an emerging statistical approach to combine models with data, have recently been developed to probe initial conditions, parameters, data content, response functions and model uncertainties. Quantifying how many information contents are contained in different data streams is essential to predict future states of ecosystems and the climate. This study uses a data assimilation approach to examine the information contents contained in flux- and biometric-based data to constrain parameters in a terrestrial carbon (C model, which includes canopy photosynthesis and vegetation–soil C transfer submodels. Three assimilation experiments were constructed with either net ecosystem exchange (NEE data only or biometric data only [including foliage and woody biomass, litterfall, soil organic C (SOC and soil respiration], or both NEE and biometric data to constrain model parameters by a probabilistic inversion application. The results showed that NEE data mainly constrained parameters associated with gross primary production (GPP and ecosystem respiration (RE but were almost invalid for C transfer coefficients, while biometric data were more effective in constraining C transfer coefficients than other parameters. NEE and biometric data constrained about 26% (6 and 30% (7 of a total of 23 parameters, respectively, but their combined application constrained about 61% (14 of all parameters. The complementarity of NEE and biometric data was obvious in constraining most of parameters. The poor constraint by only NEE or biometric data was probably attributable to either the lack of long-term C dynamic data or errors from measurements. Overall, our results suggest that flux- and biometric-based data, containing different processes in ecosystem C dynamics, have different capacities to constrain parameters related to photosynthesis and C transfer coefficients, respectively. Multiple data sources could also

  19. Can Carbon Fluxes Explain Differences in Soil Organic Carbon Storage under Aspen and Conifer Forest Overstories?

    Directory of Open Access Journals (Sweden)

    Antra Boča

    2017-04-01

    Full Text Available Climate- and management-induced changes in tree species distributions are raising questions regarding tree species-specific effects on soil organic carbon (SOC storage and stability. Quaking aspen (Populus tremuloides Michx. is the most widespread tree species in North America, but fire exclusion often promotes the succession to conifer dominated forests. Aspen in the Western US have been found to store more SOC in the mineral soil than nearby conifers, but we do not yet fully understand the source of this differential SOC accumulation. We measured total SOC storage (0–50 cm, characterized stable and labile SOC pools, and quantified above- and belowground litter inputs and dissolved organic carbon (DOC fluxes during snowmelt in plots located in N and S Utah, to elucidate the role of foliage vs. root detritus in SOC storage and stabilization in both ecosystems. While leaf litterfall was twice as high under aspen as under conifers, input of litter-derived DOC with snowmelt water was consistently higher under conifers. Fine root (<2 mm biomass, estimated root detritus input, and root-derived DOC fluxes were also higher under conifers. A strong positive relationship between root and light fraction C content suggests that root detritus mostly fueled the labile fraction of SOC. Overall, neither differences in above- and belowground detritus C inputs nor in detritus-derived DOC fluxes could explain the higher and more stable SOC pools under aspen. We hypothesize that root–microbe–soil interactions in the rhizosphere are more likely to drive these SOC pool differences.

  20. Evaluation of statistical protocols for quality control of ecosystem carbon dioxide fluxes

    Science.gov (United States)

    Jorge F. Perez-Quezada; Nicanor Z. Saliendra; William E. Emmerich; Emilio A. Laca

    2007-01-01

    The process of quality control of micrometeorological and carbon dioxide (CO2) flux data can be subjective and may lack repeatability, which would undermine the results of many studies. Multivariate statistical methods and time series analysis were used together and independently to detect and replace outliers in CO2 flux...

  1. Forest disturbances trigger erosion controlled fluxes of nitrogen, phosphorus and dissolved carbon

    Science.gov (United States)

    Marek Matyjasik; Gretchen Moisen; Todd A. Schroeder; Tracy Frescino; Michael Hernandez

    2015-01-01

    The initial phase of the research that addressed correlation between annual forest disturbance maps produced from LANDSAT images and water quality and flow data indicate that forest disturbances in conjunction with intense atmospheric precipitation commonly trigger fluxes of several chemical constituents, such as nitrogen, phosphorus carbon. These fluxes appear to be...

  2. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up.

    Science.gov (United States)

    Kelemen, Peter B; Manning, Craig E

    2015-07-28

    Carbon fluxes in subduction zones can be better constrained by including new estimates of carbon concentration in subducting mantle peridotites, consideration of carbonate solubility in aqueous fluid along subduction geotherms, and diapirism of carbon-bearing metasediments. Whereas previous studies concluded that about half the subducting carbon is returned to the convecting mantle, we find that relatively little carbon may be recycled. If so, input from subduction zones into the overlying plate is larger than output from arc volcanoes plus diffuse venting, and substantial quantities of carbon are stored in the mantle lithosphere and crust. Also, if the subduction zone carbon cycle is nearly closed on time scales of 5-10 Ma, then the carbon content of the mantle lithosphere + crust + ocean + atmosphere must be increasing. Such an increase is consistent with inferences from noble gas data. Carbon in diamonds, which may have been recycled into the convecting mantle, is a small fraction of the global carbon inventory.

  3. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    Directory of Open Access Journals (Sweden)

    M. Zhang

    2010-02-01

    Full Text Available Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS and a subtropical evergreen broad-leaved forest at Dinghushan (DHS, based on the flux data obtained during June–August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max at CBS under cloudy skies during mid-growing season (from June to August increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP and greater increase in ecosystem respiration (Re at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in

  4. Net Community Metabolism and Seawater Carbonate Chemistry Scale Non-intuitively with Coral Cover

    Directory of Open Access Journals (Sweden)

    Heather N. Page

    2017-05-01

    Full Text Available Coral cover and reef health have been declining globally as reefs face local and global stressors including higher temperature and ocean acidification (OA. Ocean warming and acidification will alter rates of benthic reef metabolism (i.e., primary production, respiration, calcification, and CaCO3 dissolution, but our understanding of community and ecosystem level responses is limited in terms of functional, spatial, and temporal scales. Furthermore, dramatic changes in coral cover and benthic metabolism could alter seawater carbonate chemistry on coral reefs, locally alleviating or exacerbating OA. This study examines how benthic metabolic rates scale with changing coral cover (0–100%, and the subsequent influence of these coral communities on seawater carbonate chemistry based on mesocosm experiments in Bermuda and Hawaii. In Bermuda, no significant differences in benthic metabolism or seawater carbonate chemistry were observed for low (40% and high (80% coral cover due to large variability within treatments. In contrast, significant differences were detected between treatments in Hawaii with benthic metabolic rates increasing with increasing coral cover. Observed increases in daily net community calcification and nighttime net respiration scaled proportionally with coral cover. This was not true for daytime net community organic carbon production rates, which increased the most between 0 and 20% coral cover and then less so between 20 and 100%. Consequently, diel variability in seawater carbonate chemistry increased with increasing coral cover, but absolute values of pH, Ωa, and pCO2 were not significantly different during daytime. To place the results of the mesocosm experiments into a broader context, in situ seawater carbon dioxide (CO2 at three reef sites in Bermuda and Hawaii were also evaluated; reefs with higher coral cover experienced a greater range of diel CO2 levels, complementing the mesocosm results. The results from this study

  5. Assessment of Carbon Flux and Soil Moisture in Wetlands Applying Sentinel-1 Data

    Directory of Open Access Journals (Sweden)

    Katarzyna Dabrowska-Zielinska

    2016-09-01

    Full Text Available The objectives of the study were to determine the spatial rate of CO2 flux (Net Ecosystem Exchange and soil moisture in a wetland ecosystem applying Sentinel-1 IW (Interferometric Wide data of VH (Vertical Transmit/Horizontal Receive—cross polarization and VV (Vertical Transmit/Vertical Receive—like polarization polarization. In-situ measurements of carbon flux, soil moisture, and LAI (Leaf Area Index were carried out over the Biebrza Wetland in north-eastern Poland. The impact of soil moisture and LAI on backscattering coefficient (σ° calculated from Sentinel-1 data showed that LAI dominates the influence on σ° when soil moisture is low. The models for soil moisture have been derived for wetland vegetation habitat types applying VH polarization (R2 = 0.70 to 0.76. The vegetation habitats: reeds, sedge-moss, sedges, grass-herbs, and grass were classified using combined one Landsat 8 OLI (Operational Land Imager and three TerraSAR-X (TSX ScanSAR VV data. The model for the assessment of Net Ecosystem Exchange (NEE has been developed based on the assumption that soil moisture and biomass represented by LAI have an influence on it. The σ° VH and σ° VV describe soil moisture and LAI, and have been the input to the NEE model. The model, created for classified habitats, is as follows: NEE = f (σ° Sentinel-1 VH, σ° Sentinel-1 VV. Reasonably good predictions of NEE have been achieved for classified habitats (R2 = 0.51 to 0.58. The developed model has been used for mapping spatial and temporal distribution of NEE over Biebrza wetland habitat types. Eventually, emissions of CO2 to the atmosphere (NEE positive has been noted when soil moisture (SM and biomass were low. This study demonstrates the importance of the capability of Sentinel-1 microwave data to calculate soil moisture and estimate NEE with all-weather acquisition conditions, offering an important advantage for frequent wetlands monitoring.

  6. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses.

    Science.gov (United States)

    S. R. Saleska; S. D. Miller; D. M. Matross; M. L. Goulden; S. C. Wofsy; H. R. da Rocha; P. B. de Camargo; P. Crill; B. C. Daube; H. C. de Freitas; L. Hutyra; M. Keller; V. Kirchhoff; M. Menton; J. W. Munger; H. E. Pyle; A. H. Rice; H. Silva

    2003-01-01

    The net ecosystem exchange of carbon dioxide was measured by eddy covariance methods for 3 years in two old-growth forest sites near Santarém, Brazil. Carbon was lost in the wet season and gained in the dry season, which was opposite to the seasonal cycles of both tree growth and model predictions. The 3-year average carbon loss was 1.3 (confidence...

  7. In vivo modulation of rat distal tubule net HCO3 flux by VIP, isoproterenol, angiotensin II, and ADH.

    Science.gov (United States)

    Levine, D Z; Iacovitti, M; Buckman, S; Harrison, V

    1994-06-01

    To examine the in vivo effects of agonists reported to influence bicarbonate flux (JtCO2), microperfusion experiments were carried out on distal tubules of normally fed or overnight-fasted rats. As we previously reported, distal tubules from fed rats reabsorbed no bicarbonate, whereas overnight-fasted rats consistently reabsorbed bicarbonate (JtCO2 10 +/- 3 pmol.min-1.mm-1; P < 0.01). Vasoactive intestinal peptide and isoproterenol infused intravenously (7.3 and 4.0 micrograms.kg-1.h-1, respectively) in fasted rats suppressed JtCO2 and, in the case of vasoactive intestinal peptide, elicited net bicarbonate secretion (JtCO2 -10 +/- 2 and -4 +/- 4 pmol.min-1.mm-1, respectively). In fed rats, angiotensin II infused at a rate of 1.2 micrograms.kg-1.h-1 stimulated bicarbonate reabsorption (JtCO2 16 +/- 3 pmol.min-1.mm-1), while antidiuretic hormone infused at 0.024 micrograms.kg-1.h-1 elicited a similar response (17 +/- 4 pmol.min-1.mm-1), both values being significantly different from control. These results, therefore, demonstrate for the first time that these agonists can modulate JtCO2 at the distal tubule site in vivo and therefore may be potential regulators of systemic acid-base balance.

  8. Fluxes of particulate organic carbon in the East China Sea in summer

    Directory of Open Access Journals (Sweden)

    C.-C. Hung

    2013-10-01

    Full Text Available To understand carbon cycling in marginal seas better, particulate organic carbon (POC concentrations, POC fluxes and primary production (PP were measured in the East China Sea (ECS in summer 2007. Higher concentrations of POC were observed in the inner shelf, and lower POC values were found in the outer shelf. Similar to POC concentrations, elevated uncorrected POC fluxes (720–7300 mg C m−2 d−1 were found in the inner shelf, and lower POC fluxes (80–150 mg C m−2 d−1 were in the outer shelf, respectively. PP values (~ 340–3380 mg C m−2 d−1 had analogous distribution patterns to POC fluxes, while some of PP values were significantly lower than POC fluxes, suggesting that contributions of resuspended particles to POC fluxes need to be appropriately corrected. A vertical mixing model was used to correct effects of bottom sediment resuspension, and the lowest and highest corrected POC fluxes were in the outer shelf (58 ± 33 mg C m−2 d−1 and the inner shelf (785 ± 438 mg C m−2 d−1, respectively. The corrected POC fluxes (486 to 785 mg C m−2 d−1 in the inner shelf could be the minimum value because we could not exactly distinguish the effect of POC flux from Changjiang influence with turbid waters. The results suggest that 27–93% of the POC flux in the ECS might be from the contribution of resuspension of bottom sediments rather than from the actual biogenic carbon sinking flux. While the vertical mixing model is not a perfect model to solve sediment resuspension because it ignores biological degradation of sinking particles, Changjiang plume (or terrestrial inputs and lateral transport, it makes significant progress in both correcting the resuspension problem and in assessing a reasonable quantitative estimate of POC flux in a marginal sea.

  9. Effects of management of ecosystem carbon pools and fluxes in grassland ecosystems

    Science.gov (United States)

    Ryals, R.; Silver, W. L.

    2010-12-01

    Grasslands represent a large land-use footprint and have considerable potential to sequester carbon (C) in soil. Climate policies and C markets may provide incentives for land managers to pursue strategies that optimize soil C storage, yet we lack robust understanding of C sequestration in grasslands. Previous research has shown that management approaches such as organic amendments or vertical subsoiling can lead to larger soil C pools. These management approaches can both directly and indirectly affect soil C pools. We used well-replicated field experiments to explore the effects of these management strategies on ecosystem C pools and fluxes in two bioclimatic regions of California (Sierra Foothills Research and Extension Center (SFREC) and Nicasio Ranch). Our treatments included an untreated control, compost amendments, plowed (vertical subsoil), and compost + plow. The experiment was conducted over two years allowing us to compare dry (360 mm) and average (632 mm) rainfall conditions. Carbon dioxide (CO2) fluxes were measured weekly using a LI-8100 infrared gas analyzer. Methane (CH4) and nitrous oxide (N2O) fluxes were measured monthly using static flux chambers. Aboveground and belowground biomass were measured at the end of the growing season as an index of net primary productivity (NPP) in the annual plant dominated system. Soil moisture and temperature were measured continuously and averaged on hourly and daily timescales. Soil organic C and N concentrations were measured prior to the application of management treatments and at the ends of each growing season. Soils were collected to a 10 cm depth in year one and at four depth increments (0-10, 10-30, 30-50, and 50-100 cm) in year two. Soil C and N concentrations were converted to content using bulk density values for each plot. During both growing seasons, soil respiration rates were higher in the composted plots and lower in the plowed plots relative to controls at both sites. The effects on C loss via

  10. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Science.gov (United States)

    Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-11-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the

  11. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape.

    Science.gov (United States)

    Helbig, Manuel; Chasmer, Laura E; Desai, Ankur R; Kljun, Natascha; Quinton, William L; Sonnentag, Oliver

    2017-08-01

    In the sporadic permafrost zone of northwestern Canada, boreal forest carbon dioxide (CO2 ) fluxes will be altered directly by climate change through changing meteorological forcing and indirectly through changes in landscape functioning associated with thaw-induced collapse-scar bog ('wetland') expansion. However, their combined effect on landscape-scale net ecosystem CO2 exchange (NEELAND ), resulting from changing gross primary productivity (GPP) and ecosystem respiration (ER), remains unknown. Here, we quantify indirect land cover change impacts on NEELAND and direct climate change impacts on modeled temperature- and light-limited NEELAND of a boreal forest-wetland landscape. Using nested eddy covariance flux towers, we find both GPP and ER to be larger at the landscape compared to the wetland level. However, annual NEELAND (-20 g C m(-2) ) and wetland NEE (-24 g C m(-2) ) were similar, suggesting negligible wetland expansion effects on NEELAND . In contrast, we find non-negligible direct climate change impacts when modeling NEELAND using projected air temperature and incoming shortwave radiation. At the end of the 21st century, modeled GPP mainly increases in spring and fall due to reduced temperature limitation, but becomes more frequently light-limited in fall. In a warmer climate, ER increases year-round in the absence of moisture stress resulting in net CO2 uptake increases in the shoulder seasons and decreases during the summer. Annually, landscape net CO2 uptake is projected to decline by 25 ± 14 g C m(-2) for a moderate and 103 ± 38 g C m(-2) for a high warming scenario, potentially reversing recently observed positive net CO2 uptake trends across the boreal biome. Thus, even without moisture stress, net CO2 uptake of boreal forest-wetland landscapes may decline, and ultimately, these landscapes may turn into net CO2 sources under continued anthropogenic CO2 emissions. We conclude that NEELAND changes are more likely to be driven by

  12. Carbon and water fluxes above a cacao plantation in Sulawesi, Indonesia

    Science.gov (United States)

    Falk, U.; Ibrom, A.

    2003-04-01

    and June 2002 until now eddy-covariance measurements have been performed above a Cacao plantation in Nopu measuring time series of water vapour, CO2, air temperature, three-dimensional wind vector, photosyntetic active radiation and the surface temperature of the Cacao canopy at 10 Hz. Additionally, net radiation balance and soil heat fluxes have been measured. In order to assess the carbon input caused by the humans living in the ecosystem, a mapping of the site area has been carried out, including investigations of consumption of fire wood and use of machines, like generators for example. In order to obtain the energy balance equation of the canopy surface, also the radiation balance and the heat flux into the canopy have to be evaluated.

  13. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jacques, D.; Jessen, S.

    2014-01-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying mechan...

  14. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys

    Science.gov (United States)

    Andrew T. Hudak; Eva K. Strand; Lee A. Vierling; John C. Byrne; Jan U. H. Eitel; Sebastian Martinuzzi; Michael J. Falkowski

    2012-01-01

    Sound forest policy and management decisions to mitigate rising atmospheric CO2 depend upon accurate methodologies to quantify forest carbon pools and fluxes over large tracts of land. LiDAR remote sensing is a rapidly evolving technology for quantifying aboveground biomass and thereby carbon pools; however, little work has evaluated the efficacy of repeat LiDAR...

  15. Spatial distribution of regional whole tree carbon stocks and fluxes of forests in Europe

    NARCIS (Netherlands)

    Schelhaas, M.J.; Nabuurs, G.J.

    2001-01-01

    This report presents carbon stocks and fluxes of the whole-tree biomass of European forests and other wooded land, distinguished into coniferous, deciduous and mixed forests. The results are presented at the European, the national and (where possible)the regional level. Results concerning carbon

  16. Spontaneous synthesis of carbon nanowalls, nanotubes and nanotips using high flux density plasmas

    NARCIS (Netherlands)

    Bystrov, K.; M. C. M. van de Sanden,; Arnas, C.; Marot, L.; Mathys, D.; Liu, F.; L.K. Xu,; X.B. Li,; A.V. Shalpegin,; De Temmerman, G.

    2014-01-01

    We have investigated the formation of various carbon nanostructures using extreme plasma fluxes up to four orders of magnitude larger than in conventional plasma-enhanced chemical vapor deposition processing. Carbon nanowalls, multi-wall nanotubes, spherical nanoparticles and nanotips are among the

  17. Analysis of carbon dioxide, water vapour and energy fluxes over an ...

    Indian Academy of Sciences (India)

    temperate grassland ecosystem; Bound.-Layer Meteorol. 52 135–149. Mahrt L and Dean V 2002 Relationship of area-averaged carbon dioxide and water vapour fluxes to atmospheric variables; Agric. For. Meteor. 112 195–202. Ohtaki E 1984 Application of an infrared carbon dioxide and humidity instrument to studies of ...

  18. Spatial distribution of young forests and carbon fluxes within recent disturbances in Russia.

    Science.gov (United States)

    Loboda, Tatiana V; Chen, Dong

    2017-01-01

    Forest stand age plays a major role in regulating carbon fluxes in boreal and temperate ecosystems. Young boreal forests represent a relatively small but persistent source of carbon to the atmosphere over 30 years after disturbance, while temperate forests switch from a substantial source over the first 10 years to a notable sink until they reach maturity. Russian forests are the largest contiguous forest belt in the world that accounts for 17% of the global forest cover; however, despite its critical role in controlling global carbon cycle, little is known about spatial patterns of young forest distribution across Russia as a whole, particularly before the year 2000. Here, we present a map of young (0-27 years of age) forests, where 12- to 27-year-old forests were modeled from the single-date 500 m satellite record and augmented with the 0- to 11-year-old forest map aggregated from the 30 m resolution contemporary record between 2001 and 2012. The map captures the distribution of forests with the overall accuracy exceeding 85% within three largest bioclimatic vegetation zones (northern, middle, and southern taiga), although mapping accuracy for disturbed classes was generally low (the highest of 31% for user's and producer's accuracy for the 12-27 age class and the maximum of 74% for user's and 32% for producer's accuracy for the 0-11 age class). The results show that 75.5 ± 17.6 Mha (roughly 9%) of Russian forests were younger than 30 years of age at the end of 2012. The majority of these 47 ± 4.7 Mha (62%) were distributed across the middle taiga bioclimatic zone. Based on the published estimates of net ecosystem production (NEP) and the produced map of young forests, this study estimates that young Russian forests represent a total sink of carbon at the rate of 1.26 Tg C yr-1 . © 2016 John Wiley & Sons Ltd.

  19. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John B.; Tans, Pieter P.; Conway, Thomas J. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Climate Monitoring and Diagnostics Laboratory; White, James W.C.; Vaughn, Bruce W. [Univ. of Colorado, Boulder, CO (United States). Inst. for Arctic and Alpine Research

    2003-04-01

    The {sup 13}C/{sup 12}C ratio in atmospheric carbon dioxide has been measured in samples taken in the NOAA/CMDL network since 1991. By examining the relationship between weekly anomalies in {sup 13}C and CO{sub 2} at continental sites in the network, we infer temporal and spatial values for the isotopic signature of terrestrial CO{sub 2} fluxes. We can convert these isotopic signatures to values of discrimination if we assume the atmospheric starting point for photosynthesis. The average discrimination in the Northern Hemisphere between 30 and 50 deg N is calculated to be 16.6 {+-} 0.2 per mil. In contrast to some earlier modeling studies, we find no strong latitudinal gradient in discrimination. However, we do observe that discrimination in Eurasia is larger than in North America, which is consistent with two modeling studies. We also observe a possible trend in the North American average of discrimination toward less discrimination. There is no apparent trend in the Eurasian average or at any individual sites. However, there is interannual variability on the order of 2 per mil at several sites and regions. Finally, we calculate the northern temperate terrestrial CO{sub 2} flux replacing our previous discrimination values of about 18 per mil with the average value of 16.6 calculated in this study. We find this enhances the terrestrial sink by about 0.4 GtC/yr.

  20. Hydrological impacts on methane and carbon dioxide fluxes of hyperseasonal Cerrado forests of the Northern Pantanal, Mato Grosso, Brazil.

    Science.gov (United States)

    Vourlitis, G. L.; Dalmagro, H. J.; Arruda, P. H. Z. D.; Lathuilliere, M. J.; Borges Pinto, O.; Couto, E. G.; Nogueira, J. D. S.; Johnson, M. S.

    2016-12-01

    Wetlands have a great potential for carbon (C) storage because frequent waterlogging can inhibit microbial respiration. However, waterlogging can also promote methane (CH4) production, which reduces ecosystem C sequestration. Unfortunately, the C storage dynamics of seasonally flooded (hyperseasonal) tropical forests are poorly understood even though the large C stocks, warm temperature, and prolonged flooding have the potential to cause high rates of CO2 storage and CH4 emission. Thus, the aim of this study was to provide a continuous ecosystem-level quantification of CO2 and CH4 fluxes and carbon balance for a hyperseasonal forest in the Brazilian Pantanal using eddy covariance. Trace gas fluxes were measured using an eddy covariance system installed on a 28 m tall tower. The study area was chosen because it represents approximately 12% of the total area of the Pantanal, which consists of seasonal floodplains with an annual flood pulse that results from an intense rainy season (October to April) that is followed by an intense dry season (May to September). The measurements were performed over two flood cycles and an intervening drought period between the years 2014 and 2015. In 2015 the study area was flooded for 190 days, which was 22 days longer than in 2014. Mean (± SD) rates of CH4 flux during the 2014 and 2015 flooded period were 0.091 ± 0.04 µmol m-2 s-1 and 0.118 ± 0.04 µmol m-2 s-1, respectively, and almost zero (0.001 ± 0.0001 µmol m-2 s-1) during 2015 dry season. In contrast, mean CO2 flux rates during the flooded period were -1.58 and -1.50 µmol m-2 s-1 for 2014 and 2015, respectively, showing the net ecosystem CO2 uptake, while during the dry season, the forest was a net source of CO2 to the atmosphere of on average 0.73 µmol m-2 s-1. Total wet season carbon balance (CO2 + CH4) was virtually identical in 2014 and 2015 (ca. -255 gC m-2) even though the 2015 flood period was longer; however, the ecosystem lost 139 gC m-2 during the dry period

  1. Carbon Dioxide Fluxes and Their Environmental Controls in a Riparian Forest within the Hyper-Arid Region of Northwest China

    Directory of Open Access Journals (Sweden)

    Xiaohong Ma

    2017-10-01

    Full Text Available Hyper-arid regions are expected to undergo climatic change, but only a few research works have so far been conducted on the dynamics of carbon dioxide (CO2 fluxes and their consequent responses to various bioclimatic factors, which is mainly attributable to a limited set of flux observations. In this study, the CO2 fluxes exchanged between the forest and the atmosphere have been measured continuously by the eddy covariance approach from June 2013 to December 2016 in a riparian forest, which is a primary body of natural oases located within the lower reaches of inland rivers in China. The present results revealed that the climatic conditions characterized by relatively high mean air temperatures (Ta with fluctuating annual precipitation (P during the prescribed study periods were comparable to the historical mean value. The annual net ecosystem productivity (NEP ranged from approximately 278 g C m−2 year−1 to 427 g C m−2 year−1, with a mean value of 334 g C m−2 year−1. The mean annual ecosystem respiration (Re and the gross primary productivity (GPP were found to be 558 and 892 g C m−2 year−1, respectively. The results also ascertained that the high inter-annual variations in NEP were attributable to Re rather than to GPP, and this result was driven primarily by Ta and the groundwater depth under similar eco-physiological processes. In addition, the CO2 fluxes were also strongly correlated with the soil temperature and photosynthetically active radiation for the present study site. In conclusion, the desert riparian forest is a considerably significant carbon sink, particularly in the hyper-arid regions.

  2. Hysteretic Behavior of Tubular Steel Braces Having Carbon Fiber Reinforced Polymer Reinforcement Around End Net Sections

    Directory of Open Access Journals (Sweden)

    Cem Haydaroğlu

    2015-12-01

    Full Text Available This study presents an experimental investigation into the seismic retrofit of tubular steel braces using carbon fiber reinforced polymer (CFRP members. CFRP retrofitting of net sections for compact tubes are proposed for delaying potential local net section failure. A total of almost full-scale three (TB-1, TB-2, and TB-3 compact steel tubular specimens were designed per AISC specifications, constructed, and cyclically tested to fracture. Retrofitted braces, when compared to the reference specimen, developed fuller hysteretic curves. Increase in cumulative hysteretic energy dissipation and the elongation in fracture life in the specimen retrofitted with CFRP plates and CFRP sheet wraps at net sections are observed during testing. This resulted in a maximum of 82.5% more dissipated energy for compact tube specimens. Also, this retrofit provided a longer experimental fracture life (maximum 59% more. Due to fracture initiation during the last cycles, significant reductions in strength and stiffness have been obtained. No significant change (maximum 10% in the brace stiffness was observed, which could be desirable in seismic retrofit applications. Pushover analysis per FEMA 356 for the bare specimen shows that FEMA does not represent actual brace behavior in the compression side although pushover and experimental results are in good agreement in the tension side.

  3. Spatiotemporal variability in carbon exchange fluxes across the Sahel

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Fensholt, Rasmus; Cappelaere, Bernard

    2016-01-01

    Semi-arid regions play an increasingly important role as a sink within the global carbon (C) cycle and is the main biome driving inter-annual variability in carbon dioxide (CO2) uptake by terrestrial ecosystems. This indicates the need for detailed studies of spatiotemporal variability in C cycling...

  4. Roles of climate, vegetation and soil in regulating the spatial variations in ecosystem carbon dioxide fluxes in the Northern Hemisphere.

    Science.gov (United States)

    Chen, Zhi; Yu, Guirui; Ge, Jianping; Wang, Qiufeng; Zhu, Xianjin; Xu, Zhiwei

    2015-01-01

    Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP), annual ecosystem respiration (ARE), and annual net ecosystem production (ANEP)). Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P 0.05) in the Northern Hemisphere. The climate and vegetation together explained 60% and 58% of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation) could account for 45-47% of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75%. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances) is necessary.

  5. Roles of climate, vegetation and soil in regulating the spatial variations in ecosystem carbon dioxide fluxes in the Northern Hemisphere.

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    Full Text Available Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP, annual ecosystem respiration (ARE, and annual net ecosystem production (ANEP. Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P 0.05 in the Northern Hemisphere. The climate and vegetation together explained 60% and 58% of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation could account for 45-47% of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75%. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances is necessary.

  6. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin

    Science.gov (United States)

    Zeng, Yujin; Xie, Zhenghui; Liu, Shuang

    2017-02-01

    Irrigation, which constitutes ˜ 70 % of the total amount of freshwater consumed by the human population, is significantly impacting land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM4.5) with an active crop model, two high-resolution (˜ 1 km) simulations investigating the effects of irrigation on latent heat (LH), sensible heat (SH), and carbon fluxes (or net ecosystem exchange, NEE) from land to atmosphere in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity of the developed models to reproduce ecological and hydrological processes. The results revealed that the effects of irrigation on LH and SH are strongest during summer, with a LH increase of ˜ 100 W m-2 and a SH decrease of ˜ 60 W m-2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate is below 5 mm day-1, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm day-1, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC m-2 day-1, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by ˜ 0.8 gC m-2 day-1. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH, and NEE.

  7. Effect of carbon and nitrogen addition on nitrous oxide and carbon dioxide fluxes from thawing forest soils

    Science.gov (United States)

    Haohao, Wu; Xingkai, Xu; Cuntao, Duan; TuanSheng, Li; Weiguo, Cheng

    2017-07-01

    Packed soil-core incubation experiments were done to study the effects of carbon (glucose, 6.4 g C m-2) and nitrogen (NH4Cl and KNO3, 4.5 g N m-2) addition on nitrous oxide (N2O) and carbon dioxide (CO2) fluxes during thawing of frozen soils under two forest stands (broadleaf and Korean pine mixed forest and white birch forest) with two moisture levels (55 and 80% water-filled pore space). With increasing soil moisture, the magnitude and longevity of the flush N2O flux from forest soils was enhanced during the early period of thawing, which was accompanied by great NO3--N consumption. Without N addition, the glucose-induced cumulative CO2 fluxes ranged from 9.61 to 13.49 g CO2-C m-2, which was larger than the dose of carbon added as glucose. The single addition of glucose increased microbial biomass carbon but slightly affected soil dissolved organic carbon pool. Thus, the extra carbon released upon addition of glucose can result from the decomposition of soil native organic carbon. The glucose-induced N2O and CO2 fluxes were both significantly correlated to the glucose-induced total N and dissolved organic carbon pools and influenced singly and interactively by soil moisture and KNO3 addition. The interactive effects of glucose and nitrogen inputs on N2O and CO2 fluxes from forest soils after frost depended on N sources, soil moisture, and vegetation types.

  8. Potential for using remote sensing to estimate carbon fluxes across northern peatlands - A review.

    Science.gov (United States)

    Lees, K J; Quaife, T; Artz, R R E; Khomik, M; Clark, J M

    2018-02-15

    Peatlands store large amounts of terrestrial carbon and any changes to their carbon balance could cause large changes in the greenhouse gas (GHG) balance of the Earth's atmosphere. There is still much uncertainty about how the GHG dynamics of peatlands are affected by climate and land use change. Current field-based methods of estimating annual carbon exchange between peatlands and the atmosphere include flux chambers and eddy covariance towers. However, remote sensing has several advantages over these traditional approaches in terms of cost, spatial coverage and accessibility to remote locations. In this paper, we outline the basic principles of using remote sensing to estimate ecosystem carbon fluxes and explain the range of satellite data available for such estimations, considering the indices and models developed to make use of the data. Past studies, which have used remote sensing data in comparison with ground-based calculations of carbon fluxes over Northern peatland landscapes, are discussed, as well as the challenges of working with remote sensing on peatlands. Finally, we suggest areas in need of future work on this topic. We conclude that the application of remote sensing to models of carbon fluxes is a viable research method over Northern peatlands but further work is needed to develop more comprehensive carbon cycle models and to improve the long-term reliability of models, particularly on peatland sites undergoing restoration. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Are long-term trends in lake carbon dioxide flux responsive to climaticvariability and change?

    Science.gov (United States)

    Golub, M.; Desai, A. R.

    2012-12-01

    Inland water bodies are major but understudied conduits of carbon in within the global land-ocean-atmosphere carbon cycle. While many researchers have shown significant 20th century trends in physical and biological lake processes driven by climatic change, there is less research on how these influence lake-atmosphere carbon dioxide flux. We investigated the effects of climatic drivers on physical features and CO2 flux in lakes. We estimated the long-term trends in ice phenology, thermal structure, and amount of carbon exchanged, using 15-25-year time series of measurements of temperature, alkalinity, pH for eleven lakes monitored by the North Temperate Lakes Long-Term Ecological Research (NTL-LTER) program. Lakes coherently responded to regional climatic warming, showing declining ice cover duration, prolonged growing season, and increasingly warmer waters. Long-term trends of CO2 trends varied among lakes, however, with the majority of lakes showing a weakening source of CO2 to atmosphere. We further compared the sensitivity of CO2 flux to climate forcing in lakes as a function of trophic states, dissolved organic carbon concentrations, and morphometric features. These results provide new insights into our understanding about the role of lakes in regional and global carbon balances, on the sensitivity of CO2 flux to climatic variability, and in improving prediction of future carbon-climate change feedbacks.

  10. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: A cost-effective sampling strategy

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Ciais, P.; Bariac, T.; Brunet, Y.; Berbigier, P.; Roche, C.; Richard, P.; Bardoux, G.; Bonnefond, J.-M.

    2003-06-01

    The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring the long-term biosphere-atmosphere net CO2 exchange (net ecosystem exchange, NEE). Partitioning this flux into its elementary components, net assimilation (FA), and respiration (FR), remains necessary in order to get a better understanding of biosphere functioning and design better surface exchange models. Noting that FR and FA have different isotopic signatures, we evaluate the potential of isotopic 13CO2 measurements in the air (combined with CO2 flux and concentration measurements) to partition NEE into FR and FA on a routine basis. The study is conducted at a temperate coniferous forest where intensive isotopic measurements in air, soil, and biomass were performed in summer 1997. The multilayer soil-vegetation-atmosphere transfer model MuSICA is adapted to compute 13CO2 flux and concentration profiles. Using MuSICA as a "perfect" simulator and taking advantage of the very dense spatiotemporal resolution of the isotopic data set (341 flasks over a 24-hour period) enable us to test each hypothesis and estimate the performance of the method. The partitioning works better in midafternoon when isotopic disequilibrium is strong. With only 15 flasks, i.e., two 13CO2 nighttime profiles (to estimate the isotopic signature of FR) and five daytime measurements (to perform the partitioning) we get mean daily estimates of FR and FA that agree with the model within 15-20%. However, knowledge of the mesophyll conductance seems crucial and may be a limitation to the method.

  11. Urbanization has a positive net effect on soil carbon stocks: modelling outcomes for the Moscow region

    Science.gov (United States)

    Vasenev, Viacheslav; Stoorvogel, Jetse; Leemans, Rik; Valentini, Riccardo

    2016-04-01

    Urbanization is responsible for large environmental changes worldwide. Urbanization was traditionally related to negative environmental impacts, but recent research highlights the potential to store soil carbon (C) in urban areas. The net effect of urbanization on soil C is, however, poorly understood. Negative influences of construction and soil sealing can be compensated by establishing of green areas. We explored possible net effects of future urbanization on soil C-stocks in the Moscow Region. Urbanization was modelled as a function of environmental, socio-economic and neighbourhood factors. This yielded three alternative scenarios: i) including neighbourhood factors; ii) excluding neighbourhood factors and focusing on environmental drivers; and iii) considering the New Moscow Project, establishing 1500km2 of new urbanized area following governmental regulation. All three scenarios showed substantial urbanization on 500 to 2000km2 former forests and arable lands. Our analysis shows a positive net effect on SOC stocks of 5 to 11 TgC. The highest increase occurred on the less fertile Orthic Podzols and Eutric Podzoluvisols, whereas C-storage in Orthic Luvisols, Luvic Chernozems, Dystric Histosols and Eutric Fluvisols increased less. Subsoil C-stocks were much more affected with an extra 4 to 10 TgC than those in the topsoils. The highest increase of both topsoil and subsoil C stocks occurred in the New Moscow scenario with the highest urbanization. Even when the relatively high uncertainties of the absolute C-values are considered, a clear positive net effect of urbanization on C-stocks is apparent. This highlights the potential of cities to enhance C-storage. This will progressively become more important in the future following the increasing world-wide urbanization.

  12. The carbon fluxes in different successional stages: modelling the dynamics of tropical montane forests in South Ecuador

    Directory of Open Access Journals (Sweden)

    Sebastian Paulick

    2017-05-01

    Full Text Available Background Tropical forests play an important role in the global carbon (C cycle. However, tropical montane forests have been studied less than tropical lowland forests, and their role in carbon storage is not well understood. Montane forests are highly endangered due to logging, land-use and climate change. Our objective was to analyse how the carbon balance changes during forest succession. Methods In this study, we used a method to estimate local carbon balances that combined forest inventory data with process-based forest models. We utilised such a forest model to study the carbon balance of a tropical montane forest in South Ecuador, comparing two topographical slope positions (ravines and lower slopes vs upper slopes and ridges. Results The simulation results showed that the forest acts as a carbon sink with a maximum net ecosystem exchange (NEE of 9.3 Mg C∙(ha∙yr−1 during its early successional stage (0–100 years. In the late successional stage, the simulated NEE fluctuated around zero and had a variation of 0.77 Mg C∙(ha∙yr –1. The simulated variability of the NEE was within the range of the field data. We discovered several forest attributes (e.g., basal area or the relative amount of pioneer trees that can serve as predictors for NEE for young forest stands (0–100 years but not for those in the late successional stage (500–1,000 years. In case of young forest stands these correlations are high, especially between stand basal area and NEE. Conclusion In this study, we used an Ecuadorian study site as an example of how to successfully link a forest model with forest inventory data, for estimating stem-diameter distributions, biomass and aboveground net primary productivity. To conclude, this study shows that process-based forest models can be used to investigate the carbon balance of tropical montane forests. With this model it is possible to find hidden relationships between forest attributes and forest carbon fluxes

  13. Sensitivity of boreal forest regional water flux and net primary production simulations to sub-grid-scale land cover complexity

    Science.gov (United States)

    Kimball, J. S.; Running, S. W.; Saatchi, S. S.

    1999-11-01

    We use a general ecosystem process model (BIOME-BGC) coupled with remote sensing information to evaluate the sensitivity of boreal forest regional evapotranspiration (ET) and net primary production (NPP) to land cover spatial scale. Simulations were conducted over a 3 year period (1994-1996) at spatial scales ranging from 30 to 50 km within the BOREAS southern modeling subarea. Simulated fluxes were spatially complex, ranging from 0.1 to 3.9 Mg C ha-1 yr-1 and from 18 to 29 cm yr-1. Biomass and leaf area index heterogeneity predominantly controlled this complexity, while biophysical differences between deciduous and coniferous vegetation were of secondary importance. Spatial aggregation of land cover characteristics resulted in mean monthly NPP estimation bias from 25 to 48% (0.11-0.20 g C m-2 d-1) and annual estimation errors from 2 to 14% (0.04-0.31 Mg C ha-1 yr-1). Error was reduced at longer time intervals because coarse scale overestimation errors during spring were partially offset by underestimation of fine scale results during summer and winter. ET was relatively insensitive to land cover spatial scale with an average bias of less than 5% (0.04 kg m-2 d-1). Factors responsible for differences in scaling behavior between ET and NPP included compensating errors for ET calculations and boreal forest spatial and temporal NPP complexity. Careful consideration of landscape spatial and temporal heterogeneity is necessary to identify and mitigate potential error sources when using plot scale information to understand regional scale patterns. Remote sensing data integrated within an ecological process model framework provides an efficient mechanism to evaluate scaling behavior, interpret patterns in coarse resolution data, and identify appropriate scales of operation for various processes.

  14. Contribution of Vertical Methane Flux to Shallow Sediment Carbon Pools across Porangahau Ridge, New Zealand

    Directory of Open Access Journals (Sweden)

    Richard B. Coffin

    2014-08-01

    Full Text Available Moderate elevated vertical methane (CH4 flux is associated with sediment accretion and raised fluid expulsion at the Hikurangi subduction margin, located along the northeast coast of New Zealand. This focused CH4 flux contributes to the cycling of inorganic and organic carbon in solid phase sediment and pore water. Along a 7 km offshore transect across the Porangahau Ridge, vertical CH4 flux rates range from 11.4 mmol·m−2·a−1 off the ridge to 82.6 mmol·m−2·a−1 at the ridge base. Stable carbon isotope ratios (δ13C in pore water and sediment were variable across the ridge suggesting close proximity of heterogeneous carbon sources. Methane stable carbon isotope ratios ranging from −107.9‰ to −60.5‰ and a C1:C2 of 3000 indicate a microbial, or biogenic, source. Near ridge, average δ13C for pore water and sediment inorganic carbon were 13C-depleted (−28.7‰ and −7.9‰, respectively relative to all core subsamples (−19.9‰ and −2.4‰, respectively suggesting localized anaerobic CH4 oxidation and precipitation of authigenic carbonates. Through the transect there was low contribution from anaerobic oxidation of CH4 to organic carbon pools; for all cores δ13C values of pore water dissolved organic carbon and sediment organic carbon averaged −24.4‰ and −22.1‰, respectively. Anaerobic oxidation of CH4 contributed to pore water and sediment organic carbon near the ridge as evidenced by carbon isotope values as low as to −42.8‰ and −24.7‰, respectively. Carbon concentration and isotope analyses distinguished contributions from CH4 and phytodetrital carbon sources across the ridge and show a low methane contribution to organic carbon.

  15. Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost

    Science.gov (United States)

    Euskirchen, Eugenie S; Edgar, C.W.; Turetsky, M.R.; Waldrop, Mark P.; Harden, Jennifer W.

    2016-01-01

    Changes in vegetation and soil properties following permafrost degradation and thermokarst development in peatlands may cause changes in net carbon storage. To better understand these dynamics, we established three sites in Alaska that vary in permafrost regime, including a black spruce peat plateau forest with stable permafrost, an internal collapse scar bog formed as a result of thermokarst, and a rich fen without permafrost. Measurements include year-round eddy covariance estimates of carbon dioxide (CO2), water, and energy fluxes, associated environmental variables, and methane (CH4) fluxes at the collapse scar bog. The ecosystems all acted as net sinks of CO2 in 2011 and 2012, when air temperature and precipitation remained near long-term means. In 2013, under a late snowmelt and late leaf out followed by a hot, dry summer, the permafrost forest and collapse scar bog were sources of CO2. In this same year, CO2 uptake in the fen increased, largely because summer inundation from groundwater inputs suppressed ecosystem respiration. CO2 exchange in the permafrost forest and collapse scar bog was sensitive to warm air temperatures, with 0.5 g C m−2 lost each day when maximum air temperature was very warm (≥29°C). The bog lost 4981 ± 300 mg CH4 m−2 between April and September 2013, indicating that this ecosystem acted as a significant source of both CO2 and CH4 to the atmosphere in 2013. These results suggest that boreal peatland responses to warming and drying, both of which are expected to occur in a changing climate, will depend on permafrost regime.

  16. Dissolved Organic Carbon Fluxes in Rivers of the Conterminous United States: Influence of Terrestrial - Aquatic Linkages

    Science.gov (United States)

    Stackpoole, S. M.; Butman, D. E.; Stets, E.; Striegl, R. G.; Bachelet, D. M.; Zhu, Z.; Liu, S.

    2015-12-01

    Management of terrestrial carbon stocks in natural ecosystems has been proposed as a sustainable approach to counteracting the anthropogenic contribution of carbon dioxide to the atmosphere. One factor of uncertainty in carbon accounting is that a portion of carbon assumed to be sequestered in soils may in fact be transported to river networks. The primary objectives of this study are to: 1) determine if the magnitude of empirical estimates of dissolved organic carbon (DOC) export in rivers correlates with simulated soil DOC leachate values from terrestrial carbon models, and 2) quantify terrestrial loading of DOC to river networks across the conterminous US. We evaluated the magnitude of riverine DOC fluxes relative to carbon storage in terrestrial biomass and soils using the aggregated results from the terrestrial carbon models included in the LandCarbon and Multi-scale Synthesis and Terrestrial Model Intercomparison Projects. We also compared gridded terrestrial DOC leaching values to downstream DOC fluxes in rivers estimated by the USGS LOADEST model. Quantification of terrestrial-aquatic linkages is necessary to better evaluate ecosystem carbon sequestration as a potential tool for mitigating anthropogenic perturbance to the global carbon cycle.

  17. Measurement of limiter particle fluxes and carbon erosion in the helical scrape-off layer of startup plasmas at W7-X

    Science.gov (United States)

    Winters, V.; Biedermann, C.; Brezinsek, S.; Effenberg, F.; Frerichs, H.; Harris, J.; Schmitz, O.; Stephey, L.; Unterberg, E.; Wurden, G.; W7-X Team

    2016-10-01

    Measurement of the 2D recycling flux and calculations of the carbon erosion from the limiter in startup plasmas of W7-X provides a first insight into neutral particle release and impurity inflow into the helical scrape-off layer. H-alpha, C-II (514.5nm) and C-III (465.1nm) line emissions were collected with filter-scopes and a visible camera aimed at limiter 3 of W7-X. Local plasma parameters are considered to estimate physical and chemical sputtering contributions. The analytical model for chemical sputtering by Roth is used to convert the measured particle flux into a chemically eroded C flux. The particle flux as well as the extracted C erosion pattern deviates from the measured heat flux distribution and also from the predicted particle flux distribution from EMC3-EIRENE. Candidates to resolve this discrepancy are measurement uncertainties and physics related (e.g. asymmetry in the last closed flux surface position). Post-mortem analysis of the limiter will be taken into account and compared to these in-situ measurements to gather first detailed insight on the net C erosion distribution and the impurity sourcing into the helical scrape-off layer. This work was funded by DE-SC0014210, DE-AC5206NA25396, DE-AC05-00OR22725 and by EUROfusion under Grant No 633053.

  18. Effects of particle size and dry matter content of a total mixed ration on intraruminal equilibration and net portal flux of volatile fatty acids in lactating dairy cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian; Kristensen, Niels Bastian

    2010-01-01

    ration (44.3 and 53.8%). The feed DM did not affect chewing time, ruminal variables, or net portal flux of VFA. However, decreasing the FPS decreased the overall chewing and rumination times by 151 ± 55 and 135 ± 29 min/d, respectively. No effect of the reduced chewing time was observed on ruminal p...

  19. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

    CERN Document Server

    Chen, Wei; Zhang, Qiang; Fan, Zhongli; Huang, Kuo-Wei; Zhang, Xixiang; Lai, Zhiping; Sheng, Ping

    2016-01-01

    Nanoporous carbon composite membranes, comprising a layer of porous carbon fiber structures with an average channel width of 30-60 nm grown on a porous ceramic substrate, are found to exhibit robust desalination effect with high freshwater flux. In three different membrane processes of vacuum membrane distillation, reverse osmosis and forward osmosis, the carbon composite membrane showed 100% salt rejection with 3.5 to 20 times higher freshwater flux compared to existing polymeric membranes. Thermal accounting experiments found that at least 80% of the freshwater pass through the carbon composite membrane with no phase change. Molecular dynamics simulations revealed a unique salt rejection mechanism. When seawater is interfaced with either vapor or the surface of carbon, one to three interfacial atomic layers contain no salt ions. Below the liquid entry pressure, the salt solution is stopped at the openings to the porous channels and forms a meniscus, while the surface layer of freshwater can feed the surface...

  20. Assessing the effects of land use/cover change on carbon dioxide fluxes in a semiarid shrubland

    Science.gov (United States)

    Gong, Tingting; Lei, Huimin; Yang, Dawen; Jiao, Yang; Yang, Hanbo

    2017-04-01

    Land use/cover change has been generally considered a local environmental issue. Our study focuses on the effects of land use/cover change on the carbon cycle using long-term continuous field observation data, which is measured by the eddy covariance (EC) technique. The study site is at Yulin (38.45N, 109.47E), which is a desert shrubland ecosystem in Mu Us sandland, China. Before June 2012, the vegetation in this site was covered with mixed vegetation: typical desert shrubs (e.g., Salix psammophila and Artemisia ordosica) and grass. After July 2012, a part of the land use/cover condition within the footprint was changed by the local farmers, which converted the land use/cover condition changed first from mixed vegetation to bare soil and then from bare soil to grassland resulting from the re-growing grass. Four-year carbon fluxes are selected and separated into three periods: Period I is from July 1 2011 to June 30 2012 when land use/cover condition did not change; Period II is from July 1 2012 to June 30 2014 when land use/cover condition changed from mixed vegetation (shrubs and grass) to the mix of bare soil and desert shrubs; Period III is from July 1 2014 to June 30 2015 when land use/cover condition changed from the mix of desert shrubs and bare soil to the mix of desert shrubs and re-growing grass. A linear statistical model will be used to evaluate and quantify the effects of land use/cover change on the uptake or release of carbon fluxes (net ecosystem exchange (NEE), ecosystem respiration (Reco) and gross primary production (GPP)). Moreover, this study is expected to get insights into how agricultural cultivation influences on the local carbon balance (e.g., how NEE, Reco and GPP respond to the land use/cover change; Is the annual carbon balance changed during the land use/cover change process; and the contribution of land use/cover change on these changes of carbon fluxes).

  1. Dynamical and biogeochemical control on the decadal variability of ocean carbon fluxes

    Directory of Open Access Journals (Sweden)

    R. Séférian

    2013-04-01

    Full Text Available Several recent observation-based studies suggest that ocean anthropogenic carbon uptake has slowed down due to the impact of anthropogenic forced climate change. However, it remains unclear whether detected changes over the recent time period can be attributed to anthropogenic climate change or rather to natural climate variability (internal plus naturally forced variability alone. One large uncertainty arises from the lack of knowledge on ocean carbon flux natural variability at the decadal time scales. To gain more insights into decadal time scales, we have examined the internal variability of ocean carbon fluxes in a 1000 yr long preindustrial simulation performed with the Earth System Model IPSL-CM5A-LR. Our analysis shows that ocean carbon fluxes exhibit low-frequency oscillations that emerge from their year-to-year variability in the North Atlantic, the North Pacific, and the Southern Ocean. In our model, a 20 yr mode of variability in the North Atlantic air-sea carbon flux is driven by sea surface temperature variability and accounts for ~40% of the interannual regional variance. The North Pacific and the Southern Ocean carbon fluxes are also characterised by decadal to multi-decadal modes of variability (10 to 50 yr that account for 20–40% of the interannual regional variance. These modes are driven by the vertical supply of dissolved inorganic carbon through the variability of Ekman-induced upwelling and deep-mixing events. Differences in drivers of regional modes of variability stem from the coupling between ocean dynamics variability and the ocean carbon distribution, which is set by large-scale secular ocean circulation.

  2. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Directory of Open Access Journals (Sweden)

    N. Brüggemann

    2011-11-01

    Full Text Available The terrestrial carbon (C cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual, including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as

  3. Fluxes of Methane and Carbon Dioxide from a Subarctic Lake

    DEFF Research Database (Denmark)

    Jammet, Mathilde Manon

    important for the lake annual emissions compared to the length of the period, as it turned the lake from a small summer CO2 sink into an annual source. Annual inter-annual variability was notable in the magnitude of the CH4 spring release and needs further investigation. The high temporal resolution......-out and the release of CH4 and CO2 was established. These results underline the crucial importance of shoulder seasons in the annual carbon emissions from seasonally frozen lakes. Overall, the lake was an important annual source of carbon to the atmosphere, partially compensating the higher, annual sink function......Ongoing climate warming is expected to affect the carbon functioning of subarctic ecosystems. Lakes and wetlands, which are common ecosystems of the high northern latitudes, are of utmost interest in this context because they exchange large amounts of the climate-forcing gases methane (CH4...

  4. A statistical power analysis of woody carbon flux from forest inventory data

    Science.gov (United States)

    James A. Westfall; Christopher W. Woodall; Mark A. Hatfield

    2013-01-01

    At a national scale, the carbon (C) balance of numerous forest ecosystem C pools can be monitored using a stock change approach based on national forest inventory data. Given the potential influence of disturbance events and/or climate change processes, the statistical detection of changes in forest C stocks is paramount to maintaining the net sequestration status of...

  5. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach

    Directory of Open Access Journals (Sweden)

    J. Czerny

    2013-05-01

    Full Text Available Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air–sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation, all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC, nitrogen (DON and particulate organic phosphorus (POP were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon

  6. Arogenate Dehydratase Isoenzymes Profoundly and Differentially Modulate Carbon Flux into Lignins*

    Science.gov (United States)

    Corea, Oliver R. A.; Ki, Chanyoung; Cardenas, Claudia L.; Kim, Sung-Jin; Brewer, Sarah E.; Patten, Ann M.; Davin, Laurence B.; Lewis, Norman G.

    2012-01-01

    How carbon flux differentially occurs in vascular plants following photosynthesis for protein formation, phenylpropanoid metabolism (i.e. lignins), and other metabolic processes is not well understood. Our previous discovery/deduction that a six-membered arogenate dehydratase (ADT1–6) gene family encodes the final step in Phe biosynthesis in Arabidopsis thaliana raised the fascinating question whether individual ADT isoenzymes (or combinations thereof) differentially modulated carbon flux to lignins, proteins, etc. If so, unlike all other lignin pathway manipulations that target cell wall/cytosolic processes, this would be the first example of a plastid (chloroplast)-associated metabolic process influencing cell wall formation. Homozygous T-DNA insertion lines were thus obtained for five of the six ADTs and used to generate double, triple, and quadruple knockouts (KOs) in different combinations. The various mutants so obtained gave phenotypes with profound but distinct reductions in lignin amounts, encompassing a range spanning from near wild type levels to reductions of up to ∼68%. In the various KOs, there were also marked changes in guaiacyl:syringyl ratios ranging from ∼3:1 to 1:1, respectively; these changes were attributed to differential carbon flux into vascular bundles versus that into fiber cells. Laser microscope dissection/pyrolysis GC/MS, histochemical staining/lignin analyses, and pADT::GUS localization indicated that ADT5 preferentially affects carbon flux into the vascular bundles, whereas the adt3456 knock-out additionally greatly reduced carbon flux into fiber cells. This plastid-localized metabolic step can thus profoundly differentially affect carbon flux into lignins in distinct anatomical regions and provides incisive new insight into different factors affecting guaiacyl:syringyl ratios and lignin primary structure. PMID:22311980

  7. Arogenate dehydratase isoenzymes profoundly and differentially modulate carbon flux into lignins.

    Science.gov (United States)

    Corea, Oliver R A; Ki, Chanyoung; Cardenas, Claudia L; Kim, Sung-Jin; Brewer, Sarah E; Patten, Ann M; Davin, Laurence B; Lewis, Norman G

    2012-03-30

    How carbon flux differentially occurs in vascular plants following photosynthesis for protein formation, phenylpropanoid metabolism (i.e. lignins), and other metabolic processes is not well understood. Our previous discovery/deduction that a six-membered arogenate dehydratase (ADT1-6) gene family encodes the final step in Phe biosynthesis in Arabidopsis thaliana raised the fascinating question whether individual ADT isoenzymes (or combinations thereof) differentially modulated carbon flux to lignins, proteins, etc. If so, unlike all other lignin pathway manipulations that target cell wall/cytosolic processes, this would be the first example of a plastid (chloroplast)-associated metabolic process influencing cell wall formation. Homozygous T-DNA insertion lines were thus obtained for five of the six ADTs and used to generate double, triple, and quadruple knockouts (KOs) in different combinations. The various mutants so obtained gave phenotypes with profound but distinct reductions in lignin amounts, encompassing a range spanning from near wild type levels to reductions of up to ∼68%. In the various KOs, there were also marked changes in guaiacyl:syringyl ratios ranging from ∼3:1 to 1:1, respectively; these changes were attributed to differential carbon flux into vascular bundles versus that into fiber cells. Laser microscope dissection/pyrolysis GC/MS, histochemical staining/lignin analyses, and pADT::GUS localization indicated that ADT5 preferentially affects carbon flux into the vascular bundles, whereas the adt3456 knock-out additionally greatly reduced carbon flux into fiber cells. This plastid-localized metabolic step can thus profoundly differentially affect carbon flux into lignins in distinct anatomical regions and provides incisive new insight into different factors affecting guaiacyl:syringyl ratios and lignin primary structure.

  8. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning.

    Science.gov (United States)

    Dore, S; Kolb, T E; Montes-Helu, M; Eckert, S E; Sullivan, B W; Hungate, B A; Kaye, J P; Hart, S C; Koch, G W; Finkral, A

    2010-04-01

    Disturbances alter ecosystem carbon dynamics, often by reducing carbon uptake and stocks. We compared the impact of two types of disturbances that represent the most likely future conditions of currently dense ponderosa pine forests of the southwestern United States: (1) high-intensity fire and (2) thinning, designed to reduce fire intensity. High-severity fire had a larger impact on ecosystem carbon uptake and storage than thinning. Total ecosystem carbon was 42% lower at the intensely burned site, 10 years after burning, than at the undisturbed site. Eddy covariance measurements over two years showed that the burned site was a net annual source of carbon to the atmosphere whereas the undisturbed site was a sink. Net primary production (NPP), evapotranspiration (ET), and water use efficiency were lower at the burned site than at the undisturbed site. In contrast, thinning decreased total ecosystem carbon by 18%, and changed the site from a carbon sink to a source in the first posttreatment year. Thinning also decreased ET, reduced the limitation of drought on carbon uptake during summer, and did not change water use efficiency. Both disturbances reduced ecosystem carbon uptake by decreasing gross primary production (55% by burning, 30% by thinning) more than total ecosystem respiration (TER; 33-47% by burning, 18% by thinning), and increased the contribution of soil carbon dioxide efflux to TER. The relationship between TER and temperature was not affected by either disturbance. Efforts to accurately estimate regional carbon budgets should consider impacts on carbon dynamics of both large disturbances, such as high-intensity fire, and the partial disturbance of thinning that is often used to prevent intense burning. Our results show that thinned forests of ponderosa pine in the southwestern United States are a desirable alternative to intensively burned forests to maintain carbon stocks and primary production.

  9. Maintenance metabolism and carbon fluxes in Bacillus species

    Directory of Open Access Journals (Sweden)

    Decasper Seraina

    2008-06-01

    Full Text Available Abstract Background Selection of an appropriate host organism is crucial for the economic success of biotechnological processes. A generally important selection criterion is a low maintenance energy metabolism to reduce non-productive consumption of substrate. We here investigated, whether various bacilli that are closely related to Bacillus subtilis are potential riboflavin production hosts with low maintenance metabolism. Results While B. subtilis exhibited indeed the highest maintenance energy coefficient, B. licheniformis and B. amyloliquefaciens exhibited only statistically insignificantly reduced maintenance metabolism. Both B. pumilus and B. subtilis (natto exhibited irregular growth patterns under glucose limitation such that the maintenance metabolism could not be determined. The sole exception with significantly reduced maintenance energy requirements was the B. licheniformis strain T380B. The frequently used spo0A mutation significantly increased the maintenance metabolism of B. subtilis. At the level of 13C-detected intracellular fluxes, all investigated bacilli exhibited a significant flux through the pentose phosphate pathway, a prerequisite for efficient riboflavin production. Different from all other species, B. subtilis featured high respiratory tricarboxylic acid cycle fluxes in batch and chemostat cultures. In particular under glucose-limited conditions, this led to significant excess formation of NADPH of B. subtilis, while anabolic consumption was rather balanced with catabolic NADPH formation in the other bacilli. Conclusion Despite its successful commercial production of riboflavin, B. subtilis does not seem to be the optimal cell factory from a bioenergetic point of view. The best choice of the investigated strains is the sporulation-deficient B. licheniformis T380B strain. Beside a low maintenance energy coefficient, this strain grows robustly under different conditions and exhibits only moderate acetate overflow, hence

  10. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    Science.gov (United States)

    Thaysen, E. M.; Jacques, D.; Jessen, S.; Andersen, C. E.; Laloy, E.; Ambus, P.; Postma, D.; Jakobsen, I.

    2014-03-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated. Carbon dioxide partial pressure in the soil gas (pCO2), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO2, alkalinity and the water flux at the mesocosm bottom. Carbon dioxide exchange between the soil surface and the atmosphere was measured at regular intervals. The soil diffusivity was determined from soil radon-222 (222Rn) emanation rates and soil air Rn concentration profiles, and was used in conjunction with measured pCO2 gradients to calculate the soil CO2 production. Carbon dioxide fluxes were modelled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 ± 0.07 and 4.9 ± 0.07 μmol carbon (C) m-2 s-1, respectively, and largely exceeded the corresponding DIC percolation fluxes of 0.01 ± 0.004 and 0.06 ± 0.03 μmol C m-2 s-1. Post-harvest soil respiration (Rs) was only 10% of the Rs during plant growth, while the post-harvest DIC percolation flux was more than one third of the flux during growth. The Rs was controlled by production and diffusivity of CO2 in the soil. The DIC percolation flux was largely controlled by the pCO2 and the drainage flux due to low solution pH. Plant biomass and soil pCO2 were high in the mesocosms as compared to a standard field situation. Our results indicate no change of the cropland C balance under elevated atmospheric CO2 in a warmer future climate, in which plant biomass and soil pCO2 are expected to increase.

  11. Comprehensive Evaluation of Machine Learning Techniques for Estimating the Responses of Carbon Fluxes to Climatic Forces in Different Terrestrial Ecosystems

    Directory of Open Access Journals (Sweden)

    Xianming Dou

    2018-02-01

    Full Text Available Accurately estimating the carbon budgets in terrestrial ecosystems ranging from flux towers to regional or global scales is particularly crucial for diagnosing past and future climate change. This research investigated the feasibility of two comparatively advanced machine learning approaches, namely adaptive neuro-fuzzy inference system (ANFIS and extreme learning machine (ELM, for reproducing terrestrial carbon fluxes in five different types of ecosystems. Traditional artificial neural network (ANN and support vector machine (SVM models were also utilized as reliable benchmarks to measure the generalization ability of these models according to the following statistical metrics: coefficient of determination (R2, index of agreement (IA, root mean square error (RMSE, and mean absolute error (MAE. In addition, we attempted to explore the responses of all methods to their corresponding intrinsic parameters in terms of the generalization performance. It was found that both the newly proposed ELM and ANFIS models achieved highly satisfactory estimates and were comparable to the ANN and SVM models. The modeling ability of each approach depended upon their respective internal parameters. For example, the SVM model with the radial basis kernel function produced the most accurate estimates and performed substantially better than the SVM models with the polynomial and sigmoid functions. Furthermore, a remarkable difference was found in the estimated accuracy among different carbon fluxes. Specifically, in the forest ecosystem (CA-Obs site, the optimal ANN model obtained slightly higher performance for gross primary productivity, with R2 = 0.9622, IA = 0.9836, RMSE = 0.6548 g C m−2 day−1, and MAE = 0.4220 g C m−2 day−1, compared with, respectively, 0.9554, 0.9845, 0.4280 g C m−2 day−1, and 0.2944 g C m−2 day−1 for ecosystem respiration and 0.8292, 0.9306, 0.6165 g C m−2 day−1, and 0.4407 g C m−2 day−1 for net ecosystem exchange

  12. Three-dimensional sp(2)-hybridized carbons consisting of orthogonal nanoribbons of graphene and net C.

    Science.gov (United States)

    Hu, Meng; Dong, Xu; Yang, Bingchao; Xu, Bo; Yu, Dongli; He, Julong

    2015-05-21

    We identify two sp(2) hybridized network models of carbon, namely GT-8 and CT-12, based on first-principles calculation results. Parallel nanoribbon rows of graphene and net C are found to be interlinked with orthogonal nanoribbons to construct GT-8 and CT-12, and their series of isomorphic analogs (named GTs and CTs) are assembled with the widening of the nanoribbon components. GTs and CTs are dynamically and mechanically stable and energetically more favorable than many previous sp(2) carbons, including K4, C20, and H6 carbon. They are two-dimensional conductors with insulating properties along the z-axis. Remarkably, GTs are superconductive with increased superconducting transition temperatures, Tc, as the nanoribbons widen. The Tcs of GT-8 and GT-16 are 5.2 and 14.0 K respectively, which are higher than that of boron-doped diamond under the same value of Coulomb pseudopotential μ*. They possess higher bulk moduli than graphite and behave as excellent ductile materials. The Young's modulus of GT-8 along the z-axis is comparable with that of graphene and it significantly increases as the nanoribbons widen.

  13. Analysis of the influence of climatic and physiological parameters on the net ecosystem carbon exchange of an apple orchard

    Science.gov (United States)

    Zanotelli, Damiano; Montagnani, Leonardo; Scandellari, Francesca; Tagliavini, Massimo

    2013-04-01

    Net ecosystem carbon exchange (NEE) of an apple orchard located in South Tyrol (Caldaro, Bolzano, Italy) was monitored continuously since March 2009 via eddy covariance technique. Contemporary measurements of the main environmental parameters (temperature, photosynthetic active photon flux density, soil water content, vapor pressure deficit) were taken at the same field site. Leaf Area Index was also determined biometrically starting from spring 2010. Objectives of this work were (i) to assess the influence of these environmental and physiological parameters on NEE, (ii) to set up a model capable to fill large gap occurring in the dataset and (iii) predict inter-annual variability of fluxes based on the measurements of the selected explanatory variables. Daily cumulated values of the response variable (NEE, g C d-1) and mean daily value of the five explanatory variables considered (air T, ° C; SWC, m3m-3; PPFD, μmol m-2s-1; VPD, hPa, LAI m2m-2) were used in this analysis. The complex interactions between the explanatory variables and NEE were analyzed with the tree model approach which draws a picture of the complexity of data structure and highlights the explanatory variable that explain the greater amount of deviance of the response variable. NEE variability was mostly explained by LAI and PPFD. The most positive values of NEE occurred below the LAI threshold of 1.16 m2m-2 while above that LAI threshold and with an average daily PPFD above 13.2 μmol m-2s-1, the orchard resulted always a sink of carbon (negative daily NEE). On half of the available data (only alternate months of the considered period were considered), a stepwise multiple regression approach was used to model NEE using the variables indicated above. Simplification by deletion of the non-significant terms was carried out until all parameters where highly significant (p analysis, the model was further improved by transforming the linear predictor. Akaikés Information Criterion (AIC) was used to

  14. Carbon dioxide and methane fluxes: Seasonal dynamics from inland riparian ecosystems, northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qiao-Qi [School of Nature Conservation, Beijing Forestry University, 35 Tsinghua-east Road, Haidian District, Beijing 100083 (China); Shi, Kun, E-mail: kunshi11@yahoo.com.cn [School of Nature Conservation, Beijing Forestry University, 35 Tsinghua-east Road, Haidian District, Beijing 100083 (China); Damerell, Peter; Whitham, Charlotte [School of Nature Conservation, Beijing Forestry University, 35 Tsinghua-east Road, Haidian District, Beijing 100083 (China); Yu, Guo-Hai; Zou, Chang-Lin [Momoge National Nature Reserve, Zhenlai, Baicheng 137316 (China)

    2013-11-01

    Riparian wetland ecosystems have been described as significant hotspots for carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) fluxes, but their role in the release and sequestration of these greenhouse gases has been insufficiently assessed within China. The influences of vegetation and soil parameters on daily and seasonal variations in carbon flux in the Nenjiang basin, northeast China, were recorded using a static closed-chamber technique during the non-growing (November and January) and growing (June, July and August) seasons of 2009–2010. Seasonal differences in average CO{sub 2} flux were observed (growing season: 6.605 g·C·m{sup −2} h{sup −1}; non-growing season: − 0.185 g·C·m{sup −2} h{sup −1}) and these were significantly correlated with CH{sub 4} emission (r = 0.532, p = 0.011) and soil temperature at 5 cm depth below ground (r = 0.852, p = 0.000). Average diel gaseous flux showed significant variation between hours for both gases (CO{sub 2} flux one-way ANOVA F = 3.075, p < 0.01; CH{sub 4} flux one way ANOVA F = 2.622, p < 0.05). Various significant correlations were also found between CH{sub 4} and CO{sub 2} fluxes and multiple vegetation and soil parameters. For example at both sites, growing season-CH{sub 4} flux was correlated with vegetation cover (r = 0.580, p < 0.05) and total vegetation phosphorous (r = 0.474, p < 0.05). This study allowed key temporal differences in gas release and their potential biotic and abiotic drivers to be identified. Crucially, it also highlighted important areas in need of further research, to enhance our understanding of gaseous flux from inland riparian habitats. - Highlights: ► Daily and seasonal variations in carbon fluxes were recorded from inland riparian habitats. ► The influences of vegetation and soil parameters on carbon flux exchanges were qualified. ► Seasonal differences in average CO{sub 2} was significantly correlated with CH{sub 4} emission and soil temperature. ► Growing season

  15. Carbon and nutrient fluxes in the North Atlantic Ocean

    OpenAIRE

    Steinhoff, Tobias

    2010-01-01

    This study presents underway pCO2 data of a whole seasonal cycle in the North Atlantic between 40°N and 55°N. The data are compared to a historical dataset and the CO2 fluxes between atmosphere and ocean are calculated. The driving forces of the seawater pCO2 (temperature, biology, gas exchange, advection and convection) are quantified and nutrient concentration in the mixed layer of the North Atlantic are estimated. Furthermore a combined dataset of surface measurements of CO2 and N2O are...

  16. Precipitation as driver of carbon fluxes in 11 African ecosystems

    CSIR Research Space (South Africa)

    Merbold, L

    2008-01-01

    Full Text Available the shortness of the record, the EC data were analysed across the network rather than longitudinally at sites, in order to understand the driving factors for ecosystem respiration and carbon assimilation, and to reveal the different water use strategies...

  17. Precipitation as driver of carbon fluxes in 11 African ecosystems

    CSIR Research Space (South Africa)

    Merbold, L

    2009-01-01

    Full Text Available the shortness of the record, the EC data were analysed across the network rather than longitudinally at sites, in order to understand the driving factors for ecosystem respiration and carbon assimilation, and to reveal the different water use strategies...

  18. Carbon pools and flux in U.S. forest products

    Science.gov (United States)

    Linda S. Heath; Richard A. Birdsey; Clark Row; Andrew J. Plantinga

    1996-01-01

    Increasing recognition that anthropogenic CO2 and other greenhouse gas emissions may effect climate change has prompted research studies on global carbon (C) budgets and international agreements for action. At the United Nations Conference on Environment and Development in 1992, world leaders and citizens gathered and initiated the Framework...

  19. Measurements of carbon dioxide and heat fluxes during monsoon ...

    Indian Academy of Sciences (India)

    An increase in carbon dioxide (CO2) concentrations in the atmosphere due to anthropogenic activities is responsible for global warming and hence in recent years, CO2 measurement network has expanded globally. In the monsoon season (July–September) of year 2011, we carried out measurements of CO2 and water ...

  20. Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse-Gas Fluxes in Ecosystems of the United States Under Present Conditions and Future Scenarios

    Science.gov (United States)

    Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2010-01-01

    The Energy Independence and Security Act of 2007 (EISA), Section 712, authorizes the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation's ecosystems focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems (terrestrial systems, such as forests, croplands, wetlands, shrub and grasslands; and aquatic ecosystems, such as rivers, lakes, and estuaries), (2) an estimation of annual potential capacities of ecosystems to increase carbon sequestration and reduce net GHG emissions in the context of mitigation strategies (including management and restoration activities), and (3) an evaluation of the effects of controlling processes, such as climate change, land use and land cover, and wildlfires. The purpose of this draft methodology for public review is to propose a technical plan to conduct the assessment. Within the methodology, the concepts of ecosystems, carbon pools, and GHG fluxes used for the assessment follow conventional definitions in use by major national and international assessment or inventory efforts. In order to estimate current ecosystem carbon stocks and GHG fluxes and to understand the potential capacity and effects of mitigation strategies, the method will use two time periods for the assessment: 2001 through 2010, which establishes a current ecosystem GHG baseline and will be used to validate the models; and 2011 through 2050, which will be used to assess future potential conditions based on a set of projected scenarios. The scenario framework is constructed using storylines of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emission Scenarios (SRES), along with initial reference land-use and land-cover (LULC) and land-management scenarios. An additional three LULC and land-management mitigation scenarios will be constructed for each

  1. Hyperspatial mapping of water, energy and carbon fluxes with Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Wang, Sheng; Köppl, Christian Josef; Bandini, Filippo

    Having spatially distributed estimates of energy, water and carbon fluxes between the land and the atmosphere is of critical importance for improving water resource management, agricultural production, weather forecasting, and climate prediction. Traditionally, satellite based remote sensing data...... biomass, plant diseases or stress, water uptake.......Having spatially distributed estimates of energy, water and carbon fluxes between the land and the atmosphere is of critical importance for improving water resource management, agricultural production, weather forecasting, and climate prediction. Traditionally, satellite based remote sensing data...

  2. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  3. Oxygen and Carbon Dioxide Fluxes from Barley Shoots Depend on Nitrate Assimilation 1

    Science.gov (United States)

    Bloom, Arnold J.; Caldwell, Richard M.; Finazzo, John; Warner, Robert L.; Weissbart, Joseph

    1989-01-01

    A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport. PMID:16667024

  4. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Sutfin, Nicholas Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-20

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek; Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.

  5. Modification of vortex dynamics and transport properties of transitional axisymmetric jets using zero-net-mass-flux actuation

    Energy Technology Data Exchange (ETDEWEB)

    Önder, Asim; Meyers, Johan, E-mail: johan.meyers@mech.kuleuven.be [Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300A, B3001 Leuven (Belgium)

    2014-07-15

    We study the near field of a zero-net-mass-flux (ZNMF) actuated round jet using direct numerical simulations. The Reynolds number of the jet Re{sub D} = 2000 and three ZNMF actuators are used, evenly distributed over a circle, and directed towards the main jet. The actuators are triggered in phase, and have a relatively low momentum coefficient of C{sub μ} = 0.0049 each. We study four different control frequencies with Strouhal numbers ranging from St{sub D} = 0.165 to St{sub D} = 1.32; next to that, also two uncontrolled baseline cases are included in the study. We find that this type of ZNMF actuation leads to strong deformations of the near-field jet region that are very similar to those observed for non-circular jets. At the end of the jet's potential core (x/D = 5), the jet-column cross section is deformed into a hexagram-like geometry that results from strong modifications of the vortex structures. Two mechanisms lead to these modifications, i.e., (i) self-deformation of the jet's primary vortex rings started by distortions in their azimuthal curvature by the actuation, and (ii) production of side jets by the development and subsequent detachment of secondary streamwise vortex pairs. Further downstream (x/D = 10), the jet transforms into a triangular pattern, as the sharp corner regions of the hexagram entrain fluid and spread. We further investigate the global characteristics of the actuated jets. In particular when using the jet preferred frequency, i.e., St{sub D} = 0.33, parameters such as entrainment, centerline decay rate, and mean turbulent kinetic energy are significantly increased. Furthermore, high frequency actuation, i.e., St{sub D} = 1.32, is found to suppress the mechanisms leading to large scale structure growth and turbulent kinetic energy production. The simulations further include a passive scalar equation, and passive scalar mixing is also quantified and visualized.

  6. From zeolite nets to sp(3) carbon allotropes: a topology-based multiscale theoretical study.

    Science.gov (United States)

    Baburin, Igor A; Proserpio, Davide M; Saleev, Vladimir A; Shipilova, Alexandra V

    2015-01-14

    We present a comprehensive computational study of sp(3)-carbon allotropes based on the topologies proposed for zeolites. From ≈600,000 zeolite nets we identified six new allotropes, lying by at most 0.12 eV per atom above diamond. The analysis of cages in the allotropes has revealed close structural relations to diamond and lonsdaleite phases. Besides the energetic and mechanical stability of new allotropes, three of them show band gaps by ca. 1 eV larger than that of diamond, and therefore represent an interesting technological target as hard and transparent materials. A structural relation of new allotropes to continuous random networks is pointed out and possible engineering from diamond thin films and graphene is suggested.

  7. Accelerating Net Terrestrial Carbon Uptake During the Warming Hiatus Due to Reduced Respiration

    Science.gov (United States)

    Ballantyne, Ashley; Smith, William; Anderegg, William; Kauppi, Pekka; Sarmiento, Jorge; Tans, Pieter; Shevliakova, Elena; Pan, Yude; Poulter, Benjamin; Anav, Alessandro; hide

    2017-01-01

    The recent warming hiatus presents an excellent opportunity to investigate climate sensitivity of carbon cycle processes. Here we combine satellite and atmospheric observations to show that the rate of net biome productivity (NBP) has significantly accelerated from - 0.007 +/- 0.065 PgC yr(exp -2) over the warming period (1982 to 1998) to 0.119 +/- 0.071 PgC yr(exp -2) over the warming hiatus (19982012). This acceleration in NBP is not due to increased primary productivity, but rather reduced respiration that is correlated (r = 0.58; P = 0.0007) and sensitive ( y = 4.05 to 9.40 PgC yr(exp -1) per C) to land temperatures. Global land models do not fully capture this apparent reduced respiration over the warming hiatus; however, an empirical model including soil temperature and moisture observations better captures the reduced respiration.

  8. Stocks and fluxes of organic carbon in the ecosystem of mature bilberry pine forest of the middle taiga

    Directory of Open Access Journals (Sweden)

    A. F. Osipov

    2017-04-01

    Full Text Available The data on carbon stock and its distribution on the main pools in the ecosystem are presented for mature pine forest bilberry type in the middle taiga. The ecosystem of mature pine forest bilberry type concentrates 158.2 t C ha–1. Upper 1 m soil layer contribute 53 %, phytomass – 44, coarse woody debris – 3 % to total carbon stock. Net primary production is determined. Input of stand is 70 %, ground cover – 30 %. It is found active accumulation of wood. It forms about 36 % of biomass production. Litter fall and it distribution on separate fraction are characterized. Litter fall ranged from 1.13 to 1.53 t C ha–1. It is equal 3–5 % of forest floor mass. The tree plants are generating the most part of litter weight. Needless and leaves play the key role in litter of stand. Inactive fraction (branches, cones are characterized by big inter-annual variation in litter fall production due to changing weather conditions during study period. Dynamic soil temperature is described on lower boundary of forest floor. We estimate that during growing season carbon flux from soil surface is 2.28–3.21 t С ha–1.

  9. Relative linkages of peatland methane and carbon dioxide fluxes with climatic, environmental and ecological parameters and their inter-comparison

    Science.gov (United States)

    Banerjee, Tirtha; Hommeltenberg, Janina; Roy, Avipsa; De Roo, Frederik; Mauder, Matthias

    2016-04-01

    Although methane (CH4) is the second most important greenhouse gas (GHG) after CO2, about 80% of its global production is biogenic (wetlands, enteric fermentation and water disposal from animals) contrary to major anthropogenic sources of most other GHGs. Although on a shorter time scale, global emissions of methane are greater (10 year time frame) or about 80% (20 year time frame) of those of carbon dioxide in terms of their influence on global warming, methane emissions have been studied much less than CO2 emissions. Lakes, reservoirs and wetlands are estimated to contribute about 15-40% to the global methane source budget, which is higher than total oceanic CH4 emission. Half of the world's wetlands are represented by peatlands which cover 3% of the global total land area. Peatlands have a thick water-logged organic soil layer (peat) made up of dead and decaying plant material. Moreover, they are carbon rich, containing twice as much stock as the entire forest biomass of the world (550 Gt carbon). When disturbed, they can become significant sources of greenhouse gas emissions. The organic carbon exposed to air due to various mechanisms can release CH4 or CO2 in the atmosphere. Thus the nature of vegetation cover, radiation environment, wind turbulence, soil characteristics, water table depth etc. are expected to be important forcings that influence the emission of CH4 or CO2 in the shorter time scale. However, long term climate change can also influence these governing factors themselves over a larger time scale, which in turn can influence the wetland GHG emissions. Thus developing a predictive framework and long term source appropriation for wetland CH4 or CO2 warrants an identification of the major environmental forcings on the CH4 or CO2 flux. In the present work, we use a simple and systematic data-analytics approach to determine the relative linkages of different climate and environmental variables with the canopy level half-hourly CH4 or CO2 fluxes over a

  10. Carbon Monitoring System Flux for Fossil Fuel L4 V1 (CMSFluxFossilfuel) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides the Carbon Flux for Fossil Fuel. The NASA Carbon Monitoring System (CMS) is designed to make significant contributions in characterizing,...

  11. Influence of tree cover on herbaceous layer development and carbon and water fluxes in a Portuguese cork-oak woodland

    Science.gov (United States)

    Dubbert, Maren; Mosena, Alexander; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra Cristina; Pereira, Joao Santos; Werner, Christiane

    2014-08-01

    Facilitation and competition between different vegetation layers may have a large impact on small-scale vegetation development. We propose that this should not only influence overall herbaceous layer yield but also species distribution and understory longevity, and hence the ecosystems carbon uptake capacity especially during spring. We analyzed the effects of trees on microclimate and soil properties (water and nitrate content) as well as the development of an herbaceous community layer regarding species composition, aboveground biomass and net water and carbon fluxes in a cork-oak woodland in Portugal, between April and November 2011. The presence of trees caused a significant reduction in photosynthetic active radiation of 35 mol m-2 d-1 and in soil temperature of 5 °C from April to October. At the same time differences in species composition between experimental plots located in open areas and directly below trees could be observed: species composition and abundance of functional groups became increasingly different between locations from mid April onwards. During late spring drought adapted native forbs had significantly higher cover and biomass in the open area while cover and biomass of grasses and nitrogen fixing forbs was highest under the trees. Further, evapotranspiration and net carbon exchange decreased significantly stronger under the tree crowns compared to the open during late spring and the die back of herbaceous plants occurred earlier and faster under trees. This was most likely caused by interspecific competition for water between trees and herbaceous plants, despite the more favorable microclimate conditions under the trees during the onset of summer drought.

  12. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance.

    Science.gov (United States)

    Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing

    2011-06-01

    Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability

  13. Carbon cycling of Lake Kivu (East Africa: net autotrophy in the epilimnion and emission of CO2 to the atmosphere sustained by geogenic inputs.

    Directory of Open Access Journals (Sweden)

    Alberto V Borges

    Full Text Available We report organic and inorganic carbon distributions and fluxes in a large (>2000 km2 oligotrophic, tropical lake (Lake Kivu, East Africa, acquired during four field surveys, that captured the seasonal variations (March 2007-mid rainy season, September 2007-late dry season, June 2008-early dry season, and April 2009-late rainy season. The partial pressure of CO2 (pCO2 in surface waters of the main basin of Lake Kivu showed modest spatial (coefficient of variation between 3% and 6%, and seasonal variations with an amplitude of 163 ppm (between 579±23 ppm on average in March 2007 and 742±28 ppm on average in September 2007. The most prominent spatial feature of the pCO2 distribution was the very high pCO2 values in Kabuno Bay (a small sub-basin with little connection to the main lake ranging between 11,213 ppm and 14,213 ppm (between 18 and 26 times higher than in the main basin. Surface waters of the main basin of Lake Kivu were a net source of CO2 to the atmosphere at an average rate of 10.8 mmol m(-2 d(-1, which is lower than the global average reported for freshwater, saline, and volcanic lakes. In Kabuno Bay, the CO2 emission to the atmosphere was on average 500.7 mmol m(-2 d(-1 (∼46 times higher than in the main basin. Based on whole-lake mass balance of dissolved inorganic carbon (DIC bulk concentrations and of its stable carbon isotope composition, we show that the epilimnion of Lake Kivu was net autotrophic. This is due to the modest river inputs of organic carbon owing to the small ratio of catchment area to lake surface area (2.15. The carbon budget implies that the CO2 emission to the atmosphere must be sustained by DIC inputs of geogenic origin from deep geothermal springs.

  14. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans.

    Science.gov (United States)

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-07

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.

  15. Twenty-Five Years of Flux Observations at the Harvard Forest; Mature Northeastern Forests are a Consistent Carbon Sink

    Science.gov (United States)

    Munger, J. W.; Swofsy, S. C.; Fitzjarrald, D. R.; David, O.; Barker Plotkin, A.

    2016-12-01

    Because trees grow slowly, long-term observations are essential for detecting responses to climate change and vegetation dynamics in forests. At the Harvard Forest in central Massachusetts, eddy-covariance fluxes have been measured since 1991 in a hardwood-dominated stand. Flux measurements commenced in 2004 for a hemlock-dominated stand. The oldest trees in the hardwood stand date to the early 1900's. The hemlock stand was never cleared and some existing trees approach 200 years old. Plot-based observations surrounding the towers provide complementary data on species composition woody biomass and litter production. Co-location at a Long-Term Ecological Research Site provides additional ecological context and detailed historical perspective.Over the measurement period above-ground biomass has increased more than 30%. Mean annual temperatures have been rising on average 0.3C per decade. The hardwood stand is a net carbon sink, with periods of increasing carbon uptake punctuated by downturns in response to combinations of unfavorable conditions. The hemlock stand has lower peak carbon uptake rates than the oak dominated hardwood stand, but because it is evergreen, carbon uptake starts early in the spring and continues until late fall if temperatures are above freezing. The resulting rates of woody biomass accumulation in the two stands are remarkably similar despite differences in age. Over the past 5 years an infestation by hemlock woolly adelgids (HWA) has led to a noticeable decline in CO2 uptake by the Hemlock stand, and steadily increasing tree mortality. HWA will ultimately kill all the hemlocks and they will be replaced by hardwoods (mostly black birch) that are sprouting under canopy gaps. A key observation from this work is that in the absence of severe disturbance or management activity, mature northeastern forests are consistent carbon sinks. Moderate disturbances by ice-storms, cold-cloudy springs, and summer droughts cause at most a reduction in carbon

  16. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Directory of Open Access Journals (Sweden)

    Bernardo Vargas-Ángel

    Full Text Available This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2 yr(-1 of early successional recruitment communities on Calcification Accretion Unit (CAU plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons

  17. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Science.gov (United States)

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  18. Towards a more comprehensive modelling framework to quantify vertical and lateral carbon fluxes in the agricultural soils of the EU

    Science.gov (United States)

    Lugato, Emanuele; Paustian, Keith; Panagos, Panos; Jones, Arwyn; Borrelli, Pasquale

    2016-04-01

    Under the international protocols aiming at reducing the climate change impact, the land use sector is, likely, one of most complex to be accounted for greenhouse gas (GHG) emission and removal. This is related to its fragmentation and the complex biogeochemical feedbacks interacting with the human activity. Among those feedbacks, the role of erosion in the global carbon (C) cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km2 resolution across the agricultural soils of the European Union (EU). Based on data-driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 out of 187 Mha have C erosion rates 0.45 Mg C ha-1 yr-1. Exploring different assumptions on short-term enhancement C mineralization during soil displacement/transport, enrichment factor of eroded C and sub-soil organic C composition, we estimated an average net CO2 flux ranging from -2.28 (source) to +3.73 (sink) Tg yr-1 of CO2eq, in comparison with a baseline without erosion. Moreover, the erosion-induced sink of atmospheric carbon was comprised between 0 to 50% of the carbon transported by erosion and varied markedly across the EU. While we first integrated most of all relevant processes and C fluxes in a comprehensive model framework, additional experimental data need to be collected for representing specific processes in a more mechanistic way.

  19. How can mountaintop CO2 observations be used to constrain regional carbon fluxes?

    Science.gov (United States)

    Lin, John C.; Mallia, Derek V.; Wu, Dien; Stephens, Britton B.

    2017-05-01

    Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found - i.e., areas that have the potential to serve as carbon sinks. As CO2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield information about carbon fluxes. In this paper, we present CO2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO2 observations, with emphasis on the observed and simulated diurnal cycles of CO2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ˜ 4 km or less may be needed to simulate a realistic diurnal cycle of CO2 for sites on top of the steep mountains examined here in the American Rockies. In the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.

  20. Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes

    Science.gov (United States)

    Paschalis, Athanasios; Fatichi, Simone; Katul, Gabriel G.; Ivanov, Valeriy Y.

    2015-09-01

    While the importance of ecosystem functioning is undisputed in the context of climate change and Earth system modeling, the role of short-scale temporal variability of hydrometeorological forcing (~1 h) on the related ecosystem processes remains to be fully understood. Various impacts of meteorological forcing variability on water and carbon fluxes across a range of scales are explored here using numerical simulations. Synthetic meteorological drivers that highlight dynamic features of the short temporal scale in series of precipitation, temperature, and radiation are constructed. These drivers force a mechanistic ecohydrological model that propagates information content into the dynamics of water and carbon fluxes for an ensemble of representative ecosystems. The focus of the analysis is on a cross-scale effect of the short-scale forcing variability on the modeled evapotranspiration and ecosystem carbon assimilation. Interannual variability of water and carbon fluxes is emphasized in the analysis. The main study inferences are summarized as follows: (a) short-scale variability of meteorological input does affect water and carbon fluxes across a wide range of time scales, spanning from the hourly to the annual and longer scales; (b) different ecosystems respond to the various characteristics of the short-scale variability of the climate forcing in various ways, depending on dominant factors limiting system productivity; (c) whenever short-scale variability of meteorological forcing influences primarily fast processes such as photosynthesis, its impact on the slow-scale variability of water and carbon fluxes is small; and (d) whenever short-scale variability of the meteorological forcing impacts slow processes such as movement and storage of water in the soil, the effects of the variability can propagate to annual and longer time scales.

  1. A case study of carbon fluxes from land change in the southwest Brazilian Amazon

    Science.gov (United States)

    Barrett, K.; Rogan, J.; Eastman, J.R.

    2009-01-01

    Worldwide, land change is responsible for one-fifth of anthropogenic carbon emissions. In Brazil, three-quarters of carbon emissions originate from land change. This study represents a municipal-scale study of carbon fluxes from vegetation in Rio Branco, Brazil. Land-cover maps of pasture, forest, and secondary growth from 1993, 1996, 1999, and 2003 were produced using an unsupervised classification method (overall accuracy = 89%). Carbon fluxes from land change over the decade of imagery were estimated from transitions between land-cover categories for each time interval. This article presents new methods for estimating emissions reductions from carbon stored in the vegetation that replaces forests (e.g., pasture) and sequestration by new (>10-15 years) forests, which reduced gross emissions by 16, 15, and 22% for the period of 1993-1996, 1996-1999, and 1999-2003, respectively. The methods used in the analysis are broadly applicable and provide a comprehensive characterization of regional-scale carbon fluxes from land change.

  2. The Phanerozoic δ88/86Sr record of seawater: New constraints on past changes in oceanic carbonate fluxes

    Science.gov (United States)

    Vollstaedt, Hauke; Eisenhauer, Anton; Wallmann, Klaus; Böhm, Florian; Fietzke, Jan; Liebetrau, Volker; Krabbenhöft, André; Farkaš, Juraj; Tomašových, Adam; Raddatz, Jacek; Veizer, Ján

    2014-03-01

    The isotopic composition of Phanerozoic marine sediments provides important information about changes in seawater chemistry. In particular, the radiogenic strontium isotope (87Sr/86Sr) system is a powerful tool for constraining plate tectonic processes and their influence on atmospheric CO2 concentrations. However, the 87Sr/86Sr isotope ratio of seawater is not sensitive to temporal changes in the marine strontium (Sr) output flux, which is primarily controlled by the burial of calcium carbonate (CaCO3) at the ocean floor. The Sr budget of the Phanerozoic ocean, including the associated changes in the amount of CaCO3 burial, is therefore only poorly constrained. Here, we present the first stable isotope record of Sr for Phanerozoic skeletal carbonates, and by inference for Phanerozoic seawater (δ88/86Srsw), which we find to be sensitive to imbalances in the Sr input and output fluxes. This δ88/86Srsw record varies from ˜0.25‰ to ˜0.60‰ (vs. SRM987) with a mean of ˜0.37‰. The fractionation factor between modern seawater and skeletal calcite Δ88/86Srcc-sw, based on the analysis of 13 modern brachiopods (mean δ88/86Sr of 0.176 ± 0.016‰, 2 standard deviations (s.d.)), is -0.21‰ and was found to be independent of species, water temperature, and habitat location. Overall, the Phanerozoic δ88/86Srsw record is positively correlated with the Ca isotope record (δ44/40Casw), but not with the radiogenic Sr isotope record ((87Sr/86Sr)sw). A new numerical modeling approach, which considers both δ88/86Srsw and (87Sr/86Sr)sw, yields improved estimates for Phanerozoic fluxes and concentrations for seawater Sr. The oceanic net carbonate flux of Sr (F(Sr)carb) varied between an output of -4.7 × 1010 mol/Myr and an input of +2.3 × 1010 mol/Myr with a mean of -1.6 × 1010 mol/Myr. On time scales in excess of 100 Myrs the F(Sr)carb is proposed to have been controlled by the relative importance of calcium carbonate precipitates during the “aragonite” and

  3. Reviews and syntheses: An empirical spatiotemporal description of the global surface–atmosphere carbon fluxes: opportunities and data limitations

    Directory of Open Access Journals (Sweden)

    J. Zscheischler

    2017-08-01

    Full Text Available Understanding the global carbon (C cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface–atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2 exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface–atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE between the surface (land, ocean, and coastal areas and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr−1, positive numbers are sources to the atmosphere, Russia (0.1 ± 0.4 PgC yr−1, East Asia

  4. Climate determined differences in carbon dioxide fluxes dynamics between two comparable agroecosystems of Central Russia

    Science.gov (United States)

    Yaroslavtsev, Alexis; Meshalkina, Joulia; Mazirov, Ilya; Valentini, Riccardo; Vasenev, Ivan

    2015-04-01

    Creation of Russian part of Fluxnet - Rusfluxnet, aims to fill the carbon dioxide fluxes data shortage. Because the Central Russia is still one of the less GHG-investigated European areas especially in case of agroecosystem-level carbon dioxide fluxes monitoring by eddy covariance method. For the first time eddy covariance (EC) GHG study has been conducted at two representative agroecosystems of Central Russia belonging to different climate zones (climate and soils), but both with the same land use: the both fields were under barley. The study was carried out in 2013 and supported by RF Government grant No. 11.G34.31.0079. The first agricultural field located at Precision Farming Experimental Field of the Timiryazev Agricultural University situated in Moscow. It's arable Albeluvisols Umbric have around 1% of SOC, 5.4 pH(KCl) and NPK medium-enhanced contents in sandy loam topsoil. The field was used for barley planting (Hordeum vulgare L., breeding line Mihailovsky). Sowing was in early May 2013 and harvest was in August, 14. The second agricultural field near the Pristen placed at Kursk region of Russia. It's arable Chernozems have around 4% of SOC, 6.5 pH(KCl) and NPK high-enhanced contents in sandy loam topsoil. The field was used for barley planting (Hordeum vulgare L., breeding line Xanadu). Sowing was 25-27 of April and harvest was 14-19 of August. Instrumental equipments (mainly LI-COR) were the same for both stations. Both towers height was 1.4m. Footprints were considered by fields edges, and were about 55m for Moscow and about 150m for Pristen. Canopy growth and snow melting were taking into account in the model. Surface roughness was neglected. Calculations were done using EddyPro software. Since Pristen field is 600 km to the South than the Moscow one, higher PAR values were observed for Pristen field. Modal PAR values were 600 and 400 umol m-2 s-1 for Pristen and Moscow fields respectively. Nevertheless temporal pattern of PAR was similar for both

  5. Long-term increase in forest water-use efficiency observed across ecosystem carbon flux networks (Invited)

    Science.gov (United States)

    Keenan, T. F.; Hollinger, D. Y.; Bohrer, G.; Dragoni, D.; Munger, J. W.; Schmid, H. E.; Richardson, A. D.

    2013-12-01

    Terrestrial plants remove CO2 from the atmosphere through photo- synthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata - small pores on the leaf surface that regulate gas exchange - to maintain a near- constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings demonstrate the utility of maintaining long-term eddy-covariance flux measurement sites. The results suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.

  6. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

    Science.gov (United States)

    Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L

    2017-03-07

    To increase energy security and reduce emissions of air pollutants and CO2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP20. To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP20. We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

  7. Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die?

    Science.gov (United States)

    Reich, Peter B; Falster, Daniel S; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D

    2009-01-01

    * Here, we evaluated how increased shading and declining net photosynthetic capacity regulate the decline in net carbon balance with increasing leaf age for 10 Australian woodland species. We also asked whether leaves at the age of their mean life-span have carbon balances that are positive, zero or negative. * The net carbon balances of 2307 leaves on 53 branches of the 10 species were estimated. We assessed three-dimensional architecture, canopy openness, photosynthetic light response functions and dark respiration rate across leaf age sequences on all branches. We used YPLANT to estimate light interception and to model carbon balance along the leaf age sequences. * As leaf age increased to the mean life-span, increasing shading and declining photosynthetic capacity each separately reduced daytime carbon gain by approximately 39% on average across species. Together, they reduced daytime carbon gain by 64% on average across species. * At the age of their mean life-span, almost all leaves had positive daytime carbon balances. These per leaf carbon surpluses were of a similar magnitude to the estimated whole-plant respiratory costs per leaf. Thus, the results suggest that a whole-plant economic framework, including respiratory costs, may be useful in assessing controls on leaf longevity.

  8. Flux

    DEFF Research Database (Denmark)

    Ravn, Ib

    Med udgangspunkt i kompleksistetsforskning og studiet af selvorganiserende systemer beskriver lb Ravn den fysiske og biologiske evolution og menneskets udvikling. Han fortolker begreber som kultur, sprog, frihed, værdier, mening, smerte og det ondes problem i lyset af en procesbaseret ontologi...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...

  9. Investigating Alaskan methane and carbon dioxide fluxes using measurements from the CARVE tower

    Directory of Open Access Journals (Sweden)

    A. Karion

    2016-04-01

    Full Text Available Northern high-latitude carbon sources and sinks, including those resulting from degrading permafrost, are thought to be sensitive to the rapidly warming climate. Because the near-surface atmosphere integrates surface fluxes over large ( ∼  500–1000 km scales, atmospheric monitoring of carbon dioxide (CO2 and methane (CH4 mole fractions in the daytime mixed layer is a promising method for detecting change in the carbon cycle throughout boreal Alaska. Here we use CO2 and CH4 measurements from a NOAA tower 17 km north of Fairbanks, AK, established as part of NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE, to investigate regional fluxes of CO2 and CH4 for 2012–2014. CARVE was designed to use aircraft and surface observations to better understand and quantify the sensitivity of Alaskan carbon fluxes to climate variability. We use high-resolution meteorological fields from the Polar Weather Research and Forecasting (WRF model coupled with the Stochastic Time-Inverted Lagrangian Transport model (hereafter, WRF-STILT, along with the Polar Vegetation Photosynthesis and Respiration Model (PolarVPRM, to investigate fluxes of CO2 in boreal Alaska using the tower observations, which are sensitive to large areas of central Alaska. We show that simulated PolarVPRM–WRF-STILT CO2 mole fractions show remarkably good agreement with tower observations, suggesting that the WRF-STILT model represents the meteorology of the region quite well, and that the PolarVPRM flux magnitudes and spatial distribution are generally consistent with CO2 mole fractions observed at the CARVE tower. One exception to this good agreement is that during the fall of all 3 years, PolarVPRM cannot reproduce the observed CO2 respiration. Using the WRF-STILT model, we find that average CH4 fluxes in boreal Alaska are somewhat lower than flux estimates by Chang et al. (2014 over all of Alaska for May–September 2012; we also find that enhancements appear

  10. Behaviour of carbon dioxide and water vapour flux densities from a disturbed raised peat bog

    NARCIS (Netherlands)

    Nieveen, J.P.; Jacobs, A.F.G.

    2002-01-01

    Measurements of carbon dioxide and water vapour flux densities were carried out for a disturbed raised peat bog in the north of the Netherlands during an 18 month continuous experiment. Tussock grass (sp. Molinea caerulae) mainly dominated the vegetation of the bog area. The maximum leaf area index

  11. Simulation and sensitivity analysis of carbon storage and fluxes in the New Jersey Pinelands

    Science.gov (United States)

    Zewei Miao; Richard G. Lathrop; Ming Xu; Inga P. La Puma; Kenneth L. Clark; John Hom; Nicholas Skowronski; Steve. Van Tuyl

    2011-01-01

    A major challenge in modeling the carbon dynamics of vegetation communities is the proper parameterization and calibration of eco-physiological variables that are critical determinants of the ecosystem process-based model behavior. In this study, we improved and calibrated a biochemical process-based WxBGC model by using in situ AmeriFlux eddy covariance tower...

  12. CARBON MONOXIDE FLUXES OF DIFFERENT SOIL LAYERS IN UPLAND CANADIAN BOREAL FORESTS

    Science.gov (United States)

    Dark or low-light carbon monoxide fluxes at upland Canadian boreal forest sites were measured on-site with static chambers and with a laboratory incubation technique using cores from different depths at the same sites. Three different upland black spruce sites, burned in 1987,199...

  13. Technical Note: Mesocosm approach to quantify dissolved inorganic carbon percolation fluxes

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jessen, S.; Ambus, Per

    2014-01-01

    unplanted soil. Carbon dioxide partial pressure (pCO(2)), alkalinity, soil moisture and temperature were measured with depth and time, and DIC in the percolate was quantified using a sodium hydroxide trap. Results showed good reproducibility between two replicate mesocosms. The pCO(2) varied between 0.......2 and 1.1 %, and the alkalinity was 0.1-0.6 meq L-1. The measured cumulative effluent DIC flux over the 78-day experimental period was 185-196 mg L-1 m(-2) and in the same range as estimates derived from pCO(2) and alkalinity in samples extracted from the side of the mesocosm column and the drainage flux......Dissolved inorganic carbon (DIC) fluxes across the vadose zone are influenced by a complex interplay of biological, chemical and physical factors. A novel soil mesocosm system was evaluated as a tool for providing information on the mechanisms behind DIC percolation to the groundwater from...

  14. The importance of landscape diversity for carbon fluxes at the landscape level: small-scale heterogeneity matters

    Science.gov (United States)

    Katrin Premke; Katrin Attermeyer; Jurgen Augustin; Alvaro Cabezas; Peter Casper; Detlef Deumlich; Jorg Gelbrecht; Horst H. Gerke; Arthur Gessler; Hans-Peter Grossart; Sabine Hilt; Michael Hupfer; Thomas Kalettka; Zachary Kayler; Gunnar Lischeid; Michael Sommer; Dominik Zak

    2016-01-01

    Landscapes can be viewed as spatially heterogeneous areas encompassing terrestrial and aquatic domains. To date, most landscape carbon (C) fluxes have been estimated by accounting for terrestrial ecosystems, while aquatic ecosystems have been largely neglected. However, a robust assessment of C fluxes on the landscape scale requires the estimation of fluxes within and...

  15. Magnitude and Uncertainty of Carbon Pools and Fluxes in the US Forests

    Science.gov (United States)

    Harris, N.; Saatchi, S. S.; Fore, A.; Yu, Y.; Woodall, C. W.; Ganguly, S.; Nemani, R. R.; Hagen, S.; Birdsey, R.; Brown, S.; Salas, W.; Johnson, K. D.

    2015-12-01

    Sassan Saatchi1,2, Stephan Hagen3, Christopher Woodall4 , Sangram Ganguly,5 Nancy Harris6, Sandra Brown7, Timothy Pearson7, Alexander Fore1, Yifan Yu1, Rama Nemani5, Gong Zhang5, William Salas4, Roger Cooke81 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA2 Institute of Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA3 Applied Geosolutions, 55 Main Street Suit 125, Newmarket, NH 03857, USA4 USDA Forest Service, Northern Research Station, Saint Paul, MN 55108, USA5 NASA Ames Research Center, Moffett Field, CA 94035, USA6 Forests Program, World Resources Institute, Washington, DC, 20002, USA7 Winrock International, Ecosystem Services Unit, Arlington, VA 22202, USA8 Risk Analysis Resources for the Future, Washington DC 20036-1400Assessment of the carbon sinks and sources associated with greenhouse gas (GHG) fluxes across the US forestlands is a priority of the national climate mitigation policy. However, estimates of fluxes from the land sector are less precise compared to other sectors because of the large sources of uncertainty in quantifying the carbon pools, emissions, and removals associated with anthropogenic (land use) and natural changes in the US forestlands. As part of the NASA's Carbon Monitoring System, we developed a methodology based on a combination of ground inventory and space observations to develop spatially refined carbon pools and fluxes including the gross emissions and sequestration of carbon at each 1-ha land unit across the forestlands in the continental United States (CONUS) for the period of 2006-2010. Here, we provide the magnitude and uncertainty of multiple pools and fluxes of the US forestlands and outline the observational requirements to reduce the uncertainties for developing national climate mitigation policies based on the carbon sequestration capacity of the US forest lands. Keywords: forests, carbon pools, greenhouse gas, land use, attribution

  16. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Univ. of Arizona, Tucson, AZ (United States); Wehr, Richard [Univ. of Arizona, Tucson, AZ (United States); Moorcroft, Paul [Univ. of Arizona, Tucson, AZ (United States)

    2016-01-28

    1. Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2). 2. Highlights Accomplishments: • Our isotopic eddy flux record has completed its 5th full year and has been used to independently estimate ecosystem-scale respiration and photosynthesis. • Soil surface chamber isotopic flux measurements were carried out during three growing seasons, in conjunction with a trenching manipulation. Key findings to date (listed by objective): A. Partitioning of Net Ecosystem Exchange: 1. Ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light (the “Kok effect”) at the ecosystem scale. 2. Because it neglects the Kok effect, the standard NEE partitioning approach overestimates ecosystem

  17. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.

  18. Assessments of carbon and water cycling in multiple agricultural ecosystems in the Inland Pacific Northwest using eddy covariance flux measurements and integrated basin-crop model simulation

    Science.gov (United States)

    Chi, J.; Maureira, F.; Waldo, S.; O'Keeffe, P.; Pressley, S. N.; Stockle, C. O.; Lamb, B. K.

    2014-12-01

    Local meteorology, crop management practices and site characteristics have important impacts on carbon and water cycling in agricultural ecosystems. This study focuses on carbon and water fluxes measured using eddy covariance (EC) methods and crop simulation models in the Inland Pacific Northwest (IPNW), in association with the Regional Approaches to Climate Change (REACCH) program. The agricultural ecosystem is currently challenged by higher pressure on water resources as a consequence of population growth and increasing exposure to impacts associated with different types of crop managements. In addition, future climate projections for this region show a likely increase in temperature and significant reductions in precipitation that will affect carbon and water dynamics. This new scenario requires an understanding of crop management by assessing efficient ways to face the impacts of climate change at the micrometeorological level, especially in regards to carbon and water flow. We focus on three different crop management sites. One site (LIND) under crop-fallow is situated in a low-rainfall area. The other two sites, one no-till site (CAF-NT) and one conventional tillage site (CAF-CT), are located in an area of high-rainfall with continuous cropping. In this study, we used CropSyst micro-basin model to simulate the responses in carbon and water budgets at each site. Based on the EC processed results for net ecosystem exchange (NEE) of CO2, the CAF-NT site was a carbon sink during 2013 when spring garbanzo was planted; while the paired CAF-CT site, under similar crop rotation and meteorological conditions, was a carbon source during the same period. The LIND site was also a carbon sink where winter wheat was growing during 2013. Model results for CAF-NT showed good agreement with the EC carbon and water flux measurements during 2013. Through comparisons between measurements and modeling results, both short and long term processes that influence carbon and water

  19. Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO2 observations for the period 2006-2010

    NARCIS (Netherlands)

    Zhang, H. F.; Chen, B. Z.; van der Laan-Luijkx, I. T.; Machida, T.; Matsueda, H.; Sawa, Y.; Fukuyama, Y.; Langenfelds, R.; van der Schoot, M.; Xu, G.; Yan, J. W.; Cheng, M. L.; Zhou, L. X.; Tans, P. P.; Peters, W.

    2014-01-01

    Current estimates of the terrestrial carbon fluxes in Asia show large uncertainties particularly in the boreal and mid-latitudes and in China. In this paper, we present an updated carbon flux estimate for Asia ("Asia" refers to lands as far west as the Urals and is divided into boreal Eurasia,

  20. Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO2 observations for the period 2006 to 2010

    NARCIS (Netherlands)

    Zhang, H.F.; Chen, B.Z.; Laan-Luijkx, van der I.T.; Machida, T.; Matsueda, H.; Sawa, Y.; Peters, W.

    2014-01-01

    Current estimates of the terrestrial carbon fluxes in Asia show large uncertainties particularly in the boreal and mid-latitudes and in China. In this paper, we present an updated carbon flux estimate for Asia ("Asia" refers to lands as far west as the Urals and is divided into boreal Eurasia,

  1. Direct measurement of the oceanic carbon monoxide flux by eddy correlation

    Directory of Open Access Journals (Sweden)

    B. W. Blomquist

    2012-12-01

    Full Text Available This report presents results from a field trial of ship-based air–sea flux measurements of carbon monoxide (CO by direct eddy correlation with an infrared-laser trace gas analyzer. The analyzer utilizes Off-Axis Integrated-Cavity-Output Spectroscopy (OA-ICOS to achieve high selectivity for CO, rapid response (~2 Hz and low noise. Over a two-day sea trial, peak daytime seawater CO concentrations were ~1.5 nM and wind speeds were consistently 10–12 m s−1. A clear diel cycle in CO flux with an early afternoon maximum was observed. An analysis of flux error suggests the effects of non-stationarity are important, and air–sea CO flux measurements are best performed in regions remote from continental pollution sources.

  2. A coupled carbon and plant hydraulic model to predict ecosystem carbon and water flux responses to disturbance and environmental change

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Roberts, D. E.; McDowell, N. G.; Pendall, E.; Frank, J. M.; Reed, D. E.; Massman, W. J.; Mitra, B.

    2011-12-01

    Changing climate drivers including temperature, humidity, precipitation, and carbon dioxide (CO2) concentrations directly control land surface exchanges of CO2 and water. In a profound way these responses are modulated by disturbances that are driven by or exacerbated by climate change. Predicting these changes is challenging given that the feedbacks between environmental controls, disturbances, and fluxes are complex. Flux data in areas of bark beetle outbreaks in the western U.S.A. show differential declines in carbon and water flux in response to the occlusion of xylem by associated fungi. For example, bark beetle infestation at the GLEES AmeriFlux site manifested in a decline in summer water use efficiency to 60% in the year after peak infestation compared to previous years, and no recovery of carbon uptake following a period of high vapor pressure deficit. This points to complex feedbacks between disturbance and differential ecosystem reaction and relaxation responses. Theory based on plant hydraulics and extending to include links to carbon storage and exhaustion has potential for explaining these dynamics with simple, yet rigorous models. In this spirit we developed a coupled model that combines an existing model of canopy water and carbon flow, TREES [e.g., Loranty et al., 2010], with the Sperry et al., [1998] plant hydraulic model. The new model simultaneously solves carbon uptake and losses along with plant hydraulics, and allows for testing specific hypotheses on feedbacks between xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, and autotrophic and heterotrophic respiration. These are constrained through gas exchange, root vulnerability to cavitation, sap flux, and eddy covariance data in a novel model complexity-testing framework. Our analysis focuses on an ecosystem gradient spanning sagebrush to subalpine forests. Our modeling results support hypotheses on feedbacks between hydraulic dysfunction and 1) non

  3. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    Directory of Open Access Journals (Sweden)

    M. Chen

    2011-09-01

    Full Text Available Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM, should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI, Land Surface Water Index (LSWI and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000–2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr−1 and net primary production (NPP ranges from 3.81 to 4.38 Pg C yr−1 and net ecosystem production (NEP varies within 0.08–0.73 Pg C yr−1 over the period 2000–2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr−1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  4. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Min; Zhuang, Qianlai; Cook, D.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken

    2011-08-31

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000-2005 at a 0.05-0.05 spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 PgC yr{sup -1} and net primary production (NPP) ranges from 3.81 to 4.38 Pg Cyr{sup -1} and net ecosystem production (NEP) varies within 0.08- 0.73 PgC yr{sup -1} over the period 2000-2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 PgC yr{sup -1} for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  5. Quantification of Terrestrial Ecosystem Carbon Dynamics in the Conterminous United States Combining a Process-Based Biogeochemical Model and MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Min; Zhuang, Qianlai; Cook, David R.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken

    2011-09-21

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial 24 ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical 25 models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate 26 quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution 27 Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index 28 (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary 29 production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the 30 changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and 31 verify the new version of TEM with eddy flux data. We then apply the model to the conterminous 32 United States over the period 2000-2005 at a 0.05o ×0.05o spatial resolution. We find that the new 33 version of TEM generally captured the expected temporal and spatial patterns of regional carbon 34 dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr-1 and net primary 35 production (NPP) ranges from 3.81 to 4.38 Pg C yr-1 and net ecosystem production (NEP) varies 36 within 0.08-0.73 Pg C yr-1 over the period 2000-2005 for the conterminous United States. The 37 uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr-1 for the regional estimates of GPP, 38 NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 39 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a 40 new independent and more adequate measure of carbon fluxes for the conterminous United States, 41 which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon 42 management and climate.

  6. Soil carbon dioxide and methane fluxes from lowland forests converted to oil palm and rubber plantations in Sumatra, Indonesia

    Science.gov (United States)

    Preuss, Evelyn; Corre, Marife D.; Damris, Muhammad; Tjoa, Aiyen; Rahayu Utami, Sri; Veldkamp, Edzo

    2015-04-01

    Demand for palm oil has increased strongly in recent decades. Global palm oil production quadrupled between 1990 and 2009, and although almost half of the global supply is already produced in Indonesia, a doubling of current production is planned for the next ten years. This agricultural expansion is achieved by conversion of rainforest. Land-use conversion affects soil carbon dioxide (CO2) and methane (CH4) fluxes through changes in nutrient availability and soil properties which, in turn, influence plant productivity, microbial activity and gas diffusivity. Our study was aimed to assess changes in soil CO2 and CH4 fluxes with forest conversion to oil palm and rubber plantations. Our study area was Jambi Province, Sumatra, Indonesia. We selected two soil landscapes in this region: loam and clay Acrisol soils. At each landscape, we investigated four land-use systems: lowland secondary rainforest, secondary forest with regenerating rubber (referred here as jungle rubber), rubber (7-17 years old) and oil palm plantations (9-16 years old). Each land use in each soil landscape was represented by four sites as replicates, totaling to 32 sites. We measured soil-atmosphere CH4 and CO2 fluxes using vented static chamber method with monthly sampling from November 2012 to December 2013. There were no differences in soil CO2 and CH4 fluxes (all P > 0.05) between soil landscapes for each land-use type. For soil CO2 fluxes, in both clay and loam Acrisol soil landscapes oil palm were lower compared to the other land uses (P oil palm, and 195.9 ± 13.5 mg C m-2 h-1for forest, 185.3 ± 9.4 mg C m-2 h-1for jungle rubber and 182.8 ± 16.2 mg C m2 h-1for rubber. In the loam Acrisol, soil CO2 fluxes were 115.7 ± 11.0 mg CO2-C m2 h-1 for oil palm, and 186.6 ± 13.7, 178.7 ± 11.2, 182.9 ± 14.5 mg CO2-C m-2 h-1 for forest, jungle rubber and rubber, respectively. The seasonal patterns of soil CO2 fluxes were positively correlated with water-filled pore space (WFPS) in loam Acrisol

  7. The effect of typhoon on particulate organic carbon flux in the southern East China Sea

    Directory of Open Access Journals (Sweden)

    C.-C. Hung

    2010-10-01

    Full Text Available Severe tropical storms play an important role in triggering phytoplankton blooms, but the extent to which such storms influence biogenic carbon flux from the euphotic zone is unclear. In 2008, typhoon Fengwong provided a unique opportunity to study the in situ biological responses including phytoplankton blooms and particulate organic carbon fluxes associated with a severe storm in the southern East China Sea (SECS. After passage of the typhoon, the sea surface temperature (SST in the SECS was markedly cooler (∼25 to 26 °C than before typhoon passage (∼28 to 29 °C. The POC flux 5 days after passage of the typhoon was 265 ± 14 mg C m−2 d−1, which was ∼1.7-fold that (140–180 mg C m−2 d−1 recorded during a period (June–August, 2007 when no typhoons occurred. A somewhat smaller but nevertheless significant increase in POC flux (224–225 mg C m−2 d−1 was detected following typhoon Sinlaku which occurred approximately 1 month after typhoon Fengwong, indicating that typhoon events can increase biogenic carbon flux efficiency in the SECS. Remarkably, phytoplankton uptake accounted for only about 5% of the nitrate injected into the euphotic zone by typhoon Fengwong. It is likely that phytoplankton population growth was constrained by a combination of light limitation and grazing pressure. Modeled estimates of new/export production were remarkably consistent with the average of new and export production following typhoon Fengwong. The same model suggested that during non-typhoon conditions approximately half of the export of organic carbon occurs via convective mixing of dissolved organic carbon, a conclusion consistent with earlier work at comparable latitudes in the open ocean.

  8. Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL

    Science.gov (United States)

    Robbins, L. L.; Coble, P. G.; Clayton, T. D.; Cai, W. J.

    2008-01-01

    Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. The goal of the workshop was to bring together researchers from multiple disciplines studying terrestrial, aquatic, and marine ecosystems to discuss the state of knowledge in carbon fluxes in the Gulf of Mexico, data gaps, and overarching questions in the Gulf of Mexico system. The discussions at the workshop were intended to stimulate integrated studies of marine and terrestrial biogeochemical cycles and associated ecosystems that will help to establish the role of the Gulf of Mexico in the carbon cycle and how it might evolve in the face of environmental change.

  9. Global, Self-Consistent Carbon Flux and Pool Estimates Utilizing The Simple Biosphere Model (SiB4)

    Science.gov (United States)

    Haynes, K.; Baker, I. T.; Denning, A.; Stockli, R.; Schaefer, K. M.; Lokupitiya, E. Y.

    2013-12-01

    Terrestrial carbon fluxes and pools cannot be measured directly on regional and global scales, thus land surface models are a vital tool in improving estimates of carbon sources, sinks, above and below ground biomass, and soil stocks. The Simple Biosphere Model (SiB4) is a self-consistent model that uses minimal input data to simulate carbon fluxes and pools in a fully prognostic system. Land surface models like SiB4 can be evaluated against a variety of data: carbon pools from field campaigns; carbon fluxes from chambers and flux towers; leaf out and senescence timing, as well as length of growing season from in situ observations; crop yields; and remotely sensed leaf area index (LAI), productivity, fluorescence, and biomass. To improve the simulation of the carbon cycle, this study evaluates SiB4 against these metrics. Preliminary results show that SiB4 has skill at predicting carbon pools and fluxes over forests and crops (maize, soybean, and wheat). Biomass, crop yield, LAI, fluorescence, and productivity are reasonable compared to data. Calculating the leaf pool explicitly improves the LAI over satellite-derived estimates, particularly in boreal, temperate, and agricultural ecosystems; and the improved LAI combined with the use of carbon pools to calculate autotrophic and heterotrophic respiration results in an improvement in carbon fluxes. Vegetation-specific comparisons highlight deficiencies in both grasslands and shrubs, which are addressed and will be further developed in the future. The resulting carbon pools and fluxes provide a realistic estimate of the current global terrestrial carbon cycle and are also realistic a priori fluxes for use by the NASA Carbon Monitoring System (CMS) Flux Project to help attribute CO2 climate forcing to spatially resolved emissions.

  10. Nested Global Inversion for the Carbon Flux Distribution in Canada and USA from 1994 to 2003

    Science.gov (United States)

    Chen, J. M.; Deng, F.; Ishizawa, M.; Ju, W.; Mo, G.; Chan, D.; Higuchi, K.; Maksyutov, S.

    2007-12-01

    Based on TransCom inverse modeling for 22 global regions, we developed a nested global inversion system for estimating carbon fluxes of 30 regions in North America (2 of the 22 regions are divided into 30). Irregular boundaries of these 30 regions are delineated based on ecosystem types and provincial/state borders. Synthesis Bayesian inversion is conducted in monthly steps using CO2 concentration measurements at 88 coastal and continental stations of the globe for the 1994-2003 period (NOAA GlobalView database). Responses of these stations to carbon fluxes from the 50 regions are simulated using the transport model of National Institute for Environmental Studies of Japan and reanalysis wind fields of the National Centers for Environmental Prediction (NCEP). Terrestrial carbon flux fields modeled using BEPS and Biome-BGC driven by NCEP reanalysis meteorological data are used as two different a priori to constrain the inversion. The inversion (top- down) results are compared with remote sensing-based ecosystem modeling (bottom-up) results in Canada's forests and wetlands. There is a broad consistency in the spatial pattern of the carbon source and sink distributions obtained using these two independent methods. Both sets of results also indicate that Canada's forests and wetlands are carbon sinks in 1994-2003, but the top-down method produces consistently larger sinks than the bottom-up results. Reasons for this discrepancy may lie in both methods, and several issues are identified for further investigation.

  11. Modelling the genesis of equatorial podzols: age and implications for carbon fluxes

    Science.gov (United States)

    Doupoux, Cédric; Merdy, Patricia; Régina Montes, Célia; Nunan, Naoise; José Melfi, Adolpho; José Ribeiro Pereira, Osvaldo; Lucas, Yves

    2017-05-01

    Amazonian podzols store huge amounts of carbon and play a key role in transferring organic matter to the Amazon River. In order to better understand their C dynamics, we modelled the formation of representative Amazonian podzol profiles by constraining both total carbon and radiocarbon. We determined the relationships between total carbon and radiocarbon in organic C pools numerically by setting constant C and 14C inputs over time. The model was an effective tool for determining the order of magnitude of the carbon fluxes and the time of genesis of the main carbon-containing horizons, i.e. the topsoil and deep Bh. We performed retrocalculations to take into account the bomb carbon in the young topsoil horizons (calculated apparent 14C age from 62 to 109 years). We modelled four profiles representative of Amazonian podzols, two profiles with an old Bh (calculated apparent 14C age 6.8 × 103 and 8.4 × 103 years) and two profiles with a very old Bh (calculated apparent 14C age 23.2 × 103 and 25.1 × 103 years). The calculated fluxes from the topsoil to the perched water table indicate that the most waterlogged zones of the podzolized areas are the main source of dissolved organic matter found in the river network. It was necessary to consider two Bh carbon pools to accurately represent the carbon fluxes leaving the Bh as observed in previous studies. We found that the genesis time of the studied soils was necessarily longer than 15 × 103 and 130 × 103 years for the two younger and two older Bhs, respectively, and that the genesis time calculated considering the more likely settings runs to around 15 × 103-25 × 103 and 150 × 103-250 × 103 years, respectively.

  12. Observing Carbon Dioxide Fluxes on a Corn Field and a Native Savanna in the Colombian Orinoco River Region Using Eddy Covariance

    Science.gov (United States)

    Morales-Rincon, L. A.; Jimenez-Pizarro, R.; Rodríguez, N.

    2016-12-01

    The Orinoco River basin is expected to become Colombia's largest farming belt in the near future. Agriculture and land use change are the most important greenhouse gas (GHG) source in Colombia and one of the most important globally. At the same time, agriculture is one of the few economic sectors that is also able to act as a sink, e.g. through soil carbon storage. Emissions are largely determined by agricultural practices, thus practice identification and C flux monitoring are of paramount importance for mitigation alternative identification. During second semester of 2015, we measured CO2 fluxes over a commercial corn filed the Colombian Orinoco River Region using enclosed-path eddy covariance. The plot behaved as a CO2 sink during crop development. We found that inter-crop activities played a key role in defining whether the area acted as a net source or sink. Quantifying C fluxes at under local soil and meteorological conditions provides new high quality scientific information, which could be incorporated into a wider evaluation of agroindustry process, e.g. through the C footprint. We will also present ongoing carbon flux measurements in a native savanna and will discuss on the possibility of extrapolating our result to wider areas using process based models.

  13. Constraints on the Use of 18O in CO2 as a Tracer to Partition Gross Carbon Fluxes

    Science.gov (United States)

    Riley, W. J.; Still, C. J.

    2003-12-01

    Measurements of 18O in atmospheric CO2 can be used to partition measured net CO2 ecosystem fluxes into photosynthesis and respiration. However, uncertainties and temporal variability in the δ 18O value of the soil-surface CO2 flux (δ Fs) and the retro-diffused CO2 flux (δ Fr) can lead to substantial errors in partitioning estimates. We will discuss an integrated isotope and ecosystem model (ISOLSM) that simulates exchanges of 18O in H2O and CO2 in soil and plants, and will apply the model to identify critical factors associated with CO2 flux partitioning. Modeling results, regression analysis of model predictions, and an analysis of characteristic times of relevant processes indicate that, in contrast to previous reports, the δ 18O value of soil water (δ sw) in the top few cm of soil strongly impacts δ Fs. Thus, accurately characterizing near-surface δ sw is critical to the CO2 flux partitioning approach. We also discuss the impact of the soil CO2 source distribution within the column, soil temperature, and the δ 18O value of atmospheric CO2 on predictions of δ Fs. Disequilibrium between CO2 and leaf water, which may be common in C4 grasses, will impact δ Fr and therefore the partitioning of the measured net ecosystem CO2 flux. Finally, temporal variability in δ Fr, in particular, can lead to errors in flux partitioning when measurements of the δ 18O value of leaf water and of 18O in atmospheric CO2 and are not made concurrently. We will present results demonstrating the impact of these factors on partitioning estimates and discuss measurement protocol necessary to accurately partition measured net ecosystem CO2 fluxes into their component gross fluxes. We will also briefly discuss the relative merits of 18O versus 13C as a tracer for partitioning net fluxes.

  14. A regional high-resolution carbon flux inversion of North America for 2004

    Directory of Open Access Journals (Sweden)

    A. E. Schuh

    2010-05-01

    Full Text Available Resolving the discrepancies between NEE estimates based upon (1 ground studies and (2 atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS and an underlying biosphere (SiB3 model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous global inversions including the Transcom suite of inversions have utilized inversion regions formed by collapsing biome-similar grid cells into larger aggregated regions. An extreme example of this might be where corrections to NEE imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO2 mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to Gross Primary Productivity (GPP and Ecosystem Respiration (ER is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the Parameterized Chemical Transport Model (PCTM models is used to forge a connection between upwind biosphere fluxes and downwind observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a

  15. A regional high-resolution carbon flux inversion of North America for 2004

    Science.gov (United States)

    Schuh, A. E.; Denning, A. S.; Corbin, K. D.; Baker, I. T.; Uliasz, M.; Parazoo, N.; Andrews, A. E.; Worthy, D. E. J.

    2010-05-01

    Resolving the discrepancies between NEE estimates based upon (1) ground studies and (2) atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous global inversions including the Transcom suite of inversions have utilized inversion regions formed by collapsing biome-similar grid cells into larger aggregated regions. An extreme example of this might be where corrections to NEE imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO2 mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to Gross Primary Productivity (GPP) and Ecosystem Respiration (ER) is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the Parameterized Chemical Transport Model (PCTM) models is used to forge a connection between upwind biosphere fluxes and downwind observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a mean estimate 0.57 Pg/yr sink in North America

  16. Seasonal and inter-annual variability of air-sea CO 2 fluxes and seawater carbonate chemistry in the Southern North Sea

    Science.gov (United States)

    Gypens, N.; Lacroix, G.; Lancelot, C.; Borges, A. V.

    2011-01-01

    A 3D coupled biogeochemical-hydrodynamic model (MIRO-CO 2&CO) is implemented in the English Channel (ECH) and the Southern Bight of the North Sea (SBNS) to estimate the present-day spatio-temporal distribution of air-sea CO 2 fluxes, surface water partial pressure of CO 2 (pCO 2) and other components of the carbonate system (pH, saturation state of calcite ( Ωca) and of aragonite ( Ωar)), and the main drivers of their variability. Over the 1994-2004 period, air-sea CO 2 fluxes show significant inter-annual variability, with oscillations between net annual CO 2 sinks and sources. The inter-annual variability of air-sea CO 2 fluxes simulated in the SBNS is controlled primarily by river loads and changes of biological activities (net autotrophy in spring and early summer, and net heterotrophy in winter and autumn), while in areas less influenced by river inputs such as the ECH, the inter-annual variations of air-sea CO 2 fluxes are mainly due to changes in sea surface temperature and in near-surface wind strength and direction. In the ECH, the decrease of pH, of Ωca and of Ωar follows the one expected from the increase of atmospheric CO 2 (ocean acidification), but the decrease of these quantities in the SBNS during the considered time period is faster than the one expected from ocean acidification alone. This seems to be related to a general pattern of decreasing nutrient river loads and net ecosystem production (NEP) in the SBNS. Annually, the combined effect of carbon and nutrient loads leads to an increase of the sink of CO 2 in the ECH and the SBNS, but the impact of the river loads varies spatially and is stronger in river plumes and nearshore waters than in offshore waters. The impact of organic and inorganic carbon (C) inputs is mainly confined to the coast and generates a source of CO 2 to the atmosphere and low pH, of Ωca and of Ωar values in estuarine plumes, while the impact of nutrient loads, highest than the effect of C inputs in coastal nearshore

  17. Atmospheric Inversion of the Global Surface Carbon Flux with Consideration of the Spatial Distributions of US Crop Production and Consumption

    Science.gov (United States)

    Fung, Jonathan Winston

    Carbon dioxide is taken up by crops during production and released back to the atmosphere at different geographical locations through respiration of consumed crop commodities. In this study, spatially distributed county-level US cropland net primary productivity, harvested biomass, changes in soil carbon, and human and livestock consumption data were integrated into the prior terrestrial biosphere flux generated by the Boreal Ecosystem Productivity Simulator (BEPS). A global time-dependent Bayesian synthesis inversion with a nested focus on North America was carried out based on CO2 observations at 210 stations. Overall, the inverted annual North American CO2 sink weakened by 6.5% over the period from 2002 to 2007 compared to simulations disregarding US crop statistical data. The US Midwest is found to be the major sink of 0.36±0.13 PgC yr-1 whereas the large sink in the US Southeast forests weakened to 0.16±0.12 PgC yr-1 partly due to local CO2 sources from crop consumption.

  18. [Transported fluxes of the riverine carbon and seasonal variation in Pearl River basin].

    Science.gov (United States)

    Zhang, Lian-Kai; Qin, Xiao-Qun; Yang, Hui; Huang, Qi-Bo; Liu, Peng-Yu

    2013-08-01

    The riverine carbon flux is a critical component of global carbon cycle. Riverine water samples were collected from eleven hydrometric stations in the main stream of Pearl River and its tributaries during April and July, 2012. The samples were analyzed for the space and seasonal distribution characteristics of the riverine suspended substance and carbon compositions. Carbon fluxes and erosion modulus of Pearl River basin were also estimated in Boluo, Shijiao, Gaoyao, namely Dongjiang, Beijiang, Xijiang, in these two hydrological seasons. The results showed that the total suspended substance (TSS) and organic carbon, including total particulate organic carbon (POC) and dissolved organic carbon (DOC) have higher concentration in the high-water season than that in the normal-water season. Dissolved inorganic carbon (DIC) has an overwhelming concentration compared to other carbon compositions in Pearl River basin. The DIC concentration shows an order of Xijiang, Beijiang and Dongjiang from high to low. The percentage of allogenic POC in Xijiang, Beijiang and Dongjiang are 78%, 72%, 26%, respectively, and C3 plants are the main sources of allogenic POC in those three tributaries. The transported fluxes of TSS, total carbon (TC), POC, particulate inorganic carbon (PIC), DOC, DIC, total particulate carbon (TPC) and total organic carbon (TOC) are 134 x 10(12),12.69 x 10(12), 2.50 x 10(12), 1.01 x 10(12), 1.13 x 10(12), 8.05 x 10(12), 3.51 x 10(12) and 3.65 x 10(12) g x a(-1), respectively, and the erosion modulus of those compositions are 309 x 10(6), 28.98 x 10(6), 5.75 x 10(6), 2.27 x 10(6), 2.56 x 10(6), 18.4 x 10(6), 8.02 x 10(6) and 8.31 x 10(6) g x (km2 x a)(-1), respectively. Compared with average values of global large rivers, the erosion modulus of DOC, POC, and TOC in Pearl River basin are higher than the corresponding values.

  19. Plant traits as predictor of ecosystem carbon fluxes - a case study across European grasslands

    Science.gov (United States)

    Klumpp, Katja; Bahn, Michael; Acosta, Manuel; Altimir, Nuria; Gimeno, Cristina; Jongen, Marjan; Merbold, Lutz; Moors, Eddy; Pinter, Kistina; Darsonville, Olivier

    2015-04-01

    Predicting ecosystem responses to global change has become a major challenge, particularly as terrestrial ecosystems contribute to the mitigation of global climate change through carbon sequestration. Plant traits are major surrogates of ecosystem physiology may thus help to predict carbon (C) fluxes and their consequences for the delivery of ecosystem services (e.g. C sequestration) across climatic gradients and in changing environments. However, linkages between community abundance-weighted means (CWM) of plant functional traits and ecosystem C fluxes have rarely been tested. It is also not known to what degree traits, which are typically measured at a defined point in time, are suitable for predicting annual C fluxes. We analysed the relationships between ecosystem fluxes and community level plant traits for 13 European grasslands under contrasting climate and management regimes, using multiyear eddy covariance data. Plant traits (specific leaf area SLA, leaf dry matter content LDMC, specific root length SLR) were determined at peak biomass. Analyses showed that GPPmax (at maximum radiation) was related to SLA, SRL and LDMC across sites and management, where GPPmax was an excellent indicator for annual GPP. Similar relations were found between for root density (and -diameter) and ecosystem respiration. Ecosystems respiration at GPPmax was also in line with annual respiration, indicating the strong predictive potential of plant community traits. Our study therefore suggests that above- and belowground community level plant traits are well suited surrogates for predicting ecosystem C fluxes at peak biomass and at annual scale.

  20. Water- and plant-mediated responses of ecosystem carbon fluxes to warming and nitrogen addition on the Songnen grassland in northeast China.

    Directory of Open Access Journals (Sweden)

    Li Jiang

    Full Text Available BACKGROUND: Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition. METHODOLOGY/PRINCIPAL FINDINGS: In-situ canopy CO(2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO(2 exchange (NEE and increased ecosystem respiration (ER; but had no significant impacts on gross ecosystem productivity (GEP. N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland. CONCLUSION/SIGNIFICANCE: Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland.

  1. Carbon Dioxide and Methane Fluxes along the Thaw Lake Cycle Chronosequence, Arctic Coastal Plain of Alaska

    Science.gov (United States)

    Sturtevant, C. S.; Oechel, W. C.

    2011-12-01

    Thaw lakes and drained thaw lake basins comprise the majority of the land surface on the Arctic Coastal Plain of Alaska near Barrow. These landscape features are thought to be part of a several thousand year cycle in which lakes form and drain. Upon drainage, the lake basins appear to undergo a succession of vegetation and soil conditions accompanying ice wedge growth and microtopographic development. These ecosystem changes represent potentially significant variation in land-atmosphere carbon fluxes, yet remain understudied in this respect, especially given the large proportion of the landscape they occupy. The chronosequence from active thaw lakes to ancient thaw lake basins (up to 5500 years old) on the Arctic Coastal Plain near Barrow provides an excellent opportunity to study how and why certain ecosystem changes affect carbon storage and release for this region. It also provides the ability to evaluate spatial variation in carbon fluxes, which will help to constrain uncertainty in and the representativeness of regional estimates using long term flux towers. In this study we used portable meteorological towers to measure the land-atmosphere fluxes of CO2 and CH4 along four replicate sets of the thaw lake basin chronosequence (five age classes each) near Barrow, Alaska during the growing season of 2011. The flux towers were equipped with eddy covariance and environmental instrumentation and were augmented with transect measurements of thaw depth and soil moisture. Here we present our preliminary findings on the differences in and controls of CO2 and CH4 flux along the thaw lake cycle chronosequence. We also discuss regional estimates in the context of observed spatial variability.

  2. Ditch blocking, water chemistry and organic carbon flux: evidence that blanket bog restoration reduces erosion and fluvial carbon loss.

    Science.gov (United States)

    Wilson, Lorraine; Wilson, Jared; Holden, Joseph; Johnstone, Ian; Armstrong, Alona; Morris, Michael

    2011-05-01

    The potential for restoration of peatlands to deliver benefits beyond habitat restoration is poorly understood. There may be impacts on discharge water quality, peat erosion, flow rates and flood risk, and nutrient fluxes. This study aimed to assess the impact of drain blocking, as a form of peatland restoration, on an upland blanket bog, by measuring water chemistry and colour, and loss of both dissolved (DOC) and particulate organic carbon (POC). The restoration work was designed to permit the collection of a robust experimental dataset over a landscape scale, with data covering up to 3 years pre-restoration and up to 3 years post-restoration. An information theoretic approach to data analyses provided evidence of a recovery of water chemistry towards more 'natural' conditions, and showed strong declines in the production of water colour. Drain blocking led to increases in the E4:E6 ratio, and declines in specific absorbance, suggesting that DOC released from blocked drains consisted of lighter, less humic and less decomposed carbon. Whilst concentrations of DOC showed slight increases in drains and streams after blocking, instantaneous yields of both DOC and POC declined markedly in streams over the first year post-restoration. Attempts were made to estimate total annual fluvial organic carbon fluxes for the study site, and although errors around these estimates remain considerable, there is strong evidence of a large reduction in aquatic organic carbon flux from the peatland following drain-blocking. Potential mechanisms for the observed changes in water chemistry and organic carbon release are discussed, and we highlight the need for more detailed information, from more sites, to better understand the full impacts of peatland restoration on carbon storage and release. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects

    Science.gov (United States)

    Jacobson, Mark Z.

    2014-07-01

    This paper examines the effects on climate and air pollution of open biomass burning (BB) when heat and moisture fluxes, gases and aerosols (including black and brown carbon, tar balls, and reflective particles), cloud absorption effects (CAEs) I and II, and aerosol semidirect and indirect effects on clouds are treated. It also examines the climate impacts of most anthropogenic heat and moisture fluxes (AHFs and AMFs). Transient 20 year simulations indicate BB may cause a net global warming of 0.4 K because CAE I ( 32% of BB warming), CAE II, semidirect effects, AHFs ( 7%), AMFs, and aerosol absorption outweigh direct aerosol cooling and indirect effects, contrary to previous BB studies that did not treat CAEs, AHFs, AMFs, or brown carbon. Some BB warming can be understood in terms of the anticorrelation between instantaneous direct radiative forcing (DRF) changes and surface temperature changes in clouds containing absorbing aerosols. BB may cause 250,000 (73,000-435,000) premature mortalities/yr, with >90% from particles. AHFs from all sources and AMFs + AHFs from power plants and electricity use each may cause a statistically significant +0.03 K global warming. Solar plus thermal-IR DRFs were +0.033 (+0.027) W/m2 for all AHFs globally without (with) evaporating cooling water, +0.009 W/m2 for AMFs globally, +0.52 W/m2 (94.3% solar) for all-source BC outside of clouds plus interstitially between cloud drops at the cloud relative humidity, and +0.06 W/m2 (99.7% solar) for BC inclusions in cloud hydrometeor particles. Modeled post-1850 biomass, biofuel, and fossil fuel burning, AHFs, AMFs, and urban surfaces accounted for most observed global warming.

  4. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison.

    Science.gov (United States)

    Restrepo-Coupe, Natalia; Levine, Naomi M; Christoffersen, Bradley O; Albert, Loren P; Wu, Jin; Costa, Marcos H; Galbraith, David; Imbuzeiro, Hewlley; Martins, Giordane; da Araujo, Alessandro C; Malhi, Yadvinder S; Zeng, Xubin; Moorcroft, Paul; Saleska, Scott R

    2017-01-01

    To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry-season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of other fluxes and pools. Models simulated consistent dry-season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry-season GPP reductions were driven by an external environmental factor, 'soil water stress' and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (R e ) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry-season declines in GPP and R e consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light-harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model

  5. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite based estimates

    OpenAIRE

    Schlitzer, Reiner

    2002-01-01

    The usage of dissolved nutrients and carbon for photosynthesis in the euphotic zone and the subsequent downward transport of particulate and dissolved organic material strongly affect the carbon concentrations in surface water and thus the air-sea exchange of CO2. Efforts to quantify the downward carbon flux for the whole ocean or on basin-scales are hampered by the sparseness of direct productivity or flux measurements. Here, a global ocean circulation, biogeochemical model is used to determ...

  6. Contribution of urine and dung patches from grazing sheep to methane and carbon dioxide fluxes in an inner mongolian desert grassland.

    Science.gov (United States)

    Jiang, Yuanyuan; Tang, Shiming; Wang, Chengjie; Zhou, Pei; Tenuta, Mario; Han, Guodong; Huang, Ding

    2012-02-01

    The effects of sheep urine and dung patches on methane (CH4) and carbon dioxide (CO2) fluxes were investigated during the summer-autumn in 2010, to evaluate their contribution to climate change in a desert grassland in Inner Mongolia, China. Results indicate that the cumulative CH4 emissions for dung patches, urine patches and control plots were - -0.076, -0.084, and -0.114 g/m(2) and these were net CH4 sinks during the measured period. The level of CH4 intake from urine and dung plots decreased 25.7%, and 33.3%, respectively, compared with a control plot. CO2 fluxes differed (psheep excrement weakened CH4 intake and increased CO2 emissions.

  7. Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea

    Science.gov (United States)

    Carlson, Craig A.; Ducklow, Hugh W.; Michaels, Anthony F.

    1994-09-01

    THE export of biogenic carbon from the upper ocean is responsible for maintaining the vertical gradient of dissolved inorganic carbon and thus indirectly for regulating the level of atmospheric CO2 (ref. 1). Large, rapidly sinking particles are thought to dominate this export2, and this sinking flux has been thought to balance new production3. Recent measurements of particle export4-6 and estimates of new production7-9 have questioned this picture, however. Here we report measurements of dissolved organic carbon (DOC) off Bermuda, which provide strong support for the idea10-15 that this component of oceanic carbon is also an important and dynamic part of the ocean carbon cycle. We find that DOC accumulates in the early spring owing to increased primary production, and is partially consumed in the summer and autumn. The DOC that escapes remineralization is exported from the surface ocean the following winter, and we estimate this export to be equal to or greater than the measured particle flux, allowing us to close the annual vertical carbon budget for this site to within a factor of two. Our observations should be applicable to other temperate, sub-polar and continental-shelf regions of the world ocean which exhibit convective mixing and vernal restratification.

  8. Carbon Flux of Down Woody Materials in Forests of the North Central United States

    Directory of Open Access Journals (Sweden)

    C. W. Woodall

    2010-01-01

    Full Text Available Across large scales, the carbon (C flux of down woody material (DWM detrital pools has largely been simulated based on forest stand attributes (e.g., stand age and forest type. The annual change in forest DWM C stocks and other attributes (e.g., size and decay class changes was assessed using a forest inventory in the north central United States to provide an empirical assessment of strategic-scale DWM C flux. Using DWM inventory data from the USDA Forest Service's Forest Inventory and Analysis program, DWM C stocks were found to be relatively static across the study region with an annual flux rate not statistically different from zero. Mean C flux rates across the study area were −0.25, −0.12, −0.01, and −0.04 (Mg/ha/yr for standing live trees, standing dead trees, coarse woody debris, and fine woody debris, respectively. Flux rates varied in their both magnitude and status (emission/sequestration by forest types, latitude, and DWM component size. Given the complex dynamics of DWM C flux, early implementation of inventory remeasurement, and relatively low sample size, numerous future research directions are suggested.

  9. Sensitivity of the KM3NeT detector to neutrino fluxes from Galactic point-like sources

    NARCIS (Netherlands)

    Trovato, A.; Kooijman, P.; Coniglione, R.; Sapienza, P.

    2014-01-01

    The KM3NeT collaboration has started the implementation of the first phase of a cubic-kilometre-scale neutrino telescope in the Northern hemisphere with an integrated platform for Earth and deep sea sciences. The location in the Mediterranean Sea will allow for surveying a large part of the sky,

  10. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat and carbon fluxes in semi-arid basin

    Science.gov (United States)

    Xie, Zhenghui; Zeng, Yujin

    2017-04-01

    Irrigation, which constitutes 70% of the total amount of fresh water consumed by the human population, is significantly impacting the land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM 4.5) with an active crop model, two high resolution ( 1 km) simulations investigating the effects of irrigation on Latent Heat (LH), Sensible Heat (SH) and Carbon Fluxes (or net ecosystem exchange, NEE) from land to atmosphere on the Heihe River Basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity and viability of the developed models to reproduce ecological and hydrological processes. The results revealed the effects of irrigation on LH and SH are strongest during summer with a LH increase of 100 W/m2 and a SH decrease of 60 W/m2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate below 5 mm/day, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm/day, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC/m2/day, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by 0.8 gC/m2/day. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH and NEE. The study indicates that how a land surface model with high spatial resolution can represent crop growing and its effects over basin scale.

  11. Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a Carbon Bookkeeping Model.

    Directory of Open Access Journals (Sweden)

    Lykke E Andersen

    Full Text Available Accurate estimates of global carbon emissions are critical for understanding global warming. This paper estimates net carbon emissions from land use change in Bolivia during the periods 1990-2000 and 2000-2010 using a model that takes into account deforestation, forest degradation, forest regrowth, gradual carbon decomposition and accumulation, as well as heterogeneity in both above ground and below ground carbon contents at the 10 by 10 km grid level. The approach permits detailed maps of net emissions by region and type of land cover. We estimate that net CO2 emissions from land use change in Bolivia increased from about 65 million tons per year during 1990-2000 to about 93 million tons per year during 2000-2010, while CO2 emissions per capita and per unit of GDP have remained fairly stable over the sample period. If we allow for estimated biomass increases in mature forests, net CO2 emissions drop to close to zero. Finally, we find these results are robust to alternative methods of calculating emissions.

  12. Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a Carbon Bookkeeping Model.

    Science.gov (United States)

    Andersen, Lykke E; Doyle, Anna Sophia; del Granado, Susana; Ledezma, Juan Carlos; Medinaceli, Agnes; Valdivia, Montserrat; Weinhold, Diana

    2016-01-01

    Accurate estimates of global carbon emissions are critical for understanding global warming. This paper estimates net carbon emissions from land use change in Bolivia during the periods 1990-2000 and 2000-2010 using a model that takes into account deforestation, forest degradation, forest regrowth, gradual carbon decomposition and accumulation, as well as heterogeneity in both above ground and below ground carbon contents at the 10 by 10 km grid level. The approach permits detailed maps of net emissions by region and type of land cover. We estimate that net CO2 emissions from land use change in Bolivia increased from about 65 million tons per year during 1990-2000 to about 93 million tons per year during 2000-2010, while CO2 emissions per capita and per unit of GDP have remained fairly stable over the sample period. If we allow for estimated biomass increases in mature forests, net CO2 emissions drop to close to zero. Finally, we find these results are robust to alternative methods of calculating emissions.

  13. Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.A., E-mail: christopher.adams@uea.ac.uk; Andrews, J.E.; Jickells, T.

    2012-09-15

    Carbon (C), nitrogen (N) and phosphorous (P) burial rates were determined within natural saltmarsh (NSM) and 'managed realignment' (MR) sediments of the Blackwater estuary, UK. Methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) fluxes were measured along with their ability to offset a portion of the C burial to give net C sequestration. C and N densities (C{rho} and N{rho}) of NSM sediments (0.022 and 0.0019 g cm{sup -3}) are comparable to other UK NSM sediments. Less vegetationally developed MR sediments have lower C{rho} and N{rho} (0.012 and 0.0011 g cm{sup -3}) while the more vegetationally developed sites possess higher C{rho} and N{rho} (0.023 and 0.0030 g cm{sup -3}) than NSM. Both NSM and MR areas were small CH{sub 4} (0.10-0.40 g m{sup -2} yr{sup -1}) and N{sub 2}O (0.03-0.37 g m{sup -2} yr{sup -1}) sources. Due to their large Global Warming Potentials, even these relatively small greenhouse gas (GHG) fluxes reduced the net C sequestration within MR marshes by as much as 49%, but by only 2% from NSM. Potential MR areas within the Blackwater estuary (29.5 km{sup 2} saltmarsh and 23.7 km{sup 2} intertidal mudflat) could bury 5478 t C yr{sup -1} and 695.5 t N yr{sup -1}, with a further 476 t N yr{sup -1} denitrified. The saltmarsh MR would also sequester 139.4 t P yr{sup -1}. GHG fluxes would reduce the C burial benefit by 24% giving a C sequestration rate of 4174 t C yr{sup -1}. Similar areas within the Humber estuary (74.95 km{sup 2}) could bury 3597 t C yr{sup -1} and 180 t N yr{sup -1}, with a further 442 t N yr{sup -1} denitrified. GHG fluxes would reduce the C burial benefit by 31% giving a C sequestration rate of 2492 t C yr{sup -1}. Overall, MR sites provide sustainable coastal defence options with significant biogeochemical value and, despite being net sources of CH{sub 4} and N{sub 2}O, can sequester C and reduce estuarine nutrient loads. -- Highlights: Black-Right-Pointing-Pointer We investigated C, N, P, CH{sub 4} and N{sub 2}O fluxes

  14. Differential responses of net ecosystem exchange of carbon dioxide to light and temperature between spring and neap tides in subtropical mangrove forests.

    Science.gov (United States)

    Li, Qing; Lu, Weizhi; Chen, Hui; Luo, Yiqi; Lin, Guanghui

    2014-01-01

    The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE) and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR) using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios.

  15. Differential Responses of Net Ecosystem Exchange of Carbon Dioxide to Light and Temperature between Spring and Neap Tides in Subtropical Mangrove Forests

    Directory of Open Access Journals (Sweden)

    Qing Li

    2014-01-01

    Full Text Available The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios.

  16. The influence of soil carbonic anhydrase on the partitioning of gross CO2 fluxes using the oxygen isotopes of CO2 and water.

    Science.gov (United States)

    Wingate, L.; Ogée, J.; Cuntz, M.; Seibt, U.; Peylin, P.; Genty, B.; Reiter, I.; Grace, J.; (6-9, Colleagues

    2009-04-01

    Measuring terrestrial gross CO2 fluxes at large scales presents one of the main challenges in global carbon cycle research. The oxygen isotopic composition (δ18O) of atmospheric CO2 offers the possibility to partition net CO2 fluxes into photosynthesis and respiration at ecosystem, regional and global scales. This approach relies on a detailed knowledge of the δ18O signature of the terrestrial gross CO2 fluxes. The latter reflects the δ18O of leaf and soil water because CO2 exchanges isotopically with water. This exchange can be accelerated by the enzyme carbonic anhydrase (CA). The high CA content in leaves of plants amplifies the impact of leaf photosynthesis on the δ18O of atmospheric CO2 (δa) by enhancing the equilibration of atmospheric CO2 with isotopically enriched leaf water. Here, we report that the accelerated isotopic exchange between CO2 and water due to CA activity may be a widespread phenomenon in soils as well. Across a range of ecosystems, we found that CO2 hydration was 10 to 300 times faster than the uncatalysed rate, with highest values in the hottest ecosystems. At the global scale, accounting for soil CA activity dramatically shifts the influence of soil and leaf fluxes on δa, thus changing the estimates of terrestrial gross CO2 fluxes. At a time when new laser technologies are poised to deliver more extensive data coverage of variations in δa, our finding indicates that δa signals should enable us to constrain CO2 gross fluxes in regions where this information has been particularly difficult to obtain, such as in the tropics.

  17. Productivity and carbon dioxide exchange of leguminous crops: estimates from flux tower measurements

    Science.gov (United States)

    Gilmanov, Tagir G.; Baker, John M.; Bernacchi, Carl J.; Billesbach, David P.; Burba, George G.; Castro, Saulo; Chen, Jiquan; Eugster, Werner; Fischer, Marc L.; Gamon, John A.; Gebremedhin, Maheteme T.; Glenn, Aaron J.; Griffis, Timothy J.; Hatfield, Jerry L.; Heuer, Mark W.; Howard, Daniel M.; Leclerc, Monique Y.; Loescher, Henry W.; Marloie, Oliver; Meyers, Tilden P.; Olioso, Albert; Phillips, Rebecca L.; Prueger, John H.; Skinner, R. Howard; Suyker, Andrew E.; Tenuta, Mario; Wylie, Bruce K.

    2014-01-01

    Net CO2 exchange data of legume crops at 17 flux tower sites in North America and three sites in Europe representing 29 site-years of measurements were partitioned into gross photosynthesis and ecosystem respiration by using the nonrectangular hyperbolic light-response function method. The analyses produced net CO2 exchange data and new ecosystem-scale ecophysiological parameter estimates for legume crops determined at diurnal and weekly time steps. Dynamics and annual totals of gross photosynthesis, ecosystem respiration, and net ecosystem production were calculated by gap filling with multivariate nonlinear regression. Comparison with the data from grain crops obtained with the same method demonstrated that CO2 exchange rates and ecophysiological parameters of legumes were lower than those of maize (Zea mays L.) but higher than for wheat (Triticum aestivum L.) crops. Year-round annual legume crops demonstrated a broad range of net ecosystem production, from sinks of 760 g CO2 m–2 yr–1 to sources of –2100 g CO2 m–2 yr–1, with an average of –330 g CO2 m–2 yr–1, indicating overall moderate CO2–source activity related to a shorter period of photosynthetic uptake and metabolic costs of N2 fixation. Perennial legumes (alfalfa, Medicago sativa L.) were strong sinks for atmospheric CO2, with an average net ecosystem production of 980 (range 550–1200) g CO2 m–2 yr–1.

  18. Derivation of Surface Net Radiation at the Valencia Anchor Station from Top of the Atmosphere Gerb Fluxes by Means of Linear Models and Neural Networks

    Science.gov (United States)

    Geraldo Ferreira, A.; Lopez-Baeza, Ernesto; Velazquez Blazquez, Almudena; Soria-Olivas, Emilio; Serrano Lopez, Antonio J.; Gomez Chova, Juan

    2012-07-01

    In this work, Linear Models (LM) and Artificial Neural Networks (ANN) have been developed to estimate net radiation (RN) at the surface. The models have been developed and evaluated by using the synergy between Geostationary Earth Radiation Budget (GERB-1) and Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, both instruments onboard METEOSAT-9, and ``in situ'' measurements. The data used in this work, corresponding to August 2006 and June to August 2007, proceed from Top of the Atmosphere (TOA) broadband fluxes from GERB-1, every 15 min, and from net radiation at the surface measured, every 10 min, at the Valencia Anchor Station (VAS) area, having measured independently the shortwave and the longwave radiation components (downwelling and upwelling) for different land uses and land cover. The adjustment of both temporal resolutions for the satellite and in situ data was achieved by linear interpolation that showed less standard deviation than the cubic one. The LMs were developed and validated by using satellite TOA RN and ground station surface RN measurements, only considering cloudy free days selected from the ground data. The ANN model was developed both for cloudy and cloudy-free conditions using seven input variables selected for the training/validation sets, namely, hour, day, month, surface RN, solar zenith angle and TOA shortwave and longwave fluxes. Both, LMs and ANNs show remarkably good agreement when compared to surface RN measurements. Therefore, this methodology can be successfully applied to estimate RN at surface from GERB/SEVIRI data.

  19. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    Directory of Open Access Journals (Sweden)

    T. Schneider von Deimling

    2015-06-01

    Full Text Available High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon stock will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2 and methane (CH4 fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels. We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under newly formed thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost carbon feedback. Under moderate warming of the representative concentration pathway (RCP 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrams of carbon (Pg-C (68% range by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5 results in cumulated CO2 release of 42 to 141 Pg-C and 157 to 313 Pg-C (68% ranges in the years 2100 and 2300, respectively. Our estimates only consider fluxes from newly thawed permafrost, not from soils already part of the seasonally thawed active layer under pre-industrial climate. Our simulated CH4 fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range. We infer largest CH4 emission rates of about 50 Tg-CH4 per year around the middle of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is taken into account. CH4 release from newly thawed carbon in

  20. Effects of Permafrost Thaw on Net Ecosystem Carbon Balance in a Subarctic Peatland

    Science.gov (United States)

    Wang, Z.; Roulet, N. T.; Moore, T. R.

    2014-12-01

    This research is to assess changes in net ecosystem carbon balance (NECB) with permafrost thaw in northern peatland: in particular how changes in C biogeochemistry influence NECB. Thawed transects associated with varying stages of permafrost thaw: from palsas with intact permafrost (P), through edge of palsa (EP), dry lawn (DL), wet lawn (WL), edge of thawed pond (ET), pond sedges (PS), to several thawed ponds (TP) in a subarctic peatland in northern Quebec were sampled in the snow free seasons of 2013 and 2014. The exchange of CO2 and CH4, vegetation, dissolved organic C (DOC) concentration and biodegradability, active layer depth, air and peat temperatures, water table depth (WT), pH, and conductivity were measured. Peat temperatures were quite similar among different locations, but the WT decreased significantly along the transect creating varied environmental conditions that supporting different plant communities. From dry to wet area, vegetation abundance and biomass showed reductions of shrubs and lichens, and increases of Sphagnum, grasses and sedges. Pore water pH increased from dry to wet area, and conductivity slightly decreased. Wet thaw area WL, ET and PS had relatively higher season gross ecosystem production (GEP) and higher season ecosystem respiration (ER), but relative similar net ecosystem CO2 exchange (NEE). Only TP had a significant higher positive season NEE. Palsa was the only CH4 sink, and quite high CH4 emissions were found after it thawed. CH4-C release significantly increased from dry to wet in thawed area, which even several times bigger than total C exchange in ET and PS. Generally, wet area had higher DOC concentration and higher DOC biodegradability indicated by lower SUVA254 (except PS which received great influence from pond). All components in the NECB (GEP, ER, CH4, DOC) increased significantly in magnitude from palsa to wet thawed area, and ecosystem C sink turned into source as palsa thawed into PS and TP. These results

  1. Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX

    Digital Repository Service at National Institute of Oceanography (India)

    Martin, P.; Loeff, M.M.R. van der.; Cassar, N.; Vandromme, P.; d'Ovidio, F.; Stemmann, L.; Rengarajan, R.; Soares, M.A.; Gonzalez, H.E.; Ebersbach, F.; Lampitt, R.S.; Sanders, R.; Barnett, B.A.; Smetacek, V.; Naqvi, S.W.A.

    A closed eddy core in the Subantarctic Atlantic Ocean was fertilized twice with two tons of iron (as FeSO4), and the 300 km2 fertilized patch was studied for 39 days to test whether fertilization enhances downward particle flux...

  2. Hotspots in ground and surface water carbon fluxes through a freshwater to marine (mangrove) transition zone

    Science.gov (United States)

    Larsen, J.; Welti, N.; Hayes, M.; Lockington, D. A.

    2014-12-01

    The transfer of carbon and water from coastal freshwater wetlands to intertidal and marine zones is significant for sustaining ecosystem processes, particularly within mangroves environments. Large increases in carbon and nutrient fluxes within spatially confined zones (hotspots) are significant as drivers for broader cycling. How these processes relate to the transfers between surface and groundwater systems, as well as the transition from freshwater to marine environments, remains poorly understood. We investigated the flux of carbon and water from a freshwater wetland, to a saltmarsh and then mangroves, both within the main surface channel and within a comprehensive shallow groundwater bore network. We were able to characterise the main spatial trends in water gradients and mixing (using salinity, hydraulic gradients, stable water isotopes, and temperature) over seasonal cycles. In addition, at the same time we investigated the changes in dissolved organic carbon concentration and quality (fluorescence, UV), as well as nutrients (NO3, NH4). This revealed the river and tidal channel to be a significant export pathway for organic carbon, which was generally highly aromatic and recalcitrant. However, we also found that isolated sections of the brackish groundwater mixing zone between freshwater and marine provided a consistently high DOC 'hotspot' of very high quality carbon. This hotspot has high lateral groundwater gradients and therefore likely transports this carbon to the rest of the mangrove subsurface, where it is rapidly assimilated. These results imply large spatial heterogeneity in the carbon cycling between freshwater and marine environments, and have significant implications for the processing of the organic matter, and therefore also the respiration of greenhouse gases such as CO2 and CH4.

  3. A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    Science.gov (United States)

    Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2010-01-01

    he Energy Independence and Security Act of 2007 (EISA), Section 712, mandates the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation’s ecosystems, focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems (terrestrial systems, such as forests, croplands, wetlands, grasslands/shrublands; and aquatic ecosystems, such as rivers, lakes, and estuaries); (2) an estimate of the annual potential capacities of ecosystems to increase carbon sequestration and reduce net GHG emissions in the context of mitigation strategies (including management and restoration activities); and (3) an evaluation of the effects of controlling processes, such as climate change, land-use and land-cover change, and disturbances such as wildfires.The concepts of ecosystems, carbon pools, and GHG fluxes follow conventional definitions in use by major national and international assessment or inventory efforts. In order to estimate current ecosystem carbon stocks and GHG fluxes and to understand the potential capacity and effects of mitigation strategies, the method will use two time periods for the assessment: 2001 through 2010, which establishes a current ecosystem carbon and GHG baseline and will be used to validate the models; and 2011 through 2050, which will be used to assess potential capacities based on a set of scenarios. The scenario framework will be constructed using storylines of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES), along with both reference and enhanced land-use and land-cover (LULC) and land-management parameters. Additional LULC and land-management mitigation scenarios will be constructed for each storyline to increase carbon sequestration and reduce GHG fluxes in ecosystems. Input from regional experts and stakeholders will be

  4. Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Görres, C.-M.; Hoffmann, Carl Christian

    2012-01-01

    This study presents the first annual estimates of net ecosystem exchange (NEE) of CO2 and net ecosystem carbon balances (NECB) of contrasting Danish agricultural peatlands. Studies were done at eight sites representing permanent grasslands (PG) and rotational (RT) arable soils cropped to barley......) sites, NEE (mean ± standard error, SE) was 5.1 ± 0.9 and 8.6 ± 2.0 Mg C ha−1 yr−1, respectively, but with the overall lowest value observed for potato cropping (3.5 Mg C ha−1 yr−1). This was partly attributed to a short-duration vegetation period and drying of the soil especially in potato ridges. NECB...... and temperate climate zones. It was stressed that evaluation of emission factors should explicitly differentiate between data representing net C balance from a soil perspective and CO2-C balance from an atmospheric perspective. Modelling of inter-annual variability in NEE for three selected sites during a 21...

  5. Optimal representation of source-sink fluxes for mesoscale carbon dioxide inversion with synthetic data

    Science.gov (United States)

    Wu, Lin; Bocquet, Marc; Lauvaux, Thomas; Chevallier, FréDéRic; Rayner, Peter; Davis, Kenneth

    2011-11-01

    The inversion of CO2 surface fluxes from atmospheric concentration measurements involves discretizing the flux domain in time and space. The resolution choice is usually guided by technical considerations despite its impact on the solution to the inversion problem. In our previous studies, a Bayesian formalism has recently been introduced to describe the discretization of the parameter space over a large dictionary of adaptive multiscale grids. In this paper, we exploit this new framework to construct optimal space-time representations of carbon fluxes for mesoscale inversions. Inversions are performed using synthetic continuous hourly CO2 concentration data in the context of the Ring 2 experiment in support of the North American Carbon Program Mid Continent Intensive (MCI). Compared with the regular grid at finest scale, optimal representations can have similar inversion performance with far fewer grid cells. These optimal representations are obtained by maximizing the number of degrees of freedom for the signal (DFS) that measures the information gain from observations to resolve the unknown fluxes. Consequently information from observations can be better propagated within the domain through these optimal representations. For the Ring 2 network of eight towers, in most cases, the DFS value is relatively small compared to the number of observations d (DFS/d adaptively mitigate the aggregation errors.

  6. Influence of nitrogen and soil physical characteristics on belowground carbon flux dynamics of woody plants

    OpenAIRE

    Ceccon, Christian

    2011-01-01

    At ecosystem level soil respiration (Rs) represents the largest carbon (C) flux after gross primary productivity, being mainly generated by root respiration (autotrophic respiration, Ra) and soil microbial respiration (heterotrophic respiration, Rh). In the case of terrestrial ecosystems, soils contain the largest C-pool, storing twice the amount of C contained in plant biomass. Soil organic matter (SOM), representing the main C storage in soil, is decomposed by soil microbial community. This...

  7. Simulation of Forest Carbon Fluxes Using Model Incorporation and Data Assimilation

    OpenAIRE

    Min Yan; Xin Tian; Zengyuan Li; Erxue Chen; Xufeng Wang; Zongtao Han; Hong Sun

    2016-01-01

    This study improved simulation of forest carbon fluxes in the Changbai Mountains with a process-based model (Biome-BGC) using incorporation and data assimilation. Firstly, the original remote sensing-based MODIS MOD_17 GPP (MOD_17) model was optimized using refined input data and biome-specific parameters. The key ecophysiological parameters of the Biome-BGC model were determined through the Extended Fourier Amplitude Sensitivity Test (EFAST) sensitivity analysis. Then the optimized MOD_17 mo...

  8. Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes

    Science.gov (United States)

    Kala, Jatin; Decker, Mark; Exbrayat, Jean-Francois; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Abramowitz, Gab; Mocko, David

    2013-01-01

    Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. We investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980-2008) are carried out at 25 km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such as croplands, were more sensitive. We show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, especially for PFTs with high inter-annual variability. Our study highlights that the accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence this will become critical in quantifying the uncertainty in future changes in primary production.

  9. Simulating carbon fluxes in Siberia using assimilation of remotely sensed soil moisture data

    Science.gov (United States)

    van der Molen, Michiel; de Jeu, Richard; Belelli Marchesini, Luca; Peters, Wouter

    2013-04-01

    Simulating biogenic carbon fluxes in Siberia is difficult, because the growing season is short and the transitions between the seasons are fast. At the start of the growing season, when the snow has melted, the soil is still frozen. The melt water therefore either runs off quickly in non-flat terrain, or waterlogs the soil in flat terrain. Consequently, the soil moisture content during soil thawing tends to the extremes, either very wet or towards dry. This 'bi-modal' behaviour of soil moisture at the start of the growing season is difficult to capture by vegetation models. Consequently, the carbon fluxes and transpiration rates are either too much limited by anticipated water stress, or too little limited during waterlogging. We present here a method to improve the simulated soil moisture in a vegetation model, SiBCASA (Schaefer et al., 2008) by assimilating remotely sensed soil moisture into the SiBCASA. We use the blended active and passive microwave soil moisture data set of Liu et al., (2011, 2012) for this purpose, which has a time resolution of 1 day and a horizontal resolution of 0.25°×0.25°. We explain the methodology for relating the top soil moisture observations to whole profile simulated soil moisture, and for translating the meaning of mean and extremes of soil moisture between remote sensing observations and SiBCASA. Ultimately, we present the effect of better representing soil moisture content on simulating the carbon fluxes in Siberia, and we compare the simulated data with observations of soil moisture and carbon fluxes at 14 locations across Boreal Eurasia.

  10. Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China

    Science.gov (United States)

    Jie Zhou; Zhiqiang Zhang; Ge Sun; Xianrui Fang; Tonggang Zha; Steve McNulty; Jiquan Chen; Ying Jin; Asko Noormets

    2013-01-01

    Poplar plantations are widely used for timber production and ecological restoration in northern China,a region that experiences frequent droughts and water scarcity. An open-path eddy-covariance (EC)system was used to continuously measure the carbon,water,and energy fluxes in a poplar plantation during the growing season (i.e., April–October)over the period 2006–2008...

  11. Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view

    OpenAIRE

    Cerri, Carlos Eduardo Pellegrino; Galdos, Marcelo Valadares; Carvalho, João Luís Nunes; Feigl, Brigitte Josefine; Cerri, Carlos Clemente

    2013-01-01

    Strategies to mitigate climate change through the use of biofuels (such as ethanol) are associated not only to the increase in the amount of C stored in soils but also to the reduction of GHG emissions to the atmosphere.This report mainly aimed to propose appropriate methodologies for the determinations of soil organic carbon stocks and greenhouse gas fluxes in agricultural phase of the sugarcane production. Therefore, the text is a piece of contribution that may help to obtain data not only ...

  12. Carbon dioxide fluxes associated with synoptic weather events over a southern inland water

    Science.gov (United States)

    Liu, H.; Zhang, Q.; Gao, Z.

    2015-12-01

    Evidence indicates that inland waters play an important role in regional and global carbon budget through releasing a substantial carbon into the atmosphere. To better quantify how environmental variables affect CO2 exchange between inland waters and the atmosphere and its temporal variations, we have conducted direct, long-term measurements of CO2 fluxes across the water-atmosphere interface over a large southern open water of Ross Barnett Reservoir in central Mississippi. Our data indicate that large CO2 flux pulses occurred occasionally throughout the course of a year with the duration of a few days for each pulse. Here we analyzed and demonstrated that these CO2 flux pulses were associated with the passages of synoptic weather events. Our preliminary results indicated that these synoptic weather events (e.g., extratropical clones and cold air bursts) led to the enhanced mechanical mixing due to increasing wind speeds and the instability of the atmospheric surface layer due to the decreasing air temperature. As a consequence, in-water processes were also substantially altered accordingly. Due to the dramatic decrease in air temperature caused by the events, the temperature in the water surface layer was largely reduced, generating in-water convection conditions and thus leading to the increased depths of the mixing layer in the water, as reflected by the water temperature profiles. The enhanced mechanical mixing in the atmospheric surface layer may have further contributed to the deepened mixing layer in the water. Our suggestions suggest that high CO2 effluxes during the pulse events were largely attributed to changes in the water-side physical processes that are directly linked to rapid changes in atmospheric processes associated with synoptic weather events. Given its substantial contribution of CO2 flux pulses to carbon emission, such physical processes should be taken into account when carbon emissions from inland waters are quantified.

  13. Modeling Regional Carbon Fluxes in Agriculture with New Remote Sensing Observations

    Science.gov (United States)

    Lobell, D. B.; Asner, G. P.

    2001-12-01

    The uptake of carbon dioxide (CO2) in crop growth and the subsequent removal of carbon (C) through harvesting and soil decomposition determine the annual C balance of agroecosystems. While many small-scale experiments have studied C dynamics within fields, the most relevant scales for large-scale biogeochemical processes, as well as for land-use policies related to the Kyoto Protocol, are at the field to regional level. At these scales, models represent a useful alternative to direct measurements for quantifying C fluxes, yet they require information on climate, soil properties, and management that can vary greatly in space and time. In this study, we have developed a simple C model for agricultural systems that utilizes satellite remote sensing inputs to constrain both input and output fluxes of carbon. A sensitivity analysis was first performed to identify the most important parameters to constrain from satellite, and methodologies were then developed and/or adapted to fulfill these needs. A sample application of the model is given for an intensive wheat system in Northwest Mexico, where five Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images were collected in 2001. Future development and testing of this integrated modeling-remote sensing approach should greatly improve efforts to quantify local and regional C fluxes that are critical to climate change and land-use policy.

  14. Estimating carbon fluxes in a Posidonia oceanica system: Paradox of the bacterial carbon demand

    Science.gov (United States)

    Velimirov, B.; Lejeune, P.; Kirschner, A.; Jousseaume, M.; Abadie, A.; Pête, D.; Dauby, P.; Richir, J.; Gobert, S.

    2016-03-01

    A mass balance ecosystemic approach, based on bacterial carbon demands and primary production data, was used to investigate if the bacterial community (freewater bacterioplankton and benthic bacteria of the oxygenated sediment layer) could be sustained by the main primary producers (Posidonia oceanica and its epiphytes, adjacent macroalgae and phytoplankton communities; hereafter called the P. oceanica system) of a non-eutrophic Mediterranean bay. Unexpectedly, the findings of this study differed from previous works that used benthic incubation chamber and O2 optode methods. In this study, data were grouped in two categories, corresponding to two time periods, according to the seawater temperature regime (18 °C): from May to October and from November to April. Between May and October, the produced benthic macrophyte tissues could not provide the carbon required by the bacteria of the oxygenated sediment layer, showing that the balance production of the investigated bay was clearly heterotrophic (i.e. negative) during this time period. In contrast, between November and April, benthic bacteria respiration nearly equated to carbon production. When integrating the open water carbon dynamics above the meadow in the model, a negative carbon balance was still observed between May and October, while a slight carbon excess was noticed between November and April. In the light of these findings, the carbon balance being negative on an annual basis, alternative carbon sources are required for the maintenance of the bacterial carbon production.

  15. Metabolic Flux Analysis of Shewanella spp. Reveals Evolutionary Robustness in Central Carbon Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Llora, Xavier; Meadows, Adam; Arkin, Adam; Keasling, Jay D.

    2009-08-19

    Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h31) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate.

  16. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Directory of Open Access Journals (Swed