WorldWideScience

Sample records for nerve stimulation acu-tens

  1. Acu-TENS and Postexercise Expiratory Flow Volume in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Shirley P. C. Ngai

    2011-01-01

    Full Text Available Transcutaneous Electrical Nerve Stimulation over acupoints (Acu-TENS facilitates recovery of resting heart rate after treadmill exercise in healthy subjects. Its effect on postexercise respiratory indices has not been reported. This study investigates the effect of Acu-TENS on forced expiratory volume in 1 second (FEV1 and forced vital capacity (FVC in healthy subjects after a submaximal exercise. Eleven male subjects were invited to the laboratory twice, two weeks apart, to receive in random order either Acu-TENS or Placebo-TENS (no electrical output from the TENS unit over bilateral Lieque (LU7 and Dingchuan (EX-B1 for 45 minutes, before undergoing exercise following the Bruce protocol. Exercise duration, rate of perceived exertion (RPE, and peak heart rate (PHR were recorded. Between-group FEV1 and FVC, before, immediately after, at 15, 30, and 45minutes postexercise, were compared. While no between-group differences in PHR, RPE, and FVC were found, Acu-TENS was associated with a longer exercise duration (0.9 min (P=.026 and a higher percentage increase in FEV1 at 15 and 45 minutes postexercise (3.3 ± 3.7% (P=.013 and 5.1 ± 7.5% (P=.047, resp. compared to Placebo-TENS. We concluded that Acu-TENS was associated with a higher postexercise FEV1 and a prolongation of submaximal exercise.

  2. Acu-TENS Reduces Breathlessness during Exercise in People with Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Shirley P. C. Ngai

    2017-01-01

    Full Text Available Background. Exertional dyspnoea limits level of physical activity in people with Chronic Obstructive Pulmonary Disease (COPD. This randomized, double-blinded, crossover study evaluated the effect of Acu-TENS, application of Transcutaneous Electrical Nerve Stimulation on acupoints, on breathlessness during exercise in people with COPD. Methods. Twenty-one participants, mean% predicted FEV1  50±21%, attended assessment followed by two intervention days, one week apart. On each intervention day, participants performed two endurance shuttle walk tests (ESWT (Walk 1 and Walk 2. Walk 1 was performed without intervention and Walk 2 was performed with either Acu-TENS or Sham-TENS, in random order, for 45 minutes before and during Walk 2. Duration of each ESWT and dyspnoea score at isotime of Walk 1 and Walk 2 on each intervention day were compared. Between-group differences in ESWT duration and isotime dyspnoea were also compared. Results. At isotime of Walk 1 and Walk 2, Acu-TENS showed significant reduction in dyspnoea of −0.8 point (95% CI −0.2 to −1.4 but not in Sham-TENS [0.1 point (95% CI −0.4 to 0.6]. Compared to Sham-TENS, Acu-TENS showed significant reduction in dyspnoea of −0.9 point (95% CI −0.2 to −1.6 while no between-group significance was found in ESWT duration. Conclusion. Acu-TENS alleviated dyspnoea during walking in people with COPD but did not increase walking duration.

  3. Effect of Acu-TENS on post-exercise expiratory lung volume in subjects with asthma-A randomized controlled trial.

    Science.gov (United States)

    Ngai, Shirley P C; Jones, Alice Y M; Hui-Chan, Christina W Y; Ko, Fanny W S; Hui, David S C

    2009-07-31

    This study examined the effect of transcutaneous electrical nerve stimulation applied over acupoints (Acu-TENS) on forced expiratory volume, in patients with asthma, after exercise. Thirty subjects were randomly assigned to three groups. Group 1 received Acu-TENS over acupuncture points Lieque and Dingchuan for 45 min prior to a symptom-limited treadmill exercise test. Group 2 had Acu-TENS similarly applied prior to and throughout the exercise test. Group 3 mimicked Group 1 but without any electrical output from the device. Forced expiratory volume in one second (FEV(1)) and forced vital capacity (FVC) were recorded before, immediately after and at 20-min intervals post-exercise for 1h. Immediately after exercise, FEV(1) and FVC rose in Group 2 (p=0.015), but decreased in Group 1 and more so in Group 3. The differences became even more marked at 20, 40 and 60 min. Adjunctive Acu-TENS therapy appears to reduce decline of FEV(1) following exercise training in patients with asthma.

  4. Vagus Nerve Stimulation

    Science.gov (United States)

    ... you do certain activities such as public speaking, singing or exercising, or when you're eating if ... of life. Research is still mixed on the benefits of vagus nerve stimulation for the treatment of ...

  5. Vagus Nerve Stimulation.

    Science.gov (United States)

    Ekmekçi, Hakan; Kaptan, Hülagu

    2017-06-15

    The vagus nerve stimulation (VNS) is an approach mainly used in cases of intractable epilepsy despite all the efforts. Also, its benefits have been shown in severe cases of depression resistant to typical treatment. The aim of this study was to present current knowledge of vagus nerve stimulation. A new value has emerged just at this stage: VNS aiming the ideal treatment with new hopes. It is based on the placement of a programmable generator on the chest wall. Electric signals from the generator are transmitted to the left vagus nerve through the connection cable. Control on the cerebral bioelectrical activity can be achieved by way of these signal sent from there in an effort for controlling the epileptic discharges. The rate of satisfactory and permanent treatment in epilepsy with monotherapy is around 50%. This rate will increase by one-quarters (25%) with polytherapy. However, there is a patient group roughly constituting one-thirds of this population, and this group remains unresponsive or refractory to all the therapies and combined regimes. The more the number of drugs used, the more chaos and side effects are observed. The anti-epileptic drugs (AEDs) used will have side effects on both the brain and the systemic organs. Cerebral resection surgery can be required in some patients. The most commonly encountered epilepsy type is the partial one, and the possibility of benefiting from invasive procedures is limited in most patients of this type. Selective amygdala-hippocampus surgery is a rising value in complex partial seizures. Therefore, as epilepsy surgery can be performed in very limited numbers and rather developed centres, success can also be achieved in limited numbers of patients. The common ground for all the surgical procedures is the target of preservation of memory, learning, speaking, temper and executive functions as well as obtaining a good control on seizures. However, the action mechanism of VNS is still not exactly known. On the other hand

  6. Vagus Nerve Stimulation for Treating Epilepsy

    Science.gov (United States)

    ... and their FAMILIES VAGUS NERVE STIMULATION FOR TREATING EPILEPSY This information sheet is provided to help you ... how vagus nerve stimulation (VNS) may help treat epilepsy. The American Academy of Neurology (AAN) is the ...

  7. Therapeutic electrical stimulation of injured peripheral nerve tissue using implantable thin-film wireless nerve stimulators.

    Science.gov (United States)

    MacEwan, Matthew R; Gamble, Paul; Stephen, Manu; Ray, Wilson Z

    2018-02-09

    OBJECTIVE Electrical stimulation of peripheral nerve tissue has been shown to accelerate axonal regeneration. Yet existing methods of applying electrical stimulation to injured peripheral nerves have presented significant barriers to clinical translation. In this study, the authors examined the use of a novel implantable wireless nerve stimulator capable of simultaneously delivering therapeutic electrical stimulation of injured peripheral nerve tissue and providing postoperative serial assessment of functional recovery. METHODS Flexible wireless stimulators were fabricated and implanted into Lewis rats. Thin-film implants were used to deliver brief electrical stimulation (1 hour, 20 Hz) to sciatic nerves after nerve crush or nerve transection-and-repair injuries. RESULTS Electrical stimulation of injured nerves via implanted wireless stimulators significantly improved functional recovery. Brief electrical stimulation was observed to increase the rate of functional recovery after both nerve crush and nerve transection-and-repair injuries. Wireless stimulators successfully facilitated therapeutic stimulation of peripheral nerve tissue and serial assessment of nerve recovery. CONCLUSIONS Implantable wireless stimulators can deliver therapeutic electrical stimulation to injured peripheral nerve tissue. Implantable wireless nerve stimulators might represent a novel means of facilitating therapeutic electrical stimulation in both intraoperative and postoperative settings.

  8. Transdermal optogenetic peripheral nerve stimulation

    Science.gov (United States)

    Maimon, Benjamin E.; Zorzos, Anthony N.; Bendell, Rhys; Harding, Alexander; Fahmi, Mina; Srinivasan, Shriya; Calvaresi, Peter; Herr, Hugh M.

    2017-06-01

    Objective: A fundamental limitation in both the scientific utility and clinical translation of peripheral nerve optogenetic technologies is the optical inaccessibility of the target nerve due to the significant scattering and absorption of light in biological tissues. To date, illuminating deep nerve targets has required implantable optical sources, including fiber-optic and LED-based systems, both of which have significant drawbacks. Approach: Here we report an alternative approach involving transdermal illumination. Utilizing an intramuscular injection of ultra-high concentration AAV6-hSyn-ChR2-EYFP in rats. Main results: We demonstrate transdermal stimulation of motor nerves at 4.4 mm and 1.9 mm depth with an incident laser power of 160 mW and 10 mW, respectively. Furthermore, we employ this technique to accurately control ankle position by modulating laser power or position on the skin surface. Significance: These results have the potential to enable future scientific optogenetic studies of pathologies implicated in the peripheral nervous system for awake, freely-moving animals, as well as a basis for future clinical studies.

  9. Vagus nerve stimulation improves working memory performance.

    Science.gov (United States)

    Sun, Lihua; Peräkylä, Jari; Holm, Katri; Haapasalo, Joonas; Lehtimäki, Kai; Ogawa, Keith H; Peltola, Jukka; Hartikainen, Kaisa M

    2017-12-01

    Vagus nerve stimulation (VNS) is used for treating refractory epilepsy and major depression. While the impact of this treatment on seizures has been established, its impact on human cognition remains equivocal. The goal of this study is to elucidate the immediate effects of vagus nerve stimulation on attention, cognition, and emotional reactivity in patients with epilepsy. Twenty patients (12 male and 8 female; 45 ± 13 years old) treated with VNS due to refractory epilepsy participated in the study. Subjects performed a computer-based test of executive functions embedded with emotional distractors while their brain activity was recorded with electroencephalography. Subjects' cognitive performance, early visual event-related potential N1, and frontal alpha asymmetry were studied when cyclic vagus nerve stimulation was on and when it was off. We found that vagus nerve stimulation improved working memory performance as seen in reduced errors on a subtask that relied on working memory, odds ratio (OR) = 0.63 (95% confidence interval, CI [0.47, 0.85]) and increased N1 amplitude, F(1, 15) = 10.17, p = .006. In addition, vagus nerve stimulation resulted in longer reaction time, F(1, 16) = 8.23, p = .019, and greater frontal alpha asymmetry, F(1, 16) = 11.79, p = .003, in response to threat-related distractors. This is the first study to show immediate improvement in working memory performance in humans with clinically relevant vagus nerve stimulation. Furthermore, vagus nerve stimulation had immediate effects on emotional reactivity evidenced in behavior and brain physiology.

  10. Transcutaneous Electrical Nerve Stimulation: Research Update.

    Science.gov (United States)

    Johns, Florene Carnicelli

    Currently, research is being performed in the area of nonsurgical and nonchemical means for influencing the body's threshold for pain. Today, transcutaneous electrical nerve stimulation (TENS) is being widely used for this purpose. Application of this treatment can be confusing, however, because determining such things as selection of the proper…

  11. Vagal nerve stimulation therapy: what is being stimulated?

    Directory of Open Access Journals (Sweden)

    Guy Kember

    Full Text Available Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  12. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  13. Facial nerve stimulation as a future treatment for ischemic stroke

    Directory of Open Access Journals (Sweden)

    Mark K Borsody

    2016-01-01

    Full Text Available Stimulation of the autonomic parasympathetic fibers of the facial nerve system (hereafter simply "facial nerve" rapidly dilates the cerebral arteries and increases cerebral blood flow whether that stimulation is delivered at the facial nerve trunk or at distal points such as the sphenopalatine ganglion. Facial nerve stimulation thus could be used as an emergency treatment of conditions of brain ischemia such as ischemic stroke. A rich history of scientific research has examined this property of the facial nerve, and various means of activating the facial nerve can be employed including noninvasive means. Herein, we review the anatomical and physiological research behind facial nerve stimulation and the facial nerve stimulation devices that are in development for the treatment of ischemic stroke.

  14. Sciatic nerve block performed with nerve stimulation technique in an amputee a case study

    DEFF Research Database (Denmark)

    Heiring, C.; Kristensen, Billy

    2008-01-01

    We present a case of a sciatic nerve block performed with the nerve stimulation technique. This technique is normally not used in amputees because detection of a motor response to an electrical stimulation is impossible. In our patient the stimulation provoked a phantom sensation of movement...

  15. Peripheral nerve stimulator-induced electrostimulation at the P6 ...

    African Journals Online (AJOL)

    group B) received train-of-four electrical stimulation using the peripheral nerve stimulator (PNS) immediately prior to spinal anaesthesia until the completion of surgery. Outcome measures: The primary outcome measure was mean arterial ...

  16. Vagus nerve stimulation: indications and limitations.

    Science.gov (United States)

    Ansari, S; Chaudhri, K; Al Moutaery, K A

    2007-01-01

    Vagus nerve stimulation (VNS) is an established treatment for selected patients with medically refractory seizures. Recent studies suggest that VNS could be potentially useful in the treatment of resistant depressive disorder. Although a surgical procedure is required in order to implant the VNS device, the possibility of a long-term benefit largely free of severe side effects could give VNS a privileged place in the management of resistant depression. In addition, VNS appears to affect pain perception in depressed adults; a possible role of VNS in the treatment of severe refractory headache, intractable chronic migraine and cluster headache has also been suggested. VNS is currently investigated in clinical studies, as a potential treatment for essential tremor, cognitive deficits in Alzheimer's disease, anxiety disorders, and bulimia. Finally, other studies explore the potential use of VNS in the treatment of resistant obesity, addictions, sleep disorders, narcolepsy, coma and memory and learning deficits.

  17. Effect of vagus nerve stimulation on creativity and cognitive flexibility.

    Science.gov (United States)

    Ghacibeh, Georges A; Shenker, Joel I; Shenal, Brian; Uthman, Basim M; Heilman, Kenneth M

    2006-06-01

    The purpose of this study was to determine whether vagus nerve stimulation influences cognitive flexibility and creativity. Ten subjects, in whom vagus nerve stimulators had been implanted for the treatment of intractable seizures, performed tasks that assessed cognitive flexibility (solving anagrams), creativity (Torrance Test), and memory (Hopkins Verbal Learning Test) during actual and sham vagus nerve stimulation. Vagus nerve stimulation impaired cognitive flexibility and creativity, but these results could not be explained by the induction of a general encephalopathy because VNS did not impair learning and improved retention. The means by which vagus nerve stimulation impairs cognitive flexibility and creative thinking is probably related to increased activity of the locus coeruleus-central adrenergic system that increases the signal-to-noise ratio and improves the brain's ability to attend to sensory input, but decreases its ability to recruit large-scale networks.

  18. Muscle potentials evoked by magnetic stimulation of the sciatic nerve in unilateral sciatic nerve dysfunction

    NARCIS (Netherlands)

    Van Soens, I.; Struys, M. M. R. F.; Van Ham, L. M. L.

    Magnetic stimulation of the sciatic nerve and subsequent recording of the muscle-evoked potential (MEP) was performed in eight dogs and three cats with unilateral sciatic nerve dysfunction. Localisation of the lesion in the sciatic nerve was based on the history, clinical neurological examination

  19. Refractory status epilepticus treated with vagal nerve stimulation: case report.

    Science.gov (United States)

    O'Neill, Brent R; Valeriano, James; Synowiec, Andrea; Thielmann, Daniel; Lane, Carole; Wilberger, Jack

    2011-11-01

    Status epilepticus (SE) refractory to medical treatment has a high mortality rate and few effective treatments. We describe the implantation of a vagal nerve stimulator to help terminate a case of refractory SE. A 23-year-old man was in SE for 3 weeks without being able to be weaned from intravenous anesthetic agents. After implantation of a vagal nerve stimulator, SE soon terminated, and the patient could be weaned from sedative agents and made a full recovery. Vagal nerve stimulator should be considered in cases of refractory SE.

  20. Thoracoscopic phrenic nerve patch insulation to avoid phrenic nerve stimulation with cardiac resynchronization therapy

    Directory of Open Access Journals (Sweden)

    Masatsugu Nozoe, MD, PhD

    2014-04-01

    Full Text Available A 76-year-old female was implanted with a cardiac resynchronization therapy (CRT device, with the left ventricular lead implanted through a transvenous approach. One day after implantation, diaphragmatic stimulation was observed when the patient was in the seated position, which could not be resolved by device reprogramming. We performed thoracoscopic phrenic nerve insulation using a Gore-Tex patch. The left phrenic nerve was carefully detached from the pericardial adipose tissue, and a Gore-Tex patch was inserted between the phrenic nerve and pericardium using a thoracoscopic technique. This approach represents a potential option for the management of uncontrollable phrenic nerve stimulation during CRT.

  1. Percutaneous tibial nerve stimulation for fecal incontinence: a video demonstration.

    Science.gov (United States)

    Hotouras, Alexander; Allison, Marion; Currie, Ann; Knowles, Charles H; Chan, Christopher L; Thaha, Mohamed A

    2012-06-01

    Fecal incontinence is an increasingly common condition with significant negative impact on quality on life and health care resources. It frequently presents a therapeutic challenge to clinicians. Emerging evidence suggests that percutaneous tibial nerve stimulation is an effective treatment for fecal incontinence with the added benefit of being minimally invasive and cost effective. Pursuant to the preliminary report of our early experience of percutaneous tibial nerve stimulation in patients with fecal incontinence published in this journal in 2010, in this dynamic article, we now describe and demonstrate the actual technique that can be performed in a nurse-led clinic or outpatient or community setting. Percutaneous tibial nerve stimulation is a technically simple procedure that can potentially be performed in an outpatient or community setting. The overall early success rate of 68% following its use reported by our unit compares favorably with the success rate following other forms of neuromodulation, including sacral nerve stimulation. When completed, our long-term outcome data will provide further information on the efficacy of tibial nerve stimulation in a larger cohort of patients (n > 100). Future studies, including our currently planned randomized controlled trial of percutaneous tibial nerve stimulation vs sham stimulation, will provide controlled efficacy data and may provide information on its exact mechanism of action.

  2. An implantable wireless optogenetic stimulation system for peripheral nerve control.

    Science.gov (United States)

    Kang-Il Song; Park, Sunghee E; Myoung-Soo Kim; Chulmin Joo; Yong-Jun Kim; Suh, Jun-Kyo F; Dosik Hwang; Inchan Youn

    2015-08-01

    An implantable wireless optogenetic stimulation system with an LED-based optical stimulation cuff electrode was developed for peripheral nerve control. The proposed system consisted of a battery-powered optical cuff electrode, optical stimulation controller, and wireless communication system. The optical cuff electrode had a polydimethylsiloxane (PDMS) structure was designed to illuminate the entire sciatic nerve. The wireless communication system was designed to comply with medical implant communication service (MICS) regulations. To evaluate the proposed system, optogenetic stimulation was performed in optogenetic transgenic mice (Thy1::ChR2). The optical cuff electrode was implanted on the sciatic nerve, and movement was elicited during optical stimulation. The experimental results show that ankle movement can be generated wirelessly using optical stimulation pulse parameters.

  3. Shocking therapy: Brief electrical stimulation for delayed nerve repair.

    Science.gov (United States)

    Shapira, Yuval; Midha, Rajiv

    2015-09-01

    This commentary provides perspective on a recent paper published in Experimental Neurology by Elzinga et al. where the authors investigated the effect of brief electrical stimulation (ES) on nerve regeneration after delayed nerve repair in a rodent model. Their results from a well controlled series of experiments indicated that brief ES promoted axonal outgrowth after chronic axotomy as well after chronic Schwann cell and muscle denervation. ES also increased chronically axotomized neurons regenerating into chronically denervated stumps, which represent a true delayed repair. The authors conclude that brief ES promotion of nerve regeneration after delayed nerve repair is as effective as after immediate repair. Given the prior experimental evidence, and the prior clinical data from patients with carpal tunnel syndrome and digital nerve repair, the implication of this new work is to consider a well designed clinical trial for use of brief ES in nerve graft and nerve transfer repairs. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effects of autonomic nerve stimulation on colorectal motility in rats

    Science.gov (United States)

    Tong, Wei Dong; Ridolfi, Timothy J.; Kosinski, Lauren; Ludwig, Kirk; Takahashi, Toku

    2010-01-01

    Background Several disease processes of the colon and rectum, including constipation and incontinence, have been associated with abnormalities of the autonomic nervous system. However, the autonomic innervation to the colon and rectum are not fully understood. The aims of this study were to investigate the effect of stimulation of vagus nerves, pelvic nerves (PN) and hypogastric nerves (HGN) on colorectal motility in rats. Methods Four strain gauge transducers were implanted on the proximal colon, mid colon, distal colon and rectum to record circular muscle contractions in rats. Electrical stimulation was administered to the efferent distal ends of the cervical vagus nerve, PN and HGN. Motility index (MI) was evaluated before and during stimulation. Key Results Electrical stimulation (5–20 Hz) of the cervical vagus elicited significant contractions in the mid colon and distal colon, whereas less pronounced contractions were observed in the proximal colon. PN stimulation elicited significant contractions in the rectum as well as the mid colon and distal colon. Atropine treatment almost completely abolished the contractions induced by vagus nerve and PN stimulation. HGN stimulation caused relaxations in the rectum, mid colon and distal colon. The relaxations in response to HGN stimulation were abolished by propranolol. Conclusions & Inferences Vagal innervation extends to the distal colon, while the PN has projections in the distribution of the rectum through the mid colon. This suggests a pattern of dual parasympathetic innervation in the left colon. Parasympathetic fibers regulate colorectal contractions via muscarinic receptors. The HGN mainly regulates colorectal relaxations via beta-adrenoceptors. PMID:20067587

  5. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral nerve... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted peripheral nerve stimulator for pain...

  6. Neuroanatomic and clinical correspondences: acupuncture and vagus nerve stimulation.

    Science.gov (United States)

    da Silva, Marco Antonio Helio; Dorsher, Peter T

    2014-04-01

    The use of surgically implanted electronic devices for vagus nerve stimulation (VNS) is expanding in contemporary allopathic medical practice as a treatment option for selected clinical conditions, such as epilepsy, depression, tremor, and pain conditions, that are unresponsive to standard pharmacologic interventions. Although VNS device surgeries are considered minimally invasive, they are costly and have surgical and device-related risks; they can also cause serious adverse effects from excessive vagus nerve stimulation. For millennia, acupuncturists have treated those same clinical conditions by piquering acupoints that are located proximate to the sternocleidomastoid muscle site where the VNS device is implanted on the vagus nerve. The hypothesis of this study is that these acupuncture points produce clinical benefits through stimulation of the vagus nerve and/or its branches in the head and neck region. By using reference anatomic and acupuncture texts, classical and extraordinary acupoints in the head and neck region were identified that are anatomically proximate to vagus nerve pathways there, where the VNS electrode is surgically implanted. The clinical indications of these acupuncture points, as described in the acupuncture reference texts, were examined for similarities to those of VNS. This analysis demonstrated marked correspondences of the indications for those lateral head and neck acupoints to the clinical effects (beneficial and adverse) documented for the VNS device in the medical literature. This clinical correspondence, in conjunction with the anatomic proximity of the acupoints to the vagus nerve in the lateral neck, strongly suggests that vagus nerve (and hence the autonomic nervous system) stimulation is fundamental in producing the clinical effects of the acupoints. By having anatomic access to the vagus nerve and parasympathetic chain that permits electrical stimulation of those nerves in clinical practice, acupuncture may offer a less

  7. Side effects of vagus nerve stimulation during physical exercise

    NARCIS (Netherlands)

    Mulders, D.M.; de Vos, Cecilia Cecilia Clementine; Vosman, I.; Driesse, M.J.; van Putten, Michel Johannes Antonius Maria

    2012-01-01

    RATIONALE: Vagus nerve stimulation (VNS) is a treatment option in the case of refractory epilepsy. However, several side effects have been reported, including dyspnea, coughing and bradycardias [JCA 2010: 22;213-222]. Although some patients experience hardly any side effects from the stimulation

  8. Sodium-potassium pump assessment by submaximal electrical nerve stimulation.

    Science.gov (United States)

    Hageman, Steven; Kovalchuk, Maria O; Sleutjes, Boudewijn T H M; van Schelven, Leonard J; van den Berg, Leonard H; Franssen, Hessel

    2018-04-01

    Sodium-potassium pump dysfunction in peripheral nerve is usually assessed by determining axonal hyperpolarization following maximal voluntary contraction (MVC) or maximal electrical nerve stimulation. As MVC may be unreliable and maximal electrical stimulation too painful, we assessed if hyperpolarization can also be induced by submaximal electrical nerve stimulation. In 8 healthy volunteers different submaximal electrical stimulus trains were given to the median nerve at the wrist, followed by 5 min assessment of thresholds for compound muscle action potentials of 20%, 40% or 60% of maximal. Threshold increase after submaximal electrical nerve stimulation was most prominent after an 8 Hz train of at least 5 min duration evoking submaximal CMAPs of 60%. It induced minimal discomfort and was not painful. Threshold increase after MVC was not significantly higher than this stimulus train. Submaximal electrical stimulation evokes activity dependent hyperpolarization in healthy test subjects without causing significant discomfort. Sodium-potassium pump function may be assessed using submaximal electrical stimulation. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  9. Tonic aortic depressor nerve stimulation does not impede baroreflex dynamic characteristics concomitantly mediated by the stimulated nerve.

    Science.gov (United States)

    Kawada, Toru; Turner, Michael J; Shimizu, Shuji; Kamiya, Atsunori; Shishido, Toshiaki; Sugimachi, Masaru

    2018-03-01

    Although electrical activation of the carotid sinus baroreflex (baroreflex activation therapy) is being explored as a device therapy for resistant hypertension, possible effects on baroreflex dynamic characteristics of interaction between electrical stimulation and pressure inputs are not fully elucidated. To examine whether the electrical stimulation of the baroreceptor afferent nerve impedes normal short-term arterial pressure (AP) regulation mediated by the stimulated nerve, we electrically stimulated the right aortic depressor nerve (ADN) while estimating the baroreflex dynamic characteristics by imposing pressure inputs to the isolated baroreceptor region of the right ADN in nine anesthetized rats. A Gaussian white noise signal with a mean of 120 mmHg and standard deviation of 20 mmHg was used for the pressure perturbation. A tonic ADN stimulation (2 or 5 Hz, 10 V, 0.1-ms pulse width) decreased mean sympathetic nerve activity (367.0 ± 70.9 vs. 247.3 ± 47.2 arbitrary units, P ADN stimulation did not affect the slope of dynamic gain in the neural arc transfer function from pressure perturbation to sympathetic nerve activity (16.9 ± 1.0 vs. 14.7 ± 1.6 dB/decade, not significant). These results indicate that electrical stimulation of the baroreceptor afferent nerve does not significantly impede the dynamic characteristics of the arterial baroreflex concomitantly mediated by the stimulated nerve. Short-term AP regulation by the arterial baroreflex may be preserved during the baroreflex activation therapy.

  10. Transcutaneous electrical nerve stimulation for refractory daytime urinary urge incontinence.

    Science.gov (United States)

    Hagstroem, Søren; Mahler, Birgitte; Madsen, Bodil; Djurhuus, Jens Christian; Rittig, Søren

    2009-10-01

    We studied the effect of transcutaneous electrical nerve stimulation in children with overactive bladder and treatment refractory daytime urinary incontinence. We recruited 27 children 5 to 14 years old with daytime urge incontinence refractory to timer assisted standard urotherapy and anticholinergics who had normal urinalysis, and unremarkable urinary tract ultrasound and physical examination. Study exclusion criteria were bladder underactivity, lower urinary tract obstruction, ongoing defecation disorders, lower urinary tract surgery and previous transcutaneous electrical nerve stimulation. After a 2-week run-in of standard urotherapy the children underwent natural fill ambulatory urodynamics to confirm detrusor overactivity. Subsequently they were randomly allocated to 4 weeks of 2 hours of daily active or placebo S2-S3 transcutaneous electrical nerve stimulation. The severity of incontinence and urgency, and 48-hour bladder diaries were recorded before randomization and during intervention week 4. Children withdrew from anticholinergics throughout the study period. Two children were excluded from randomization due to urodynamic signs of lower urinary tract obstruction. After 4 weeks of intervention 8 children (61%) in the active group showed a significant decrease in incontinence severity but this occurred in only 2 (17%) in the sham treated group (p incontinence episodes compared to the sham treated group (p electrical nerve stimulation did not alter maximal and average voided volumes. Sacral transcutaneous electrical nerve stimulation seems superior to placebo for refractory daytime incontinence in children with overactive bladder. This effect does not seem to be a consequence of improved bladder reservoir function.

  11. Effect of electrical stimulation on motor nerve regeneration in sciatic nerve ligated-mice.

    Science.gov (United States)

    Samiee, Farzaneh; Zarrindast, Mohammad-Reza

    2017-06-27

    The purpose of this study was to investigate the effect of electrical stimulation on sciatic nerve regeneration and functional recovery of target muscles. Mice were randomly divided into 3 groups: ligated without electrical stimulation, ligated with electrical stimulation and control (non-ligated). The unilateral peripheral mononeuropathy was produced on the right hind limb. Sciatic nerve was then electrically stimulated daily for a period of 2 weeks (duration: 0.2 msec, frequency: 100Hz, amplitude: 15mA). Evoked surface EMG was recorded from biceps femoris (BF) and gluteus maximus (GM) muscles on the 3rd, 7th, 10th and 14th day after sciatic nerve ligation. Muscle force and sensitivity was determined by processing of the recorded EMG signals in time and frequency domains respectively. The results showed electrical stimulation (ES) produced a significant increase in the EMG response of BF, and muscle force significantly increased on the 14th day (pelectrical stimulation of sciatic nerve accelerates nerve repair and indirectly improves BF muscle force to a comparable level with control without effect on muscle sensitivity. However, ES had no effect on GM muscle force and sensitivity.

  12. Sciatic nerve block performed with nerve stimulation technique in an amputee a case study

    DEFF Research Database (Denmark)

    Heiring, C.; Kristensen, Billy

    2008-01-01

    We present a case of a sciatic nerve block performed with the nerve stimulation technique. This technique is normally not used in amputees because detection of a motor response to an electrical stimulation is impossible. In our patient the stimulation provoked a phantom sensation of movement...... in the non-existing extremity. This sensation was verbally described by the patient and thus used as an alternative to visual identification of motor response. After surgery the patient was pain free. The technique thus presents an alternative method for anesthesia and perioperative pain management in a high...

  13. Kilohertz Electrical Stimulation Nerve Conduction Block: Effects of Electrode Material.

    Science.gov (United States)

    Patel, Yogi A; Kim, Brian S; Butera, Robert J

    2018-01-01

    Kilohertz electrical stimulation (KES) has enabled a novel new paradigm for spinal cord and peripheral nerve stimulation to treat a variety of neurological diseases. KES can excite or inhibit nerve activity and is used in many clinical devices today. However, the impact of different electrode materials on the efficacy of KES is unknown. We investigated the effect of different electrode materials and their respective charge injection mechanisms on KES nerve block thresholds using 20- and 40-kHz current-controlled sinusoidal KES waveforms. We evaluated the nerve block threshold and the power requirements for achieving an effective KES nerve block. In addition, we evaluated potential effects on the onset duration and recovery of normal conduction after delivery of KES. We found that thresholds and the onset and recovery of KES nerve block are not a function of the electrode material. In contrast, the power dissipation varies among electrode materials and is a function of the materials' properties at high frequencies. We conclude that materials with a proven track record of chronic stability, both for the tissue and electrode, are suitable for developing KES nerve block therapies.

  14. Use of early tactile stimulation in rehabilitation of digital nerve injuries.

    Science.gov (United States)

    Cheng, A S

    2000-01-01

    Digital nerves are the most frequently injured peripheral nerve. To improve the recovery of functional sensibility of digital nerve injuries, a prospective randomized controlled study was conducted to see the effect of using early tactile stimulation in rehabilitation of digital nerve injuries. Two specific tactile stimulators were made and prescribed for patients with digital nerve-injury. Twenty-four participants with 32 digital nerve injuries received the prescribed tactile stimulators (experimental group), and another 25 participants with 33 digital nerve injuries received only routine conventional therapy (control group). A significant difference (p sensibility in digital nerve injuries without combined nerve, tendon, and bone injuries.

  15. Peripheral Nerve Regeneration Strategies: Electrically Stimulating Polymer Based Nerve Growth Conduits

    Science.gov (United States)

    Anderson, Matthew; Shelke, Namdev B.; Manoukian, Ohan S.; Yu, Xiaojun; McCullough, Louise D.; Kumbar, Sangamesh G.

    2017-01-01

    Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration. PMID:27278739

  16. [Distal sciatic nerve blocks: randomized comparison of nerve stimulation and ultrasound guided intraepineural block].

    Science.gov (United States)

    Seidel, R; Natge, U; Schulz, J

    2013-03-01

    The design of this study is related to an important current issue: should local anesthetics be intentionally injected into peripheral nerves? Answering this question is not possible without better knowledge regarding classical methods of nerve localization (e.g. cause of paresthesias and nerve stimulation technique). Have intraneural injections ever been avoided? This prospective, randomized comparison of distal sciatic nerve block with ultrasound guidance tested the hypothesis that intraneural injection of local anesthetics using the nerve stimulation technique is common and associated with a higher success rate. In this study 250 adult patients were randomly allocated either to the nerve stimulation group (group NS, n = 125) or to the ultrasound guidance group (group US, n = 125). The sciatic nerve was anesthetized with 20 ml prilocaine 1% and 10 ml ropivacaine 0.75%. In the US group the goal was an intraepineural needle position. In the NS group progress of the block was observed by a second physician using ultrasound imaging but blinded for the investigator performing the nerve stimulation. The main outcome variables were time until readiness for surgery (performance time and onset time), success rate and frequency of paresthesias. In the NS group needle positions and corresponding stimulation thresholds were recorded. In both groups seven patients were excluded from further analysis because of protocol violation. In the NS group (n = 118) the following needle positions were estimated: intraepineural (NS 1, n = 51), extraparaneural (NS 2, n = 33), needle tip dislocation from intraepineural to extraparaneural while injecting local anesthetic (NS 3, n = 19) and other or not determined needle positions (n = 15). Paresthesias indicated an intraneural needle position with an odds ratio of 27.4 (specificity 98.8%, sensitivity 45.9%). The success rate without supplementation was significantly higher in the US group (94.9% vs. 61.9%, p

  17. Sacral Nerve Stimulation for Constipation: Suboptimal Outcome and Adverse Events

    DEFF Research Database (Denmark)

    Maeda, Yasuko; Lundby, Lilli; Buntzen, Steen

    2010-01-01

    Sacral nerve stimulation is an emerging treatment for patients with severe constipation. There has been no substantial report to date on suboptimal outcomes and complications. We report our experience of more than 6 years by focusing on incidents and the management of reportable events.......Sacral nerve stimulation is an emerging treatment for patients with severe constipation. There has been no substantial report to date on suboptimal outcomes and complications. We report our experience of more than 6 years by focusing on incidents and the management of reportable events....

  18. Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2003-12-01

    Full Text Available Abstract Background Peripheral nerves are situated in a highly non-homogeneous environment, including muscles, bones, blood vessels, etc. Time-varying magnetic field stimulation of the median and ulnar nerves in the carpal region is studied, with special consideration of the influence of non-homogeneities. Methods A detailed three-dimensional finite element model (FEM of the anatomy of the wrist region was built to assess the induced currents distribution by external magnetic stimulation. The electromagnetic field distribution in the non-homogeneous domain was defined as an internal Dirichlet problem using the finite element method. The boundary conditions were obtained by analysis of the vector potential field excited by external current-driven coils. Results The results include evaluation and graphical representation of the induced current field distribution at various stimulation coil positions. Comparative study for the real non-homogeneous structure with anisotropic conductivities of the tissues and a mock homogeneous media is also presented. The possibility of achieving selective stimulation of either of the two nerves is assessed. Conclusion The model developed could be useful in theoretical prediction of the current distribution in the nerves during diagnostic stimulation and therapeutic procedures involving electromagnetic excitation. The errors in applying homogeneous domain modeling rather than real non-homogeneous biological structures are demonstrated. The practical implications of the applied approach are valid for any arbitrary weakly conductive medium.

  19. Transcutaneous vagus nerve stimulation (tVNS) modulates flow experience.

    Science.gov (United States)

    Colzato, Lorenza S; Wolters, Gina; Peifer, Corinna

    2018-01-01

    Flow has been defined as a pleasant psychological state that people experience when completely absorbed in an activity. Previous correlative evidence showed that the vagal tone (as indexed by heart rate variability) is a reliable marker of flow. So far, it has not yet been demonstrated that the vagus nerve plays a causal role in flow. To explore this we used transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique that increases activation of the locus coeruleus (LC) and norepinephrine release. A sham/placebo-controlled, randomized cross-over within-subject design was employed to infer a causal relation between the stimulated vagus nerve and flow as measured using the Flow Short-Scale in 32 healthy young volunteers. In both sessions, while being stimulated, participants had to rate their flow experience after having performed a task for 30 min. Active tVNS, compared to sham stimulation, decreased flow (as indexed by absorption scores). The results can be explained by the network reset theory, which assumes that high-phasic LC activity promotes a global reset of attention over exploitation of the current focus of attention, allowing rapid behavioral adaptation and resulting in decreased absorption scores. Furthermore, our findings corroborate the hypothesis that the vagus nerve and noradrenergic system are causally involved in flow.

  20. Sensory adaptation to electrical stimulation of the somatosensory nerves.

    Science.gov (United States)

    Graczyk, Emily Lauren; Delhaye, Benoit; Schiefer, Matthew A; Bensmaia, Sliman J; Tyler, Dustin J

    2018-03-19

    Sensory systems adapt their sensitivity to ambient stimulation levels to improve their responsiveness to changes in stimulation. The sense of touch is also subject to adaptation, as evidenced by the desensitization produced by prolonged vibratory stimulation of the skin. Electrical stimulation of nerves elicits tactile sensations that can convey feedback for bionic limbs. In this study, we investigate whether artificial touch is also subject to adaptation, despite the fact that the peripheral mechanotransducers are bypassed. Approach: Using well-established psychophysical paradigms, we characterize the time course and magnitude of sensory adaptation caused by extended electrical stimulation of the residual somatosensory nerves in three human amputees implanted with cuff electrodes. Main results: We find that electrical stimulation of the nerve also induces perceptual adaptation that recovers after cessation of the stimulus. The time course and magnitude of electrically-induced adaptation are equivalent to their mechanically-induced counterparts. Significance: We conclude that, in natural touch, the process of mechanotransduction is not required for adaptation, and artificial touch naturally experiences adaptation-induced adjustments of the dynamic range of sensations. Further, as it does for native hands, adaptation confers to bionic hands enhanced sensitivity to changes in stimulation and thus a more natural sensory experience. . Creative Commons Attribution license.

  1. Effect of electrical stimulation on motor nerve regeneration in sciatic nerve ligated-mice

    Directory of Open Access Journals (Sweden)

    Farzaneh Samiee

    2017-09-01

    Full Text Available The purpose of this study was to investigate the effect of electrical stimulation on sciatic nerve regeneration and functional recovery of target muscles. Mice were randomly divided into 3 groups: ligated without electrical stimulation, ligated with electrical stimulation and control (non-ligated. The unilateral peripheral mononeuropathy was produced on the right hind limb. Sciatic nerve was then electrically stimulated daily for a period of 2 weeks (duration: 0.2 msec, frequency: 100Hz, amplitude: 15mA. Evoked surface EMG was recorded from biceps femoris (BF and gluteus maximus (GM muscles on the 3rd, 7th, 10th and 14th day after sciatic nerve ligation. Muscle force and sensitivity was determined by processing of the recorded EMG signals in time and frequency domains respectively. The results showed electrical stimulation (ES produced a significant increase in the EMG response of BF, and muscle force significantly increased on the 14th day (p<0.001, however no significant difference was found in GM muscle force between experimental groups. This may be due to possible innervation by inferior gluteal nerve. Frequency analysis of BF signals indicates that hyperalgesia remained after 14 days in both ligated groups. On the 14th day no difference in GM muscle sensitivity was found between groups. In conclusion, the results of this study have shown that the electrical stimulation of sciatic nerve accelerates nerve repair and indirectly improves BF muscle force to a comparable level with control without effect on muscle sensitivity. However, ES had no effect on GM muscle force and sensitivity.

  2. Effect of electrical stimulation on motor nerve regeneration in sciatic nerve ligated-mice

    Science.gov (United States)

    Samiee, Farzaneh; Zarrindast, Mohammad-Reza

    2017-01-01

    The purpose of this study was to investigate the effect of electrical stimulation on sciatic nerve regeneration and functional recovery of target muscles. Mice were randomly divided into 3 groups: ligated without electrical stimulation, ligated with electrical stimulation and control (non-ligated). The unilateral peripheral mononeuropathy was produced on the right hind limb. Sciatic nerve was then electrically stimulated daily for a period of 2 weeks (duration: 0.2 msec, frequency: 100Hz, amplitude: 15mA). Evoked surface EMG was recorded from biceps femoris (BF) and gluteus maximus (GM) muscles on the 3rd, 7th, 10th and 14th day after sciatic nerve ligation. Muscle force and sensitivity was determined by processing of the recorded EMG signals in time and frequency domains respectively. The results showed electrical stimulation (ES) produced a significant increase in the EMG response of BF, and muscle force significantly increased on the 14th day (p<0.001), however no significant difference was found in GM muscle force between experimental groups. This may be due to possible innervation by inferior gluteal nerve. Frequency analysis of BF signals indicates that hyperalgesia remained after 14 days in both ligated groups. On the 14th day no difference in GM muscle sensitivity was found between groups. In conclusion, the results of this study have shown that the electrical stimulation of sciatic nerve accelerates nerve repair and indirectly improves BF muscle force to a comparable level with control without effect on muscle sensitivity. However, ES had no effect on GM muscle force and sensitivity. PMID:29118955

  3. Magnetoencephalographic analysis in patients with vagus nerve stimulator.

    Science.gov (United States)

    Tanaka, Naoaki; Thiele, Elizabeth A; Madsen, Joseph R; Bourgeois, Blaise F; Stufflebeam, Steven M

    2009-11-01

    The objective of this study was to assess the feasibility of magnetoencephalography in epilepsy patients with a vagus nerve stimulator. Magnetoencephalography was performed in two patients with medically intractable epilepsy who had a vagus nerve stimulator. Because of the artifacts caused by the vagus nerve stimulator, no spikes could be identified in the original magnetoencephalographic data in either patient. The temporally extended signal space separation method was used to remove artifacts. After processing by this method, left temporoparietal spikes were clearly identified in patient 1. Equivalent current dipoles calculated from these spikes were localized in the left posterior-temporal and parietal lobes. The location of the dipoles was consistent with the spike distribution on intracranial electroencephalography. In patient 2, bilateral diffuse spikes were seen in the processed data. The contour maps demonstrated a bilateral pattern, not in agreement with a single focal source. These findings supported the diagnosis of symptomatic generalized epilepsy in this patient. Magnetoencephalography may thus be a useful option for evaluating patients with intractable epilepsy who have a vagus nerve stimulator.

  4. TRANSCUTANEOUS ELECTRICAL NERVE-STIMULATION (TENS) IN RAYNAUDS-PHENOMENON

    NARCIS (Netherlands)

    MULDER, P; DOMPELING, EC; VANSLOCHTERENVANDERBOOR, JC; KUIPERS, WD; SMIT, AJ

    Transcutaneous nerve stimulation (TENS) has been described as resulting in vasodilatation. The effect of 2 Hz TENS of the right hand during forty-five minutes on skin temperature and plethysmography of the third digit of both hands and feet and on transcutaneous oxygen tension (TcpO2) of the right

  5. Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking.

    Science.gov (United States)

    Colzato, Lorenza S; Ritter, Simone M; Steenbergen, Laura

    2018-03-01

    Creativity is one of the most important cognitive skills in our complex and fast-changing world. Previous correlative evidence showed that gamma-aminobutyric acid (GABA) is involved in divergent but not convergent thinking. In the current study, a placebo/sham-controlled, randomized between-group design was used to test a causal relation between vagus nerve and creativity. We employed transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique to stimulate afferent fibers of the vagus nerve and speculated to increase GABA levels, in 80 healthy young volunteers. Creative performance was assessed in terms of divergent thinking (Alternate Uses Task) and convergent thinking tasks (Remote Associates Test, Creative Problem Solving Task, Idea Selection Task). Results demonstrate active tVNS, compared to sham stimulation, enhanced divergent thinking. Bayesian analysis reported the data to be inconclusive regarding a possible effect of tVNS on convergent thinking. Therefore, our findings corroborate the idea that the vagus nerve is causally involved in creative performance. Even thought we did not directly measure GABA levels, our results suggest that GABA (likely to be increased in active tVNS condition) supports the ability to select among competing options in high selection demand (divergent thinking) but not in low selection demand (convergent thinking). Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Pudendal nerve stimulation induces urethral contraction and relaxation

    NARCIS (Netherlands)

    J. le Feber (Joost); E. van Asselt (Els)

    1999-01-01

    textabstractIn this study we measured urethral pressure changes in response to efferent pudendal nerve stimulation in rats. All other neural pathways to the urethra were transected, and the urethra was continuously perfused. We found fast twitch-like contractions,

  7. Study of nerve fibers nature reinforcing duodenal contractions by electrical stimulation of sympathetic nerve

    Directory of Open Access Journals (Sweden)

    Sveshnikov D.S.

    2011-09-01

    Full Text Available The subject of the article is to investigate the mechanism of increased reactions by electrical stimulation of the sympathetic nerve. Materials and methods: Experiments on dogs have shown that stimulant reactions during blockade of a-adrenergic by phentolamine and (3-adrenergic receptors with propranolol were completely eliminated by lizer-gol —the blocker of 5-HT12-receptors. Results: Infusion of lizergol did not influence on duodenal motor activity and the function of the vagus nerve. Conclusion: Effector neuron is found out to be serotonergic and its action is provided by 5-HT1 2 receptors

  8. Generator for electrotherapy and stimulation of human nerve centers

    Directory of Open Access Journals (Sweden)

    Babelyuk V. E.

    2017-04-01

    Full Text Available A generator for electrotherapy and stimulation of human VEB-1 nerve centers has been developed. The device's robots are based on stimulation of the patient by current pulses. Frequency beat method is used. The accuracy of maintaining the stimulation frequency is not more than 0.001 Hz. The carrier frequency of the working current pulses corresponds to the 32th harmonic of the frequency of the frequency pulse of the operating pulses. The clinical tests of the VEB-1 generator were carried out, showing the ego efficiency in twenty characteristic health indicators.

  9. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity.

    OpenAIRE

    Clancy, JA; Mary, DA; Witte, KK; Greenwood, JP; Deuchars, SA; Deuchars, J

    2014-01-01

    Background: Vagus nerve stimulation (VNS) is currently used to treat refractory epilepsy and is being investigated as a potential therapy for a range of conditions, including heart failure, tinnitus, obesity and Alzheimer's disease. However, the invasive nature and expense limits the use of VNS in patient populations and hinders the exploration of the mechanisms involved. Objective: We investigated a non-invasive method of VNS through electrical stimulation of the auricular branch of the vagu...

  10. Sacral nerve stimulation for faecal incontinence due to systemic sclerosis

    Science.gov (United States)

    Kenefick, N J; Vaizey, C J; Nicholls, R J; Cohen, R; Kamm, M A

    2002-01-01

    Background: Faecal incontinence occurs in over one third of patients with systemic sclerosis. The aetiology is multifactorial. Conventional treatment is often unsuccessful. Sacral nerve stimulation is a new effective treatment for resistant faecal incontinence. Aims: To evaluate sacral nerve stimulation in patients with systemic sclerosis. Patients: Five women, median age 61 years (30–71), with scleroderma associated faecal incontinence were evaluated. All had failed maximal conventional treatment. Median number of preoperative weekly episodes of incontinence was 15 (7–25), median duration of incontinence was five years (5–9), and scleroderma 13 years (4–29). Methods: All patients were screened with temporary stimulation. Those who benefited underwent permanent implantation. At baseline and after stimulation a bowel diary, the SF-36 quality of life assessment, endoanal ultrasound, and anorectal physiology were performed. Results: Four patients were continent at a median follow up of 24 months (6–60). One patient failed temporary stimulation and was not permanently implanted. The weekly episodes of incontinence decreased from 15, 11, 23, and 7 to 0. Urgency resolved (median time to defer <1 minute (0–1) v 12.5 minutes (5–15)). Quality of life, especially social function, improved. Endoanal ultrasound showed an atrophic internal anal sphincter (median width 1.0 mm (0–1.6)). Anorectal physiology showed an increase in median resting pressure (37 pre v 65 cm H2O post) and squeeze pressure (89 v 105 cm H2O). Stimulation produced enhanced rectal sensitivity to distension. There were no major complications. Conclusions: Sacral nerve stimulation is a safe and effective treatment for resistant faecal incontinence secondary to scleroderma. The benefit is maintained in the medium term. PMID:12427794

  11. The transcutaneous electrical nerve stimulation of variable frequency intensity has a longer-lasting analgesic action than the burst transcutaneous electrical nerve stimulation in cancer pain

    OpenAIRE

    Schleder, Juliana Carvalho; Verner, Fernanda Aparecida; Mauda, Loriane; Mazzo, Débora Melo; Fernandes, Luiz Cláudio

    2017-01-01

    ABSTRACT BACKGROUND AND OBJECTIVES: Pain is one of the most frequent symptoms in cancer, and physical therapy offers non-invasive methods such as the transcutaneous electrical nerve stimulation for the relief of symptoms. The objective of this study was to compare the effect of the burst transcutaneous electrical nerve stimulation with the transcutaneous electrical nerve stimulation with variable intensity frequency in cancer pain. METHODS: This study was conducted with 53 patients of the H...

  12. Bionic intrafascicular interfaces for recording and stimulating peripheral nerve fibers.

    Science.gov (United States)

    Jung, Ranu; Abbas, James J; Kuntaegowdanahalli, Sathyakumar; Thota, Anil K

    2018-01-01

    The network of peripheral nerves presents extraordinary potential for modulating and/or monitoring the functioning of internal organs or the brain. The degree to which these pathways can be used to influence or observe neural activity patterns will depend greatly on the quality and specificity of the bionic interface. The anatomical organization, which consists of multiple nerve fibers clustered into fascicles within a nerve bundle, presents opportunities and challenges that may necessitate insertion of electrodes into individual fascicles to achieve the specificity that may be required for many clinical applications. This manuscript reviews the current state-of-the-art in bionic intrafascicular interfaces, presents specific concerns for stimulation and recording, describes key implementation considerations and discusses challenges for future designs of bionic intrafascicular interfaces.

  13. Measurement of motor nerve conduction velocity of the sciatic nerve in patients with piriformis syndrome: a magnetic stimulation study.

    Science.gov (United States)

    Chang, Chein-Wei; Shieh, Shie-Fu; Li, Chih-Ming; Wu, Wei-Ting; Chang, Kai-Fong

    2006-10-01

    To assess the motor nerve conduction of the sciatic nerve by a magnetic stimulation method in patients with piriformis syndrome. Prospective study. An electrodiagnostic laboratory in a university hospital. Twenty-three patients with piriformis syndrome and 15 healthy persons for control. Not applicable. Motor nerve conduction velocity (MNCV) of the sciatic nerve was measured at the gluteal segment by magnetic stimulation proximally at L5 and S1 roots and distally at sciatic nerve at gluteal fold and recording at the corresponding muscles. Diagnostic sensitivities were measured in the magnetic stimulation method and the conventional nerve conduction, long latency reflex, and needle electromyography studies. The mean MNCV of the sciatic nerve +/- standard deviation at the gluteal segment in L5 component was 55.4+/-7.8 m/s in patients with piriformis syndrome, which was slower than the mean value of 68.1+/-10.3 m/s obtained in healthy controls (P=.014). The MNCV of the sciatic nerve in S1 component showed no significant difference between the patients and controls (P=.062). A negative relation was found between the disease duration and the MNCV values of sciatic nerves in patients with piriformis syndrome (r=-.68, Pmagnetic stimulation is .467. Magnetic nerve stimulation provides a painless, noninvasive, and objective method for evaluation of sciatic nerve function in patients with piriformis syndrome.

  14. Transcutaneous electrical nerve stimulation in female stress urinary incontinence

    OpenAIRE

    Zahra Shahshahan; Marjan Labbaf

    2006-01-01

    BACKGROUND: Stress urinary incontinence (SUI) is a prevalent medical problem for women especially through escalation of age. Many conservative nonsurgical therapies have been used for management of this problem which will usually be followed by high relapse rates or frequent side effects. Evaluation of the efficacy of transcutaneous electrical nerve stimulation (TENS) in management of genuine SUI has been studied in a few trials. We sought to assess the effectiveness and complications of high...

  15. Rectal motility after sacral nerve stimulation for faecal incontinence

    DEFF Research Database (Denmark)

    Michelsen, H B; Worsøe, J; Krogh, K

    2010-01-01

    Sacral nerve stimulation (SNS) is effective against faecal incontinence, but the mode of action is obscure. The aim of this study was to describe the effects of SNS on fasting and postprandial rectal motility. Sixteen patients, 14 women age 33-73 (mean 58), with faecal incontinence of various...... CSA was 2999 mm(2) (range: 1481-3822) during fast and 2697 mm(2) (range: 1227-3310) postprandially (P faecal incontinence does not affect phasic rectal motility...

  16. Reversible sleep-related stridor during vagus nerve stimulation

    OpenAIRE

    St. Louis, Erik K.; Faber, Kevin

    2010-01-01

    A 23-year-old woman without history of antecedent vocal, respiratory, or sleep disorders received vagus nerve stimulation (VNS) therapy for refractory partial epilepsy and developed sleep-related stridor during the course of parameter titration. Reduction of VNS current during polysomnography completely eliminated stridor. We conclude that VNS may cause sleep-related stridor in rare cases, expanding the spectrum of known sleep-disordered breathing disorders associated with VNS therapy. Parame...

  17. Transcutaneous electric nerve stimulation (TENS) in dentistry: a review

    OpenAIRE

    Kasat, Vikrant O.; Gupta, Aditi; Ladda, Ruchi; Kathariya, Mitesh; Saluja, Harish; Farooqui, Anjum Ara

    2014-01-01

    Transcutaneous electric nerve stimulation (TENS) is a non-pharmacological method which is widely used by medical and paramedical professionals for the management of acute and chronic pain in a variety of conditions. Similarly, it can be utilized for the management of pain during various dental procedures as well as pain due to various conditions affecting maxillofacial region. This review aims to provide an insight into clinical research evidence available for the analgesic and non analgesic ...

  18. Vagus Nerve Stimulation Affects Pain Perception in Depressed Adults

    Directory of Open Access Journals (Sweden)

    Jeffrey J Borckardt

    2005-01-01

    Full Text Available BACKGROUND: Previous research suggests that vagus nerve stimulation (VNS affects pain perception in epilepsy patients, with acute VNS decreasing pain thresholds and chronic VNS treatment increasing pain thresholds. However, no studies have investigated the effects of VNS on pain perception in chronically depressed adults, nor have controlled, systematic investigations been published on the differential effects of certain VNS device parameters on pain perception.

  19. Bilateral compared with unilateral sacral nerve stimulation for faecal incontinence

    DEFF Research Database (Denmark)

    Duelund-Jakobsen, J; Buntzen, S; Lundby, L

    2015-01-01

    % improvement were eligible. Twenty-seven patients who accepted to enter the trial were bilaterally implanted with two permanent leads and pacemakers. Patients were randomized into three periods of four weeks stimulation including unilateral right, unilateral left and bilateral. Symptoms scores and bowel habit......AIM: This randomized single-blinded cross over study aimed to investigate whether bilateral Sacral Nerve Stimulation (SNS) is more efficient than unilateral stimulation for faecal incontinence (FI). METHOD: FI-patients who responded during a unilateral test-stimulation, with a minimum of 50...... diaries were collected at baseline and in each study-period. Between each period one-week washout was introduced. RESULTS: Twenty-seven (25 female) patients with a median age of 63 (36-84) years were bilaterally implanted from May 2009 to June 2012. Median FI-episodes per three weeks significantly...

  20. [Mechanisms and applications of transcutaneous electrical nerve stimulation in analgesia].

    Science.gov (United States)

    Tang, Zheng-Yu; Wang, Hui-Quan; Xia, Xiao-Lei; Tang, Yi; Peng, Wei-Wei; Hu, Li

    2017-06-25

    Transcutaneous electrical nerve stimulation (TENS), as a non-pharmacological and non-invasive analgesic therapy with low-cost, has been widely used to relieve pain in various clinical applications, by delivering current pulses to the skin area to activate the peripheral nerve fibers. Nevertheless, analgesia induced by TENS varied in the clinical practice, which could be caused by the fact that TENS with different stimulus parameters has different biological mechanisms in relieving pain. Therefore, to advance our understanding of TENS in various basic and clinical studies, we discussed (1) neurophysiological and biochemical mechanisms of TENS-induced analgesia; (2) relevant factors that may influence analgesic effects of TENS from the perspectives of stimulus parameters, including stimulated position, pulse parameters (current intensity, frequency, and pulse width), stimulus duration and used times in each day; and (3) applications of TENS in relieving clinical pain, including post-operative pain, chronic low back pain and labor pain. Finally, we propose that TENS may involve multiple and complex psychological neurophysiological mechanisms, and suggest that different analgesic effects of TENS with different stimulus parameters should be taken into consideration in clinical applications. In addition, to optimize analgesic effect, we recommend that individual-based TENS stimulation parameters should be designed by considering individual differences among patients, e.g., adaptively adjusting the stimulation parameters based on the dynamic ratings of patients' pain.

  1. Spinal cord stimulation suppresses bradycardias and atrial tachyarrhythmias induced by mediastinal nerve stimulation in dogs.

    Science.gov (United States)

    Cardinal, René; Pagé, Pierre; Vermeulen, Michel; Bouchard, Caroline; Ardell, Jeffrey L; Foreman, Robert D; Armour, J Andrew

    2006-11-01

    Spinal cord stimulation (SCS) applied to the dorsal aspect of the cranial thoracic cord imparts cardioprotection under conditions of neuronally dependent cardiac stress. This study investigated whether neuronally induced atrial arrhythmias can be modulated by SCS. In 16 anesthetized dogs with intact stellate ganglia and in five with bilateral stellectomy, trains of five electrical stimuli were delivered during the atrial refractory period to right- or left-sided mediastinal nerves for up to 20 s before and after SCS (20 min). Recordings were obtained from 191 biatrial epicardial sites. Before SCS (11 animals), mediastinal nerve stimulation initiated bradycardia alone (12 nerve sites), bradycardia followed by tachyarrhythmia/fibrillation (50 sites), as well as tachyarrhythmia/fibrillation without a preceding bradycardia (21 sites). After SCS, the number of responsive sites inducing bradycardia was reduced by 25% (62 to 47 sites), and the cycle length prolongation in residual bradycardias was reduced. The number of responsive sites inducing tachyarrhythmia was reduced by 60% (71 to 29 sites). Once elicited, residual tachyarrhythmias arose from similar epicardial foci, displaying similar dynamics (cycle length) as in control states. In the absence of SCS, bradycardias and tachyarrhythmias induced by repeat nerve stimulation were reproducible (five additional animals). After bilateral stellectomy, SCS no longer influenced neuronal induction of bradycardia and atrial tachyarrhythmias. These data indicate that SCS obtunds the induction of atrial arrhythmias resulting from excessive activation of intrinsic cardiac neurons and that such protective effects depend on the integrity of nerves coursing via the subclavian ansae and stellate ganglia.

  2. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2014-01-01

    Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable......μs, which is large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulation of the AN [1,2] were considered in terms of their efficacy to predict the spike timing...... for anodic and cathodic stimulation of the AN of cat [3]. The models’ responses to the electrical pulses of various shapes [4,5,6] were also analyzed. It was found that, while the models can account for the firing rates in response to various biphasic pulse shapes, they fail to correctly describe the timing...

  3. Alteration of interferential current and transcutaneous electrical nerve stimulation frequency: effects on nerve excitation.

    Science.gov (United States)

    Palmer, S T; Martin, D J; Steedman, W M; Ravey, J

    1999-09-01

    To investigate the effects of different interferential current (IC) and transcutaneous electrical nerve stimulation (TENS) frequencies on sensory, motor, and pain thresholds. Single blind, repeated measures design. Laboratory. Women students 18 to 30 years old (n = 24). Premodulated IC and square-wave TENS pulses (125micros phase duration) were applied over the median nerve at a range of frequencies in all subjects. The peak current (in milliamperes) was recorded twice at each threshold for each frequency, and averaged. Both IC and TENS displayed a statistically significant effect of frequency for each threshold. However, frequency effects with IC were not well defined and were of small magnitude. Pure 4kHz current (0Hz amplitude modulated frequency) with IC did not produce effects different from those produced when an amplitude modulated frequency was included. With TENS, frequency effects were very clearly observed, with a distinct increase in the current intensity at each threshold as frequency decreased. It is postulated that the medium frequency component of IC is the main parameter in stimulation, contrary to traditional claims of the amplitude modulated frequency being important. TENS was shown to be a more adaptable method of stimulating these nerve pathways than IC.

  4. Transcutaneous mechanical nerve stimulation using perineal vibration: a novel method for the treatment of female stress urinary incontinence

    DEFF Research Database (Denmark)

    Sønksen, Jens; Ohl, Dana A; Bonde, Birthe

    2007-01-01

    We defined basic guidelines for transcutaneous mechanical nerve stimulation in modifying pelvic floor responses in women and determined the efficacy of transcutaneous mechanical nerve stimulation in treating stress urinary incontinence.......We defined basic guidelines for transcutaneous mechanical nerve stimulation in modifying pelvic floor responses in women and determined the efficacy of transcutaneous mechanical nerve stimulation in treating stress urinary incontinence....

  5. Analgesic effects of transcutaneous electrical nerve stimulation and interferential currents on heat pain in healthy subjects.

    Science.gov (United States)

    Cheing, Gladys L Y; Hui-Chan, Christina W Y

    2003-01-01

    This study examined whether transcutaneous electrical nerve stimulation or interferential current was more effective in reducing experimentally induced heat pain. Forty-eight young healthy subjects were randomly divided into the following groups: (i) transcutaneous electrical nerve stimulation; (ii) interferential current; and (iii) no stimulation. A multi-function electrical stimulator was used to generate the transcutaneous electrical nerve stimulation or interferential current. A thermal sensory analyser was used to record the heat pain threshold. The stimulation lasted for 30 minutes and the heat pain thresholds were measured before, during and after the stimulation. Transcutaneous electrical nerve stimulation (p = 0.003) and interferential current (p = 0.004) significantly elevated the heat pain threshold, but "no stimulation" did not. The thresholds of the transcutaneous electrical nerve stimulation and interferential current groups were significantly higher than that of the control group 30 minutes into the stimulation (p = 0.017). Both transcutaneous electrical nerve stimulation and interferential current increased the heat pain threshold to a similar extent during stimulation. However, the post-stimulation effect of interferential current lasted longer than that of transcutaneous electrical nerve stimulation.

  6. Bilateral transcutaneous tibial nerve stimulation for chronic constipation.

    Science.gov (United States)

    Iqbal, F; Collins, B; Thomas, G P; Askari, A; Tan, E; Nicholls, R J; Vaizey, C J

    2016-02-01

    Chronic constipation is difficult to treat when symptoms are intractable. Colonic propulsion may be altered by distal neuromodulation but this is conventionally delivered percutaneously. Transcutaneous tibial nerve stimulation is noninvasive and cheap: this study aimed to assess its efficacy in chronic constipation. Eighteen patients (median age 46 years, 12 female) with chronic constipation were recruited consecutively. Conservative and behavioural therapy had failed to improve symptoms in all 18. Thirty minutes of daily bilateral transcutaneous tibial nerve stimulation was administered by each patient at home for 6 weeks. The primary outcome measure was a change in the Patient Assessment of Constipation Quality of Life (PAC-QoL) score. Change in Patient Assessment of Constipation Symptoms (PAC-SYM), weekly bowel frequency and visual analogue scale (VAS) score were also measured. Fifteen patients (12 female) completed the trial. The PAC-QoL score improved significantly with treatment [pretreatment, median 2.95, interquartile range (IQR) 1.18; posttreatment, median 2.50, IQR 0.70; P = 0.047]. There was no change in PAC-SYM score (pretreatment, median 2.36, IQR 1.59; posttreatment, median 2.08, IQR 0.92; P = 0.53). Weekly stool frequency improved as did VAS score, but these did not reach statistical significance (P = 0.229 and 0.161). The PAC-QoL and PAC-SYM scores both improved in four (26%) patients. Two patients reported complete cure. There were no adverse events reported. Bilateral transcutaneous tibial nerve stimulation appears to be effective in a quarter of patients with chronic constipation. Carefully selected patients with less severe disease may benefit more. This requires further study. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  7. Vagus nerve stimulation in patients with Alzheimer's disease

    DEFF Research Database (Denmark)

    Merrill, Charley A; Jonsson, Michael A G; Minthon, Lennart

    2006-01-01

    BACKGROUND: Cognitive-enhancing effects of vagus nerve stimulation (VNS) have been reported during 6 months of treatment in a pilot study of patients with Alzheimer's disease (AD). Data through 1 year of VNS (collected from June 2000 to September 2003) are now reported. METHOD: All patients (N = 17......) met the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) criteria for probable AD. Responder rates for the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) and Mini-Mental State...

  8. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted diaphragmatic/phrenic nerve stimulator... Implanted diaphragmatic/phrenic nerve stimulator. (a) Identification. An implanted diaphragmatic/phrenic... spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...

  9. Posterior tibial nerve stimulation vs parasacral transcutaneous neuromodulation for overactive bladder in children.

    Science.gov (United States)

    Barroso, Ubirajara; Viterbo, Walter; Bittencourt, Joana; Farias, Tiago; Lordêlo, Patrícia

    2013-08-01

    Parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation have emerged as effective methods to treat overactive bladder in children. However, to our knowledge no study has compared the 2 methods. We evaluated the results of parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation in children with overactive bladder. We prospectively studied children with overactive bladder without dysfunctional voiding. Success of treatment was evaluated by visual analogue scale and dysfunctional voiding symptom score, and by level of improvement of each specific symptom. Parasacral transcutaneous electrical nerve stimulation was performed 3 times weekly and posterior tibial nerve stimulation was performed once weekly. A total of 22 consecutive patients were treated with posterior tibial nerve stimulation and 37 with parasacral transcutaneous electrical nerve stimulation. There was no difference between the 2 groups regarding demographic characteristics or types of symptoms. Concerning the evaluation by visual analogue scale, complete resolution of symptoms was seen in 70% of the group undergoing parasacral transcutaneous electrical nerve stimulation and in 9% of the group undergoing posterior tibial nerve stimulation (p = 0.02). When the groups were compared, there was no statistically significant difference (p = 0.55). The frequency of persistence of urgency and diurnal urinary incontinence was nearly double in the group undergoing posterior tibial nerve stimulation. However, this difference was not statistically significant. We found that parasacral transcutaneous electrical nerve stimulation is more effective in resolving overactive bladder symptoms, which matches parental perception. However, there were no statistically significant differences in the evaluation by dysfunctional voiding symptom score, or in complete resolution of urgency or diurnal incontinence. Copyright © 2013 American Urological

  10. Early experiences with tachycardia-triggered vagus nerve stimulation using the AspireSR stimulator.

    Science.gov (United States)

    El Tahry, Riëm; Hirsch, Martin; Van Rijckevorsel, Kenou; Santos, Susana Ferrao; de Tourtchaninoff, Marianne; Rooijakkers, Herbert; Coenen, Volker; Schulze-Bonhage, Andreas

    2016-06-01

    Many epilepsy patients treated with vagus nerve stimulation additionally use an "on-demand" function, triggering an extra stimulation to terminate a seizure or diminish its severity. Nevertheless, a substantial number of patients are not able to actively trigger stimulations by use of a magnet, due to the absence of an aura or inability for voluntary actions in the early phase of a seizure. To address this need, a novel implantable pulse generator, the AspireSR VNS system, was developed to provide automated ictal stimulation triggered by a seizure-detecting algorithm. We report our experience with three patients in assessing the functionality of ictal stimulation, illustrating the detection system in practice. Detection of ictal tachycardia and variable additional detections of physiological tachycardia depended on the individual seizure-detecting algorithm settings.

  11. Vagus nerve stimulation for the treatment of refractory epilepsy

    Directory of Open Access Journals (Sweden)

    Gorgan M.R.

    2015-06-01

    Full Text Available Vagus nerve stimulation (VNS represents one of the main surgical options for the treatment of the refractory epilepsy in pediatric and adult patients. There are several mechanism involved in vagal nerve stimulation which could influence the pathophysiology of seizures like neuromodulation of the thalamic and subthalamic nuclei involved in seizure initiation and the modulation of the neurotransmitters pattern norepinefrin, GABA, and serotonin. The VNS system is composed of the implanted components (the generator, the lead with the electrodes attached and the programming system components (programming wand and handheld computer. The authors present their experience with 81 patients diagnosed with refractory epilepsy, investigated, selected and implanted with vagal neurostimulators between December 2012 and January 2015 in Neurosurgery Clinic, "Bagdasar-Arseni" Emergency Hospital. The surgical technique and the potential pitfalls are described in detail. There were 20 children (24,7% and 61 (75,3% adults in this series. There was no death in this series and no intraoperative incidence. One patient presented dysphagia postoperatively which completely remitted after two months of follow-up. The outcome in term of seizure frequency and severity was better for patients under 30 years compared with patients older than 30 years. VNS represents now a safe, quick and efficient surgical procedure with a minimum period of hospitalization and a short recovery period. The good results on long term improve the quality of life of the patients and facilitate the social and professional reinsertion

  12. Transcutaneous electrical nerve stimulation in female stress urinary incontinence

    Directory of Open Access Journals (Sweden)

    Zahra Shahshahan

    2006-12-01

    Full Text Available BACKGROUND: Stress urinary incontinence (SUI is a prevalent medical problem for women especially through escalation of age. Many conservative nonsurgical therapies have been used for management of this problem which will usually be followed by high relapse rates or frequent side effects. Evaluation of the efficacy of transcutaneous electrical nerve stimulation (TENS in management of genuine SUI has been studied in a few trials. We sought to assess the effectiveness and complications of high frequency TENS in SUI. METHODS: In a clinical trial, 10 sessions of high frequency TENS with 15 minutes duration every other day were applied for 40 women with genuine SUI. Treatment results were evaluated by SUI severity index at the end of first and sixth months after final session of TENS and they were compared with the baseline index. RESULTS: Seven patients (17.5% were omitted from the study because of intolerance of TENS. In the remaining 33 patients, there was no sign of any complication. In comparison to baseline, severities of SUI showed significant decrements at first and second post-intervention evaluations (P<0.0001. There was a significant increase in SUI index from first month to sixth month (P<0.0001. CONCLUSIONS: TENS is a safe and cost-effective method for SUI management but its effectiveness decreases by time. KEY WORDS: Transcutaneous electrical nerve stimulation, stress urinary incontinence.

  13. Short-term electrical stimulation to promote nerve repair and functional recovery in a rat model.

    Science.gov (United States)

    Calvey, Colleen; Zhou, Wenda; Stakleff, Kimberly Sloan; Sendelbach-Sloan, Patricia; Harkins, Amy B; Lanzinger, William; Willits, Rebecca Kuntz

    2015-02-01

    To evaluate the effect of duration of electrical stimulation on peripheral nerve regeneration and functional recovery. Based on previous work, we hypothesized that applying 10 minutes of electrical stimulation to a 10-mm rat sciatic nerve defect would significantly improve nerve regeneration and functional recovery compared with the non-electrical stimulation group. A silicone tube filled with a collagen gel was used to bridge a 10-mm nerve defect in rats, and either 10 minutes or 60 minutes of electrical stimulation was applied to the nerve during surgery. Controls consisted of a silicone tube with collagen gel and no electrical stimulation or an isograft. We analyzed recovery over a 12-week period, measuring sciatic functional index and extensor postural thrust scores and concluding with histological examination of the nerve. Functional assessment scores at week 12 increased 24% in the 10-minute group as compared to the no stimulation control group. Electrical stimulation of either 10 or 60 minutes improved the number of nerve fibers over no stimulation. Additionally, the electrical stimulation group's histomorphometric analysis was not different from the isograft group. Several previous studies have demonstrated the effectiveness of 60-minute stimulations on peripheral nerve regeneration. This study demonstrated that an electrical stimulation of 10 minutes enhanced several functional and histomorphometric outcomes of nerve regeneration and was overall similar to a 60-minute stimulation over 12 weeks. Decreasing the electrical stimulation time from 60 minutes to 10 minutes provided a potential clinically feasible and safe method to enhance nerve regeneration and functional recovery. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  14. Selective detrusor activation by electrical sacral nerve root stimulation in spinal cord injury

    NARCIS (Netherlands)

    Rijkhoff, N. J.; Wijkstra, H.; van Kerrebroeck, P. E.; Debruyne, F. M.

    1997-01-01

    Electrical sacral nerve root stimulation can be used in spinal cord injury patients to induce urinary bladder contraction. However, existing stimulation methods activate simultaneously both the detrusor muscle and the urethral sphincter. Urine evacuation is therefore only possible using poststimulus

  15. Relief of upper airway obstruction with hypoglossal nerve stimulation in the canine.

    Science.gov (United States)

    Goding, G S; Eisele, D W; Testerman, R; Smith, P L; Roertgen, K; Schwartz, A R

    1998-02-01

    Hypoglossal nerve stimulation was investigated as a method to relieve an induced upper airway obstruction. Six dogs were implanted with a cuff electrode applied to each hypoglossal nerve and a pulse generator. After 4 weeks, the hypoglossal nerve was stimulated (50% duty cycle) for up to 8 weeks. At 12 weeks a double tracheotomy was placed, with a negative pressure intermittently applied to the upper limb, simulating inspiratory airway pressure. Unilateral hypoglossal nerve stimulation improved peak upper airway flow from an average of 0.1 L/s to 1.6 L/s (P = 0.0001). Seventy-seven percent of the maximum possible flow (explanted tracheotomy tube) was obtained with unilateral stimulation. Histopathological evaluation revealed no nerve damage secondary to chronic stimulation. This study provides support for clinical trials of hypoglossal stimulation for obstructive sleep apnea.

  16. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.

    Science.gov (United States)

    Khodaparast, Navid; Hays, Seth A; Sloan, Andrew M; Fayyaz, Tabbassum; Hulsey, Daniel R; Rennaker, Robert L; Kilgard, Michael P

    2014-09-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into 3 groups: vagus nerve stimulation during rehabilitation (rehab), vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), prelesion training, postlesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed 1 week of recovery before postlesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All 17 trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to prelesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to prelesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared with rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. © The Author(s) 2014.

  17. [Electrical failure with nerve stimulation: cases report and check list for prevention].

    Science.gov (United States)

    Choquet, O; Feugeas, J-L; Capdevila, X; Manelli, J-C

    2007-03-01

    Functionality of the nerve stimulator and integrity of the electrical circuit should be verified and confirmed before performing peripheral nerve blockade. The clinical cases reported here demonstrate that electrical disconnection or malfunction during nerve localization can unpredictably occur and a checklist is described to prevent the unknown electrical circuit failure.

  18. Study of stimulators of DNA synthesis in nerve tissue cells

    Energy Technology Data Exchange (ETDEWEB)

    Vitvitskii, V.N.

    1986-04-10

    Changes in proliferative activity in different regions of the brain during ontogenesis are connected with changes in the composition and properties of regulators of cell proliferation. Extracts of regions of the brain in which active cell division takes place in a given stage of development (cortex of 15- to 17-day-old embryos or cerebellum of 8- to 10-day-old rats) can stimulate the incorporation of labeled precursors into the brain cell DNA of both newborn and adult rats. Salting out at increasing ammonium sulfate concentrations, gel filtration on Sephadex, and isoelectric focusing led to the isolation of three fractions of stimulators of DNA synthesis: in acid, neutral, and alkaline pH regions. A method is described for obtaining purified preparations and for determining some physicochemical properties of the acid activator, which is a low-molecular-weight peptide capable of noticeably stimulating the incorporation of labeled precursors into the DNA of nerve tissue cells when added to an in vitro system in a concentration of the order of 1 ..mu..g/ml.

  19. Feedback controlled electrical nerve stimulation: a computer simulation.

    Science.gov (United States)

    Doruk, R Ozgur

    2010-07-01

    The role of repetitive firing in neurophysiologic or neuropsychiatric disorders, such as Parkinson, epilepsy and bipolar type disorders, has always been a topic of medical research as therapies target either the cease of firing or a decrease in its frequency. In electrotherapy, one of the mechanisms to achieve the purpose in point is to apply a low density electric current to the nervous system. In this study, a computer simulation is provided of a treatment in which the stimulation current is computed by nerve fiber cell membrane potential feedback so that the level of the current is automatically instead of manually adjusted. The behavior of the nerve cell is represented by the Hodgkin-Huxley (HH) model, which is slightly modified into a linear model with state dependent coefficients. Due to this modification, the algebraic and differential Riccati equations can be applied, which allows an optimal controller minimizing a quadratic performance index given by the user. Using a controlled current injection can decrease unnecessarily long current injection times that may be harmful to the neuronal network. This study introduces a prototype for a possible future application to a network of neurons as it is more realistic than a single neuron. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Transcutaneous electric nerve stimulation (TENS) in dentistry- A review.

    Science.gov (United States)

    Kasat, Vikrant; Gupta, Aditi; Ladda, Ruchi; Kathariya, Mitesh; Saluja, Harish; Farooqui, Anjum-Ara

    2014-12-01

    Transcutaneous electric nerve stimulation (TENS) is a non-pharmacological method which is widely used by medical and paramedical professionals for the management of acute and chronic pain in a variety of conditions. Similarly, it can be utilized for the management of pain during various dental procedures as well as pain due to various conditions affecting maxillofacial region. This review aims to provide an insight into clinical research evidence available for the analgesic and non analgesic uses of TENS in pediatric as well as adult patients related to the field of dentistry. Also, an attempt is made to briefly discuss history of therapeutic electricity, mechanism of action of TENS, components of TENs equipment, types, techniques of administration, advantages and contradictions of TENS. With this we hope to raise awareness among dental fraternity regarding its dental applications thereby increasing its use in dentistry. Key words:Dentistry, pain, TENS.

  1. Deqi Sensations of Transcutaneous Electrical Nerve Stimulation on Auricular Points

    Directory of Open Access Journals (Sweden)

    Xiaoling Wang

    2013-01-01

    Full Text Available Deqi sensation, a psychophysical response characterized by a spectrum of different needling sensations, is essential for Chinese acupuncture clinical efficacy. Previous research works have investigated the component of Deqi response upon acupuncture on acupoints on the trunk and limbs. However, the characteristics of Deqi sensations of transcutaneous electrical nerve stimulation (TENS on auricular points are seldom reported. In this study, we investigated the individual components of Deqi during TENS on auricular concha area and the superior scapha using quantitative measurements in the healthy subjects and depression patients. The most striking characteristics of Deqi sensations upon TENS on auricular points were tingling, numbness, and fullness. The frequencies of pressure, warmness, heaviness, and soreness were relatively lower. The dull pain and coolness are rare. The characteristics of Deqi were similar for the TENS on concha and on the superior scapha.

  2. Perceptual embodiment of prosthetic limbs by transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Mulvey, Matthew R; Fawkner, Helen J; Radford, Helen E; Johnson, Mark I

    2012-01-01

      In able-bodied participants, it is possible to induce a sense of perceptual embodiment in an artificial hand using a visual-tactile illusion. In amputee patients, electrical stimulation of sensory afferents using transcutaneous electrical nerve stimulation (TENS) has been shown to generate somatic sensations in an amputee's phantom limb(s). However, the effects of TENS on the perceptual embodiment of an artificial limb are not known. Our objective was to investigate the effects of TENS on the perceptual embodiment of an artificial limb in fully intact able-bodied participants.   We used a modified version of the rubber hand illusion presented to 30 able-bodied participants (16 women, 14 men) to convey TENS paresthesia to an artificial hand. TENS electrodes were located over superficial radial nerve on the lateral aspect of the right forearm (1 cm proximal to the wrist), which was hidden from view. TENS intensity was increased to a strong non-painful TENS sensation (electrical paresthesia) was felt beneath the electrodes and projecting into the fingers of the hand. The electrical characteristics of TENS were asymmetric biphasic electrical pulsed waves, continuous pulse pattern, 120 Hz pulse frequency (rate), and 80 µs pulse duration (width).   Participants reported significantly higher intensities of the rubber hand illusion during the two TENS conditions (mean = 5.8, standard deviation = 1.9) compared with the two non-TENS conditions (mean = 4.9, standard deviation = 1.7), p embodiment of an artificial hand. Further exploratory studies involving an amputee population are warranted. © 2011 International Neuromodulation Society.

  3. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Science.gov (United States)

    2010-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a purchase basis with...

  4. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to...

  5. Vagus nerve stimulation for epilepsy activates the vocal folds maximally at therapeutic levels.

    NARCIS (Netherlands)

    Ardesch, J.J.; Sikken, J.R.; Veltink, Petrus H.; van der Aa, H.E.; Hageman, G.; Buschman, H.P.J.

    Purpose Vagus nerve stimulation (VNS) for medically refractory epilepsy can give hoarseness due to stimulation of the recurrent laryngeal nerve. For a group of VNS-therapy users this side-effect interferes severely with their daily activities. Our goal was to investigate the severity of

  6. Relief of fecal incontinence by sacral nerve stimulation linked to focal brain activation

    DEFF Research Database (Denmark)

    Lundby, Lilli; Møller, Arne; Buntzen, Steen

    2011-01-01

    This study aimed to test the hypothesis that sacral nerve stimulation affects afferent vagal projections to the central nervous system associated with frontal cortex activation in patients with fecal incontinence.......This study aimed to test the hypothesis that sacral nerve stimulation affects afferent vagal projections to the central nervous system associated with frontal cortex activation in patients with fecal incontinence....

  7. Transcutaneous Vagus Nerve Stimulation: A Promising Method for Treatment of Autism Spectrum Disorders

    OpenAIRE

    Jin, Yu; Kong, Jian

    2017-01-01

    Transcutaneous Vagus Nerve Stimulation (tVNS) on the auricular branch of the vagus nerve has been receiving attention due to its therapeutic potential for neuropsychiatric disorders. Although the mechanism of tVNS is not yet completely understood, studies have demonstrated the potential role of vagal afferent nerve stimulation in the regulation of mood and visceral state associated with social communication. In addition, a growing body of evidence shows that tVNS can activate the brain region...

  8. Improvement of physical performance by transcutaneous nerve stimulation in athletes.

    Science.gov (United States)

    Kaada, B

    1984-01-01

    The present pilot study tested the exercise response to transcutaneous nerve stimulation (TNS) of 21 volunteers, who were well-trained competitive athletes. In 62 experiments (n) they received low-frequency TNS (2 Hz) for 30-45 min prior to either a road or track race, swimming race, bicycle ergometer exercise, isometric muscular endurance test, or dynamometer hand grip test. Improvement in performance compared with a corresponding number of control tests, without TNS or with placebo stimulation in the same subjects, was almost regularly observed in running, swimming and ergometer cycling, although with great individual variations. The average improvement was 4.3 sec (2.2%) in 1.000 m road racing (n = 9); 2.3 sec (1.8%) in 800 m track racing (n = 5); 0.9 sec (1.4%) in 100 m swimming (n = 12); 1.3 sec (0.8%) in 200 m swimming (n = 6); and 2.5 sec (0.9%) in 400 m swimming (n = 3). In a bicycle ergometer test with stepwise, progressive exercise to muscular fatigue, the maximal capacity was increased by 9% (n = 4). Local isometric muscle endurance of the elbow flexors (n = 7) and hand grip strengths (n = 11) were not significantly altered. Possible mechanisms involved in the response to TNS are discussed.

  9. Sacral nerve stimulation versus percutaneous tibial nerve stimulation for faecal incontinence: a systematic review and meta-analysis.

    Science.gov (United States)

    Simillis, Constantinos; Lal, Nikhil; Qiu, Shengyang; Kontovounisios, Christos; Rasheed, Shahnawaz; Tan, Emile; Tekkis, Paris P

    2018-02-22

    Percutaneous tibial nerve stimulation (PTNS) and sacral nerve stimulation (SNS) are both second-line treatments for faecal incontinence (FI). To compare the clinical outcomes and effectiveness of SNS versus PTNS for treating FI in adults. A literature search of MEDLINE, Embase, Science Citation Index Expanded and Cochrane was performed in order to identify studies comparing SNS and PTNS for treating FI. A risk of bias assessment was performed using The Cochrane Collaboration's risk of bias tool. A random effects model was used for the meta-analysis. Four studies (one randomised controlled trial and three nonrandomised prospective studies) reported on 302 patients: 109 underwent SNS and 193 underwent PTNS. All included studies noted an improvement in symptoms after treatment, without any significant difference in efficacy between SNS and PTNS. Meta-analysis demonstrated that the Wexner score improved significantly with SNS compared to PTNS (weighted mean difference 2.27; 95% confidence interval 3.42, 1.12; P < 0.01). Moreover, SNS was also associated with a significant reduction in FI episodes per week and a greater improvement in the Fecal Incontinence Quality of Life coping and depression domains, compared to PTNS on short-term follow-up. Only two studies reported on adverse events, reporting no serious adverse events with neither SNS nor PTNS. Current evidence suggests that SNS results in significantly improved functional outcomes and quality of life compared to PTNS. No serious adverse events were identified with either treatment. Further, high-quality, multi-centre randomised controlled trials with standardised outcome measures and long-term follow-up are required in this field.

  10. Closed-loop stimulation of hypoglossal nerve in a dog model of upper airway obstruction.

    Science.gov (United States)

    Sahin, M; Durand, D M; Haxhiu, M A

    2000-07-01

    Electrical stimulation of upper airway (UAW) muscles has been under investigation as a treatment method for obstructive sleep apnea (OSA). Particular attention has been given to the electrical activation of the genioglossal muscle, either directly or via the stimulation of the hypoglossal nerve (HG), since the genioglossus is the main tongue protrusor muscle. Regardless of the stimulation site or method, an implantable electrical stimulation device for OSA patients will require a reliable method for detection of obstructive breaths to apply the stimulation when needed. In this paper, we test the hypothesis that the activity of the HG nerve can be used as a feedback signal for closed-loop stimulation of the HG nerve in an animal model of UAW obstruction where a force is applied on the submental region to physically narrow the airways. As an advantage, the method uses a single electrode for both recording and stimulation of the HG nerve. Simple linear filtering techniques were found to be adequate for producing the trigger signal for the electrical stimulation from the HG recordings. Esophageal pressure, which was used to estimate the size of the UAW passage, returned to the preloading values during closed-loop stimulation of the HG nerve. The data demonstrate the feasibility of the closed-loop stimulation of the HG nerve using its activity as the feedback signal.

  11. Investigation of assumptions underlying current safety guidelines on EM-induced nerve stimulation

    Science.gov (United States)

    Neufeld, Esra; Vogiatzis Oikonomidis, Ioannis; Iacono, Maria Ida; Angelone, Leonardo M.; Kainz, Wolfgang; Kuster, Niels

    2016-06-01

    An intricate network of a variety of nerves is embedded within the complex anatomy of the human body. Although nerves are shielded from unwanted excitation, they can still be stimulated by external electromagnetic sources that induce strongly non-uniform field distributions. Current exposure safety standards designed to limit unwanted nerve stimulation are based on a series of explicit and implicit assumptions and simplifications. This paper demonstrates the applicability of functionalized anatomical phantoms with integrated coupled electromagnetic and neuronal dynamics solvers for investigating the impact of magnetic resonance exposure on nerve excitation within the full complexity of the human anatomy. The impact of neuronal dynamics models, temperature and local hot-spots, nerve trajectory and potential smoothing, anatomical inhomogeneity, and pulse duration on nerve stimulation was evaluated. As a result, multiple assumptions underlying current safety standards are questioned. It is demonstrated that coupled EM-neuronal dynamics modeling involving realistic anatomies is valuable to establish conservative safety criteria.

  12. Surgical access for electrical stimulation of the pudendal and dorsal genital nerves in the overactive bladder: a review

    NARCIS (Netherlands)

    Martens, F.M.J.; Heesakkers, J.P.F.A.; Rijkhoff, N.J.M.

    2011-01-01

    PURPOSE: The anatomy of the pudendal nerve and its nerve branches, especially the dorsal nerve of the penis and clitoris (dorsal genital nerves), and the clinical application of electrical stimulation of these nerves in patients with overactive bladder syndrome and detrusor overactivity are

  13. Efficacy of Electrical Pudendal Nerve Stimulation versus Transvaginal Electrical Stimulation in Treating Female Idiopathic Urgency Urinary Incontinence.

    Science.gov (United States)

    Wang, Siyou; Lv, Jianwei; Feng, Xiaoming; Lv, Tingting

    2017-06-01

    We compared the efficacy of electrical pudendal nerve stimulation vs transvaginal electrical stimulation to treat female idiopathic urgency urinary incontinence. A total of 120 female patients with idiopathic urgency urinary incontinence refractory to medication were randomized at a ratio of 2:1 to group 1 of 80 patients and group 2 of 40. Groups 1 and 2 were treated with electrical pudendal nerve stimulation and transvaginal electrical stimulation, respectively. To perform electrical pudendal nerve stimulation long acupuncture needles were deeply inserted into 4 sacrococcygeal points and electrified to stimulate pudendal nerves. Outcome measures were the 24-hour pad test and a questionnaire to measure the severity of symptoms and quality of life in women with urgency urinary incontinence. The median severity of symptoms and quality of life score on the urgency urinary incontinence questionnaire (urgency urinary incontinence total score) was 13 (range 7 to 18.75) in group 1 and 11 (range 8 to 16) in group 2 before treatment, which decreased to 2 (range 0 to 6.75) in group 1 and 6.5 (range 3.25 to 10.75) in group 2 (both p Electrical pudendal nerve stimulation is more effective than transvaginal electrical stimulation in treating drug refractory, female idiopathic urgency urinary incontinence. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex

    Directory of Open Access Journals (Sweden)

    Yan-he Ju

    2016-01-01

    Full Text Available Pudendal nerve plays an important role in urine storage and voiding. Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury. We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve. This study explored the excitatory pudendal-to-bladder reflex in beagle dogs, with intact or injured spinal cord, by electrical stimulation of the pudendal nerve trunk. The optimal stimulation frequency was approximately 15-25 Hz. This excitatory effect was dependent to some extent on the bladder volume. We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function.

  15. Ultrasound and nerve stimulator guided continuous femoral nerve block analgesia after total knee arthroplasty: a multicenter randomized controlled study

    Directory of Open Access Journals (Sweden)

    Fen Wang

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: Postoperative analgesia is crucial for early functional excise after total knee arthroplasty. To investigate the clinical efficacy of ultrasound and nerve stimulator guided continuous femoral nerve block analgesia after total knee arthroplasty. METHODS: 46 patients with ASA grade I-III who underwent total knee arthroplasty received postoperative analgesia from October 2012 to January 2013. In 22 patients, ultrasound and nerve stimulator guided continuous femoral nerve block were performed for analgesia (CFNB group; in 24 patients, epidural analgesia was done (PCEA group. The analgesic effects, side effects, articular recovery and complications were compared between two groups. RESULTS: At 6 h and 12 h after surgery, the knee pain score (VAS score during functional tests after active exercise and after passive excise in CFNB were significantly reduced when compared with PCEA group. The amount of parecoxib used in CFNB patients was significantly reduced when compared with PCEA group. At 48 h after surgery, the muscle strength grade in CFNB group was significantly higher, and the time to ambulatory activity was shorter than those in PCEA group. The incidence of nausea and vomiting in CFNB patients was significantly reduced when compared with PCEA group. CONCLUSION: Ultrasound and nerve stimulator guided continuous femoral nerve block provide better analgesia at 6 h and 12 h, demonstrated by RVAS and PVAS. The amount of parecoxib also reduces, the incidence of nausea and vomiting decreased, the influence on muscle strength is compromised and patients can perform ambulatory activity under this condition.

  16. Optimization of epilepsy treatment with vagus nerve stimulation

    Science.gov (United States)

    Uthman, Basim; Bewernitz, Michael; Liu, Chang-Chia; Ghacibeh, Georges

    2007-11-01

    Epilepsy is one of the most common chronic neurological disorders that affects close to 50 million people worldwide. Antiepilepsy drugs (AEDs), the main stay of epilepsy treatment, control seizures in two thirds of patients only. Other therapies include the ketogenic diet, ablative surgery, hormonal treatments and neurostimulation. While other approaches to stimulation of the brain are currently in the experimental phase vagus nerve stimulation (VNS) has been approved by the FDA since July 1997 for the adjunctive treatment of intractable partial onset epilepsy with and without secondary generalization in patients twelve years of age or older. The safety and efficacy of VNS have been proven and duplicated in two subsequent double-blinded controlled studies after two pilot studies demonstrated the feasibility of VNS in man. Long term observational studies confirmed the safety of VNS and that its effectiveness is sustained over time. While AEDs influence seizure thresholds via blockade or modulation of ionic channels, inhibit excitatory neurotransmitters or enhance inhibitory neurotransmitters the exact mechanism of action of VNS is not known. Neuroimaging studies revealed that VNS increases blood flow in certain regions of the brain such as the thalamus. Chemical lesions in the rat brains showed that norepinephrine is an important link in the anticonvulsant effect of VNS. Analysis of cerebrospinal fluid obtained from patients before and after treatment with VNS showed modest decreases in excitatory neurotransmitters. Although Hammond et al. reported no effect of VNS on scalp EEG by visual analysis and Salinsky et al. found no effect of VNS on scalp EEG by spectral analysis, Kuba et al. suggested that VNS reduces interictal epileptiform activity. Further, nonlinear dynamical analysis of the electroencephalogram in the rat and man have reportedly shown predictable changes (decrease in the short term Lyapunov exponent STLmax and T-index) more than an hour prior to the

  17. Electrical stimulation does not enhance nerve regeneration if delayed after sciatic nerve injury: the role of fibrosis

    Directory of Open Access Journals (Sweden)

    Na Han

    2015-01-01

    Full Text Available Electrical stimulation has been shown to accelerate and enhance nerve regeneration in sensory and motor neurons after injury, but there is little evidence that focuses on the varying degrees of fibrosis in the delayed repair of peripheral nerve tissue. In this study, a rat model of sciatic nerve transection injury was repaired with a biodegradable conduit at 1 day, 1 week, 1 month and 2 months after injury, when the rats were divided into two subgroups. In the experimental group, rats were treated with electrical stimuli of frequency of 20 Hz, pulse width 100 ms and direct current voltage of 3 V; while rats in the control group received no electrical stimulation after the conduit operation. Histological results showed that stained collagen fibers comprised less than 20% of the total operated area in the two groups after delayed repair at both 1 day and 1 week but after longer delays, the collagen fiber area increased with the time after injury. Immunohistochemical staining revealed that the expression level of transforming growth factor β (an indicator of tissue fibrosis decreased at both 1 day and 1 week after delayed repair but increased at both 1 and 2 months after delayed repair. These findings indicate that if the biodegradable conduit repair combined with electrical stimulation is delayed, it results in a poor outcome following sciatic nerve injury. One month after injury, tissue degeneration and distal fibrosis are apparent and are probably the main reason why electrical stimulation fails to promote nerve regeneration after delayed repair.

  18. Transcutaneous Vagus Nerve Stimulation: Retrospective Assessment of Cardiac Safety in a Pilot Study

    OpenAIRE

    Kreuzer, Peter M.; Landgrebe, Michael; Husser, Oliver; Resch, Markus; Schecklmann, Martin; Geisreiter, Florian; Poeppl, Timm B.; Prasser, Sarah Julia; Hajak, Goeran; Langguth, Berthold

    2012-01-01

    Background: Vagus nerve stimulation has been successfully used as a treatment strategy for epilepsy and affective disorders for years. Transcutaneous vagus nerve stimulation (tVNS) is a new non-invasive method to stimulate the vagus nerve, which has been shown to modulate neuronal activity in distinct brain areas. Objectives: Here we report effects of tVNS on cardiac function from a pilot study, which was conducted to evaluate the feasibility and safety of tVNS for the treatment of chronic ti...

  19. Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study

    OpenAIRE

    Peter Michael Kreuzer; Michael eLandgrebe; Oliver eHusser; Markus eResch; Martin eSchecklmann; Florian eGeisreiter; Timm B Poeppl; Sarah Julia Prasser; Goeran eHajak; Goeran eHajak; Berthold eLangguth

    2012-01-01

    Abstract BACKGROUND: Vagus nerve stimulation has been successfully used as a treatment strategy for epilepsy and affective disorders for years. Transcutaneous vagus nerve stimulation (tVNS) is a new non-invasive method to stimulate the vagus nerve, which has been shown to modulate neuronal activity in distinct brain areas. OBJECTIVES: Here we report effects of tVNS on cardiac function from a pilot study, which was conducted to evaluate the feasibility and safety of tVNS for the treatment of c...

  20. The inhibitory effects of pudendal nerve stimulation on bladder overactivity in spinal cord injury dogs: is early stimulation necessary?

    Science.gov (United States)

    Chen, Guoqing; Liao, Limin; Dong, Qian; Ju, Yanhe

    2012-01-01

    To determine the inhibitory effects of pudendal nerve stimulation (5 Hz) on bladder overactivity at early and late stages of spinal cord injury in dogs. The study was performed in eight dogs with chronic spinal cord transection at the T9-T10 level. Group 1 (four dogs) underwent electrical stimulation of pudendal nerve one month after spinal cord transection. Group 2 (four dogs) underwent stimulation six months after spinal cord transection. The bladders were removed for histological examination of fibrosis after the stimulation. The bladder capacity and the compliance were significantly increased (p stimulation in group 1, but not in group 2. The nonvoiding contractions were inhibited in both groups by electrical stimulation. Collagen fiber was increased, while elastic fiber was significantly decreased (p stimulation can increase the bladder capacity and compliance only during the early period before the bladder wall becomes fibrosit and can inhibit the nonvoiding contraction during two stages. © 2012 International Neuromodulation Society.

  1. Transcutaneous electrical nerve stimulation therapy in reduction of orofacial pain

    Directory of Open Access Journals (Sweden)

    Đorđević Igor

    2014-01-01

    Full Text Available Introduction. Patients with craniomandibular disorders suffer from hypertonic, fatigued and painful masticatory muscles. This condition can lead to limitation of mandibular jaw movements. All of these symptoms and signs are included in myofascial pain dysfunction syndrome. Transcutaneous electrical nerve stimulation (TENS has been used for treatment of these patients. Objective. The aim of this study was to assess the effect of TENS therapy on chronic pain reduction in patients with the muscular dysfunction symptom. Methods. In order to evaluate the effect of TENS therapy before and after the treatment, Craniomandibular Index (Helkimo was used. Pain intensity was measured by VAS. Patients had TENS treatment over two-week period. BURST TENS modality was used. Current intensity was individually adjusted. Results. Two patients did not respond to TENS therapy. Complete pain reduction was recorded in 8 patients, while pain reduction was not significantly different after TENS therapy in 10 patients. Conclusion. TENS therapy was confirmed as therapeutic procedure in orofacial muscle relaxation and pain reduction.

  2. Managing Lafora body disease with vagal nerve stimulation.

    Science.gov (United States)

    Mikati, Mohamad A; Tabbara, Faysal

    2017-03-01

    A 17-year-old female, of consanguineous parents, presented with a history of seizures and cognitive decline since the age of 12 years. She had absence, focal dyscognitive, generalized myoclonic, and generalized tonic-clonic seizures, all of which were drug resistant. The diagnosis of Lafora body disease was made based on a compatible clinical, EEG, seizure semiology picture and a disease-causing homozygous mutation in the EPM2A gene. A vagus nerve stimulator (VNS) was inserted and well tolerated with a steady decrease and then stabilization in seizure frequency during the six months following insertion (months 1-6). At follow-up, at 12 months after VNS insertion, there was a persistent improvement. Seizure frequency during months 7-12, compared to pre-VNS, was documented as follows: the absence seizures observed by the family had decreased from four episodes per month to 0 per month, the focal dyscognitive seizures from 300 episodes per month to 90 per month, the generalized myoclonic seizures from 90 clusters per month to eight per month, and the generalized tonic-clonic seizures from 30 episodes per month to 1.5 per month on average. To our knowledge, this is the second case reported in the literature showing efficacy of VNS in the management of seizures in Lafora body disease.

  3. Utility of repetitive nerve stimulation test for ALS diagnosis.

    Science.gov (United States)

    Hatanaka, Yuki; Higashihara, Mana; Chiba, Takashi; Miyaji, Yosuke; Kawamura, Yasuomi; Sonoo, Masahiro

    2017-05-01

    Decremental responses in the repetitive nerve stimulation (RNS) test in amyotrophic lateral sclerosis (ALS) patients have been reported, although their possible diagnostic role has received little investigation. We investigated their diagnostic role in differentiation between ALS and cervical spondylotic amyotrophy (CSA), an important ALS mimic especially in Japan. Patients were prospectively enrolled and the diagnosis was confirmed by follow-up. RNS was performed on the abductor pollicis brevis (APB), upper trapezius (trapezius) and deltoid muscles. Enrolled subjects consisted of 53 ALS and 37 CSA patients. Abnormal decremental responses (>5%) were observed in 32%, 51% and 75% of ALS patients and 3%, 0% and 20% of CSA patients for the APB, trapezius and deltoid muscles, respectively. The sensitivity for 23 ALS patients with upper-limb onset was 78% for the trapezius and 100% for the deltoid muscles. An abnormal decremental response in the trapezius muscle was 100% specific to ALS in comparison with CSA: abnormal decrement in this muscle would strongly suggest ALS. No decrement in the deltoid muscle might exclude ALS in patients having symptoms with upper-limb onset. RNS is useful in differentiation between ALS and CSA. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  4. Sacral nerve stimulation increases activation of the primary somatosensory cortex by anal canal stimulation in an experimental model.

    LENUS (Irish Health Repository)

    Griffin, K M

    2011-08-01

    Sacral and posterior tibial nerve stimulation may be used to treat faecal incontinence; however, the mechanism of action is unknown. The aim of this study was to establish whether sensory activation of the cerebral cortex by anal canal stimulation was increased by peripheral neuromodulation.

  5. Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults.

    Science.gov (United States)

    Gibson, William; Wand, Benedict M; O'Connell, Neil E

    2017-09-14

    Neuropathic pain, which is due to nerve disease or damage, represents a significant burden on people and society. It can be particularly unpleasant and achieving adequate symptom control can be difficult. Non-pharmacological methods of treatment are often employed by people with neuropathic pain and may include transcutaneous electrical nerve stimulation (TENS). This review supersedes one Cochrane Review 'Transcutaneous electrical nerve stimulation (TENS) for chronic pain' (Nnoaham 2014) and one withdrawn protocol 'Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults' (Claydon 2014). This review replaces the original protocol for neuropathic pain that was withdrawn. To determine the analgesic effectiveness of TENS versus placebo (sham) TENS, TENS versus usual care, TENS versus no treatment and TENS in addition to usual care versus usual care alone in the management of neuropathic pain in adults. We searched CENTRAL, MEDLINE, Embase, PsycINFO, AMED, CINAHL, Web of Science, PEDro, LILACS (up to September 2016) and various clinical trials registries. We also searched bibliographies of included studies for further relevant studies. We included randomised controlled trials where TENS was evaluated in the treatment of central or peripheral neuropathic pain. We included studies if they investigated the following: TENS versus placebo (sham) TENS, TENS versus usual care, TENS versus no treatment and TENS in addition to usual care versus usual care alone in the management of neuropathic pain in adults. Two review authors independently screened all database search results and identified papers requiring full-text assessment. Subsequently, two review authors independently applied inclusion/exclusion criteria to these studies. The same review authors then independently extracted data, assessed for risk of bias using the Cochrane standard tool and rated the quality of evidence using GRADE. We included 15 studies with 724 participants. We found a

  6. Adverse outcomes associated with nerve stimulator-guided and ultrasound-guided peripheral nerve blocks by supervised trainees: update of a single-site database.

    Science.gov (United States)

    Orebaugh, Steven L; Kentor, Michael L; Williams, Brian A

    2012-01-01

    We previously published a retrospective review of complications related to peripheral nerve blocks performed by supervised trainees, from our quality assurance and billing data, guided by either ultrasound, with nerve stimulator confirmation, or landmark-based nerve stimulator techniques. This report updates our results, for the period from May 2008 through December 2011, representing ongoing transition to near-complete combined ultrasound/nerve stimulator guidance in a block-oriented, outpatient orthopedic anesthesia practice. We queried our deidentified departmental quality improvement electronic database for adverse outcomes associated with peripheral nerve blocks. Billing records were also deidentified and used to provide the denominator of total number of blocks using each technique of neurolocation. The types of blocks considered in this analysis were interscalene, axillary, femoral, sciatic, and popliteal-sciatic blocks. Nerve block complications based on each type of guidance were then compared for the entire recent 30-month time period, as well as for the 6-year period of this report. There were 9062 blocks performed by ultrasound/nerve stimulator, and 5436 by nerve stimulator alone over the entire 72-month period. Nerve injuries lasting longer than 1 year were rare, but similar in frequency with both nerve guidance techniques. The incidence of local anesthetic systemic toxicity was found to be higher with landmark-nerve stimulator technique than with use of ultrasound-guided nerve blocks (6/5436 vs 0/9069, P = 0.0061). We report a large series of combined ultrasound/nerve stimulator nerve blocks by supervised trainees without major local anesthetic systemic toxicity. While lacking the compelling evidence of randomized controlled trials, this observational database nonetheless allows increased confidence in the safety of using combined ultrasound/nerve stimulator in the setting of anesthesiologists-in-training.

  7. Stimulation of the sensory pudendal nerve increases bladder capacity in the rat.

    Science.gov (United States)

    Hokanson, James A; Langdale, Christopher L; Sridhar, Arun; Grill, Warren M

    2018-04-01

    Pudendal nerve stimulation is a promising treatment approach for lower urinary tract dysfunction, including symptoms of overactive bladder. Despite some promising clinical studies, there remain many unknowns as to how best to stimulate the pudendal nerve to maximize therapeutic efficacy. We quantified changes in bladder capacity and voiding efficiency during single-fill cystometry in response to electrical stimulation of the sensory branch of the pudendal nerve in urethane-anesthetized female Wistar rats. Increases in bladder capacity were dependent on both stimulation amplitude and rate. Stimulation that produced increases in bladder capacity also led to reductions in voiding efficiency. Also, there was a stimulation carryover effect, and increases in bladder capacity persisted during several nonstimulated trials following stimulated trials. Intravesically administered PGE 2 reduced bladder capacity, producing a model of overactive bladder (OAB), and sensory pudendal nerve stimulation again increased bladder capacity but also reduced voiding efficiency. This study serves as a basis for future studies that seek to maximize the therapeutic efficacy of sensory pudendal nerve stimulation for the symptoms of OAB.

  8. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs : Relation to neuronal status

    NARCIS (Netherlands)

    Ramekers, Dyan; Versnel, Huib; Strahl, Stefan B.; Klis, Sjaak F L; Grolman, Wilko

    2015-01-01

    Successful cochlear implant performance requires adequate responsiveness of the auditory nerve to prolonged pulsatile electrical stimulation. Degeneration of the auditory nerve as a result of severe hair cell loss could considerably compromise this ability. The main objective of this study was to

  9. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha

    DEFF Research Database (Denmark)

    Brock, C; Brock, B; Aziz, Q

    2017-01-01

    The vagus nerve is a central component of cholinergic anti-inflammatory pathways. We sought to evaluate the effect of bilateral transcutaneous cervical vagal nerve stimulation (t-VNS) on validated parameters of autonomic tone and cytokines in 20 healthy subjects. 24 hours after t...

  10. The Underlying Mechanism of Preventing Facial Nerve Stimulation by Triphasic Pulse Stimulation in Cochlear Implant Users Assessed With Objective Measure.

    Science.gov (United States)

    Bahmer, Andreas; Baumann, Uwe

    2016-10-01

    Triphasic pulse stimulation prevents from facial nerve stimulation (FNS) because of a different electromyographic input-output function compared with biphasic pulse stimulation. FNS is sometimes observed in cochlear implant users as an unwanted side effect of electrical stimulation of the auditory nerve. The common stimulation applied in current cochlear implant consists of biphasic pulse patterns. Two common clinical remedies to prevent unpleasant FNS caused by activation of certain electrodes are to expand their pulse phase duration or simply deactivate them. Unfortunately, in some patients these methods do not provide sufficient FNS prevention. In these patients triphasic pulse can prevent from FNS. The underlying mechanism is yet unclear. Electromyographic (EMG) recordings of muscles innervated by the facial nerve (musculi orbicularis ori and oculi) were applied to quantitatively assess the effects on FNS. Triphasic and biphasic fitting maps were compared in four subjects with severe FNS. Based on the recordings, a model is presented which intends to explain the beneficial effects of triphasic pulse application. Triphasic stimulation provided by fitting of an OPUS 2 speech processor device. For three patients, EMG was successfully recorded depending on stimulation level up to uncomfortable and intolerable FNS stimulation as upper boarder. The obtained EMG recordings demonstrated high individual variability. However, a difference between the input-output function for biphasic and triphasic pulse stimulation was visually observable. Compared with standard biphasic stimulation, triphasic pulses require higher stimulation levels to elicit an equal amount of FNS, as reflected by EMG amplitudes. In addition, we assume a steeper slope of the input-output function for biphasic pulse stimulation compared with triphasic pulse stimulation. Triphasic pulse stimulation prevents from FNS because of a smaller gradient of EMG input-output function compared with biphasic pulse

  11. Improving patient knowledge about sacral nerve stimulation using a patient based educational video.

    Science.gov (United States)

    Jeppson, Peter Clegg; Clark, Melissa A; Hampton, Brittany Star; Raker, Christina A; Sung, Vivian W

    2013-10-01

    We developed a patient based educational video to address the information needs of women considering sacral nerve stimulation for overactive bladder. Five semistructured focus groups were used to identify patient knowledge gaps, information needs, patient acceptable terminology and video content preferences for a patient based sacral nerve stimulation educational video. Each session was transcribed, independently coded by 2 coders and examined using an iterative method. A 16-minute educational video was created to address previously identified knowledge gaps and information needs using patient footage, 3-dimensional animation and peer reviewed literature. We developed a questionnaire to evaluate participant sacral nerve stimulation knowledge and therapy attitudes. We then performed a randomized trial to assess the effect of the educational video vs the manufacturer video on patient knowledge and attitudes using our questionnaire. We identified 10 patient important domains, including 1) anatomy, 2) expectations, 3) sacral nerve stimulation device efficacy, 4) surgical procedure, 5) surgical/device complications, 6) post-procedure recovery, 7) sacral nerve stimulation side effects, 8) postoperative restrictions, 9) device maintenance and 10) general sacral nerve stimulation information. A total of 40 women with overactive bladder were randomized to watch the educational (20) or manufacturer (20) video. Knowledge scores improved in each group but the educational video group had a greater score improvement (76.6 vs 24.2 points, p <0.0001). Women who watched the educational video reported more favorable attitudes and expectations about sacral nerve stimulation therapy. Women with overactive bladder considering sacral nerve stimulation therapy have specific information needs. The video that we developed to address these needs was associated with improved short-term patient knowledge. Copyright © 2013 American Urological Association Education and Research, Inc

  12. Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression

    OpenAIRE

    Fang, Jiliang; Egorova, Natalia; Rong, Peijing; Liu, Jun; Hong, Yang; Fan, Yangyang; Wang, Xiaoling; Wang, Honghong; Yu, Yutian; Ma, Yunyao; Xu, Chunhua; Li, Shaoyuan; Zhao, Jingjun; Luo, Man; Zhu, Bing

    2016-01-01

    Transcutaneous vagus nerve stimulation (tVNS), a non-invasive method of brain stimulation through the auricular branch of the vagus nerve, has shown promising results in treating major depressive disorder (MDD) in several pilot studies. However, the neural mechanism by which the effect on depression might be achieved has not been fully investigated, with only a few neuroimaging studies demonstrating tVNS-induced changes in the brains of healthy volunteers. Identifying specific neural pathways...

  13. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves

    DEFF Research Database (Denmark)

    Rossini, P M; Burke, D; Chen, R

    2015-01-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some...... theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments....

  14. Medical devices; neurological devices; classification of the transcutaneous electrical nerve stimulator to treat headache. Final order.

    Science.gov (United States)

    2014-07-03

    The Food and Drug Administration (FDA) is classifying the transcutaneous electrical nerve stimulator to treat headache into class II (special controls). The special controls that will apply to the device are identified in this order, and will be part of the codified language for the transcutaneous electrical nerve stimulator to treat headache classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  15. [Study of the facial nerve motor pathway with the transcranial cerebral magnetic stimulation technique].

    Science.gov (United States)

    Barona, R; Escudero, J; López-Trigo, J; Escudero, M; Armengot, M

    1992-01-01

    Transcranial magnetic stimulation method permits the study of the facial nerve in all its aspects (motor cortex-alpha moto-neurone-facial muscle) in an non invasive and painless way. We studied 12 patients using two levels of stimuli, the first was at an occipital level and the second at the primary motor cortex in the frontal lobe. We compared the results of this technique with those obtained by electric stimulation of the nerve.

  16. Vagal nerve stimulation for medically refractory epilepsy in Angelman syndrome: a series of three cases.

    Science.gov (United States)

    Tomei, Krystal L; Mau, Christine Y; Ghali, Michael; Pak, Jayoung; Goldstein, Ira M

    2018-03-01

    We describe three children with Angelman syndrome and medically refractory epilepsy. Case series of three pediatric patients with Angelman syndrome and medically refractory epilepsy. All three patients failed medical treatment and were recommended for vagal nerve stimulator (VNS) implantation. Following VNS implantation, all three patients experienced reduction in seizure frequency greater than that afforded by medication alone. We present vagal nerve stimulator implantation as a viable treatment option for medically refractory epilepsy associated with Angelman syndrome.

  17. Effectiveness of percutaneous tibial nerve stimulation in managing refractory constipation.

    Science.gov (United States)

    Kumar, L; Liwanag, J; Athanasakos, E; Raeburn, A; Zarate-Lopez, N; Emmanuel, A V

    2017-01-01

    Chronic constipation can be aetiopathogenically classified into slow transit constipation (STC), rectal evacuation difficulty (RED) or a combination (BOTH). Although the efficacy of percutaneous tibial nerve stimulation (PTNS) in faecal incontinence has been well proved, a current literature search identifies only one study which assessed its effect on constipation. We aimed to evaluate the effectiveness of PTNS in patients with different causes of constipation. Thirty-four patients [30 women, median age 50 (20-79) years] with constipation who had previously failed maximal laxative and biofeedback therapy participated in the study. All patients underwent a baseline radio-opaque marker transit study and anorectal physiology examination. All had 12 sessions of PTNS of 30 min per session. A fall in the Wexner constipation score to ≤15 or by ≥5 points was taken as the primary outcome. Secondary outcomes included the results of pre- and post- PTNS transit and anorectal physiology studies. Eleven patients had STC, 14 had RED and nine had BOTH. A response was seen in four patients (1/11 STC, 2/14 RED and 1/9 BOTH). Comparing pre- and post- PTNS, there was no significant change in the mean Wexner score (P = 0.10). There was no change in colonic transit time among the whole population (P = 0.56) or among those with STC (P = 0.47). There was no improvement in balloon expulsion in the whole group (P = 0.73) or in patients with RED (P = 0.69). PTNS is of no benefit to patients with constipation, whatever aetiopathogenic mechanism is responsible for the symptoms. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.

  18. Vestibulodynia: synergy between palmitoylethanolamide + transpolydatin and transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Murina, Filippo; Graziottin, Alessandra; Felice, Raffaele; Radici, Gianluigi; Tognocchi, Cinzia

    2013-04-01

    The study aimed to assess the effect of palmitoylethanolamide + transpolydatin combination in patients with vestibulodynia undergoing transcutaneous electrical nerve stimulation (TENS) therapy and to confirm the effectiveness of TENS also in a domiciliary protocol. The study is based on the premise that palmitoylethanolamide + transpolydatin combination may contribute to a down-regulation of mast cell hyperactivity, which is believed to be responsible for the proliferation and sprouting of vestibular pain fibers and the associated hyperalgesia and allodynia. Twenty women with vestibulodynia were randomly assigned to receive oral palmitoylethanolamide (PEA) 400 mg and transpolydatin 40 mg or placebo, twice daily for 60 days. All patients underwent TENS therapy in a self-administered home protocol. Visual analogue scale (VAS), Marinoff score for dyspareunia, and current perception threshold obtained from the vulvar vestibule were assessed at baseline and at the end of treatment. The patients received a mean of 26.7 TENS sessions. All scores in the 2 groups improved significantly, although the level of improvement was similar between the groups (VAS, p < .57; dyspareunia, p < .38). Nevertheless, the analysis of regression of symptoms related to the duration of disease revealed the therapy to be more effective when PEA + transpolydatin is included in cases with more recent disease onset, as compared with the placebo group (PEA: VAS, p < .01; dyspareunia, p < .01) (placebo: VAS, p = nonsignificant; dyspareunia, p = nonsignificant). This study confirms that TENS is of significant benefit in the management of vestibulodynia, also in a home environment. PEA + transpolydatin can be a value-added treatment adjunct when the onset of vestibulodynia is more recent or when the disease relapses.

  19. Auricular vagal nerve stimulation in peripheral arterial disease patients.

    Science.gov (United States)

    Hackl, Gerald; Prenner, Andreas; Jud, Philipp; Hafner, Franz; Rief, Peter; Seinost, Gerald; Pilger, Ernst; Brodmann, Marianne

    2017-10-01

    Auricular nerve stimulation has been proven effective in different diseases. We investigated if a conservative therapeutic alternative for claudication in peripheral arterial occlusive disease (PAD) via electroacupuncture of the outer ear can be established. In this prospective, double-blinded trial an ear acupuncture using an electroacupuncture device was carried out in 40 PAD patients in Fontaine stage IIb. Twenty patients were randomized to the verum group using a fully functional electroacupuncture device, the other 20 patients received a sham device (control group). Per patient, eight cycles (1 cycle = 1 week) of electroacupuncture were performed. The primary endpoint was defined as a significantly more frequent doubling of the absolute walking distance after eight cycles in the verum group compared to controls in a standardized treadmill testing. Secondary endpoints were a significant improvement of the total score of the Walking Impairment Questionnaire (WIQ) as well as improvements in health related quality of life using the Short Form 36 Health Survey (SF-36). There were no differences in baseline characteristics between the two groups. The initial walking distance significantly increased in both groups (verum group [means]: 182 [95 % CI 128-236] meters to 345 [95 % CI 227-463] meters [+ 90 %], p < 0.01; control group [means]: 159 [95 % CI 109-210] meters to 268 [95 % CI 182-366] meters [+ 69 %], p = 0.01). Twelve patients (60 %) in the verum group and five patients (25 %) in controls reached the primary endpoint of doubling walking distance (p = 0.05). The total score of WIQ significantly improved in the verum group (+ 22 %, p = 0.01) but not in controls (+ 8 %, p = 0.56). SF-36 showed significantly improvements in six out of eight categories in the verum group and only in one of eight in controls. Electroacupuncture of the outer ear seems to be an easy-to-use therapeutic option in an age of increasingly invasive and mechanically complex treatments for

  20. Transcutaneous electrical nerve stimulation (TENS) for pain management in labour

    Science.gov (United States)

    Dowswell, Therese; Bedwell, Carol; Lavender, Tina; Neilson, James P

    2014-01-01

    Background Transcutaneous nerve stimulation (TENS) has been proposed as a means of reducing pain in labour. The TENS unit emits low-voltage electrical impulses which vary in frequency and intensity. During labour, TENS electrodes are generally placed on the lower back, although TENS may be used to stimulate acupuncture points or other parts of the body. The physiological mechanisms whereby TENS relieves pain are uncertain. TENS machines are frequently operated by women, which may increase a sense of control in labour. Objectives To assess the effects of TENS on pain in labour. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (30 April 2011) and reference lists of retrieved papers. Selection criteria Randomised controlled trials comparing women receiving TENS for pain management in labour versus routine care, alternative non-pharmacological methods of pain relief, or placebo devices. We included all types of TENS machines. Data collection and analysis Two review authors assessed for inclusion all trials identified by the search strategy, carried out data extraction and assessed risk of bias. We have recorded reasons for excluding studies. Main results Seventeen trials with 1466 women contribute data to the review. Thirteen examined TENS applied to the back, two to acupuncture points, and two to the cranium. Overall, there was little difference in pain ratings between TENS and control groups, although women receiving TENS to acupuncture points were less likely to report severe pain (average risk ratio 0.41, 95% confidence interval 0.31 to 0.54; measured in two studies). The majority of women using TENS said they would be willing to use it again in a future labour. Where TENS was used as an adjunct to epidural analgesia there was no evidence that it reduced pain. There was no consistent evidence that TENS had any impact on interventions and outcomes in labour. There was little information on outcomes for mothers and babies. No

  1. Transcutaneous electrical nerve stimulation (TENS) for fibromyalgia in adults.

    Science.gov (United States)

    Johnson, Mark I; Claydon, Leica S; Herbison, G Peter; Jones, Gareth; Paley, Carole A

    2017-10-09

    Fibromyalgia is characterised by persistent, widespread pain; sleep problems; and fatigue. Transcutaneous electrical nerve stimulation (TENS) is the delivery of pulsed electrical currents across the intact surface of the skin to stimulate peripheral nerves and is used extensively to manage painful conditions. TENS is inexpensive, safe, and can be self-administered. TENS reduces pain during movement in some people so it may be a useful adjunct to assist participation in exercise and activities of daily living. To date, there has been only one systematic review in 2012 which included TENS, amongst other treatments, for fibromyalgia, and the authors concluded that TENS was not effective. To assess the analgesic efficacy and adverse events of TENS alone or added to usual care (including exercise) compared with placebo (sham) TENS; no treatment; exercise alone; or other treatment including medication, electroacupuncture, warmth therapy, or hydrotherapy for fibromyalgia in adults. We searched the following electronic databases up to 18 January 2017: CENTRAL (CRSO); MEDLINE (Ovid); Embase (Ovid); CINAHL (EBSCO); PsycINFO (Ovid); LILACS; PEDRO; Web of Science (ISI); AMED (Ovid); and SPORTDiscus (EBSCO). We also searched three trial registries. There were no language restrictions. We included randomised controlled trials (RCTs) or quasi-randomised trials of TENS treatment for pain associated with fibromyalgia in adults. We included cross-over and parallel-group trial designs. We included studies that evaluated TENS administered using non-invasive techniques at intensities that produced perceptible TENS sensations during stimulation at either the site of pain or over nerve bundles proximal (or near) to the site of pain. We included TENS administered as a sole treatment or TENS in combination with other treatments, and TENS given as a single treatment or as a course of treatments. Two review authors independently determined study eligibility by assessing each record and

  2. Effect of transcutaneous electrical nerve stimulation induced parotid stimulation on salivary flow

    Directory of Open Access Journals (Sweden)

    Sreenivasulu Pattipati

    2013-01-01

    Full Text Available Aims and Objectives: The main objective of this study was to evaluate the duration of stimulation over the parotid salivary flow following the use of transcutaneous electric nerve stimulation (TENS in different age groups. Materials and Methods: The study was carried out in three different age groups. Under group A individuals from 21 to 35 years of age, group B 36-50 years and group C above 51 years were considered. In each group 30 subjects were taken of whom 15 were males and 15 were females. The placement of pads was approximated bilaterally over the parotid glands. The working parameters of TENS unit were fixed at 50 Hz and the unit was in normal mode. Results: Subjects belonging to group B were showing statistically significant increases in the duration of stimulated parotid salivary flow following the use of TENS. Conclusion: TENS can be considered as a non-pharmacological alternative to improve salivation for longer period in xerostomia patients.

  3. A conduction block in sciatic nerves can be detected by magnetic motor root stimulation.

    Science.gov (United States)

    Matsumoto, Hideyuki; Konoma, Yuko; Fujii, Kengo; Hanajima, Ritsuko; Terao, Yasuo; Ugawa, Yoshikazu

    2013-08-15

    Useful diagnostic techniques for the acute phase of sciatic nerve palsy, an entrapment neuropathy, are not well established. The aim of this paper is to demonstrate the diagnostic utility of magnetic sacral motor root stimulation for sciatic nerve palsy. We analyzed the peripheral nerves innervating the abductor hallucis muscle using both electrical stimulations at the ankle and knee and magnetic stimulations at the neuro-foramina and conus medullaris levels in a patient with sciatic nerve palsy at the level of the piriformis muscle due to gluteal compression related to alcohol consumption. On the fourth day after onset, magnetic sacral motor root stimulation using a MATS coil (the MATS coil stimulation method) clearly revealed a conduction block between the knee and the sacral neuro-foramina. Two weeks after onset, needle electromyography supported the existence of the focal lesion. The MATS coil stimulation method clearly revealed a conduction block in the sciatic nerve and is therefore a useful diagnostic tool for the abnormal neurophysiological findings associated with sciatic nerve palsy even at the acute phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Peripheral Nerve Stimulation of Brachial Plexus Nerve Roots and Supra-Scapular Nerve for Chronic Refractory Neuropathic Pain of the Upper Limb.

    Science.gov (United States)

    Bouche, Bénédicte; Manfiotto, Marie; Rigoard, Philippe; Lemarie, Jean; Dix-Neuf, Véronique; Lanteri-Minet, Michel; Fontaine, Denys

    2017-10-01

    We report the outcome of a consecutive series of 26 patients suffering from chronic medically-refractory neuropathic pain of the upper limb (including 16 patients with complex regional pain syndrome), topographically limited, treated by brachial plexus (BP) nerve roots or supra-scapular nerve (SSN) peripheral nerve stimulation (PNS). The technique consisted in ultrasound-guided percutaneous implantation of a cylindrical lead (Pisces-Quad, Medtronic) close to the SSN or the cervical nerve roots within the BP, depending on the pain topography. All the patients underwent a positive trial stimulation before lead connection to a subcutaneous stimulator. Chronic bipolar stimulation mean parameters were: frequency 55.5 Hertz, voltage 1.17 Volts. The voltage was set below the threshold inducing muscle contractions or paresthesias. Two patients were lost immediately after surgery. At last follow-up (mean 27.5 months), the 20 patients still using the stimulation experienced a mean pain relief of 67.1%. Seventeen patients were improved ≥50%, including 12 improved ≥70%. In 11 patients with a follow-up >2 years, the mean pain relief was 68%. At last follow-up, respectively, six out of the nine (67%) patients treated by SSN stimulation and 10 out of 17 patients (59%) treated by BP stimulation were improved ≥50%. At last follow-up, 12 out of 20 patients still using the stimulation were very satisfied, six were satisfied, and two were poorly satisfied. Complications were: stimulation intolerance due to shock-like sensations (three cases), superficial infection (1), lead fractures (2), and migration (1). In this pilot study, SSN or BP roots PNS provided a relatively safe, durable and effective option to control upper limb neuropathic pain. © 2017 International Neuromodulation Society.

  5. Brief electrical stimulation and synkinesis after facial nerve crush injury: a randomized prospective animal study.

    Science.gov (United States)

    Mendez, Adrian; Hopkins, Alex; Biron, Vincent L; Seikaly, Hadi; Zhu, Lin Fu; Côté, David W J

    2018-03-07

    Recent studies have examined the effects of brief electrical stimulation (BES) on nerve regeneration, with some suggesting that BES accelerates facial nerve recovery. However, the facial nerve outcome measurement in these studies has not been precise or accurate. Furthermore, no previous studies have been able to demonstrate the effect of BES on synkinesis. The objective of this study is to examine the effect of brief electrical stimulation (BES) on facial nerve function and synkinesis in a rat model. Four groups of six rats underwent a facial nerve injury procedure. Group 1 and 2 underwent a crush injury at the main trunk of the nerve, with group 2 additionally receiving BES for 1 h. Group 3 and 4 underwent a transection injury at the main trunk, with group 4 additionally receiving BES for 1 h. A laser curtain model was used to measure amplitude of whisking at 2, 4, and 6 weeks. Fluorogold and fluororuby neurotracers were additionally injected into each facial nerve to measure synkinesis. Buccal and marginal mandibular branches of the facial nerve were each injected with different neurotracers at 3 months following injury. Based on facial nucleus motoneuron labelling of untreated rats, comparison was made to post-treatment animals to deduce whether synkinesis had taken place. All animals underwent trans-cardiac perfusion with subsequent neural tissue sectioning. At week two, the amplitude observed for group 1 and 2 was 14.4 and 24.0 degrees, respectively (p = 0.0004). Group 4 also demonstrated improved whisking compared to group 3. Fluorescent neuroimaging labelling appear to confirm improved pathway specific regeneration with BES following facial nerve injury. This is the first study to use an implantable stimulator for serial BES following a crush injury in a validated animal model. Results suggest performing BES after facial nerve injury is associated with accelerated facial nerve function and improved facial nerve specific pathway regeneration in a rat

  6. Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects

    OpenAIRE

    De Couck, Marijke; Cserjesi, Renata; Caers, Ralf; Zijlstra, W.-P.; Widjaja, Devy; Wolf, Nicole; Luminet, Olivier; Ellrich, Jens; Gidron, Yori

    2017-01-01

    The vagus nerve is strategically located in the body, and has multiple homeostatic and health-promoting effects. Low vagal activity predicts onset and progression of diseases. These are the reasons to activate this nerve. This study examined the effects of transcutaneous vagus nerve stimulation (t-VNS) on a main index of vagal activity, namely heart rate variability (HRV). In Study 1, we compared short (10 min) left versus right ear t-VNS versus sham (no stimulation) in a within-subjects expe...

  7. Model study of combined electrical and near-infrared neural stimulation on the bullfrog sciatic nerve.

    Science.gov (United States)

    You, Mengxian; Mou, Zongxia

    2017-07-01

    This paper implemented a model study of combined electrical and near-infrared (808 nm) neural stimulation (NINS) on the bullfrog sciatic nerve. The model includes a COMSOL model to calculate the electric-field distribution of the surrounding area of the nerve, a Monte Carlo model to simulate light transport and absorption in the bullfrog sciatic nerve during NINS, and a NEURON model to simulate the neural electrophysiology changes under electrical stimulus and laser irradiation. The optical thermal effect is considered the main mechanism during NINS. Therefore, thermal change during laser irradiation was calculated by the Monte Carlo method, and the temperature distribution was then transferred to the NEURON model to stimulate the sciatic nerve. The effects on thermal response by adjusting the laser spot size, energy of the beam, and the absorption coefficient of the nerve are analyzed. The effect of the ambient temperature on the electrical stimulation or laser stimulation and the interaction between laser irradiation and electrical stimulation are also studied. The results indicate that the needed stimulus threshold for neural activation or inhibition is reduced by laser irradiation. Additionally, the needed laser energy for blocking the action potential is reduced by electrical stimulus. Both electrical and laser stimulation are affected by the ambient temperature. These results provide references for subsequent animal experiments and could be of great help to future basic and applied studies of infrared neural stimulation (INS).

  8. Release of relaxin-like gonad-stimulating substance from starfish radial nerves by lonomycin.

    Science.gov (United States)

    Mita, Masatoshi

    2013-07-01

    In starfish, the peptide hormone gonad-stimulating substance (GSS) secreted from nervous tissue stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) production by ovarian follicle cells. Recently, GSS was purified from radial nerves of the starfish Asterina pectinifera and identified as a relaxin-like peptide. This study examines the mechanism of GSS secretion from radial nerves. When radial nerves isolated from A. pectinifera were incubated in artificial seawater containing ionomycin as a calcium ionophore, GSS release increased in a dose-dependent manner; 50% activity of GSS release was obtained with approximately 10 µM ionomycin. Another calcium ionophore, A23187, also stimulated GSS release from radial nerves. In contrast, membrane permeable cyclic AMP and cyclic GMP analogs failed to induce GSS release. These results suggest that GSS secretion is induced by intracellular Ca(2+) as a second messenger.

  9. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode.

    Science.gov (United States)

    MacEwan, Matthew R; Zellmer, Erik R; Wheeler, Jesse J; Burton, Harold; Moran, Daniel W

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm 2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation.

  10. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells.

    Science.gov (United States)

    Costantini, Todd W; Bansal, Vishal; Krzyzaniak, Michael; Putnam, James G; Peterson, Carrie Y; Loomis, William H; Wolf, Paul; Baird, Andrew; Eliceiri, Brian P; Coimbra, Raul

    2010-12-01

    The enteric nervous system may have an important role in modulating gastrointestinal barrier response to disease through activation of enteric glia cells. In vitro studies have shown that enteric glia activation improves intestinal epithelial barrier function by altering the expression of tight junction proteins. We hypothesized that severe injury would increase expression of glial fibrillary acidic protein (GFAP), a marker of enteric glial activation. We also sought to define the effects of vagal nerve stimulation on enteric glia activation and intestinal barrier function using a model of systemic injury and local gut mucosal involvement. Mice with 30% total body surface area steam burn were used as model of severe injury. Vagal nerve stimulation was performed to assess the role of parasympathetic signaling on enteric glia activation. In vivo intestinal permeability was measured to assess barrier function. Intestine was collected to investigate changes in histology; GFAP expression was assessed by quantitative PCR, by confocal microscopy, and in GFAP-luciferase transgenic mice. Stimulation of the vagus nerve prevented injury-induced intestinal barrier injury. Intestinal GFAP expression increased at early time points following burn and returned to baseline by 24 h after injury. Vagal nerve stimulation prior to injury increased GFAP expression to a greater degree than burn alone. Gastrointestinal bioluminescence was imaged in GFAP-luciferase transgenic animals following either severe burn or vagal stimulation and confirmed the increased expression of intestinal GFAP. Injection of S-nitrosoglutathione, a signaling molecule released by activated enteric glia cells, following burn exerts protective effects similar to vagal nerve stimulation. Intestinal expression of GFAP increases following severe burn injury. Stimulation of the vagus nerve increases enteric glia activation, which is associated with improved intestinal barrier function. The vagus nerve may mediate the

  11. Corpus callosotomy for childhood-onset drug-resistant epilepsy unresponsive to vagus nerve stimulation.

    Science.gov (United States)

    Arya, Ravindra; Greiner, Hansel M; Horn, Paul S; Turner, Michele; Holland, Katherine D; Mangano, Francesco T

    2014-12-01

    Corpus callosotomy and vagus nerve stimulation are common palliative options for people with drug-resistant epilepsy when resective epilepsy surgery is not feasible. Because most of the published corpus callosotomy experience comes from a period before vagus nerve stimulation was approved and widely used, there is a paucity of data about efficacy of corpus callosotomy in patients with inadequate response to vagus nerve stimulation. We report seven patients who had complete corpus callosotomy after an inadequate response to vagus nerve stimulation. At the time of surgery, these patients had failed a median of six antiseizure medications, three patients also had failed a trial of ketogenic diet, and all the patients had a vagus nerve stimulation implanted for a mean duration of 2.5 years with maximal tolerated settings. There was a decrease in total daily seizure frequency of 34.7% (± 94.7; median, 71.4%; interquartile range, 55.3) after corpus callosotomy at a mean follow-up of 2.6 years (± 1.4). One patient achieved complete seizure freedom and five patients had ≥ 50% reduction in seizure frequency. Six patients continued to have partial-onset seizures though the frequency was decreased. Drop attacks and tonic seizures stopped in all the patients. Seizure outcomes after corpus callosotomy in our series are most likely a result of complex dynamic interaction between the natural history of epilepsy, the effect of the surgery, ongoing vagus nerve stimulation modulation, and modification in antiseizure drugs. Our study supports the clinical decision to try corpus callosotomy in patients having nonlateralizing drug-resistant epilepsy with inadequate response to vagus nerve stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Health Care Utilization Following Vagus Nerve Stimulation Therapy in Pediatric Epilepsy Patients From a Pediatric Accountable Care Organization.

    Science.gov (United States)

    Patel, Anup; Wang, Ling; Gedela, Satyanarayana

    2018-02-01

    Vagus nerve stimulation has been a therapy for epilepsy approved by the US Food and Drug Administration (FDA) for patients 4 and older and shown efficacy and safety in younger pediatric patients. The authors performed a retrospective analysis utilizing Medicaid claims from an accountable care organization to measure the intervention of vagus nerve stimulation therapy in regard to unplanned health care utilization. Thirteen unique patients were included who had vagus nerve stimulation therapy who had at least 6 months of continuous enrollment in a managed Medicaid health plan. Comparison with 12 months of data before and after vagus nerve stimulation implantation was performed. Patients had statistically significant fewer unplanned inpatient visits per patient per enrollment month after vagus nerve stimulation implantation. Utilizing claims data, vagus nerve stimulation implantation demonstrates a reduction in unplanned hospitalizations.

  13. Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers

    OpenAIRE

    Struijk, J.J.; Struijk, Johannes J.; Holsheimer, J.; van Veen, B.K.; van Veen, Benno K.; Boom, H.B.K.

    1991-01-01

    The effect of electrical stimulation with several electrode combinations on nerve fibers with different orientations in the spinal cord was investigated by computing the steady-state field potentials and activating functions. An infinite homogeneous model was used, and the spinal cord and its surrounding tissues where then modeled as an inhomogeneous anisotropic volume conductor. The effect of mediodorsal epidural stimulation was calculated. It was concluded that the cathodal stimulation, med...

  14. The effect of intra-operative transcutaneous electrical nerve stimulation on posterior neck pain following thyroidectomy.

    Science.gov (United States)

    Park, C; Choi, J B; Lee, Y-S; Chang, H-S; Shin, C S; Kim, S; Han, D W

    2015-04-01

    Posterior neck pain following thyroidectomy is common because full neck extension is required during the procedure. We evaluated the effect of intra-operative transcutaneous electrical nerve stimulation on postoperative neck pain in patients undergoing total thyroidectomy under general anaesthesia. One hundred patients were randomly assigned to one of two groups; 50 patients received transcutaneous electrical nerve stimulation applied to the trapezius muscle and 50 patients acted as controls. Postoperative posterior neck pain and anterior wound pain were evaluated using an 11-point numerical rating scale at 30 min, 6 h, 24 h and 48 h following surgery. The numerical rating scale for posterior neck pain was significantly lower in the transcutaneous electrical nerve stimulation group compared with the control group at all time points (p < 0.05). There were no significant differences in the numerical rating scale for anterior wound pain at any time point. No adverse effects related to transcutaneous electrical nerve stimulation were observed. We conclude that intra-operative transcutaneous electrical nerve stimulation applied to the trapezius muscle reduced posterior neck pain following thyroidectomy. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  15. Transcutaneous electric nerve stimulation (TENS) for cancer pain in adults.

    Science.gov (United States)

    Hurlow, Adam; Bennett, Michael I; Robb, Karen A; Johnson, Mark I; Simpson, Karen H; Oxberry, Stephen G

    2012-03-14

    Cancer-related pain is complex and multi-dimensional but the mainstay of cancer pain management has predominantly used a biomedical approach. There is a need for non-pharmacological and innovative approaches. Transcutaneous Electric Nerve Stimulation (TENS) may have a role in pain management but the effectiveness of TENS is currently unknown. This is an update of the original review published in Issue 3, 2008. The aim of this systematic review was to determine the effectiveness of TENS for cancer-related pain in adults. The initial review searched The Cochrane Library, MEDLINE, EMBASE, CINAHL, PsychINFO, AMED and PEDRO databases in April 2008. We performed an updated search of CENTRAL, MEDLINE, EMBASE, CINAHL and PEDRO databases in November 2011. We included only randomised controlled trials (RCTS) investigating the use of TENS for the management of cancer-related pain in adults. The search strategy identified a further two studies for possible inclusion. One of the review authors screened each abstract using a study eligibility tool. Where eligibility could not be determined, a second author assessed the full paper. One author used a standardised data extraction sheet to collect information on the studies and independently assess the quality of the studies using the validated five-point Oxford Quality Scale. The small sample sizes and differences in patient study populations of the three included studies (two from the original review and a third included in this update) prevented meta-analysis. For the original review the search strategy identified 37 possible published studies; we divided these between two pairs of review authors who decided on study selection; all four review authors discussed and agreed final scores. Only one additional RCT met the eligibility criteria (24 participants) for this updated review. Although this was a feasibility study, not designed to investigate intervention effect, it suggested that TENS may improve bone pain on movement in a

  16. Sacral nerve stimulation for faecal incontinence in patients with sacral malformation.

    Science.gov (United States)

    Brunner, M; Cui, Z; Matzel, K E

    2017-06-01

    Sacral nerve stimulation (SNS) is a common and effective treatment for faecal incontinence (FI), but accessibility of the sacral nerves is mandatory. In some cases, electrode placement fails for unknown reasons. A frequent cause could be sacral malformations, which have a high incidence (up to 24.1%) and can be unsuspected. We report two patients with FI consequent to congenital anorectal malformation and associated sacral malformation. Despite partial sacral agenesis, SNS was feasible in both. They benefitted greatly from SNS, with an improved ability to postpone the urge up to at least 15 min, reduced incontinence episodes (at least 50%), and significantly better quality of life. SNS may be feasible in patients with FI, even in the presence of sacral malformation. However, clinicians should be aware of the attendant technical difficulties. Preoperative imaging, preferably with MRI of the sacrum, is advisable. If the sacral spinal nerves are inaccessible technically, pudendal nerve stimulation could be considered, if anatomy permits.

  17. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.

    Science.gov (United States)

    Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-03-25

    Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  18. Modulation of Brain Dead Induced Inflammation by Vagus Nerve Stimulation

    NARCIS (Netherlands)

    Hoeger, S.; Bergstraesser, C.; Selhorst, J.; Fontana, J.; Birck, R.; Waldherr, R.; Beck, G.; Sticht, C.; Seelen, M. A.; van Son, W. J.; Leuvenink, H.; Ploeg, R.; Schnuelle, P.; Yard, B. A.

    Because the vagus nerve is implicated in control of inflammation, we investigated if brain death (BD) causes impairment of the parasympathetic nervous system, thereby contributing to inflammation. BD was induced in rats. Anaesthetised ventilated rats (NBD) served as control. Heart rate variability

  19. In vitro electrophoresis and in vivo electrophysiology of peripheral nerve using DC field stimulation

    DEFF Research Database (Denmark)

    Madison, Roger D.; Robinson, Grant A.; Krarup, Christian

    2014-01-01

    BACKGROUND: Given the movement of molecules within tissue that occurs naturally by endogenous electric fields, we examined the possibility of using a low-voltage DC field to move charged substances in rodent peripheral nerve in vitro. NEW METHOD: Labeled sugar- and protein-based markers were...... applied to a rodent peroneal nerve and then a 5-10 V/cm field was used to move the molecules within the extra- and intraneural compartments. Physiological and anatomical nerve properties were also assessed using the same stimulation in vivo. RESULTS: We demonstrate in vitro that charged and labeled...... compounds are capable of moving in a DC field along a nerve, and that the same field applied in vivo changes the excitability of the nerve, but without damage. CONCLUSIONS: The results suggest that low-voltage electrophoresis could be used to move charged molecules, perhaps therapeutically, safely along...

  20. Non-invasive peripheral nerve stimulation via focused ultrasound in vivo

    Science.gov (United States)

    Downs, Matthew E.; Lee, Stephen A.; Yang, Georgiana; Kim, Seaok; Wang, Qi; Konofagou, Elisa E.

    2018-02-01

    Focused ultrasound (FUS) has been employed on a wide range of clinical applications to safely and non-invasively achieve desired effects that have previously required invasive and lengthy procedures with conventional methods. Conventional electrical neuromodulation therapies that are applied to the peripheral nervous system (PNS) are invasive and/or non-specific. Recently, focused ultrasound has demonstrated the ability to modulate the central nervous system and ex vivo peripheral neurons. Here, for the first time, noninvasive stimulation of the sciatic nerve eliciting a physiological response in vivo is demonstrated with FUS. FUS was applied on the sciatic nerve in mice with simultaneous electromyography (EMG) on the tibialis anterior muscle. EMG signals were detected during or directly after ultrasound stimulation along with observable muscle contraction of the hind limb. Transecting the sciatic nerve downstream of FUS stimulation eliminated EMG activity during FUS stimulation. Peak-to-peak EMG response amplitudes and latency were found to be comparable to conventional electrical stimulation methods. Histology along with behavioral and thermal testing did not indicate damage to the nerve or surrounding regions. The findings presented herein demonstrate that FUS can serve as a targeted, safe and non-invasive alternative to conventional peripheral nervous system stimulation to treat peripheral neuropathic diseases in the clinic.

  1. Influence of Different Geometric Representations of the Volume Conductor on Nerve Activation during Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    José Gómez-Tames

    2014-01-01

    Full Text Available Volume conductor models with different geometric representations, such as the parallel layer model (PM, the cylindrical layer model (CM, or the anatomically based model (AM, have been employed during the implementation of bioelectrical models for electrical stimulation (FES. Evaluating their strengths and limitations to predict nerve activation is fundamental to achieve a good trade-off between accuracy and computation time. However, there are no studies aimed at clarifying the following questions. (1 Does the nerve activation differ between CM and PM? (2 How well do CM and PM approximate an AM? (3 What is the effect of the presence of blood vessels and nerve trunk on nerve activation prediction? Therefore, in this study, we addressed these questions by comparing nerve activation between CM, PM, and AM models by FES. The activation threshold was used to evaluate the models under different configurations of superficial electrodes (size and distance, nerve depths, and stimulation sites. Additionally, the influences of the sciatic nerve, femoral artery, and femoral vein were inspected for a human thigh. The results showed that the CM and PM had a high error rate, but the variation of the activation threshold followed the same tendency for electrode size and interelectrode distance variation as AM.

  2. Peripheral nerve field stimulation for pruritus relief in a patient with notalgia paraesthetica.

    LENUS (Irish Health Repository)

    Ricciardo, Bernadette

    2012-02-01

    This case study is presented to exemplify the application of peripheral nerve field stimulation in the treatment of recalcitrant notalgia paraesthetica. The patient was a 60-year-old woman with severe and disabling notalgia paraesthetica. The itch persisted despite the use of several medications - topical and oral. Following a successful trial of peripheral nerve field stimulation with a temporary electrode, two subcutaneous electrodes were inserted into the affected area with a battery implanted subcutaneously in her right buttock. The patient was reviewed at 5 months post implantation. She reported a greater than 85% improvement in her itch. She also reported a major improvement in her quality of life, with particular improvement in her ability to sleep through the night. This case illustrates the possible utilization of peripheral nerve field stimulation in the treatment of notalgia paraesthetica, which is a common yet poorly understood and treated condition. Replication and controlled studies are required to determine the general applicability of this approach.

  3. Management of overactive bladder review: the role of percutaneous tibial nerve stimulation

    Directory of Open Access Journals (Sweden)

    Elita Wibisono

    2017-01-01

    Full Text Available Overactive bladder (OAB is a common condition that is experienced by around 455 million people (11% of the world population and associated with significant impact in patients’ quality of life. The first line treatments of OAB are conservative treatment and anti-muscarinic medication. For the refractory OAB patients, the treatment options available are surgical therapy, electrical stimulation, and botulinum toxin injection. Among them, percutaneous tibial nerve stimulation (PTNS is a minimally invasive option that aims to stimulate sacral nerve plexus, a group of nerve that is responsible for regulation of bladder function. After its approval by food and drug administration (FDA in 2007, PTNS revealed considerable promise in OAB management. In this review, several non-comparative and comparative studies comparing PTNS with sham procedure, anti-muscarinic therapy, and multimodal therapy combining PTNS and anti-muscarinic had supportive data to this consideration.

  4. Molybdenum coated SU-8 microneedle electrodes for transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Soltanzadeh, Ramin; Afsharipour, Elnaz; Shafai, Cyrus; Anssari, Neda; Mansouri, Behzad; Moussavi, Zahra

    2017-11-21

    Electrophysiological devices are connected to the body through electrodes. In some applications, such as nerve stimulation, it is needed to minimally pierce the skin and reach the underneath layers to bypass the impedance of the first layer called stratum corneum. In this study, we have designed and fabricated surface microneedle electrodes for applications such as electrical peripheral nerve stimulation. We used molybdenum for microneedle fabrication, which is a biocompatible metal; it was used for the conductive layer of the needle array. To evaluate the performance of the fabricated electrodes, they were compared with the conventional surface electrodes in nerve conduction velocity experiment. The recorded signals showed a much lower contact resistance and higher bandwidth in low frequencies for the fabricated microneedle electrodes compared to those of the conventional electrodes. These results indicate the electrode-tissue interface capacitance and charge transfer resistance have been increased in our designed electrodes, while the contact resistance decreased. These changes will lead to less harmful Faradaic current passing through the tissue during stimulation in different frequencies. We also compared the designed microneedle electrodes with conventional ones by a 3-dimensional finite element simulation. The results demonstrated that the current density in the deep layers of the skin and the directivity toward a target nerve for microneedle electrodes were much more than those for the conventional ones. Therefore, the designed electrodes are much more efficient than the conventional electrodes for superficial transcutaneous nerve stimulation purposes.

  5. Cortical potentials after electrical intraneural stimulation of the optic nerve during orbital enucleation.

    Science.gov (United States)

    Benedičič, Mitja; Beltram, Matej; Olup, Brigita Drnovšek; Bošnjak, Roman

    2012-12-01

    The aim of this study was to present cortical potentials after electrical intraneural stimulation of the optic nerve during orbital enucleation due to malignant melanoma of the choroid or the ciliary body. These cortical potentials were related to cortical potentials after electrical epidural stimulation of the optic nerve, recorded during non-manipulative phases of neurosurgery for central skull base tumors. Cortical potentials were recorded with surface occipital electrode (Oz) in six patients undergoing orbital enucleation under total intravenous anesthesia. Two thin needle stimulating electrodes were inserted inside the intraorbital part of the optic nerve. The electrical stimulus consisted of a rectangular current pulse of varying intensity (0.2-10.0 mA) and duration (0.1-0.3 ms); the stimulation rate was 2 Hz; the bandpass filter was 1-1,000 Hz; the analysis time was 50-300 ms. Cortical potentials could not be obtained or were inconsistently elicitable in three patients with longstanding history (>3 months) of severe visual deterioration, while they consisted of several positive and negative deflections in a patient with a short history of mild visual impairment. In two other patients, cortical potentials consisted of N20, P30 and N40 waves. Cortical potentials after electrical intraneural stimulation of the optic nerve could be recorded in patients with a short history of visual deterioration and without optic nerve atrophy and appear more heterogeneous than cortical potentials after electrical epidural stimulation of the optic nerve, recorded during non-manipulative phases of neurosurgery for central skull base tumors.

  6. Imaging sensory effects of occipital nerve stimulation: a new computer-based method in neuromodulation.

    Science.gov (United States)

    Göbel, Anna; Göbel, Carl H; Heinze, Axel; Heinze-Kuhn, Katja; Petersen, Inga; Meinecke, Christoph; Clasen, Svenja; Niederberger, Uwe; Rasche, Dirk; Mehdorn, Hubertus M; Göbel, Hartmut

    2015-01-01

    Within the last years, occipital nerve stimulation (ONS) has proven to be an important method in the treatment of severe therapy-resistant neurological pain disorders. The correspondence between lead placement as well as possible stimulation parameters and the resulting stimulation effects remains unclear. The method aims to directly relate the neuromodulatory mechanisms with the clinical treatment results, to achieve insight in the mode of action of neuromodulation, to identify the most effective stimulation sets and to optimize individual treatment effects. We describe a new computer-based imaging method for mapping the spatial, cognitive and affective sensory effects of ONS. The procedure allows a quantitative and qualitative analysis of the relationship between lead positioning, the stimulation settings as well as the sensory and clinical stimulation effects. A regular mapping of stimulation and sensory parameters allows a coordinated monitoring. The stimulation results can be reviewed and compared with regards to clinical effectiveness. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Vagus nerve stimulation magnet activation for seizures: a critical review.

    Science.gov (United States)

    Fisher, R S; Eggleston, K S; Wright, C W

    2015-01-01

    Some patients receiving VNS Therapy report benefit from manually activating the generator with a handheld magnet at the time of a seizure. A review of 20 studies comprising 859 subjects identified patients who reported on-demand magnet mode stimulation to be beneficial. Benefit was reported in a weighted average of 45% of patients (range 0-89%) using the magnet, with seizure cessation claimed in a weighted average of 28% (range 15-67%). In addition to seizure termination, patients sometimes reported decreased intensity or duration of seizures or the post-ictal period. One study reported an isolated instance of worsening with magnet stimulation (Arch Pediatr Adolesc Med, 157, 2003 and 560). All of the reviewed studies assessed adjunctive magnet use. No studies were designed to provide Level I evidence of efficacy of magnet-induced stimulation. Retrospective analysis of one pivotal randomized trial of VNS therapy showed significantly more seizures terminated or improved in the active stimulation group vs the control group. Prospective, controlled studies would be required to isolate the effect and benefit of magnet mode stimulation and to document that the magnet-induced stimulation is the proximate cause of seizure reduction. Manual application of the magnet to initiate stimulation is not always practical because many patients are immobilized or unaware of their seizures, asleep or not in reach of the magnet. Algorithms based on changes in heart rate at or near the onset of the seizure provide a methodology for automated responsive stimulation. Because literature indicates additional benefits from on-demand magnet mode stimulation, a potential role exists for automatic activation of stimulation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Studies of Electrically Stimulated Rat Limb and Peripheral Nerve Regeneration.

    Science.gov (United States)

    1983-08-25

    absoltite necessity for formation of a recognizable limb. In addition, evidence from embryology suggests that externally applied polarizing influences...3], and in others (Borgens et al. * I 1,5 I; Becker, [61) have demonstrated that vertebrate limb regeneration can be .- markedly influenced by the...strikingly histologic evaluation of the nerves. influence the rate of growth and state of dif- ferentiation of adult vertebrate cells. A var- Table I lety

  9. Medical Devices; Neurological Devices; Classification of the External Vagal Nerve Stimulator for Headache. Final order.

    Science.gov (United States)

    2017-12-27

    The Food and Drug Administration (FDA or we) is classifying the external vagal nerve stimulator for headache into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the external vagal nerve stimulator for headache's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  10. Effects of acute selective pudendal nerve electrical stimulation after simulated childbirth injury.

    Science.gov (United States)

    Jiang, Hai-Hong; Gill, Bradley C; Dissaranan, Charuspong; Zutshi, Massarat; Balog, Brian M; Lin, Danli; Damaser, Margot S

    2013-02-01

    During childbirth, a combinatorial injury occurs and can result in stress urinary incontinence (SUI). Simulated childbirth injury, consisting of vaginal distension (VD) and pudendal nerve crush (PNC), results in slowed recovery of continence, as well as decreased expression of brain-derived neurotrophic factor (BDNF), a regenerative cytokine. Electrical stimulation has been shown to upregulate BDNF in motor neurons and facilitate axon regrowth through the increase of β(II)-tubulin expression after injury. In this study, female rats underwent selective pudendal nerve motor branch (PNMB) stimulation after simulated childbirth injury or sham injury to determine whether such stimulation affects bladder and anal function after injury and whether the stimulation increases BDNF expression in Onuf's nucleus after injury. Rats received 4 h of VD followed by bilateral PNC and 1 h of subthreshold electrical stimulation of the left PNMB and sham stimulation of the right PNMB. Rats underwent filling cystometry and anal pressure recording before, during, and after the stimulation. Bladder and anal contractile function were partially disrupted after injury. PNMB stimulation temporarily inhibited bladder contraction after injury. Two days and 1 wk after injury, BDNF expression in Onuf's nucleus of the stimulated side was significantly increased compared with the sham-stimulated side, whereas β(II)-tubulin expression in Onuf's nucleus of the stimulated side was significantly increased only 1 wk after injury. Acute electrical stimulation of the pudendal nerve proximal to the crush site upregulates BDNF and β(II)-tubulin in Onuf's nucleus after simulated childbirth injury, which could be a potential preventive option for SUI after childbirth injury.

  11. Effects of anti-inflammatory vagus nerve stimulation on the cerebral microcirculation in endotoxinemic rats

    Directory of Open Access Journals (Sweden)

    Mihaylova Stanka

    2012-07-01

    Full Text Available Abstract Background In sepsis syndromes the severity of the inflammation triggers microvascular dysfunction and early organ failure. We studied the effects of anti-inflammatory vagus nerve stimulation on the cerebral microcirculatory integrity in an endotoxinemic rat model. Methods In both control and endotoxinemic (5 mg/kg lipopolysaccharide i.v. rats, the effect of cervical bilateral vagotomy with or without left-sided distal vagus nerve stimulation were compared to non-vagotomized, nonstimulated group (sham. Neurovascular coupling was analyzed by electrical forepaw stimulation, EEG, and cortical laser-Doppler flow recording. Resting cerebral blood flow, evoked potentials and hemodynamic responses, were obtained over a period of 4.5 hours. Regulation of the nitric oxide system (iNOS expression and nitrite/nitrate measurements, cytokines (IFN-γ, TNF-α, IL-6, IL-10, hypoxic and apoptosis signaling molecules (HIF-2α, Bax were measured at the end of experiments. Results In endotoxinemic rats, vagus nerve stimulation tended to increase anti-inflammatory cytokine levels and resulted in a stabile hemodynamic response (28 ± 13%; versus baseline. Vagotomized animals incurred a pro-inflammatory response (7 ± 4%; P P  Conclusions Vagus nerve stimulation in endotoxinemic rats had a positive effect on neurovascular coupling and stabilized evoked potentials.

  12. Posterior tibial nerve stimulation for treating neurologic bladder in women: a randomized clinical trial.

    Science.gov (United States)

    Eftekhar, Tahereh; Teimoory, Nastaran; Miri, Elahe; Nikfallah, Abolghasem; Naeimi, Mahsa; Ghajarzadeh, Mahsa

    2014-01-01

    Overactive bladder (OAB) is a disabling disorder. Treatment of cases with OAB includes behavioral, pharmacological, surgical interventions and peripheral electrical stimulation. The goal of this study was to determine effects of posterior tibial nerve stimulation on sexual function and pelvic disorders in women with Overactive bladder (OAB). Fifty women were randomly assigned to PTNS (posterior tibial nerve stimulation) plus tolterodine or tolterodine alone treatment. Tolterodine group received 4 mg tolterodine daily for three months while the other group received this treatment plus percutaneous tibial nerve stimulation for 12 consequence weeks. Two in PTNS group and 8 in the control group withdrew from the study. Age, education level, and occupation status were not significantly different between two groups. Mean total FSFI and its subscales were not significantly different before and after treatment between two groups. Urine leakage associated with a feeling of urgency and loss of stool or gas from the rectum beyond patient's control became significantly different after treatment between two groups. Posterior tibial nerve stimulation could help urinary problems in women with a neurologic bladder.

  13. Posterior tibial nerve stimulation for treating neurologic bladder in women: a randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Tahereh Eftekhar

    2014-11-01

    Full Text Available Overactive bladder (OAB is a disabling disorder. Treatment of cases with OAB includes behavioral, pharmacological, surgical interventions and peripheral electrical stimulation. The goal of this study was to determine effects of posterior tibial nerve stimulation on sexual function and pelvic disorders in women with Overactive bladder (OAB. Fifty women were randomly assigned to PTNS (posterior tibial nerve stimulation plus tolterodine or tolterodine alone treatment. Tolterodine group received 4 mg tolterodine daily for three months while the other group received this treatment plus percutaneous tibial nerve stimulation for 12 consequence weeks. Two in PTNS group and 8 in the control group withdrew from the study. Age, education level, and occupation status were not significantly different between two groups. Mean total FSFI and its subscales were not significantly different before and after treatment between two groups. Urine leakage associated with a feeling of urgency and loss of stool or gas from the rectum beyond patient's control became significantly different after treatment between two groups. Posterior tibial nerve stimulation could help urinary problems in women with a neurologic bladder.

  14. High Frequency Stimulation of the Pelvic Nerve Inhibits Urinary Voiding in Anesthetized Rats.

    Science.gov (United States)

    Crook, Jonathan J; Lovick, Thelma A

    2017-01-01

    Urge Urinary Incontinence: "a sudden and uncontrollable desire to void which is impossible to defer" is extremely common and considered the most bothersome of lower urinary tract conditions. Current treatments rely on pharmacological, neuromodulatory, and neurotoxicological approaches to manage the disorder, by reducing the excitability of the bladder muscle. However, some patients remain refractory to treatment. An alternative approach would be to temporarily suppress activity of the micturition control circuitry at the time of need i.e., urgency. In this study we investigated, in a rat model, the utility of high frequency pelvic nerve stimulation to produce a rapid onset, reversible suppression of voiding. In urethane-anesthetized rats periodic voiding was induced by continuous infusion of saline into the bladder whilst recording bladder pressure and electrical activity from the external urethral sphincter (EUS). High frequency (1-3 kHz), sinusoidal pelvic nerve stimulation initiated at the onset of the sharp rise in bladder pressure signaling an imminent void aborted the detrusor contraction. Urine output was suppressed and tone in the EUS increased. Stimulating the right or left nerve was equally effective. The effect was rapid in onset, reversible, and reproducible and evoked only minimal "off target" side effects on blood pressure, heart rate, respiration, uterine pressure, or rectal pressure. Transient contraction of abdominal wall was observed in some animals. Stimulation applied during the filling phase evoked a small, transient rise in bladder pressure and increased tonic activity in the EUS, but no urine output. Suppression of micturition persisted after section of the contralateral pelvic nerve or after ligation of the nerve distal to the electrode cuff on the ipsilateral side. We conclude that high frequency pelvic nerve stimulation initiated at the onset of an imminent void provides a potential means to control urinary continence.

  15. High Frequency Stimulation of the Pelvic Nerve Inhibits Urinary Voiding in Anesthetized Rats

    Directory of Open Access Journals (Sweden)

    Jonathan J. Crook

    2017-08-01

    Full Text Available Urge Urinary Incontinence: “a sudden and uncontrollable desire to void which is impossible to defer” is extremely common and considered the most bothersome of lower urinary tract conditions. Current treatments rely on pharmacological, neuromodulatory, and neurotoxicological approaches to manage the disorder, by reducing the excitability of the bladder muscle. However, some patients remain refractory to treatment. An alternative approach would be to temporarily suppress activity of the micturition control circuitry at the time of need i.e., urgency. In this study we investigated, in a rat model, the utility of high frequency pelvic nerve stimulation to produce a rapid onset, reversible suppression of voiding. In urethane-anesthetized rats periodic voiding was induced by continuous infusion of saline into the bladder whilst recording bladder pressure and electrical activity from the external urethral sphincter (EUS. High frequency (1–3 kHz, sinusoidal pelvic nerve stimulation initiated at the onset of the sharp rise in bladder pressure signaling an imminent void aborted the detrusor contraction. Urine output was suppressed and tone in the EUS increased. Stimulating the right or left nerve was equally effective. The effect was rapid in onset, reversible, and reproducible and evoked only minimal “off target” side effects on blood pressure, heart rate, respiration, uterine pressure, or rectal pressure. Transient contraction of abdominal wall was observed in some animals. Stimulation applied during the filling phase evoked a small, transient rise in bladder pressure and increased tonic activity in the EUS, but no urine output. Suppression of micturition persisted after section of the contralateral pelvic nerve or after ligation of the nerve distal to the electrode cuff on the ipsilateral side. We conclude that high frequency pelvic nerve stimulation initiated at the onset of an imminent void provides a potential means to control urinary

  16. Hypoalgesia in response to transcutaneous electrical nerve stimulation (TENS) depends on stimulation intensity.

    Science.gov (United States)

    Moran, Fidelma; Leonard, Tracey; Hawthorne, Stephanie; Hughes, Ciara M; McCrum-Gardner, Evie; Johnson, Mark I; Rakel, Barbara A; Sluka, Kathleen A; Walsh, Deirdre M

    2011-08-01

    Transcutaneous electrical nerve stimulation (TENS) is an electrophysical modality used for pain management. This study investigated the dose response of different TENS intensities on experimentally induced pressure pain. One hundred and thirty TENS naïve healthy individuals (18-64 years old; 65 males, 65 females) were randomly allocated to 5 groups (n = 26 per group): Strong Non Painful TENS; Sensory Threshold TENS; Below Sensory Threshold TENS; No Current Placebo TENS; and Transient Placebo TENS. Active TENS (80 Hz) was applied to the forearm for 30 minutes. Transient Placebo TENS was applied for 42 seconds after which the current amplitude automatically reset to 0 mA. Pressure pain thresholds (PPT) were recorded from 2 points on the hand and forearm before and after TENS to measure hypoalgesia. There were significant differences between groups at both the hand and forearm (ANOVA; P = .005 and .002). At 30 minutes, there was a significant hypoalgesic effect in the Strong Non Painful TENS group compared to: Below Sensory Threshold TENS, No Current Placebo TENS and Transient Placebo TENS groups (P TENS and No Current Placebo TENS groups at the hand (P = .001). There was no significant difference between Strong Non Painful TENS and Sensory Threshold TENS groups. The area under the curve for the changes in PPT significantly correlated with the current amplitude (r(2) = .33, P = .003). These data therefore show that there is a dose-response effect of TENS with the largest effect occurring with the highest current amplitudes. This study shows a dose response for the intensity of TENS for pain relief with the strongest intensities showing the greatest effect; thus, we suggest that TENS intensity should be titrated to achieve the strongest possible intensity to achieve maximum pain relief. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  17. Fascicular nerve stimulation and recording using a novel double-aisle regenerative electrode

    Science.gov (United States)

    Delgado-Martínez, I.; Righi, M.; Santos, D.; Cutrone, A.; Bossi, S.; D'Amico, S.; Del Valle, J.; Micera, S.; Navarro, X.

    2017-08-01

    Objective. As artificial prostheses become more refined, they are most often used as a therapeutic option for hand amputation. By contrast to extra- or intraneural interfaces, regenerative nerve electrodes are designed to enable electrical interfaces with regrowing axonal bundles of injured nerves, aiming to achieve high selectivity for recording and stimulation. However, most of the developed designs pose an obstacle to the regrowth mechanisms due to low transparency and cause impairment to the nerve regeneration. Approach. Here we present the double-aisle electrode, a new type of highly transparent, non-obstructive regenerative electrode. Using a double-side thin-film polyimide planar multi-contact electrode, two nerve fascicles can regenerate without physical impairment through two electrically isolated aisles. Main results. We show that this electrode can be used to selectively record and stimulate fascicles, acutely as well as chronically, and allow regeneration in nerve gaps of several millimeters without impairment. Significance. This multi-aisle regenerative electrode may be suitable for neuroprosthetic applications, such as prostheses, for the restoration of hand function after amputation or severe nerve injuries.

  18. Detection of a diabetic sural nerve from the magnetic field after electric stimulation

    Science.gov (United States)

    Hayami, Takehito; Iramina, Keiji; Hyodo, Akira; Chen, Xian; Sunagawa, Kenji

    2009-04-01

    In this study, we proposed a new diagnostic technique for diabetic neuropathy using biomagnetic measurement. Peripheral neuropathy is one of the most common complications of diabetes. To examine the injury, the skin potential around the nerve is often measured after electric stimulation. However, measuring the magnetic field may reveal precise condition of the injury. To evaluate the effect of measuring the magnetic field, a simulation study was performed. A diabetic sural nerve was simulated as a bundle of myelinated nerve fibers. Each fiber was modeled as an electric cable of Ranvier's nodes. Anatomical data were used to determine the number of nerve fibers and distribution of nerve fiber diameters. The electric potential and the magnetic field on the skin after electric stimulation were computed to the boundary element method. Biphasic time courses were obtained as the electric potential and the magnetic flux density at measurement points. In diabetic nerves, the longer interpeak latency of the electric potential wave and the shorter interpeak latency of the magnetic flux wave were obtained. Measuring both the electric potential and the magnetic flux density seemed to provide a noninvasive and objective marker for diabetic neuropathy.

  19. Sensory handedness is not reflected in cortical responses after basic nerve stimulation: a MEG study.

    Science.gov (United States)

    Chen, Andrew C N; Theuvenet, Peter J; de Munck, Jan C; Peters, Maria J; van Ree, Jan M; Lopes da Silva, Fernando L

    2012-04-01

    Motor dominance is well established, but sensory dominance is much less clear. We therefore studied the cortical evoked magnetic fields using magnetoencephalography (MEG) in a group of 20 healthy right handed subjects in order to examine whether standard electrical stimulation of the median and ulnar nerve demonstrated sensory lateralization. The global field power (GFP) curves, as an indication of cortical activation, did not depict sensory lateralization to the dominant left hemisphere. Comparison of the M20, M30, and M70 peak latencies and GFP values exhibited no statistical differences between the hemispheres, indicating no sensory hemispherical dominance at these latencies for each nerve. Field maps at these latencies presented a first and second polarity reversal for both median and ulnar stimulation. Spatial dipole position parameters did not reveal statistical left-right differences at the M20, M30 and M70 peaks for both nerves. Neither did the dipolar strengths at M20, M30 and M70 show a statistical left-right difference for both nerves. Finally, the Laterality Indices of the M20, M30 and M70 strengths did not indicate complete lateralization to one of the hemispheres. After electrical median and ulnar nerve stimulation no evidence was found for sensory hand dominance in brain responses of either hand, as measured by MEG. The results can provide a new assessment of patients with sensory dysfunctions or perceptual distortion when sensory dominance occurs way beyond the estimated norm.

  20. Transcutaneous Vagus Nerve Stimulation (tVNS) does not increase prosocial behavior in Cyberball

    OpenAIRE

    Sellaro, Roberta; Steenbergen, Laura; Verkuil, Bart; van IJzendoorn, Marinus H.; Colzato, Lorenza S.

    2015-01-01

    Emerging research suggests that individuals experience vicarious social pain (i.e., ostracism). It has been proposed that observing ostracism increases activity in the insula and in the prefrontal cortex (PFC), two key brain regions activated by directly experiencing ostracism. Here, we assessed the causal role of the insula and PFC in modulating neural activity in these areas by applying transcutaneous Vagus Nerve Stimulation (tVNS), a new non-invasive and safe method to stimulate the vagus ...

  1. A mm-Sized Wireless Implantable Device for Electrical Stimulation of Peripheral Nerves.

    Science.gov (United States)

    Charthad, Jayant; Chang, Ting Chia; Liu, Zhaokai; Sawaby, Ahmed; Weber, Marcus J; Baker, Sam; Gore, Felicity; Felt, Stephen A; Arbabian, Amin

    2018-04-01

    A wireless electrical stimulation implant for peripheral nerves, achieving >10× improvement over state of the art in the depth/volume figure of merit, is presented. The fully integrated implant measures just 2 mm × 3 mm × 6.5 mm (39 mm 3 , 78 mg), and operates at a large depth of 10.5 cm in a tissue phantom. The implant is powered using ultrasound and includes a miniaturized piezoelectric receiver (piezo), an IC designed in 180 nm HV BCD process, an off-chip energy storage capacitor, and platinum stimulation electrodes. The package also includes an optional blue light-emitting diode for potential applications in optogenetic stimulation in the future. A system-level design strategy for complete operation of the implant during the charging transient of the storage capacitor, as well as a unique downlink command/data transfer protocol, is presented. The implant enables externally programmable current-controlled stimulation of peripheral nerves, with a wide range of stimulation parameters, both for electrical (22 to 5000 μA amplitude, ∼14 to 470 μs pulse-width, 0 to 60 Hz repetition rate) and optical (up to 23 mW/mm 2 optical intensity) stimulation. Additionally, the implant achieves 15 V compliance voltage for chronic applications. Full integration of the implant components, end-to-end in vitro system characterizations, and results for the electrical stimulation of a sciatic nerve, demonstrate the feasibility and efficacy of the proposed stimulator for peripheral nerves.

  2. Excitatory and inhibitory effects of prolactin release activated by nerve stimulation in rat anterior pituitary

    Directory of Open Access Journals (Sweden)

    Gao Li-Zhi

    2009-12-01

    Full Text Available Abstract Background A series of studies showed the presence of substantial amount of nerve fibers and their close relationship with the anterior pituitary gland cells. Our previous studies have suggested that aside from the classical theory of humoral regulation, the rat anterior pituitary has direct neural regulation on adrenocorticotropic hormone release. In rat anterior pituitary, typical synapses are found on every type of the hormone-secreting cells, many on lactotrophs. The present study was aimed at investigating the physiological significance of this synaptic relationship on prolactin release. Methods The anterior pituitary of rat was sliced and stimulated with electrical field in a self-designed perfusion chamber. The perfusate was continuously collected in aliquots and measured by radioimmunoassay for prolactin levels. After statistic analysis, differences of prolactin concentrations within and between groups were outlined. Results The results showed that stimulation at frequency of 2 Hz caused a quick enhancement of prolactin release, when stimulated at 10 Hz, prolactin release was found to be inhibited which came slower and lasted longer. The effect of nerve stimulation on prolactin release is diphasic and frequency dependent. Conclusions The present in vitro study offers the first physiological evidence that stimulation of nerve fibers can affect prolactin release in rat anterior pituitary. Low frequency stimulation enhances prolactin release and high frequency mainly inhibits it.

  3. Effectiveness of percutaneous tibial nerve stimulation in the treatment of overactive bladder syndrome

    NARCIS (Netherlands)

    Wall, L.L. de; Heesakkers, J.P.F.A.

    2017-01-01

    Overactive bladder syndrome (OAB) is a common condition affecting adults and children worldwide, resulting in a substantial economic and psychological burden. Percutaneous tibial nerve stimulation (PTNS) is derived from acupuncture used in Chinese traditional medicine and was first described in the

  4. Percutaneous tibial nerve stimulation in the treatment of overactive bladder: urodynamic data.

    NARCIS (Netherlands)

    Vandoninck, V.; Balken, M.R. van; Finazzi Agro, E.; Petta, F.; Micali, F.; Heesakkers, J.P.F.A.; Debruyne, F.M.J.; Kiemeney, L.A.L.M.; Bemelmans, B.L.H.

    2003-01-01

    AIM: The aim of this study was to evaluate urodynamic changes after percutaneous tibial nerve stimulation (PTNS) for the treatment of complaints related to overactive bladder syndrome and to search for urodynamic-based predictive factors. METHODS: Ninety consecutive patients with symptoms related to

  5. High-reliability microcontroller nerve stimulator for assistance in regional anaesthesia procedures.

    Science.gov (United States)

    Ferri, Carlos A; Quevedo, Antonio A F

    2017-07-01

    In the last decades, the use of nerve stimulators to aid in regional anaesthesia has been shown to benefit the patient since it allows a better location of the nerve plexus, leading to correct positioning of the needle through which the anaesthetic is applied. However, most of the nerve stimulators available in the market for this purpose do not have the minimum recommended features for a good stimulator, and this can lead to risks to the patient. Thus, this study aims to develop an equipment, using embedded electronics, which meets all the characteristics, for a successful blockade. The system is made of modules for generation and overall control of the current pulse and the patient and user interfaces. The results show that the designed system fits into required specifications for a good and reliable nerve stimulator. Linearity proved satisfactory, ensuring accuracy in electrical current amplitude for a wide range of body impedances. Field tests have proven very successful. The anaesthesiologist that used the system reported that, in all cases, plexus blocking was achieved with higher quality, faster anaesthetic diffusion and without needed of an additional dose when compared with same procedure without the use of the device.

  6. Transcutaneous electrical nerve stimulation (TENS) improves the rest-activity rhythm in midstage Alzheimer's disease

    NARCIS (Netherlands)

    Scherder, E. J.; van Someren, E. J.; Swaab, D. F.

    1999-01-01

    Nightly restlessness in patients with Alzheimer's disease (AD) is probably due to a disorder of circadian rhythms. Transcutaneous electrical nerve stimulation (TENS) was previously reported to increase the strength of coupling of the circadian rest activity rhythm to Zeitgebers in early stage

  7. The influence of sacral nerve stimulation on gastrointestinal motor function in patients with fecal incontinence

    DEFF Research Database (Denmark)

    Damgaard, M; Thomsen, F G; Sørensen, Michael

    2011-01-01

    Sacral nerve stimulation (SNS) is a well-established treatment for fecal incontinence of various etiologies. However, the mechanism of action remains unclear. The aim of the present study was to determine whether SNS affects gastric emptying, small intestinal transit or colonic transit times....

  8. Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers

    NARCIS (Netherlands)

    Struijk, J.J.; Struijk, Johannes J.; Holsheimer, J.; van Veen, B.K.; van Veen, Benno K.; Boom, H.B.K.

    1991-01-01

    The effect of electrical stimulation with several electrode combinations on nerve fibers with different orientations in the spinal cord was investigated by computing the steady-state field potentials and activating functions. An infinite homogeneous model was used, and the spinal cord and its

  9. Modulation of Hippocampal Activity by Vagus Nerve Stimulation in Freely Moving Rats

    NARCIS (Netherlands)

    Larsen, L.E.; Wadman, W.J.; van Mierlo, P.; Delbeke, J.; Grimonprez, A.; Van Nieuwenhuyse, B.; Portelli, J.; Boon, P; Vonck, K.; Raedt, R.

    2015-01-01

    BACKGROUND: Vagus Nerve Stimulation (VNS) has seizure-suppressing effects but the underlying mechanism is not fully understood. To further elucidate the mechanisms underlying VNS-induced seizure suppression at a neurophysiological level, the present study examined effects of VNS on hippocampal

  10. Morphometric data of canine sacral nerve roots with reference to electrical sacral root stimulation

    NARCIS (Netherlands)

    Rijkhoff, N. J.; Koldewijn, E. L.; d'Hollosy, W.; Debruyne, F. M.; Wijkstra, H.

    1996-01-01

    Experiments to investigate restoration of lower urinary tract control by electrical stimulation of the sacral nerve roots are mostly performed on dogs, yet little morphometric data (such as canine root and fiber diameter distributions) are available. The aim of this study was to acquire morphometric

  11. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle

    NARCIS (Netherlands)

    van Bolhuis, A.I.; Holsheimer, J.; Savelsberg, H.H.C.M.

    2001-01-01

    Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low

  12. Vagus Nerve Stimulation Reduces Cocaine Seeking and Alters Plasticity in the Extinction Network

    Science.gov (United States)

    Childs, Jessica E.; DeLeon, Jaime; Nickel, Emily; Kroener, Sven

    2017-01-01

    Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces rates of relapse. Here we used vagus nerve stimulation (VNS) to induce targeted synaptic…

  13. Effects of transcutaneous electrical nerve stimulation (TENS) on cognition and behaviour in aging

    NARCIS (Netherlands)

    Scherder, E.J A; van Someren, E.W J; Bouma, J.M.; van der Berg, M

    2000-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) improved cognition and behaviour in patients with Alzheimer's disease (AD). The rationale underlying these studies was that TENS could activate, e.g. the septo-hippocampal region and the hypothalamus through direct and indirect

  14. Effects of transcutaneous electrical nerve stimulation (TENS) on memory in elderly with mild cognitive impairment

    NARCIS (Netherlands)

    Luijpen, M.W.; Swaab, D.F.; Sergeant, J.A.; van Dijk, K.R.A.; Scherder, E.J.A.

    2005-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) was shown to have a positive effect on memory in Alzheimer's disease (AD) patients. Moreover, the reported effects appeared to be more beneficial in early stages of Alzheimer's disease compared to later stage intervention. Based

  15. Effects of transcutaneous electrical nerve stimulation (TENS) on memory in elderly with mild cognitive impairment.

    NARCIS (Netherlands)

    Luijpen, M.W.; Swaab, D.F.; Sergeant, J.A.; Dijk, K.R.A.; Scherder, E.J.

    2005-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) was shown to have a positive effect on memory in Alzheimer's disease (AD) patients. Moreover, the reported effects appeared to be more beneficial in early stages of Alzheimer's disease compared to later stage intervention. Based

  16. Effects of Transcutaneous Electrical Nerve Stimulation (TENS) on cognition and behaviour in aging

    NARCIS (Netherlands)

    Scherder, E.J.A.; Bouma, A.; van den Berg, M.

    2000-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) improved cognition and behaviour in patients with Alzheimer's disease (AD). The rationale underlying these studies was that TENS could activate, e.g. the septo-hippocampal region and the hypothalamus through direct and indirect

  17. Maternal and fetal outcomes associated with vagus nerve stimulation during pregnancy

    DEFF Research Database (Denmark)

    Sabers, Anne; Battino, Dina; Bonizzoni, Erminio

    2017-01-01

    OBJECTIVE: To access the effect of vagus nerve stimulation (VNS) on the outcome of pregnancy. METHODS: We used the International Registry of Antiepileptic Drugs and Pregnancy (EURAP) and its network to search for women receiving adjunctive VNS during pregnancy. Data on maternal and fetal outcomes...

  18. Impact of Vagal Nerve Stimulation on Objective Vocal Quality: a Pilot Study.

    NARCIS (Netherlands)

    E. D'haeseleer; M. Krystopava; S. Gadeyne; K. van Lierde; Anke Luyten; L. Bruneel; G. van Maele; N. Piens; K. Vonck; B. Boehme

    2015-01-01

    The purpose of this study was to determine the impact of vagal nerve stimulation (VNS) on the vocal quality using the dysphonia severity index (DSI). It was hypothesized that the objective vocal quality and other vocal characteristics are disordered in comparison with an age- and gender-matched

  19. Randomized controlled trial of surface peroneal nerve stimulation for motor relearning in lower limb hemiparesis

    NARCIS (Netherlands)

    Sheffler, L.R.; Taylor, P.N.; Gunzler, D.D.; Buurke, Jaap; IJzerman, Maarten Joost; Chae, J.

    2013-01-01

    Objective: To compare the motor relearning effect of a surface peroneal nerve stimulator (PNS) versus usual care on lower limb motor impairment, activity limitation, and quality of life among chronic stroke survivors. Design: Single-blinded randomized controlled trial. Setting: Teaching hospital of

  20. Reference values and clinical application of magnetic peripheral nerve stimulation in cats

    NARCIS (Netherlands)

    Van Soens, Iris; Struys, Michel M. R. F.; Bhatti, Sofie F. M.; Van Ham, Luc M. L.

    Magnetic stimulation of radial (RN) and sciatic (SN) nerves was performed bilaterally in 40 healthy cats. Reference values for onset latency and peak-to-peak amplitude of magnetic motor evoked potentials (MMEPs) were obtained and compared with values of electric motor evoked potentials (EMEPs) in

  1. Effect of ischemia and cooling on the response to high frequency stimulation in rat tail nerves

    DEFF Research Database (Denmark)

    Andersen, Henning; Feldbæk Nielsen, Jørgen; Sørensen, Bodil

    2000-01-01

    In normal rat tail nerves the effect of temperature and ischemia on the response to long-term high frequency stimulation (HFS) (143 Hz) was studied. The effect of temperature was studied in two consecutive tests at 14 degrees C and 35 degrees C. Prior to the HFS the peak-to-peak amplitude (PP...

  2. Acute urodynamic effects of posterior tibial nerve stimulation on neurogenic detrusor overactivity in patients with MS.

    NARCIS (Netherlands)

    Fjorback, M.V.; Rey, F. van; Pal, F. van der; Rijkhoff, N.J.M.; Petersen, T.; Heesakkers, J.P.

    2007-01-01

    OBJECTIVES: The aim of this study was to investigate whether acute electrical stimulation of the posterior tibial nerve could suppress detrusor contractions in multiple sclerosis (MS) patients with neurogenic detrusor overactivity. METHODS: Two successive slow-fill cystometries (16 ml/min) were

  3. Pudendal nerve latency time in normal women via intravaginal stimulation

    Directory of Open Access Journals (Sweden)

    Geraldo A. Cavalcanti

    2006-12-01

    Full Text Available INTRODUCTION & OBJECTIVES: Studies of motor conduction for the efferent functional assessment of the pudendal nerve in women with pelvic dysfunctions have been conducted through researching distal motor latency times. The transrectal approach has been the classic approach for this electrophysiological examination. The objective of the present study is to verify the viability of the transvaginal approach in performing the exam, to establish normal values for this method and to analyze the influence of age, stature and parity in the latency value of normal women. MATERIALS AND METHODS: A total of 23 volunteers without genitourinary pathologies participated in this study. In each, pudendal motor latency was investigated through the transvaginal approach, which was chosen due to patient’s higher tolerance levels. RESULTS: The motor response represented by registering the M-wave was obtained in all volunteers on the right side (100% and in 13 volunteers on the left side (56.5%. The mean motor latency obtained in the right and left was respectively: 1.99 ± 0.41 and 1.92 ± 0.48 milliseconds (ms. There was no difference between the sides (p = 0.66. Latency did not correlate with age, stature or obstetric history. The results obtained in the present study were in agreement with those found by other researchers using the transrectal approach. CONCLUSION: The vaginal approach represents an alternative for pudendal nerve distal motor latency time, with similar results to those achieved through the transrectal approach. Normative values obtained herein might serve as a comparative basis for subsequent physiopathological studies.

  4. Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation

    Science.gov (United States)

    Guiraud, David; Andreu, David; Bonnet, Stéphane; Carrault, Guy; Couderc, Pascal; Hagège, Albert; Henry, Christine; Hernandez, Alfredo; Karam, Nicole; Le Rolle, Virginie; Mabo, Philippe; Maciejasz, Paweł; Malbert, Charles-Henri; Marijon, Eloi; Maubert, Sandrine; Picq, Chloé; Rossel, Olivier; Bonnet, Jean-Luc

    2016-08-01

    Objective. Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. Approach. This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. Main results. We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans.

  5. Designing electrical stimulated bioreactors for nerve tissue engineering

    Science.gov (United States)

    Sagita, Ignasius Dwi; Whulanza, Yudan; Dhelika, Radon; Nurhadi, Ibrahim

    2018-02-01

    Bioreactor provides a biomimetic ecosystem that is able to culture cells in a physically controlled system. In general, the controlled-parameters are temperature, pH, fluid flow, nutrition flow, etc. In this study, we develop a bioreactor that specifically targeted to culture neural stem cells. This bioreactor could overcome some limitations of conventional culture technology, such as petri dish, by providing specific range of observation area and a uniform treatment. Moreover, the microfluidic bioreactor, which is a small-controlled environment, is able to observe as small number of cells as possible. A perfusion flow is applied to mimic the physiological environment in human body. Additionally, this bioreactor also provides an electrical stimulation which is needed by neural stem cells. In conclusion, we found the correlation between the induced shear stress with geometric parameters of the bioreactor. Ultimately, this system shall be used to observe the interaction between stimulation and cell growth.

  6. A model of auditory nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    peripheral for the cathodic phase. This results in an average difference of 200 μs in spike latency for AP generated by anodic vs cathodic pulses. It is hypothesized here that this difference is large enough to corrupt the temporal coding in the AN. To quantify effects of pulse polarity on auditory...... as a framework to test various stimulation strategies and to quantify their effect on the performance of CI listeners in psychophysical tasks....

  7. A review of sacral nerve stimulation parameters used in the treatment of faecal incontinence.

    Science.gov (United States)

    Devane, Liam A; Evers, Judith; Jones, James F X; Ronan O'Connell, P

    2015-06-01

    Sacral nerve stimulation (SNS) was originally developed in the field of urinary incontinence. Without adaptation, it was subsequently applied to treat faecal incontinence. SNS has now become a first line therapy for this socially disabling condition, however the mechanism of action is unknown. This review examines the evidence for stimulation parameters currently used for SNS in humans and considers the potential electrophysiological effects of changing these parameters. However, without a proper understanding of the physiology of SNS, changing stimulation parameters remains empirical. Copyright © 2014 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  8. Effectiveness of percutaneous tibial nerve stimulation in the treatment of overactive bladder syndrome

    Directory of Open Access Journals (Sweden)

    de Wall LL

    2017-08-01

    Full Text Available Liesbeth L de Wall, John PFA Heesakkers Department of Urology, Radboud University Medical Centre, Nijmegen, The NetherlandsAbstract: Overactive bladder syndrome (OAB is a common condition affecting adults and children worldwide, resulting in a substantial economic and psychological burden. Percutaneous tibial nerve stimulation (PTNS is derived from acupuncture used in Chinese traditional medicine and was first described in the early 1980s. It is a neuromodulation technique used to modulate bladder function and facilitate storage. Being a minimally invasive, easily applicable, but time-consuming treatment, future developments with implantable devices might be the solution for the logistical problems and economic burden associated with PTNS on the long term. This nonsystematic review provides a current overview on PTNS and its effectiveness in the treatment of OAB for both adults and children. Keywords: overactive bladder, percutaneous tibial nerve stimulation, neuromodulation, electrical stimulation 

  9. High-Frequency Transcutaneous Peripheral Nerve Stimulation Induces a Higher Increase of Heat Pain Threshold in the Cutaneous Area of the Stimulated Nerve When Confronted to the Neighbouring Areas

    Directory of Open Access Journals (Sweden)

    M. Buonocore

    2013-01-01

    Full Text Available Background. TENS (transcutaneous electrical nerve stimulation is probably the most diffused physical therapy used for antalgic purposes. Although it continues to be used by trial and error, correct targeting of paresthesias evoked by the electrical stimulation on the painful area is diffusely considered very important for pain relief. Aim. To investigate if TENS antalgic effect is higher in the cutaneous area of the stimulated nerve when confronted to neighbouring areas. Methods. 10 volunteers (4 males, 6 females underwent three different sessions: in two, heat pain thresholds (HPTs were measured on the dorsal hand skin before, during and after electrical stimulation (100 Hz, 0.1 msec of superficial radial nerve; in the third session HPTs, were measured without any stimulation. Results. Radial nerve stimulation induced an increase of HPT significantly higher in its cutaneous territory when confronted to the neighbouring ulnar nerve territory, and antalgic effect persisted beyond the stimulation time. Conclusions. The location of TENS electrodes is crucial for obtaining the strongest pain relief, and peripheral nerve trunk stimulation is advised whenever possible. Moreover, the present study indicates that continuous stimulation could be unnecessary, suggesting a strategy for avoiding the well-known tolerance-like effect of prolonged TENS application.

  10. Greater occipital nerve stimulation via the Bion microstimulator: implantation technique and stimulation parameters. Clinical trial: NCT00205894.

    Science.gov (United States)

    Trentman, Terrence L; Rosenfeld, David M; Vargas, Bert B; Schwedt, Todd J; Zimmerman, Richard S; Dodick, David W

    2009-01-01

    Millions of patients suffer from medically refractory and disabling primary headache disorders. This problem has led to a search for new and innovative treatment modalities, including neuromodulation of the occipital nerves. The primary aim of this study is to describe an implantation technique for the Bion microstimulator and document stimulation parameters and stimulation maps after Bion placement adjacent to the greater occipital nerve. The secondary aim is to document outcome measures one year post-implant. Prospective, observational feasibility study. Nine patients with medically refractory primary headache disorders participated in this study. Approximately 6 months after Bion insertion, stimulation parameters and maps were documented for all patients. At one year, outcome measures were collected including the Migraine Disability Assessment Score. At 6 months, the mean perception threshold was 0.47 mA, while the mean discomfort threshold was 6.8 mA (stimulation range 0.47-6.8 mA). The mean paresthesia threshold was 1.64 mA and the mean usage range was 16.0. There were no major complications reported such as device migration, infection, or erosion. One patient stopped using her Bion before the 12-month follow-up visit. At one year, 7 of the 8 patients were judged as having obtained fair or better results in terms of reduction of disability; 5 patients had greater than a 90% reduction in disability. Small, heterogeneous patient population without control group. Not blinded or randomized. The Bion can be successfully inserted adjacent to the greater occipital nerve in an effort to treat refractory primary headache disorders. This microstimulator may provide effective occipital stimulation and headache control while minimizing the risks associated with percutaneous or paddle leads implanted subcutaneously in the occipital region.

  11. Serratus muscle stimulation effectively treats notalgia paresthetica caused by long thoracic nerve dysfunction: a case series

    Directory of Open Access Journals (Sweden)

    Barad Meredith

    2009-09-01

    Full Text Available Abstract Currently, notalgia paresthetica (NP is a poorly-understood condition diagnosed on the basis of pruritus, pain, or both, in the area medial to the scapula and lateral to the thoracic spine. It has been proposed that NP is caused by degenerative changes to the T2-T6 vertebrae, genetic disposition, or nerve entrapment of the posterior rami of spinal nerves arising at T2-T6. Despite considerable research, the etiology of NP remains unclear, and a multitude of different treatment modalities have correspondingly met with varying degrees of success. Here we demonstrate that NP can be caused by long thoracic nerve injury leading to serratus anterior dysfunction, and that electrical muscle stimulation (EMS of the serratus anterior can successfully and conservatively treat NP. In four cases of NP with known injury to the long thoracic nerve we performed transcutaneous EMS to the serratus anterior in an area far lateral to the site of pain and pruritus, resulting in significant and rapid pain relief. These findings are the first to identify long thoracic nerve injury as a cause for notalgia paresthetica and electrical muscle stimulation of the serratus anterior as a possible treatment, and we discuss the implications of these findings on better diagnosing and treating notalgia paresthetica.

  12. [Role of nerve stimulation at Erb point in early diagnosis of Guillain-Barré syndrome in children].

    Science.gov (United States)

    Sun, Rui-Di; Fu, Bin; Li, Cheng; Kuang, Guang-Tao; Luo, Xiao-Qing; Jiang, Jun

    2015-07-01

    To study the role of proximal nerve stimulation at Erb point in the early diagnosis of Guillain-Barré syndrome (GBS) in children. Thirty-two children who were diagnosed with GBS between October 2013 and December 2014 received neurophysiological examination. Thirty healthy children were used as controls. Compound muscle action potentials and distal motor latency of the median and ulnar nerves were determined and analyzed after nerve stimulation at the wrist, elbow, and Erb point in the two groups. Moreover, F-wave latency of the median nerve and H-reflex latency of the tibial nerve were measured and analyzed in the two groups. The F-wave and H-reflex latencies were significantly longer in the patient group than in the control group (P0.05). The nerve stimulation at Erb point holds promise as a routine examination for the early diagnosis of GBS.

  13. Giant early components of somatosensory evoked potentials to tibial nerve stimulation in cortical myoclonus.

    Science.gov (United States)

    Anzellotti, Francesca; Onofrj, Marco; Bonanni, Laura; Saracino, Antonio; Franciotti, Raffaella

    2016-01-01

    Enlarged cortical components of somatosensory evoked potentials (giant SEPs) recorded by electroencephalography (EEG) and abnormal somatosensory evoked magnetic fields (SEFs) recorded by magnetoencephalography (MEG) are observed in the majority of patients with cortical myoclonus (CM). Studies on simultaneous recordings of SEPs and SEFs showed that generator mechanism of giant SEPs involves both primary sensory and motor cortices. However the generator sources of giant SEPs have not been fully understood as only one report describes clearly giant SEPs following lower limb stimulation. In our study we performed a combined EEG-MEG recording on responses elicited by electric median and tibial nerve stimulation in a patient who developed consequently to methyl bromide intoxication CM with giant SEPs to median and tibial nerve stimuli. SEPs wave shapes were identified on the basis of polarity-latency components (e.g. P15-N20-P25) as defined by earlier studies and guidelines. At EEG recording, the SEP giant component did not appear in the latency range of the first cortical component for median nerve SEP (N20), but appeared instead in the range of the P37 tibial nerve SEP, which is currently identified as the first cortical component elicited by tibial nerve stimuli. Our MEG and EEG SEPs recordings also showed that components in the latency range of P37 were preceded by other cortical components. These findings suggest that lower limb P37 does not correspond to upper limb N20. MEG results confirmed that giant SEFs are the second component from both tibial (N43m-P43m) and median (N27m-P27m) nerve stimulation. MEG dipolar sources of these giant components were located in the primary sensory and motor area.

  14. Sacral nerve stimulation for the treatment of severe faecal incontinence: results after 10 years experience.

    Science.gov (United States)

    Ruiz Carmona, M Dolores; Martín Arévalo, José; Moro Valdezate, David; Plá Martí, Vicente; Checa Ayet, Félix

    2014-05-01

    The objective of this study is to report our experience with sacral nerve stimulation for the treatment of severe faecal incontinence after the first 10 years with this technique. Between 2001 and 2011, 49 patients with severe faecal incontinence underwent sacral nerve stimulation. Anorectal manometry, endoanal ultrasound and pudendal nerve latency were performed. Bowel habit diary, severity of faecal incontinence and quality of life scales were evaluated preoperatively and at the end of follow-up. Morbidity occurred in a third of patients, mostly minor. Four definitive devices were explanted. With a median follow-up of 37 months, severity of faecal incontinence, urge and incontinence episodes significantly improved at the end of follow-up. Patients' subgroup with major follow-up of 5 years significantly improved the severity of faecal incontinence but not the parameters of the bowel habit diary. Quality of life showed no significant improvement. Descriptive data in patients with sphincter defects did not show worse results than with sphincter integrity. Sacral nerve stimulation is a safe technique for severe faecal incontinence with good functional medium-term results. In the long term, severity of the faecal incontinence also improves but studies with larger sample are necessary to show if other clinical parameters and the quality of life support this information. Preliminary results in patients with sphincter defects suggest that this technique could be effective in this group but future studies will have to confirm these findings. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.

  15. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2014-01-01

    large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulationof the AN [1, 2, 3] were considered in terms of their efficacy to predict the spike timing for anodic...... andcathodic stimulation of the AN of cat [4]. The models' responses to the electrical pulses of variousshapes [5] were also analyzed. It was found that, while the models can account for the ring rates inresponse to various biphasic pulse shapes, they fail to correctly describe the timing of AP in response...

  16. Kilohertz Electrical Stimulation Nerve Conduction Block: Effects of Electrode Surface Area.

    Science.gov (United States)

    Patel, Yogi A; Kim, Brian S; Rountree, William S; Butera, Robert J

    2017-10-01

    Kilohertz electrical stimulation (KES) induces repeatable and reversible conduction block of nerve activity and is a potential therapeutic option for various diseases and disorders resulting from pathological or undesired neurological activity. However, successful translation of KES nerve block to clinical applications is stymied by many unknowns, such as the relevance of the onset response, acceptable levels of waveform contamination, and optimal electrode characteristics. We investigated the role of electrode geometric surface area on the KES nerve block threshold using 20- and 40-kHz current-controlled sinusoidal KES. Electrodes were electrochemically characterized and used to characterize typical KES waveforms and electrode charge characteristics. KES nerve block amplitudes, onset duration, and recovery of normal conduction after delivery of the KES were evaluated along with power requirements for effective KES nerve block. Results from this investigation demonstrate that increasing electrode geometric surface area provides for a more power-efficient KES nerve block. Reductions in block threshold by increased electrode surface area were found to be KES-frequency-dependent, with block thresholds and average power consumption reduced by greater than two times with 20-kHz KES waveforms and greater than three times for 40-kHz KES waveforms.

  17. Waveform efficiency analysis of auditory nerve fiber stimulation for cochlear implants

    International Nuclear Information System (INIS)

    Navaii, Mehdi Lotfi; Sadhedi, Hamed; Jalali, Mohsen

    2013-01-01

    Evaluation of the electrical stimulation efficiency of various stimulating waveforms is an important issue for efficient neural stimulator design. Concerning the implantable micro devices design, it is also necessary to consider the feasibility of hardware implementation of the desired waveforms. In this paper, the charge, power and energy efficiency of four waveforms (i.e. square, rising ramp, triangular and rising ramp-decaying exponential) in various durations have been simulated and evaluated based on the computational model of the auditory nerve fibers. Moreover, for a fair comparison of their feasibility, a fully integrated current generator circuit has been developed so that the desired stimulating waveforms can be generated. The simulation results show that stimulation with the square waveforms is a proper choice in short and intermediate durations while the rising ramp-decaying exponential or triangular waveforms can be employed for long durations.

  18. Unilateral phrenic nerve stimulation for neurogenic hypoventilation in Arnold Chiari malformation

    Directory of Open Access Journals (Sweden)

    Nitin Garg

    2013-01-01

    Full Text Available Long- term ventilator dependence in patients with neurogenic hypoventilation is associated with significant morbidity and restricts mobility. Diaphragmatic pacing by phrenic nerve stimulation (PNS is a viable alternative. This is a case report of patient with Arnold-Chiari malformation with extensive syrinx who had neurogenic hypoventilation during sleep even after foramen magnum decompression and resolution of the syrinx. Unilateral PNS was done using spinal cord stimulator. With intermittent stimulation for 8 h while asleep, patient could be weaned off the ventilator completely. At 2 years follow- up, patient is ambulant and has returned to his routine activities. PNS is a good treatment tool in patients with neurogenic hypoventilation. Spinal cord stimulator can be used with optimal results. This is first such reported case of using spinal cord stimulator for PNS from India.

  19. TENS (transcutaneous electrical nerve stimulation) for labour pain.

    Science.gov (United States)

    Francis, Richard

    2012-05-01

    Because TENS is applied inconsistently and not always in line with optimal TENS application theory, this may explain why TENS for labour pain appears to be effective in some individuals and not in others. This article reviews TENS theory, advises upon optimal TENS application for labour pain and discusses some of the limitations of TENS research on labour pain. TENS application for labour pain may include TENS applied to either side of the lower spine, set to 200 mus pulse duration and 100 pulses per second. As pain increases, TENS intensity should be increased and as pain decreases, TENS intensity should be reduced to maintain a strong but pain free intensity of stimulation. This application may particularly reduce back pain during labour.

  20. Technical Note: Treatment of Sacroiliac Joint Pain with Peripheral Nerve Stimulation.

    Science.gov (United States)

    Guentchev, Marin; Preuss, Christian; Rink, Rainer; Peter, Levente; Wocker, Ernst-Ludwig; Tuettenberg, Jochen

    2015-07-01

    Sacroiliac joint (SIJ) pain affects older adults with a prevalence of up to 20% among patients with chronic low back pain. While pain medication, joint blocks and denervation procedures achieve pain relief in most patients, some cases fail to improve. Our goal was to determine the effectiveness of SIJ peripheral nerve stimulation in patients with severe conservative therapy-refractory SIJ pain. Here we present 12 patients with severe conservative therapy-refractory pain receiving an SIJ peripheral nerve stimulation. Patient satisfaction, pain, and quality of life were evaluated by means of the International Patient Satisfaction Index (IPSI), visual analog scale (VAS), and Oswestry Disability Index 2.0 (ODI) using standard questionnaires. For stimulation we placed an eight-pole peripheral nerve electrode parallel to the SIJ. Two weeks postoperatively, our patients reported an average ODI reduction from 57% to 32% and VAS from 9 to 2.1. IPSI was 1.1. After six months, the therapy was rated as effective in seven out of eight patients reporting at that period. The average ODI was low at 34% (p = 0.0006), while the VAS index rose to 3.8 (p VAS 1.7 (p < 0.0001), and IPSI 1.3. We conclude that SIJ stimulation is a promising therapeutic strategy in the treatment of intractable SIJ pain. Further studies are required to determine the precise target group and long-term effect of this novel treatment method. © 2014 International Neuromodulation Society.

  1. Subject-controlled stimulation of dorsal genital nerve to treat neurogenic detrusor overactivity at home.

    Science.gov (United States)

    Opisso, Eloy; Borau, Albert; Rijkhoff, Nico J M

    2013-09-01

    To investigate the effects of subject controlled dorsal genital nerve (DGN) electrical stimulation on neurogenic detrusor overactivity (NDO) in subjects at home. Subjects underwent a 5-day study at home with DGN stimulation. Stimulation was provided with surface electrodes placed either on the dorsal penile shaft in males and on or close to the clitoris in females. The days 1 and 5 were with no stimulation whereas days 2-4 were with stimulation. Two urodynamic studies were performed at the beginning and at the end of the study. A bladder diary was obtained. Eleven subjects with NDO and with urge incontinence were included. One subject stopped the protocol before the end of the 5-day trial and two did not undergo the second urodynamic study. The subjects showed a statistically significant increase in bladder capacities compared to baseline (P = 0.047). Mean volume per day voided significantly increased over the study within the subjects. Differences between day 1 and day 5 were statistically significant (P = 0.028). The feasibility and the globally positive outcomes of the study indicate that the stimulation of the dorsal genital nerve can be an option for the treatment of the NDO. Copyright © 2012 Wiley Periodicals, Inc.

  2. Comparison of skin sensory thresholds using pre-programmed or single-frequency transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Kang, Jong Ho

    2015-12-01

    [Purpose] The purpose of the present study was to compare the sensory thresholds of healthy subjects using pre-programmed or single-frequency transcutaneous electrical nerve stimulation. [Subjects] Ninety healthy adult subjects were randomly assigned to pre-programmed or single-frequency stimulation groups, each consisting of 45 participants. [Methods] Sensory thresholds were measured in the participants' forearms using von Frey filaments before and after pre-programmed or single-frequency transcutaneous electrical nerve stimulation, and the result in values were analyzed. [Results] Significant increases in sensory threshold after stimulation were observed in both groups. However, there were no significant differences between the two groups in sensory thresholds after stimulation or in the magnitude of threshold increases following stimulation. [Conclusion] Our results show that there are no differences between sensory threshold increases induced by pre-programmed and single-frequency transcutaneous electrical nerve stimulation.

  3. Effectiveness of transcutaneous electrical nerve stimulation and microcurrent electrical nerve stimulation in bruxism associated with masticatory muscle pain - A comparative study

    Directory of Open Access Journals (Sweden)

    Rajpurohit Bharat

    2010-01-01

    Full Text Available Objectives: To compare the effectiveness of transcutaneous electrical nerve stimulation (TENS and microcurrent electrical nerve stimulation (MENS on masticatory muscles pain bruxism patient. Materials and Methods : A total of 60 subjects with the clinical diagnosis of bruxism were randomly allocated to two study groups. Group A received TENS (50 Hz, pulse width 0.5 mSec, intensity 0-60 mA for 20 minutes for a period of seven days and Group B received MENS (0.5 Hz, intensity 1,000 μA for 20 minutes for a period of seven days. The outcome measures were assessed in term of Visual Analog Scale (VAS and digital pressometer of 2 Kgf. Results : The study showed significant change in intensity of pain as per VAS score ( P ≤ 0.0001 and tenderness as per digital pressometer ( P ≤ 0.0001. Conclusion : MENS could be used as an effective pain-relieving adjunct to TENS in the treatment of masticatory muscle pain due to bruxism.

  4. Comparison of ultrasound and ultrasound plus nerve stimulator guidance axillary plexus block

    International Nuclear Information System (INIS)

    Demirelli, G.; Baskan, S.; Karabeyoglu, I.; Aytac, I.; Omek, D.H.; Erdogmus, A.; Baydar, M.

    2017-01-01

    To evaluate the characteristics of axillary plexus blockade applied using ultrasound only and using ultrasound together with nerve stimulator in patients undergoing planned forearm, wrist or hand surgery. Methods: This randomised, prospective, double-blinded, single-centre study was conducted at Ankara Numune Training and Research Hospital, Ankara, Turkey, from November 2014 to August 2015, and comprised patients undergoing forearm, wrist or hand surgery. Participants were separated into 2 groups. In Group 1, the nerve roots required for the surgical site were located one by one and local anaesthetic was applied separately to each nerve for the block. In Group 2, the vascular nerve bundle was located under ultrasound guidance and a total block was achieved by administering all the local anaesthetic within the nerve sheath. In the operating room, standard monitorisation was applied. Following preparation of the skin, the axillary region nerve roots and branches and vascular structures were observed by examination with a high-frequency ultrasound probe. In both groups, a 22-gauge, 5cm block needle was entered to the axillary region with visualisation of the whole needle on ultrasound and 20ml local anaesthetic of 0.5% bupivacaine was injected. SPSS 19 was used for data analysis. Results: Of the 60 participants, there were 30(50%) in each group. The mean age was 39.1+-15 years in the group 1 which was the ultrasound nerve stimulation group, and 41.5+-14.3 years in group 2. The duration of the procedure was longer in group I than in group 2 (p<0.05). Patient satisfaction values during the procedure were higher in group 2(p<0.05). In the ulnar sensory examination, the values of the patients in group 1 were higher at 10, 15, 20 and 25 minutes (p<0.05). In the median, radial and ulnar motor examination, the values of the patients in group 1were higher at 15 and 20 minutes (p<0.05). Conclusion: Brachial plexus blockade via axillary approach guided by ultrasound offered

  5. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs: relation to neuronal status.

    Science.gov (United States)

    Ramekers, Dyan; Versnel, Huib; Strahl, Stefan B; Klis, Sjaak F L; Grolman, Wilko

    2015-03-01

    Successful cochlear implant performance requires adequate responsiveness of the auditory nerve to prolonged pulsatile electrical stimulation. Degeneration of the auditory nerve as a result of severe hair cell loss could considerably compromise this ability. The main objective of this study was to characterize the recovery of the electrically stimulated auditory nerve, as well as to evaluate possible changes caused by deafness-induced degeneration. To this end we studied temporal responsiveness of the auditory nerve in a guinea pig model of sensorineural hearing loss. Using masker-probe and pulse train paradigms we compared electrically evoked compound action potentials (eCAPs) in normal-hearing animals with those in animals with moderate (two weeks after ototoxic treatment) and severe (six weeks after ototoxic treatment) loss of spiral ganglion cells (SGCs). Masker-probe interval and pulse train inter-pulse interval was varied from 0.3 to 16 ms. Whereas recovery assessed with masker-probe was roughly similar for normal-hearing and both groups of deafened animals, it was considerably faster for six weeks deaf animals (τ ≈ 1.2 ms) than for two weeks deaf or normal-hearing animals (τ ≈ 3-4 ms) when 100-ms pulse trains were applied. Latency increased with decreasing inter-pulse intervals, and this was more pronounced with pulse trains than with masker-probe stimulation. With high frequency pulse train stimulation eCAP amplitudes were modulated for deafened animals, meaning that amplitudes for odd pulse numbers were larger than for even pulses. The relative refractory period (τ) and the modulation depth of the eCAP amplitude for pulse trains, as well as the latency increase for both paradigms significantly correlated with quantified measures of auditory nerve degeneration (size and packing density of SGCs). In addition to these findings, separate masker-probe recovery functions for the eCAP N1 and N2 peaks displayed a robust non-monotonic or shoulder

  6. Gait phase detection from sciatic nerve recordings in functional electrical stimulation systems for foot drop correction

    International Nuclear Information System (INIS)

    Chu, Jun-Uk; Song, Kang-Il; Han, Sungmin; Suh, Jun-Kyo Francis; Choi, Kuiwon; Youn, Inchan; Lee, Soo Hyun; Kang, Ji Yoon; Hwang, Dosik

    2013-01-01

    Cutaneous afferent activities recorded by a nerve cuff electrode have been used to detect the stance phase in a functional electrical stimulation system for foot drop correction. However, the implantation procedure was difficult, as the cuff electrode had to be located on the distal branches of a multi-fascicular nerve to exclude muscle afferent and efferent activities. This paper proposes a new gait phase detection scheme that can be applied to a proximal nerve root that includes cutaneous afferent fibers as well as muscle afferent and efferent fibers. To test the feasibility of this scheme, electroneurogram (ENG) signals were measured from the rat sciatic nerve during treadmill walking at several speeds, and the signal properties of the sciatic nerve were analyzed for a comparison with kinematic data from the ankle joint. On the basis of these experiments, a wavelet packet transform was tested to define a feature vector from the sciatic ENG signals according to the gait phases. We also propose a Gaussian mixture model (GMM) classifier and investigate whether it could be used successfully to discriminate feature vectors into the stance and swing phases. In spite of no significant differences in the rectified bin-integrated values between the stance and swing phases, the sciatic ENG signals could be reliably classified using the proposed wavelet packet transform and GMM classification methods. (paper)

  7. Vagus Nerve Stimulation for Pediatric and Adult Patients with Pharmaco-resistant Epilepsy

    OpenAIRE

    Meng, Fan-Gang; Jia, Fu-Min; Ren, Xiao-Hui; Ge, Yan; Wang, Kai-Liang; Ma, Yan-Shan; Ge, Ming; Zhang, Kai; Hu, Wen-Han; Zhang, Xin; Hu, Wei; Zhang, Jian-Guo

    2015-01-01

    Background: Over past two decades, vagus nerve stimulation (VNS) has been widely used and reported to alleviate seizure frequency worldwide, however, so far, only hundreds of patients with pharmaco-resistant epilepsy (PRE) have been treated with VNS in mainland China. The study aimed to evaluate the effectiveness of VNS for Chinese patients with PRE and compare its relationship with age cohort and gender. Methods: We retrospectively assessed the clinical outcome of 94 patients with PRE, wh...

  8. Severe muscle cramps relieved by transcutaneous nerve stimulation: a case report.

    Science.gov (United States)

    Mills, K R; Newham, D J; Edwards, R H

    1982-01-01

    The case is described of a 51-year-old man with a 21 year history of severe, long-lasting and widespread muscle cramps. Physical examination revealed muscle hypertrophy and fasciculation; electromyography showed spontaneously active motor units which disappeared during sleep. Cramps could be aborted by ice or mechanical vibration but the most effective management was achieved using transcutaenous nerve stimulation. Images PMID:6981686

  9. Vagus Nerve Stimulation Delivered with Motor Training Enhances Recovery of Function after Traumatic Brain Injury

    OpenAIRE

    Pruitt, David T.; Schmid, Ariel N.; Kim, Lily J.; Abe, Caroline M.; Trieu, Jenny L.; Choua, Connie; Hays, Seth A.; Kilgard, Michael P.; Rennaker, Robert L.

    2016-01-01

    Traumatic Brain Injury (TBI) is one of the largest health problems in the United States, and affects nearly 2 million people every year. The effects of TBI, including weakness and loss of coordination, can be debilitating and last years after the initial injury. Recovery of motor function is often incomplete. We have developed a method using electrical stimulation of the vagus nerve paired with forelimb use by which we have demonstrated enhanced recovery from ischemic and hemorrhagic stroke. ...

  10. Development of an Implantable Pudendal Nerve Stimulator To Restore Bladder Function in Humans After SCI

    Science.gov (United States)

    2016-10-01

    IP) in the area of closed loop treatment of neurogenic bladder , which will be very relevant to the PSTIM project. InCube Labs has also developed...increasing functional bladder capacity, continence and evacuation of urine along with reduction in urinary tract infections and improvement in upper tract...AWARD NUMBER: W81XWH-15-C-0066 TITLE: Development of an Implantable Pudendal Nerve Stimulator To Restore Bladder Function in Humans After SCI

  11. Effects of acute selective pudendal nerve electrical stimulation after simulated childbirth injury

    OpenAIRE

    Jiang, Hai-Hong; Gill, Bradley C.; Dissaranan, Charuspong; Zutshi, Massarat; Balog, Brian M.; Lin, Danli; Damaser, Margot S.

    2012-01-01

    During childbirth, a combinatorial injury occurs and can result in stress urinary incontinence (SUI). Simulated childbirth injury, consisting of vaginal distension (VD) and pudendal nerve crush (PNC), results in slowed recovery of continence, as well as decreased expression of brain-derived neurotrophic factor (BDNF), a regenerative cytokine. Electrical stimulation has been shown to upregulate BDNF in motor neurons and facilitate axon regrowth through the increase of βII-tubulin expression af...

  12. Long-term occipital nerve stimulation for drug-resistant chronic cluster headache.

    Science.gov (United States)

    Leone, Massimo; Proietti Cecchini, Alberto; Messina, Giuseppe; Franzini, Angelo

    2017-07-01

    Introduction Chronic cluster headache is rare and some of these patients become drug-resistant. Occipital nerve stimulation has been successfully employed in open studies to treat chronic drug-resistant cluster headache. Data from large group of occipital nerve stimulation-treated chronic cluster headache patients with long duration follow-up are advantageous. Patients and methods Efficacy of occipital nerve stimulation has been evaluated in an experimental monocentric open-label study including 35 chronic drug-resistant cluster headache patients (mean age 42 years; 30 men; mean illness duration: 6.7 years). The primary end-point was a reduction in number of daily attacks. Results After a median follow-up of 6.1 years (range 1.6-10.7), 20 (66.7%) patients were responders (≥50% reduction in headache number per day): 12 (40%) responders showed a stable condition characterized by sporadic attacks, five responders had a 60-80% reduction in headache number per day and in the remaining three responders chronic cluster headache was transformed in episodic cluster headache. Ten (33.3%) patients were non-responders; half of these have been responders for a long period (mean 14.6 months; range 2-48 months). Battery depletion (21 patients 70%) and electrode migration (six patients - 20%) were the most frequent adverse events. Conclusions Occipital nerve stimulation efficacy is confirmed in chronic drug-resistant cluster headaches even after an exceptional long-term follow-up. Tolerance can occur years after improvement.

  13. A study on cross-talk nerve stimulation: electrode placement and current leakage lid

    Directory of Open Access Journals (Sweden)

    Nicolas Julémont

    2016-07-01

    Full Text Available Cross-talk phenomena should be avoided when stimulating nerves. One option to limit the current spread is to use tripolar electrodes, but at the cost of increasing the number of wires connection. This should be avoided since cables must be thin and compliant. We investigated the impact of the central electrode position and of current spread due to a gap between book and lid on cross-talk, in a set of tripolar or quasi-tripolar configurations.

  14. Single session of brief electrical stimulation immediately following crush injury enhances functional recovery of rat facial nerve

    OpenAIRE

    Eileen M. Foecking, PhD; Keith N. Fargo, PhD; Lisa M. Coughlin, MD; James T. Kim, MD; Sam J. Marzo, MD; Kathryn J. Jones, PhD

    2012-01-01

    Peripheral nerve injuries lead to a variety of pathological conditions, including paresis or paralysis when the injury involves motor axons. We have been studying ways to enhance the regeneration of peripheral nerves using daily electrical stimulation (ES) following a facial nerve crush injury. In our previous studies, ES was not initiated until 24 h after injury. The current experiment tested whether ES administered immediately following the crush injury would further decrease the time for c...

  15. Antiepileptic effects of electroacupuncture vs vagus nerve stimulation on cortical epileptiform activities.

    Science.gov (United States)

    Zhang, Jian-Liang; Zhang, Shi-Ping; Zhang, Hong-Qi

    2008-07-15

    Introduced about two decades ago, vagus nerve stimulation (VNS) therapy has been increasingly used for the treatment of refractory epilepsy recently. This study was set out to compare the effects between VNS and electroacupuncture (EA) on pentylenetetrazole (PTZ) induced epileptiform activities in the rat cerebral cortex. Under general anesthesia, the parietal cortex of the rat (n=20) was exposed to record the cortical epileptiform activities. The left vagus nerve was stimulated at 30 Hz, 1 mA or 3 mA for 5 min. For EA, "Dazhui" acupoint (GV14) was stimulated with a pair of acupuncture needles with the same parameters. The results show that both VNS and EA at either 1 mA or 3 mA could inhibit the PTZ-induced cortical epileptiform activities, and higher stimulation (3 mA) was not associated with a greater inhibition. In the cases that showed inhibitory responses, there were no statistically significant differences between the two modalities, implying that EA could be comparable to VNS in the treatment of epilepsy. Thus, under current experimental settings, the antiepileptic effect induced by electrical stimulation appeared not vagal specific, and EA could be a good alternative to VNS in the management of epilepsy.

  16. Proximally evoked soleus H-reflex to S1 nerve root stimulation in sensory neuronopathies (ganglionopathies).

    Science.gov (United States)

    Zhu, Dong-Qing; Zhu, Yu; Qiao, Kai; Zheng, Chao-Jun; Bradley, Scott; Weber, Robert; Chen, Xiang-Jun

    2013-11-01

    Sensory neuronopathy (SNN) mimics distal sensory axonopathy. The conventional H-reflex elicited by tibial nerve stimulation (tibial H-reflex) is usually abnormal in both conditions. We evaluated the proximally evoked soleus H-reflex in response to S1 nerve root stimulation (S1 foramen H-reflex) in SNN. Eleven patients with SNN and 6 with distal sensory axonopathy were studied. Tibial and S1 foramen H-reflexes were performed bilaterally in each patient. Tibial and S1 foramen H-reflexes were absent bilaterally in all patients with SNN. In the patients with distal sensory axonopathy, tibial H-reflexes were absent in 4 and demonstrated prolonged latencies in 2, but S1 foramen H-reflexes were normal. Characteristic absence of the H-reflex after both proximal and distal stimulation reflects primary loss of dorsal root ganglion (DRG) neurons and the distinct non-length-dependent impairment of sensory nerve fibers in SNN. Copyright © 2013 Wiley Periodicals, Inc.

  17. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    Science.gov (United States)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  18. [Comparative study of performance of lower extremities blocks under ultrasonography and nerve stimulator guidance].

    Science.gov (United States)

    Bubnov, R V; Strokan', A M; Abdullaiev, R Ia

    2011-01-01

    The aim of the study was to conduct a comparative analysis of regional anesthesia under neurostimulator, ultrasound guidance, and under combined guidance of the neurostimulator and ultrasound to ensure the safe and effective control of regional anesthesia with minimal discomfort for the patient. Ultrasound allows to gain significantly higher quality scores of local anesthesia than nerve stimulator control, to significantly reduce the number of needle extra insertions, needling cases, transposition, addition of general anesthesia, the number of unsuccessful blocks, reduce needle manipulation, significantly increase the occurrence of cases of complete blockade (sensitive and motor) on 30 min., causes less discomfort for patients. The use of ultrasound does not exclude the use of nerve stimulator as an additional means of verification of correct needle placement, particularly in the early stages of mastering the technique. The research combined use of ultrasound and nerve stimulator significantly decrease unsuccessful blockade and transposition need for a needle during manipulation. However, the difference between some indicators of quality of regional anesthesia is statistically unreliable; it requires further randomized and double blind studies on large patient groups, for different blockages.

  19. Trigeminal nerve stimulation in major depressive disorder: first proof of concept in an open pilot trial.

    Science.gov (United States)

    Schrader, Lara M; Cook, Ian A; Miller, Patrick R; Maremont, Eve R; DeGiorgio, Christopher M

    2011-11-01

    Modulation of brain activity via trigeminal nerve stimulation is an emerging therapy in drug-resistant epilepsy. This cranial nerve also projects to structures implicated in depression (such as the nucleus tractus solitarius and locus coeruleus). We examined the effects of external trigeminal nerve stimulation in major depressive disorder as an adjunct to pharmacotherapy. Five adults (mean age 49.6, SD 10.9, three females and two males) participated in an 8-week open-label outpatient trial; all had persistent symptoms despite adequate pharmacotherapy, with a mean score on the 28-item Hamilton Depression Rating Scale of 25.4 (SD=3.9) at entry. Nightly stimulation over the V(1) branch was well tolerated. Both the clinician-rated 28-item Hamilton Depression Rating Scale (P=0.006) and the self-rated Beck Depression Inventory (P=0.0004) detected significant symptomatic improvement. This novel neuromodulation approach may have use as an adjunct to pharmacotherapy in major depressive disorder. Additional larger trials are needed to delineate efficacy and tolerability with greater reliability. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Effectiveness of transcutaneous electrical nerve stimulation and interferential current in primary dysmenorrhea.

    Science.gov (United States)

    Tugay, Nazan; Akbayrak, Türkan; Demirtürk, Funda; Karakaya, Ilkim Citak; Kocaacar, Ozge; Tugay, Umut; Karakaya, Mehmet Gürhan; Demirtürk, Fazli

    2007-01-01

    To compare the effectiveness of transcutaneous electrical nerve stimulation and interferential current in primary dysmenorrhea. A prospective, randomized, and controlled study. Hacettepe University School of Physical Therapy and Rehabilitation. Thirty-four volunteer subjects with primary dysmenorrhea (mean age: 21.35 +/- 1.70 years) were included. Statistical analyses were performed in 32 subjects who completed all measures. Fifteen subjects received interferential current application for 20 minutes and 17 subjects received transcutaneous electrical nerve stimulation for 20 minutes when they were experiencing dysmenorrhea. Physical characteristics, years since menarche, length of menstrual cycle (days), and duration of menstruation (days) were recorded. Visual analog scale ( VAS) intensities of menstrual pain, referred lower limb pain, and low back pain were recorded before treatment, and immediately, 8 hours, and 24 hours after treatment. Intensities of the evaluated parameters decreased beginning from just after the applications in both groups (P0.05). Both transcutaneous electrical nerve stimulation and interferential current appear to be effective in primary dysmenorrhea. As they are free from the potentially adverse effects of analgesics, and no adverse effects are reported in the literature nor observed in this study, a clinical trial of their effectiveness in comparison with untreated and placebo-treated control groups is warranted.

  1. Single vagus nerve stimulation reduces early postprandial C-peptide levels but not other hormones or postprandial metabolism

    NARCIS (Netherlands)

    Tang, M. W.; van Nierop, F. S.; Koopman, F. A.; Eggink, H. M.; Gerlag, D. M.; Chan, M. W.; Zitnik, R.; Vaz, F. M.; Romijn, J. A.; Tak, P. P.; Soeters, M. R.

    2018-01-01

    A recent study in rheumatoid arthritis (RA) patients using electrical vagus nerve stimulation (VNS) to activate the inflammatory reflex has shown promising effects on disease activity. Innervation by the autonomic nerve system might be involved in the regulation of many endocrine and metabolic

  2. Vagal Nerve Stimulation in the Treatment of Drug-Resistant Epileptic Encephalopathies in Inborn Errors of Metabolism

    Directory of Open Access Journals (Sweden)

    Daniele Grioni MD

    2015-10-01

    Full Text Available Patients affected by inborn errors of metabolism can develop catastrophic epilepsies ineligible for resective surgery. Few reports concerning vagal nerve stimulation in patients with epileptic encephalopathy in the context of metabolic diseases have been published in the literature. Drug-resistant epilepsies in metabolic disease could be a specific target for vagal nerve stimulation, although the efficacy of this technique in these patients still needs to be proved. The authors report our experience in treating refractory epilepsy with vagal nerve stimulation in 2 patients affected by inborn errors of metabolism. The first patient is a 23-year-old patient affected by glutaric aciduria type II, the other one is a 16-month-old child with nonketotic hyperglycinemia. Vagal nerve stimulation reduced seizures up to 50% in the first case and up to 90% in the second one.

  3. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    Science.gov (United States)

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  4. New selective endoscopic sacral nerve root stimulation--an advance in the treatment of fecal incontinence.

    Science.gov (United States)

    Goos, M; Haberstroh, J; Baumann, T; Hopt, U; Ruf, G; Oberst, M

    2011-02-01

    Fecal incontinence (FI) is a major part of illness and physical discomfort in the general population. Since the 1990s, sacral nerve stimulation has been well established in the treatment of neurogenic FI. The precise placement of the electrode is crucial for the success of the procedure. Eighty percent of the patients benefit from permanent treatment, but in 10-20% of the patients tested electrode placement proves impossible due to anatomical variations of the sacral foramina. In this study, we describe the technical requirements and a new method of electrode placement with reference to the anatomical (bone) landmarks in an animal model. With a small endoscope (Verres needle), we accessed the perirectal space to identify the nervous structures. A stimulated sphincter EMG was obtained for the experimental animals and muscle action potential (MAP/M-wave), latency time [ms], and the amplitude of the motor response [μV] were recorded. Electrodes were placed, the animals killed and dissected leaving the pelvic cavity untouched. The specimens were examined in a magnetic resonance scanner and in a multi-slice computed tomography scanner to detect the electrode material and possible surgical complications. After that the specimens were dissected. In all eight cases in the four animals tested, we were able to stimulate the sacral nerve as demonstrated by the EMG findings. No major surgical complications were observed for the procedure. Endoscopic sacral nerve root stimulation is a safe and effective method for delivering stimulation material in the pelvis of the sheep. It is a promising procedure to be tested in humans. © 2010 Blackwell Publishing Ltd.

  5. Transvenous vagus nerve stimulation does not modulate the innate immune response during experimental human endotoxemia: a randomized controlled study

    OpenAIRE

    Kox, M.; Eijk, L.T.G.J. van; Verhaak, T.; Frenzel, T.; Kiers, H.D.; Gerretsen, J.; Hoeven, J.G. van der; Kornet, L.; Scheiner, A.; Pickkers, P.

    2015-01-01

    INTRODUCTION: Vagus nerve stimulation (VNS) exerts beneficial anti-inflammatory effects in various animal models of inflammation, including collagen-induced arthritis, and is implicated in representing a novel therapy for rheumatoid arthritis. However, evidence of anti-inflammatory effects of VNS in humans is very scarce. Transvenous VNS (tVNS) is a newly developed and less invasive method to stimulate the vagus nerve. In the present study, we determined whether tVNS is a feasible and safe pr...

  6. Nerve Stimulator Guided Axillary Block in Painless Reduction of Distal Radius Fractures; a Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Hossein Alimohammadi

    2013-12-01

    Full Text Available Introduction: Given the high prevalence of upper extremity fractures and increasing need to perform painless reduction in the emergency departments, the use of analgesic methods with fewer complications and more satisfaction appears to be essential. The aim of this study is comparison the nerve stimulator guided axillary block (NSAB with intravenous sedation in induction of analgesia for painless reduction of distal radius fractures. Methods: In the present randomized clinical trial, 60 patients (18-70 years of age suffered from distal radius fractures, were divided into two equal groups. One group received axillary nerve block by nerve stimulator guidance and the other procedural sedation and analgesia (PSA using midazolam/fentanyl. Onset of analgesia, duration of analgesic effect, total procedure time and pain scores were recorded using visual analogue scale (VAS and the outcomes were compared. Chi-squared and student t test were performed to evaluate differences between two groups. Results: Sixty patients were randomly divided into two groups (83.3% male. The mean age of patients was 31 ±0.7 years. While the onset of analgesia was significantly longer in the NSAB group, the mean total time of procedure was shorter than PSA (p<0.001. The NSAB group needed a shorter post-operative observation time (P<0.001. Both groups experienced equal pain relief before, during and after procedure (p>0.05. Conclusion: It seems that shorter post-operative monitoring time and consequently lesser total time of procedure, make nerve stimulator guided axillary block as an appropriate alternative for procedural sedation and analgesia in painless reduction of distal radius fractures in emergency department. 

  7. Trigeminal nerve stimulation: A new way of treatment of refractory seizures

    Directory of Open Access Journals (Sweden)

    Mohammad Zare

    2014-01-01

    Full Text Available Background: Refractory epilepsy is a significant problem in clinical practice. Sometimes, multiple antiepileptic drugs are required to control the attacks. To avoid various complications ensuring from these drugs, new methods of treatment such as vagus nerve stimulation (VNS have been recommended. Trigeminal nerve stimulation (TNS is a new method under evaluation. The purpose of this paper is to determine whether this method is effective or not. Materials and Methods: Percutaneous simulation of supraorbital branches of the trigeminal nerve by an electrical device was planned in 18 patients over a six-month period. Participants who fulfilled the research criteria were selected randomly from epileptic patients referred to the clinic. (November 2011-December 2012. T-test was used for data analysis. Results: Only eight of 18 patients stayed in the study during all 6 months. A 47.9% reduction in daily seizure frequency was seen in this group (P = 0.022. Other subjects left the study earlier. In this group, seizure frequency increased by 10.6% (P = 0.82. Conclusions: The mechanism of the antiepileptic effects of TNS is not yet clear. In animal studies, it is suggested that the trigeminal nucleus and its projection to nucleus tractus solitarius (NTS and the locus ceruleus, are involved in seizure modulation.Although in comparison with seizure frequency prior to the study there was significant seizure reduction, according to the usual criteria for VNS i.e. 50% seizure frequency reduction, the effect of TNS per se may not yet be adequate for treatment of seizures. Trigeminal nerve stimulation may be an effective "adjuvant" method for treatment of intractable seizure.

  8. Transcutaneous Electrical Nerve Stimulation in Children with Monosymptomatic Nocturnal Enuresis: A Randomized, Double-Blind, Placebo Controlled Study.

    Science.gov (United States)

    Jørgensen, Cecilie Siggaard; Kamperis, Konstantinos; Borch, Luise; Borg, Britt; Rittig, Søren

    2017-09-01

    In a third of all children with monosymptomatic nocturnal enuresis their condition is refractory to first line treatments. Transcutaneous electrical nerve stimulation has been documented to be efficacious in children with daytime incontinence. We investigated the effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Children with monosymptomatic nocturnal enuresis (3 or more wet nights per week) and no nocturnal polyuria were randomized to treatment with active or sham transcutaneous electrical nerve stimulation involving 1-hour sessions twice daily for 10 weeks in a double-blind design. Of the 52 children with monosymptomatic nocturnal enuresis included in the study 47 completed treatment (mean age 9.5 ± 2.1 years, 38 males). None of the children experienced a full response with complete remission of enuresis. Treatment with transcutaneous electrical nerve stimulation did not lead to significant changes in number of wet nights, nocturnal urine production on wet or dry nights, maximum voided volume with and without first morning voided volume, or voiding frequency when comparing parameters before and after treatment. The present study demonstrates no anti-enuretic effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Nocturnal urine production and bladder capacity remained unchanged during and after treatment with transcutaneous electrical nerve stimulation. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial.

    Science.gov (United States)

    Stefan, Hermann; Kreiselmeyer, Gernot; Kerling, Frank; Kurzbuch, Katrin; Rauch, Christophe; Heers, Marcel; Kasper, Burkhard S; Hammen, Thilo; Rzonsa, Martina; Pauli, Elisabeth; Ellrich, Jens; Graf, Wolfgang; Hopfengärtner, Rüdiger

    2012-07-01

    To elucidate, in a pilot-study, whether noninvasive transcutaneous vagus nerve stimulation (t-VNS) is a safe and tolerable alternative treatment option in pharmacoresistant epilepsy. t-VNS was applied to 10 patients with pharmacoresistant epilepsies. Stimulation via the auricular branch of the vagus nerve of the left tragus was delivered three times per day for 9 months. Subjective documentation of stimulation effects was obtained from patients' seizure diaries. For a more reliable assessment of seizure frequency, we carried out prolonged outpatient video-electroencephalography (EEG) monitoring. In addition, computerized testing of cognitive, affective, and emotional functions was performed. Three patients aborted the study. Of the remaining seven patients, an overall reduction of seizure frequency was observed in five patients after 9 months of t-VNS. The noninvasive t-VNS stimulation is a safe and well-tolerated method for relatively long periods, and might be an alternative treatment option for patients with epilepsy. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  10. Influence of asymmetric recurrent laryngeal nerve stimulation on vibration, acoustics, and aerodynamics.

    Science.gov (United States)

    Chhetri, Dinesh K; Neubauer, Juergen; Sofer, Elazar

    2014-11-01

    Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Basic science study using an in vivo canine model. The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0 ), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0 , glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  11. High-power integrated stimulator output stages with floating discharge over a wide voltage range for nerve stimulation.

    Science.gov (United States)

    Langlois, P J; Demosthenous, A; Pachnis, I; Donaldson, N

    2010-02-01

    Two integrated nerve stimulator circuits are described. Both generate passively charge-balanced biphasic stimulating pulses of 1 to 16 mA with 10-¿s to 1-ms widths from 6- to 24-V supplies for implanted book electrodes. In both circuits, the electrodes are floating during the passive discharge anywhere within the range of the power rails, which may be up to 24 V. The first circuit is used for stimulation only. It uses a floating depletion transistor to enable continuous discharge of the electrodes, except when stimulating, without using power. The second circuit also allows neural signals to be recorded from the same tripole. It uses a modified floating complementary metal-oxide semiconductor (CMOS) discharge switch capable of operating over a range beyond the gate-to-source voltage limits of its transistors. It remains off for long periods using no power while recording. A 0.6-¿m silicon-on-insulator CMOS technology has been used. The measured performance of the circuits has been verified using multiple tripoles in saline.

  12. Extracellular pH monitoring for use in closed-loop vagus nerve stimulation.

    Science.gov (United States)

    Cork, Simon C; Eftekhar, Amir; Mirza, Khalid B; Zuliani, Claudio; Nikolic, Konstantin; Gardiner, James V; Bloom, Stephen R; Toumazou, Christofer

    2018-02-01

    Vagal nerve stimulation (VNS) has shown potential benefits for obesity treatment; however, current devices lack physiological feedback, which limit their efficacy. Changes in extracellular pH (pH e ) have shown to be correlated with neural activity, but have traditionally been measured with glass microelectrodes, which limit their in vivo applicability. Iridium oxide has previously been shown to be sensitive to fluctuations in pH and is biocompatible. Iridium oxide microelectrodes were inserted into the subdiaphragmatic vagus nerve of anaesthetised rats. Introduction of the gut hormone cholecystokinin (CCK) or distension of the stomach was used to elicit vagal nerve activity. Iridium oxide microelectrodes have sufficient pH sensitivity to readily detect changes in pH e associated with both CCK and gastric distension. Furthermore, a custom-made Matlab script was able to use these changes in pH e to automatically trigger an implanted VNS device. This is the first study to show pH e changes in peripheral nerves in vivo. In addition, the demonstration that iridium oxide microelectrodes are sufficiently pH sensitive as to measure changes in pH e associated with physiological stimuli means they have the potential to be integrated into closed-loop neurostimulating devices.

  13. Extracellular pH monitoring for use in closed-loop vagus nerve stimulation

    Science.gov (United States)

    Cork, Simon C.; Eftekhar, Amir; Mirza, Khalid B.; Zuliani, Claudio; Nikolic, Konstantin; Gardiner, James V.; Bloom, Stephen R.; Toumazou, Christofer

    2018-02-01

    Objective. Vagal nerve stimulation (VNS) has shown potential benefits for obesity treatment; however, current devices lack physiological feedback, which limit their efficacy. Changes in extracellular pH (pHe) have shown to be correlated with neural activity, but have traditionally been measured with glass microelectrodes, which limit their in vivo applicability. Approach. Iridium oxide has previously been shown to be sensitive to fluctuations in pH and is biocompatible. Iridium oxide microelectrodes were inserted into the subdiaphragmatic vagus nerve of anaesthetised rats. Introduction of the gut hormone cholecystokinin (CCK) or distension of the stomach was used to elicit vagal nerve activity. Main results. Iridium oxide microelectrodes have sufficient pH sensitivity to readily detect changes in pHe associated with both CCK and gastric distension. Furthermore, a custom-made Matlab script was able to use these changes in pHe to automatically trigger an implanted VNS device. Significance. This is the first study to show pHe changes in peripheral nerves in vivo. In addition, the demonstration that iridium oxide microelectrodes are sufficiently pH sensitive as to measure changes in pHe associated with physiological stimuli means they have the potential to be integrated into closed-loop neurostimulating devices.

  14. Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects.

    Science.gov (United States)

    De Couck, M; Cserjesi, R; Caers, R; Zijlstra, W P; Widjaja, D; Wolf, N; Luminet, O; Ellrich, J; Gidron, Y

    2017-03-01

    The vagus nerve is strategically located in the body, and has multiple homeostatic and health-promoting effects. Low vagal activity predicts onset and progression of diseases. These are the reasons to activate this nerve. This study examined the effects of transcutaneous vagus nerve stimulation (t-VNS) on a main index of vagal activity, namely heart rate variability (HRV). In Study 1, we compared short (10min) left versus right ear t-VNS versus sham (no stimulation) in a within-subjects experimental design. Results revealed significant increases in only one HRV parameter (standard deviation of the RR intervals (SDNN)) following right-ear t-VNS. Study 2 examined the prolonged effects of t-VNS (1h) in the right ear. Compared to baseline, right-t-VNS significantly increased the LF and LF/HF components of HRV, and SDNN in women, but not in men. These results show limited effects of t-VNS on HRV, and are discussed in light of neuroanatomical and statistical considerations and future directions are proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine

    Science.gov (United States)

    Hawkins, Jordan L.; Cornelison, Lauren E.; Blankenship, Brian A.; Durham, Paul L.

    2017-01-01

    Abstract Introduction: Although neck muscle tension is considered a risk factor for migraine, pungent odors can act as a trigger to initiate an attack in sensitized individuals. Although noninvasive vagus nerve stimulation (nVNS) is now an approved treatment for chronic migraine, how it functions to inhibit trigeminal nociception in an episodic migraine model is not known. Objectives: The objectives of this study were to determine if nVNS could inhibit trigeminal nociception in a novel model of episodic migraine and investigate changes in the expression of proteins implicated in peripheral and central sensitization. Methods: Sprague-Dawley male rats were injected with an inflammatory agent in the trapezius muscle before exposure to pungent volatile compounds, which was used to initiate trigeminal nociceptor activation. The vagus nerve was stimulated transdermally by a 1-ms pulse of 5 kHz sine waves, repeated at 25 Hz for 2 minutes. Nocifensive head withdrawal response to von Frey filaments was determined and immunoreactive protein levels in the spinal cord and trigeminal ganglion (TG) were investigated. Results: Exposure to the pungent odor significantly increased the number of nocifensive withdrawals in response to mechanical stimulation of sensitized TG neurons mediated by neck muscle inflammation. Noninvasive vagus nerve stimulation inhibited nociception and repressed elevated levels of P-ERK in TG, Iba1 in microglia, and GFAP in astrocytes from sensitized animals exposed to the pungent odor. Conclusion: Our findings demonstrate that nVNS inhibits mechanical nociception and represses expression of proteins associated with peripheral and central sensitization of trigeminal neurons in a novel rodent model of episodic migraine. PMID:29392242

  16. Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging

    Science.gov (United States)

    Tian, Feng; Yang, Wenlong; Mordes, Daniel A.; Wang, Jin-Yuan; Salameh, Johnny S.; Mok, Joanie; Chew, Jeannie; Sharma, Aarti; Leno-Duran, Ester; Suzuki-Uematsu, Satomi; Suzuki, Naoki; Han, Steve S.; Lu, Fa-Ke; Ji, Minbiao; Zhang, Rosanna; Liu, Yue; Strominger, Jack; Shneider, Neil A.; Petrucelli, Leonard; Xie, X. Sunney; Eggan, Kevin

    2016-10-01

    The study of amyotrophic lateral sclerosis (ALS) and potential interventions would be facilitated if motor axon degeneration could be more readily visualized. Here we demonstrate that stimulated Raman scattering (SRS) microscopy could be used to sensitively monitor peripheral nerve degeneration in ALS mouse models and ALS autopsy materials. Three-dimensional imaging of pre-symptomatic SOD1 mouse models and data processing by a correlation-based algorithm revealed that significant degeneration of peripheral nerves could be detected coincidentally with the earliest detectable signs of muscle denervation and preceded physiologically measurable motor function decline. We also found that peripheral degeneration was an early event in FUS as well as C9ORF72 repeat expansion models of ALS, and that serial imaging allowed long-term observation of disease progression and drug effects in living animals. Our study demonstrates that SRS imaging is a sensitive and quantitative means of measuring disease progression, greatly facilitating future studies of disease mechanisms and candidate therapeutics.

  17. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha.

    Science.gov (United States)

    Brock, C; Brock, B; Aziz, Q; Møller, H J; Pfeiffer Jensen, M; Drewes, A M; Farmer, A D

    2017-05-01

    The vagus nerve is a central component of cholinergic anti-inflammatory pathways. We sought to evaluate the effect of bilateral transcutaneous cervical vagal nerve stimulation (t-VNS) on validated parameters of autonomic tone and cytokines in 20 healthy subjects. 24 hours after t-VNS, there was an increase in cardiac vagal tone and a reduction in tumor necrosis factor-α in comparison to baseline. No change was seen in blood pressure, cardiac sympathetic index or other cytokines. These preliminary data suggest that t-VNS exerts an autonomic and a subtle antitumor necrosis factor-α effect, which warrants further evaluation in larger controlled studies. © 2016 John Wiley & Sons Ltd.

  18. Usefulness of cervical root magnetic stimulation in assessing proximal motor nerve conduction.

    Science.gov (United States)

    Veltsista, Dimitra; Chroni, Elisabeth

    2015-10-01

    To evaluate the reliability and utility of cervical root magnetic stimulation in exploring proximal motor conduction. In 20 patients with demyelinating polyneuropathy (DPN), 20 patients with amyotrophic lateral sclerosis (ALS) and 25 healthy subjects, evoked compound muscle action potentials (CMAPs) were recorded from abductor digiti minimi muscle in response to electrical stimulation up to Erb's point and magnetic stimulation up to the cervical roots. In all healthy and ALS subjects, magnetic root stimulation confirmed the absence of conduction abnormalities, including those in whom supramaximal responses at Erb's point were not achieved. In the DPN group, conduction block and/or temporal dispersion was revealed by magnetic root stimulation in 9 out of 20 patients (45%), 3 more than those detected at Erb's point. Cervical root stimulation allowed clear distinction between motor neuronopathy and DPN. It is recommended as part of the routine evaluation of patients suspected of having DPN, especially when distal nerve studies are inconclusive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Brain evoked potentials to noxious sural nerve stimulation in sciatalgic patients.

    Science.gov (United States)

    Willer, J C; De Broucker, T; Barranquero, A; Kahn, M F

    1987-07-01

    In sciatalgic patients and before any treatment, the goal of this work was to compare the amplitude of the late component (N150-P220) of the brain evoked potential (BEP) between resting pain-free conditions and a neurological induced pain produced by the Lasègue manoeuvre. The study was carried out with 8 inpatients affected with a unilateral sciatica resulting from an X-ray identified dorsal root compression from discal origin. The sural nerve was electrically stimulated at the ankle level while BEPs were recorded monopolarly from the vertex. The stimulus intensity eliciting a liminal nociceptive reflex response in a knee-flexor muscle associated with a liminal pain was selected for this study. Both normal and affected side were alternatively stimulated during several conditions of controls and of Lasègue's manoeuvres performed on the normal and on the affected side. Results show that the Lasègue manoeuvre performed on the affected side induced a significant increase in the amplitude of N150-P220; performed on the normal side, this same manoeuvre resulted in a significant decrease of the N150-P220 amplitude. These variations were observed whatever was the side (normal or affected) under sural nerve stimulation. The possible neural mechanisms of these changes and clinical implications of these data are then discussed.

  20. Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation.

    Science.gov (United States)

    Napadow, Vitaly; Edwards, Robert R; Cahalan, Christine M; Mensing, George; Greenbaum, Seth; Valovska, Assia; Li, Ang; Kim, Jieun; Maeda, Yumi; Park, Kyungmo; Wasan, Ajay D

    2012-06-01

    Previous vagus nerve stimulation (VNS) studies have demonstrated antinociceptive effects, and recent noninvasive approaches, termed transcutaneous-vagus nerve stimulation (t-VNS), have utilized stimulation of the auricular branch of the vagus nerve in the ear. The dorsal medullary vagal system operates in tune with respiration, and we propose that supplying vagal afferent stimulation gated to the exhalation phase of respiration can optimize t-VNS. Counterbalanced, crossover study. Patients with chronic pelvic pain (CPP) due to endometriosis in a specialty pain clinic. INTERVENTIONS/OUTCOMES: We evaluated evoked pain analgesia for respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) compared with nonvagal auricular stimulation (NVAS). RAVANS and NVAS were evaluated in separate sessions spaced at least 1 week apart. Outcome measures included deep-tissue pain intensity, temporal summation of pain, and anxiety ratings, which were assessed at baseline, during active stimulation, immediately following stimulation, and 15 minutes after stimulus cessation. RAVANS demonstrated a trend for reduced evoked pain intensity and temporal summation of mechanical pain, and significantly reduced anxiety in N = 15 CPP patients, compared with NVAS, with moderate to large effect sizes (η(2) > 0.2). Chronic pain disorders such as CPP are in great need of effective, nonpharmacological options for treatment. RAVANS produced promising antinociceptive effects for quantitative sensory testing (QST) outcomes reflective of the noted hyperalgesia and central sensitization in this patient population. Future studies should evaluate longer-term application of RAVANS to examine its effects on both QST outcomes and clinical pain. Wiley Periodicals, Inc.

  1. Laser-Evoked Potentials in Fibromyalgia: The Influence of Greater Occipital Nerve Stimulation on Cerebral Pain Processing.

    Science.gov (United States)

    Plazier, Mark; Ost, Jan; Snijders, Erwin; Gilbers, Martijn; Vancamp, Tim; De Ridder, Dirk; Vanneste, Sven

    2015-07-01

    Fibromyalgia causes widespread musculo-skeletal pain in the four quadrants of the body. Greater occipital nerve stimulation has recently shown beneficial effects in fibromyalgia patients on pain, fatigue, and mood disorders. Laser-evoked potentials (LEPs) are used for research to understand the pathophysiological mechanisms of pain and to evaluate the effects of pain treatment. In fibromyalgia patients, LEPs tend to have a higher N2 amplitude, a tendency to shorter latencies, and patients have a lower pain threshold. Greater occipital nerve stimulation might exert a modulation of the medial pain pathways processing the affective motivational components of pain (unpleasantness) as well as the descending pain inhibitory pathways (reducing pain), both of which are contributing to the N2P2 peak. To test this hypothesis, the authors performed LEPs in a group of fibromyalgia patients with and without greater occipital nerve stimulation. Occipital nerve stimulation does not alter the amplitudes of the LEP recordings, although a significant difference in latencies can be seen. More specifically, latencies of the N2P2 increased in the condition after stimulation, and especially at the Pz electrode. Our results suggest Occipital Nerve Stimulation (ONS) induces a modification of the balance between antinociceptive pain inhibitory pathways and pain-provoking pathways. © 2015 International Neuromodulation Society.

  2. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold.

    Science.gov (United States)

    Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji

    2016-04-01

    [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion.

  3. Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression.

    Science.gov (United States)

    Fang, Jiliang; Egorova, Natalia; Rong, Peijing; Liu, Jun; Hong, Yang; Fan, Yangyang; Wang, Xiaoling; Wang, Honghong; Yu, Yutian; Ma, Yunyao; Xu, Chunhua; Li, Shaoyuan; Zhao, Jingjun; Luo, Man; Zhu, Bing; Kong, Jian

    2017-01-01

    Transcutaneous vagus nerve stimulation (tVNS), a non-invasive method of brain stimulation through the auricular branch of the vagus nerve, has shown promising results in treating major depressive disorder (MDD) in several pilot studies. However, the neural mechanism by which the effect on depression might be achieved has not been fully investigated, with only a few neuroimaging studies demonstrating tVNS-induced changes in the brains of healthy volunteers. Identifying specific neural pathways, which are influenced by tVNS compared with sham in depressed individuals, as well as determining neurobiomarkers of tVNS treatment success are needed to advance the application of tVNS for MDD. In order to address these questions, we measured fMRI brain activity of thirty-eight depressed patients assigned to undergo tVNS ( n  = 17) or sham ( n  = 21) treatment for 4 weeks, during the first stimulation session. The results showed significant fMRI signal increases in the left anterior insula, revealed by a direct comparison of tVNS and sham stimulation. Importantly, the insula activation level during the first stimulation session in the tVNS group was significantly associated with the clinical improvement at the end of the four-week treatment, as indicated by the Hamilton Depression Rating Scale (HAM-D) score. Our findings suggest that anterior insula fMRI activity could serve as a potential cortical biomarker and an early predictor of tVNS longitudinal treatment success.

  4. Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression

    Directory of Open Access Journals (Sweden)

    Jiliang Fang

    2017-01-01

    Full Text Available Transcutaneous vagus nerve stimulation (tVNS, a non-invasive method of brain stimulation through the auricular branch of the vagus nerve, has shown promising results in treating major depressive disorder (MDD in several pilot studies. However, the neural mechanism by which the effect on depression might be achieved has not been fully investigated, with only a few neuroimaging studies demonstrating tVNS-induced changes in the brains of healthy volunteers. Identifying specific neural pathways, which are influenced by tVNS compared with sham in depressed individuals, as well as determining neurobiomarkers of tVNS treatment success are needed to advance the application of tVNS for MDD. In order to address these questions, we measured fMRI brain activity of thirty-eight depressed patients assigned to undergo tVNS (n = 17 or sham (n = 21 treatment for 4 weeks, during the first stimulation session. The results showed significant fMRI signal increases in the left anterior insula, revealed by a direct comparison of tVNS and sham stimulation. Importantly, the insula activation level during the first stimulation session in the tVNS group was significantly associated with the clinical improvement at the end of the four-week treatment, as indicated by the Hamilton Depression Rating Scale (HAM-D score. Our findings suggest that anterior insula fMRI activity could serve as a potential cortical biomarker and an early predictor of tVNS longitudinal treatment success.

  5. Differential effects of bifrontal and occipital nerve stimulation on pain and fatigue using transcranial direct current stimulation in fibromyalgia patients.

    Science.gov (United States)

    To, Wing Ting; James, Evan; Ost, Jan; Hart, John; De Ridder, Dirk; Vanneste, Sven

    2017-07-01

    Fibromyalgia is a disorder characterized by widespread musculoskeletal pain frequently accompanied by other symptoms such as fatigue. Moderate improvement from pharmacological and non-pharmacological treatments have proposed non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) to the occipital nerve (more specifically the C2 area) or to the dorsolateral prefrontal cortex (DLPFC) as potential treatments. We aimed to explore the effectiveness of repeated sessions of tDCS (eight sessions) targeting the C2 area and DLPFC in reducing fibromyalgia symptoms, more specifically pain and fatigue. Forty-two fibromyalgia patients received either C2 tDCS, DLPFC tDCS or sham procedure (15 C2 tDCS-11 DLPFC tDCS-16 sham). All groups were treated with eight sessions (two times a week for 4 weeks). Our results show that repeated sessions of C2 tDCS significantly improved pain, but not fatigue, in fibromyalgia patients, whereas repeated sessions of DLPFC tDCS significantly improved pain as well as fatigue. This study shows that eight sessions of tDCS targeting the DLPFC have a more general relief in fibromyalgia patients than when targeting the C2 area, suggesting that stimulating different targets with eight sessions of tDCS can lead to benefits on different symptom dimensions of fibromyalgia.

  6. Treating Depression with Transcutaneous Auricular Vagus Nerve Stimulation: State of the Art and Future Perspectives

    OpenAIRE

    Jian Kong; Jiliang Fang; Joel Park; Shaoyuan Li; Peijing Rong

    2018-01-01

    Depression is a highly prevalent disorder, and its treatment is far from satisfactory. There is an urgent need to develop a new treatment for depression. Although still at its early stage, transcutaneous auricular vagus nerve stimulation (taVNS) has shown promising potential for treating depression. In this article, we first summarize the results of clinical studies on the treatment effect of taVNS on depression. Then, we re-analyze a previous study to identify the specific symptoms taVNS can...

  7. Sacral nerve stimulation allows for decreased antegrade continence enema use in children with severe constipation.

    Science.gov (United States)

    Lu, Peter L; Asti, Lindsey; Lodwick, Daniel L; Nacion, Kristine M; Deans, Katherine J; Minneci, Peter C; Teich, Steven; Alpert, Seth A; Yacob, Desale; Di Lorenzo, Carlo; Mousa, Hayat M

    2017-04-01

    Sacral nerve stimulation (SNS) can be beneficial for children with constipation, but no studies have focused on children with constipation severe enough to require antegrade continence enemas (ACEs). Our objective was to evaluate the efficacy of SNS in children with constipation treated with ACE. Using a prospective patient registry, we identified patients constipation dependent on ACE, SNS led to a steady decrease in ACE usage with nearly half of patients receiving cecostomy/appendicostomy closure within 2years. IV. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Failure of a vagus nerve stimulator following a nearby lightning strike.

    Science.gov (United States)

    Terry, Garth E; Conry, Joan A; Taranto, Eleanor; Yaun, Amanda

    2011-01-01

    We recently reported our experience with implanted vagus nerve stimulators (VNS) in 62 children over a 7-year period. Here, we present a case of a VNS that successfully reduced the number and severity of seizures in a patient with an unusual seizure pattern, and failed to function shortly after a lightning storm. To our knowledge, the failure of VNS or any implantable electrical devices by lightning has not been reported in the literature. This mechanism of electrical interference, while unusual, may require more attention as these devices are expected to be used more frequently. Copyright © 2011 S. Karger AG, Basel.

  9. Auricular Neuromodulation: The Emerging Concept beyond the Stimulation of Vagus and Trigeminal Nerves

    Directory of Open Access Journals (Sweden)

    Beniamina Mercante

    2018-01-01

    Full Text Available Neuromodulation, thanks to intrinsic and extrinsic brain feedback loops, seems to be the best way to exploit brain plasticity for therapeutic purposes. In the past years, there has been tremendous advances in the field of non-pharmacological modulation of brain activity. This review of different neurostimulation techniques will focus on sites and mechanisms of both transcutaneous vagus and trigeminal nerve stimulation. These methods are scientifically validated non-invasive bottom-up brain modulation techniques, easily implemented from the outer ear. In the light of this, auricles could transpire to be the most affordable target for non-invasive manipulation of central nervous system functions.

  10. Supramaximal stimulation during intraoperative facial nerve monitoring as a simple parameter to predict early functional outcome after parotidectomy.

    Science.gov (United States)

    Mamelle, Elisabeth; Bernat, Isabelle; Pichon, Soizic; Granger, Benjamin; Sain-Oulhen, Charlotte; Lamas, Georges; Tankéré, Frédéric

    2013-07-01

    A supramaximal stimulation at 2 mA during intraoperative electromyographic (EMG) facial nerve monitoring appears to be a simple and effective parameter to predict immediate postoperative injury. To assess the role of systematic intraoperative facial nerve monitoring in predicting the early functional outcomes obtained after parotidectomy. Data were collected from patients who underwent parotidectomy. Intraoperative EMG monitoring of the facial nerve was performed by registering two parameters, event intensity (>100 μV) and amplitude of response after a supramaximal stimulation at 2 mA, at the beginning and end of gland removal. Early postoperative clinical functional facial nerve disorder was assessed at day 2. Overall, 50 patients were included and an early facial dysfunction was detected in 27 cases (54%). The maximal response amplitude after supramaximal stimulation at the trunk of the facial nerve was higher in patients with normal facial function compared with those with poor outcomes at the end of surgery (p stimulation thresholds, were indicative of a nerve conduction block and were significantly lower in the patient group with a poor outcome compared with the group with a normal facial outcome (p < 0.02).

  11. The effect of transcutaneous electrical nerve stimulation in patients with acute exacerbation of chronic obstructive pulmonary disease: randomised controlled trial.

    Science.gov (United States)

    Öncü, Emine; Zincir, Handan

    2017-07-01

    The aim of the present study was to assess the efficacy of transcutaneous electrical nerve stimulation in patients with acute exacerbation of chronic obstructive pulmonary disease. In patients with stable chronic obstructive pulmonary disease, transcutaneous electrical nerve stimulation has been known to attain improvement in forced expiratory volume in 1 seconds, physical activity, and quality of life. However, information about the effects of transcutaneous electrical nerve stimulation on acute exacerbation of chronic obstructive pulmonary disease is quite limited. A single-blind, randomised controlled trial. Data were collected between August 2013-May 2014. Eighty-two patients who were hospitalised with a diagnosis of acute exacerbation of chronic obstructive pulmonary disease were randomly assigned to a transcutaneous electrical nerve stimulation group receiving transcutaneous electrical nerve stimulation treatment for 20 seance over the acupuncture points with pharmacotherapy or placebo group receiving the same treatment without electrical current output from the transcutaneous electrical nerve stimulation device. Pulmonary functional test, six-minute walking distance, dyspnoea and fatigue scale, and St. George's Respiratory Questionnaire scores were assessed pre- and postprogram. The program started at the hospital by the researcher was sustained in the patient's home by the caregiver. All patients were able to complete the program, despite the exacerbation. The 20 seance transcutaneous electrical nerve stimulation program provided clinically significant improvement in forced expiratory volume in 1 seconds 21 ml, 19·51% but when compared with the placebo group, the difference was insignificant (p > 0·05). The six-minute walking distance increased by 48·10 m more in the placebo group (p  0·05). Adding transcutaneous electrical nerve stimulation therapy to pharmacotherapy in patients with acute exacerbation of chronic obstructive pulmonary disease

  12. Comparison of peripheral nerve stimulator versus ultrasonography guided axillary block using multiple injection technique

    Directory of Open Access Journals (Sweden)

    Alok Kumar

    2014-01-01

    Full Text Available Background: The established methods of nerve location were based on either proper motor response on nerve stimulation (NS or ultrasound guidance. In this prospective, randomised, observer-blinded study, we compared ultrasound guidance with NS for axillary brachial plexus block using 0.5% bupivacaine with the multiple injection techniques. Methods : A total of 120 patients receiving axillary brachial plexus block with 0.5% bupivacaine, using a multiple injection technique, were randomly allocated to receive either NS (group NS, n = 60, or ultrasound guidance (group US, n = 60 for nerve location. A blinded observer recorded the onset of sensory and motor blocks, skin punctures, needle redirections, procedure-related pain and patient satisfaction. Results: The median (range number of skin punctures were 2 (2-4 in group US and 3 (2-5 in group NS (P =0.27. Insufficient block was observed in three patient (5% of group US and four patients (6.67% of group NS (P > =0.35. Patient acceptance was similarly good in the two groups. Conclusion: Multiple injection axillary blocks with ultrasound guidance provided similar success rates and comparable incidence of complications as compared with NS guidance with 20 ml 0.5% bupivacaine.

  13. The Use of Transcutaneous Electrical Nerve Stimulation After Total Knee Arthroplasty: A Prospective Randomized Controlled Trial.

    Science.gov (United States)

    Ramanathan, Deepak; Saleh, Anas; Klika, Alison K; Higuera, Carlos A; Barsoum, Wael K

    2017-07-25

    Multimodal pain management is used after total knee arthroplasty (TKA) to reduce opioid intake. Transcutaneous electrical nerve stimulation (TENS) has generated much interest as a non-pharmacologic, patient-controlled therapy. The aims of this study were to evaluate the efficacy of TENS in reducing opioid intake and improving recovery after TKA. This was a prospective, parallel-group, double-blinded, randomized trial of patients receiving femoral nerve catheter block with allocation to either active or placebo TENS device groups. All participants were 18-85 years and underwent unilateral, primary TKA at two academic hospitals. Device usage was monitored during inpatient and outpatient phases. Participants were requested to return at second, fourth, and sixth postoperative weeks for follow-up. The primary endpoint was opioid usage, as indicated by medication intake in equianalgesic equivalents to morphine. Secondary measures included: visual analogue scale (VAS) pain scores; functional assessments as measured from knee joint range of motion (ROM) and Timed Up and Go (TUG) test; and clinical outcomes as defined by modified Knee injury and Osteoarthritis Outcome Scores (KOOS) and the 12-item Short Form Survey Instrument (SF-12). Among 116 participants, overall withdrawal was 37.9% (44 patients) at similar rates in both study arms. After excluding for non-femoral nerve catheter (FNC) blocks (i.e., protocol deviations), there were 35 patients in the active group and 31 patients in the placebo group whose complete records were analyzed. There were no significant differences between groups in any of the clinical endpoints.

  14. Responses of neurons of lizard's, Lacerta viridis, vestibular nuclei to electrical stimulation of the ipsi- and contralateral VIIIth nerves.

    Science.gov (United States)

    Richter, A; Precht, W; Ozawa, S

    1975-03-22

    Field and intracellular potentials were recorded in the vestibular nuclei of the lizard following stimulation of the ipsi- and contralateral vestibular nerves. The field potentials induced by ipsilateral VIIIth nerve stimulation consisted of an early negative or positive-negative wave (presynaptic component) followed by a slow negativity (transsynaptic component). The spatial distribution of the field potential complex closely paralleled the extension of the vestibular nuclei. Mono- and polysynaptic EPSPs were recorded from vestibular neurons after ipsilateral VIIIth nerve stimulation. In some neurons early depolarizations preceded the EPSPs. These potentials may be elicited by electrical transmission. Often spikelike partial responses were superimposed on the EPSPs. It is assumed that these potentials represent dendritic spikes. Contralateral VIIIth nerve stimulation generated disynaptic and polysynaptic IPSPs in some neurons and EPSPs in others. The possible role of commissural inhibition in phylogeny is discussed. In a group of vestibular neurons stimulation of the ipsilateral VIIIth nerve evoked full action potentials with latencies ranging from 0.25-1.1msec. These potentials are caused by antidromic activation of neurons which send their axons to the labyrinth.

  15. Transcutaneous electrical nerve stimulation and transcutaneous spinal electroanalgesia: a preliminary efficacy and mechanisms-based investigation.

    Science.gov (United States)

    Palmer, Shea; Cramp, Fiona; Propert, Kate; Godfrey, Helen

    2009-09-01

    To determine the effects of transcutaneous electrical nerve stimulation (TENS) and transcutaneous spinal electroanalgesia (TSE) on mechanical pain threshold (MPT) and vibration threshold (VT). A prospective, single-blind, randomised, placebo-controlled trial. Laboratory based. Thirty-four healthy volunteers (12 men and 22 women; mean age+/-standard deviation 30+/-8 years). Exclusion criteria were conditions affecting upper limb sensation and contraindications to electrical stimulation. Participants were allocated at random to receive TENS (n=8), TSE (n=8), placebo (n=9) or control (n=9). Electrical stimulation was applied for 30 minutes (from time 18 minutes to 48 minutes) via electrodes (5 cmx5 cm) placed centrally above and below the space between the C6 and C7 spinous processes, with 5 cm between electrodes. MPT (using an algometer) and VT (using a vibrameter) were recorded on seven occasions from the first dorsal interosseous muscle of the right hand - at baseline (0 minutes) and then at 10-minute intervals until the end of the 60-minute testing period. There were no statistically significant group differences in MPT (all p>0.05). Significant group differences in VT were found at 20, 30 and 40 minutes (all ptests showed that the TENS group had significantly greater VT than both the placebo [median difference 0.30 microm, 95% confidence interval (CI) -0.05 to 0.66] and control (0.51 microm, 95% CI 0.05 to 0.97) groups at 20 minutes, and significantly greater VT than the control group (0.69 microm, 95% CI 0.20 to 1.17) at 30 minutes (all p<0.008). Electrical stimulation did not alter MPT. The increase in VT during TENS may be due to distraction or antidromic block of large-diameter nerve fibres. TSE failed to alter either outcome measure significantly.

  16. The effect of transcutaneous vagus nerve stimulation on pain perception--an experimental study.

    Science.gov (United States)

    Busch, Volker; Zeman, Florian; Heckel, Andreas; Menne, Felix; Ellrich, Jens; Eichhammer, Peter

    2013-03-01

    Recent preclinical work strongly suggests that vagus nerve stimulation efficiently modulates nociception and pain processing in humans. Most recently, a medical device has offered a transcutaneous electrical stimulation of the auricular branch of the vagus nerve (t-VNS) without any surgery. Our study investigates whether t-VNS may have the potential to alter pain processing using a controlled design. Different submodalities of the somatosensory system were assessed with quantitative sensory testing (QST) including a tonic heat pain paradigm in 48 healthy volunteers. Each subject participated in two experimental sessions with active t-VNS (stimulation) or sham t-VNS (no stimulation) on different days in a randomized order (crossed-over). One session consisted of two QST measurements on the ipsi- and contralateral hand, each before and during 1 h of a continuous t-VNS on the left ear using rectangular pulses (250 μS, 25 Hz). We found an increase of mechanical and pressure pain threshold and a reduction of mechanical pain sensitivity. Moreover, active t-VNS significantly reduced pain ratings during sustained application of painful heat for 5 min compared to sham condition. No relevant alterations of cardiac or breathing activity or clinical relevant side effects were observed during t-VNS. Our findings of a reduced sensitivity of mechanically evoked pain and an inhibition of temporal summation of noxious tonic heat in healthy volunteers may pave the way for future studies on patients with chronic pain addressing the potential analgesic effects of t-VNS under clinical conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Acupuncture Treatment for Low Back Pain and Lower Limb Symptoms—The Relation between Acupuncture or Electroacupuncture Stimulation and Sciatic Nerve Blood Flow

    Directory of Open Access Journals (Sweden)

    Motohiro Inoue

    2008-01-01

    Full Text Available To investigate the clinical efficacy of acupuncture treatment for lumbar spinal canal stenosis and herniated lumbar disc and to clarify the mechanisms in an animal experiment that evaluated acupuncture on sciatic nerve blood flow. In the clinical trial, patients with lumbar spinal canal stenosis or herniated lumbar disc were divided into three treatment groups; (i Ex-B2 (at the disordered level, (ii electrical acupuncture (EA on the pudendal nerve and (iii EA at the nerve root. Primary outcome measurements were pain and dysesthesia [evaluated with a visual analogue scale (VAS] and continuous walking distance. In the animal study, sciatic nerve blood flow was measured with laser-Doppler flowmetry at, before and during three kinds of stimulation (manual acupuncture on lumber muscle, electrical stimulation on the pudendal nerve and electrical stimulation on the sciatic nerve in anesthetized rats. For the clinical trial, approximately half of the patients who received Ex-B2 revealed amelioration of the symptoms. EA on the pudendal nerve was effective for the symptoms which had not improved by Ex-B2. Considerable immediate and sustained relief was observed in patients who received EA at the nerve root. For the animal study, increase in sciatic nerve blood flow was observed in 56.9% of the trial with lumber muscle acupuncture, 100% with pudendal nerve stimulation and 100% with sciatic nerve stimulation. Sciatic nerve stimulation sustained the increase longer than pudendal nerve stimulation. One mechanism of action of acupuncture and electrical acupuncture stimulation could be that, in addition to its influence on the pain inhibitory system, it participates in causing a transient change in sciatic nerve blood blow, including circulation to the cauda equine and nerve root.

  18. [Blink restoration by the functional electrical stimulation in unilateral facial nerve palsy rabbits].

    Science.gov (United States)

    Xue, Yubin; Feng, Guodong; Ding, Xiuyong; Zhao, Yang; Cui, Tingting; Gao, Zhiqiang

    2014-07-01

    Tocompare the effects of different waveforms and parameters of electrical stimulation to elicit a blink, and construct a functional electrical stimulation (FES) system to restore synchronous blink in unilateral facial nerve palsy (FNP). Firstly, twenty-four rabbits were surgically induced unilateral FNP and were divided into three groups, who received square, sine and triangle pulse wareforms, respectirely. Both the healthy and the paralysis eyelids of the rabbits received pulse train stimulation to produce a blink in both eyes. For each rabbit, twenty-seven combinations of frequencies (25 Hz, 50 Hz and 100 Hz) and nine pulse widths (1-9 ms) were stimulated. The threshold amplitude and electric charge to elicit a blink was compared between different waveforms and different parameters. Secondly, a FES system was constructed to treat six surgically induced unilateral FNP rabbit chosen in the twenty-four rabbits, it consisted by an electromyogram (EMG) amplifier module which record the EMG of the healthy muscle, and a stimulator which received the EMG input and output a pulse train stimulation when triggered by the EMG. When the carrier frequency of the pulse train was 25 Hz, it was not able to induce a smooth blink. However, when the carrier frequencies were 50 Hz and 100 Hz, a smooth blink could be induced. The voltage required by 100 Hz was lower than 50 Hz, but it cost more electric charge. The amplitude that square waveforms required was far lower than sine and triangle, but the electric charge between the three waveforms was similar. Synchronous blink could be restored in the six unilateral FNP rabbits with the FES system. To elicit a blink, square pulse train delivered in 50 Hz is a preferable option. The motion of the healthy eyelids as a source of information for stimulation of the paralyzed sides can restore the synchronous blink in unilateral FNP rabbits.

  19. A methodological reappraisal of non invasive high voltage electrical stimulation of lumbosacral nerve roots.

    Science.gov (United States)

    Troni, Walter; Di Sapio, Alessia; Berra, Eliana; Duca, Sergio; Merola, Aristide; Sperli, Francesca; Bertolotto, Antonio

    2011-10-01

    To describe a neurophysiological method to locate the optimal stimulation site (OSS) over the vertebral column, customized to the individual subject, to achieve maximal activation of lumbosacral roots by means of non-invasive high voltage electrical stimulation (HVES). OSS was located in 30 volunteers by testing different stimulation points of a surface multi-electrode array placed over the dorso-lumbar junction of the vertebral column. The dorso-ventral stimulating montage was used (Troni et al., 1996). Motor responses to root stimulation (rCMAPs) were bilaterally recorded from Vastus Medialis (VM), Tibialis Anterior (TA), Soleus (SL) and Flexor Hallucis Brevis (FHB) muscles. The direct nature of rCMAPs was tested by delivering two maximal stimuli 50 ms apart. Except for a few subjects with large girth, maximal rCMAPs could be obtained from all muscles with a stimulating current intensity up to 550 V (1050 mA). Maximal double HVES excluded any reflex component in the recorded rCMAPs. The procedure was well tolerated and no side effects were observed. A single maximal electric shock delivered at the proper vertebral level by means of the dorso-ventral montage is able to safely achieve synchronous, bilateral maximal activation of several roots, from L3 to S1. Maximal activation of lumbosacral roots at their origin, unattainable with magnetic stimulation, is the essential requirement for direct detection of proximal nerve conduction slowing and block in lower limbs. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Differentiated baroreflex modulation of sympathetic nerve activity during deep brain stimulation in humans.

    Science.gov (United States)

    Sverrisdóttir, Yrsa B; Green, Alexander L; Aziz, Tipu Z; Bahuri, Nor Faizal A; Hyam, Jonathan; Basnayake, Shanika D; Paterson, David J

    2014-05-01

    Targeted electric deep brain stimulation in midbrain nuclei in humans alters cardiovascular parameters, presumably by modulating autonomic and baroreflex function. Baroreflex modulation of sympathetic outflow is crucial for cardiovascular regulation and is hypothesized to occur at 2 distinct brain locations. The aim of this study was to evaluate sympathetic outflow in humans with deep brain stimulating electrodes during ON and OFF stimulation of specific midbrain nuclei known to regulate cardiovascular function. Multiunit muscle sympathetic nerve activity was recorded in 17 patients undergoing deep brain stimulation for treatment of chronic neuropathic pain (n=7) and Parkinson disease (n=10). Sympathetic outflow was recorded during ON and OFF stimulation. Arterial blood pressure, heart rate, and respiratory frequency were monitored during the recording session, and spontaneous vasomotor and cardiac baroreflex sensitivity were assessed. Head-up tilt testing was performed separately in the patients with Parkinson disease postoperatively. Stimulation of the dorsal most part of the subthalamic nucleus and ventrolateral periaqueductal gray resulted in improved vasomotor baroreflex sensitivity, decreased burst frequency and blood pressure, unchanged burst amplitude distribution, and a reduced fall in blood pressure after tilt. Stimulation of the dorsolateral periaqueductal gray resulted in a shift in burst amplitude distribution toward larger amplitudes, decreased spontaneous beat-to-beat blood pressure variability, and unchanged burst frequency, baroreflex sensitivity, and blood pressure. Our results indicate that a differentiated regulation of sympathetic outflow occurs in the subthalamic nucleus and periaqueductal gray. These results may have implications in our understanding of abnormal sympathetic discharge in cardiovascular disease and provide an opportunity for therapeutic targeting.

  1. Effects of pelvic, pudendal, or hypogastric nerve cuts on Fos induction in the rat brain following vaginocervical stimulation.

    Science.gov (United States)

    Pfaus, James G; Manitt, Colleen; Coopersmith, Carol B

    2006-12-30

    In the female rat, genitosensory input is conveyed to the central nervous system predominantly through the pelvic, pudendal, and hypogastric nerves. The present study examined the relative contribution of those three nerves in the expression of Fos immunoreactivity within brain regions previously shown to be activated by vaginocervical stimulation (VCS). Bilateral transection of those nerves, or sham neurectomy, was conducted in separate groups of ovariectomized, sexually-experienced females. After recovery, females were primed with estrogen and progesterone and given either 50 manual VCSs with a lubricated glass rod over the course of 1 h. VCS increased the number of neurons expressing Fos immunoreactivity in the medial preoptic area, lateral septum, bed nucleus of the stria terminalis, ventromedial hypothalamus, and medial amygdala of sham neurectomized females. Transection of the pelvic nerve reduced Fos immunoreactivity in the medial preoptic area, bed nucleus of the stria terminalis, ventromedial hypothalamus, and medial amygdala, whereas transection of the pudendal nerve had no effect. In contrast, transection of the hypogastric nerve increased Fos immunoreactivity in the medial preoptic area and lateral septum, whereas transaction of the pelvic nerve increased Fos immunoreactivity in the lateral septum, following VCS. All females given VCS, except those with pelvic neurectomy, displayed a characteristic immobility during each application. These data confirm that the pelvic nerve is largely responsible for the neural and behavioral effects of VCS, and support a separate function for the hypogastric nerve.

  2. Vagus Nerve Stimulation Delivered with Motor Training Enhances Recovery of Function after Traumatic Brain Injury.

    Science.gov (United States)

    Pruitt, David T; Schmid, Ariel N; Kim, Lily J; Abe, Caroline M; Trieu, Jenny L; Choua, Connie; Hays, Seth A; Kilgard, Michael P; Rennaker, Robert L

    2016-05-01

    Traumatic Brain Injury (TBI) is one of the largest health problems in the United States, and affects nearly 2 million people every year. The effects of TBI, including weakness and loss of coordination, can be debilitating and last years after the initial injury. Recovery of motor function is often incomplete. We have developed a method using electrical stimulation of the vagus nerve paired with forelimb use by which we have demonstrated enhanced recovery from ischemic and hemorrhagic stroke. Here we have tested the hypothesis that vagus nerve stimulation (VNS) paired with physical rehabilitation could enhance functional recovery after TBI. We trained rats to pull on a handle to receive a food reward. Following training, they received a controlled-cortical impact (CCI) in the forelimb area of motor cortex opposite the trained forelimb, and were then randomized into two treatment groups. One group of animals received VNS paired with rehabilitative therapy, whereas another group received rehabilitative therapy without VNS. Following CCI, volitional forelimb strength and task success rate in all animals were significantly reduced. VNS paired with rehabilitative therapy over a period of 5 weeks significantly increased recovery of both forelimb strength and success rate on the isometric pull task compared with rehabilitative training without VNS. No significant improvement was observed in the Rehab group. Our findings indicate that VNS paired with rehabilitative therapy enhances functional motor recovery after TBI.

  3. An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation.

    Science.gov (United States)

    Rong, Peijing; Liu, Aihua; Zhang, Jianguo; Wang, Yuping; Yang, Anchao; Li, Liang; Ben, Hui; Li, Liping; Liu, Rupeng; He, Wei; Liu, Huanguang; Huang, Feng; Li, Xia; Wu, Peng; Zhu, Bing

    2014-01-01

    Previous studies demonstrated that vagus nerve stimulation (VNS) is an effective therapy for drug-resistant epilepsy. Acupuncture is also used to treat epilepsy. This study was designed to examine the safety and effectiveness of transcutaneous auricular vagus nerve stimulation (ta-VNS) for patients with drug-resistant epilepsy. A total of 50 volunteer patients with drug-resistant epilepsy were selected for a random clinical trial to observe the therapeutic effect of ta-VNS. The seizure frequency, quality of life, and severity were assessed in weeks 8, 16, and 24 of the treatment according to the percentage of seizure frequency reduction. In the pilot study, 47 of the 50 epilepsy patients completed the 24-week treatment; three dropped off. After 8-week treatment, six of the 47 patients (12%) were seizure free and 12 (24%) had a reduction in seizure frequency. In week 16 of the continuous treatment, six of the 47 patients (12%) were seizure free; 17 (34%) had a reduction in seizure frequency. After 24 weeks' treatment, eight patients (16%) were seizure free; 19 (38%) had reduced seizure frequency. Similar to the therapeutic effect of VNS, ta-VNS can suppress epileptic seizures and is a safe, effective, economical, and widely applicable treatment option for drug-resistant epilepsy. (ChiCTR-TRC-10001023).

  4. Impediment in upper airway stabilizing forces assessed by phrenic nerve stimulation in sleep apnea patients

    Directory of Open Access Journals (Sweden)

    Vérin E

    2005-09-01

    Full Text Available Abstract Background The forces developed during inspiration play a key role in determining upper airway stability and the occurrence of nocturnal breathing disorders. Phrenic nerve stimulation applied during wakefulness is a unique tool to assess Upper airway dynamic properties and to measure the overall mechanical effects of the inspiratory process on UA stability. Objectives To compare the flow/pressure responses to inspiratory and expiratory twitches between sleep apnea subjects and normal subjects. Methods Inspiratory and expiratory twitches using magnetic nerve stimulation completed in eleven untreated sleep apnea subjects and ten normal subjects. Results In both groups, higher flow and pressure were reached during inspiratory twitches. The two groups showed no differences in expiratory twitch parameters. During inspiration, the pressure at which flow-limitation occurred was more negative in normals than in apneic subjects, but not reaching significance (p = 0.07. The relationship between pharyngeal pressure and flow adequately fitted with a polynomial regression model providing a measurement of upper airway critical pressure during twitch. This pressure significantly decreased in normals from expiratory to inspiratory twitches (-11.1 ± 1.6 and -15.7 ± 1.0 cm H2O respectively, 95% CI 1.6–7.6, p Conclusion Inspiratory-related upper airway dilating forces are impeded in sleep apnea patients.

  5. Impact of Anesthetics on Immune Functions in a Rat Model of Vagus Nerve Stimulation.

    Directory of Open Access Journals (Sweden)

    Chloé A Picq

    Full Text Available Vagus nerve stimulation (VNS has been successfully performed in animals for the treatment of different experimental models of inflammation. The anti-inflammatory effect of VNS involves the release of acetylcholine by vagus nerve efferent fibers inhibiting pro-inflammatory cytokines (e.g. TNF-α produced by macrophages. Moreover, it has recently been demonstrated that splenic lymphocytic populations may also be involved. As anesthetics can modulate the inflammatory response, the current study evaluated the effect of two different anesthetics, isoflurane and pentobarbital, on splenic cellular and molecular parameters in a VNS rat model. Spleens were collected for the characterization of lymphocytes sub-populations by flow cytometry and quantification of cytokines secretion after in vitro activation. Different results were observed depending on the anesthetic used. The use of isoflurane displayed a non-specific effect of VNS characterized by a decrease of most splenic lymphocytes sub-populations studied, and also led to a significantly lower TNF-α secretion by splenocytes. However, the use of pentobarbital brought to light immune modifications in non-stimulated animals that were not observed with isoflurane, and also revealed a specific effect of VNS, notably at the level of T lymphocytes' activation. These differences between the two anesthetics could be related to the anti-inflammatory properties of isoflurane. In conclusion, pentobarbital is more adapted than isoflurane in the study of the anti-inflammatory effect of VNS on an anesthetized rat model in that it allows more accurate monitoring of subtle immunomodulatory processes.

  6. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control

    Science.gov (United States)

    Lin, C.-C. K.; Liu, W.-C.; Chan, C.-C.; Ju, M.-S.

    2012-04-01

    The main goal of this study was to study the performance of fuzzy logic controllers combined with simplified hybrid amplitude/pulse-width (AM/PW) modulation to regulate muscle force via nerve electrical stimulation. The recruitment curves with AM/PW and AM modulations were constructed for the calf muscles of rabbits. Integrated with the modulation methods, a proportional-integral-derivative (PID) and three fuzzy logic controllers were designed and applied for the electrical stimulation of tibial nerves to control the ankle torque under isometric conditions. The performance of the two modulation methods combined with the four controllers was compared when the ankle was fixed at three positions for both in vivo experiments and model simulations using a nonlinear muscle model. For the animal experiments, AM/PW modulation performed better than AM modulation alone. The fuzzy PI controller performed marginally better and was resistant to external noises, though it tended to have a larger overshoot. The performance of the controllers had a similar trend in the three different joint positions, and the simulation results with the nonlinear model matched the experimental results well. In conclusion, AM/PW modulation improved controller performance, while the contribution of fuzzy logic was only marginal.

  7. Membrane depolarization and carbamoylcholine stimulate phosphatidylinositol turnover in intact nerve terminals

    International Nuclear Information System (INIS)

    Audigier, S.M.P.; Wang, J.K.T.; Greengard, P.

    1988-01-01

    Synaptosomes, purified from rat cerebral cortex, were prelabeled with [ 3 H]inositol to study phosphatidylinositol turnover in nerve terminals. Labeled synaptosomes were either depolarized with 40 mM K + or exposed to carbamoylcholine (carbachol). K + depolarization increased the level of inositol phosphates in a time-dependent manner. The inositol bisphosphate level also increased rapidly, but its elevated level was sustained during continued depolarization. The elevated level of inositol bisphosphate was reversed upon repolarization of the synaptosomes. The level of inositol monophosphate increased slowly to 120-130% of control. These effects of K + depolarization depended on the presence of Ca 2+ in the incubation medium. Carbachol stimulated the turnover of phosphatidylinositol in a dose- and time-dependent manner. The level of inositol bisphosphate increased to 210% of control, and this maximal response was seen from 15 to 60 min. Accumulation of inositol monophosphate was larger than that of inositol bisphosphate, but its time course was slower. Atropine and pirenzepine inhibited the carbachol effect with high affinities. These data show that both Ca 2+ influx and M 1 muscarinic receptor activation stimulate phospholipase C activity in synaptosomes, suggesting that phosphatidylinositol turnover may be involved in regulating neurotransmitter release from nerve terminals

  8. Cervical Spinal Cord and Dorsal Nerve Root Stimulation for Neuropathic Upper Limb Pain.

    Science.gov (United States)

    Levine, Adrian B; Parrent, Andrew G; MacDougall, Keith W

    2017-01-01

    Spinal cord stimulation (SCS) is a well-established treatment for chronic neuropathic pain in the lower limbs. Upper limb pain comprises a significant proportion of neuropathic pain patients, but is often difficult to target specifically and consistently with paresthesias. We hypothesized that the use of dorsal nerve root stimulation (DNRS), as an option along with SCS, would help us better relieve pain in these patients. All 35 patients trialed with spinal stimulation for upper limb pain between July 1, 2011, and October 31, 2013, were included. We performed permanent implantation in 23/35 patients based on a visual analogue scale pain score decrease of ≥50% during trial stimulation. Both the SCS and DNRS groups had significant improvements in average visual analogue scale pain scores at 12 months compared with baseline, and the majority of patients in both groups obtained ≥50% pain relief. The majority of patients in both groups were able to reduce their opioid use, and on average had improvements in Short Form-36 quality of life scores. Complication rates did not differ significantly between the two groups. Treatment with SCS or DNRS provides meaningful long-term relief of chronic neuropathic pain in the upper limbs.

  9. Time course of the hemodynamic responses to aortic depressor nerve stimulation in conscious spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Durand, M.T.; Mota, A.L.; Barale, A.R.; Castania, J.A.; Fazan, R. Jr.; Salgado, H.C.

    2012-01-01

    The time to reach the maximum response of arterial pressure, heart rate and vascular resistance (hindquarter and mesenteric) was measured in conscious male spontaneously hypertensive (SHR) and normotensive control rats (NCR; Wistar; 18-22 weeks) subjected to electrical stimulation of the aortic depressor nerve (ADN). The parameters of stimulation were 1 mA intensity and 2 ms pulse length applied for 5 s, using frequencies of 10, 30, and 90 Hz. The time to reach the hemodynamic responses at different frequencies of ADN stimulation was similar for SHR (N = 15) and NCR (N = 14); hypotension = NCR (4194 ± 336 to 3695 ± 463 ms) vs SHR (3475 ± 354 to 4494 ± 300 ms); bradycardia = NCR (1618 ± 152 to 1358 ± 185 ms) vs SHR (1911 ± 323 to 1852 ± 431 ms), and the fall in hindquarter vascular resistance = NCR (6054 ± 486 to 6550 ± 847 ms) vs SHR (4849 ± 918 to 4926 ± 646 ms); mesenteric = NCR (5574 ± 790 to 5752 ± 539 ms) vs SHR (5638 ± 648 to 6777 ± 624 ms). In addition, ADN stimulation produced baroreflex responses characterized by a faster cardiac effect followed by a vascular effect, which together contributed to the decrease in arterial pressure. Therefore, the results indicate that there is no alteration in the conduction of the electrical impulse after the site of baroreceptor mechanical transduction in the baroreflex pathway (central and/or efferent) in conscious SHR compared to NCR

  10. Time course of the hemodynamic responses to aortic depressor nerve stimulation in conscious spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Durand, M.T.; Mota, A.L. [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Barale, A.R. [Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG (Brazil); Castania, J.A.; Fazan, R. Jr.; Salgado, H.C. [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-16

    The time to reach the maximum response of arterial pressure, heart rate and vascular resistance (hindquarter and mesenteric) was measured in conscious male spontaneously hypertensive (SHR) and normotensive control rats (NCR; Wistar; 18-22 weeks) subjected to electrical stimulation of the aortic depressor nerve (ADN). The parameters of stimulation were 1 mA intensity and 2 ms pulse length applied for 5 s, using frequencies of 10, 30, and 90 Hz. The time to reach the hemodynamic responses at different frequencies of ADN stimulation was similar for SHR (N = 15) and NCR (N = 14); hypotension = NCR (4194 ± 336 to 3695 ± 463 ms) vs SHR (3475 ± 354 to 4494 ± 300 ms); bradycardia = NCR (1618 ± 152 to 1358 ± 185 ms) vs SHR (1911 ± 323 to 1852 ± 431 ms), and the fall in hindquarter vascular resistance = NCR (6054 ± 486 to 6550 ± 847 ms) vs SHR (4849 ± 918 to 4926 ± 646 ms); mesenteric = NCR (5574 ± 790 to 5752 ± 539 ms) vs SHR (5638 ± 648 to 6777 ± 624 ms). In addition, ADN stimulation produced baroreflex responses characterized by a faster cardiac effect followed by a vascular effect, which together contributed to the decrease in arterial pressure. Therefore, the results indicate that there is no alteration in the conduction of the electrical impulse after the site of baroreceptor mechanical transduction in the baroreflex pathway (central and/or efferent) in conscious SHR compared to NCR.

  11. Time course of the hemodynamic responses to aortic depressor nerve stimulation in conscious spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    M.T. Durand

    2012-05-01

    Full Text Available The time to reach the maximum response of arterial pressure, heart rate and vascular resistance (hindquarter and mesenteric was measured in conscious male spontaneously hypertensive (SHR and normotensive control rats (NCR; Wistar; 18-22 weeks subjected to electrical stimulation of the aortic depressor nerve (ADN under thiopental anesthesia. The parameters of stimulation were 1 mA intensity and 2 ms pulse length applied for 5 s, using frequencies of 10, 30, and 90 Hz. The time to reach the hemodynamic responses at different frequencies of ADN stimulation was similar for SHR (N = 15 and NCR (N = 14; hypotension = NCR (4194 ± 336 to 3695 ± 463 ms vs SHR (3475 ± 354 to 4494 ± 300 ms; bradycardia = NCR (1618 ± 152 to 1358 ± 185 ms vs SHR (1911 ± 323 to 1852 ± 431 ms, and the fall in hindquarter vascular resistance = NCR (6054 ± 486 to 6550 ± 847 ms vs SHR (4849 ± 918 to 4926 ± 646 ms; mesenteric = NCR (5574 ± 790 to 5752 ± 539 ms vs SHR (5638 ± 648 to 6777 ± 624 ms. In addition, ADN stimulation produced baroreflex responses characterized by a faster cardiac effect followed by a vascular effect, which together contributed to the decrease in arterial pressure. Therefore, the results indicate that there is no alteration in the conduction of the electrical impulse after the site of baroreceptor mechanical transduction in the baroreflex pathway (central and/or efferent in conscious SHR compared to NCR.

  12. [Bilateral axillary brachial plexus block guided by multiple nerve stimulation and ultrasound in a multiple trauma patient].

    Science.gov (United States)

    Errando, C L; Pallardó, M A; Herranz, A; Peiró, C M; de Andrés, J A

    2006-01-01

    We present the case of a woman with multiple wounds and injuries after attempted suicide by jumping from a high place. She had multiple craniofacial injuries and fractures of both forearms requiring emergency osteosynthesis. The neurosurgeons requested that a level of consciousness be maintained for frequent assessment; therefore it was decided to provide a bilateral axillary brachial plexus block. The procedure was carried out with the aid of a nerve stimulator to locate a triple response in the left arm (radial, medial and musculocutaneous nerves) and with both ultrasound and double nerve stimulation in the right arm (medial and radial nerves). Surgery proceeded without adverse events. The location of nerves or nerve roots with both ultrasound and stimulators was highly useful in this patient in need of bilateral brachial plexus blockade. This combination, and ultrasound in particular, might be the technique of choice because it offers an image in real time and assessment of the least amount of anesthetic that seems to be needed for achieving a block.

  13. Efficacy of Electrical Pudendal Nerve Stimulation in Treating Female Stress Incontinence.

    Science.gov (United States)

    Wang, Siyou; Lv, Jianwei; Feng, Xiaoming; Wang, Ge; Lv, Tingting

    2016-05-01

    To compare the efficacies of electrical pudendal nerve stimulation (EPNS) vs electromyogram biofeedback (BF)-assisted pelvic floor muscle training (PFMT) plus transvaginal electrical stimulation (TES) in treating female stress urinary incontinence (SUI) and to evaluate the posttreatment and long-term efficacies of EPNS for female SUI. Forty-two female SUI patients were randomized into groups I and II, 21 in each group. The two groups were treated by EPNS and BF-assisted PFMT plus TES, respectively, for comparison of their effects. Group III (196 patients) were treated by EPNS for evaluation of its effects. To perform EPNS, long acupuncture needles were deeply inserted into four sacrococcygeal points and electrified to stimulate pudendal nerves. Outcome measures were stress test, 24-hour pad test, and a questionnaire to measure the severity of symptoms and quality of life in women with SUI. After 4 weeks of treatment, the questionnaire score was lower and the therapeutic effect was better in group I (questionnaire score 0 [0, 6] and a ≥ 50% symptom improvement rate of 85.7%, respectively) than in group II (questionnaire score 9 [5.5, 15.5] and a ≥ 50% symptom improvement rate of 28.6%) (both P < .01). In group III, complete resolution occurred in 94 cases (48.0%), with a ≥ 50% symptom improvement rate of 85.7%, after 20.3 ± 16.8 sessions of treatment. At the mean follow-up of 52.9 months, complete resolution occurred in 32 (47.1%) of the 68 patients in group III who attained ≥50% posttreatment improvement. EPNS is more effective than BF-assisted PFMT plus TES in treating female SUI. It has good posttreatment and long-term effects on female SUI. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Trigeminal Nerve Stimulation for Comorbid Posttraumatic Stress Disorder and Major Depressive Disorder.

    Science.gov (United States)

    Cook, Ian A; Abrams, Michelle; Leuchter, Andrew F

    2016-04-01

    External stimulation of the trigeminal nerve (eTNS) is an emerging neuromodulation therapy for epilepsy and depression. Preliminary studies suggest it has an excellent safety profile and is associated with significant improvements in seizures and mood. Neuroanatomical projections of the trigeminal system suggest eTNS may alter activity in structures regulating mood, anxiety, and sleep. In this proof-of-concept trial, the effects of eTNS were evaluated in adults with posttraumatic stress disorder (PTSD) and comorbid unipolar major depressive disorder (MDD) as an adjunct to pharmacotherapy for these commonly co-occurring conditions. Twelve adults with PTSD and MDD were studied in an eight-week open outpatient trial (age 52.8 [13.7 sd], 8F:4M). Stimulation was applied to the supraorbital and supratrochlear nerves for eight hours each night as an adjunct to pharmacotherapy. Changes in symptoms were monitored using the PTSD Patient Checklist (PCL), Hamilton Depression Rating Scale (HDRS-17), Quick Inventory of Depressive Symptomatology (QIDS-C), and the Quality of Life Enjoyment and Satisfaction Questionnaire (Q-LES-Q). Over the eight weeks, eTNS treatment was associated with significant decreases in PCL (p = 0.003; median decrease of 15 points; effect size d 1.5), HDRS-17 (p depression severity were achieved in the eight weeks of acute eTNS treatment. This novel approach to wearable brain stimulation may have use as an adjunct to pharmacotherapy in these disorders if efficacy and tolerability are confirmed with additional studies. © 2016 International Neuromodulation Society.

  15. Device development guided by user satisfaction survey on auricular vagus nerve stimulation

    Directory of Open Access Journals (Sweden)

    Kampusch Stefan

    2016-09-01

    Full Text Available Development of wearable point-of-care medical devices faces many challenges. Besides technological and clinical issues, demands on robustness, miniaturization, and user interface design are of paramount importance. However, a systematic assessment of these non-functional but essential requirements is often impossible within the first product cycle. Later, surveys on user satisfaction with existing devices and user demands can offer significant input for device re-development and improvement. In this paper, we present a survey on satisfaction with and demands for a wearable medical device for percutaneous auricular vagus nerve stimulation (pVNS. We analyzed 36 responses from patients treated with pVNS and five responses from experienced physicians in order to devise a future concept of pVNS. Main shortcomings of a current pVNS device were identified to be lacking water resistance and mechanical robustness, both impairing daily activities. Painful sensation during pVNS application, unwanted side effects like skin irritations and strongly varying perception of the stimulation were reported. Results urge for more patient self-governance and an (automatic adjustment of the stimulation to the current physiological state of the patient. Attained results support a strategic approach for future developments of pVNS towards personalized health care.

  16. A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy.

    Science.gov (United States)

    Aihua, Liu; Lu, Song; Liping, Li; Xiuru, Wang; Hua, Lin; Yuping, Wang

    2014-10-01

    This study explored the efficacy and safety of transcutaneous vagus nerve stimulation (t-VNS) in patients with pharmacoresistant epilepsy. A total of 60 patients were randomly divided into two groups based on the stimulation zone: the Ramsay-Hunt zone (treatment group) and the earlobe (control group). Before and after the 12-month treatment period, all patients completed the Self-Rating Anxiety Scale (SAS), the Self-Rating Depression Scale (SDS), the Liverpool Seizure Severity Scale (LSSS), and the Quality of Life in Epilepsy Inventory (QOLIE-31). Seizure frequency was determined according to the patient's seizure diary. During our study, the antiepileptic drugs were maintained at a constant level in all subjects. After 12 months, the monthly seizure frequency was lower in the treatment group than in the control group (8.0 to 4.0; P=0.003). This reduction in seizure frequency was correlated with seizure frequency at baseline and duration of epilepsy (both P>0.05). Additionally, all patients showed improved SAS, SDS, LSSS, and QOLIE-31 scores that were not correlated with a reduction in seizure frequency. The side effects in the treatment group were dizziness (1 case) and daytime drowsiness (3 cases), which could be relieved by reducing the stimulation intensity. In the control group, compared with baseline, there were no significant changes in seizure frequency (P=0.397), SAS, SDS, LESS, or QOLIE-31. There were also no complications in this group. Copyright © 2014. Published by Elsevier Inc.

  17. Vagus nerve stimulation increases energy expenditure: relation to brown adipose tissue activity.

    Directory of Open Access Journals (Sweden)

    Guy H E J Vijgen

    Full Text Available Human brown adipose tissue (BAT activity is inversely related to obesity and positively related to energy expenditure. BAT is highly innervated and it is suggested the vagus nerve mediates peripheral signals to the central nervous system, there connecting to sympathetic nerves that innervate BAT. Vagus nerve stimulation (VNS is used for refractory epilepsy, but is also reported to generate weight loss. We hypothesize VNS increases energy expenditure by activating BAT.Fifteen patients with stable vns therapy (age: 45 ± 10 yrs; body mass index; 25.2 ± 3.5 kg/m(2 were included between January 2011 and June 2012. Ten subjects were measured twice, once with active and once with inactivated VNS. Five other subjects were measured twice, once with active VNS at room temperature and once with active VNS under cold exposure in order to determine maximal cold-induced BAT activity. BAT activity was assessed by 18-Fluoro-Deoxy-Glucose-Positron-Emission-Tomography-and-Computed-Tomography. Basal metabolic rate (BMR was significantly higher when VNS was turned on (mean change; +2.2%. Mean BAT activity was not significantly different between active VNS and inactive VNS (BAT SUV(Mean; 0.55 ± 0.25 versus 0.67 ± 0.46, P = 0.619. However, the change in energy expenditure upon VNS intervention (On-Off was significantly correlated to the change in BAT activity (r = 0.935, P<0.001.VNS significantly increases energy expenditure. The observed change in energy expenditure was significantly related to the change in BAT activity. This suggests a role for BAT in the VNS increase in energy expenditure. Chronic VNS may have a beneficial effect on the human energy balance that has potential application for weight management therapy.The study was registered in the Clinical Trial Register under the ClinicalTrials.gov Identifier NCT01491282.

  18. Early and continued manual stimulation is required for long-term recovery after facial nerve injury.

    Science.gov (United States)

    Grosheva, Maria; Rink, Svenja; Jansen, Ramona; Bendella, Habib; Pavlov, Stoyan P; Sarikcioglu, Levent; Angelov, Doychin N; Dunlop, Sarah A

    2018-01-01

    We previously have shown that manual stimulation (MS) of vibrissal muscles for 2 months after facial nerve injury in rats improves whisking and reduces motor end plate polyinnervation. Here, we seek to determine whether discontinuing or delaying MS after facial-facial anastomosis (FFA) leads to similar results. Rats were subjected to FFA and received MS for (1) 4 months (early and continued), (2) the first but not the last 2 months (discontinued), or (3) the last 2 months (delayed). Intact animals and those not receiving MS (no MS) were also examined. Early and continued MS restored whisking amplitude to 43°, a value significantly higher compared with the discontinued, delayed, and no MS groups (32°, 24°, and 10°, respectively). Motor end plate polyinnervation occurred in all experimental groups but was significantly higher in the delayed group. Early and continued MS results in better recovery than when it is either discontinued or delayed. Muscle Nerve 57: 100-106, 2018. © 2017 Wiley Periodicals, Inc.

  19. A systematic review of sacral nerve stimulation for faecal incontinence following ileal pouch anal anastomosis.

    Science.gov (United States)

    Kong, E; Nikolaou, S; Qiu, S; Pellino, G; Tekkis, P; Kontovounisios, C

    2017-10-30

    Faecal incontinence is a common complication of ileal pouch anal anastomosis (IPAA) and seems to worsen with time. The aim of this paper is to review the evidence of the use of sacral nerve stimulation (SNS) for patients with faecal incontinence after IPAA. A literature search was performed on PubMed and Cochrane databases for all relevant articles. All studies, which reported the outcome of SNS in patients with faecal incontinence after IPAA, were reviewed. Three papers were identified, including a case report, cohort study and retrospective study. The total number of patients was 12. The follow-up duration included 3 months, 6 months and 24 months. After peripheral nerve evaluation, definitive implantation was performed in 10 (83.3%) patients. All three studies reported positive outcomes, with CCF scores and incontinence episodes improving significantly. Preliminary results suggest good outcome after permanent SNS implant. Studies with larger sample sizes, well-defined patient characteristics and standardized outcome measures are required to fully investigate the effect of SNS in IPAA patients.

  20. A review of sacral nerve stimulation for faecal incontinence following rectal surgery and radiotherapy.

    Science.gov (United States)

    Thomas, G P; Bradshaw, E; Vaizey, C J

    2015-11-01

    Faecal incontinence may occur following rectal surgery and/or radiotherapy for rectal cancer. The aim of this paper was to review the evidence to support the use of sacral nerve stimulation (SNS) for patients with incontinence who had undergone rectal surgery or received rectal radiotherapy. A search was performed of PubMed, Medline and Embase. All studies which reported the outcome of SNS in patients who had undergone a rectal resection or radiotherapy were reviewed. The first report of SNS following rectal surgery was in 2002. Since then seven further studies have described its effect in patients who have undergone anterior resection or pelvic radiotherapy. The total number of patients was 57. All studies were single group series, which ranged in size from one to 15 patients. The follow-up ranged from 1 to 36 months. The success of peripheral nerve evaluation ranged from 47% to 100%. Permanent SNS improved the symptoms and in some studies this was reflected in improved quality of life. The wide variation of patient factors, operations performed, the dose of radiotherapy given and time from operation makes interpretation of the results difficult. Larger studies with better patient selection are needed to investigate the effect of SNS on incontinence following radiotherapy or rectal surgery. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  1. 3D splint prototype system for applications in muscular rehab by transcutaneous electrical nerve stimulation (TENS)

    Science.gov (United States)

    Saldaña-Martínez, M. I.; Guzmán-González, J. V.; Barajas-González, O. G.; Guzman-Ramos, V.; García-Garza, A. K.; González-García, R. B.; García-Ramírez, M. A.

    2017-03-01

    It is quite common that patients with ligamentous ruptures, tendonitis, tenosynovitis or sprains are foreseen the use of ad hoc splints for a swift recovery. In this paper, we propose a rehabilitation split that is focused on upper-limb injuries. By considering that upper-limb patient shows a set of different characteristics, our proposal personalizes and prints the splint custom made though a digital model that is generated by a 3D commercial scanner. To fabricate the 3D scanned model the Stereolithography material (SLA) is considered due to the properties that this material offers. In order to complement the recovery process, an electronic system is implemented within the splint design. This system generates a set of pulses for a fix period of time that focuses mainly on a certain group of muscles to allow a fast recovery process known as Transcutaneous Electrical Nerve Stimulation Principle (TENS).

  2. [Sacral nerve stimulation in the treatment of the lower urinary tract function disorders].

    Science.gov (United States)

    Miotła, Paweł; Kulik-Rechberger, Beata; Skorupski, Paweł; Rechberger, Tomasz

    2011-11-01

    Functional disorders of the female lower urinary tract like urge incontinence, idiopathic urinary retention and symptoms of urgency-frequency occasionally do not respond properly to classical behavioral and pharmacological therapy Therefore, additional alternative therapies are needed to alleviate these bothersome symptoms. Sacral neuromodulation (SNS) utilize mild electrical pulses which activate or suppress neural reflexes responsible for voiding by stimulating the sacral nerves that innervate the bladder, external urethral sphincter and pelvic floor muscles. The exact mechanism of SNS action is not yet fully understood but it is assumed that it influences the neuroaxis at different levels of the central nervous system and restores the balance between inhibitory and activatory control over the voiding reflex. There is numerous evidence on the success of SNS not only in the treatment of refractory urge incontinence in adult and children but also in idiopathic urinary retention and symptoms of urgency-frequency

  3. Nerve Growth Factor Stimulates Cardiac Regeneration via Cardiomyocyte Proliferation in Experimental Heart Failure

    Science.gov (United States)

    Lam, Nicholas T.; Currie, Peter D.; Lieschke, Graham J.; Rosenthal, Nadia A.; Kaye, David M.

    2012-01-01

    Although the adult heart likely retains some regenerative capacity, heart failure (HF) typically remains a progressive disorder. We hypothesise that alterations in the local environment contribute to the failure of regeneration in HF. Previously we showed that nerve growth factor (NGF) is deficient in the failing heart and here we hypothesise that diminished NGF limits the cardiac regenerative response in HF. The capacity of NGF to augment cardiac regeneration was tested in a zebrafish model of HF. Cardiac injury with a HF phenotype was induced in zebrafish larvae at 72 hours post fertilization (hpf) by exposure to aristolochic acid (AA, 2.5 µM, 72–75 hpf). By 168 hpf, AA induced HF and death in 37.5% and 20.8% of larvae respectively (pheart by 4.8 fold (pheart, mediated by stimulation of cardiomyocyte proliferation. PMID:23300892

  4. Long-Term Reduction of Sacroiliac Joint Pain With Peripheral Nerve Stimulation.

    Science.gov (United States)

    Guentchev, Marin; Preuss, Christian; Rink, Rainer; Peter, Levente; Sailer, Martin H M; Tuettenberg, Jochen

    2017-10-01

    We recently demonstrated that 86% of the patients treated with peripheral nerve stimulation (PNS) for therapy-refractory sacroiliac joint (SIJ) pain were satisfied with the result after 1 year of treatment. To investigate the long-term (up to 4 years) response rate of this novel treatment. Sixteen consecutive patients with therapy-refractory SIJ pain were treated with PNS and followed for 4 years in 3 patients, 3 years in 6 patients, and 2 years in 1 patient. Quality of life, pain, and patient satisfaction were assessed using the Oswestry Disability Index 2.0, Visual Analog Scale (VAS), and International Patient Satisfaction Index. Patients reported a pain reduction from 8.8 to 1.6 (VAS) at 1 year ( P VAS of 2.0 ( P < .005). At 4 years, 2 of 3 patients were satisfied with the treatment results. We have shown for the first time that PNS is a successful long-term therapy for SIJ pain.

  5. Peripheral nerve field stimulation for otalgia: A novel therapy for refractory deep ear pain

    Directory of Open Access Journals (Sweden)

    Mayur Sharma, MD

    2014-12-01

    Full Text Available Refractory otalgia or deep ear pain is a complex clinical problem that poses significant challenges to the physicians. Here we report a case of a 39 year old female who presented to us with deep right ear pain which started following cholesteatoma excision 11 years ago. Since onset of right ear pain, she had multiple ear surgeries including microvascular decompression and excision of right temporal bone before presentation. Following neuropsychological assessment and excluding underlying depression/anxiety, she underwent peripheral nerve field stimulation (PFNS trial. She had a successful PFNS trial and underwent permanent implantation of PFNS and pulse generator. She had >50% reduction in her pain intensity on VAS and pain medications. She required explantation due to superficial infection; however she was satisfied with her therapy and looking forward for reimplantation. We report the first case of successful management of refractory deep ear pain using PFNS with a review of pertinent literature.

  6. Sensory nerve cross-anastomosis and electrical muscle stimulation synergistically enhance functional recovery of chronically denervated muscle.

    Science.gov (United States)

    Willand, Michael P; Holmes, Michael; Bain, James R; de Bruin, Hubert; Fahnestock, Margaret

    2014-11-01

    Long-term muscle denervation leads to severe and irreversible atrophy coupled with loss of force and motor function. These factors contribute to poor functional recovery following delayed reinnervation. The authors' previous work demonstrated that temporarily suturing a sensory nerve to the distal motor stump (called sensory protection) significantly reduces muscle atrophy and improves function following reinnervation. The authors have also shown that 1 month of electrical stimulation of denervated muscle significantly improves function and reduces atrophy. In this study, the authors tested whether a combination of sensory protection and electrical stimulation would enhance functional recovery more than either treatment alone. Rat gastrocnemius muscles were denervated by cutting the tibial nerve. The peroneal nerve was then sutured to the distal tibial stump following 3 months of treatment (i.e., electrical stimulation, sensory protection, or both). Three months after peroneal repair, functional and histologic measurements were taken. All treatment groups had significantly higher muscle weight (pstimulation or sensory protection alone. The combined treatment also produced motor unit counts significantly greater than sensory protection alone (p<0.05). The combination treatment synergistically reduces atrophy and improves reinnervation and functional measures following delayed nerve repair, suggesting that these approaches work through different mechanisms. The authors' research supports the clinical use of both modalities together following peripheral nerve injury.

  7. Effects of percutaneous tibial nerve stimulation on adult patients with overactive bladder syndrome: a systematic review.

    Science.gov (United States)

    Moossdorff-Steinhauser, Heidi F A; Berghmans, Bary

    2013-03-01

    To assess the effectiveness of percutaneous tibial nerve stimulation (PTNS) on adult patients with overactive bladder syndrome, using a systematic review of randomized controlled trials (RCTs), clinical controlled trials (CCTs), and prospective observational cohort studies. A computer-aided literature search was performed in: PubMed, EMBASE and CENTRAL (2000 to November 15, 2011) to identify RCTs, CCTs, and prospective observational cohort studies. The study had to investigate the effect of PTNS on overactive bladder syndrome. The methodological quality of each study was assessed and a qualitative analysis was performed to establish the levels of evidence. Four RCTs and six prospective observational cohort studies were identified. There is strong evidence for the efficacy of PTNS versus a sham treatment. There is limited evidence that the use of PTNS and tolterodine ER is equally effective. No additional effect of a combination of Stoller afferent nerve stimulation (SANS) and anticholinergic medication compared to SANS alone. Most cohort studies suggested decreased frequency and improvement of incontinence and nocturia. However, the level of evidence was insufficient to make any firm conclusions. Because the total duration of all included trials varied between 6 and 12 weeks, so far there is little information on treatment periods. PTNS is efficacious for frequency and urgency urinary incontinence. More high quality studies are needed to improve the level of evidence concerning the efficacy of PTNS with regard to urgency and nocturia, to specify patient selection criteria, optimal treatment modalities and long-term effects as well as the effectiveness in more pragmatic trials. Copyright © 2012 Wiley Periodicals, Inc.

  8. Feasibility study of Transcutaneous Electrical Nerve Stimulation (TENS) for cancer bone pain.

    Science.gov (United States)

    Bennett, Michael I; Johnson, Mark I; Brown, Sarah R; Radford, Helen; Brown, Julia M; Searle, Robert D

    2010-04-01

    This multicenter study assessed the feasibility of conducting a phase III trial of transcutaneous electrical nerve stimulation (TENS) in patients with cancer bone pain recruited from palliative care services. Eligible patients received active and placebo TENS for 1 hour at site of pain in a randomized crossover design; median interval between applications 3 days. Responses assessed at 30 and 60 minutes included numerical and verbal ratings of pain at rest and on movement, and pain relief. Recruitment, tolerability, adverse events, and effectiveness of blinding were also evaluated. Twenty-four patients were randomised and 19 completed both applications. The intervention was well tolerated. Five patients withdrew: 3 due to deteriorating performance status, and 2 due to increased pain (1 each following active and placebo TENS). Confidence interval estimation around the differences in outcomes between active and placebo TENS suggests that TENS has the potential to decrease pain on movement more than pain on rest. Nine patients did not consider that a placebo was used; the remaining 10 correctly identified placebo TENS. Feasibility studies are important in palliative care prior to undertaking clinical trials. Our findings suggest that further work is required on recruitment strategies and refining the control arm before evaluating TENS in cancer bone pain. Cancer bone pain is common and severe, and partly mediated by hyperexcitability. Animal studies suggest that Transcutaneous Electrical Nerve Stimulation can reduce hyperalgesia. This study examined the feasibility of evaluating TENS in patients with cancer bone pain in order to optimize methods before a phase III trial. Copyright 2010 American Pain Society. Published by Elsevier Inc. All rights reserved.

  9. Transcutaneous electrical nerve stimulation in the treatment of patients with poststroke urinary incontinence

    Directory of Open Access Journals (Sweden)

    Guo ZF

    2014-05-01

    Full Text Available Zhui-feng Guo,1,* Yi Liu,2,* Guang-hui Hu,1 Huan Liu,1 Yun-fei Xu11Department of Urology, 2Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, People’s Republic of China*These authors contributed equally to this workPurpose: To investigate the therapeutic effect of transcutaneous electrical nerve stimulation (TENS on poststroke urinary incontinence (UI.Patients and methods: Sixty-one patients with poststroke UI were enrolled at the Neurology Department in the Shanghai Tenth People’s Hospital of Tongji University between January 2010–January 2011 and were divided into treatment and control groups (n=32 and n=29, respectively. TENS was applied to the treatment group, while the control group received basic therapy. The therapeutic group completed the whole set of TENS therapy with a treatment frequency of 30 minutes once a day for 60 days. The positive electrode was placed on the second lumbar spinous process, and the negative electrodes were inside the middle and lower third of the junction between the posterior superior iliac spine and ischia node. The overactive bladder symptom score, Barthel Index, and urodynamics examination were estimated before and after therapy in both groups.Results: The daily micturition, nocturia, urgent urination, and urge UI in the treatment group significantly improved compared to the control group (P<0.05. The patients in the treatment group were superior in the self-care ability of daily living and also had an advantage over the indexes on maximum cystometry volume, flow rate, and the pressure of detrusor in the end of the filling phase.Conclusion: TENS improved incontinence symptoms, enhanced the quality of life, and decreased adverse effects; hence, it is recommended in treating poststroke UI.Keywords: stroke, urinary incontinence, OABSS, Barthel Index, urodynamics, transcutaneous electrical nerve stimulation

  10. Sacral nerve stimulation for faecal incontinence: medium-term follow-up from a single institution.

    Science.gov (United States)

    Patton, Vicki; Abraham, Earl; Lubowski, David Z

    2017-06-01

    Most studies on sacral nerve stimulation (SNS) are either single-centre with small numbers of patients or multi-centre studies. We present the medium-term follow-up results from a single centre for 127 patients undergoing SNS. Consecutive patients treated with SNS for faecal incontinence had preoperative baseline St Mark's continence scores, faecal incontinence quality of life (FIQL) measures and anorectal physiology studies. Follow-up was a postal questionnaire concerning continence, FIQL, patient-perceived change in bowel control (-5 to +5 where 0 is no change), overall satisfaction (0-10 visual analogue scale) and use of medications. A total of 166 patients underwent temporary nerve stimulation testing, of which 112 progressed to a permanent implantable pulse generator (IPG). Fifteen received an IPG without the testing phase, hence 127 patients in total. Fourteen had the IPG removed, four were deceased, leaving 109 for assessment; 91 (83%) responded to the survey. Mean follow-up was 2.7 years (range: 2 months-8.5 years). Mean baseline St Mark's continence score was 14.4, and mean follow-up score was 10.3 (P < 0.01). FIQL improved in all domains (P < 0.001). Patient-reported improved bowel control mean score was +3.2 (95% CI: 2.9, 3.55). Median satisfaction score was 8.0 (range: 0-10). Complications included 17 lead dislodgements, seven superficial infections, five infections requiring surgery and five repositioning of a rotated IPG. Thirty-two patients used loperamide and 34 used fibre supplements. In this observational study, limited by the absence of a placebo control group, SNS significantly improved continence and quality of life, and patient satisfaction was high. © 2016 Royal Australasian College of Surgeons.

  11. Outcomes of Sacral Nerve Stimulation For Faecal Incontinence in Northern Ireland.

    Science.gov (United States)

    Irwin, G W; Dasari, B V; Irwin, R; Johnston, D; Khosraviani, K

    2017-01-01

    Sacral nerve root stimulation (SNS) is an effective and developing therapy for faecal incontinence, a debilitating condition that can result in social and personal incapacitation. The objectives of this study are to assess the morbidity of the procedure, improvement in the incontinence scores and Quality of Life (QoL) following SNS. Patients were identified from the Northern Ireland regional SNS service from 2006 to 2012. Numbers of patients who had temporary placement and permanent placement were collated. Pre and postoperative assessment of severity of incontinence and QoL was performed using Cleveland Clinic Incontinence Score (CCIS) and Short Form-36 (SF-36) respectively. Statistical analysis was undertaken using Wilcoxon signed rank test. Morbidity was assessed by retrospective review of patient records. Seventy-five patients were considered for trial of a temporary SNS. Sixty-one proceeded to insertion of a temporary SNS and, of these, 40 elected to have a permanent SNS. There was a significant reduction in the pre-SNS and post-SNS Cleveland Clinic Incontinence Scores from median of 14 to 9 respectively (p=0.008). There was a significant improvement in Role Physical (p=0.017), General Health (p=0.02), Vitality (p=0.043), Social Functioning (p=0.004), Role Emotional (p=0.007), Mental Health (p=0.013) and Mental Health Summary (p=0.003). However, this is not reflected in the bodily pain and physical functional domains. Permanent sacral nerve stimulation is effective and results in significant improvement of faecal incontinence scores and quality of life.

  12. BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation.

    Science.gov (United States)

    Kraus, T; Hösl, K; Kiess, O; Schanze, A; Kornhuber, J; Forster, C

    2007-01-01

    Direct vagus nerve stimulation (VNS) has proved to be an effective treatment for seizure disorder and major depression. However, since this invasive technique implies surgery, with its side-effects and relatively high financial costs, a non-invasive method to stimulate vagal afferences would be a great step forward. We studied effects of non-invasive electrical stimulation of the nerves in the left outer auditory canal in healthy subjects (n = 22), aiming to activate vagal afferences transcutaneously (t-VNS). Short-term changes in brain activation and subjective well-being induced by t-VNS were investigated by functional magnetic resonance imaging (fMRI) and psychometric assessment using the Adjective Mood Scale (AMS), a self-rating scale for current subjective feeling. Stimulation of the ear lobe served as a sham control. fMRI showed that robust t-VNS induced BOLD-signal decreases in limbic brain areas, including the amygdala, hippocampus, parahippocampal gyrus and the middle and superior temporal gyrus. Increased activation was seen in the insula, precentral gyrus and the thalamus. Psychometric assessment revealed significant improvement of well-being after t-VNS. Ear lobe stimulation as a sham control intervention did not show similar effects in either fMRI or psychometric assessment. No significant effects on heart rate, blood pressure or peripheral microcirculation could be detected during the stimulation procedure. Our study shows the feasibility and beneficial effects of transcutaneous nerve stimulation in the left auditory canal of healthy subjects. Brain activation patterns clearly share features with changes observed during invasive vagus nerve stimulation.

  13. Effect of transcutaneous electrical nerve stimulation on parotid saliva flow in patients with hyposalivation

    Directory of Open Access Journals (Sweden)

    P Venkatalakshmi Aparna

    2017-01-01

    Full Text Available Context: In recent days, we have come across an increase incidence of dry mouth as a side effects of drugs and in order to bring an awareness about a simple non- invasive method to increase the salivary flow, we have used TENS which in many way is beneficial to patients with metabolic disorders. Aims and Objectives: The aim is to assess the effectiveness of transcutaneous electrical nerve stimulation on salivary gland function in patients with hyposalivation. Subjects and Methods: The present study included total of 25 subjects with complaint of hyposalivation. Written informed consent was obtained from all the participants. Subjects with pacemakers, autoimmune diseases, pregnancy, and history of salivary gland pathology were excluded from the study. Subjects were asked to refrain from eating, drinking, chewing gum, smoking, and oral hygiene procedures for at least 1 h before the appointment. Unstimulated saliva was collected using modified Carlson Crittenden cup placed over the Stenson's duct bilaterally for 5 min and measured. TENS pads were placed over the parotid region and were activated. The intensity control switch was adjusted for patient's comfort. The intensity was turned up 1 increment at a time at 5 s intervals until the optimal intensity level was reached and stimulated saliva was then collected for 5 min using the modified Carlson Crittenden cup and measured. Any increase in parotid salivary flow (SF with electrostimulation was considered a positive finding. Statistical Analysis Used: A paired t-test, evaluating mean changes in stimulated versus unstimulated SF rates, was applied to look for statistically significant differences using PASW 18.0 for Windows. An independent sample t-test was performed to note difference between genders. Results: There was significant increase in parotid SF in 19 of 25 patients after transcutaneous electrical nerve stimulation. Males showed more salivary secretion when compared to females. Conclusions

  14. Sacral nerve stimulation enhances early intestinal mucosal repair following mucosal injury in a pig model.

    Science.gov (United States)

    Brégeon, Jérémy; Coron, Emmanuel; Da Silva, Anna Christina Cordeiro; Jaulin, Julie; Aubert, Philippe; Chevalier, Julien; Vergnolle, Nathalie; Meurette, Guillaume; Neunlist, Michel

    2016-08-01

    Reducing intestinal epithelial barrier (IEB) dysfunctions is recognized as being of major therapeutic interest for various intestinal disorders. Sacral nerve stimulation (SNS) is known to reduce IEB permeability. Here, we report in a pig model that SNS enhances morphological and functional recovery of IEB following mucosal injury induced via 2,4,6-trinitrobenzenesulfonic acid. These effects are associated with an increased expression of tight junction proteins such as ZO-1 and FAK. These results establish that SNS enhances intestinal barrier repair in acute mucosal injury. They further set the scientific basis for future use of SNS as a complementary or alternative therapeutic option for the treatment of gut disorders with IEB dysfunctions such as inflammatory bowel diseases or irritable bowel syndrome. Intestinal epithelial barrier (IEB) dysfunctions, such as increased permeability or altered healing, are central to intestinal disorders. Sacral nerve stimulation (SNS) is known to reduce IEB permeability, but its ability to modulate IEB repair remains unknown. This study aimed to characterize the impact of SNS on mucosal repair following 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced lesions. Six pigs were stimulated by SNS 3 h prior to and 3 h after TNBS enema, while sham animals (n = 8) were not stimulated. The impact of SNS on mucosal changes was evaluated by combining in vivo imaging, histological and functional methods. Biochemical and transcriptomic approaches were used to analyse the IEB and mucosal inflammatory response. We observed that SNS enhanced the recovery from TNBS-induced increase in transcellular permeability. At 24 h, TNBS-induced alterations of mucosal morphology were significantly less in SNS compared with sham animals. SNS reduced TNBS-induced changes in ZO-1 expression and its epithelial pericellular distribution, and also increased pFAK/FAK expression compared with sham. Interestingly, SNS increased the mucosal density of neutrophils

  15. Peripheral nerve stimulation (PNS) in the trapezius muscle region alleviate chronic neuropathic pain after lower brachial plexus root avulsion lesion: A case report

    DEFF Research Database (Denmark)

    Sørensen, Jens Christian Hedemann; Meier, Kaare; Perinpam, Larshan

    Peripheral nerve stimulation (PNS) in the trapezius muscle region alleviate chronic neuropathic pain after lower brachial plexus root avulsion lesion: A case report......Peripheral nerve stimulation (PNS) in the trapezius muscle region alleviate chronic neuropathic pain after lower brachial plexus root avulsion lesion: A case report...

  16. Does percutaneous tibial nerve stimulation improve global pelvic function in women with faecal incontinence?

    Science.gov (United States)

    Kelly, S L; Radley, S C; Brown, S R

    2016-05-01

    Percutaneous tibial nerve stimulation (PTNS) is a minimally invasive treatment for faecal incontinence. Many patients with faecal incontinence have coexisting pelvic floor disorders such as urinary incontinence and vaginal symptoms. We utilized a pelvic floor assessment tool to analyse any effect of PTNS on global pelvic floor function. Patients with faecal incontinence attending our institution who had failed to respond sufficiently to biofeedback were offered a course of PTNS. Patients underwent pre- and post-stimulation assessment with a validated electronic Personal Assessment Questionnaire - Pelvic Floor (ePAQ-PF) for pelvic floor disorders. Scores were compared to assess the effect of treatment on global pelvic floor function. During the study period pre- and post-stimulation ePAQ-PF data were available for 60 patients (55% of all patients starting PTNS). In this cohort there was a significant improvement in bowel continence, bowel related quality of life, irritable bowel syndrome and bowel evacuation with a large effect size for continence and bowel related quality of life. There was also a significant improvement in non-bowel related symptoms, including urinary pain and stress incontinence, urinary related quality of life and bowel related sexual function. Sixty-five per cent of those who answered the question reported improvement in global health after stimulation. For patients presenting with faecal incontinence, PTNS appears to have a positive effect on bowel related function in approximately two-thirds of patients. However, for treatment responders, improvement appears to relate mainly to improvement in bowel related function rather than a global pelvic floor effect. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.

  17. Sacral nerve stimulation induces changes in the pelvic floor and rectum that improve continence and quality of life.

    Science.gov (United States)

    Otto, Susanne Dorothea; Burmeister, Stefanie; Buhr, Heinz J; Kroesen, Anton

    2010-04-01

    Sacral nerve stimulation (SNS) can improve fecal incontinence, though the exact mechanism is not known. This study examines the following hypotheses: SNS leads to contraction of the pelvic floor, influences rectal perception, and improves continence and quality of life. Fourteen patients with sacral nerve stimulators implanted for fecal incontinence were examined prospectively. Morphological and functional assessment was done by endosonography, manometry, and volumetry with the stimulator turned on and off in direct succession. Questionnaires were used to determine incontinence and quality of life. With the stimulator turned on, rectal filling conditions were perceived only at higher volumes; in particular, the defecation urge was sensed only at higher volumes. There was also a reduction in the diameters of the external and internal anal sphincters and a decrease in the distance between the anal mucosa and the symphysis as a sign of pelvic floor elevation. Six months after surgery, continence and quality of life were markedly better than before the operation. We were able to confirm the hypotheses given above. The improvements of pelvic floor contraction and rectal perception are rapid adjustment processes in response to stimulation of sacral nerves S3/S4 when turning on the stimulator.

  18. Postoperative Issues of Sacral Nerve Stimulation for Fecal Incontinence and Constipation: A Systematic Literature Review and Treatment Guideline

    DEFF Research Database (Denmark)

    Maeda, Yasuko; Matzel, Klaus; Lundby, Lilli

    2011-01-01

    BACKGROUND: There is a lack of knowledge on the incidence and management of suboptimal therapeutic effect and the complications associated with sacral nerve stimulation for fecal incontinence and constipation. OBJECTIVE: This study aimed to review current literature on postoperative issues and to...

  19. Effects of transcutaneous electrical nerve stimulation (TENS) on self-efficacy and mood in elderly with mild cognitive impairment

    NARCIS (Netherlands)

    Luijpen, Marijn W.; Swaab, Dick F.; Sergeant, Joseph A.; Scherder, Erik J. A.

    2004-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) has been applied to patients with either Alzheimer's disease (AD) or incipient dementia, resulting in an enhancement in memory and verbal fluency. Moreover, affective behavior was shown to improve. Based on the positive effects

  20. Therapeutic effect of an implantable peroneal nerve stimulator in subjects with chronic stroke and footdrop: A randomized controlled trial

    NARCIS (Netherlands)

    Kottink, Anke I.R.; Kottink, A.I.R.; Hermens, Hermanus J.; Nene, A.V.; Tenniglo, Martinus Johannes Bernardus; Groothuis-Oudshoorn, Catharina Gerarda Maria; IJzerman, Maarten Joost

    Background and Purpose: Footdrop, characterized by a person's inability to raise the foot at the ankle, is a common problem in patients with stroke. A randomized controlled trial was performed to determine the therapeutic effect of using a new implantable, 2-channel peroneal nerve stimulator for 6

  1. A randomized controlled trial of an implantable 2-channel peroneal nerve stimulator on walking speed and activity in poststroke hemiplegia

    NARCIS (Netherlands)

    Kottink, A.I.R.; Kottink, Anke I.; Hermens, Hermanus J.; Nene, A.V.; Tenniglo, Martinus Johannes Bernardus; van der Aa, Hans E.; Buschman, H.P.J.; IJzerman, Maarten Joost

    Objective To determine the effect of a new implantable 2-channel peroneal nerve stimulator on walking speed and daily activities, in comparison with the usual treatment in chronic stroke survivors with a drop foot. Design Randomized controlled trial. Setting All subjects were measured 5 times in the

  2. Effect of Transcutaneous Electrical Nerve Stimulation on Sensation Thresholds in Patients with Painful Diabetic Neuropathy: An Observational Study

    Science.gov (United States)

    Moharic, Metka

    2010-01-01

    Transcutaneous electrical nerve stimulation (TENS) is one of the therapies for painful neuropathy. Its analgesic mechanisms probably involve the gate control theory, the physiological block and the endogenous pain inhibitory system. The aim of the study was to determine whether TENS improves small fibre function diminished because of painful…

  3. Transcutaneous Electrical Nerve Stimulation as an Additional Treatment for Women Suffering from Therapy-Resistant Provoked Vestibulodynia : A Feasibility Study

    NARCIS (Netherlands)

    Vallinga, Marleen S.; Spoelstra, Symen K.; Hemel, Inge L. M.; van de Wiel, Harry B. M.; Schultz, Willibrord C. M. Weijnnar

    IntroductionThe current approach to women with provoked vestibulodynia (PVD) comprises a multidimensional, multidisciplinary therapeutic protocol. As PVD is considered to be a chronic pain disorder, transcutaneous electrical nerve stimulation (TENS) can be used as an additional therapy for women

  4. Penile vibratory stimulation in the recovery of urinary continence and erectile function after nerve-sparing radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Borre, Michael; Ohl, Dana A

    2014-01-01

    OBJECTIVE: To examine the effect of penile vibratory stimulation (PVS) in the preservation and restoration of erectile function and urinary continence in conjunction with nerve-sparing radical prostatectomy (RP). PATIENTS AND METHODS: The present study was conducted between July 2010 and March 2013...

  5. Effect of analgesic nerve block electrical stimulation in a patient with adhesive capsulitis.

    Science.gov (United States)

    Gulick, Dawn T; Borger, Amy; McNamee, Lauren

    2007-01-01

    Although the pathophysiology of adhesive capsulitis is poorly understood, the primary goal of therapeutic intervention is to restore pain-free, functional range of motion (ROM) of the shoulder. Pain and muscle guarding, particularly of the subscapularis muscle, are common impairments that occur with adhesive capsulitis. The purpose of this case report is to describe a novel approach to help the pain-muscle guarding-pain cycle associated with pain and limited shoulder motion in a patient with a medical diagnosis of adhesive capsulitis. The patient was a 64-year-old female with adhesive capsulitis. Outcome variables were the Shoulder Pain and Disability Index (SPADI), internal rotation (IR) and external rotation (ER) ROM, and rotational lack. Twelve treatments of moist heat, analgesic nerve block electrical stimulation, contract/relax exercises for shoulder IR/ER, and Pendulum/Codman exercises were administered. After both 2 and 4 weeks of treatment, the patient demonstrated marked improvements in all areas. Overall, there was a 78-106% increase in ROM (IR and ER) and a 50-83% improvement in functional mobility (rotational lack & SPADI). It appears that analgesic electrical stimulation may have helped decrease the pain-muscle guarding cycle associated with adhesive capsulitis to enhance functional outcomes in a timely manner.

  6. Vagus Nerve Stimulation Modulates Complexity of Heart Rate Variability Differently during Sleep and Wakefulness.

    Science.gov (United States)

    Balasubramanian, Karthi; Harikumar, K; Nagaraj, Nithin; Pati, Sandipan

    2017-01-01

    Progressive loss of heart rate variability (HRV) and complexity are associated with increased risk of mortality in patients with cardiovascular disease and are a candidate marker for patients at risk of sudden cardiac death. HRV is influenced by the cardiac autonomic nervous system (ANS), although it is unclear which arm of the ANS (sympathetic or parasympathetic) needs to be perturbed to increase the complexity of HRV. In this case-control study, we have analyzed the relation between modulation of vagus nerve stimulation (VNS) and changes in complexity of HRV as a function of states of vigilance. We hypothesize that VNS - being a preferential activator of the parasympathetic system - will decrease the heart rate (HR) and increase the complexity of HRV maximum during sleep. The electrocardiogram (EKG) obtained from a 37-year-old, right-handed male with known intractable partial epilepsy and left therapeutic VNS was analyzed during wakefulness and sleep with VNS ON and OFF states. Age-matched control EKG was obtained from five participants (three with intractable epilepsy and two without epilepsy) that had no VNS implant. The study demonstrated the following: (1) VNS increased the complexity of HRV during sleep and decreased it during wakefulness. (2) An increase in parasympathetic tone is associated with increased complexity of HRV even in the presence of decreased HR. These results need to be replicated in a larger cohort before developing patterned stimulation using VNS to stabilize cardiac dysautonomia and prevent fatal arrhythmias.

  7. Role of transcutaneous electrical nerve stimulation in post-operative analgesia

    Directory of Open Access Journals (Sweden)

    Sukhyanti Kerai

    2014-01-01

    Full Text Available The use of transcutaneous electrical nerve stimulation (TENS as non-pharmacological therapeutic modality is increasing. The types of TENS used clinically are conventional TENS, acupuncture TENS and intense TENS. Their working is believed to be based on gate control theory of pain and activation of endogenous opioids. TENS has been used in anaesthesia for treatment of post-operative analgesia, post-operative nausea vomiting and labour analgesia. Evidence to support analgesic efficacy of TENS is ambiguous. A systematic search of literature on PubMed and Cochrane Library from July 2012 to January 2014 identified a total of eight clinical trials investigating post-operative analgesic effects of TENS including a total of 442 patients. Most of the studies have demonstrated clinically significant reduction in pain intensity and supplemental analgesic requirement. However, these trials vary in TENS parameters used that is, duration, intensity, frequency of stimulation and location of electrodes. Further studies with adequate sample size and good methodological design are warranted to establish general recommendation for use of TENS for post-operative pain.

  8. Vagus nerve stimulation modulates complexity of heart rate variability differently during sleep and wakefulness

    Directory of Open Access Journals (Sweden)

    Karthi Balasubramanian

    2017-01-01

    Full Text Available Progressive loss of heart rate variability (HRV and complexity are associated with increased risk of mortality in patients with cardiovascular disease and are a candidate marker for patients at risk of sudden cardiac death. HRV is influenced by the cardiac autonomic nervous system (ANS, although it is unclear which arm of the ANS (sympathetic or parasympathetic needs to be perturbed to increase the complexity of HRV. In this case–control study, we have analyzed the relation between modulation of vagus nerve stimulation (VNS and changes in complexity of HRV as a function of states of vigilance. We hypothesize that VNS – being a preferential activator of the parasympathetic system – will decrease the heart rate (HR and increase the complexity of HRV maximum during sleep. The electrocardiogram (EKG obtained from a 37-year-old, right-handed male with known intractable partial epilepsy and left therapeutic VNS was analyzed during wakefulness and sleep with VNS ON and OFF states. Age-matched control EKG was obtained from five participants (three with intractable epilepsy and two without epilepsy that had no VNS implant. The study demonstrated the following: (1 VNS increased the complexity of HRV during sleep and decreased it during wakefulness. (2 An increase in parasympathetic tone is associated with increased complexity of HRV even in the presence of decreased HR. These results need to be replicated in a larger cohort before developing patterned stimulation using VNS to stabilize cardiac dysautonomia and prevent fatal arrhythmias.

  9. Effects of cervical sympathetic nerve stimulation on the cerebral microcirculation: possible clinical implications.

    Science.gov (United States)

    Passatore, M; Deriu, F; Roatta, S; Grassi, C; Micieli, G

    1996-01-01

    The action of bilateral cervical sympathetic nerve (CSN) stimulation on mean cerebral blood flow (CBF) and on its rhythmical fluctuations was studied in normotensive rabbits by using laser-Doppler flowmetry (LDF). A reduction in mean CBF, mediated by alpha-adrenoceptors, was the predominant effect; it was more often present and larger in size in the vascular beds supplied by the carotid than in those supplied by the vertebro-basilar system. This suggests that the sympathetic action facilitates a redistribution of blood flow to the brain stem. The effect induced by CSN stimulation on CBF spontaneous oscillations was a consistent decrease in amplitude and an increase in frequency, irrespective of the changes produced on the mean level of CBF. The possible implications of the sympathetic action on the state of the blood-brain barrier (BBB) are discussed. Experimental and clinical data dealing with the influence of sympathetic activation on the cerebrovascular system have been compared. As a result the possibility of analysing the spontaneous oscillations of CBF for clinical purposes is suggested.

  10. Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient.

    Science.gov (United States)

    Kilgard, Michael P; Rennaker, Robert L; Alexander, Jen; Dawson, Jesse

    2018-01-01

    Recent studies indicate that vagus nerve stimulation (VNS) paired with rehabilitation can enhance neural plasticity in the primary sensory and motor cortices, improve forelimb function after stroke in animal models and improve motor function in patients with arm weakness after stroke. To gain "first-in-man" experience of VNS paired with tactile training in a patient with severe sensory impairment after stroke. During the long-term follow-up phase of a clinical trial of VNS paired with motor rehabilitation, a 71-year-old man who had made good motor recovery had ongoing severe sensory loss in his left hand and arm. He received VNS paired with tactile therapy in an attempt to improve his sensory function. During twenty 2-hour sessions, each passive and active tactile event was paired with a 0.5 second burst of 0.8 mA VNS. Sensory function was measured before, halfway through, and after this therapy. The patient did not report any side effects during or following VNS+Tactile therapy. Quantitative measures revealed lasting and clinically meaningful improvements in tactile threshold, proprioception, and stereognosis. After VNS+Tactile therapy, the patient was able to detect tactile stimulation to his affected hand that was eight times less intense, identify the joint position of his fingers in the affected hand three times more often, and identify everyday objects using his affected hand seven times more often, compared to baseline. Sensory function significantly improved in this man following VNS paired with tactile stimulation. This approach merits further study in controlled clinical trials.

  11. Evaluation of the effects of transcutaneous electrical nerve stimulation on whole saliva flow: A clinical study

    Directory of Open Access Journals (Sweden)

    Saraf Kedar Vilas

    2009-01-01

    Full Text Available Background and Objectives : Xerostomia and salivary gland hypofunction are associated with advancing age, autoimmune diseases such as Sjφgren′s syndrome, head and neck radiation, smoking and recreational drug usage. Palliative management of xerostomia includes topical agents such as ice chips, saliva substitutes, increasing water intake, paraffin and citric acid containing lozenges. Systemic agents have been used, but some drugs have been found to have unfavorable side effects. Therefore, this study was undertaken to evaluate the effect of transcutaneous electrical nerve stimulation (TENS on whole salivary flow rate in healthy adult subjects. Study Design : One hundred healthy adult subjects (50 males and 50 females, with no history of salivary gland disorder, were enrolled in this study. TENS electrode pads were placed externally on the skin overlying the parotid glands. Unstimulated whole saliva was collected for five minutes in a graduated tube, using a standardized collection technique. The TENS unit was then activated and stimulated saliva was collected for an additional five minutes. Results : Eighty five of the 100 subjects demonstrated increased whole salivary flow when stimulated via the TENS unit. Eleven experienced no change and four experienced a decrease in the salivary flow. The mean unstimulated salivary flow rate was 0.36 ml/min (SD 0.16 and there was a 21% increase in the salivary flow following TENS application. Statistical analysis of flow rates utilizing the paired ′t′ test showed the difference to be statistically significant (P< 0.001. Interpretation and Conclusion : The TENS unit was effective in increasing whole salivary flow in 85% of the healthy adult subjects. A further study in patients with xerostomia, secondary to various local and systemic causes, is required.

  12. Randomized clinical trial of percutaneous tibial nerve stimulation versus sham electrical stimulation in patients with faecal incontinence.

    Science.gov (United States)

    van der Wilt, A A; Giuliani, G; Kubis, C; van Wunnik, B P W; Ferreira, I; Breukink, S O; Lehur, P A; La Torre, F; Baeten, C G M I

    2017-08-01

    The aim was to assess the effects of percutaneous tibial nerve stimulation (PTNS) in the treatment of faecal incontinence (FI) by means of an RCT. Patients aged over 18 years with FI were included in a multicentre, single-blinded RCT. The primary endpoint was reduction in the median or mean number of FI episodes per week. Secondary endpoints were changes in measures of FI severity, and disease-specific and generic quality of life. Outcomes were compared between PTNS and sham stimulation after 9 weeks of treatment. A higher proportion of patients in the PTNS (13 of 29) than in the sham (6 of 30) group showed a reduction of at least 50 per cent in the median number of FI episodes/week (incidence rate ratio (IRR) 2·40, 95 per cent c.i. 1·10 to 5·24; P = 0·028), but not in the mean number of episodes/week (10 of 29 versus 8 of 30; IRR 1·42, 0·69 to 2·92; P = 0·347). The absolute median number of FI episodes per week decreased in the PTNS but not in the sham group (IRR 0·66, 0·44 to 0·98; P = 0·041), as did the mean number (IRR 0·65 (0·45 to 0·97); P = 0·034). Scores on the Cleveland Clinic Florida faecal incontinence scale decreased significantly in both groups, but more steeply in the PTNS group (mean difference -1·3, 95 per cent c.i. -2·6 to 0·0; P = 0·049). The aggregated mental component score of Short Form 36 improved in the PTNS but not in the sham group (mean difference 5·1, 0·5 to 9·6; P = 0·028). PTNS may offer a small advantage in the clinical management of FI that is insufficiently responsive to conservative treatment. The key challenge will be to identify patients who may benefit most from this minimally invasive surgical procedure. Registration number: NCT00974909 (http://www.clinicaltrials.gov). © 2017 BJS Society Ltd Published by John Wiley & Sons Ltd.

  13. High-frequency electrical stimulation can be a complementary therapy to promote nerve regeneration in diabetic rats.

    Directory of Open Access Journals (Sweden)

    Chia-Hong Kao

    Full Text Available The purpose of this study was to evaluate whether 1 mA of percutaneous electrical stimulation (ES at 0, 2, 20, or 200 Hz augments regeneration between the proximal and distal nerve stumps in streptozotocin diabetic rats. A10-mm gap was made in the diabetic rat sciatic nerve by suturing the stumps into silicone rubber tubes. Normal animals were used as the controls. Starting 1 week after transection, ES was applied between the cathode placed at the distal stump and the anode at the proximal stump every other day for 3 weeks. At 4 weeks after surgery, the normal controls and the groups receiving ES at 20, and 200 Hz had a higher success percentage of regeneration compared to the ES groups at 0 and 2 Hz. In addition, quantitative histology of the successfully regenerated nerves revealed that the groups receiving ES at a higher frequency, especially at 200 Hz, had a more mature structure with more myelinated fibers compared to those in the lower-frequency ES groups. Similarly, electrophysiology in the ES group at 200 Hz showed significantly shorter latency, larger amplitude, larger area of evoked muscle action potentials and faster conduction velocity compared to other groups. Immunohistochemical staining showed that ES at a higher frequency could significantly promote calcitonin gene-related peptide expression in lamina I-II regions in the dorsal horn and recruit a higher number of macrophages in the diabetic distal sciatic nerve. The macrophages were found that they could stimulate the secretion of nerve growth factor, platelet-derived growth factor, and transforming growth factor-β in dissected sciatic nerve segments. The ES at a higher frequency could also increase cutaneous blood flow in the ipsilateral hindpaw to the injury. These results indicated that a high-frequency ES could be necessary to heal severed diabetic peripheral nerve with a long gap to be repaired.

  14. Ictal heart rate changes and the effects of vagus nerve stimulation for patients with refractory epilepsy

    Directory of Open Access Journals (Sweden)

    Chen W

    2017-09-01

    Full Text Available Wei Chen,1 Fan-Gang Meng2,3 1Department of Neurology, Liaocheng People’s Hospital, Liaocheng, 2Beijing Neurosurgical Institute, Capital Medical University, 3Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing, People’s Republic of China Abstract: Vagus nerve stimulation (VNS shows long-term efficiency worldwide in most pharmacoresistant patients with epilepsy; however, there are still a small number of patients who are non-responders to VNS therapy. It has been shown that VNS treatment outcomes for drug-resistant epilepsy may be predicted by preoperative heart-rate variability measurements and that patients with epilepsy with ictal tachycardia (IT during seizures have good responses to VNS. However, few studies have reported the efficacy of VNS in patients with epilepsy with ictal bradycardia (IB or normal heart rate (HR, and none have explored the possible mechanisms of VNS efficacy based on different HR types. HR during seizures varies, and we presume that different HRs during seizures may impact the effects of VNS. It has been shown that blood pressure in the human body needs to be maintained through the arterial baroreflex (ABR. VNS efficacy in patients with epilepsy with IT, IB, and normal HR during seizures may be related to ABR. Mechanical signals generated by VNS are similar to the autonomic nerve pathways and, thus, we propose the hypothesis that different HRs during seizures can predict VNS efficacy in patients. If VNS is highly efficient in patients with IT during seizures, VNS in patients with a normal HR during seizures may be less efficient, and may even be inefficient in patients with IB during seizures. Keywords: heart rate changes, VNS efficacy, refractory epilepsy 

  15. Wake-promoting effects of vagus nerve stimulation after traumatic brain injury: upregulation of orexin-A and orexin receptor type 1 expression in the prefrontal cortex.

    Science.gov (United States)

    Dong, Xiao-Yang; Feng, Zhen

    2018-02-01

    Orexins, produced in the lateral hypothalamus, are important neuropeptides that participate in the sleep/wake cycle, and their expression coincides with the projection area of the vagus nerve in the brain. Vagus nerve stimulation has been shown to decrease the amounts of daytime sleep and rapid eye movement in epilepsy patients with traumatic brain injury. In the present study, we investigated whether vagus nerve stimulation promotes wakefulness and affects orexin expression. A rat model of traumatic brain injury was established using the free fall drop method. In the stimulated group, rats with traumatic brain injury received vagus nerve stimulation (frequency, 30 Hz; current, 1.0 mA; pulse width, 0.5 ms; total stimulation time, 15 minutes). In the antagonist group, rats with traumatic brain injury were intracerebroventricularly injected with the orexin receptor type 1 (OX1R) antagonist SB334867 and received vagus nerve stimulation. Changes in consciousness were observed after stimulation in each group. Enzyme-linked immunosorbent assay, western blot assay and immunohistochemistry were used to assess the levels of orexin-A and OX1R expression in the prefrontal cortex. In the stimulated group, consciousness was substantially improved, orexin-A protein expression gradually increased within 24 hours after injury and OX1R expression reached a peak at 12 hours, compared with rats subjected to traumatic brain injury only. In the antagonist group, the wake-promoting effect of vagus nerve stimulation was diminished, and orexin-A and OX1R expression were decreased, compared with that of the stimulated group. Taken together, our findings suggest that vagus nerve stimulation promotes the recovery of consciousness in comatose rats after traumatic brain injury. The upregulation of orexin-A and OX1R expression in the prefrontal cortex might be involved in the wake-promoting effects of vagus nerve stimulation.

  16. Early systemic granulocyte-colony stimulating factor treatment attenuates neuropathic pain after peripheral nerve injury.

    Directory of Open Access Journals (Sweden)

    Po-Kuan Chao

    Full Text Available Recent studies have shown that opioid treatment can reduce pro-inflammatory cytokine production and counteract various neuropathic pain syndromes. Granulocyte colony-stimulating factor (G-CSF can promote immune cell differentiation by increasing leukocytes (mainly opioid-containing polymorphonuclear (PMN cells, suggesting a potential beneficial role in treating chronic pain. This study shows the effectiveness of exogenous G-CSF treatment (200 µg/kg for alleviating thermal hyperalgesia and mechanical allodynia in rats with chronic constriction injury (CCI, during post-operative days 1-25, compared to that of vehicle treatment. G-CSF also increases the recruitment of opioid-containing PMN cells into the injured nerve. After CCI, single administration of G-CSF on days 0, 1, and 2, but not on day 3, relieved thermal hyperalgesia, which indicated that its effect on neuropathic pain had a therapeutic window of 0-48 h after nerve injury. CCI led to an increase in the levels of interleukin-6 (IL-6 mRNA and tumor necrosis factor-α (TNF-α protein in the dorsal root ganglia (DRG. These high levels of IL-6 mRNA and TNF-α were suppressed by a single administration of G-CSF 48-144 h and 72-144 h after CCI, respectively. Furthermore, G-CSF administered 72-144 h after CCI suppressed the CCI-induced upregulation of microglial activation in the ipsilateral spinal dorsal horn, which is essential for sensing neuropathic pain. Moreover, the opioid receptor antagonist naloxone methiodide (NLXM reversed G-CSF-induced antinociception 3 days after CCI, suggesting that G-CSF alleviates hyperalgesia via opioid/opioid receptor interactions. These results suggest that an early single systemic injection of G-CSF alleviates neuropathic pain via activation of PMN cell-derived endogenous opioid secretion to activate opioid receptors in the injured nerve, downregulate IL-6 and TNF-α inflammatory cytokines, and attenuate microglial activation in the spinal dorsal horn. This

  17. Defining the neural fulcrum for chronic vagus nerve stimulation: implications for integrated cardiac control.

    Science.gov (United States)

    Ardell, Jeffrey L; Nier, Heath; Hammer, Matthew; Southerland, E Marie; Ardell, Christopher L; Beaumont, Eric; KenKnight, Bruce H; Armour, J Andrew

    2017-11-15

    The evoked cardiac response to bipolar cervical vagus nerve stimulation (VNS) reflects a dynamic interaction between afferent mediated decreases in central parasympathetic drive and suppressive effects evoked by direct stimulation of parasympathetic efferent axons to the heart. The neural fulcrum is defined as the operating point, based on frequency-amplitude-pulse width, where a null heart rate response is reproducibly evoked during the on-phase of VNS. Cardiac control, based on the principal of the neural fulcrum, can be elicited from either vagus. Beta-receptor blockade does not alter the tachycardia phase to low intensity VNS, but can increase the bradycardia to higher intensity VNS. While muscarinic cholinergic blockade prevented the VNS-induced bradycardia, clinically relevant doses of ACE inhibitors, beta-blockade and the funny channel blocker ivabradine did not alter the VNS chronotropic response. While there are qualitative differences in VNS heart control between awake and anaesthetized states, the physiological expression of the neural fulcrum is maintained. Vagus nerve stimulation (VNS) is an emerging therapy for treatment of chronic heart failure and remains a standard of therapy in patients with treatment-resistant epilepsy. The objective of this work was to characterize heart rate (HR) responses (HRRs) during the active phase of chronic VNS over a wide range of stimulation parameters in order to define optimal protocols for bidirectional bioelectronic control of the heart. In normal canines, bipolar electrodes were chronically implanted on the cervical vagosympathetic trunk bilaterally with anode cephalad to cathode (n = 8, 'cardiac' configuration) or with electrode positions reversed (n = 8, 'epilepsy' configuration). In awake state, HRRs were determined for each combination of pulse frequency (2-20 Hz), intensity (0-3.5 mA) and pulse widths (130-750 μs) over 14 months. At low intensities and higher frequency VNS, HR increased during the

  18. Multimodal therapeutic assessment of peripheral nerve stimulation in neuropathic pain: five case reports with a 20-year follow-up

    DEFF Research Database (Denmark)

    Kupers, Ron; Laere, Koen Van; Calenbergh, Frank Van

    2011-01-01

    Neuropathic pain following peripheral nerve lesion is highly resistant to conventional pain treatments but may respond well to direct electrical peripheral nerve stimulation (PNS). In the 1980s, we treated a series of 11 peripheral neuropathic pain patients with PNS. A first outcome assessment......, conducted after a 52-month follow-up, revealed that the majority of the patients were significantly improved. Here, we present the results of a second and more comprehensive follow-up, conducted after more than 20years of PNS usage. Of the six patients still using PNS, five participated in a multimodality...

  19. Transcutaneous vagus nerve stimulation for the treatment of depression: a study protocol for a double blinded randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Rong Pei-Jing

    2012-12-01

    Full Text Available Abstract Background Depressive disorders are the most common form of mental disorders in community and health care settings. Unfortunately, the treatment of Major Depressive Disorder (MDD is far from satisfactory. Vagus nerve stimulation (VNS is a relatively new and promising physical treatment for depressive disorders. One particularly appealing element of VNS is the long-term benefit in mood regulation. However, because this intervention involves surgery, perioperative risks, and potentially significant side effects, this treatment has been limited to those patients with treatment-resistant depression who have failed medication trials and exhausted established somatic treatments for major depression, due to intolerance or lack of response. This double-blinded randomized clinical trial aims to overcome these limitations by introducing a novel method of stimulating superficial branches of the vagus nerve on the ear to treat MDD. The rationale is that direct stimulation of the afferent nerve fibers on the ear area with afferent vagus nerve distribution should produce a similar effect as classic VNS in reducing depressive symptoms without the burden of surgical intervention. Design One hundred twenty cases (60 males of volunteer patients with mild and moderate depression will be randomly divided into transcutaneous vagus nerve stimulation group (tVNS and sham tVNS group. The treatment period lasts 4 months and all clinical and physiological measurements are acquired at the beginning and the end of the treatment period. Discussion This study has the potential to significantly extend the application of VNS treatment for MDD and other disorders (including epilepsy, bipolar disorder, and morbid obesity, resulting in direct benefit to the patients suffering from these highly prevalent disorders. In addition, the results of this double-blinded clinical trial will shed new light on our understanding of acupuncture point specificity, and development of

  20. Parasacral transcutaneous electrical nerve stimulation for overactive bladder in constipated children: The role of constipation.

    Science.gov (United States)

    Veiga, Maria Luiza; Costa, Elen Veruska; Portella, Inaah; Nacif, Ananda; Martinelli Braga, Ana Aparecida; Barroso, Ubirajara

    2016-12-01

    Parasacral transcutaneous electrical nerve stimulation (TENS) is an effective method for the treatment of overactive bladder (OAB), and, additionally, it accelerates bowel transit time. Therefore, not only does parasacral transcutaneous electrical nerve stimulation (TENS) improve lower urinary tract symptoms (LUTS), but it also resolves the problem of constipation in a significant number of children. Since TENS has a positive effect on LUTS and on the symptoms of fecal retention, it is possible that its action regarding OAB could be directly associated with the improvement in constipation. In other words, the positive effect of parasacral TENS in OAB would be because constipation was resolved. The objective of this study was to test that hypothesis. To test the hypothesis that the positive effect of parasacral TENS in OAB would be because constipation had improved with this method. In this prospective study, children with OAB alone were submitted to parasacral TENS. The inclusion criteria consisted of children with idiopathic OAB alone The Rome III criteria for children of 4-18 years of age were used to diagnose constipation. All the children were treated with 20 sessions of parasacral TENS applied for 20 min, three times weekly on alternating days (Figure). No instructions were given to the participants with respect to diet, laxatives, or pharmaceutical treatment for constipation throughout the study period. None of the patients used anticholinergics. Standard urotherapy was prescribed. Parasacral TENS improves OAB and constipation. The presence of constipation before treatment was not associated with a poorer prognosis insofar as the resolution of the symptoms of OAB was concerned. Likewise, there was no association between the resolution of constipation with parasacral TENS and the resolution of OAB. There was no statistically significant difference in urinary symptoms between the constipated and nonconstipated children. There was an improvement in urgency

  1. Effects and mechanisms of auricular vagus nerve stimulation on high-fat-diet--induced obese rats.

    Science.gov (United States)

    Li, Han; Zhang, Jian-Bin; Xu, Chen; Tang, Qing-Qing; Shen, Wei-Xing; Zhou, Jing-Zhu; Chen, Jian-De; Wang, Yin-Ping; Han, Li; Jian-Bin, Zhang; Chen, Xu; Qing-Qing, Tang; Wei-Xing, Shen; Jing-Zhu, Zhou; Jian-De, Chen; Yin-Ping, Wang

    2015-01-01

    Obesity is a major public health problem. Regulating food intake and promoting metabolism of fat are two important options for treating obesity. Auricular vagus nerve stimulation (AVNS) is considered as an alternative approach to vagal nerve stimulation. The aim of this study was to investigate the effects of AVNS and its mechanisms on obesity in obese rats. Male Sprague-Dawley rats were fed either a high-fat diet (HFD) or a normal diet for 8 wk. Qualified HFD rats were randomly divided into three groups: the HFD group, the AVNS group, and the sham group for 6 wk treatment. Body weight and daily energy intake were recorded weekly. The rats were sacrificed for measurement of weight of bilateral perirenal, epididymal white adipose tissue (WAT), dorsal brown adipose tissue (BAT), and gastric emptying. Serum cholecystokinin (CCK), peptide YY3 to 36 (PYY3-36) and norepinephrine (NE) were assayed by enzyme-linked immunosorbent assay. Real-time quantitative polymerase chain reaction was used to assess the mRNA expressions of CCK subtype receptor a (CCKa) in the antrum, PYY3-36 receptor in the distal ileum, β3-adrenoceptor, and uncoupling protein gene 1 (UCP1) in the BAT. Compared with HFD group, AVNS significantly reduced body weight and epididymal WAT and increased BAT weight, serum NE, mRNA expressions of β3-adrenoceptors, and UCP1 of the BAT, but had no effect on daily energy intake, perirenal WAT weight, gastric emptying, serum levels of CCK and PYY, or mRNA expressions of CCKa receptor and PYY3-36 receptor in the relevant tissues. The sham group, as a comparison group for AVNS, saw less effect in any of the indexes compared with the HFD group. AVNS had more effect on weight loss, reduction of perirenal WAT, and increase of NE, β3-adrenoceptor, and UCP1 than sham. AVNS was more effective in reducing body weight and causing visceral fat loss. Biochemical tests found more NE released in the serum and more β3-adrenoceptor and UCP1 expression in the BAT. All of

  2. The Effect of Transcutaneous Electrical Nerve Stimulation of Sympathetic Ganglions and Acupuncture Points on Distal Blood Flow

    Directory of Open Access Journals (Sweden)

    Fahimeh Kamali

    2017-04-01

    Full Text Available Transcutaneous electrical nerve stimulation (TENS is a widely-practiced method to increase blood flow in clinical practice. The best location for stimulation to achieve optimal blood flow has not yet been determined. We compared the effect of TENS application at sympathetic ganglions and acupuncture points on blood flow in the foot of healthy individuals. Seventy-five healthy individuals were randomly assigned to three groups. The first group received cutaneous electrical stimulation at the thoracolumbar sympathetic ganglions. The second group received stimulation at acupuncture points. The third group received stimulation in the mid-calf area as a control group. Blood flow was recorded at time zero as baseline and every 3 minutes after baseline during stimulation, with a laser Doppler flow-meter. Individuals who received sympathetic ganglion stimulation showed significantly greater blood flow than those receiving acupuncture point stimulation or those in the control group (p<0.001. Data analysis revealed that blood flow at different times during stimulation increased significantly from time zero in each group. Therefore, the application of low-frequency TENS at the thoracolumbar sympathetic ganglions was more effective in increasing peripheral blood circulation than stimulation at acupuncture points.

  3. Nicotine stimulates nerve growth factor in lung fibroblasts through an NFκB-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Cherry Wongtrakool

    Full Text Available Airway hyperresponsiveness (AHR is classically found in asthma, and persistent AHR is associated with poor asthma control. Although airway smooth muscle (ASM cells play a critical pathophysiologic role in AHR, the paracrine contributions of surrounding cells such as fibroblasts to the contractile phenotype of ASM cells have not been examined fully. This study addresses the hypothesis that nicotine promotes a contractile ASM cell phenotype by stimulating fibroblasts to increase nerve growth factor (NGF secretion into the environment.Primary lung fibroblasts isolated from wild type and α7 nicotinic acetylcholine receptor (α7 nAChR deficient mice were treated with nicotine (50 µg/ml in vitro for 72 hours. NGF levels were measured in culture media and in bronchoalveolar lavage (BAL fluid from asthmatic, smoking and non-smoking subjects by ELISA. The role of the NFκB pathway in nicotine-induced NGF expression was investigated by measuring NFκB nuclear translocation, transcriptional activity, chromatin immunoprecipitation assays, and si-p65 NFκB knockdown. The ability of nicotine to stimulate a fibroblast-mediated, contractile ASM cell phenotype was confirmed by examining expression of contractile proteins in ASM cells cultured with fibroblast-conditioned media or BAL fluid.NGF levels were elevated in the bronchoalveolar lavage fluid of nicotine-exposed mice, current smokers, and asthmatic children. Nicotine increased NGF secretion in lung fibroblasts in vitro in a dose-dependent manner and stimulated NFκB nuclear translocation, p65 binding to the NGF promoter, and NFκB transcriptional activity. These responses were attenuated in α7 nAChR deficient fibroblasts and in wild type fibroblasts following NFκB inhibition. Nicotine-treated, fibroblast-conditioned media increased expression of contractile proteins in ASM cells.Nicotine stimulates NGF release by lung fibroblasts through α7 nAChR and NFκB dependent pathways. These novel findings

  4. Epicardial distribution of ST segment and T wave changes produced by stimulation of intrathoracic ganglia or cardiopulmonary nerves in dogs.

    Science.gov (United States)

    Savard, P; Cardinal, R; Nadeau, R A; Armour, J A

    1991-06-01

    Sixty-three ventricular epicardial electrograms were recorded simultaneously in 8 atropinized dogs during stimulation of acutely decentralized intrathoracic autonomic ganglia or cardiopulmonary nerves. Three variables were measured: (1) isochronal maps representing the epicardial activation sequence, (2) maps depicting changes in areas under the QRS complex and T wave (regional inhomogeneity of repolarization), and (3) local and total QT intervals. Neural stimulations did not alter the activation sequence but induced changes in the magnitude and polarity of the ST segments and T waves as well as in QRST areas. Stimulation of the same neural structure in different dogs induced electrical changes with different amplitudes and in different regions of the ventricles, except for the ventral lateral cardiopulmonary nerve which usually affected the dorsal wall of the left ventricle. Greatest changes occurred when the right recurrent, left intermediate medial, left caudal pole, left ventral lateral cardiopulmonary nerves and stellate ganglia were stimulated. Local QT durations either decreased or did not change, whereas total QT duration as measured using a root-mean-square signal did not change, indicating the regional nature of repolarization changes. Taken together, these data indicate that intrathoracic efferent sympathetic neurons can induce regional inhomogeneity of repolarization without prolonging the total QT interval.

  5. Dose-specific effects of transcutaneous electrical nerve stimulation (TENS) on experimental pain: a systematic review.

    Science.gov (United States)

    Claydon, Leica S; Chesterton, Linda S; Barlas, Panos; Sim, Julius

    2011-09-01

    To determine the hypoalgesic effects of transcutaneous electrical nerve stimulation (TENS) parameter combinations on experimental models in healthy humans. Searches were performed using the electronic databases Ovid MEDLINE, CINAHL, AMED, and Web of Science (from inception to December 2009). Manual searches of journals and reference lists of retrieved trials were also performed. Randomized controlled trials (RCTs) were included in the review if they compared the hypoalgesic effect of TENS relative with placebo and control, using an experimental pain model in healthy human participants. Two reviewers independently selected the trials, assessed their methodologic quality and extracted data. Forty-three RCTs were eligible for inclusion. A best evidence synthesis revealed: Overall "conflicting" (inconsistent findings in multiple RCTs) evidence of TENS efficacy on experimental pain irrespective of TENS parameters used. Overall intense TENS has "moderate" evidence of efficacy (1 high-quality and 2 low-quality trials). Conventional TENS has overall conflicting evidence of efficacy, this is derived from "strong" evidence of efficacy (generally consistent findings in multiple high-quality RCTs) on pressure pain but strong evidence of inefficacy on other pain models. "Limited" evidence (positive findings from 1 RCT) of hypoalgesia exists for some novel parameters. Low-intensity, low-frequency, local TENS has strong evidence of inefficacy. Inappropriate TENS (using "barely perceptible" intensities) has moderate evidence of inefficacy. The level of hypoalgesic efficacy of TENS is clearly dependent on TENS parameter combination selection (defined in terms of intensity, frequency, and stimulation site) and experimental pain model. Future clinical RCTs may consider these TENS dose responses.

  6. Tail nerve electrical stimulation induces body weight-supported stepping in rats with spinal cord injury.

    Science.gov (United States)

    Zhang, Shu-Xin; Huang, Fengfa; Gates, Mary; White, Jason; Holmberg, Eric G

    2010-03-30

    Walking or stepping has been considered the result from the activation of the central pattern generator (CPG). In most patients with spinal cord injury (SCI) the CPG is undamaged. To date, there are no noninvasive approaches for activating the CPG. Recently we developed a noninvasive technique, tail nerve electrical stimulation (TANES), which can induce positive hind limb movement of SCI rats. The purpose of this study is to introduce the novel technique and examine the effect of TANES on CPG activation. A 25 mm contusion injury was produced at spinal cord T10 of female, adult Long-Evans rats by using the NYU impactor device. Rats received TANES ( approximately 40 mA at 4 kHz) 7 weeks after injury. During TANES all injured rats demonstrated active body weight-supported stepping of hind limbs with left-right alternation and occasional front-hind coordination, resulting in significant, temporary increase in BBB scores (p<0.01). However, there is no response to TANES from rats with L2 transection, consistent with other reports that the CPG may be located at L1-2. S1 transection negatively implies the key role of TANES in CPG activation. The TANES not only renders paralyzed rats with a technique-induced ability to walk via activating CPG, but also is likely to be used for locomotor training. It has more beneficial effects for physical training over other training paradigms including treadmill training and invasive functional electrical stimulation. Therefore the TANES may have considerable potential for achieving improvement of functional recovery in animal models and a similar method may be suggested for human study. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Treating Depression with Transcutaneous Auricular Vagus Nerve Stimulation: State of the Art and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Jian Kong

    2018-02-01

    Full Text Available Depression is a highly prevalent disorder, and its treatment is far from satisfactory. There is an urgent need to develop a new treatment for depression. Although still at its early stage, transcutaneous auricular vagus nerve stimulation (taVNS has shown promising potential for treating depression. In this article, we first summarize the results of clinical studies on the treatment effect of taVNS on depression. Then, we re-analyze a previous study to identify the specific symptoms taVNS can relieve as indicated by subscores of the 24-item Hamilton Depression Scale in patients with depression. We found that taVNS can significantly reduce multiple symptoms of depression patients, including anxiety, psychomotor retardation, sleep disturbance, and hopelessness. Next, we pose several hypotheses on the mechanism of taVNS treatment of depression, including directly and indirectly modulating the activity and connectivity of key brain regions involved in depression and mood regulation; inhibiting neuro-inflammatory sensitization; modulating hippocampal neurogenesis; and regulating the microbiome–brain–gut axis. Finally, we outline current challenges and lay out the future directions of taVNS treatment of depression, which include (1 intensively comparing stimulation parameters and “dose effect” (treatment frequency and duration to maximize the treatment effect of taVNS; (2 exploring the effect of taVNS on disorders comorbid with depression (such as chronic pain disorders, cardiovascular disorder, and autism to provide new “two-for-one” treatment approaches for patients with these disorders; and (3 applying multiple scale methods to explore the underlying mechanism of taVNS.

  8. Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperalgesia while restoring central inhibition in primary fibromyalgia.

    Science.gov (United States)

    Dailey, Dana L; Rakel, Barbara A; Vance, Carol G T; Liebano, Richard E; Amrit, Anand S; Bush, Heather M; Lee, Kyoung S; Lee, Jennifer E; Sluka, Kathleen A

    2013-11-01

    Because transcutaneous electrical nerve stimulation (TENS) works by reducing central excitability and activating central inhibition pathways, we tested the hypothesis that TENS would reduce pain and fatigue and improve function and hyperalgesia in people with fibromyalgia who have enhanced central excitability and reduced inhibition. The current study used a double-blinded randomized, placebo-controlled cross-over design to test the effects of a single treatment of TENS with people with fibromyalgia. Three treatments were assessed in random order: active TENS, placebo TENS and no TENS. The following measures were assessed before and after each TENS treatment: pain and fatigue at rest and in movement; pressure pain thresholds, 6-m walk test, range of motion; 5-time sit-to-stand test, and single-leg stance. Conditioned pain modulation was completed at the end of testing. There was a significant decrease in pain and fatigue with movement for active TENS compared to placebo and no TENS. Pressure pain thresholds increased at the site of TENS (spine) and outside the site of TENS (leg) when compared to placebo TENS or no TENS. During active TENS, conditioned pain modulation was significantly stronger compared to placebo TENS and no TENS. No changes in functional tasks were observed with TENS. Thus, the current study suggests TENS has short-term efficacy in relieving symptoms of fibromyalgia while the stimulator is active. Future clinical trials should examine the effects of repeated daily delivery of TENS, similar to the way in which TENS is used clinically on pain, fatigue, function, and quality of life in individuals with fibromyalgia. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  9. Muscarinic contribution to the acute cortical effects of vagus nerve stimulation

    Science.gov (United States)

    Nichols, Justin A.

    2011-12-01

    Electrical stimulation of the vagus nerve (VNS) has been used to treat more than 60,000 patients with drug-resistant epilepsy and is under investigation as a treatment for several other neurological disorders and conditions. Among these, VNS increases memory performance and enhances recovery of motor and cognitive function in animal models of traumatic brain injury. Recent research indicates that pairing brief VNS with tones multiple-times a day for several weeks induces long-term, input specific cortical plasticity, which can be used to re-normalize the pathological cortical reorganization and eliminate a behavioral correlate of chronic tinnitus in noise exposed rats. Despite the therapeutic potential, the mechanisms of action of VNS remain speculative. In chapter 2 of this dissertation, the acute effects of VNS on cortical synchrony, excitability, and temporal processing are examined. In anesthetized rats implanted with multi-electrode arrays, VNS increased and decorrelated spontaneous multi-unit activity, and suppressed entrainment to repetitive noise burst stimulation at 6 to 8 Hz, but not after systemic administration of the muscarinic antagonist scopolamine. Chapter 3 focuses on VNS-tone pairing induced cortical plasticity. Pairing VNS with a tone one hundred times in anesthetized rats resulted in frequency specific plasticity in 31% of the auditory cortex sites. Half of these sites exhibited a frequency specific increase in firing rate and half exhibited a frequency specific decrease. Muscarinic receptor blockade with scopolamine almost entirely prevented the frequency specific increases, but not decreases. Collectively, these experiments demonstrate the capacity for VNS to not only acutely influence cortical synchrony, and excitability, but to also influence temporal and spectral tuning via muscarinic receptor activation. These results strengthen the hypothesis that acetylcholine and muscarinic receptors are involved in the mechanisms of action of VNS and

  10. The modulative effects of microcurrent electrical nerve stimulation on diabetic mice.

    Science.gov (United States)

    Huang, Wen-Ching; Chang, Wen-Chieh; Hsu, Yi-Ju; Huang, Chun-Feng; Huang, Chi-Chang; Kao, Cheng-Yan; Lin, Che-Li

    2017-02-28

    Diabetes (one of non-communicable diseases) is serious due to its complications, such like, cardiovascular ailments, neuropathy, nephropathy, retinopathy, wound gangrene and sexual impotence. Diabetes and associated chronic conditions are rapidly emerging as major health problems. In clinical, there were different drugs for diabetes treatment on different mechanisms. However, there were limited studies on the efficacy of electric stimulations on diabetes therapeutic application. In current study, we try to evaluate the effect of microcurrent electrical nerve stimulator (MENS) on diabetes modulation as an alternative medicine. A total of 36 male ICR mice of 6 weeks old were randomly divided into 4 groups [1] Control, [2] MENS only, [3] DM, [4] DM with MENS. During 8 weeks treatments, the diabetes-associated assessments included body weight, diet utilization, blood glucose measurement, other biochemistries and histopathological observations. The diabetes animal model induced by STZ had 180 mg/dl fasting blood glucose (GLU-AC) before MENS intervention. After 3 and 6 weeks administration, the GLU-AC of DM+MENS group significantly decreased 31.97% and 50.82% (P < 0.0001), respectively, as compared to DM group and the OGTT also demonstrated the similar significant results. The diabetic syndromes of polydipsia and polyphagia were also significantly ameliorated by MENS intervention. In other biochemical indexes, the glycated hemoglobin (HbA1c), hyperinsulinemia, liver functions (AST & ALT) and kidneys function (BUN & Creatinine) were also significantly mitigated by MENS under diabetes model. The histological observation also showed the MENS administration improved the diabetes-related pathological characteristics in liver, kidney and pancreas tissues. Our results suggest that administration of MENS could significantly improve diabetes animal model on blood sugar homeostasis, diabetic polydipsia, biochemistries, and tissue damage. In the health conditions, the MENS didn

  11. Acute effect of Vagus nerve stimulation parameters on cardiac chronotropic, inotropic, and dromotropic responses

    Science.gov (United States)

    Ojeda, David; Le Rolle, Virginie; Romero-Ugalde, Hector M.; Gallet, Clément; Bonnet, Jean-Luc; Henry, Christine; Bel, Alain; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I.

    2017-11-01

    Vagus nerve stimulation (VNS) is an established therapy for drug-resistant epilepsy and depression, and is considered as a potential therapy for other pathologies, including Heart Failure (HF) or inflammatory diseases. In the case of HF, several experimental studies on animals have shown an improvement in the cardiac function and a reverse remodeling of the cardiac cavity when VNS is applied. However, recent clinical trials have not been able to reproduce the same response in humans. One of the hypothesis to explain this lack of response is related to the way in which stimulation parameters are defined. The combined effect of VNS parameters is still poorly-known, especially in the case of VNS synchronously delivered with cardiac activity. In this paper, we propose a methodology to analyze the acute cardiovascular effects of VNS parameters individually, as well as their interactive effects. A Latin hypercube sampling method was applied to design a uniform experimental plan. Data gathered from this experimental plan was used to produce a Gaussian process regression (GPR) model in order to estimate unobserved VNS sequences. Finally, a Morris screening sensitivity analysis method was applied to each obtained GPR model. Results highlight dominant effects of pulse current, pulse width and number of pulses over frequency and delay and, more importantly, the degree of interactions between these parameters on the most important acute cardiovascular responses. In particular, high interacting effects between current and pulse width were found. Similar sensitivity profiles were observed for chronotropic, dromotropic and inotropic effects. These findings are of primary importance for the future development of closed-loop, personalized neuromodulator technologies.

  12. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O. [Universidade Federal do Rio Grande, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Martins, C.N. [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Fisiologia Animal Comparada, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Silva, A.M.V. [Universidade Federal de Santa Maria, Departamento de Fisioterapia e Reabilitação, Santa Maria, RS, Brasil, Departamento de Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Plentz, R.D.M. [Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-Graduação em Ciências da Reabilitação, Programa de Pós-Graduação em Ciências da Saúde, Porto Alegre, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Irigoyen, M.C. [Faculdade de Medicina, Universidade de São Paulo, Instituto do Coração, Unidade de Hipertensão, São Paulo, SP, Brasil, Unidade de Hipertensão, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Signori, L.U. [Universidade Federal do Rio Grande, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Fisiologia Animal Comparada, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Universidade Federal de Santa Maria, Departamento de Fisioterapia e Reabilitação, Santa Maria, RS, Brasil, Departamento de Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2014-04-04

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia.

  13. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity

    International Nuclear Information System (INIS)

    Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O.; Martins, C.N.; Silva, A.M.V.; Plentz, R.D.M.; Irigoyen, M.C.; Signori, L.U.

    2014-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia

  14. Effect of percutaneous electrical nerve stimulation for the treatment of migraine

    Science.gov (United States)

    Li, Hong; Xu, Qiao-rong

    2017-01-01

    Abstract Background: This study aimed to assess the effectiveness and safety of percutaneous electrical nerve stimulation (PENS) in migraine treatment. Methods: Sixty-two patients with at least 2 migration attacks each month were recruited and randomly divided into a verum PENS group and a sham PENS group in a ratio of 1:1. All patients received verum or sham PENS 30 minutes daily, 5 times weekly for 12 weeks. The primary outcomes were change in monthly migraine days (MMD) and the 50% responder rate (RR). Secondary outcomes were evaluated using the monthly migraine attacks (MMA), monthly headache days (MHD), and monthly acute antimigraine drug intake (MAADI). All outcome measurements were performed at treatment initiation to establish a baseline and again after 12 weeks of treatment. Results: At the end of the 12 weeks, the group receiving verum PENS exhibited statistically significant decrease in the mean MMD compared with the group receiving sham PENS intervention (P < .05). Additionally, the 50% RR was significantly higher in the verum PENS group than that in the sham PENS group (P < .05). Furthermore, the MMA, MHD, and MAADI were also significantly lower in the verum PENS group that those in the sham PENS group (P < .05). Conclusion: The results of this study demonstrated that verum PENS is more effective and safe than Sham PENS for the treatment of migraine. PMID:28953632

  15. [Transcutaneous tibial nerve stimulation in the overactive bladder syndrome in patients with Parkinson's syndromes].

    Science.gov (United States)

    Ohannessian, A; Kaboré, F A; Agostini, A; Lenne Aurier, K; Witjas, T; Azulay, J-P; Karsenty, G

    2013-09-01

    To evaluate the efficacy of chronic transcutaneous tibial nerve stimulation (TNS) on overactive bladder syndrome in female patients with Parkinson's disease (PD) and multiple system atrophy (MSA). A prospective monocentric study enrolled six female patients with PD or MSA suffering from overactive bladder syndrome for a six-week study period. Daily sessions of 20 minutes of TNS were provided. The primary outcome measurement was the Patient Global Impression of Improvement (PGI-I scale). The secondary outcomes measurements were symptom and quality of life scores, bladder diary and urodynamics. The outcomes after 6 weeks of TNS were compared to baseline. TNS was considered as an effective treatment by five patients out of six (83%) who ask to pursue the treatment and were still doing it 6 months after the end of the study. A trend improvement was observed in only two of the secondary evaluation criteria the V8 median score 21/40 to 14/40 (P=0.2) and the maximum cystometric capacity increased from 211 mL ± 106 to 260 mL ± 226 (P=0.6) after SNT. Although urodynamics and symptoms scores did not show significant difference, an efficacy of TNS on overactive bladder in PD and MSA is possible. Additional placebo controlled works enrolling more patients are required to ensure these preliminary results. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. The effects of posterior tibial nerve stimulation on refractory overactive bladder syndrome and bladder circulation.

    Science.gov (United States)

    Onal, Murat; Ugurlucan, Funda Gungor; Yalcin, Onay

    2012-12-01

    We aimed to evaluate if posterior tibial nerve stimulation (PTNS) exerts its effects on overactive bladder symptoms through changes in bladder circulation. Eighteen women who applied to Istanbul Medical Faculty with symptoms of urgency, frequency±urge incontinence and did not respond to anticholinergic treatment and behavioral modification were enrolled in the study. Weekly PTNS in 30-min sessions for 12 weeks was performed. Urogynecologic symptom assessment, 1-h pad test, bladder diary, King's Health Questionnaire (KHQ), and transvaginal Doppler ultrasonography were performed before and after treatment. Ten patients (55.5%) were cured, five (27.8%) improved, and no effect was observed in three (16.7%). No significant change was observed in systolic and diastolic flow rate, pulsatility index, resistive index, systolic/diastolic ratio and average flow rate. Significant decrease in frequency, urgency, urge incontinence, pad test results and increase in fluid intake was observed. There was a significant improvement in physical limitations and sleeping/energy domains of KHQ. No significant change was observed in urodynamics. PTNS does not have any effect on the bladder circulation despite positive effects on bladder diary, pad test, and quality of life in overactive bladder syndrome.

  17. Comparison of Transcutaneous Electrical Nerve Stimulation and Parasternal Block for Postoperative Pain Management after Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Nilgun Kavrut Ozturk

    2016-01-01

    Full Text Available Background. Parasternal block and transcutaneous electrical nerve stimulation (TENS have been demonstrated to produce effective analgesia and reduce postoperative opioid requirements in patients undergoing cardiac surgery. Objectives. To compare the effectiveness of TENS and parasternal block on early postoperative pain after cardiac surgery. Methods. One hundred twenty patients undergoing cardiac surgery were enrolled in the present randomized, controlled prospective study. Patients were assigned to three treatment groups: parasternal block, intermittent TENS application, or a control group. Results. Pain scores recorded 4 h, 5 h, 6 h, 7 h, and 8 h postoperatively were lower in the parasternal block group than in the TENS and control groups. Total morphine consumption was also lower in the parasternal block group than in the TENS and control groups. It was also significantly lower in the TENS group than in the control group. There were no statistical differences among the groups regarding the extubation time, rescue analgesic medication, length of intensive care unit stay, or length of hospital stay. Conclusions. Parasternal block was more effective than TENS in the management of early postoperative pain and the reduction of opioid requirements in patients who underwent cardiac surgery through median sternotomy. This trial is registered with Clinicaltrials.gov number NCT02725229.

  18. Antihypertensive effect of low-frequency transcutaneous electrical nerve stimulation (TENS) in comparison with drug treatment.

    Science.gov (United States)

    Silverdal, Jonas; Mourtzinis, Georgios; Stener-Victorin, Elisabet; Mannheimer, Clas; Manhem, Karin

    2012-10-01

    Hypertension is a major risk factor for vascular disease, yet blood pressure (BP) control is unsatisfactory low, partly due to side-effects. Transcutaneous electrical nerve stimulation (TENS) is well tolerated and studies have demonstrated BP reduction. In this study, we compared the BP lowering effect of 2.5 mg felodipin once daily with 30 min of bidaily low-frequency TENS in 32 adult hypertensive subjects (mean office BP 152.7/90.0 mmHg) in a randomized, crossover design. Office BP and 24-h ambulatory BP monitoring (ABPM) were performed at baseline and at the end of each 4-week treatment and washout period. Felodipin reduced office BP by 10/6 mmHg (p TENS reduced office BP by 5/1.5 mmHg (p TENS washout, BP was further reduced and significantly lower than at baseline, but at levels similar to BP after felodipin washout and therefore reasonably caused by factors other than the treatment per se. ABPM revealed a significant systolic reduction of 3 mmHg by felodipin, but no significant changes were noted after TENS. We conclude that our study does not present any solid evidence of BP reduction of TENS.

  19. Effects of transcutaneous electrical nerve stimulation (TENS) on proinflammatory cytokines: protocol for systematic review.

    Science.gov (United States)

    Almeida, Tábata Cristina do Carmo; Figueiredo, Francisco Winter Dos Santos; Barbosa Filho, Valter Cordeiro; de Abreu, Luiz Carlos; Fonseca, Fernando Luiz Affonso; Adami, Fernando

    2017-07-11

    Pain reduction can be achieved by lowering proinflammatory cytokine levels in the blood. Transcutaneous electrical nerve stimulation (TENS) is a non-invasive physiotherapeutic resource for pain management, but evidence on the effectiveness of this device at reducing proinflammatory cytokines in the blood is unclear. This study systematically reviews the literature on the effect of TENS on proinflammatory cytokines. A systematic review protocol was developed based on searches of articles in six electronic databases and references of retrieved articles, contact with authors, and repositories of clinical trials. Eligibility criteria: publication in peer-reviewed journals, randomized clinical trials, use of TENS in the experimental group, and pre- and post-measurements of proinflammatory cytokines in the blood. Selection of the studies and extraction of the data will be carried out by two reviewers independently. Characteristics of the study, participants, interventions and outcomes were extracted and described. Assessments were performed on the risk of bias, level of evidence and the size of the intervention effect in the studies, according to GRADE guidelines and the Cochrane Handbook for Systematic Reviews. Clinical and statistical assessments compared the effects of the interventions (meta-analysis), taking into consideration any influencing characteristics of the studies (e.g., methods and application sites). We anticipate that this review will strengthen evidence-based knowledge of the effect of TENS on proinflammatory cytokines and, as a result, direct new studies to benefit patients with specific pathologies. PROSPERO, CRD42017060379 .

  20. Blockade of NMDA receptors prevents analgesic tolerance to repeated transcutaneous electrical nerve stimulation (TENS) in rats

    Science.gov (United States)

    Hingne, Priyanka M.; Sluka, Kathleen A.

    2008-01-01

    Repeated daily application transcutaneous electrical nerve stimulation (TENS) results in tolerance, at spinal opioid receptors, to the anti-hyperalgesia produced by TENS. Since N-Methyl-D-Aspartate (NMDA) receptor antagonists prevent analgesic tolerance to opioid agonists we hypothesized that blockade of NMDA receptors will prevent tolerance to TENS. In rats with knee joint inflammation, TENS was applied for 20 minute daily at high frequency (100 Hz), low frequency (4 Hz), or sham TENS. Rats were treated with the NMDA antagonist MK-801 (0.01 mg/kg-0.1 mg/kg) or vehicle daily before TENS. Paw withdrawal thresholds were tested before and after inflammation, and before and after TENS treatment for 4 days. On day 1 TENS reversed the decreased mechanical withdrawal threshold induced by joint inflammation. On day 4 TENS had no effect on the decreased withdrawal threshold in the group treated with vehicle demonstrating development of tolerance. However, in the group treated with 0.1 mg/kg MK-801, TENS significantly reversed the mechanical withdrawal thresholds on day 4 demonstrating that tolerance did not develop. Vehicle treated animals developed cross-tolerance at spinal opioid receptors. Treatment with MK-801 reversed this cross-tolerance at spinal opioid receptors. In summary, blockade of NMDA receptors prevents analgesic tolerance to daily TENS by preventing tolerance at spinal opioid receptors. Perspective Tolerance observed to the clinical treatment of TENS could be prevented by administration of pharmaceutical agents with NMDA receptors activity such as ketamine or dextromethorphan. PMID:18061543

  1. Assessing the effects of transcutaneous electrical nerve stimulation (TENS) in post-thoracotomy analgesia.

    Science.gov (United States)

    Ferreira, Fabiana Cristina; Issy, Adriana Machado; Sakata, Rioko Kimiko

    2011-01-01

    Transcutaneous electrical nerve stimulation (TENS) is commonly used to treat musculoskeletal pain, but it may also be indicated for postoperative analgesia. The objective of this study was to evaluate the analgesic effects of TENS on post-thoracotomy. Thirty patients between 18 and 60 years of age undergoing thoracotomy for lung cancer resection on the second postoperative day were included in this study. Patients were divided into two groups (G1 and G2). G1 patients were treated with TENS; and in G2 (without TENS) electrodes were placed but the equipment was not turned on. TENS was maintained for one hour. The visual analogue scale was used to evaluate the analgesic effects on three moments: before TENS (M0), immediately after TENS (M1), and one hour later (M2), with the patient at rest, elevation of the upper limbs, change in decubitus, and coughing. The intensity of pain at rest was higher in G2 immediately after TENS, but not one hour after the procedure. There was no difference between both groups with elevation of the upper limbs, decubitus change, and coughing. With the use of TENS for one hour on the second post-thoracotomy day in patients who received fentanyl (50 μg) associated with bupivacaine (5 mL), a reduction in pain intensity was observed at rest immediately after TENS; with elevation of the upper limbs, change in decubitus, and coughing, a reduction in pain severity was not observed. Copyright © 2011 Elsevier Editora Ltda. All rights reserved.

  2. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines.

    Science.gov (United States)

    Gürgen, Seren Gülşen; Sayın, Oya; Cetin, Ferihan; Tuç Yücel, Ayşe

    2014-06-01

    The purpose of this study was to evaluate transcutaneous electrical nerve stimulation (TENS) and other common treatment methods used in the process of wound healing in terms of the expression levels of pro-inflammatory cytokines. In the study, 24 female and 24 male adult Wistar-Albino rats were divided into five groups: (1) the non-wounded group having no incision wounds, (2) the control group having incision wounds, (3) the TENS (2 Hz, 15 min) group, (4) the physiological saline (PS) group and (5) the povidone iodine (PI) group. In the skin sections, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed with enzyme-linked immunosorbent assay and immunohistochemical methods. In the non-wounded group, the expression of IL-1β, IL-6, and TNF-α signaling molecules was weaker in the whole tissue; however, in the control group, significant inflammatory response occurred, and strong cytokine expression was observed in the dermis, granulation tissue, hair follicles, and sebaceous glands (P TENS group, the decrease in TNF-α, IL-1β, and IL-6 immunoreaction in the skin was significant compared to the other forms of treatment (P TENS group suggest that TENS shortened the healing process by inhibating the inflammation phase.

  3. Anti-stress effects of transcutaneous electrical nerve stimulation (TENS) on colonic motility in rats.

    Science.gov (United States)

    Yoshimoto, Sazu; Babygirija, Reji; Dobner, Anthony; Ludwig, Kirk; Takahashi, Toku

    2012-05-01

    Disorders of colonic motility may contribute to symptoms in patients with irritable bowel syndrome (IBS), and stress is widely believed to play a major role in developing IBS. Stress increases corticotropin releasing factor (CRF) of the hypothalamus, resulting in acceleration of colonic transit in rodents. In contrast, hypothalamic oxytocin (OXT) has an anti-stress effect via inhibiting CRF expression and hypothalamic-pituitary-adrenal axis activity. Although transcutaneous electrical nerve stimulation (TENS) and acupuncture have been shown to have anti-stress effects, the mechanism of the beneficial effects remains unknown. We tested the hypothesis that TENS upregulates hypothalamic OXT expression resulting in reduced CRF expression and restoration of colonic dysmotility in response to chronic stress. Male SD rats received different types of stressors for seven consecutive days (chronic heterotypic stress). TENS was applied to the bilateral hind limbs every other day before stress loading. Another group of rats did not receive TENS treatment. TENS significantly attenuated accelerated colonic transit induced by chronic heterotypic stress, which was antagonized by a central injection of an OXT antagonist. Immunohistochemical study showed that TENS increased OXT expression and decreased CRF expression at the paraventricular nucleus (PVN) following chronic heterotypic stress. It is suggested that TENS upregulates hypothalamic OXT expression which acts as an anti-stressor agent and mediates restored colonic dysmotility following chronic stress. TENS may be useful to treat gastrointestinal symptoms associated with stress.

  4. Transcutaneous electrical nerve stimulation (TENS) for pain control after vaginal delivery and cesarean section.

    Science.gov (United States)

    Kayman-Kose, Seda; Arioz, Dagistan Tolga; Toktas, Hasan; Koken, Gulengul; Kanat-Pektas, Mine; Kose, Mesut; Yilmazer, Mehmet

    2014-10-01

    The present study aims to determine the efficiency and reliability of transcutaneous electrical nerve stimulation (TENS) in the management of pain related with uterine contractions after vaginal delivery and the pain related with both abdominal incision uterine contractions after cesarean section. A hundred healthy women who underwent cesarean section under general anesthesia were randomly assigned to the placebo group (Group 1) or the TENS group (Group 2), while 100 women who delivered by vaginal route without episiotomy were randomized into the placebo group (Group 3) or the TENS group (Group 4). The patients in Group 2 had statistically lower visual analog scale (VAS) and verbal numerical scale (VNS) scores than the patients in Group 1 (p TENS (p = 0.006). The need for analgesics at the eighth hour of vaginal delivery was statistically similar in the patients who were treated with TENS and the patients who received placebo (p = 0.830). TENS is an effective, reliable, practical and easily available modality of treatment for postpartum pain.

  5. Transcutaneous electrical nerve stimulation in the treatment of patients with poststroke urinary incontinence.

    Science.gov (United States)

    Guo, Zhui-feng; Liu, Yi; Hu, Guang-hui; Liu, Huan; Xu, Yun-fei

    2014-01-01

    To investigate the therapeutic effect of transcutaneous electrical nerve stimulation (TENS) on poststroke urinary incontinence (UI). Sixty-one patients with poststroke UI were enrolled at the Neurology Department in the Shanghai Tenth People's Hospital of Tongji University between January 2010-January 2011 and were divided into treatment and control groups (n=32 and n=29, respectively). TENS was applied to the treatment group, while the control group received basic therapy. The therapeutic group completed the whole set of TENS therapy with a treatment frequency of 30 minutes once a day for 60 days. The positive electrode was placed on the second lumbar spinous process, and the negative electrodes were inside the middle and lower third of the junction between the posterior superior iliac spine and ischia node. The overactive bladder symptom score, Barthel Index, and urodynamics examination were estimated before and after therapy in both groups. The daily micturition, nocturia, urgent urination, and urge UI in the treatment group significantly improved compared to the control group (Pincontinence symptoms, enhanced the quality of life, and decreased adverse effects; hence, it is recommended in treating poststroke UI.

  6. Vagus nerve stimulation in drug-resistant daily chronic migraine with depression: preliminary data.

    Science.gov (United States)

    Cecchini, Alberto Proietti; Mea, Eliana; Tullo, Vincenzo; Curone, Marcella; Franzini, Angelo; Broggi, Giovanni; Savino, Mario; Bussone, Gennaro; Leone, Massimo

    2009-05-01

    Drug refractory chronic daily headache (CDH) is a highly disabling condition. CDH is usually regarded as the negative evolution of chronic migraine (CM) and is characterized by high prevalence of psychiatric disorders, especially mood disorders. Vagal nerve stimulation (VNS) is an established treatment option for selected patients with medically refractory epilepsy and depression. Neurobiological similarities suggest that VNS could be useful in the treatment of drug-refractory CM associated with depression. The aim of the study was to evaluate the efficacy of VNS in patients suffering from drug-refractory CM and depressive disorder. We selected four female patients, mean age 53 (range 43-65 years), suffering from daily headache and drug-refractory CM. Neurological examination and neuroradiological investigations were unremarkable. Exclusion criteria were psychosis, heart and lung diseases. The preliminary results in our small case series support a beneficial effect of chronic VNS on both drug-refractory CM and depression, and suggest this novel treatment as a valid alternative for this otherwise intractable and highly disabling condition.

  7. Transcutaneous Electrical Nerve Stimulation Reduces Post-Thoractomy Ipsilateral Shoulder Pain. A Prospective Randomized Study.

    Science.gov (United States)

    Esteban González, Pedro; Novoa, Nuria M; Varela, Gonzalo

    2015-12-01

    The patient's position during an axillary thoracotomy can cause postoperative pain and decrease mobility of the ipsilateral shoulder. In this study, we assessed whether the implementation of a standardized analgesia program using transcutaneous electrical nerve stimulation (TENS) decreases local pain and improves ipsilateral shoulder mobility. Randomized, single-blind, single-center clinical trial of 50 patients who had undergone anatomical lung resection via axillary muscle-sparing thoracotomy. Patients were treated with TENS devices for 30 minutes every 8 hours, beginning on postoperative day 1. Pain and mobility of the affected limb were recorded at the same time on postoperative days 1 through 3. A visual analogue scale was used for pain assessment and shoulder mobility was assessed with a goniometer. Results were compared using a non-parametric test. Twenty-five patients were randomized to each group. Mean age of the control group was 62.7±9.3 years and 63.4±10.2 years in the experimental group. Shoulder mobility parameters were similar in both groups on all postoperative days. However, pain during flexion significantly decreased on day 2 (P=.03) and day 3 (P=.04) in the experimental group. The use of TENS decreases pain from shoulder flexion in patients undergoing axillary thoracotomy for pulmonary resection. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  8. Non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache

    DEFF Research Database (Denmark)

    Goadsby, Peter J; de Coo, Ilse F; Silver, Nicholas

    2018-01-01

    Background Clinical observations and results from recent studies support the use of non-invasive vagus nerve stimulation (nVNS) for treating cluster headache (CH) attacks. This study compared nVNS with a sham device for acute treatment in patients with episodic or chronic CH (eCH, cCH). Methods...... rescue treatment. Results The Full Analysis Set comprised 48 nVNS-treated (14 eCH, 34 cCH) and 44 sham-treated (13 eCH, 31 cCH) subjects. For the primary endpoint, nVNS (14%) and sham (12%) treatments were not significantly different for the total cohort. In the eCH subgroup, nVNS (48%) was superior...... to sham (6%; p cCH subgroup. Conclusions Combing both eCH and cCH patients, nVNS was no different to sham. For the treatment of CH attacks, nVNS was superior to sham therapy in eCH but not in cCH. These results confirm...

  9. Vagus nerve stimulation blocks vascular permeability following burn injury in both local and distal sites

    Science.gov (United States)

    Ortiz-Pomales, Yan T; Krzyzaniak, Michael; Coimbra, Raul; Baird, Andrew; Eliceiri, Brian P.

    2012-01-01

    Recent studies have shown that vagus nerve stimulation (VNS) can block the burn injury-induced systemic inflammatory response (SIRS). In this study we examined the potential for VNS to modulate vascular permeability (VP) in local sites (i.e. skin) and in secondary sites (i.e. lung) following burn injury. In a 30% total body surface area burn injury model, VP was measured using intravascular fluorescent dextran for quantification of the VP response in skin and lung. A peak in VP of the skin was observed 24 hours post-burn injury, that was blocked by VNS. Moreover, in the lung, VNS led to a reduction in burn-induced VP compared to sham-treated animals subjected to burn injury alone. The protective effects of VNS in this model were independent of the spleen, suggesting that the spleen was not a direct mediator of VNS. These studies identify a role for VNS in the regulation of VP in burns, with the translational potential of attenuating lung complications following burn injury. PMID:22694873

  10. Decremental responses to repetitive nerve stimulation in x-linked bulbospinal muscular atrophy.

    Science.gov (United States)

    Kim, Jee Young; Park, Kee Duk; Kim, Seung-Min; Sunwoo, Il Nam

    2013-01-01

    X-linked bulbospinal muscular atrophy (X-BSMA) is characterized by bulbar and spinal muscular weakness and fasciculations. Although X-BSMA is a motor neuronopathy, there are several reports of myasthenic symptoms or decremental responses to repetitive nerve stimulation (RNS). We report the results of applying the RNS test to 15 patients among 41 with genetically confirmed X-BSMA; these 15 patients complained of fatigue, ease of becoming tired, or early muscular exhaustion. The 3-Hz RNS test was performed on the trapezius, nasalis, orbicularis oculi, flexor carpi ulnaris, and abductor digiti quinti muscles. A decrement greater than 10% was considered abnormal. Additionally, a pharmacologic response to neostigmine was identified in three patients. A significant decrement was observed in 67% of patients, and was most common in the trapezius muscle (nine cases). The decrement of the trapezius muscle response ranged from 15.9% to 36.9%. The decrement was inversely correlated with the amplitude of compound muscle action potentials at rest. Neostigmine injection markedly improved the decrement in three patients, who showed noticeable decremental responses to 3-Hz RNS. This study shows that myasthenic symptoms and abnormal decremental responses to low-rate RNS are common in X-BSMA.

  11. Anti-Inflammatory Effects of Acupuncture Stimulation via the Vagus Nerve.

    Directory of Open Access Journals (Sweden)

    Hee-Don Lim

    Full Text Available Although acupuncture therapy is widely used in traditional Asian medicine for the treatment of diverse internal organ disorders, its underlying biological mechanisms are largely unknown. Here, we investigated the functional involvement of acupuncture stimulation (AS in the regulation of inflammatory responses. TNF-α production in mouse serum, which was induced by lipopolysaccharide (LPS administration, was decreased by manual acupuncture (MAC at the zusanli acupoint (stomach36, ST36. In the spleen, TNF-α mRNA and protein levels were also downregulated by MAC and were recovered by using a splenic neurectomy and a vagotomy. c-Fos, which was induced in the nucleus tractus solitarius (NTS and dorsal motor nucleus of the vagus nerve (DMV by LPS and electroacupuncture (EAC, was further increased by focal administration of the AMPA receptor blocker CNQX and the purinergic receptor antagonist PPADS. TNF-α levels in the spleen were decreased by CNQX and PPADS treatments, implying the involvement of inhibitory neuronal activity in the DVC. In unanesthetized animals, both MAC and EAC generated c-Fos induction in the DVC neurons. However, MAC, but not EAC, was effective in decreasing splenic TNF-α production. These results suggest that the therapeutic effects of acupuncture may be mediated through vagal modulation of inflammatory responses in internal organs.

  12. Experience of Using Vagus Nerve Stimulation to Treat Drug Resistant Epilepsy

    Directory of Open Access Journals (Sweden)

    L. V. Lipatova

    2014-01-01

    Full Text Available Objective. To determine tolerability and effectiveness of continuous vagus nerve stimulation (VNS in patients with drug resistance epilepsy (DRE. Patients and Methods. A VNS system was implanted to 9 adults (aged 14–38 with DRE. The duration of catamnesis was 8–12 months. Results. During the first 2–3 months after the VNS system had been implanted, seizure frequency reduced by over 50% in half of the patients with DRE. The remaining patients showed a similar positive effect 8–12 months after the VNS parameters had been adjusted. A decrease in seizure frequency, duration and severity, as well as shortening of the post-seizure period were observed in 12.5% of patients. Negative side effects, such as dysphonia and throat discomfort, were found in 12.5% of patients. These undesirable effects were eliminated by adjusting magnetic stim- ulation parameters. Significant positive EEG dynamics, such as regression of paroxysmal epileptic activity, were obtained in 62.5% the cases. Conclusions. VNS therapy is a safe and effective treatment method for reducing the frequency and severity of seizures in patients with DRE. 

  13. Sacral nerve stimulation for faecal incontinence and constipation: a European consensus statement.

    Science.gov (United States)

    Maeda, Y; O'Connell, P R; Lehur, P-A; Matzel, K E; Laurberg, S

    2015-04-01

    In Europe during the last decade sacral nerve stimulation (SNS) or sacral neuromodulation (SNM) has been used to treat faecal incontinence (FI) and constipation. Despite this, there is little consensus on baseline investigations, patient selection and operative technique. A modified Delphi process was conducted to seek consensus on the current practice of SNS/SNM for FI and constipation. A systematic literature search of SNS for FI and constipation was conducted using PubMed. A set of questions derived from the search and expert opinion were answered on-line on two occasions by an international panel of specialists from Europe. A 1-day face-to-face meeting of the experts finalized the discussion. Three hundred and ninety-three articles were identified from the literature search, of which 147 fulfilled the inclusion criteria. Twenty-two specialists in FI and constipation from Europe participated. Agreement was achieved on 43 (86%) of 50 domains including the set-up of service, patient selection, baseline investigations, operative technique and programming of the device. The median of agreement was 95% (35-100%). Consensus was achieved on the majority of domains of SNS/SNM for FI and constipation. This should serve as a benchmark for safe and quality practice of SNS/SNM in Europe. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  14. Sacral nerve stimulation for faecal incontinence - efficacy confirmed from a two-centre prospectively maintained database.

    Science.gov (United States)

    Duelund-Jakobsen, Jakob; Lehur, Paul-Antoine; Lundby, Lilli; Wyart, Vincent; Laurberg, Søren; Buntzen, Steen

    2016-02-01

    Sacral nerve stimulation (SNS) has been recognised as an effective treatment for faecal incontinence. Many unresolved questions could be answered when comparing large data-series from different centres providing prospective data. To present data, from an international two-centre SNS prospective database (SNSPD) on functional outcome and management of surgical complications in patients treated with SNS for faecal incontinence. The SNSPD was designed in order to gather detailed pre- and perioperative information followed by a close follow-up in all patients undergoing SNS for bowel dysfunction. The SNSPD was open for inclusion of newly SNS implanted patients in May 2009, and closed on 31 December 2013. Two-centres Aarhus, Denmark, and Nantes, France, included and monitored all patients implanted due to bowel dysfunction according to database criteria. In total, 164 faecal incontinent patients with a median follow-up of 22 (range 1-50) months were implanted. The Wexner incontinence score improved from 15 (range, 3-20) at baseline to 9 (range, 0-20) at latest follow-up (P < 0.001) and VAS impact on daily life improved from 85.5 (range, 3-100) to 20 (range, 0-100) (P < 0.001). Additional surgical intervention was required in 19.5 % during follow-up. Repositioning of the pacemaker due to pain or migration was the most common complication in 12.1 %. Infections leading to explantation occurred in 3.0 %.

  15. Value of transcutaneous electric nerve stimulation in the treatment of myofascial pain dysfunction syndrome

    Directory of Open Access Journals (Sweden)

    Hina Handa

    2017-01-01

    Full Text Available Pain in facial region originating from both temporomandibular joint (TMJ and jaw muscles is a common clinical problem and is a diagnostic dilemma till today. There are many synonyms for this condition including myofascial pain dysfunction syndrome, mandibular dysfunction syndrome, and the TMJ dysfunction syndrome. With change in time, advances and new diagnostic criteria have been made in the diagnosis of myofascial pain syndrome, its epidemiology, clinical characteristics, and etiopathogenesis, but many unknowns remain. An integrated hypothesis has provided a greater understanding of the physiopathology of trigger points, which may allow the development of new diagnostic criteria and treatment of this chronic disease and combined pharmacological as well as physical therapy for the management of the disease. The purpose of this paper is to describe the multidisciplinary approach highlighting the effect of transcutaneous electric nerve stimulation (TENS for the treatment of a 60-year-old female who suffered from myofascial pain and 5-day TENS therapy for management of pain.

  16. Sacral nerve stimulation for constipation: do we still miss something? Role of psychological evaluation.

    Science.gov (United States)

    Carriero, Alfonso; Martellucci, Jacopo; Talento, Pasquale; Ferrari, Carlo Andrea

    2010-08-01

    The aim of this study was to try to understand if psychological evaluation of patients candidate to sacral nerve stimulation (SNS) could be a potential selection criterion to identify those patients who could successfully respond to this treatment. From 2005 to 2007, 68 patients with slow transit constipation were identified, and all of them fulfill the selection criteria for the SNS treatment. The MMPI-2 test was purposed to all the patients. Wexner score, bowel movements, and SF36 were recorded in all the patients. Twenty-three patients (33.8%) refused the psychological evaluation. Forty-five patients completed the test: only 13 patients (19.1%) had a score in the normal range of the scales of the MMPI-2 and were implanted with the temporary test for SNS. After the screening period, 11 patients (84.6%) reported more than 50% improvement of bowel movements per week and no need of laxatives, so they were definitively implanted. The mean follow-up period was 22 months (range 12-36). The mean number of bowel movements per week and Wexner score were significantly improved after 1 year (p < 0.001). A complete and accurate psychological evaluation could be very important in the selection of the patients with STC that could benefit from SNS.

  17. Effects of external trigeminal nerve stimulation (eTNS) on laser evoked cortical potentials (LEP): A pilot study in migraine patients and controls.

    Science.gov (United States)

    Vecchio, Eleonora; Gentile, Eleonora; Franco, Giovanni; Ricci, Katia; de Tommaso, Marina

    2017-01-01

    Background Transcutaneous external supraorbital nerve stimulation has emerged as a treatment option for primary headache disorders, though its action mechanism is still unclear. Study aim In this randomized, sham-controlled pilot study we aimed to test the effects of a single external transcutaneous nerve stimulation session on pain perception and cortical responses induced by painful laser stimuli delivered to the right forehead and the right hand in a cohort of migraine without aura patients and healthy controls. Methods Seventeen migraine without aura patients and 21 age- and sex-matched controls were selected and randomly assigned to a real or sham external transcutaneous nerve stimulation single stimulation session. The external transcutaneous nerve stimulation was delivered with a self-adhesive electrode placed on the forehead and generating a 60 Hz pulse at 16 mA intensity for 20 minutes. For sham stimulation, we used 2 mA intensity. Laser evoked responses were recorded from 21 scalp electrodes in basal condition (T0), during external transcutaneous nerve stimulation and sham stimulation (T1), and immediately after these (T2). The laser evoked responses were analyzed by LORETA software. Results The real external transcutaneous nerve stimulation reduced the trigeminal N2P2 amplitude in migraine and control groups significantly in respect to placebo. The real stimulation was associated with lower activity in the anterior cingulate cortex under trigeminal laser stimuli. The pattern of LEP-reduced habituation was reverted by real and sham transcutaneous stimulation in migraine patients. Conclusions The present results could suggest that the external transcutaneous nerve stimulation may interfere with the threshold and the extent of trigeminal system activation, with a mechanism of potential utility in the resolution and prevention of migraine attacks.

  18. Correlation between endogenous noradrenaline and glucose released from the liver upon hepatic sympathetic nerve stimulation in anesthetized dogs.

    Science.gov (United States)

    Garceau, D; Yamaguchi, N; Goyer, R; Guitard, F

    1984-09-01

    The metabolic role of neurally released noradrenaline (NA) was studied in the liver of anesthetized dogs. Sustained stimulation with various frequencies was directly applied on the anterior plexus of hepatic nerves. Stimulation-induced changes in plasma concentrations of endogenous catecholamines in hepatic venous blood were determined in correlation with concomitant changes in those of glucose (GL). Mean basal values for hepatic venous NA, adrenaline, dopamine, and GL were 0.062, 0.022, 0.032 ng/mL, and 97.9 mg%, respectively. Among these catecholamines, NA was the only one being released significantly during stimulation. While hepatic venous NA increased rapidly during stimulation, being maximum within 3 min, hepatic venous GL increased gradually, reaching a maximum value 5 min after the onset of stimulation. A highly significant correlation (r = 0.90, P less than 0.001) was found between changes in hepatic venous NA and GL concentrations observed during stimulation at various frequencies (2-16 Hz). However, hepatic vasoconstricting responses to stimulation were not correlated with increased hepatic venous GL. An alpha-blockade with phentolamine (2 mg/kg, iv) resulted in diminished release of GL by approximately 50% (P less than 0.05) and reduced hepatic arterial vasoconstriction by approximately 47% (P less than 0.01) upon stimulation (8 Hz, 5 min), even though NA release was markedly enhanced. We conclude that in the dog, NA is the sole catecholamine released within the liver in response to direct hepatic nerve stimulation, and NA thus released mediates the hepatic glycogenolysis via alpha-adrenoceptors.

  19. Right median nerve electrical stimulation for acute traumatic coma (the Asia Coma Electrical Stimulation trial): study protocol for a randomised controlled trial.

    Science.gov (United States)

    Wu, Xiang; Zhang, Chao; Feng, Junfeng; Mao, Qing; Gao, Guoyi; Jiang, Jiyao

    2017-07-10

    Traumatic brain injury (TBI) has become the most common cause of death and disability in persons between 15 and 30 years of age, and about 10-15% of patients affected by TBI will end up in a coma. Coma caused by TBI presents a significant challenge to neuroscientists. Right median nerve electrical stimulation has been reported as a simple, inexpensive, non-invasive technique to speed recovery and improve outcomes for traumatic comatose patients. This multicentre, prospective, randomised (1:1) controlled trial aims to demonstrate the efficacy and safety of electrical right median nerve stimulation (RMNS) in both accelerating emergence from coma and promoting long-term outcomes. This trial aims to enrol 380 TBI comatose patients to partake in either an electrical stimulation group or a non-stimulation group. Patients assigned to the stimulation group will receive RMNS in addition to standard treatment at an amplitude of 15-20 mA with a pulse width of 300 μs at 40 Hz ON for 20 s and OFF for 40 s. The electrical treatment will last for 8 h per day for 2 weeks. The primary endpoint will be the percentage of patients regaining consciousness 6 months after injury. The secondary endpoints will be Extended Glasgow Outcome Scale, Coma Recovery Scale-Revised and Disability Rating Scale scores at 28 days, 3 months and 6 months after injury; Glasgow Coma Scale, Glasgow Coma Scale Motor Part and Full Outline of Unresponsiveness scale scores on day 1 and day 7 after enrolment and 28 days, 3 months and 6 months after injury; duration of unconsciousness and mechanical ventilation; length of intensive care unit and hospital stays; and incidence of adverse events. Right median nerve electrical stimulation has been used as a safe, inexpensive, non-invasive therapy for neuroresuscitation of coma patients for more than two decades, yet no trial has robustly proven the efficacy and safety of this treatment. The Asia Coma Electrical Stimulation (ACES) trial has the

  20. Associative stimulation of the supraorbital nerve fails to induce timing-specific plasticity in the human blink reflex

    DEFF Research Database (Denmark)

    Zeuner, Kirsten E; Knutzen, Arne; Al-Ali, Asmaa

    2010-01-01

    Associative high-frequency electrical stimulation (HFS) of the supraorbital nerve in five healthy individuals induced long-term potentiation (LTP)-like or depression (LTD)-like changes in the human blink reflex circuit according to the rules of spike timing-dependent plasticity (Mao and Evinger, ...... the orbicularis oculi muscles, HFS(LTP) induced excessive LTP-like associative plasticity relative to healthy controls, which was normalized after botulinum toxin (BTX) injections (Quartarone et al, 2006).......Associative high-frequency electrical stimulation (HFS) of the supraorbital nerve in five healthy individuals induced long-term potentiation (LTP)-like or depression (LTD)-like changes in the human blink reflex circuit according to the rules of spike timing-dependent plasticity (Mao and Evinger...

  1. Acupuncture and transcutaneous electric nerve stimulation in the treatment of pain associated with chronic pancreatitis. A randomized study

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Christophersen, S J; Dawids, Steen

    1985-01-01

    In 23 patients with pancreatitis, daily pain for at least 3 months, and no abuse of alcohol, the pain-relieving effect of electroacupuncture (13 patients) or transcutaneous electric nerve stimulation (TENS) (16 patients) was studied. In two prospective studies with a cross-over design, active acu...... acupuncture was compared with sham acupuncture, and TENS of the segmental points of the pancreas with sham treatment. Neither electroacupuncture nor TENS brought about pain relief that could substitute for or supplement medical treatment.......In 23 patients with pancreatitis, daily pain for at least 3 months, and no abuse of alcohol, the pain-relieving effect of electroacupuncture (13 patients) or transcutaneous electric nerve stimulation (TENS) (16 patients) was studied. In two prospective studies with a cross-over design, active...

  2. Bilateral compared with unilateral sacral nerve stimulation for faecal incontinence: results of a randomized, single-blinded crossover study.

    Science.gov (United States)

    Duelund-Jakobsen, J; Buntzen, S; Lundby, L; Sørensen, M; Laurberg, S

    2015-12-01

    This randomized single-blinded crossover study aimed to investigate whether bilateral sacral nerve stimulation (SNS) is more efficient than unilateral stimulation for faecal incontinence (FI). Patients with FI who responded during a unilateral test stimulation, with a minimum improvement of 50% were eligible. Twenty-seven patients who were accepted to enter the trial were bilaterally implanted with two permanent leads and pacemakers. Patients were randomized into three periods of 4 weeks' stimulation including unilateral right, unilateral left and bilateral stimulation. Symptoms scores and bowel habit diaries were collected at baseline and in each study period. A 1-week washout was introduced between each study period. Twenty-seven (25 female) patients with a median age of 63 (36-84) years were bilaterally implanted from May 2009 to June 2012. The median number of episodes of FI per 3 weeks significantly decreased from 17 (3-54) at baseline to 2 (0-20) during stimulation on the right side, 2 (0-42) during stimulation on the left side and 1 (0-25) during bilateral stimulation. The Wexner incontinence score improved significantly from a median of 16 (10-20) at baseline to 9 (0-14) with right-side stimulation, 10 (0-15) with left-side stimulation and 9 (0-14) with bilateral stimulation. The differences between unilateral right or unilateral left and bilateral stimulation were non-significant, for FI episodes (P = 0.3) or for Wexner incontinence score (P = 0.9). Bilateral SNS therapy for FI is not superior to standard unilateral stimulation in the short term. Equal functional results can be obtained regardless of the side of implantation. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  3. Study of the effectiveness of interferential current as compared to transcutaneous electrical nerve stimulation in reducing chronic low back pain

    OpenAIRE

    Dohnert,Marcelo Baptista; Bauer,Jordana Peres; Pavão,Tiago Sebastiá

    2015-01-01

    BACKGROUND AND OBJECTIVES: Chronic low back pain has an incidence of 70% in general population and induces significant limitations. As treatment, physiotherapy stands out with a wide variety of techniques among them, for pain relief, electrotherapy is a useful tool. This study aimed at comparing the analgesic effects of transcutaneous electrical nerve stimulation and interferential current in patients with chronic low back pain. METHODS: Randomized clinical trial carried out between August 20...

  4. Acupuncture and transcutaneous electric nerve stimulation in the treatment of pain associated with chronic pancreatitis. A randomized study

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Christophersen, S J; Dawids, Steen

    1985-01-01

    In 23 patients with pancreatitis, daily pain for at least 3 months, and no abuse of alcohol, the pain-relieving effect of electroacupuncture (13 patients) or transcutaneous electric nerve stimulation (TENS) (16 patients) was studied. In two prospective studies with a cross-over design, active acu...... acupuncture was compared with sham acupuncture, and TENS of the segmental points of the pancreas with sham treatment. Neither electroacupuncture nor TENS brought about pain relief that could substitute for or supplement medical treatment....

  5. Early application of tail nerve electrical stimulation-induced walking training promotes locomotor recovery in rats with spinal cord injury

    OpenAIRE

    Zhang, S-x; Huang, F; Gates, M; Shen, X; Holmberg, E G

    2016-01-01

    Study design: This is a randomized controlled prospective trial with two parallel groups. Objectives: The objective of this study was to determine whether early application of tail nerve electrical stimulation (TANES)-induced walking training can improve the locomotor function. Setting: This study was conducted in SCS Research Center in Colorado, USA. Methods: A contusion injury to spinal cord T10 was produced using the New York University impactor device with a 25?-mm height setting in femal...

  6. Single vagus nerve stimulation reduces early postprandial C-peptide levels but not other hormones or postprandial metabolism.

    Science.gov (United States)

    Tang, M W; van Nierop, F S; Koopman, F A; Eggink, H M; Gerlag, D M; Chan, M W; Zitnik, R; Vaz, F M; Romijn, J A; Tak, P P; Soeters, M R

    2018-02-01

    A recent study in rheumatoid arthritis (RA) patients using electrical vagus nerve stimulation (VNS) to activate the inflammatory reflex has shown promising effects on disease activity. Innervation by the autonomic nerve system might be involved in the regulation of many endocrine and metabolic processes and could therefore theoretically lead to unwanted side effects. Possible effects of VNS on secretion of hormones are currently unknown. Therefore, we evaluated the effects of a single VNS on plasma levels of pituitary hormones and parameters of postprandial metabolism. Six female patients with RA were studied twice in balanced assignment (crossover design) to either VNS or no stimulation. The patients selected for this substudy had been on VNS therapy daily for at least 3 months and at maximum of 24 months. We compared 10-, 20-, and 30-min poststimulus levels to baseline levels, and a 4-h mixed meal test was performed 30 min after VNS. We also determined energy expenditure (EE) by indirect calorimetry before and after VNS. VNS did not affect pituitary hormones (growth hormone, thyroid stimulating hormone, adrenocorticotropic hormone, prolactin, follicle-stimulating hormone, and luteinizing hormone), postprandial metabolism, or EE. Of note, VNS reduced early postprandial insulin secretion, but not AUC of postprandial plasma insulin levels. Cortisol and catecholamine levels in serum did not change significantly. Short stimulation of vagal activity by VNS reduces early postprandial insulin secretion, but not other hormone levels and postprandial response. This suggests VNS as a safe treatment for RA patients.

  7. Stimulation of the pelvic nerve increases bladder capacity in the prostaglandin E2rat model of overactive bladder.

    Science.gov (United States)

    Langdale, Christopher L; Hokanson, James A; Sridhar, Arun; Grill, Warren M

    2017-09-01

    Overactive bladder (OAB) syndrome is a highly prevalent condition that may lead to medical complications and decreased quality of life. Emerging therapies focusing on selective electrical stimulation of peripheral nerves associated with lower urinary tract function may provide improved efficacy and reduced side effects compared with sacral neuromodulation for the treatment of OAB symptoms. Prior studies investigating the effects of pelvic nerve (PelN) stimulation on lower urinary tract function were focused on promoting bladder contractions, and it is unclear whether selective stimulation of the PelN would be beneficial for the treatment of OAB. Therefore our motivation was to test the hypothesis that PelN stimulation would increase bladder capacity in the prostaglandin E 2 (PGE 2 ) rat model of OAB. Cystometry experiments were conducted in 17 urethane-anesthetized female Sprague-Dawley rats. The effects of intravesical PGE 2 vs. vehicle and PelN stimulation after intravesical PGE 2 on cystometric parameters were quantified. Intravesical infusion of PGE 2 resulted in decreased bladder capacity and increased voiding efficiency without a change in bladder contraction area under the curve, maximum contraction pressure, or contraction duration. Bladder capacity was also significantly decreased compared with vehicle (1% ethanol in saline) confirming that the change in bladder capacity was mediated by PGE 2 PelN stimulation reversed the PGE 2 -induced change in bladder capacity and increased the external urethral sphincter electromyogram activity at a specific stimulation condition (amplitude of 1.0 times threshold at 10 Hz). These results confirm that the urodynamic changes reported in conscious rats are also observed under urethane anesthesia and that PelN stimulation is a novel and promising approach for the treatment of the symptoms of OAB. Copyright © 2017 the American Physiological Society.

  8. Relative contribution of glycogenolysis and gluconeogenesis to basal, glucagon- and nerve stimulation-dependent glucose output in the perfused liver from fed and fasted rats

    NARCIS (Netherlands)

    Beuers, U.; JUNGERMANN, K.

    1990-01-01

    The relative contribution to basal, glucagon- and nerve stimulation-enhanced glucose output of glycogenolysis (glucose output in the presence of the gluconeogenic inhibitor mercaptopicolinate) and gluconeogenesis (difference in glucose output in the absence and presence of the inhibitor) was

  9. Subject-controlled, on-demand, dorsal genital nerve stimulation to treat urgency urinary incontinence, a pilot.

    Directory of Open Access Journals (Sweden)

    Hendrikje eVan Breda

    2016-02-01

    Full Text Available ObjectivesTo evaluate the effect of subject-controlled, on-demand, dorsal genital nerve stimulation on non-neurogenic urgency urinary incontinence in a domestic setting.Materials and MethodsNon-neurogenic patients >18 years with overactive bladder symptoms and urgency urinary incontinence were included. Exclusion criteria were mainly stress urinary incontinence. Patients underwent one week of subject-controlled, on-demand, dorsal genital nerve stimulation, delivered by a percutaneously placed electrode near the dorsal genital nerve connected to an external stimulator (pulse-rate 20 Hz, pulse-width 300 μs. Patients activated the stimulator when feeling the urge to void and stimulated for 30 s. The amplitude was set at the highest tolerable level. A bladder diary including a severity score of the urgency urinary incontinence episodes/void (scores: 0=none, 1=drops, 2=dashes, 3=soaks and a padtest was kept 3 days prior to, during, and 3 days after the test period. The subjective improvement was also scored.ResultsSeven patients (4 males / 3 females were enrolled, the mean age was 55 years (range 23-73. Six completed the test week. In the remaining patient the electrode migrated and was removed. 5/6 finalized the complete bladder diary, 1/6 recorded only the heavy incontinence episodes (score=3. 4/6 completed the padtest. In all patients who finalized the bladder diary the number of urgency urinary incontinence episodes decreased, in 3/5 with ≥60%. The heavy incontinence episodes (score=3 were resolved in 2/6 patients, and improved ≥ 80% in the other 4. The severity score of the urgency urinary incontinence episodes/void was improved with ≥60% in 3/5 patients. The mean subjective improvement was 73%. ConclusionThis feasibility study indicates that subject-controlled, on-demand dorsal genital nerve stimulation using a percutaneously placed electrode is possible over a longer time period, in a home setting, with a positive effect on non

  10. Occipital nerve stimulation with the Bion® microstimulator for the treatment of medically refractory chronic cluster headache.

    Science.gov (United States)

    Strand, Natalie H; Trentman, Terrence L; Vargas, Bert B; Dodick, David W

    2011-01-01

    Chronic cluster headache is a severely disabling neurological disorder. Evidence from open-label case series suggest that occipital nerve stimulation may be effective for the treatment of chronic cluster headache. To evaluate the effectiveness of a microstimulator for chronic cluster headache. Prospective, observational feasibility study plus medical record review. Academic medical center. Four patients with medically refractory chronic cluster headache underwent implantation of a unilateral bion microstimulator. In-person follow-up was conducted for 12 months after implantation, and a prospective follow-up chart review was carried out to assess long term outcome. Three of the participants returned their headache diaries for evaluation. The mean duration of chronic cluster headache was 14.3 years (range 3 to 29 years). Pain was predominantly or exclusively retroocular/periocular. One participant demonstrated a positive response (> 50% reduction in cluster headache frequency) at 3 months post-implant, while there were 2 responders at 6 months. At least one of the participants continued to show > 60% reduction in headache frequency at 12 months. A chart review showed that at 58-67 months post-implant, all 3 participants reported continued use and benefit from stimulation. No side-shift in attacks was noted in any participant. Adverse events were limited to 2 participants with neck pain and/or cramping with stimulation at high amplitudes; one required revision for a faulty battery. Small patient population without control group. Not blinded or randomized. Unilateral occipital nerve stimulation, using a minimally invasive microstimulator, may be effective for the treatment of medically refractory chronic cluster headache. This benefit may occur immediately after implantation, remain sustained up to 5 years after implantation, and occur despite the anterior location of the pain. Prospective, randomized controlled trials of occipital nerve stimulation in chronic cluster

  11. Treatment of Idiopathic Chronic Orchialgia with Transcutaneous Electrical Nerve Stimulation (TENS:A Preliminary Result

    Directory of Open Access Journals (Sweden)

    Ekrem Akdeniz

    2016-01-01

    Full Text Available Purpose: Unilateral or bilateral testicular pain lasting more than 3 months is called as chronic orchialgia. Aproximately 25-50% of chronic orchialgia is idiopatic origin. This study aimed the effectiveness of Transcutaneous Electrical Nerve Stimulation (TENS therapy due to Idiopathic Chronic Orchialgia (ICO. Methods: Five patients were included into this study with ICO that diagnosed with physical examination, urine analyses, urinary system x-ray film, and scrotal doppler ultrasound. Medical history revealed that multiple conservative therapy attempts failed to alleviate the pain. Two of the patients had right sided ICO. Traditional TENS device is placed to the most painful points. TENS applied 3 times in a week with duration 30 minutes for 4 weeks. Before and after TENS application, patients were evaluated by using Visual Analog Scale (VAS at first and third months. Results: Median age of patients was 26.20±2.38 (22-30. Mean VAS value was 6.52 ± 0.89 before the procedure. After 1 month VAS value was 3.82 ± 0.83 (p0.05. None of the patients needed any analgesics after during the one month. No complications, hyperemia or hypoesthesia of the scrotal or penile skin, occurred after the procedure. Conclusion: TENS reduces pain by increasing endorphin release in the spinal cord dorsal horn. TENS is very effective method for first 1 month in patients with ICO but its effect reduces by the time. There is no standard therapeutic protocol for idiopathic chronic orchialgia. Therefore TENS may be an alternative for patients who do not benefit from medical therapy and do not want invasive procedures. Short-term use of TENS and low number of the patients are the limitations of this study. Randomized, placebo-controlled, and longer follow-up period studies are needed to better assess the efficacy of TENS for ICO.

  12. Percutaneous nerve stimulation in chronic neuropathic pain patients due to spinal cord injury: a pilot study.

    Science.gov (United States)

    Kopsky, David Jos; Ettema, Frank Willem Leo; van der Leeden, Marike; Dekker, Joost; Stolwijk-Swüste, Janneke Marjan

    2014-03-01

    The long-term prognosis for neuropathic pain resolution following spinal cord injury (SCI) is often poor. In many SCI patients, neuropathic pain continues or even worsens over time. Thus, new treatment approaches are needed. We conducted a pilot study to evaluate the feasibility and effect of percutaneous (electrical) nerve stimulation (P(E)NS) in SCI patients with chronic neuropathic pain. In 18 weeks, 12 P(E)NS treatments were scheduled. Assessment with questionnaires was performed at baseline (T0), after 8 weeks (T8), 18 weeks (T18), and 12 weeks post-treatment (T30). From 26 screened patients, 17 were included. In total, 91.2% questionnaires were returned, 2 patients dropped out, and 4.2% of the patients reported minor side effects. Pain scores on the week pain diary measured with the numerical rating scale improved significantly at T8, from 6.5 at baseline to 5.4, and were still significantly improved at T18. Pain reduction of ≥ 30% directly after a session was reported in 64.6% sessions. In total, 6 patients experienced reduction in size of the pain areas at T18 and T30, with a mean reduction of 45.8% at T18 and 45.3% at T30. P(E)NS is feasible as an intervention in SCI patients and might have a positive effect on pain reduction in a part of this patient group. © 2013 The Authors Pain Practice © 2013 World Institute of Pain.

  13. Serial recording of median nerve stimulated subcortical somatosensory evoked potentials (SEPs) in developing brain death.

    Science.gov (United States)

    Buchner, H; Ferbert, A; Hacke, W

    1988-01-01

    Subcortical somatosensory evoked potentials (SEPs) to median nerve stimulation were recorded serially in 35 patients during the evolution towards brain death and in brain death. Neuropathological alterations of the central nervous system down to the C1/C2 spinal cord segment in brain death are well known. SEP components supposed to be generated above this level should be lost in brain death, while components generated below should not be altered. Erb's point, scalp and neck potentials were recorded at C3/4, or over the spinous process C7, using an Fz reference. In 10 patients additional montages, including spinous process C2-Fz, a non-cephalic reference (Fz-contralateral shoulder) and a posterior to anterior neck montage (spinous process C7-jugulum) were used. The cephalic referenced N9 and N11 peaks remained unchanged until brain death. N9 and N11 decreased in parallel in amplitude and increased in latency after systemic effects like hypoxia or hypothermia occurred. The cephalic referenced 'N14' decreased in amplitude and increased in latency after the clinical brain death syndrome was observed, while N13 in the posterior to anterior neck montage remained unchanged. The alteration of 'N14' went parallel to the decrease of the P14 amplitude. The subcortical SEPs in the cephalic referenced lead are supposed to be a peak composed by a horizontally orientated dorsal horn generated N13 and a rostrally orientated P14 arising at the level of the foramen magnum. The deterioration of the non-cephalic referenced P14 and of its cephalic referenced reflection 'N14' seems to provide an additional objective criterion for the diagnosis of brain death.

  14. Adjusting pulse amplitude during transcutaneous electrical nerve stimulation (TENS) application produces greater hypoalgesia.

    Science.gov (United States)

    Pantaleão, Manuela A; Laurino, Marjorie F; Gallego, Natalie L G; Cabral, Cristina M N; Rakel, Barbara; Vance, Carol; Sluka, Kathleen A; Walsh, Deirdre M; Liebano, Richard E

    2011-05-01

    Transcutaneous electrical nerve stimulation (TENS) is a noninvasive technique used for pain modulation. During application of TENS there is a fading of current sensation. Textbooks of electrophysical agents recommend that pulse amplitude should be constantly adjusted. This seems to be accepted clinically despite the fact that there is no direct experimental evidence. The aim of the current study was to investigate the hypoalgesic effect of adjusting TENS pulse amplitude on pressure pain thresholds (PPTs) in healthy humans. Fifty-six healthy TENS naïve participants were recruited and randomly assigned to 1 of 4 groups (n = 14 per group): control, placebo TENS, fixed pulse amplitude TENS, and adjusted pulse amplitude TENS. Both active and placebo TENS were applied to the dominant forearm. PPTs were recorded from 2 points on the dominant forearm and hand before, during, and after 40 minutes of TENS. TENS increased the PPTs on the forearm (P = .003) and hand (P = .003) in the group that received the adjusted pulse amplitude when compared to all other groups. The mean final pulse amplitude for the adjusted pulse amplitude TENS group was 35.51 mA when compared to the fixed pulse amplitude TENS group, which averaged 31.37 mA (P = .0318). These results suggest that it is important to adjust the pulse amplitude during TENS application to get the maximal analgesic effect. We propose that the fading of current sensation allows the use of higher pulse amplitudes, which would activate a greater number of and deeper tissue afferents to produce greater analgesia. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  15. Immediate effects of tongue trills associated with transcutaneous electrical nerve stimulation (TENS).

    Science.gov (United States)

    Fabron, Eliana Maria Gradim; Petrini, Andressa Schweitzer; Cardoso, Vanessa de Moraes; Batista, João Carlos Torgal; Motonaga, Suely Mayumi; Marino, Viviane Cristina de Castro

    2017-06-08

    To investigate vocal quality variability after applying tongue trills associated with transcutaneous electrical nerve stimulation (TENS) on the larynx of women with normal laryngeal function. Additionally, to verify the effect of this technique over time on voice quality. Participants were 40 women (average 23.4 years) without vocal complaints. The procedure involved tongue trills with or without TENS for 3 minutes, rest and repeating the technique for another 2 minutes. The participants' voices were recorded before (Pre), after three minutes (Post 3min) and after two additional minutes (Post 5min) applying the technique. TENS with two electrodes was used on the thyroid cartilage. Self-assessment, acoustic and perceptual analysis were performed. When comparing tongue trills in isolation and associated with TENS, a greater sense of stability in phonation (self-assessment) and improvement in voice quality (perceptual evaluation) was observed in the combination technique. There was no statistical difference in acoustics findings between tongue trills in isolation and associated with TENS. When comparing the time effect of tongue trills with TENS in self-assessment there was a perception of less muscle tension (3min) and greater comfort during phonation (5 min); in the acoustic analysis, there was an increase of F0 (3 and 5 min) and intensity (5 min) when compared to Pre-moment; in the perceptual evaluation, better voice quality (3min). Comparing tongue trills in isolation and associated with TENS, there were changes in the comfort and muscle tension perception, as well as in vocal quality. On the other hand, tongue trills associated with TENS performed in 3 or 5 minutes resulted in beneficial effects on the voice identified in the assessments.

  16. Quality-of-life metrics with vagus nerve stimulation for epilepsy from provider survey data.

    Science.gov (United States)

    Englot, Dario J; Hassnain, Kevin H; Rolston, John D; Harward, Stephen C; Sinha, Saurabh R; Haglund, Michael M

    2017-01-01

    Drug-resistant epilepsy is a devastating disorder associated with diminished quality of life (QOL). Surgical resection leads to seizure freedom and improved QOL in many epilepsy patients, but not all individuals are candidates for resection. In these cases, neuromodulation-based therapies such as vagus nerve stimulation (VNS) are often used, but most VNS studies focus exclusively on reduction of seizure frequency. QOL changes and predictors with VNS remain poorly understood. Using the VNS Therapy Patient Outcome Registry, we examined 7 metrics related to QOL after VNS for epilepsy in over 5000 patients (including over 3000 with ≥12months follow-up), as subjectively assessed by treating physicians. Trends and predictors of QOL changes were examined and related to post-operative seizure outcome and likelihood of VNS generator replacement. After VNS therapy, physicians reported patient improvement in alertness (58-63%, range over follow-up period), post-ictal state (55-62%), cluster seizures (48-56%), mood change (43-49%), verbal communication (38-45%), school/professional achievements (29-39%), and memory (29-38%). Predictors of net QOL improvement included shorter time to implant (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.1-1.6), generalized seizure type (OR, 1.2; 95% CI, 1.0-1.4), female gender (OR, 1.2; 95% CI, 1.0-1.4), and Caucasian ethnicity (OR, 1.3; 95% CI, 1.0-1.5). No significant trends were observed over time. Patients with net QOL improvement were more likely to have favorable seizure outcomes (chi square [χ 2 ]=148.1, pmetrics subjectively rated by physicians. QOL improvement is associated with favorable seizure outcome and a higher likelihood of generator replacement, suggesting satisfaction with therapy. It is important to consider QOL metrics in neuromodulation for epilepsy, given the deleterious effects of seizures on patient QOL. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Transcutaneous electrical nerve stimulation regulates organ blood flow and apoptosis during controlled hypotension in dogs.

    Directory of Open Access Journals (Sweden)

    Lele Zhang

    Full Text Available Transcutaneous electrical nerve stimulation (TENS is commonly used in clinical practice for alleviating pains and physiological disorders. It has been reported that TENS could counteract the ischemic injury happened in some vital organs. To determine the protective effect of TENS on internal organs during CH in dogs, target hypotension was maintained for 60 min at 50% of the baseline mean arterial pressure (MAP. The perfusion to the brain, liver, stomach, and kidney was recorded and apoptosis within these organs was observed. Results showed that when arriving at the target MAP, and during the maintaining stage for 10 min, perfusion to the stomach and liver in the CH+TENS group was much higher than in the CH group (P<0.05. Perfusion to the cerebral cortex greatly declined in both the controlled pressure groups when compared with the general anesthesia (GA group (P<0.05. After withdrawing CH, the hepatic blood flow in both the CH and CH+TENS groups, and the gastric and cerebral cortical blood flow in the CH+TENS group, were rapidly increased. By the end of MAP restoration, gastric blood flow in the CH group was still low. At 72 h after applying CH, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL-positive cells in stomach and kidney tissue from the CH group were significantly increased compared with those in the GA group (P<0.05. There was no significant difference in TUNEL-positive cells in the liver and hippocampus among the three groups. Our results demonstrated that CH with a 50% MAP level could cause lower perfusion to the liver, stomach, cerebral cortex, and kidney, with apoptosis subsequently occurring in the stomach and kidney. TENS combined GA is able to improve the blood flow to the liver, stomach, and reduce the apoptosis in the stomach and kidney.

  18. Faecal incontinence in patients with a sphincter defect: comparison of sphincteroplasty and sacral nerve stimulation.

    Science.gov (United States)

    Rodrigues, F G; Chadi, S A; Cracco, A J; Sands, D R; Zutshi, M; Gurland, B; Da Silva, G; Wexner, S D

    2017-05-01

    Sphincteroplasty (SP) is used to treat faecal incontinence (FI) in patients with a sphincter defect. Although sacral nerve stimulation (SNS) is used in patients, its outcome in patients with a sphincter defect has not been definitively evaluated. We compared the results of SP and SNS for FI associated with a sphincter defect. Patients treated by SNS or SP for FI with an associated sphincter defect were retrospectively identified from an Institutional Review Board approved prospective database. Patients with ultrasound evidence of a sphincter defect were matched by age, gender and body mass index. The main outcome measure was change in the Cleveland Clinic Florida Faecal Incontinence Score (CCF-FIS). Twenty-six female patients with a sphincter defect were included in the study. The 13 patients in each group were similar for age, body mass index, initial CCF-FIS and the duration of follow-up. No differences were observed in parity (P = 1.00), the rate of concomitant urinary incontinence (P = 0.62) or early postoperative complications. Within-group analysis showed a significant reduction of the CCF-FIS among patients having SNS (15.9-8.4; P = 0.003) but not SP (16.9-12.9; P = 0.078). There was a trend towards a more significant improvement in CCF-FIS in the SNS than in the SP group (post-treatment CCF-FIS 8.4 vs 12.9, P = 0.06). Net improvement in CCF-FIS was not significantly different between the groups (P = 0.06). Significant improvement in CCF-FIS was observed in patients treated with SNS but not SP patients. A trend towards better results was seen with SNS. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.

  19. Effects of vagus nerve stimulation on heart rate variability in children with epilepsy.

    Science.gov (United States)

    Hirfanoglu, Tugba; Serdaroglu, Ayse; Cetin, Ilker; Kurt, Gokhan; Capraz, Irem Y; Ekici, Filiz; Arhan, Ebru; Bilir, Erhan

    2018-02-17

    The aim of this study was to evaluate the effects of vagus nerve stimulation (VNS) on heart rate variability (HRV) in children with epilepsy. The subgroups of HRV, namely time domain (Standard deviation of NN interval (SDNN), SDNN index, Standard deviation of the averages of NN intervals (SDANN), Root mean square of successive differences (RMMSD), Adjacent NN intervals differing by more than 50 ms in the entire recording divided by the total number of all NN intervals (PNN50), triangular index) and frequency domain (Low-frequency (LF), High-frequency (HF), LF/HF), were investigated in 20 pediatric patients before and after 6 and 12months of VNS treatment during day and night by comparing their data with those of 20 control subjects. In addition, subgroups of age, epilepsy duration and localization, and antiepileptic drugs (AEDs) were also evaluated if they had further effects on basal HRV levels. Increased heart rates (HRs); decreased SDNN, SDANN, RMMSD, and PNN50; and increased LF/HF ratios were identified before VNS therapy (p0.05) in all parameters, still even significantly lower than those of controls (p<0.05). Longer duration of epilepsy and localization of epileptic focus, such as in the temporal lobe, were also found to further contribute to diminished basal HRV levels (p<0.05). The cardiovascular system is under deep sympathetic influence in children with epilepsy. Although VNS seems to provide a substantial improvement by achieving increased parasympathetic effects in short-term therapy, the levels were still lower than those of healthy children after either short- or long-term therapy. Therefore, impaired cardiovascular autonomic regulation may be associated with the epileptic process itself as well as with the contribution of some additional factors. Overall, different aspects such as age, epilepsy duration, epileptic focus, seizure frequency, and AEDs should also be considered for their further possible effects on HRV during VNS therapy. Copyright

  20. Parenting stress in parents of children with refractory epilepsy before and after vagus nerve stimulation implantation.

    Science.gov (United States)

    Li, Sung-Tse; Chiu, Nan-Chang; Kuo, Yung-Ting; Shen, Ein-Yiao; Tsai, Pei-Chieh; Ho, Che-Sheng; Wu, Wen-Hsiang; Chen, Juei-Chao

    2017-12-01

    The purpose of this study was to evaluate parenting stress in parents of children with refractory epilepsy before and after their children received vagus nerve stimulation (VNS) implantation. Parents of children with refractory epilepsy completed the Parenting Stress Index (PSI) under a psychologist's assessment before and at least 12 months after their children received VNS implantation. The PSI questionnaire measures parenting stress in two domains; a parent domain with seven subscales, and a child domain with six. Age, gender, epilepsy comorbidity, VNS implantation date, seizure frequency, and anticonvulsant history before and after VNS implantation were obtained from reviews of medical charts. In total, 30 parents completed the first and follow-up PSI questionnaires. Seventeen of their children (56.7%) were boys. The children aged from 1 to 12 years (7.43 ± 3.59 years, mean ± SD). After VNS implantation, the mean total parenting stress scores decreased from 282.1 ± 38.0 to 272.4 ± 42.9. A significant decrease was found on the spouse subscale of the parent domain. For the parents of boys, the mean total parenting stress scores decreased significantly. The mean total parenting stress scores also decreased significantly for parents of epileptic children without autism and who did not taper off the number of different anticonvulsants used after VNS. VNS is an advisable choice to treat refractory epilepsy. Our study showed that 12 months or more after VNS implantation, seizure frequency and parenting stress typically decreased. However, in some special cases the parenting stress may increase, and external help may be required to support these patients and their parents. Copyright © 2017. Published by Elsevier B.V.

  1. Randomized Controlled Trial of Surface Peroneal Nerve Stimulation for Motor Relearning in Lower Limb Hemiparesis

    Science.gov (United States)

    Taylor, Paul N.; Gunzler, Douglas D.; Buurke, Jaap H.; IJzerman, Maarten J.; Chae, John

    2013-01-01

    Objective To compare the motor relearning effect of a surface peroneal nerve stimulator (PNS) versus usual care on lower limb motor impairment, activity limitation, and quality of life among chronic stroke survivors. Design Single-blinded randomized controlled trial Setting Teaching hospital of academic medical center Participants 110 chronic stroke survivors (> 12-wks post-stroke) with unilateral hemiparesis and dorsiflexion strength of ≤ 4/5 on the Medical Research Council scale Interventions Subjects were stratified by motor impairment level and then randomized to ambulation training with either a surface PNS device or usual care (ankle foot orthosis or no device) intervention. Subjects were treated for 12-wks and followed for 6-months post-treatment. Main Outcome Measures Lower limb portion of the Fugl-Meyer (FM) Assessment (motor impairment), the Modified Emory Functional Ambulation Profile (mEFAP) performed without a device (functional ambulation), and the Stroke Specific Quality of Life (SSQOL) scale. Results There was no significant treatment group main effect or treatment group by time interaction effect on FM, mEFAP, or SSQOL raw scores (p>0.05). The time effect was significant for the three raw scores (p<0.05). However, when comparing average change scores from baseline (T1) to end of treatment, (T2, 12-wks), and at 12-wks (T3) and 24-wks (T4) after end of treatment, significant differences were noted only for the mEFAP and SSQOL scores. The change in the average scores for both mEFAP and SSQOL occurred between T1 and T2, followed by relative stability thereafter. Conclusions There was no evidence of a motor relearning effect on lower limb motor impairment in either the PNS or usual care groups. However, both PNS and usual care groups demonstrated significant improvements in functional mobility and quality of life during the treatment period, which were maintained at 6-months follow-up. PMID:23399456

  2. Vagus Nerve Stimulation Enhances Stable Plasticity and Generalization of Stroke Recovery.

    Science.gov (United States)

    Meyers, Eric C; Solorzano, Bleyda R; James, Justin; Ganzer, Patrick D; Lai, Elaine S; Rennaker, Robert L; Kilgard, Michael P; Hays, Seth A

    2018-03-01

    Chronic impairment of the arm and hand is a common consequence of stroke. Animal and human studies indicate that brief bursts of vagus nerve stimulation (VNS) in conjunction with rehabilitative training improve recovery of motor function after stroke. In this study, we tested whether VNS could promote generalization, long-lasting recovery, and structural plasticity in motor networks. Rats were trained on a fully automated, quantitative task that measures forelimb supination. On task proficiency, unilateral cortical and subcortical ischemic lesions were administered. One week after ischemic lesion, rats were randomly assigned to receive 6 weeks of rehabilitative training on the supination task with or without VNS. Rats then underwent 4 weeks of testing on a task assessing forelimb strength to test generalization of recovery. Finally, the durability of VNS benefits was tested on the supination task 2 months after the cessation of VNS. After the conclusion of behavioral testing, viral tracing was performed to assess synaptic connectivity in motor networks. VNS enhances plasticity in corticospinal motor networks to increase synaptic connectivity to musculature of the rehabilitated forelimb. Adding VNS more than doubled the benefit of rehabilitative training, and the improvements lasted months after the end of VNS. Pairing VNS with supination training also significantly improved performance on a similar, but untrained task that emphasized volitional forelimb strength, suggesting generalization of forelimb recovery. This study provides the first evidence that VNS paired with rehabilitative training after stroke (1) doubles long-lasting recovery on a complex task involving forelimb supination, (2) doubles recovery on a simple motor task that was not paired with VNS, and (3) enhances structural plasticity in motor networks. © 2018 American Heart Association, Inc.

  3. Immediate effects of transcutaneous electrical nerve stimulation and focal knee joint cooling on quadriceps activation.

    Science.gov (United States)

    Pietrosimone, Brian G; Hart, Joseph M; Saliba, Susan A; Hertel, Jay; Ingersoll, Christopher D

    2009-06-01

    To determine whether transcutaneous electrical nerve stimulation (TENS) and focal knee joint cooling will affect the quadriceps central activation ratio (CAR) in patients with tibiofemoral osteoarthritis. Thirty-three participants with diagnosed tibiofemoral osteoarthritis were randomly allocated to the 45-min TENS treatment (six males and four females, 56 +/- 10.1 yr, 174.11 +/- 10.78 cm, 89.34 +/- 21.3 kg), the 20-min focal knee joint cooling treatment (six males and five females, 58 +/- 8.4 yr, 176.41 +/- 8.29 cm, 83.18 +/- 17.97 kg), or the control group (five males and seven females, 54 +/- 9.9 yr, 166.37 +/- 13.07 cm, 92.14 +/- 25.37 kg). Volitional quadriceps activation, maximal voluntary isometric contraction, and subjective pain measurements were conducted at baseline and at 20, 30, and 45 min. The 20-min focal knee joint cooling intervention consisted of two 1.5-L ice bags to the anterior and posterior aspects of the knee. The TENS group received 45 min of a sensory, biphasic square wave stimulation (150-mus phase duration and 150 pps) from four 2 x 2-inch electrodes positioned around the patella. : TENS resulted in a significantly higher percent change in CAR scores compared with control at 20 min (6.4 +/- 4.8 vs -3.5 +/- 8, P = 0.006), 30 min (9.7 +/- 10.16 vs -1 +/- 7.9, P = 0.025), and 45 min (11.25 +/- 6.96 vs 0.81 +/- 9.4, P = 0.029). Focal knee joint cooling resulted in significantly higher percent change scores compared with the control group at 20 min (5.75 +/- 7.25 vs -3.5 +/- 8, P = 0.009) and trended to be higher at 45 min (9.06 +/- 9.63 vs 0.81 +/- 9.4, P = 0.098). No significant differences in percent change for CAR were found between the TENS and the focal knee joint cooling group. Both TENS and focal knee joint cooling increased the quadriceps CAR immediately after application in participants with tibiofemoral osteoarthritis.

  4. Does transcutaneous electrical nerve stimulation (TENS) simultaneously combined with local heat and cold applications enhance pain relief compared with TENS alone in patients with knee osteoarthritis?

    Science.gov (United States)

    Maeda, Takaya; Yoshida, Hideki; Sasaki, Tomoyuki; Oda, Atsushi

    2017-10-01

    [Purpose] The purpose of this study was to investigate whether transcutaneous electrical nerve stimulation simultaneously combined with local heat and cold applications enhances pain relief compared with transcutaneous electrical nerve stimulation alone in patients with knee osteoarthritis. [Subjects and Methods] Fourty-five patients with knee osteoarthritis participated in this study. They were randomly assigned to the following three interventions: transcutaneous electrical nerve stimulation simultaneously combined with local heat using a hot pack; combined with local cold using a cold pack; and transcutaneous electrical nerve stimulation alone. In each intervention, the knee pain level during walking and standing up from a chair, as well as dynamic balance and gait ability were evaluated immediately before and after a single intervention using the visual analogue scale and the timed up & go test, respectively. [Results] A significant improvement in dynamic balance and gait ability was only observed immediately after transcutaneous electrical nerve stimulation simultaneously combined with local heat application, although the degree of pain relief during standing and walking were comparable among the three interventions. [Conclusion] These results suggest that transcutaneous electrical nerve stimulation simultaneously combined with local heat application can immediately improve not only knee pain during standing and walking but also dynamic balance and gait ability in patients with knee osteoarthritis.

  5. Control of refractory status epilepticus precipitated by anticonvulsant withdrawal using left vagal nerve stimulation: a case report.

    Science.gov (United States)

    Patwardhan, Ravish V; Dellabadia, John; Rashidi, Mahmoud; Grier, Laurie; Nanda, Anil

    2005-08-01

    To describe a case of left vagal nerve stimulation (VNS) resulting in immediate cessation of status epilepticus (SE) with good neurological outcome. A 30-year-old man with medically intractable seizures including episodes of SE was successfully treated using left VNS. After requiring discontinuation of phenytoin, valproic acid, carbamazepine, and topiramate because of severe allergic reactions resembling Stevens-Johnson syndrome, the patient required pentobarbital coma along with phenobarbital, tiagabine, and levetiracetam for seizure frequency reduction. He underwent left vagal nerve stimulator placement after nearly 9 days of barbiturate-induced coma, with stimulation initiated in the operating room. On the following day, electroencephalography revealed resolution of previously observed periodic lateral epileptiform discharges and the patient was free of seizures. Prestimulation seizure frequency was recorded at 59 times a day, with some seizures enduring 45 minutes despite barbiturate coma. Poststimulation, the patient has been free of seizures for 19 days and is presently taking only levetiracetam and phenobarbital, from which he continues to be successfully weaned without seizures. He is awake, alert, and can recall events leading up to his seizures, with good long-term memory and residual left upper extremity and lower extremity weakness. This case illustrates the role of left vagal stimulation in the treatment of SE and otherwise medically intractable seizures caused by allergic reactions. To our knowledge, this is the first case in the world literature for adults reporting cessation of SE after VNS. Another case with a similar improvement has been reported in the pediatric population.

  6. Estimating nerve excitation thresholds to cutaneous electrical stimulation by finite element modeling combined with a stochastic branching nerve fiber model.

    Science.gov (United States)

    Mørch, Carsten Dahl; Hennings, Kristian; Andersen, Ole Kæseler

    2011-04-01

    Electrical stimulation of cutaneous tissue through surface electrodes is an often used method for evoking experimental pain. However, at painful intensities both non-nociceptive Aβ-fibers and nociceptive Aδ- and C-fibers may be activated by the electrical stimulation. This study proposes a finite element (FE) model of the extracellular potential and stochastic branching fiber model of the afferent fiber excitation thresholds. The FE model described four horizontal layers; stratum corneum, epidermis, dermis, and hypodermal used to estimate the excitation threshold of Aβ-fibers terminating in dermis and Aδ-fibers terminating in epidermis. The perception thresholds of 11 electrodes with diameters ranging from 0.2 to 20 mm were modeled and assessed on the volar forearm of healthy human volunteers by an adaptive two-alternative forced choice algorithm. The model showed that the magnitude of the current density was highest for smaller electrodes and decreased through the skin. The excitation thresholds of the Aδ-fibers were lower than the excitation thresholds of Aβ-fibers when current was applied through small, but not large electrodes. The experimentally assessed perception threshold followed the lowest excitation threshold of the modeled fibers. The model confirms that preferential excitation of Aδ-fibers may be achieved by small electrode stimulation due to higher current density in the dermoepidermal junction.

  7. Effects of vagus nerve stimulation and vagotomy on systemic and pulmonary inflammation in a two-hit model in rats.

    Directory of Open Access Journals (Sweden)

    Matthijs Kox

    Full Text Available Pulmonary inflammation contributes to ventilator-induced lung injury. Sepsis-induced pulmonary inflammation (first hit may be potentiated by mechanical ventilation (MV, second hit. Electrical stimulation of the vagus nerve has been shown to attenuate inflammation in various animal models through the cholinergic anti-inflammatory pathway. We determined the effects of vagotomy (VGX and vagus nerve stimulation (VNS on systemic and pulmonary inflammation in a two-hit model. Male Sprague-Dawley rats were i.v. administered lipopolysaccharide (LPS and subsequently underwent VGX, VNS or a sham operation. 1 hour following LPS, MV with low (8 mL/kg or moderate (15 mL/kg tidal volumes was initiated, or animals were left breathing spontaneously (SP. After 4 hours of MV or SP, rats were sacrificed. Cytokine and blood gas analysis was performed. MV with 15, but not 8 mL/kg, potentiated the LPS-induced pulmonary pro-inflammatory cytokine response (TNF-α, IL-6, KC: p<0.05 compared to LPS-SP, but did not affect systemic inflammation or impair oxygenation. VGX enhanced the LPS-induced pulmonary, but not systemic pro-inflammatory cytokine response in spontaneously breathing, but not in MV animals (TNF-α, IL-6, KC: p<0.05 compared to SHAM, and resulted in decreased pO(2 (p<0.05 compared to sham-operated animals. VNS did not affect any of the studied parameters in both SP and MV animals. In conclusion, MV with moderate tidal volumes potentiates the pulmonary inflammatory response elicited by systemic LPS administration. No beneficial effects of vagus nerve stimulation performed following LPS administration were found. These results questions the clinical applicability of stimulation of the cholinergic anti-inflammatory pathway in systemically inflamed patients admitted to the ICU where MV is initiated.

  8. [Development of an Analgesia Therapy System for Delivery Based on Bio-feedback Transcuataneous Electrical Nerve Stimulation].

    Science.gov (United States)

    Deng Songbo; Lu Yaosheng; Fang, Kun; Qin, Ruyi; Lin, Zhan

    2015-06-01

    Transcuataneous electrical nerve stimulation (TENS) analgesia as a non-drug method has received people's more and more attention recently. Considering problems of existing products, such as unstable performance and unsatisfied effectiveness, we developed a new analgesia therapy system for delivery based on bio-feedback TENS in our laboratory. We proposed a new idea for stimulation signal design, that is, we modulated a middle frequency signal by a traditional low frequency TENS wave in the new system. We designed different prescription waves for pain relief during a uterine contraction or massage between contractions. In the end, a bio-feedback TENS method was proposed, in which the waveforms of stimulation signals were selected and their parameters were modified automatically based on feedback from uterine pressure, etc. It was proved through quality tests and clinical trials that the system had good performance and satisfied analgesia effectiveness.

  9. A Model of Electrically Stimulated Auditory Nerve Fiber Responses with Peripheral and Central Sites of Spike Generation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2017-01-01

    A computational model of cat auditory nerve fiber (ANF) responses to electrical stimulation is presented. The model assumes that (1) there exist at least two sites of spike generation along the ANF and (2) both an anodic (positive) and a cathodic (negative) charge in isolation can evoke a spike...... of facilitation, accommodation, refractoriness, and spike-rate adaptation in ANF. Although the model is parameterized using data for either single or paired pulse stimulation with monophasic rectangular pulses, it correctly predicts effects of various stimulus pulse shapes, stimulation pulse rates, and level...... on the neural response statistics. The model may serve as a framework to explore the effects of different stimulus parameters on psychophysical performance measured in cochlear implant listeners....

  10. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain

    Directory of Open Access Journals (Sweden)

    Gozani SN

    2016-06-01

    Full Text Available Shai N Gozani NeuroMetrix, Inc., Waltham, MA, USA Objective: The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS is effective in treating chronic low back and lower extremity pain. Background: Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be used while the user is active or sleeping. FS-TENS devices are designed for placement at a pre-determined location, which enables development of a wearable device for use over extended time periods. Methods: Study participants with chronic low back and/or lower extremity pain self-administered an FS-TENS device for 60 days. Baseline, 30-, and 60-day follow-up data were obtained through an online questionnaire. The primary outcome measure was the patient global impression of change. Pain intensity and interference were assessed using the Brief Pain Inventory. Changes in use of concomitant pain medications were evaluated with a single-item global self-rating. Results: One hundred and thirty participants were enrolled, with 88 completing the 60-day follow-up questionnaire. Most participants (73.9% were 50 years of age or older. At baseline, low back pain was identified by 85.3%, lower extremity pain by 71.6%, and upper extremity pain by 62.5%. Participants reported widespread pain, at baseline, with a mean of 3.4 (standard deviation 1.1 pain sites. At the 60-day follow-up, 80.7% of participants reported that their chronic pain had improved and they were classified as responders. Baseline characteristics did not differentiate non-responders from responders. There were numerical trends toward reduced pain interference with walking ability and sleep, and greater pain relief in responders. There was a large difference in use of concomitant pain medications, with 80

  11. Spinal autofluorescent flavoprotein imaging in a rat model of nerve injury-induced pain and the effect of spinal cord stimulation.

    Directory of Open Access Journals (Sweden)

    Joost L M Jongen

    Full Text Available Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS, an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level.

  12. Percutaneous Tibial Nerve Stimulation Improves Female Sexual Function in Women With Overactive Bladder Syndrome.

    Science.gov (United States)

    Musco, Stefania; Serati, Maurizio; Lombardi, Giuseppe; Lumi, Ermal; Parisi, Annunziata Isabella; Del Popolo, Giulio; Finazzi Agrò, Enrico

    2016-02-01

    Percutaneous tibial nerve stimulation (PTNS) is an established treatment for overactive bladder (OAB), especially in women with other concomitant pelvic disorders, such as sexual impairment. To evaluate the impact of PTNS on female sexual dysfunction (FSD) in women undergoing PTNS for OAB and analyze the results. An observational prospective study was conducted in two Italian centers. Consecutive women undergoing PTNS for dry OAB were enrolled from May 2013 to June 2014. All patients were asked to complete the Female Sexual Function Index (FSFI), the OAB short-form questionnaire, and a 24-hour bladder diary at baseline and 3 months later, at the end of the PTNS course. Patients with an FSFI total score no higher than 26.55 at inclusion were considered as presenting with FSD. Patients with an FSFI total score higher than 26.55 after treatment (if the increase in FSFI score was ≥20%) were considered FSD objective responders. Sexuality was assessed using the FSFI. The 24-hour bladder diary and completed OAB short-form questionnaire were assessed before and after PTNS to evaluate OAB symptoms. Forty-one women were evaluable. Twenty-one of 41 women (51%; mean age = 51 ± 10.67 years) were considered affected by FSD at inclusion. All FSFI domains showed statistically significant improvement in women with FSD (P < .05). In particular, 9 of 21 patients with FSD (43%) objectively responded (before treatment: mean FSFI total score = 18.11, range 10.8-26.3; after treatment: mean FSFI total score = 31.04, range 27.6-35). Also, women without FSD at baseline reported statistically significant improvement in their sexual function based on FSFI scores (P < .05). No significant correlations were seen between data questionnaires. PTNS improves sexual function in women with dry OAB. This amelioration is independent of urinary symptoms. Further studies are needed to confirm a possible role of PTNS in treating FSD. Copyright © 2016 International Society for Sexual Medicine

  13. Transcutaneous electrical nerve stimulation (TENS) for phantom pain and stump pain following amputation in adults.

    Science.gov (United States)

    Johnson, Mark I; Mulvey, Matthew R; Bagnall, Anne-Marie

    2015-08-18

    This is the first update of a Cochrane review published in Issue 5, 2010 on transcutaneous electrical nerve stimulation (TENS) for phantom pain and stump pain following amputation in adults. Pain may present in a body part that has been amputated (phantom pain) or at the site of amputation (stump pain), or both. Phantom pain and stump pain are complex and multidimensional and the underlying pathophysiology remains unclear. The condition remains a severe burden for those who are affected by it. The mainstay treatments are predominately pharmacological, with increasing acknowledgement of the need for non-drug interventions. TENS has been recommended as a treatment option but there has been no systematic review of available evidence. Hence, the effectiveness of TENS for phantom pain and stump pain is currently unknown. To assess the analgesic effectiveness of TENS for the treatment of phantom pain and stump pain following amputation in adults. For the original version of the review we searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, PsycINFO, AMED, CINAHL, PEDRO and SPORTDiscus (February 2010). For this update, we searched the same databases for relevant randomised controlled trials (RCTs) from 2010 to 25 March 2015. We only included RCTs investigating the use of TENS for the management of phantom pain and stump pain following an amputation in adults. Two review authors independently assessed trial quality and extracted data. We planned that where available and appropriate, data from outcome measures were to be pooled and presented as an overall estimate of the effectiveness of TENS. In the original review there were no RCTs that examined the effectiveness of TENS for the treatment of phantom pain and stump pain in adults. For this update, we did not identify any additional RCTs for inclusion. There were no RCTs to judge the effectiveness of TENS for the management of phantom pain and stump pain. The published literature on TENS

  14. Effects of Spinal Cord Stimulation on Cardiac Sympathetic Nerve Activity in Patients with Heart Failure.

    Science.gov (United States)

    Naar, Jan; Jaye, Deborah; Linde, Cecilia; Neužil, Petr; Doškář, Petr; Málek, Filip; Braunschweig, Frieder; Lund, Lars H; Mortensen, Lars; Linderoth, Bengt; Lind, Göran; Bone, Dianna; Scholte, Arthur J; Kueffer, Fred; Koehler, Jodi; Shahgaldi, Kambiz; Lang, Otto; Ståhlberg, Marcus

    2017-05-01

    Spinal cord stimulation (SCS) reduces sympathetic activity in animal models of heart failure with reduced ejection fraction (HF) but limited data exist of SCS in patients with HF. The aim of the present study was to test the primary hypothesis that SCS reduces cardiac sympathetic nerve activity in HF patients. Secondary hypotheses were that SCS improves left ventricular function and dimension, exercise capacity, and clinical variables relevant to HF. HF patients with a SCS device previously participating in the DEFEAT-HF trial were included in this crossover study with 6-week intervention periods (SCS-ON and SCS-OFF). SCS (50 Hz, 210-μs pulse duration, aiming at T2-T4 segments) was delivered for 12 hours daily. Indices of myocardial sympathetic neuronal function (heart-to-mediastinum ratio, HMR) and activity (washout rate, WR) were assessed using 123 I-metaiodobenzylguanidine (MIBG) scintigraphy. Echocardiography, exercise testing, and clinical data collection were also performed. We included 13 patients (65.3 ± 8.0 years, nine males) and MIBG scintigraphy data were available in 10. HMR was not different comparing SCS-ON (1.37 ± 0.16) and SCS-OFF (1.41 ± 0.21, P = 0.46). WR was also unchanged comparing SCS-ON (41.5 ± 5.3) and SCS-OFF (39.1 ± 5.8, P = 0.30). Similarly, average New York Heart Association class (2.4 ± 0.5 vs 2.3 ± 0.6, P = 0.34), quality of life score (24 ± 16 vs 24 ± 16, P = 0.94), and left ventricular dimension and function as well as exercise capacity were all unchanged comparing SCS-ON and SCS-OFF. In patients with HF, SCS (12 hours daily, targeting the T2-T4 segments of the spinal cord) does not appear to influence cardiac sympathetic neuronal activity or function as assessed by MIBG scintigraphy. © 2017 Wiley Periodicals, Inc.

  15. Percutaneous tibial nerve stimulation versus electrical stimulation with pelvic floor muscle training for overactive bladder syndrome in women: results of a randomized controlled study.

    Science.gov (United States)

    Scaldazza, Carlo Vecchioli; Morosetti, Carolina; Giampieretti, Rosita; Lorenzetti, Rossana; Baroni, Marinella

    2017-01-01

    This study compared percutaneous tibial nerve stimulation (PTNS) versus electrical stimulation with pelvic floor muscle training (ES + PFMT) in women with overactive bladder syndrome (OAB). 60 women with OAB were enrolled. Patients were randomized into two groups. In group A, women underwent ES with PFMT, in group B women underwent PTNS. A statistically significant reduction in the number of daily micturitions, episodes of nocturia and urge incontinence was found in the two groups but the difference was more substantial in women treated with PTNS; voided volume increased in both groups. Quality of life improved in both groups, whereas patient perception of urgency improved only in women treated with PTNS. Global impression of improvement revealed a greater satisfaction in patients treated with PTNS. This study demonstrates the effectiveness of PTNS and ES with PFMT in women with OAB, but greater improvements were found with PTNS. Copyright® by the International Brazilian Journal of Urology.

  16. Percutaneous tibial nerve stimulation versus electrical stimulation with pelvic floor muscle training for overactive bladder syndrome in women: results of a randomized controlled study

    Directory of Open Access Journals (Sweden)

    Carlo Vecchioli Scaldazza

    Full Text Available ABSTRACT Introduction This study compared percutaneous tibial nerve stimulation (PTNS versus electrical stimulation with pelvic floor muscle training (ES + PFMT in women with overactive bladder syndrome (OAB. Materials and Methods 60 women with OAB were enrolled. Patients were randomized into two groups. In group A, women underwent ES with PFMT, in group B women underwent PTNS. Results A statistically significant reduction in the number of daily micturitions, episodes of nocturia and urge incontinence was found in the two groups but the difference was more substantial in women treated with PTNS; voided volume increased in both groups. Quality of life improved in both groups, whereas patient perception of urgency improved only in women treated with PTNS. Global impression of improvement revealed a greater satisfaction in patients treated with PTNS. Conclusion This study demonstrates the effectiveness of PTNS and ES with PFMT in women with OAB, but greater improvements were found with PTNS.

  17. Occipital Nerve Field Transcranial Direct Current Stimulation Normalizes Imbalance Between Pain Detecting and Pain Inhibitory Pathways in Fibromyalgia.

    Science.gov (United States)

    De Ridder, Dirk; Vanneste, Sven

    2017-04-01

    Occipital nerve field (OCF) stimulation with subcutaneously implanted electrodes is used to treat headaches, more generalized pain, and even failed back surgery syndrome via unknown mechanisms. Transcranial direct current stimulation (tDCS) can predict the efficacy of implanted electrodes. The purpose of this study is to unravel the neural mechanisms involved in global pain suppression, mediated by occipital nerve field stimulation, within the realm of fibromyalgia. Nineteen patients with fibromyalgia underwent a placebo-controlled OCF tDCS. Electroencephalograms were recorded at baseline after active and sham stimulation. In comparison with healthy controls, patients with fibromyalgia demonstrate increased dorsal anterior cingulate cortex, increased premotor/dorsolateral prefrontal cortex activity, and an imbalance between pain-detecting dorsal anterior cingulate cortex and pain-suppressing pregenual anterior cingulate cortex activity, which is normalized after active tDCS but not sham stimulation associated with increased pregenual anterior cingulate cortex activation. The imbalance improvement between the pregenual anterior cingulate cortex and the dorsal anterior cingulate cortex is related to clinical changes. An imbalance assumes these areas communicate and, indeed, abnormal functional connectivity between the dorsal anterior cingulate cortex and pregenual anterior cingulate cortex is noted to be caused by a dysfunctional effective connectivity from the pregenual anterior cingulate cortex to the dorsal anterior cingulate cortex, which improves and normalizes after real tDCS but not sham tDCS. In conclusion, OCF tDCS exerts its effect via activation of the descending pain inhibitory pathway and de-activation of the salience network, both of which are abnormal in fibromyalgia.

  18. High- and low-frequency transcutaneous electrical nerve stimulation does not reduce experimental pain in elderly individuals

    OpenAIRE

    Bergeron-V?zina, Kayla; Corriveau, H?l?ne; Martel, Marylie; Harvey, Marie-Philippe; L?onard, Guillaume

    2015-01-01

    Abstract Despite its widespread clinical use, the efficacy of transcutaneous electrical nerve stimulation (TENS) remains poorly documented in elderly individuals. In this randomized, double-blind crossover study, we compared the efficacy of high-frequency (HF), low-frequency (LF), and placebo (P) TENS in a group of 15 elderly adults (mean age: 67 ? 5 years). The effect of HF-, LF-, and P-TENS was also evaluated in a group of 15 young individuals (26 ? 5 years; same study design) to validate t...

  19. Vagus Nerve Stimulation: A Non-Invasive Treatment to Improve the Health of Gulf Veterans with Gulf War Illness

    Science.gov (United States)

    2017-05-01

    Gulf War Illness (GWI) is a condition occurring in some veterans who served in the 1990-91 Gulf War . To date there is no specific treatment for it. A...major complaint of veteran subjects with GWI is widespread pain and achiness. Currently, some drugs are available to treat these symptoms, but these...complaint of Gulf War veterans with GWI using a hand-held neuro-stimulator device that activates a nerve in the neck called the vagus. This study will

  20. Exhausted implanted pulse generator in sacral nerve stimulation for faecal incontinence: What next in daily practice for patients?

    Science.gov (United States)

    Duchalais, Emilie; Meurette, Guillaume; Perrot, Bastien; Wyart, Vincent; Kubis, Caroline; Lehur, Paul-Antoine

    2016-02-01

    The efficacy of sacral nerve stimulation in faecal incontinence relies on an implanted pulse generator known to have a limited lifespan. The long-term use of sacral nerve stimulation raises concerns about the true lifespan of generators. The aim of the study was to assess the lifespan of sacral nerve stimulation implanted pulse generators in daily practice, and the outcome of exhausted generator replacement, in faecal incontinent patients. Faecal incontinent patients with pulse generators (Medtronic Interstim™ or InterstimII™) implanted in a single centre from 2001 to 2014 were prospectively followed up. Generator lifespan was measured according to the Kaplan-Meier method. Patients with a generator explanted/turned off before exhaustion were excluded. Morbidity of exhausted generator replacement and the outcome (Cleveland Clinic Florida Faecal Incontinence (CCF-FI) and Faecal Incontinence Quality of Life (FIQL) scores) were recorded. Of 135 patients with an implanted pulse generator, 112 (InterstimII 66) were included. Mean follow-up was 4.9 ± 2.8 years. The generator reached exhaustion in 29 (26%) cases. Overall median lifespan of an implanted pulse generator was approximately 9 years (95% CI 8-9.2). Interstim and InterstimII 25th percentile lifespan was 7.2 (CI 6.4-8.3) and 5 (CI 4-not reached) years, respectively. After exhaustion, generators were replaced, left in place or explanted in 23, 2 and 4 patients, respectively. Generator replacement was virtually uneventful. CCF-FI/FIQL scores remained unchanged after generator replacement (CCF-FI 8 ± 2 vs 7 ± 3; FIQL 3 ± 0.6 vs 3 ± 0.5; p = ns). In this study, the implanted pulse generator observed median lifespan was 9 years. After exhaustion, generators were safely and efficiently replaced. The study also gives insight into long-term needs and costs of sacral nerve stimulation (SNS) therapy.

  1. Effects of patterned peripheral nerve stimulation on soleus spinal motor neuron excitability

    DEFF Research Database (Denmark)

    Jimenez, Samuel; Mordillo-Mateos, Laura; Dileone, Michele

    2018-01-01

    Spinal plasticity is thought to contribute to sensorimotor recovery of limb function in several neurological disorders and can be experimentally induced in animals and humans using different stimulation protocols. In healthy individuals, electrical continuous Theta Burst Stimulation (TBS) of the ...

  2. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Christian Witzel

    2015-01-01

    Full Text Available Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection. ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005 and the number of arborizing axons (21% vs. 16% P = 0.008 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  3. Transcutaneous electrical nerve stimulation (TENS) improves the diabetic cytopathy (DCP) via up-regulation of CGRP and cAMP.

    Science.gov (United States)

    Ding, Liucheng; Song, Tao; Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing

    2013-01-01

    The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n=15), DM group (n=15) and control group (n=15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG.

  4. Noninvasive and painless magnetic stimulation of nerves improved brain motor function and mobility in a cerebral palsy case.

    Science.gov (United States)

    Flamand, Véronique H; Schneider, Cyril

    2014-10-01

    Motor deficits in cerebral palsy disturb functional independence. This study tested whether noninvasive and painless repetitive peripheral magnetic stimulation could improve motor function in a 7-year-old boy with spastic hemiparetic cerebral palsy. Stimulation was applied over different nerves of the lower limbs for 5 sessions. We measured the concurrent aftereffects of this intervention on ankle motor control, gait (walking velocity, stride length, cadence, cycle duration), and function of brain motor pathways. We observed a decrease of ankle plantar flexors resistance to stretch, an increase of active dorsiflexion range of movement, and improvements of corticospinal control of ankle dorsiflexors. Joint mobility changes were still present 15 days after the end of stimulation, when all gait parameters were also improved. Resistance to stretch was still lower than prestimulation values 45 days after the end of stimulation. This case illustrates the sustained effects of repetitive peripheral magnetic stimulation on brain plasticity, motor function, and gait. It suggests a potential impact for physical rehabilitation in cerebral palsy. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Transvenous stimulation of the renal sympathetic nerves increases systemic blood pressure: a potential new treatment option for neurocardiogenic syncope.

    Science.gov (United States)

    Madhavan, Malini; Desimone, Christopher V; Ebrille, Elisa; Mulpuru, Siva K; Mikell, Susan B; Johnson, Susan B; Suddendorf, Scott H; Ladewig, Dorothy J; Gilles, Emily J; Danielsen, Andrew J; Asirvatham, Samuel J

    2014-10-01

    Neurocardiogenic syncope (NCS) is a common and sometimes debilitating disorder, with no consistently effective treatment. NCS is due to a combination of bradycardia and vasodilation leading to syncope. Although pacemaker devices have been tried in treating the bradycardic aspect of NCS, no device-based therapy exists to treat the coexistent vasodilation that occurs. The renal sympathetic innervation has been the target of denervation to treat hypertension. We hypothesized that stimulation of the renal sympathetic nerves can increase blood pressure and counteract vasodilation in NCS. High-frequency stimulation (800-900 pps, 10 V, 30-200 seconds) was performed using a quadripolar catheter in the renal vein of 7 dogs and 1 baboon. A significant increase in blood pressure (BP; mean [SD] systolic BP 117 [±28] vs. 128 [±33], diastolic BP 75 [±19] vs. 87 [±29] mmHg) was noted during the stimulation, which returned to baseline after cessation of stimulation. The mean increase in systolic and diastolic BP was 13.0 (±3.3) (P = 0.006) and 10.2 (±4.6) (P = 0.08), respectively. We report the first ever study of feasibility and safety of high-frequency electrical stimulation of the renal sympathetic innervation to increase BP in animal models. This has potential applications in the treatment of hypotensive states such as NCS. © 2014 Wiley Periodicals, Inc.

  6. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode

    Directory of Open Access Journals (Sweden)

    Ahnsei Shon

    2017-12-01

    Full Text Available Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC-compliant power transmission circuit, a medical implant communication service (MICS-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.

  7. Comparison of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) for spasticity in spinal cord injury - A pilot randomized cross-over trial.

    Science.gov (United States)

    Sivaramakrishnan, Anjali; Solomon, John M; Manikandan, Natarajan

    2017-10-25

    Spasticity following spinal cord injury (SCI) can impair function and affect quality of life. This study compared the effects of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) on lower limb spasticity in patients with SCI. Double blind randomized crossover design. Neuro-rehabilitation unit, Manipal University, India. Ten participants (age: 39 ± 13.6 years, C1-T11, 1-26 months post SCI) with lower limb spasticity were enrolled in this study. Participants were administered electrical stimulation with TENS and FES (duration - 30 minutes) in a cross over manner separated by 24 hours. Spasticity was measured using modified Ashworth scale (MAS) [for hip abductors, knee extensors and ankle plantar flexors] and spinal cord assessment tool for spastic reflexes (SCATS). Assessments were performed at baseline, immediately, 1 hour, 4 hours, and 24 hours post intervention. A between group analysis did not show statistically significant differences between FES and TENS (P > 0.05). In the within group analyses, TENS and FES significantly reduced spasticity up to 4 hours in hip adductors and knee extensors (P electrical stimulation with FES and TENS appears to have similar anti-spasticity effects that last for 4 hours. The findings of this preliminary study suggest that both TENS and FES have the potential to be used as therapeutic adjuncts to relieve spasticity in the clinic. In addition, FES may have better effects on patients presenting with spastic reflexes.

  8. Transcutaneous Electrical Nerve Stimulation Combined with Oxybutynin is Superior to Monotherapy in Children with Urge Incontinence: A Randomized, Placebo Controlled Study.

    Science.gov (United States)

    Borch, Luise; Hagstroem, Soeren; Kamperis, Konstantinos; Siggaard, C V; Rittig, Soeren

    2017-08-01

    We evaluated whether combination therapy with transcutaneous electrical nerve stimulation and oxybutynin results in a superior treatment response compared to either therapy alone in children with urge incontinence. In this placebo controlled study 66 children with a mean ± SD age of 7.3 ± 1.6 years who were diagnosed with urge incontinence were randomized to 3 treatment groups. Group 1 consisted of 22 children undergoing transcutaneous electrical nerve stimulation plus active oxybutynin administration. Group 2 included 21 children undergoing active transcutaneous electrical nerve stimulation plus placebo oxybutynin administration. Group 3 consisted of 23 children undergoing active oxybutynin administration plus placebo transcutaneous electrical nerve stimulation. The children received active or placebo transcutaneous electrical nerve stimulation over the sacral S2 to S3 outflow for 2 hours daily in combination with 5 mg active or placebo oxybutynin twice daily. The intervention period was 10 weeks. Primary outcome was number of wet days weekly. Secondary outcomes were severity of incontinence, frequency, maximum voided volume over expected bladder capacity for age, average voided volume over expected bladder capacity for age and visual analogue scale score. Combination therapy was superior to oxybutynin monotherapy, with an 83% greater chance of treatment response (p = 0.05). Combination therapy was also significantly more effective than transcutaneous electrical nerve stimulation monotherapy regarding reduced number of wet days weekly (mean difference -2.28, CI -4.06 to -0.49), severity of incontinence (-3.11, CI -5.98 to -0.23) and daily voiding frequency (-2.82, CI -4.48 to -1.17). Transcutaneous electrical nerve stimulation in combination with oxybutynin for childhood urge incontinence was superior to monotherapy consisting of transcutaneous electrical nerve stimulation or oxybutynin, although the latter only reached borderline statistical significance

  9. Early transcutaneous electrical nerve stimulation reduces hyperalgesia and decreases activation of spinal glial cells in mice with neuropathic pain.

    Science.gov (United States)

    Matsuo, Hideaki; Uchida, Kenzo; Nakajima, Hideaki; Guerrero, Alexander Rodriguez; Watanabe, Shuji; Takeura, Naoto; Sugita, Daisuke; Shimada, Seiichiro; Nakatsuka, Terumasa; Baba, Hisatoshi

    2014-09-01

    Although transcutaneous electrical nerve stimulation (TENS) is widely used for the treatment of neuropathic pain, its effectiveness and mechanism of action in reducing neuropathic pain remain uncertain. We investigated the effects of early TENS (starting from the day after surgery) in mice with neuropathic pain, on hyperalgesia, glial cell activation, pain transmission neuron sensitization, expression of proinflammatory cytokines, and opioid receptors in the spinal dorsal horn. Following nerve injury, TENS and behavioral tests were performed every day. Immunohistochemical, immunoblot, and flow cytometric analysis of the lumbar spinal cord were performed after 8 days. Early TENS reduced mechanical and thermal hyperalgesia and decreased the activation of microglia and astrocytes (PEarly TENS decreased p-p38 within microglia (Pearly TENS relieved hyperalgesia in our mouse model of neuropathic pain by inhibiting glial activation, MAP kinase activation, PKC-γ, and p-CREB expression, and proinflammatory cytokines expression, as well as maintenance of spinal opioid receptors. The findings indicate that TENS treatment is more effective when applied as early after nerve injury as possible. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  10. A computational study to evaluate the activation pattern of nerve fibers in response to interferential currents stimulation.

    Science.gov (United States)

    Agharezaee, Mahsa; Mahnam, Amin

    2015-08-01

    Interferential current (IFC) is one of the most popular electrical currents used in electrotherapy. However, there have been limited studies investigating how this stimulation affects the nerve fibers. The aim of this computational study was to evaluate the temporal and spatial patterns of fiber activation in IFC therapy for different modulation and carrier frequencies. The interferential currents were applied by two pairs of point electrodes perpendicular to each other in an infinite homogeneous medium, and a model of myelinated nerve fibers was implemented in NEURON to study the neural response. The activation thresholds for different positions of the fiber and the resultant firing patterns were evaluated. The results suggest that the fibers may fire continuously or in bursts, with frequencies equal or higher than the modulation frequency, or may be blocked, based on their position relative to the electrodes, the modulation frequency and the stimulus strength. The results confirm traditional belief about the role of the modulation frequency in firing frequency of nerve fibers and describe a possible mechanism for less sensation of pain, due to blockage of the fibers by the high-frequency nature of the interferential currents.

  11. Numerical modeling of percutaneous auricular vagus nerve stimulation: a realistic 3D model to evaluate sensitivity of neural activation to electrode position.

    Science.gov (United States)

    Samoudi, Amine M; Kampusch, Stefan; Tanghe, Emmeric; Széles, Jozsef C; Martens, Luc; Kaniusas, Eugenijus; Joseph, Wout

    2017-10-01

    Percutaneous stimulation of the auricular branch of the vagus nerve (pVNS) by miniaturized needle electrodes in the auricle gained importance as a treatment for acute and chronic pain. The objective is to establish a realistic numerical model of pVNS and investigate the effects of stimulation waveform, electrodes' depth, and electrodes' position on nerve excitation threshold and the percentage of stimulated nerves. Simulations were performed with Sim4Life. An electrostatic solver and neural tissue models were combined for electromagnetic and neural simulation. The numerical model consisted of a realistic high-resolution model of a human ear, blood vessels, nerves, and three needle electrodes. A novel 3D ear model was established, including blood vessels and nerves. The electric field distribution was extracted and evaluated. Maximum sensitivity to needles' depth and displacement was evaluated to be 9.8 and 15.5% per 0.1 mm, respectively. Stimulation was most effective using biphasic compared to mono-phasic pulses. The established model allows easy and quantitative evaluation of various stimulation setups, enabling optimization of pVNS in experimental settings. Results suggest a high sensitivity of pVNS to the electrodes' position and depth, implying the need for precise electrode positioning. Validation of the model needs to be performed.

  12. Transcutaneous electrical nerve stimulation and interferential current demonstrate similar effects in relieving acute and chronic pain: a systematic review with meta-analysis.

    Science.gov (United States)

    Almeida, Camila Cadena de; Silva, Vinicius Z Maldaner da; Júnior, Gerson Cipriano; Liebano, Richard Eloin; Durigan, Joao Luiz Quagliotti

    2018-02-02

    Transcutaneous electrical nerve stimulation and interferential current have been widely used in clinical practice. However, a systematic review comparing their effects on pain relief has not yet been performed. To investigate the effects of transcutaneous electrical nerve stimulation and interferential current on acute and chronic pain. We use Pubmed, Embase, LILACS, PEDro and Cochrane Central Register of Controlled Trials as data sources. Two independent reviewers that selected studies according to inclusion criteria, extracted information of interest and verified the methodological quality of the studies made study selection. The studies were selected if transcutaneous electrical nerve stimulation and interferential current were used as treatment and they had pain as the main outcome, as evaluated by a visual analog scale. Secondary outcomes were the Western Ontario Macmaster and Rolland Morris Disability questionnaires, which were added after data extraction. Eight studies with a pooled sample of 825 patients were included. The methodological quality of the selected studies was moderate, with an average of six on a 0-10 scale (PEDro). In general, both transcutaneous electrical nerve stimulation and interferential current improved pain and functional outcomes without a statistical difference between them. Transcutaneous electrical nerve stimulation and interferential current have similar effects on pain outcome The low number of studies included in this meta-analysis indicates that new clinical trials are needed. Copyright © 2018 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  13. Tachykinin receptors mediating responses to sensory nerve stimulation and exogenous tachykinins and analogues in the rabbit isolated iris sphincter.

    Science.gov (United States)

    Hall, J. M.; Mitchell, D.; Morton, I. K.

    1993-01-01

    1. We have used selective tachykinin receptor agonists and antagonists to investigate the nature of the receptors mediating responses to endogenous and exogenous tachykinins in the rabbit iris sphincter preparation in vitro. 2. The NK1-selective agonist, substance P methyl ester, induced contraction with a pD2 of 9.16 indicating the presence of NK1 receptors. In confirmation, the NK1-selective antagonist, GR82334, competitively antagonized responses to substance P methyl ester with high affinity (pKB 7.46). 3. NK3 receptors also mediate contraction since NK3-selective agonists exhibited high potency, e.g. the pD2 of [Me-Phe7]-neurokinin B was 9.67, and their responses were not inhibited by GR82334 (10 microM). 4. NK2 receptor activation does not seem to contribute to contraction since the NK2-selective agonist [beta-Ala8]-neurokinin A(4-10) had relatively low potency (pD2 6.43), and the NK2-selective antagonists MEN10207 (1 microM) and L-659,877 (10 microM) were inactive or had low affinity, respectively. 5. GR82334 (1 microM) significantly inhibited responses to electrical field-stimulation of non-adrenergic non-cholinergic sensory nerves (3, 10 and 30 Hz), and caused a rightward shift of the log concentration-response curve to bradykinin (lateral shift ca. 1000 fold). Higher concentrations of GR82334 (10 microM) significantly attenuated responses to capsaicin (1-60 microM) whilst completely abolishing responses to field-stimulation (3, 10 and 30 Hz) and bradykinin (1 nM- 3 microM). 6. In conclusion, NK1 and NK3 receptor activation results in contraction of the rabbit iris sphincter. The contractile response following sensory nerve stimulation by bradykinin, capsaicin and electrical field stimulation results from NK1 receptor activation. PMID:8401912

  14. Spina bifida occulta as a relative contraindication for percutaneous retrograde lead insertion for sacral nerve root stimulation.

    Science.gov (United States)

    Michael, L Madison; Whitworth, Louis A; Feler, Claudio A

    2002-01-01

    Percutaneous retrograde lead insertion for sacral nerve root stimulation is a newly described technique being applied to a variety of pain disorders. The success of the procedure rests in a defined epidural space such that there is unimpeded progression of the lead into the desired location. It is hypothesized that any condition that results in anatomic compromise of the epidural space would prevent the success of the procedure. Two patients with biopsy-proven interstitial cystitis and intractable pain were referred to the senior author for evaluation. Percutaneous retrograde lead insertion for sacral nerve root stimulation was performed on these patients in a standard fashion (1,2). Intraoperative fluoroscopy verified the diagnosis of spina bifida occulta. In one patient, implantation was completed percutaneously, but later two of the leads were found to have been placed intradurally. In another patient, repeated attempts at passing the epidural lead distal to the congenital defect were unsuccessful, and the percutaneous procedure was aborted. In conclusion, we have found that the diagnosis of spina bifida occulta, or any other condition in which the epidural space is anatomically disrupted, is a relative contraindication for this procedure. Preoperative roentograms of the lumbar spine may be helpful in avoiding technical difficulties due to this diagnosis.

  15. Vagal nerve stimulation triggers widespread responses and alters large-scale functional connectivity in the rat brain.

    Directory of Open Access Journals (Sweden)

    Jiayue Cao

    Full Text Available Vagus nerve stimulation (VNS is a therapy for epilepsy and depression. However, its efficacy varies and its mechanism remains unclear. Prior studies have used functional magnetic resonance imaging (fMRI to map brain activations with VNS in human brains, but have reported inconsistent findings. The source of inconsistency is likely attributable to the complex temporal characteristics of VNS-evoked fMRI responses that cannot be fully explained by simplified response models in the conventional model-based analysis for activation mapping. To address this issue, we acquired 7-Tesla blood oxygenation level dependent fMRI data from anesthetized Sprague-Dawley rats receiving electrical stimulation at the left cervical vagus nerve. Using spatially independent component analysis, we identified 20 functional brain networks and detected the network-wise activations with VNS in a data-driven manner. Our results showed that VNS activated 15 out of 20 brain networks, and the activated regions covered >76% of the brain volume. The time course of the evoked response was complex and distinct across regions and networks. In addition, VNS altered the strengths and patterns of correlations among brain networks relative to those in the resting state. The most notable changes in network-network interactions were related to the limbic system. Together, such profound and widespread effects of VNS may underlie its unique potential for a wide range of therapeutics to relieve central or peripheral conditions.

  16. A single trial of transcutaneous electrical nerve stimulation (TENS) improves spasticity and balance in patients with chronic stroke.

    Science.gov (United States)

    Cho, Hwi-young; In, Tae Sung; Cho, Ki Hun; Song, Chang Ho

    2013-03-01

    Spasticity management is pivotal for achieving functional recovery of stroke patients. The purpose of this study was to investigate the effects of a single trial of transcutaneous electrical nerve stimulation (TENS) on spasticity and balance in chronic stroke patients. Forty-two chronic stroke patients were randomly allocated into the TENS (n = 22) or the placebo-TENS (n = 20) group. TENS stimulation was applied to the gastrocnemius for 60 min at 100 Hz, 200 µs with 2 to 3 times the sensory threshold (the minimal threshold in detecting electrical stimulation for subjects) after received physical therapy for 30 min. In the placebo-TENS group, electrodes were placed but no electrical stimulation was administered. For measuring spasticity, the resistance encountered during passive muscle stretching of ankle joint was assessed using the Modified Ashworth Scale, and the Hand held dynamometer was used to assess the resistive force caused by spasticity. Balance ability was measured using a force platform that measures postural sway generated by postural imbalance. The TENS group showed a significantly greater reduction in spasticity of the gastrocnemius, compared to the placebo-TENS group (p TENS resulted in greater balance ability improvements, especially during the eyes closed condition (p TENS provides an immediately effective means of reducing spasticity and of improving balance in chronic stroke patients. The present data may be useful to establish the standard parameters for TENS application in the clinical setting of stroke.

  17. Nerve growth factor stimulates the hydrolysis of glycosylphosphatidylinositol in PC-12 cells: A mechanism of protein kinase C regulation

    International Nuclear Information System (INIS)

    Chan, B.L.; Saltiel, A.R.; Chao, M.V.

    1989-01-01

    Treatment of PC-12 pheochromocytoma cells with nerve growth factor (NGF) results in the differentiation of these cells into a sympathetic neuron-like phenotype. Although the initial intracellular signals elicited by NGF remain unknown, some of the cellular effects of NGF are similar to those of other growth factors, such as insulin. The authors have investigated the involvement of a newly identified inositol-containing glycolipid in signal transduction for the actions of NGF. NGF stimulates the rapid generation of a species of diacylglycerol that is labeled with [ 3 H]myristate but not with [ 3 H]arachidonate. NGF stimulates [ 3 H]myristate- or [ 32 P]phosphate-labeled phosphatidic acid production over the same time course. Although NGF alone has no effect on the turnover of inositol phospholipids, it does stimulate the hydrolysis of glycosylphosphatidylinositol. The NGF-dependent cleavage of this lipid is accompanied by an increase in the accumulation of its polar head group, an inositol phosphate glycan, which is generated within 30-60 sec of NGF treatment. In an unresponsive PC-12 mutant cell line, neither the diacylglycerol nor inositol phosphate glycan response is detected. A possible role for the NGF-stimulated diacylglycerol is suggested by the inhibition of NGF-dependent c-fos induction by staurosporin, a potent inhibitor of protein kinase C. These results suggest that, like insulin, some of the cellular effects of NGF may be mediated by the phospholipase C-catalyzed hydrolysis of glycosylphosphatidylinositol

  18. A new technique of laparoscopic implantation of stimulation electrode to the pudendal nerve for treatment of refractory fecal incontinence and/or overactive bladder with urinary incontinence.

    Science.gov (United States)

    Possover, Marc

    2014-01-01

    To show a new technique of laparoscopic implantation of electrodes for stimulation of the pudendal nerve for treatment of fecal incontinence and/or overactive bladder with urinary incontinence. Step-by-step explanation of the technique using videos and pictures (educative video). Hyperactivity of the bladder with urinary incontinence, in particular the non-neurogenic form of the condition, but also fecal incontinence may affect millions of women worldwide without any comorbidities and in particular without any neurologic disorders or prolapsed organs. First-line conservative treatments do not always result in sufficient improvement of symptoms and are often associated with disabling adverse effects leading to treatment failure. Electrical stimulation of the pelvic nerves has emerged as an alternative and attractive treatment in refractory cases. A novel technique of implantation of an electrode to the pudendal nerve has been developed for treatment of fecal incontinence and of hyperactivity of the bladder with urinary incontinence. The laparoscopic approach is the only technique that enables placement of an electrode in direct contact with the endopelvic portion of the pudendal nerve within the protection of the pelvis. Laparoscopic transperitoneal implantation of a stimulation electrode to the endopelvic portion of the pudendal nerve. This technique of transperitoneal placement of an electrode to the endopelvic portion of the pudendal nerve is an effective, safe, and reproducible day procedure for treatment of intractable hyperactive bladder, urinary incontinence, fecal incontinence, and a combination of both forms of incontinence. Copyright © 2014 AAGL. Published by Elsevier Inc. All rights reserved.

  19. Modulation of Muscle Tone and Sympathovagal Balance in Cervical Dystonia Using Percutaneous Stimulation of the Auricular Vagus Nerve.

    Science.gov (United States)

    Kampusch, Stefan; Kaniusas, Eugenijus; Széles, Jozsef C

    2015-10-01

    Primary cervical dystonia is characterized by abnormal, involuntary, and sustained contractions of cervical muscles. Current ways of treatment focus on alleviating symptomatic muscle activity. Besides pharmacological treatment, in severe cases patients may receive neuromodulative intervention such as deep brain stimulation. However, these (highly invasive) methods have some major drawbacks. For the first time, percutaneous auricular vagus nerve stimulation (pVNS) was applied in a single case of primary cervical dystonia. Auricular vagus nerve stimulation was already shown to modulate the (autonomous) sympathovagal balance of the body and proved to be an effective treatment in acute and chronic pain, epilepsy, as well as major depression. pVNS effects on cervical dystonia may be hypothesized to rely upon: (i) the alteration of sensory input to the brain, which affects structures involved in the genesis of motoric and nonmotoric dystonic symptoms; and (ii) the alteration of the sympathovagal balance with a sustained impact on involuntary movement control, pain, quality of sleep, and general well-being. The presented data provide experimental evidence that pVNS may be a new alternative and minimally invasive treatment in primary cervical dystonia. One female patient (age 50 years) suffering from therapy refractory cervical dystonia was treated with pVNS over 20 months. Significant improvement in muscle pain, dystonic symptoms, and autonomic regulation as well as a subjective improvement in motility, sleep, and mood were achieved. A subjective improvement in pain recorded by visual analog scale ratings (0-10) was observed from 5.42 to 3.92 (medians). Muscle tone of the mainly affected left and right trapezius muscle in supine position was favorably reduced by about 96%. Significant reduction of muscle tone was also achieved in sitting and standing positions of the patient. Habituation to stimulation leading to reduced stimulation efficiency was observed and

  20. Electrode geometry and preferential stimulation of spinal nerve fibers having different orientations: a modeling study

    NARCIS (Netherlands)

    Holsheimer, J.; Struijk, Johannes J.; Struijk, J.J.

    1992-01-01

    In a computer modeling study of epidural spinal cord stimulation using a longitudinal array of electrode contacts, the effect of contact geometry and contact combination on the threshold voltages for stimulation of dorsal column (DC) fibers and dorsal root (DR) fibers was investigated. It was

  1. Specific spatio-temporal activities in the cerebral ganglion of Incilaria fruhstorferi in response to superior and inferior tentacle nerve stimulation.

    Science.gov (United States)

    Makinae, Hisanori; Makino, Yoshinari; Obara, Tsukasa; Yano, Masafumi

    2008-09-22

    In terrestrial gastropod mollusks (slugs and snails), olfaction is the dominant sensory modality guiding various kinds of behavior. Anatomical studies indicate that olfactory information is processed in the brain (the cerebral ganglion) in two lobes in particular: the procerebrum (PC) and the metacerebrum (MtC). This implies that olfactory functions emerge from simultaneous and cooperative processing in the PC and the MtC. However, no previous physiological study has investigated the activity in these two lobes simultaneously. In the present study, the activity evoked by electrical stimulation of the olfactory nerves, the superior and inferior tentacle nerves, was recorded optically from the whole cerebral ganglion of the terrestrial slug, Incilaria fruhstorferi. The results indicated that the evoked activity in the PC and the MtC showed two specific spatio-temporal patterns. First, when either set of nerves was stimulated, the activity of the medial neuropilar region of the MtC (the mMtC) always preceded the activity in the PC. Second, stimulation of the superior tentacle nerves activated the medial and lateral halves of the mMtC almost evenly, whereas stimulation of the inferior tentacle nerves activated the lateral half of the mMtC more strongly than the medial half. These results suggest that the activated region of the mMtC plays an important role in olfactory processing, especially with respect to the functional differences between the superior and inferior tentacles.

  2. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function.

    Science.gov (United States)

    Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew

    2015-11-15

    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. Copyright © 2015 the American Physiological Society.

  3. Does vagal nerve stimulation affect body composition and metabolism? Experimental study of a new potential technique in bariatric surgery.

    Science.gov (United States)

    Sobocki, Jacek; Fourtanier, Gilles; Estany, Joan; Otal, Phillipe

    2006-02-01

    It has been shown that vagal nerve stimulation (VNS) can affect body mass. The aim of this study was to evaluate effect of VNS on body mass, body composition, metabolic rate, and plasma leptin and IGF-I levels. Eight female pigs were included in the study. Under general anesthesia, a bipolar electrode was implanted on the anterior vagal nerve by laparoscopy. Group A was treated by VNS, and group B was the control. After 4 weeks, stimulation was discontinued in group A and started in group B. The following parameters were evaluated: body mass, body composition, metabolic rate, plasma leptin and IGF-1 levels and intramuscular fat content (IMF). VNS attenuated body weight gain (2.28 +/- 3.47 kg vs 14.04 +/- 6.75 kg; P = .0112, for stimulation and nonstimulation periods, respectively), backfat gain (0.04 +/- 0.26 mm vs 2.31 +/- 1.12 mm) and IMF gain (-3.76 +/- 6.06 mg/g MS vs 7.24 +/- 12.90 mg/g MS; P = .0281). VNS resulted in lower backfat depth/loin muscle area ratio (0.33 +/- 0.017 vs 0.38 +/- 0.35; P = .0476). Lower plasma IGF-I concentration was found after VNS (-3.67 +/- -11.55 ng/mL vs 9.86 +/- 10.74 ng/mL; P = .0312). No significant changes in other parameters were observed. VNS affects body weight mainly at the expense of body fat resources; however, metabolic rate is not affected.

  4. Influence of transcutaneous electrical nerve stimulation on spasticity, balance, and walking speed in stroke patients: A systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Shuqin Lin

    2017-08-01

    Full Text Available Objective: To evaluate the influence of transcutaneous electrical nerve stimulation in patients with stroke through a systematic review and meta-analysis. Methods: PubMed, Embase, Web of Science, EBSCO, and Cochrane Library databases were searched systematically. Randomized controlled trials assessing the effect of transcutaneous electrical nerve stimulation vs placebo transcutaneous electrical nerve stimulation on stroke were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcome was modified Ashworth scale (MAS. Meta-analysis was performed using the random-effect model. Results: Seven randomized controlled trials were included in the meta-analysis. Compared with placebo transcutaneous electrical nerve stimulation, transcutaneous electrical nerve stimulation supplementation significantly reduced MAS (standard mean difference (SMD = –0.71; 95% confidence interval (95% CI = –1.11 to –0.30; p = 0.0006, improved static balance with open eyes (SMD = –1.26; 95% CI = –1.83 to –0.69; p<0.0001 and closed eyes (SMD = –1.74; 95% CI = –2.36 to –1.12; p < 0.00001, and increased walking speed (SMD = 0.44; 95% CI = 0.05 to 0.84; p = 0.03, but did not improve results on the Timed Up and Go Test (SMD = –0.60; 95% CI=–1.22 to 0.03; p = 0.06. Conclusion: Transcutaneous electrical nerve stimulation is associated with significantly reduced spasticity, increased static balance and walking speed, but has no influence on dynamic balance.

  5. The role of voice therapy in the treatment of dyspnea and dysphonia in a patient with a vagal nerve stimulation device.

    Science.gov (United States)

    Gillespie, Amanda I; Helou, Leah B; Ingle, John W; Baldwin, Maria; Rosen, Clark A

    2014-01-01

    Vagal nerve stimulators (VNS) are implanted to treat medically refractory epilepsy and depression. The VNS stimulates the vagus nerve in the left neck. Laryngeal side effects are common and include dysphagia, dysphonia, and dyspnea. The current case study represents a patient with severe dyspnea and dysphonia, persisting even with VNS deactivation. The case demonstrates the use of voice and respiratory retraining therapy for the treatment of VNS-induced dysphonia and dyspnea. It also highlights the importance of a multidisciplinary approach, including laryngology, neurology, and speech-language pathology, in the treatment of these challenging patients. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  6. Differential effects of subcutaneous electrical stimulation (SQS) and transcutaneous electrical nerve stimulation (TENS) in rodent models of chronic neuropathic or inflammatory pain.

    Science.gov (United States)

    Vera-Portocarrero, Louis P; Cordero, Toni; Billstrom, Tina; Swearingen, Kim; Wacnik, Paul W; Johanek, Lisa M

    2013-01-01

    Electrical stimulation has been used for many years for the treatment of pain. Present-day research demonstrates that stimulation targets and parameters impact the induction of specific pain-modulating mechanisms. New targets are increasingly being investigated clinically, but the scientific rationale for a particular target is often not well established. This present study compares the behavioral effects of targeting peripheral axons by electrode placement in the subcutaneous space vs. electrode placement on the surface of the skin in a rodent model. Rodent models of inflammatory and neuropathic pain were used to investigate subcutaneous electrical stimulation (SQS) vs. transcutaneous electrical nerve stimulation (TENS). Electrical parameters and relative location of the leads were held constant under each condition. SQS had cumulative antihypersensitivity effects in both inflammatory and neuropathic pain rodent models, with significant inhibition of mechanical hypersensitivity observed on days 3-4 of treatment. In contrast, reduction of thermal hyperalgesia in the inflammatory model was observed during the first four days of treatment with SQS, and reduction of cold allodynia in the neuropathic pain model was seen only on the first day with SQS. TENS was effective in the inflammation model, and in agreement with previous studies, tolerance developed to the antihypersensitivity effects of TENS. With the exception of a reversal of cold hypersensitivity on day 1 of testing, TENS did not reveal significant analgesic effects in the neuropathic pain rodent model. The results presented show that TENS and SQS have different effects that could point to unique biologic mechanisms underlying the analgesic effect of each therapy. Furthermore, this study is the first to demonstrate in an animal model that SQS attenuates neuropathic and inflammatory-induced pain behaviors. © 2013 Medtronic, Inc.

  7. Electrical stimulation of the aortic depressor nerve in conscious rats overcomes the attenuation of the baroreflex in chronic heart failure.

    Science.gov (United States)

    Pinto, Tomás O C Teixeira; Lataro, Renata M; Castania, Jaci A; Durand, Marina T; Silva, Carlos A A; Patel, Kaushik P; Fazan, Rubens; Salgado, Helio C

    2016-04-01

    Chronic heart failure (CHF) is characterized by autonomic dysfunction combined with baroreflex attenuation. The hypotensive and bradycardic responses produced by electrical stimulation of the aortic depressor nerve (ADN) were examined in conscious CHF and control male Wistar rats (12-13 wk old). Furthermore, the role of parasympathetic and sympathetic nervous system in mediating the cardiovascular responses to baroreflex activation was evaluated by selective β1-adrenergic and muscarinic receptor antagonists. CHF was induced by myocardial infarction. After 6 wk, the subjects were implanted with electrodes for ADN stimulation. Twenty-four hours later, electrical stimulation of the ADN was applied for 20 s using five different frequencies (5, 15, 30, 60, and 90 Hz), while the arterial pressure was recorded by a catheter implanted into the femoral artery. Electrical stimulation of the ADN elicited progressive and similar hypotensive and bradycardic responses in control (n = 12) and CHF (n = 11) rats, while the hypotensive response was not affected by methylatropine. Nevertheless, the reflex bradycardia was attenuated by methylatropine in control, but not in CHF rats. Atenolol did not affect the hypotensive or bradycardic response in either group. The ADN function was examined under anesthesia through electroneurographic recordings. The arterial pressure-ADN activity relationship was attenuated in CHF rats. In conclusion, despite the attenuation of baroreceptor function in CHF rats, the electrical stimulation of the ADN elicited a stimulus-dependent hypotension and bradycardia of similar magnitude as observed in control rats. Therefore, electrical activation of the aortic baroreflex overcomes both the attenuation of parasympathetic function and the sympathetic overdrive. Copyright © 2016 the American Physiological Society.

  8. Selective Stimulation of the Hypoglossal Nerve with a Multi-Contact Cuff Electrode

    National Research Council Canada - National Science Library

    Yoo, P

    2001-01-01

    ...) was investigated for the potential application of treating obstructive sleep apnea (OSA) The main trunk of the XII was stimulated with monophasic cathodic pulses, while the elicited electroneurographic (ENG...

  9. Atrial granular cells of the snail Achatina fulica release proteins into hemolymph after stimulation of the heart nerve.

    Science.gov (United States)

    Shabelnikov, Sergej V; Bystrova, Olga A; Ivanov, Vadim A; Margulis, Boris A; Martynova, Marina

    2009-10-01

    The atrium of the gastropod mollusc Achatina fulica receives rich innervation and contains numerous granular cells (GCs). We studied the atrial innervation and discovered that axon profiles typical in appearance of peptidergic neurons form close unspecialized membrane contacts with GCs. Then, we investigated, at both morphological and biochemical levels, the effect of electrical stimulation of the heart nerve on GCs of Achatina heart perfused in situ. The ultrastructural study demonstrated changes in granule morphology consistent with secretion. These events included alteration of granule content, intracellular granule fusion and formation of complex degranulation channels, within which the granule matrix solubilized. It was shown that electrical stimulation resulted in a significant increase of the total protein concentration in the perfusate. Furthermore, SDS-PAGE analysis of the perfusate revealed three new proteins with molecular masses of 16, 22, and 57 kDa. Affinity-purified polyclonal antibodies against the 16 kDa protein were obtained; the whole-mount immunofluorescence technique revealed the presence of this protein in the granules of atrial GCs. In GCs of the stimulated atrium, a progressive loss of their granular content was observed. The results suggest that the central nervous system can modulate the secretory activity of the atrial GCs through non-synaptic pathways.

  10. Chronic morphine treatment enhances sciatic nerve stimulation-induced immediate early gene expression in the rat dorsal horn.

    Science.gov (United States)

    Bojovic, Ognjen; Bramham, Clive R; Tjølsen, Arne

    2015-01-01

    Synaptic plasticity is a property of neurons that can be induced by conditioning electrical stimulation (CS) of afferent fibers in the spinal cord. This is a widely studied property of spinal cord and hippocampal neurons. CS has been shown to trigger enhanced expression of immediate early gene proteins (IEGPs), with peak increases observed 2 hour post stimulation. Chronic morphine treatment has been shown to promoteinduce opioid-induced hyperalgesia, and also to increase CS-induced central sensitization in the dorsal horn. As IEGP expression may contribute to development of chronic pain states, we aimed to determine whether chronic morphine treatment affects the expression of IEGPs following sciatic nerve CS. Changes in expression of the IEGPs Arc, c-Fos or Zif268 were determined in cells of the lumbar dorsal horn of the spinal cord. Chronic Morphine pretreatment over 7 days led to a significant increase in the number of IEGP positive cells observed at both 2 h and 6 h after CS. The same pattern of immunoreactivity was obtained for all IEGPs, with peak increases occurring at 2 h post CS. In contrast, morphine treatment alone in sham operated animals had no effect on IEGP expression. We conclude that chronic morphine treatment enhances stimulus-induced expression of IEGPs in the lumbar dorsal horn. These data support the notion that morphine alters gene expression responses linked to nociceptive stimulation and plasticity.

  11. Multi-scale simulations predict responses to non-invasive nerve root stimulation

    Science.gov (United States)

    Laakso, Ilkka; Matsumoto, Hideyuki; Hirata, Akimasa; Terao, Yasuo; Hanajima, Ritsuko; Ugawa, Yoshikazu

    2014-10-01

    Objective. Established biophysical neurone models have achieved limited success in reproducing electrophysiological responses to non-invasive stimulation of the human nervous system. This is related to our insufficient knowledge of the induced electric currents inside the human body. Despite the numerous research and clinical applications of non-invasive stimulation, it is still unclear which internal sites are actually affected by it. Approach. We performed multi-scale computer simulations that, by making use of advances in computing power and numerical algorithms, combine a microscopic model of electrical excitation of neurones with a macroscopic electromagnetic model of the realistic whole-body anatomy. Main results. The simulations yield responses consistent with those experimentally recorded following magnetic and electrical motor root stimulation in human subjects, and reproduce the observed amplitudes and latencies for a wide variety of stimulation parameters. Significance. Our findings demonstrate that modern computational techniques can produce detailed predictions about which and where neurones are activated, leading to improved understanding of the physics and basic mechanisms of non-invasive stimulation and enabling potential new applications that make use of improved targeting of stimulation.

  12. Influence of transcutaneous electrical nerve stimulation conditions on disynaptic reciprocal Ia inhibition and presynaptic inhibition in healthy adults.

    Science.gov (United States)

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Ushiroyama, Kosuke; Naoi, Yuki; Motoya, Ikuo; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2017-03-01

    This study investigated the influence of stimulus conditions of transcutaneous electrical nerve stimulation (TENS) on disynaptic reciprocal Ia inhibition (RI) and presynaptic inhibition (D1 inhibition) in healthy adults. Eight healthy participants received TENS (stimulus frequencies of 50, 100, and 200 Hz) over the deep peroneal nerve and tibialis anterior (TA) muscle in the resting condition for 30 min. At pre- and post-intervention, the RI from the TA to the soleus (SOL) and D1 inhibition of the SOL alpha motor neuron were assessed by evoked electromyography. The results showed that RI was not changed by TENS at any stimulus frequency condition. Conversely, D1 inhibition was significantly changed by TENS regardless of the stimulus frequency. The present results and previous studies pertaining to RI suggest that the resting condition might strongly influence the lack of pre- vs. post-intervention change in the RI. Regarding the D1 inhibition, the present results suggest that the effect of TENS might be caused by post-tetanic potentiation. The knowledge gained from the present study might contribute to a better understanding of fundamental studies of TENS in healthy adults and its clinical application for stroke survivors.

  13. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis.

    Science.gov (United States)

    Schiefer, Matthew; Tan, Daniel; Sidek, Steven M; Tyler, Dustin J

    2016-02-01

    Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject's sense of embodiment with a survey and his self-confidence. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.

  14. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis

    Science.gov (United States)

    Schiefer, Matthew; Tan, Daniel; Sidek, Steven M.; Tyler, Dustin J.

    2016-02-01

    Objective. Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Approach. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject’s sense of embodiment with a survey and his self-confidence. Main results. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Significance. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.

  15. Modulation of spinal inhibitory reflexes depends on the frequency of transcutaneous electrical nerve stimulation in spastic stroke survivors.

    Science.gov (United States)

    Koyama, Soichiro; Tanabe, Shigeo; Takeda, Kazuya; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2016-03-01

    Neurophysiological studies in healthy subjects suggest that increased spinal inhibitory reflexes from the tibialis anterior (TA) muscle to the soleus (SOL) muscle might contribute to decreased spasticity. While 50 Hz is an effective frequency for transcutaneous electrical nerve stimulation (TENS) in healthy subjects, in stroke survivors, the effects of TENS on spinal reflex circuits and its appropriate frequency are not well known. We examined the effects of different frequencies of TENS on spinal inhibitory reflexes from the TA to SOL muscle in stroke survivors. Twenty chronic stroke survivors with ankle plantar flexor spasticity received 50-, 100-, or 200-Hz TENS over the deep peroneal nerve (DPN) of the affected lower limb for 30 min. Before and immediately after TENS, reciprocal Ia inhibition (RI) and presynaptic inhibition of the SOL alpha motor neuron (D1 inhibition) were assessed by adjusting the unconditioned H-reflex amplitude. Furthermore, during TENS, the time courses of spinal excitability and spinal inhibitory reflexes were assessed via the H-reflex, RI, and D1 inhibition. None of the TENS protocols affected mean RI, whereas D1 inhibition improved significantly following 200-Hz TENS. In a time-series comparison during TENS, repeated stimulation did not produce significant changes in the H-reflex, RI, or D1 inhibition regardless of frequency. These results suggest that the frequency-dependent effect of TENS on spinal reflexes only becomes apparent when RI and D1 inhibition are measured by adjusting the amplitude of the unconditioned H-reflex. However, 200-Hz TENS led to plasticity of synaptic transmission from the antagonist to spastic muscles in stroke survivors.

  16. Ir-Ni oxide as a promising material for nerve and brain stimulating electrodes

    Directory of Open Access Journals (Sweden)

    Joan Stilling

    2014-09-01

    Full Text Available Tremendous potential for successful medical device development lies in both electrical stimulation therapies and neuronal prosthetic devices, which can be utilized in an extensive number of neurological disorders. These technologies rely on the successful electrical stimulation of biological tissue (i.e. neurons through the use of electrodes. However, this technology faces the principal problem of poor stimulus selectivity due to the currently available electrode’s large size relative to its targeted population of neurons. Irreversible damage to both the stimulated tissue and electrode are limiting factors in miniaturization of this technology, as charge density increases with decreasing electrode size. In an attempt to find an equilibrium between these two opposing constraints (electrode size and charge density, the objective of this work was to develop a novel iridium-nickel oxide (Ir0.2-Ni0.8-oxide coating that could intrinsically offer high charge storage capacity. Thermal decomposition was used to fabricate titanium oxide, iridium oxide, nickel oxide, and bimetallic iridium-nickel oxide coatings on titanium electrode substrates. The Ir0.2-Ni0.8-oxide coating yielded the highest intrinsic (material property and extrinsic (material property + surface area charge storage capacity (CSC among the investigated materials, exceeding the performance of the current state-of-the-art neural stimulating electrode, Ir-oxide. This indicates that the Ir0.2-Ni0.8-oxide material is a promising alternative to currently used Ir-oxide, Pt, Au and carbon-based stimulating electrodes.

  17. Asynchronous recruitment of low-threshold motor units during repetitive, low-current stimulation of the human tibial nerve

    Directory of Open Access Journals (Sweden)

    Jesse eDean

    2014-12-01

    Full Text Available Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10-100 Hz for 30 s, below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (<10% MVC voluntary contractions. Higher frequencies recruited more units (n=3/25 at 10 Hz; n=25/25 at 100 Hz at shorter latencies (19.4±9.4 s at 10 Hz; 4.1±4.0 s at 100 Hz than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz was lower than during 30 Hz (8.6 Hz and 40 Hz (8.4 Hz stimulation. Discharge was largely asynchronous from the stimulus pulses with time-locked discharge occurring at an H-reflex latency with only a 24% probability. Motor units discharged after the stimulation ended in 89% of trials, although at a lower rate (5.8 Hz than during the stimulation (7.9 Hz. This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in physiological recruitment which adheres to Henneman's size principle and results in relatively low discharge rates and asynchronous firing.

  18. Subject-Controlled, On-demand, Dorsal Genital Nerve Stimulation to Treat Urgency Urinary Incontinence; a Pilot.

    Science.gov (United States)

    van Breda, Hendrikje M K; Farag, Fawzy F; Martens, Frank M J; Heesakkers, John P F A; Rijkhoff, Nico J M

    2016-01-01

    To evaluate the effect of subject-controlled, on-demand, dorsal genital nerve (DGN) stimulation on non-neurogenic urgency urinary incontinence (UUI) in a domestic setting. Non-neurogenic patients >18 years with overactive bladder symptoms and UUI were included. Exclusion criteria were mainly stress urinary incontinence. Patients underwent 1 week of subject-controlled, on-demand, DGN stimulation, delivered by a percutaneously placed electrode near the DGN connected to an external stimulator (pulse-rate 20 Hz, pulse-width 300 μs). Patients activated the stimulator when feeling the urge to void and stimulated for 30 s. The amplitude was set at the highest tolerable level. A bladder diary including a severity score of the UUI episodes/void (scores: 0 = none, 1 = drops, 2 = dashes, 3 = soaks) and a padtest was kept 3 days prior to, during, and 3 days after the test period. The subjective improvement was also scored. Seven patients (4 males/3 females) were enrolled, the mean age was 55 years (range 23-73). Six completed the test week. In the remaining patient the electrode migrated and was removed. 5/6 finalized the complete bladder diary, 1/6 recorded only the heavy incontinence episodes (score = 3). 4/6 completed the padtest. In all patients who finalized the bladder diary the number of UUI episodes decreased, in 3/5 with ≥60%. The heavy incontinence episodes (score = 3) were resolved in 2/6 patients, and improved ≥80% in the other 4. The severity score of the UUI episodes/void was improved with ≥ 60% in 3/5 patients. The mean subjective improvement was 73%. This feasibility study indicates that subject-controlled, on-demand DGN stimulation using a percutaneously placed electrode is possible over a longer time period, in a home setting, with a positive effect on non-neurogenic overactive bladder symptoms with UUI. Although the placement is an easy procedure, it is difficult to fixate the electrode to keep it in the correct position. Improvements in hardware

  19. Evaluation of effect of transcutaneous electrical nerve stimulation on salivary flow rate in radiation induced xerostomia patients: a pilot study.

    Science.gov (United States)

    Lakshman, Anusha Rangare; Babu, G Subhas; Rao, Suresh

    2015-01-01

    Xerostomia is a common sequel in patients undergoing irradiation of malignant tumors of the head and neck. Palliative treatments of xerostomia like topical agents such as ice-chips, saliva substitutes, systemic sialogogues like pilocarpine and cevimeline work well for some patients. Electrostimulation was studied in the past and showed moderate promise but never became part of the mainstream therapy for better management of xerostomia patients. The aim of the following study is to evaluate the effectiveness of a transcutaneous electrical nerve stimulation (TENS) unit in stimulating the whole salivary flow rate in radiation induced xerostomia patients. A total of 40 subjects were included in the study. The study group consisted of 30 individuals and was divided into Group S1 (n = 20), which was further subdivided into Group S1A (n = 10) subjects complaining of dry mouth who were undergoing head and neck radiotherapy with TENS stimulation during the commencement of radiotherapy, on the 3 rd , 6 th week and after a month of completion of radiotherapy and Group S1B (n = 10) with TENS stimulation daily during the full course of radiotherapy and Group S2 (n = 10) subjects complaining of dry mouth who had undergone head and neck radiotherapy that ended 1 month prior to their entry into the study. The control group (n = 10) consisted of healthy individuals not complaining of dry mouth and who have not undergone head and neck radiotherapy. Whole saliva was collected without stimulation for 10 min and after electrostimulation with TENS unit for additional 10 min in a graduated test tube. The results were statistically analyzed using Mann-Whitney U-test and Kruskal-Wallis's test. The data analysis revealed that control and S1B group showed increased salivary flow rate after stimulation by TENS therapy compared with the unstimulated salivary flow, whereas in S1A and S2 group it was found to be statistically non-significant. The present study gave us an insight about the

  20. Ultrasound guidance for brachial plexus block decreases the incidence of complete hemi-diaphragmatic paresis or vascular punctures and improves success rate of brachial plexus nerve block compared with peripheral nerve stimulator in adults.

    Science.gov (United States)

    Yuan, Jia-Min; Yang, Xiao-Hu; Fu, Shu-Kun; Yuan, Chao-Qun; Chen, Kai; Li, Jia-Yi; Li, Quan

    2012-05-01

    The use of traditional techniques (such as landmark techniques, paresthesia and peripheral nerve stimulator) for upper-limb anesthesia has often been restricted to the expert or enthusiast, which was blind. Recently, ultrasound (US) has been applied to differ blood vessel, pleura and nerve, thus may reduce the risk of complications while have a high rate of success. The aim of this study was to determine if the use of ultrasound guidance (vs. peripheral nerve stimulator, (PNS)) decreases risk of vascular puncture, risk of hemi-diaphragmatic paresis and risk of Horner syndrome and improves the success rate of nerve block. A search strategy was developed to identify randomized control trials (RCTs) reporting on complications of US and PNS guidance for upper-extremity peripheral nerve blocks (brachial plexus) in adults available through PubMed databases, the Cochrane Central Register of Controlled Trials, Embase databases, SinoMed databases and Wanfang data (date up to 2011-12-20). Two independent reviewers appraised eligible studies and extracted data. Risk ratios (OR) were calculated for each outcome and presented with 95% confidence intervals (CI) with the software of Review Manager 5.1.0 System (Cochrane Library). Sixteen trials involving 1321 adults met our criteria were included for analysis. Blocks performed using US guidance were more likely to be successful (risk ratio (RR) for block success 0.36, 95%CI 0.23 - 0.56, P block performance (RR 0.13, 95%CI 0.06 - 0.27, P complete hemi-diaphragmatic paresis (RR 0.09, 95%CI 0.03 - 0.52, P = 0.0001). US decreases risks of complete hemi-diaphragmatic paresis or vascular puncture and improves success rate of brachial plexus nerve block compared with techniques that utilize PNS for nerve localization. Larger studies are needed to determine whether or not the use of US can decrease risk of neurologic complications.

  1. c-Fos induction in the brainstem following electrical stimulation of the trigeminal ganglion of chronically mandibular nerve-transected rats.

    Science.gov (United States)

    Abe, T; Shimoda, T; Urade, M; Hasegawa, M; Sugiyo, S; Takemura, M

    2013-12-01

    Neuronal excitability in the trigeminal sensory nuclei (TSN) changes after nerve transection. We examined the effects of chronic transection of the trigeminal nerve on the c-Fos-immunoreactivity in the TSN induced 2 h after 10 min of electrical stimulation of the trigeminal ganglion (TG) at C-fiber activating condition (1.0 mA, 5 ms, 5 Hz) in urethane-anesthetized rats. In the non-transected control rats, stimulation of the TG induced c-Fos-immunoreactive cells (c-Fos-IR cells) mostly in superficial layers (VcI/II) of the nucleus caudalis (Vc) in its full extent along the dorsomedial-ventrolateral axis, but modestly in the rostral TSN above the obex, the principal, oral, and interpolar nuclei. Three days, 1, 2, or 3 weeks after transection of the inferior alveolar (IAN), infraorbital, or masseteric nerves, the stimulation of the TG induced c-Fos-IR cells in the central terminal fields of the transected nerve in the rostral TSN and magnocellular zone of the Vc. However, the number of c-Fos-IR cells in the VcI/II decreased inside the central terminal fields of the transected nerve and increased outside the fields. These results indicate that transection of the trigeminal nerve increases the excitability of TSN neurons that receive inputs from injured mechanoreceptors and uninjured nociceptors, but decreases it from injured nociceptors. The altered c-Fos responses may imply mechanisms of neuropathic pain seen after nerve injury.

  2. Simultaneous perineal ultrasound and vaginal pressure measurement prove the action of electrical pudendal nerve stimulation in treating female stress incontinence.

    Science.gov (United States)

    Wang, Siyou; Zhang, Shujing

    2012-11-01

    Study Type - Diagnostic (case series) Level of Evidence 4. What's known on the subject? and What does the study add? Pelvic floor muscle training (PFMT) and transvaginal electrical stimulation (TES) are two commonly used forms of conservative treatment for stress urinary incontinence (SUI). PFMT may build up the structural support of the pelvis, but many SUI patients are unable to perform PFMT effectively and its primary disadvantage is lack of long-term patient compliance. TES is a passive treatment that produces PFM contraction and patient compliance with it is good; however, its effect is not as good as that of PFMT when performed correctly. Electrical pudendal nerve stimulation (EPNS) combines the advantages of PFMT and TES and incorporates the technique of deep insertion of long needles. In this study, simultaneous perineal ultrasound and vaginal pressure measurement prove that EPNS can contract the PFM and simulate PFMT. It is shown that EPNS is an alternative therapy for female SUI patients who fail PFMT and TES and the therapy can also be used for severe SUI. • To prove that electrical pudendal nerve stimulation (EPNS) can contract the pelvic floor muscles (PFM) and simulate pelvic floor muscle training (PFMT). • To show that EPNS is an alternative therapy for female stress urinary incontinence (SUI) that does not respond effectively to PFMT and transvaginal electrical stimulation (TES). • Thirty-five female patients with SUI who did not respond effectively to PFMT and TES (group I) were enrolled and 60 other female patients with SUI were allocated to group II (30 patients) and group III (30 patients). • Long needles were deeply inserted into four sacral points and electrified to stimulate the pudendal nerves. Group I and group II were treated by a doctor skilled in performing EPNS and group III, by a doctor unskilled in performing EPNS. • When EPNS was performed in group I, perineal ultrasonographic PFM movements, vaginal pressure (VP) and PFM

  3. Outcome of transcutaneous electrical nerve stimulation in chronic pain: short-term results of a double-blind, randomised, placebo-controlled trial.

    NARCIS (Netherlands)

    Oosterhof, J.; Boo, T.M. de; Oostendorp, R.A.B.; Wilder-Smith, O.H.G.; Crul, B.J.P.

    2006-01-01

    The aim of this study was to test the efficacy of shortterm transcutaneous electrical nerve stimulation (TENS) treatment in chronic pain with respect to pain intensity and patients' satisfaction with treatment results. We therefore performed a randomised controlled trial comparing TENS and sham

  4. Different mechanisms for the short-term effects of real versus sham transcutaneous electrical nerve stimulation (TENS) in patients with chronic pain: a pilot study.

    NARCIS (Netherlands)

    Oosterhof, J.; Wilder-Smith, O.H.G.; Oostendorp, R.A.B.; Crul, B.J.P.

    2012-01-01

    Transcutaneous electrical nerve stimulation (TENS) has existed since the early 1970s. However, randomized placebo controlled studies show inconclusive results in the treatment of chronic pain. These results could be explained by assuming that TENS elicits a placebo response. However, in animal

  5. Vagus nerve stimulation in children with therapy-resistant epilepsy diagnosed as Lennox-Gastaut syndrome: clinical results, neuropsychological effects, and cost-effectiveness.

    NARCIS (Netherlands)

    Majoie, H.J.; Berfelo, M.W.; Aldenkamp, A.P.; Evers, S.M.M.A.; Kessels, A.G.H.; Renier, W.O.

    2001-01-01

    We studied the clinical efficacy and tolerability, neuropsychological effects, and cost-effectiveness (direct medical costs, direct nonmedical costs, and indirect costs) of vagus nerve stimulation (VNS) in children with Lennox-like syndrome (n = 16). The situation 6 months before implantation of the

  6. Effects of transcutaneous electrical nerve stimulation (TENS) on cognition, behavior, and the rest-activity rhythm in children with attention deficit hyperactivity disorder, combined type

    NARCIS (Netherlands)

    Jonsdottir, S; Bouma, A; Sergeant, JA; Scherder, EJA; Bouma, J.M.

    2004-01-01

    Objective. The aim of this study was to examine the effects of transcutaneous electrical nerve stimulation (TENS) on cognition, behavior, and the rest-activity rhythm in children with attention deficit hyperactivity disorder, combined type (ADHD-CT). Methods. Twenty-two children diagnosed with

  7. Effects of transcutaneous electrical nerve stimulation on cognition, behavior, and rest-activity rhythm in children with Attention Deficit Hyperactivity Disorder, combined type

    NARCIS (Netherlands)

    Jonsdottir, S.; Bouma, A.; Sergeant, J.A.; Scherder, E.J.A.

    2004-01-01

    Objective. The aim of this study was to examine the effects of transcutaneous electrical nerve stimulation (TENS) on cognition, behavior, and the rest-activity rhythm in children with attention deficit hyperactivity disorder, combined type (ADHD-CT). Methods. Twenty-two children diagnosed with

  8. Online signal processing of internal anal sphincter activity during pelvic autonomic nerve stimulation: a new method to improve the reliability of intra-operative neuromonitoring signals.

    Science.gov (United States)

    Kauff, D W; Koch, K P; Somerlik, K H; Heimann, A; Hoffmann, K P; Lang, H; Kneist, W

    2011-12-01

    Intra-operative neuromonitoring is increasingly applied in several surgical disciplines and has been introduced to facilitate pelvic autonomic nerve preservation. Nevertheless, it has been considered a questionable tool for the minimization of risk, as the results are variable and might be misleading. The aim of the present experimental study was to develop an intra-operative neuromonitoring system with improved reliability for monitoring pelvic autonomic nerve function. Fifteen pigs underwent low anterior rectal resection with pelvic autonomic nerve preservation. Intra-operative neuromonitoring was performed under autonomic nerve stimulation with observation of electromyographic signals of the internal anal sphincter and bladder manometry. As the internal anal sphincter frequency spectrum during stimulation was found to be mainly in the range of 5-20 Hz, intra-operative neuromonitoring signals were postoperatively processed by implementation of matching band pass filters. In 10 preliminary experiments, signal processing was performed offline in the postoperative analysis. Of 163 stimulations intra-operatively assessed by the surgeon as positive responses, 135 (83%) were confirmed after signal processing. In the following five consecutive experiments intra-operative online signal processing was realized and demonstrated reliable intra-operative neuromonitoring signals of internal anal sphincter activity with significant increase during pelvic autonomic nerve stimulation [0.5 μV (interquartile range = 0.3-0.7) vs 4.8 μV (interquartile range = 2.5-7.5); P signal processing of internal anal sphincter activity aids reliable identification of pelvic autonomic nerves with potential for improvement of intra-operative neuromonitoring in pelvic surgery. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.

  9. Sensory handedness is not reflected in cortical responses after basic nerve stimulation: a MEG study

    NARCIS (Netherlands)

    Chen, A.C.N.; Theuvenet, P.J.; de Munck, J.C.; Peters, M.J.; van Ree, J.M.; Lopes da Silva, F.L.

    2012-01-01

    Motor dominance is well established, but sensory dominance is much less clear. We therefore studied the cortical evoked magnetic fields using magnetoencephalography (MEG) in a group of 20 healthy right handed subjects in order to examine whether standard electrical stimulation of the median and

  10. Sensory Handedness is not Reflected in Cortical Responses After Basic Nerve Stimulation: A MEG Study

    NARCIS (Netherlands)

    Chen, A.C.N.; Theuvenet, P.J.; de Munck, J.C.; Peters, M.J.L.; van Ree, J.M.; da Silva, F.L.L.

    2012-01-01

    Motor dominance is well established, but sensory dominance is much less clear. We therefore studied the cortical evoked magnetic fields using magnetoencephalography (MEG) in a group of 20 healthy right handed subjects in order to examine whether standard electrical stimulation of the median and

  11. Respiratory Responses to Stimulation of Branchial Vagus Nerve Ganglia of a Teleost Fish

    NARCIS (Netherlands)

    Ballintijn, C.M.; Luiten, P.G.M.

    1983-01-01

    The effects of electrical stimulation of epibranchial vagus ganglia upon respiration of the carp were investigated. Single shocks evoked fast twitch responses in a number of respiratory muscles with latencies around 18 msec to the beginning and 30-35 msec to the peak of activity. Shocks given during

  12. Primary study on median nerve stimulation therapy in improving the level of consciousness of patients in coma caused by head traumas

    International Nuclear Information System (INIS)

    Xu Ping; Wang Zhong; Cui Gang; Wu Yiwei; Zhang Bin; He Huai

    2004-01-01

    Objective: To investigate the therapeutic effect of median nerve stimulation in improving the level of consciousness of patients in coma caused by severe head traumas and the possible mechanism of its hastening awakening from coma. Methods: 30 unconscious patients with severe brain traumas were randomly assigned to the treated group (n=15) and the control group (n=15). The patients in the control group were treated routinely. Besides routine therapy the patients in the treated group were treated with median nerve electrical stimulation. As the treated group were treated with initial stimulation, SPECT brain perfusion imaging was performed before and after 30 minutes' median nerve electrical stimulation under the same condition. The changes of the regional cerebral blood flow (rCBF) of lesion spot of brain were compared and analysed with visual method and semi-quantitative method in BFCK% mathematical model. A week after stimulation authors assess the therapeutic effect in the two groups with GCS scores. Results: The patients in the treated group's rCBF of the lesion spot increased significantly after stimulation. A week later the patients in the treated group had improved by average of 4.8 on the GCS in contrast to 2.0 on the GCS in the control group which showed that the GCS scores of the two groups had significant difference (P<0.05). Conclusion: The median nerve electrical stimulation can improve the level of consciousness of patients in coma caused by severe head traumas. The increase of rCBF of lesion spot of brain can be one of mechanisms of its hastening awakening from coma

  13. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study

    Directory of Open Access Journals (Sweden)

    Hitoshi eShitara

    2013-09-01

    Full Text Available Neuroimaging combined with transcranial magnetic stimulation (TMS to primary motor cortex (M1 is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or electrically stimulated the right median nerve (MNS in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG. We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10-20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.

  14. Implementation fidelity of self-administered transcutaneous electrical nerve stimulation (TENS) in patients with chronic back pain: an observational study.

    Science.gov (United States)

    Pallett, Edward J; Rentowl, Patricia; Johnson, Mark I; Watson, Paul J

    2014-03-01

    The efficacy of transcutaneous electrical nerve stimulation (TENS) for pain relief has not been reliably established. Inconclusive findings could be due to inadequate TENS delivery and inappropriate outcome assessment. Electronic monitoring devices were used to determine patient compliance with a TENS intervention and outcome assessment protocol, to record pain scores before, during, and after TENS, and measure electrical output settings. Patients with chronic back pain consented to use TENS daily for 2 weeks and to report pain scores before, during, and after 1-hour treatments. A ≥ 30% reduction in pain scores was used to classify participants as TENS responders. Electronic monitoring devices "TLOG" and "TSCORE" recorded time and duration of TENS use, electrical settings, and pain scores. Forty-two patients consented to participate. One of 35 (3%) patients adhered completely to the TENS use and pain score reporting protocol. Fourteen of 33 (42%) were TENS responders according to electronic pain score data. Analgesia onset occurred within 30 to 60 minutes for 13/14 (93%) responders. It was not possible to correlate TENS amplitude, frequency, or pulse width measurements with therapeutic response. Findings from TENS research studies depend on the timing of outcome assessment; pain should be recorded during stimulation. TENS device sophistication might be an issue and parameter restriction should be considered. Careful protocol design is required to improve adherence and monitoring is necessary to evaluate the validity of findings. This observational study provides objective evidence to support concerns about poor implementation fidelity in TENS research.

  15. Evaluation of transcutaneous electrical posterior tibial nerve stimulation for the treatment of fecal and urinary leaks in children: preliminary results.

    Science.gov (United States)

    Lecompte, Jean-François; Hery, Geraldine; Guys, Jean-Michel; Louis-Borrione, Claude

    2015-04-01

    To examine the effectiveness of posterior tibial nerve stimulation (PTNS) for the treatment of fecal and urinary incontinence in children with malformations of the bowel or neurological pathologies. Treatment of fecal and urinary leaks, in cases of congenital malformations remains a challenge. Recent studies in adults have shown the effectiveness of PTNS. Eight children: 4 with anorectal malformations, 3 with neurological causes (1 medullary lipoma, 1 Arnold Chiari malformation, 1 sacrococcygeal teratoma) and 1 with Hirschsprung's disease presenting with serious anal incontinence, despite extensive bowel management during at least 2 years, were treated with PTNS. Six children had associated urinary leaks. Jorge-Wexner score for defecation and Schurch score for urine were used before treatment and after the second and sixth months of stimulation. After six months, five patients had no more fecal leakage, two patients were improved and one did not respond. Five out of the 6 patients with urinary leaks were continent at 6 months. PTNS is a noninvasive technique and painless modality which seems to be effective for the treatment of fecal and urinary leaks in children even with congenital digestive pathologies or neurological malformations. These results will be confirmed in a prospective study. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Transcutaneous stimulation of the posterior tibial nerve for treating refractory urge incontinence of idiopathic and neurogenic origin.

    Science.gov (United States)

    Valles-Antuña, C; Pérez-Haro, M L; González-Ruiz de L, C; Quintás-Blanco, A; Tamargo-Diaz, E M; García-Rodríguez, J; San Martín-Blanco, A; Fernandez-Gomez, J M

    2017-09-01

    To assess the efficacy of treatment with transcutaneous posterior tibial nerve stimulation (TPTNS) in patients with urge urinary incontinence, of neurogenic or nonneurogenic origin, refractory to first-line therapeutic options. We included 65 patients with urge urinary incontinence refractory to medical treatment. A case history review, a urodynamic study and a somatosensory evoked potentials (SEP) study were conducted before the TPTNS, studying the functional urological condition by means of a voiding diary. The treatment consisted of 10 weekly sessions of TPTNS lasting 30minutes. Some 57.7% of the patients showed abnormal tibial SEPs, and 42% showed abnormal pudendal SEPs. A statistically significant symptomatic improvement was observed in all clinical parameters after treatment with TPTNS, and 66% of the patients showed an overall improvement, regardless of sex, the presence of underlying neurological disorders, detrusor hyperactivity in the urodynamic study or SEP disorders. There were no adverse effects during the treatment. TPTNS is an effective and well tolerated treatment in patients with urge incontinence refractory to first-line therapies and should be offered early in the treatment strategy. New studies are needed to identify the optimal parameters of stimulation, the most effective treatment protocols and long-term efficacy, as well as its applicability to patients with a neurogenic substrate. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. The influence of stellate ganglion transcutaneous electrical nerve stimulation on signal quality of pulse oximetry in prehospital trauma care.

    Science.gov (United States)

    Barker, Renate; Lang, Thomas; Hager, Helmut; Steinlechner, Barbara; Hoerauf, Klaus; Zimpfer, Michael; Kober, Alexander

    2007-05-01

    Accurate monitoring of the peripheral arterial oxygen saturation has become an important tool in the prehospital emergency medicine. This monitoring requires an adequate plethysmographic pulsation. Signal quality is diminished by cold ambient temperature due to vasoconstriction. Blockade of the stellate ganglion can improve peripheral vascular perfusion and can be achieved by direct injection or transcutaneous electrical nerve stimulation (TENS) stimulation. We evaluated whether TENS on the stellate ganglion would reduce vasoconstriction and thereby improve signal detection quality of peripheral pulse oximetry. In our study, 53 patients with minor trauma who required transport to the hospital were enrolled. We recorded vital signs, including core and skin temperature before and after transport to the hospital. Pulse oximetry sensors were attached to the patient's second finger on both hands. TENS of the stellate ganglion was started on one side after the beginning of the transport. Pulse oximeter alerts, due to poor signal detection, were recorded for each side separately. On the hand treated with TENS we detected a significant reduction of alerts compared to the other side (mean alerts TENS 3.1 [1-15] versus control side 8.8 [1-28] P signal quality of pulse oximeters in the prehospital setting.

  18. UK-414,495, a selective inhibitor of neutral endopeptidase, potentiates pelvic nerve-stimulated increases in female genital blood flow in the anaesthetized rabbit

    Science.gov (United States)

    Wayman, CP; Baxter, D; Turner, L; Van Der Graaf, PH; Naylor, AM

    2010-01-01

    Background and purpose: Female sexual arousal consists of a number of physiological responses resulting from increased genital blood. Vasoactive intestinal peptide (VIP), neuropeptide Y and to a lesser extent nitric oxide are neurotransmitters found in the vasculature of the genitalia. Neutral endopeptidase (NEP) modulates the activity of neuropeptides including VIP. The aim of this study was to investigate the control of genital blood flow by VIP and endogenous neuropeptides using a selective NEP inhibitor [UK-414,495, ((R)-2-({1-[(5-ethyl-1,3,4-thiadiazol-2-yl) carbamoyl]cyclopentyl}methyl) valeric acid)]. Experimental approach: Vaginal and clitoral blood flow (VBF and CBF) were monitored using laser Doppler in terminally anaesthetized New Zealand rabbits. Increases in VBF and CBF were induced by either electrical stimulation of the pelvic nerve or by i.v. infusion of VIP. Key results: Stimulation of the pelvic nerve increased VBF and CBF, compared with basal flow. Increases were mimicked by infusion of exogenous VIP. UK-414,495 dose-dependently potentiated pelvic nerve-stimulated increases in VBF (EC50= 37 ± 9 nM; 3.6 × IC50 rabbit NEP). Nerve-stimulated increases in VBF and CBF were both enhanced after UK-414,495. UK-414,495 increased the amplitude and duration of VIP-induced increases in VBF. UK-414,495 had no effect on basal VBF or cardiovascular parameters. Conclusions and implications: Inhibition of NEP potentiates pelvic nerve-stimulated increases in genital blood flow. This suggests that the endogenous neurotransmitter mediating genital blood flow is a substrate for NEP (most likely VIP). NEP inhibitors may restore sexual arousal in women adversely affected by female sexual arousal disorder. This article is commented on by Angulo, pp. 48–50 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00693.x PMID:20412068

  19. Neuron-Derived ADAM10 Production Stimulates Peripheral Nerve Injury-Induced Neuropathic Pain by Cleavage of E-Cadherin in Satellite Glial Cells.

    Science.gov (United States)

    Li, Jian; Ouyang, Qing; Chen, Cheng-Wen; Chen, Qian-Bo; Li, Xiang-Nan; Xiang, Zheng-Hua; Yuan, Hong-Bin

    2017-09-01

    Increasing evidence suggests the potential involvement of metalloproteinase family proteins in the pathogenesis of neuropathic pain, although the underlying mechanisms remain elusive. Using the spinal nerve ligation model, we investigated whether ADAM10 proteins participate in pain regulation. By implementing invitro methods, we produced a purified culture of satellite glial cells to study the underlying mechanisms of ADAM10 in regulating neuropathic pain. Results showed that the ADAM10 protein was expressed in calcitonin gene-related peptide (CGRP)-containing neurons of the dorsal root ganglia, and expression was upregulated following spinal nerve ligation surgery invivo. Intrathecal administration of GI254023X, an ADAM10 selective inhibitor, to the rats one to three days after spinal nerve ligation surgery attenuated the spinal nerve ligation-induced mechanical allodynia and thermal hyperalgesia. Intrathecal injection of ADAM10 recombinant protein simulated pain behavior in normal rats to a similar extent as those treated by spinal nerve ligation surgery. These results raised a question about the relative contribution of ADAM10 in pain regulation. Further results showed that ADAM10 might act by cleaving E-cadherin, which is mainly expressed in satellite glial cells. GI254023X reversed spinal nerve ligation-induced downregulation of E-cadherin and activation of cyclooxygenase 2 after spinal nerve ligation. β-catenin, which creates a complex with E-cadherin in the membranes of satellite glial cells, was also downregulated by spinal nerve ligation surgery in satellite glial cells. Finally, knockdown expression of β-catenin by lentiviral infection in purified satellite glial cells increased expression of inducible nitric oxide synthase and cyclooxygenase 2. Our findings indicate that neuron-derived ADAM10 production stimulates peripheral nerve injury-induced neuropathic pain by cleaving E-cadherin in satellite glial cells. © 2017 American Academy of Pain Medicine

  20. The use of transcutaneous electrical nerve stimulation (tens in the treatment of the spasticity - a review

    Directory of Open Access Journals (Sweden)

    Dahyan Wagner da Silva Silveira

    2008-01-01

    Full Text Available This study it has as objective to argue the job of TENS in the spasticity, observing the main parameters, form of application and the mechanism for which TENS it acts in the spasticity. One is about a bibliographical revision based in the literature specialized selected scientific articles through search in the data base of scielo and of bireme, from the sources Medline and Lilacs. The studies found on the job of TENS in the spasticity, had pointed mainly that this chain reduces the spasticity significantly, in lower degrees. The stimulation electrical parameters had disclosed that TENS it (about 100Hz of raised frequency provides one better effect in the reduction of the spasticity. The types of TENS more used had been the conventional and the soon-intense one, however some studies had not presented the used duration of pulse, limit the determination of one better modality of TENS. Few studies had explained the mechanism of performance of the current related one. The ones that had made it, had pointed the release of opioid endogenous (Dynorphins for the central nervous system as main mechanism of performance, however this contrasts with the neurophysiologic bases of the high-frequency stimulation, that demonstrated better resulted in the joined studies. Still it is necessary more studies on the job of this modality of stimulation electrical in the spasticity, since important parameters as duration of pulse, time of application, numbers of attendance and performance mechanism remains without scientific evidence.

  1. Optic Nerve Stimulation System with Adaptive Wireless Powering and Data Telemetry

    Directory of Open Access Journals (Sweden)

    Xing Li

    2017-12-01

    Full Text Available To treat retinal degenerative diseases, a transcorneal electrical stimulation-based system is proposed, which consists of an eye implant and an external component. The eye implant is wirelessly powered and controlled by the external component to generate the required bi-polar current pattern for transcorneal stimulation with an amplitude range of 5 μA to 320 μA, a frequency range of 10 Hz to 160 Hz and a duty ratio range of 2.5% to 20%. Power delivery control includes power boosting in preparation for stimulation, and normal power regulation that adapts to both coupling and load variations. Only one pair of coils is used for both the power link and the bi-directional data link. Except for the secondary coil, the eye implant is fully integrated on chip and is fabricated using UMC (United Microelectronics Corporation, Hsinchu, Taiwan 0.13 μm complementary metal-oxide-semiconductor (CMOS process with a size of 1.5 mm × 1.5 mm. The secondary coil is fabricated on a printed circuit board (PCB with a diameter of only 4.4 mm. After coating with biocompatible silicone, the whole implant has dimensions of 6 mm in diameter with a thickness of less than 1 mm. The whole device can be put onto the sclera and beneath the eye’s conjunctiva. System functionality and electrical performance are demonstrated with measurement results.

  2. Sacral nerve stimulation for urinary urge incontinence, urgency-frequency, urinary retention, and fecal incontinence: an evidence-based analysis.

    Science.gov (United States)

    2005-01-01

    The aim of this review was to assess the effectiveness, safety, and cost of sacral nerve stimulation (SNS) to treat urinary urge incontinence, urgency-frequency, urinary retention, and fecal incontinence. CONDITION AND TARGET POPULATION Urinary urge incontinence, urgency-frequency, urinary retention, and fecal incontinence are prevalent, yet rarely discussed, conditions. They are rarely discussed because patients may be uncomfortable disclosing their symptoms to a health professional or may be unaware that there are treatment options for these conditions. Briefly, urge incontinence is an involuntary loss of urine upon a sudden urge. Urgency-frequency is an uncontrollable urge to void, which results in frequent, small-volume voids. People with urgency-frequency may or may not also experience chronic pelvic pain. Urinary retention refers to the inability to void despite having the urge to void. It can be caused by a hypocontractile detrusor (weak or no bladder muscle contraction) or obstruction due to urethral overactivity. Fecal incontinence is a loss of voluntary bowel control. The prevalence of urge incontinence, urgency-frequency, and urinary retention in the general population is 3.3% to 8.2%, and the prevalence of fecal incontinence is 1.4% to 1.9%. About three-quarters of these people will be successfully treated by behaviour and/or drug therapy. For those who do not respond to these therapies, the options for treatment are management with diapers or pads, or surgery. The surgical procedures are generally quite invasive, permanent, and are associated with complications. Pads and/or diapers are used throughout the course of treatment as different therapies are tried. Patients who respond successfully to treatment may still require pads or diapers, but to a lesser extent. SACRAL NERVE STIMULATION Sacral nerve stimulation is a procedure where a small device attached to an electrode is implanted in the abdomen or buttock to stimulate the sacral nerves in an

  3. Sensory stimulation for lowering intraocular pressure, improving blood flow to the optic nerve and neuroprotection in primary open-angle glaucoma.

    Science.gov (United States)

    Rom, Edith

    2013-12-01

    Primary open-angle glaucoma is a group of optic neuropathies that can lead to irreversible blindness. Sensory stimulation in the form of acupuncture or ear acupressure may contribute to protecting patients from blindness when used as a complementary method to orthodox treatment in the form of drops, laser or surgery. The objective of this article is to provide a narrative overview of the available literature up to July 2012. It summarises reported evidence on the potential beneficial effects of sensory stimulation for glaucoma. Sensory stimulation appears to significantly enhance the pressure-lowering effect of orthodox treatments. Studies suggest that it may also improve blood flow to the eye and optic nerve head. Furthermore, it may play a role in neuroprotection through regulating nerve growth factor and brain-derived neurotrophic factor and their receptors, thereby encouraging the survival pathway in contrast to the pathway to apoptosis. Blood flow and neuroprotection are areas that are not directly influenced by orthodox treatment modalities. Numerous different treatment protocols were used to investigate the effect of sensory stimulation on intraocular pressure, blood flow or neuroprotection of the retina and optic nerve in the animal model and human pilot studies. Objective outcomes were reported to have been evaluated with Goldmann tonometry, Doppler ultrasound techniques and electrophysiology (pattern electroretinography, visually evoked potentials), and supported with histological studies in the animal model. Taken together, reported evidence from these studies strongly suggests that sensory stimulation is worthy of further research.

  4. Responses of muscle spindles in feline dorsal neck muscles to electrical stimulation of the cervical sympathetic nerve.

    Science.gov (United States)

    Hellström, F; Roatta, S; Thunberg, J; Passatore, M; Djupsjöbacka, M

    2005-09-01

    Previous studies performed in jaw muscles of rabbits and rats have demonstrated that sympathetic outflow may affect the activity of muscle spindle afferents (MSAs). The resulting impairment of MSA information has been suggested to be involved in the genesis and spread of chronic muscle pain. The present study was designed to investigate sympathetic influences on muscle spindles in feline trapezius and splenius muscles (TrSp), as these muscles are commonly affected by chronic pain in humans. Experiments were carried out in cats anesthetized with alpha-chloralose. The effect of electrical stimulation (10 Hz for 90 s or 3 Hz for 5 min) of the peripheral stump of the cervical sympathetic nerve (CSN) was investigated on the discharge of TrSp MSAs (units classified as Ia-like and II-like) and on their responses to sinusoidal stretching of these muscles. In some of the experiments, the local microcirculation of the muscles was monitored by laser Doppler flowmetry. In total, 46 MSAs were recorded. Stimulation of the CSN at 10 Hz powerfully depressed the mean discharge rate of the majority of the tested MSAs (73%) and also affected the sensitivity of MSAs to sinusoidal changes of muscle length, which were evaluated in terms of amplitude and phase of the sinusoidal fitting of unitary activity. The amplitude was significantly reduced in Ia-like units and variably affected in II-like units, while in general the phase was affected little and not changed significantly in either group. The discharge of a smaller percentage of tested units was also modulated by 3-Hz CSN stimulation. Blockade of the neuromuscular junctions by pancuronium did not induce any changes in MSA responses to CSN stimulation, showing that these responses were not secondary to changes in extrafusal or fusimotor activity. Further data showed that the sympathetically induced modulation of MSA discharge was not secondary to the concomitant reduction of muscle blood flow induced by the stimulation. Hence

  5. Efficacy of addition of transcutaneous electrical nerve stimulation to standardized physical therapy in subacute spinal spasticity: a randomized controlled trial.

    Science.gov (United States)

    Oo, Win Min

    2014-11-01

    To study the immediate and short-term efficacy of adding transcutaneous electrical nerve stimulation (TENS) to standardized physical therapy on subacute spasticity within 6 months of spinal cord injury. Randomized controlled trial for 3 weeks. A university hospital. Subjects (N=16) with clinically determined spasticity were randomly assigned to either the experimental group (n=8) or the control group (n=8). Sixty-minute sessions of TENS over the bilateral common peroneal nerves before 30 minutes of physical therapy for the experimental group and 30 minutes of physical therapy alone for the control group. All patients in both groups had access to standardized rehabilitation care. The composite spasticity score, which included 3 subscores (ankle jerk, muscle tone, and ankle clonus scores), was used as the primary end point to assess plantar flexor spasticity. These subscores were designated as secondary end points. Serial evaluations were made at baseline before study entry and immediately after the first and last sessions in both groups. On analysis for immediate effects, there was a significant reduction only in the composite spasticity score (mean difference, 1.75; 99% confidence interval [CI], 0.47-3.03; P=.002) in the experimental group, but no significant reduction was observed in all outcome variables in the control group. A significant difference in the composite spasticity score (1.63; 99% CI, 0.14-3.11; P=.006) was observed between the 2 groups. After 15 sessions of treatment, a significant reduction was determined in the composite spasticity score (2.75; 99% CI, 1.31-4.19; Pspasticity score (2.13; 99% CI, 0.59-3.66; P=.001) and the muscle tone score (1.50; 99% CI, 0.15-2.85; P=.005) after 15 intervention sessions. Addition of TENS to standardized physical therapy had synergistically antispastic action, providing more effective reduction of clinical spasticity. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All

  6. The potential role of vagus-nerve stimulation in the treatment of HIV-associated depression: a review of literature

    Directory of Open Access Journals (Sweden)

    Nicholson WC

    2017-06-01

    Full Text Available William C Nicholson, Mirjam-Colette Kempf, Linda Moneyham, David E Vance School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA Abstract: Depression is the most common comorbidity and neuropsychiatric complication in HIV. Estimates suggest that the prevalence rate for depression among HIV-infected individuals is three times that of the general population. The association between HIV and clinical depression is complex; however, chronic activation of inflammatory mechanisms, which disrupt central nervous system (CNS function, may contribute to this association. Disruptions in CNS function can result in cognitive disorders, social withdrawal, fatigue, apathy, psychomotor impairment, and sleep disturbances, which are common manifestations in depression and HIV alike. Interestingly, the parasympathetic system-associated vagus nerve (VN has primary homeostatic properties that restore CNS function following a stress or inflammatory response. Unfortunately, about 30% of adults with HIV are resistant to standard psychotherapeutic and psychopharmacological treatments for depression, thus suggesting the need for alternative treatment approaches. VN stimulation (VNS and its benefits as a treatment for depression have been well documented, but remain unexplored in the HIV population. Historically, VNS has been delivered using a surgically implanted device; however, transcutanous VNS (tVNS with nonsurgical auricular technology is now available. Although it currently lacks Food and Drug Administration approval in the US, evidence suggests several advantages of tVNS, including a reduced side-effect profile when compared to standard treatments and comparable results to implantable VNS in treating depression. Therefore, tVNS could offer an alternative for managing depression in HIV via regulating CNS function; moreover, tVNS may be useful for treatment of other symptoms common in HIV. From this, implications for nursing research and practice

  7. Effect of superficial radial nerve stimulation on the activity of nigro-striatal dopaminergic neurons in the cat: role of cutaneous sensory input

    International Nuclear Information System (INIS)

    Nieoullon, A.; Dusticier, N.

    1982-01-01

    The release of 3 H-dopamine (DA) continuously synthesized from 3 H-thyrosine was measured in the caudate nucleus (CN) and in the substantia nigra (SN) in both sides of the brain during electrical stimulation of the superficial radial nerve in cats lightly anaesthetized with halothane. Use of appropriate electrophysiologically controlled stimulation led to selective activation of low threshold afferent fibers whereas high stimulation activated all cutaneous afferents. Results showed that low threshold fiber activation induced a decreased dopaminergic activity in CN contralateral to nerve stimulation and a concomitant increase in dopaminergic activity on the ipsilateral side. Stimulation of group I and threshold stimulation of group II afferent fibers induced changes in the release of 3 H-DA mainly on the contralateral CN and SN and in the ipsilateral CN. High stimulation was followed by a general increase of the neurotransmitter release in the four structures. This shows that the nigro-striatal dopaminergic neurons are mainly-if not exclusively-controlled by cutaneous sensory inputs. This control, non-specific when high threshold cutaneous fibers are also activated. Such activations could contribute to restablish sufficient release of DA when the dopaminergic function is impaired as in Parkinson's disease. (Author)

  8. THE USE OF TRANSCUTANEOUS ELECTRICAL NERVE STIMULATION (TENS IN THE TREATMENT OF THE SPASTICITY - A REVIEW

    Directory of Open Access Journals (Sweden)

    Dahyan Wagner da Silva Silveira

    2008-01-01

    Full Text Available This study it has as objective to argue the job of TENS in the spasticity, observing the main parameters, form of application and the mechanism for which TENS it acts in the spasticity. One is about a bibliographical revision based in the literature specialized selected scientific articles through search in the data base of scielo and of bireme, from the sources Medline and Lilacs. The studies found on the job of TENS in the spasticity, had pointed mainly that this chain reduces the spasticity significantly, in lower degrees. The stimulation electrical parameters had disclosed that TENS it (about A utilização da estimulação elétrica nervosa transcutânea (tens... 100Hz of raised frequency provides one better effect in the reduction of the spasticity. The types of TENS more used had been the conventional and the soon-intense one, however some studies had not presented the used duration of pulse, limit the determination of one better modality of TENS. Few studies had explained the mechanism of performance of the current related one. The ones that had made it, had pointed the release of opioid endogenous (Dynorphins for the central nervous system as main mechanism of performance, however this contrasts with the neurophysiologic bases of the high-frequency stimulation, that demonstrated better resulted in the joined studies. Still it is necessary more studies on the job of this modality of stimulation electrical in the spasticity, since important parameters as duration of pulse, time of application, numbers of attendance and performance mechanism remains without scientific evidence.

  9. An implantable, designed-for-human-use peripheral nerve stimulation and recording system for advanced prosthetics.

    Science.gov (United States)

    Lachapelle, John R; Bjune, Caroline K; Kindle, Alexander L; Czarnecki, Andrew; Burns, John R; Grainger, Julianne E; Segura, Carlos A; Nugent, Brian D; Sriram, Tirunelveli S; Parks, Philip D; Keefer, Edward; Cheng, Jonathan

    2016-08-01

    Complex suture prostheses that deliver sensory and position feedback require a more sophisticated integration with the human user. Here a micro-size active implantable system that provides many-degree-of-freedom neural feedback in both sensory stimulation and motor control is shown, as one potential human-use solution in DARPA's HAPTIX program. Various electrical and mechanical challenge and solutions in meeting both sensory /motor performance as well as ISO 14708 FDA-acceptable human use in an aspirin-size active implementation are discussed.

  10. No Influence of Transcutaneous Electrical Nerve Stimulation on Exercise-Induced Pain and 5-Km Cycling Time-Trial Performance

    Science.gov (United States)

    Hibbert, Andrew W.; Billaut, François; Varley, Matthew C.; Polman, Remco C. J.

    2017-01-01

    Introduction: Afferent information from exercising muscle contributes to the sensation of exercise-induced muscle pain. Transcutaneous electrical nerve stimulation (TENS) delivers low–voltage electrical currents to the skin, inhibiting nociceptive afferent information. The use of TENS in reducing perceptions of exercise-induced pain has not yet been fully explored. This study aimed to investigate the effect of TENS on exercise-induced muscle pain, pacing strategy, and performance during a 5-km cycling time trial (TT). Methods: On three separate occasions, in a single-blind, randomized, and cross-over design, 13 recreationally active participants underwent a 30-min TENS protocol, before performing a 5-km cycling TT. TENS was applied to the quadriceps prior to exercise under the following conditions; control (CONT), placebo with sham TENS application (PLAC), and an experimental condition with TENS application (TENS). Quadriceps fatigue was assessed with magnetic femoral nerve stimulation assessing changes in potentiated quadriceps twitch force at baseline, pre and post exercise. Subjective scores of exertion, affect and pain were taken every 1-km. Results: During TTs, application of TENS did not influence pain perceptions (P = 0.68, ηp2 = 0.03). There was no significant change in mean power (P = 0.16, ηp2 = 0.16) or TT duration (P = 0.17, ηp2 = 0.14), although effect sizes