WorldWideScience

Sample records for neoclassical transport processes

  1. Large orbit neoclassical transport

    International Nuclear Information System (INIS)

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1997-01-01

    Neoclassical transport in the presence of large ion orbits is investigated. The study is motivated by the recent experimental results that ion thermal transport levels in enhanced confinement tokamak plasmas fall below the open-quotes irreducible minimum levelclose quotes predicted by standard neoclassical theory. This apparent contradiction is resolved in the present analysis by relaxing the basic neoclassical assumption that the ions orbital excursions are much smaller than the local toroidal minor radius and the equilibrium scale lengths of the system. Analytical and simulation results are in agreement with trends from experiments. The development of a general formalism for neoclassical transport theory with finite orbit width is also discussed. copyright 1997 American Institute of Physics

  2. Entropy production and onsager symmetry in neoclassical transport processes of toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H.; Horton, W.

    1995-07-01

    Entropy production and Onsager symmetry in neoclassical transport processes of magnetically confined plasmas are studied in detail for general toroidal systems including nonaxisymmetric configurations. We find that the flux surface average of the entropy production defined from the linearized collision operator and the gyroangle-averaged distribution function coincides with the sum of the inner products of the thermodynamic forces and the conjugate fluxes consisting of the Pfirsch-Schlueter, banana-plateau, nonaxisymmetric parts of the neoclassical radial fluxes and the parallel current. We prove from the self-adjointness of the linearized collision operator that the Onsager symmetry is robustly valid for the neoclassical transport equations in the cases of general toroidal plasmas consisting of electrons and multi-species ions with arbitrary collision frequencies. It is shown that the Onsager symmetry holds whether or not the ambipolarity condition is used to reduce the number of the conjugate pairs of the transport fluxes and the thermodynamic forces. We also derive the full transport coefficients for the banana-plateau and nonaxisymmetric parts, separately, and investigate their symmetry properties. The nonaxisymmetric transport equations are obtained for arbitrary collision frequencies in the Pfirsch-Schlueter and plateau regimes, and it is directly confirmed that the total banana-plateau and nonaxisymmetric transport equations satisfy the Onsager symmetry. (author).

  3. Neo-classical impurity transport

    International Nuclear Information System (INIS)

    Stringer, T.E.

    The neo-classical theory for impurity transport in a toroidal plasma is outlined, and the results discussed. A general account is given of the impurity behaviour and its dependence on collisionality. The underlying physics is described with special attention to the role of the poloidal rotation

  4. Neoclassical transport optimization of LHD

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, S.; Yamada, H.; Watanabe, K.Y. [National Inst. for Fusion Science, Toki, Gifu (Japan); Wakasa, A. [Hokkaido Univ., Graduate School of Engineering, Sapporo, Hokkaido (Japan); Maassberg, H.; Beidler, C.D. [Teilinstitut Greifswald, Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany)

    2002-06-01

    Neoclassical transport is studied for LHD configurations in which the magnetic axis has been shifted radially by determining the mono-energetic transport coefficient and the effective helical ripple. With respect to the transport in the long mean free path collisionality region - the so called 1/{nu} transport -, the optimum configuration is found when the magnetic axis has a major radius of 3.53m, which is 0.22m inward shifted from the standard'' configuration of LHD. In the optimized case, the effective helical ripple is very small, remaining below 2% inside 4/5 of the plasma radius. This indicates that a strong inward shift of the magnetic axis in the LHD can diminish the neoclassical transport to a level typical of so-called advanced stellarators''. (author)

  5. Study of neoclassical transport in LHD plasmas by applying the DCOM/NNW neoclassical transport database

    International Nuclear Information System (INIS)

    Wakasa, Arimitsu; Oikawa, Shun-ichi; Murakami, Sadayoshi

    2008-01-01

    In helical systems, neoclassical transport is one of the important issues in addition to anomalous transport, because of a strong temperature dependency of heat conductivity and an important role in the radial electric field determination. Therefore, the development of a reliable tool for the neoclassical transport analysis is necessary for the transport analysis in Large Helical Device (LHD). We have developed a neoclassical transport database for LHD plasmas, DCOM/NNW, where mono-energetic diffusion coefficients are evaluated by the Monte Carlo method, and the diffusion coefficient database is constructed by a neural network technique. The input parameters of the database are the collision frequency, radial electric field, minor radius, and configuration parameters (R axis , beta value, etc). In this paper, database construction including the plasma beta is investigated. A relatively large Shafranov shift occurs in the finite beta LHD plasma, and the magnetic field configuration becomes complex leading to rapid increase in the number of the Fourier modes in Boozer coordinates. DCOM/NNW can evaluate neoclassical transport accurately even in such a configuration with a large number of Fourier modes. The developed DCOM/NNW database is applied to a finite-beta LHD plasma, and the plasma parameter dependences of neoclassical transport coefficients and the ambipolar radial electric field are investigated. (author)

  6. Neoclassical theory of transport processes in toroidal magnetic confinement systems, with emphasis on non-axisymmetric configurations

    International Nuclear Information System (INIS)

    Kovrizhnykh, L.M.

    1984-01-01

    The paper constitutes a review of the neoclassical theory of transport processes in the different types of toroidal magnetic configuration now being used to study the possibility of producing a controlled thermonuclear reaction. Owing to the abundance of the material that has accumulated in recent years and the large number of parameters involved in the problem, it has not been possible to present all the mathematical calculations in detail while confining the results to a few definitive expressions. The general approach to a solution of the problem and its key aspects have been discussed as fully as possible, and a number of definitive results are presented. In the review, a history of the subject and an account of its present status are given, the problem itself is formulated, the basic equations are discussed and analytical solution methods are described. Definitive expressions are given for cross-field particle and energy fluxes, the bootstrap current and conductivity, all of which are required to solve the particle and heat balance equations in magnetic confinement devices. The results are presented in a relatively simple form which is convenient for analysis of the experimental data and are accompanied by tables containing numerical values for the universal coefficients in the definitive expressions. The review is aimed at both theoreticians and experimenters working in high-temperature plasma physics and controlled thermonuclear fusion. (author)

  7. Calculations of neoclassical impurity transport in stellarators

    Science.gov (United States)

    Mollén, Albert; Smith, Håkan M.; Langenberg, Andreas; Turkin, Yuriy; Beidler, Craig D.; Helander, Per; Landreman, Matt; Newton, Sarah L.; García-Regaña, José M.; Nunami, Masanori

    2017-10-01

    The new stellarator Wendelstein 7-X has finished the first operational campaign and is restarting operation in the summer 2017. To demonstrate that the stellarator concept is a viable candidate for a fusion reactor and to allow for long pulse lengths of 30 min, i.e. ``quasi-stationary'' operation, it will be important to avoid central impurity accumulation typically governed by the radial neoclassical transport. The SFINCS code has been developed to calculate neoclassical quantities such as the radial collisional transport and the ambipolar radial electric field in 3D magnetic configurations. SFINCS is a cutting-edge numerical tool which combines several important features: the ability to model an arbitrary number of kinetic plasma species, the full linearized Fokker-Planck collision operator for all species, and the ability to calculate and account for the variation of the electrostatic potential on flux surfaces. In the present work we use SFINCS to study neoclassical impurity transport in stellarators. We explore how flux-surface potential variations affect the radial particle transport, and how the radial electric field is modified by non-trace impurities and flux-surface potential variations.

  8. Rotation and neoclassical ripple transport in ITER

    Science.gov (United States)

    Paul, E. J.; Landreman, M.; Poli, F. M.; Spong, D. A.; Smith, H. M.; Dorland, W.

    2017-11-01

    Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria in the presence of toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the variational moments equilibrium code (VMEC). Neoclassical transport quantities in the presence of these error fields are calculated using the stellarator Fokker-Planck iterative neoclassical conservative solver (SFINCS). These calculations fully account for E r , flux surface shaping, multiple species, magnitude of ripple, and collisionality rather than applying approximate analytic NTV formulae. As NTV is a complicated nonlinear function of E r , we study its behavior over a plausible range of E r . We estimate the toroidal flow, and hence E r , using a semi-analytic turbulent intrinsic rotation model and NUBEAM calculations of neutral beam torque. The NTV from the \\vert{n}\\vert = 18 ripple dominates that from lower n perturbations of the TBMs. With the inclusion of FIs, the magnitude of NTV torque is reduced by about 75% near the edge. We present comparisons of several models of tangential magnetic drifts, finding appreciable differences only for superbanana-plateau transport at small E r . We find the scaling of calculated NTV torque with ripple magnitude to indicate that ripple-trapping may be a significant mechanism for NTV in ITER. The computed NTV torque without ferritic components is comparable in magnitude to the NBI and intrinsic turbulent torques and will likely damp rotation, but the NTV torque is significantly reduced by the planned ferritic inserts.

  9. Neoclassical transport of impurtities in tokamak plasmas

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Sigmar, D.J.

    1981-05-01

    Tokamak plasmas are inherently comprised of multiple ion species. This is due to wall-bred impurities and, in future reactors, will result from fusion-born alpha particles. Relatively small concentrations of highly charged non-hydrogenic impurities can strongly influence plasma transport properties whenever n/sub I/e/sub I/ 2 /n/sub H/e 2 greater than or equal to (m/sub e//m/sub H/)/sup 1/2/. The determination of the complete neoclassical Onsager matrix for a toroidally confined multispecies plasma, which provides the linear relation between the surface averaged radial fluxes and the thermodynamic forces (i.e., gradients of density and temperature, and the parallel electric field), is reviewed. A closed set of one-dimensional moment equations is presented for the time evolution of thermodynamic and magnetic field quantities which results from collisional transport of the plasma and two dimensional motion of the magnetic flux surface geometry. The effects of neutral beam injection on the equilibrium and transport properties of a toroidal plasma are consistently included

  10. Revisited neoclassical transport theory for steep, collisional plasma edge profiles

    International Nuclear Information System (INIS)

    Rogister, A.L.

    1994-01-01

    Published neoclassical results are misleading as concerns the plasma edge for they do not adequately take the peculiar local conditions into account, in particular the fact that the density and temperature variation length-scales are quite small. Coupled novel neoclassical equations obtain, not only for the evolution of the density and temperatures, but also for the radial electric field and the evolution of the parallel ion momentum: gyro-stresses and inertia indeed upset the otherwise de facto ambipolarity of particle transport and a radial electric field necessarily builds up. The increased nonlinear character of these revisited neoclassical equations widens the realm of possible plasma behaviors. (author)

  11. THE LARGE ASPECT RATIO LIMIT OF NEOCLASSICAL TRANSPORT THEORY

    Energy Technology Data Exchange (ETDEWEB)

    WONG,SK; CHAN,VS

    2002-11-01

    OAK B202 THE LARGE ASPECT RATIO LIMIT OF NEOCLASSICAL TRANSPORT THEORY. This article presents a comprehensive description of neoclassical transport theory in the banana regime for large aspect ratio flux surfaces of arbitrary shapes. The method of matched asymptotic expansions is used to obtain analytical solutions for plasma distribution functions and to compute transport coefficients. The method provides justification for retaining only the part of the Fokker-Planck operator that involves the second derivative with respect to the cosine of the pitch angle for the trapped and barely circulating particles. It leads to a simple equation for the freely circulating particles with boundary conditions that embody a discontinuity separating particles moving in opposite directions. Corrections to the transport coefficients are obtained by generalizing an existing boundary layer analysis. The system of moment and field equations is consistently taken in the cylinder limit, which facilitates discussion of the treatment of dynamical constraints. it is shown that the nonlocal nature of Ohm's law in neoclassical theory renders the mathematical problem of plasma transport with changing flux surfaces nonstandard.

  12. Magnetic surfaces and neoclassical transport in stellarators

    International Nuclear Information System (INIS)

    Ng, K.C.

    1987-06-01

    This paper studies the structure of a stellarator field and the confinement of a high temperature plasma in toroidal geometry. A field line tracing program is developed to explore the structure of magnetic fields on a fine scale so as to explain anomalous electron transport. The model magnetic field chosen has a simple analytic representation which is easy to compute, so that the field lines can be integrated to a high accuracy. In a typical case most of the magnetic surfaces are well behaved on the scale of the gyroradius of the electron, rho/sub e/, even when the magnetic field has no 2d symmetry. Island chains or stochastic regions are formed in the vicinity of magnetic surfaces with rational rotational transform iota = n/m. It is shown that the island with w decays exponentially with m. Results suggest that the anomalous electron transport observed in experiments may be due to the presence of an ambipolar electrostatic potential phi. This hypothesis is proven by computing the guiding center orbits of the electrons and estimating island widths of the drift surfaces that are swept out. It is shown that with a small electric potential depending on the toroidal and poloidal angles, the drift surface island width w is an order of magnitude larger than that of the magnetic surfaces and decays exponentially at a slower rate

  13. Moment approach to neoclassical flows, currents and transport in auxiliary heated tokamaks

    International Nuclear Information System (INIS)

    Kim, Yil Bong.

    1988-02-01

    The moment approach is utilized to derive the full complement of neoclassical transport processes in auxiliary heated tokamaks. The effects of auxiliary heating [neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH)] considered arise from the collisional interaction between the background plasma species and the fast-ion-tail species. From a known fast ion distribution function we evaluate the parallel (to the magnetic field) momentum and heat flow inputs to the background plasma. Then, through the momentum and heat flow balance equations, we can determine the induced parallel flows (and current) and radial transpot fluxes in ''equilibrium'' (on the time scale much longer than the collisional relaxation time, i.e., t >> 1ν/sub ii/). In addition to the fast-ion-induced current, the total neoclassical current includes the boostap current, which is driven by the pressure and temperature gradients, the Pfirsch-Schlueter current which is required for charge neutrality, and the neoclassical (including trapped particle effects) Spitzer current due to the parallel electric field. The radial transport fluxes also include off-diagonal compnents in the transport matrix which correspond to the Ware (neoclassical) pinch due to the inductive applied electric field an the fast-ion-induced radial fluxes, in addition to the usual pressure- and temperature-gradient-driven fluxes (particle diffusion and heat conduction). Once the tranport coefficient are completely determined, the radial fluxes and the heat fluxes can be substituted into the density and energy evolution equations to provide a complete description of ''equilibrium'' (δδt << ν/sub ii/) neoclassical transport processes in a plasma. 47 refs., 14 figs

  14. Large-aspect-ratio limit of neoclassical transport theory.

    Science.gov (United States)

    Wong, S K; Chan, V S

    2003-06-01

    This paper presents a comprehensive description of neoclassical transport theory in the banana regime for large-aspect-ratio flux surfaces of arbitrary shapes. The method of matched-asymptotic expansions is used to obtain analytical solutions for plasma distribution functions and to compute transport coefficients. The method provides justification for retaining only the part of the Fokker-Planck operator that involves the second derivative with respect to the cosine of the pitch angle for the trapped and barely circulating particles. It leads to a simple equation for the freely circulating particles with boundary conditions that embody a discontinuity separating particles moving in opposite directions. Corrections to the transport coefficients are obtained by generalizing an existing boundary layer analysis. The system of moment and field equations is consistently taken in the cylinder limit, which facilitates the discussion of the treatment of dynamical constraints. It is shown that the nonlocal nature of Ohm's law in neoclassical theory renders the mathematical problem of plasma transport with changing flux surfaces nonstandard.

  15. Effects of temperature anisotropy on neoclassical transport in the plateau and banana-plateau regimes

    International Nuclear Information System (INIS)

    Taguchi, Masayoshi

    1999-01-01

    The neoclassical transport theory in a presence of temperature anisotropy is investigated in the low to the intermediate collision frequency regimes for a large aspect-ratio tokamak plasma. The standard procedure for an isotropic plasma in the plateau regime is extended to an anisotropic plasma, and the neoclassical transport coefficients in this regime are explicitly calculated. By interpolating the results in the plateau regime and the previously obtained ones in the banana regime, the expressions for the neoclassical transport coefficients which are continuously valid from the banana to the plateau regimes are presented. (author)

  16. Electron heat transport analysis of low-collisionality plasmas in the neoclassical-transport-optimized configuration of LHD

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Wakasa, Arimitsu

    2002-01-01

    Electron heat transport in low-collisionality LHD plasma is investigated in order to study the neoclassical transport optimization effect on thermal plasma transport with an optimization level typical of so-called ''advanced stellarators''. In the central region, a higher electron temperature is obtained in the optimized configuration, and transport analysis suggests the considerable effect of neoclassical transport on the electron heat transport assuming the ion-root level of radial electric field. The obtained experimental results support future reactor design in which the neoclassical and/or anomalous transports are reduced by magnetic field optimization in a non-axisymmetric configuration. (author)

  17. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    OpenAIRE

    Estève , D. ,; Sarazin , Y.; Garbet , X.; Grandgirard , V.; Breton , S. ,; Donnel , P. ,; Asahi , Y. ,; Bourdelle , C.; Dif-Pradalier , G; Ehrlacher , C.; Emeriau , C.; Ghendrih , Ph; Gillot , C.; Latu , G.; Passeron , C.

    2018-01-01

    International audience; Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code [V. Grandgirard et al., Comp. Phys. Commun. 207, 35 (2016)]. A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime likely relevant for tungsten, the standard expression of the neoclassical impurity flux is shown t...

  18. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    Science.gov (United States)

    Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.

    2018-03-01

    Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.

  19. Lagrangian neoclassical transport theory applied to the region near the magnetic axis

    Energy Technology Data Exchange (ETDEWEB)

    Satake, Shinsuke [The Graduate Univ. for Advanced Studies, Dept. of Fusion Science, Toki, Gifu (Japan); Okamoto, Masao; Sugama, Hideo [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-06-01

    Neoclassical transport theory around the magnetic axis of a tokamak is studied, in which relatively wide ''potato'' orbits play an important role in transport. Lagrangian formulation of transport theory, which has been investigated to reflect finiteness of guiding-center orbit widths to transport equations, is developed in order to analyze neoclassical transport near the axis for a low-collisionality plasma. The treatment of self-collision term in Lagrangian formulation is revised to retain momentum conservation property of it. With directly reflecting the orbital properties of all the types of orbits in calculation, the ion thermal conductivity around the axis is found to decrease than from that predicted by conventional neoclassical theory. This result supports recent numerical simulations which show the reduction of thermal conductivity near the magnetic axis. (author)

  20. Effects of electrostatic trapping on neoclassical transport in an impure plasma

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Ware, A.A.

    1976-01-01

    Contamination of a toroidally confined plasma by highly charged impurity ions can produce substantial variation of the electrostatic potential within a magnetic surface. The resulting electrostatic trapping and electrostatic drifts, of hydrogen ions and electrons, yields significant alterations in neoclassical transport theory. A transport theory which includes these effects is derived from the drift-kinetic equation, with an ordering scheme modeled on the parameters of recent tokamak experiments. The theory self-consistently predicts that electrostatic trapping should be fully comparable to magnetic trapping, and provides transport coefficients which, depending quadratically upon the temperature and pressure gradients, differ markedly from the standard neoclassical coefficients for a pure plasma

  1. Interpretation of transport barriers and of subneoclassical transport in the framework of the revisited neoclassical theory

    International Nuclear Information System (INIS)

    Rogister, A.L.

    1999-01-01

    'Subneoclassical' heat fluxes are predicted in the high collisionality regime by the revisited neoclassical theory, which includes the roles of Finite Larmor Radius effects and Inertia, that we published earlier. Unlike conventional neoclassical theory, the revisited theory further provides a non degenerate ambipolarity constraint which defines unambiguously the radial electric field. Together with the parallel momentum equation, the ambipolarity constraint leads, under some conditions, to radial electric field profiles with high negative shear akin to those observed in spontaneous edge transport barriers. The predictions of the theory are outlined, with emphasis laid on the interpretation of experimental results such as magnitude of the jumps, width of the shear layer, local scaling laws. Extension of the theory to triggered transitions and cold pulse propagation studies is suggested. (author)

  2. Particle transport and fluctuation characteristics around the neoclassically optimized configuration in LHD

    International Nuclear Information System (INIS)

    Tanaka, Kenji; Michael, Clive; Yokoyama, Masayuki; Kawahata, Kazuo; Tokuzawa, Tokihiko; Akiyama, Tsuyoshi; Ida, Katsumi; Yoshinuma, Mikiro; Yamada, Ichihiro; Narihara, Kazumichi; Yamada, Hiroshi; Vyacheslavov, Leonid N.; Murakami, Sadayoshi; Wakasa, Arimitsu; Takenaga, Hidenobu; Muraoka, Katsunori

    2008-01-01

    Density profiles in LHD were measured and particle transport coefficients were estimated from density modulation experiments in LHD. The dataset used in this article included a wide range of discharge conditions, e.g., for different heating powers, magnetic axes, and toroidal magnetic fields scanned to cover wide regions for neoclassical transport. The minimized neoclassical transport configuration in the dataset (R ax =3.5 m, B t =2.83 T) showed peaked density profiles, and its peaking factors increased gradually with decreasing collisionality. These results are similar to those observed in tokamaks. At some other configurations, peaking factors were reduced with decreasing collisionality and a larger contribution of neoclassical transport produced hollow density profiles. Comparison between neoclassically and experimentally estimated particle diffusivities showed different minimum conditions. This suggests that the condition for neoclassical optimization is not the same as that for anomalous optimization. A clear difference in spatial profiles of turbulence was observed between hollow and peaked density profiles. A major part of the fluctuations existed in the unstable region of the linear growth rate of the ion temperature gradient mode and trapped electron mode. (author)

  3. High Z neoclassical transport: Application and limitation of analytical formulae for modelling JET experimental parameters

    Science.gov (United States)

    Breton, S.; Casson, F. J.; Bourdelle, C.; Angioni, C.; Belli, E.; Camenen, Y.; Citrin, J.; Garbet, X.; Sarazin, Y.; Sertoli, M.; JET Contributors

    2018-01-01

    Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schlüter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature

  4. Benchmark test of drift-kinetic and gyrokinetic codes through neoclassical transport simulations

    International Nuclear Information System (INIS)

    Satake, S.; Sugama, H.; Watanabe, T.-H.; Idomura, Yasuhiro

    2009-09-01

    Two simulation codes that solve the drift-kinetic or gyrokinetic equation in toroidal plasmas are benchmarked by comparing the simulation results of neoclassical transport. The two codes are the drift-kinetic δf Monte Carlo code (FORTEC-3D) and the gyrokinetic full- f Vlasov code (GT5D), both of which solve radially-global, five-dimensional kinetic equation with including the linear Fokker-Planck collision operator. In a tokamak configuration, neoclassical radial heat flux and the force balance relation, which relates the parallel mean flow with radial electric field and temperature gradient, are compared between these two codes, and their results are also compared with the local neoclassical transport theory. It is found that the simulation results of the two codes coincide very well in a wide rage of plasma collisionality parameter ν * = 0.01 - 10 and also agree with the theoretical estimations. The time evolution of radial electric field and particle flux, and the radial profile of the geodesic acoustic mode frequency also coincide very well. These facts guarantee the capability of GT5D to simulate plasma turbulence transport with including proper neoclassical effects of collisional diffusion and equilibrium radial electric field. (author)

  5. Effect of nonlinear energy transport on neoclassical tearing mode stability in tokamak plasmas

    Science.gov (United States)

    Fitzpatrick, Richard

    2017-05-01

    An investigation is made into the effect of the reduction in anomalous perpendicular electron heat transport inside the separatrix of a magnetic island chain associated with a neoclassical tearing mode in a tokamak plasma, due to the flattening of the electron temperature profile in this region, on the overall stability of the mode. The onset of the neoclassical tearing mode is governed by the ratio of the divergences of the parallel and perpendicular electron heat fluxes in the vicinity of the island chain. By increasing the degree of transport reduction, the onset of the mode, as the divergence ratio is gradually increased, can be made more and more abrupt. Eventually, when the degree of transport reduction passes a certain critical value, the onset of the neoclassical tearing mode becomes discontinuous. In other words, when some critical value of the divergence ratio is reached, there is a sudden bifurcation to a branch of neoclassical tearing mode solutions. Moreover, once this bifurcation has been triggered, the divergence ratio must be reduced by a substantial factor to trigger the inverse bifurcation.

  6. The Effect on Stellarator Neoclassical Transport of a Fluctuating Electrostatic Spectrum

    International Nuclear Information System (INIS)

    Mynick, H.E.; Boozer, A.H.

    2004-01-01

    We study the effect on neoclassical transport of applying a fluctuating electrostatic spectrum, such as produced either by plasma turbulence, or imposed externally. For tokamaks, it is usually assumed that the neoclassical and ''anomalous'' contributions to the transport roughly superpose, D = D nc + D an , an intuition also used in modeling stellarators. An alternate intuition, however, is one where it is the collisional and anomalous scattering frequencies which superpose, ν ef = ν + ν an . For nonaxisymmetric systems, in regimes where ∂D/∂ν ef picture'' implies that turning on the fluctuations can decrease the total radial transport. Using numerical and analytic means, it is found that the total transport has contributions conforming to each of these intuitions, either of which can dominate. In particular, for stellarators, the ν ef picture is often valid, producing transport behavior differing from tokamaks

  7. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Abiteboul, J.

    2012-10-01

    then analyzed and, although the conventional gyro-Bohm scaling is recovered on average, local processes are found to be clearly non-diffusive. The impact of scrape-off layer flows on core toroidal rotation is also analyzed by modifying the boundary conditions in GYSELA. Finally, the equilibrium magnetic field in tokamaks, which is not rigorously axisymmetric, provides another means of breaking the toroidal symmetry, through purely collisional processes. This effect is found to contribute significantly to toroidal momentum transport and can compete with the turbulence-driven toroidal rotation in tokamaks. (author)

  8. Study of neoclassical transport in the 1/ν regime for a research fusion reactor

    International Nuclear Information System (INIS)

    Kalyuzhnyj, V.N.; Kasilov, S.V.; Nemov, V.V.

    2005-01-01

    In frame of the concept of a steady-state operated research fusion reactor (RFR) in papers [1-4] the RFR with an increased plasma-wall detachment was proposed with the purpose to enable not only the production but also a long-term confinement of a self-sustained plasma at the existing technology level. In connection with complication of the corresponding magnetic configuration an investigation of the neoclassical transport is desirable for such systems. In the present work neoclassical transport for a magnetic configuration of l=2 torsatron type variant of RFR system with an additional opposite toroidal magnetic field is investigated numerically. A so-called 1/ν transport regime, in which the transport coefficients are increased with reduction of particle collision frequency ν is considered. For calculating of transport coefficients a technique, based on integration along magnetic field lines in a given stellarator magnetic field is used. The magnetic field of helical windings is calculated by Biot-Savart law. The obtained transport coefficients are presented in a standard form containing a factor depending on the magnetic field geometry. From analysis of the received results follows that in respect of the neoclassical transport the proposed magnetic configuration turns out to be closer to configuration of the classical stellarator (with helical winding), than to configuration of the classical torsatron/geliotron. (author)

  9. Isotope and mixture effects on neoclassical transport in the pedestal

    Science.gov (United States)

    Pusztai, Istvan; Buller, Stefan; Omotani, John T.; Newton, Sarah L.

    2017-10-01

    The isotope mass scaling of the energy confinement time in tokamak plasmas differs from gyro-Bohm estimates, with implications for the extrapolation from current experiments to D-T reactors. Differences in mass scaling in L-mode and various H-mode regimes suggest that the isotope effect may originate from the pedestal. In the pedestal, sharp gradients render local diffusive estimates invalid, and global effects due to orbit-width scale profile variations have to be taken into account. We calculate neoclassical cross-field fluxes from a radially global drift-kinetic equation using the PERFECT code, to study isotope composition effects in density pedestals. The relative reduction to the peak heat flux due to global effects as a function of the density scale length is found to saturate at an isotope-dependent value that is larger for heavier ions. We also consider D-T and H-D mixtures with a focus on isotope separation. The ability to reproduce the mixture results via single-species simulations with artificial ``DT'' and ``HD'' species has been considered. These computationally convenient single ion simulations give a good estimate of the total ion heat flux in corresponding mixtures. Funding received from the International Career Grant of Vetenskapsradet (VR) (330-2014-6313) with Marie Sklodowska Curie Actions, Cofund, Project INCA 600398, and Framework Grant for Strategic Energy Research of VR (2014-5392).

  10. The study on the neoclassical transport analysis using ECE measured temperature profiles in the LHD long pulse plasma

    International Nuclear Information System (INIS)

    Sasao, Hajime; Watanabe, Kiyomasa; Inagaki, Shigeru

    2000-01-01

    The purpose of this paper is to show the change of the neoclassical transport and the radial electric field in the long pulse LHD plasmas by using the experimental ECE data. The neoclassical heat flux, which the neo-classical theory predicts, changes due to the change of the radial electric field. The increase of H ions injected by Neutral Beam Injection (NBI) in He discharge produce effect on the electric field. There is the threshold of H quantity on the change of the electric field polarity. (author)

  11. An Analytic Approach to Developing Transport Threshold Models of Neoclassical Tearing Modes in Tokamaks

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Shirokov, M.S.; Konovalov, S.V.; Tsypin, V.S.

    2005-01-01

    Transport threshold models of neoclassical tearing modes in tokamaks are investigated analytically. An analysis is made of the competition between strong transverse heat transport, on the one hand, and longitudinal heat transport, longitudinal heat convection, longitudinal inertial transport, and rotational transport, on the other hand, which leads to the establishment of the perturbed temperature profile in magnetic islands. It is shown that, in all these cases, the temperature profile can be found analytically by using rigorous solutions to the heat conduction equation in the near and far regions of a chain of magnetic islands and then by matching these solutions. Analytic expressions for the temperature profile are used to calculate the contribution of the bootstrap current to the generalized Rutherford equation for the island width evolution with the aim of constructing particular transport threshold models of neoclassical tearing modes. Four transport threshold models, differing in the underlying competing mechanisms, are analyzed: collisional, convective, inertial, and rotational models. The collisional model constructed analytically is shown to coincide exactly with that calculated numerically; the reason is that the analytical temperature profile turns out to be the same as the numerical profile. The results obtained can be useful in developing the next generation of general threshold models. The first steps toward such models have already been made

  12. Neoclassical and gyrokinetic analysis of time-dependent helium transport experiments on MAST

    International Nuclear Information System (INIS)

    Henderson, S.S.; O'Mullane, M.; Summers, H.P.; Garzotti, L.; Casson, F.J.; Dickinson, D.; Fox, M.F.J.; Patel, A.; Roach, C.M.; Valovič, M.

    2014-01-01

    Time-dependent helium gas puff experiments have been performed on the Mega Ampère Spherical Tokamak (MAST) during a two point plasma current scan in L-mode and a confinement scan at 900 kA. An evaluation of the He II (n = 4 → 3) spectrum line induced by charge exchange suggests anomalous rates of diffusion and inward convection in the outer regions of both L-mode plasmas. Similar rates of diffusion are found in the H-mode plasma, however these rates are consistent with neoclassical predictions. The anomalous inward pinch found in the core of L-mode plasmas is also not apparent in the H-mode core. Linear gyrokinetic simulations of one flux surface in L-mode using the GS2 and GKW codes find that equilibrium flow shear is sufficient to stabilize ITG modes, consistent with beam emission spectroscopy (BES) observations, and suggest that collisionless TEMs may dominate the anomalous helium particle transport. A quasilinear estimate of the dimensionless peaking factor associated with TEMs is in good agreement with experiment. Collisionless TEMs are more stable in H-mode because the electron density gradient is flatter. The steepness of this gradient is therefore pivotal in determining the inward neoclassical particle pinch and the particle flux associated with TEM turbulence. (paper)

  13. Pfirsch–Schlüter neoclassical heavy impurity transport in a rotating plasma

    International Nuclear Information System (INIS)

    Belli, E A; Candy, J; Angioni, C

    2014-01-01

    In this work, we extend previous analytic theories for the neoclassical transport of a trace heavy impurity in a rotating plasma in the Pfirsch–Schlüter regime. The complete diffusive and convective components of the ambipolar particle flux are derived. The solution is valid for arbitrary impurity charge and impurity Mach number and for general geometry. Inclusion of finite main-ion temperature gradient effects is shown in the small ion Mach number limit. A simple interpolation formula is derived for the case of high impurity charge and circular geometry. While an enhancement of the diffusion coefficient is found for order one impurity Mach number, a reduction due to the rotation-driven poloidal asymmetry in the density occurs for very large Mach number. (paper)

  14. Effect of the poloidal current from the classical diffusion in the steady-state neo-classical transport

    International Nuclear Information System (INIS)

    Igna Junior, A.D.

    1984-01-01

    The relevant parameters of two steady-state models of a plasma column, in fusion regime, were analyzed for an ideal Tokamak. The neo-classical transport theory was considered in the banana regime and in the Pfirsch-Schlueter regime. The first model proposes a correction in the numerical coefficients of the transport equations. In the other one, a poloidal current from Pfirsch-Schlueter classical diffusion is considered aiming to satisfy the pressure balance. (M.C.K.) [pt

  15. Neoclassical MHD equations for tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Shaing, K.C.

    1986-03-01

    The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion

  16. Development of three-dimensional neoclassical transport simulation code with high performance Fortran on a vector-parallel computer

    International Nuclear Information System (INIS)

    Satake, Shinsuke; Okamoto, Masao; Nakajima, Noriyoshi; Takamaru, Hisanori

    2005-11-01

    A neoclassical transport simulation code (FORTEC-3D) applicable to three-dimensional configurations has been developed using High Performance Fortran (HPF). Adoption of computing techniques for parallelization and a hybrid simulation model to the δf Monte-Carlo method transport simulation, including non-local transport effects in three-dimensional configurations, makes it possible to simulate the dynamism of global, non-local transport phenomena with a self-consistent radial electric field within a reasonable computation time. In this paper, development of the transport code using HPF is reported. Optimization techniques in order to achieve both high vectorization and parallelization efficiency, adoption of a parallel random number generator, and also benchmark results, are shown. (author)

  17. Experimental study of neoclassical currents

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Prager, S.C.

    1985-05-01

    A detailed experimental study is presented of the bootstrap and Pfirsch-Schlueter currents that are predicted by neoclassical transport theory. In a toroidal octupole, on magnetic surfaces within the separatrix, the observed parallel plasma currents are in excellent quantitative agreement with neoclassical theory with regard to the spatial structure (along a magnetic surface), collisionality dependence and toroidal magnetic field dependence. On magnetic surfaces outside the separatrix, the ion portion of the parallel current is in agreement with neoclassical theory but the electron parallel current is observed to obtain a unidirectional component which deviates from and exceeds the theoretical prediction

  18. [AN OVERALL SOUND PROCESS] Becoming Neoclassical: Instrumentation in the Sketches for Webern's Concerto, Op. 24

    Directory of Open Access Journals (Sweden)

    David H. Miller

    2016-05-01

    Full Text Available In September 1928 Anton Webern wrote to publisher Emil Hertzka to report on the composition of a work “in the spirit of some of Bach’s Brandenburg Concertos.” In June 1934 that work stood completed as the Concerto for Nine Instruments, Op. 24. While Op. 24 has been celebrated as a paradigmatic example of Webern’s forward-looking serial techniques, it simultaneously exhibits a strong neoclassical influence, as Kathryn Bailey (1991 has demonstrated in her study of sonata and ritornello principles in the Concerto’s first movement. Neoclassical models may have also played a role in dramatically shifting conceptions of instrumentation and genre evident in sketches from the work’s extended period of composition, during which time it transformed from a piece for large symphonic orchestra, to a concerto for solo piano with orchestral accompaniment, to a concerto grosso with a continuo-like piano part. The dramatic shifts found in the sketches are best understood in relation to Webern’s compositional activities in the decade preceding Op. 24. During this period, Webern revised several of his pre-World War I orchestral compositions, reducing the size and diversity of the ensembles with an eye towards Fasslichkeit (“comprehensibility”; a similar goal motivated the arrangements he produced for Arnold Schoenberg’s Society for Private Musical Performances. When considered alongside an instrumentation-centric view of the sketches for Op. 24, these activities suggest an intriguing view of the Concerto. If its twelve-tone row marks Op. 24 as an apex of Webern’s serial technique, its instrumentation makes it an apex of his neoclassicism.In September 1928 Anton Webern wrote to publisher Emil Hertzka to report on the composition of a work “in the spirit of some of Bach’s Brandenburg Concertos.” In June 1934 that work stood completed as the Concerto for Nine Instruments, Op. 24. While Op. 24 has been celebrated as a paradigmatic example

  19. Neoclassical transport of energetic particles in asymmetric toroidal plasma. Progress report

    International Nuclear Information System (INIS)

    Cary, J.R.

    1997-10-01

    During the most recent funding period the authors obtained results important for helical confinement systems and in the use of modern computational methods for modeling of fusion systems. The most recent results include showing that the set of magnetic field functions that are omnigenous (i.e., the bounce-average drift lies within the flux surface) and, therefore, have good transport properties, is much larger than the set of quasihelical systems. This is important as quasihelical systems exist only for large aspect ratio. The authors have also carried out extensive earlier work on developing integrable three-dimensional magnetic fields, on trajectories in three-dimensional configurations, and on the existence of three-dimensional MHD equilibria close to vacuum integrable fields. At the same time they have been investigating the use of object oriented methods for scientific computing

  20. Suppression of the Neoclassical Tearing Modes in Tokamaks under Anomalous Transverse Transport Conditions when the Magnetic Well Effect Predominates over the Bootstrap Drive

    International Nuclear Information System (INIS)

    Konovalov, S.V.; Mikhailovskii, A.B.; Shirokov, M.S.; Ozeki, T.; Tsypin, V.S.

    2005-01-01

    A study is made of the suppression of neoclassical tearing modes in tokamaks under anomalous transverse transport conditions when the magnetic well effect predominates over the bootstrap drive. It is stressed that the corresponding effect, which is called the compound suppression effect, depends strongly on the profiles of the electron and ion temperature perturbations. Account is taken of the fact that the temperature profile can be established as a result of the competition between anomalous transverse heat transport, on the one hand, and longitudinal collisional heat transport, longitudinal heat convection, longitudinal inertial transport, and transport due to the rotation of magnetic islands, on the other hand. The role of geodesic effects is discussed. The cases of competition just mentioned are described by the model sets of reduced transport equations, which are called, respectively, collisional, convective, inertial, and rotational plasmophysical models. The magnetic well is calculated with allowance for geodesic effects. It is shown that, for strong anomalous heat transport conditions, the contribution of the magnetic well to the generalized Rutherford equation for the island width W is independent of W not only in the collisional model (which has been investigated earlier) but also in the convective and inertial models and depends very weakly (logarithmically) on W in the rotational model. It is this weak dependence that gives rise to the compound effect, which is the subject of the present study. A criterion for the stabilization of neoclassical tearing modes by the compound effect at an arbitrary level of the transverse heat transport by electrons and ions is derived and is analyzed for two cases: when the electron heat transport and ion heat transport are both strong, and when the electron heat transport is strong and the ion heat transport is weak

  1. A 3-D Fokker-Planck code for studying parallel transport in tokamak geometry with arbitrary collisionalities and application to neoclassical resistivity

    International Nuclear Information System (INIS)

    Sauter, O.; Harvey, R.W.; Hinton, F.L.

    1993-10-01

    A new 3-D Fokker-Planck code, CQL, which solves the Fokker-Planck equations with two velocity coordinates and one spatial coordinate parallel to the magnetic field lines B/B, has been developed. This code enables us to model the parallel transport for low, intermediate and high collisional regime. The physical model, the possible relevant applications of the code as well as a first application, the computation of the neoclassical resistivity for various collisionalities and aspect ratios in tokamak geometry are presented. (author) 3 figs., 3 refs

  2. Numerical Simulation of Neoclassical Currents, Parallel Viscosity, and Radial Current Balance in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Kiviniemi, T.

    2001-01-01

    One of the principal problems en route to a fusion reactor is that of insufficient plasma confinement, which has lead to both theoretical and experimental research into transport processes in the parameter range relevant for fusion energy production. The neoclassical theory of tokamak transport is well-established unlike the theory of turbulence driven anomalous transport in which extensive progress has been made during last few years. So far, anomalous transport has been dominant in experiments, but transport may be reduced to the neoclassical level in advanced tokamak scenarios. This thesis reports a numerical study of neoclassical fluxes, parallel viscosity, and neoclassical radial current balance in tokamaks. Neoclassical parallel viscosity and particle fluxes are simulated over a wide range of collisionalities, using the fully kinetic five-dimensional neoclassical orbit-following Monte Carlo code ASCOT. The qualitative behavior of parallel viscosity derived in earlier analytic models is shown to be incorrect for high poloidal Mach numbers. This is because the poloidal dependence of density was neglected. However, in high Mach number regime, it is the convection and compression terms, rather than the parallel viscosity term, that are shown to dominate the momentum balance. For fluxes, a reasonable agreement between numerical and analytical results is found in the collisional parameter regime. Neoclassical particle fluxes are additionally studied in the banana regime using the three-dimensional Fokker-Planck code DEPORA, which solves the drift-kinetic equation with finite differencing. Limitations of the small inverse aspect ratio approximation adopted in the analytic theory are addressed. Assuming that the anomalous transport is ambipolar, the radial electric field and its shear at the tokamak plasma edge can be solved from the neoclassical radial current balance. This is performed both for JET and ASDEX Upgrade tokamaks using the ASCOT code. It is shown that

  3. The turn in economics: neoclassical dominance to mainstream pluralism?

    NARCIS (Netherlands)

    Davis, J.B.

    2006-01-01

    This paper investigates whether since the 1980s neoclassical economics has been in the process of being supplanted as the dominant research programme in economics by a collection of competing research approaches which share relatively little in common with each other or with neoclassical economics.

  4. ELEMENTS OF THE NEOCLASSICAL GROWTH THEORY

    Directory of Open Access Journals (Sweden)

    Florina Popa

    2014-12-01

    Full Text Available One of the relevant components of the contemporary economic science is the economic growth theory, the economic background of the time leading to new guidelines of the research. The neoclassical growth theory - the core of modern analysis - explains how the capital accumulation and technological changes affect the economy, significant for the analysis of the economic growth process being the Solow’s neoclassical growth model. The paper brief describes the elements of the economic growth model developed by Solow, both for the situation when it allows the explanation of extensive growth and that wherein the growth is of intensive nature, as a result of the intervention of exogenous technical progress – a determinant of factors productivity growth. It is highlighted the importance of the exogenous neoclassical model, proposed by Solow, who showed the determinant role of the technical progress in the economic growth phenomenon.

  5. Kinetic neoclassical calculations of impurity radiation profiles

    Directory of Open Access Journals (Sweden)

    D.P. Stotler

    2017-08-01

    Full Text Available Modifications of the drift-kinetic transport code XGC0 to include the transport, ionization, and recombination of individual charge states, as well as the associated radiation, are described. The code is first applied to a simulation of an NSTX H-mode discharge with carbon impurity to demonstrate the approach to coronal equilibrium. The effects of neoclassical phenomena on the radiated power profile are examined sequentially through the activation of individual physics modules in the code. Orbit squeezing and the neoclassical inward pinch result in increased radiation for temperatures above a few hundred eV and changes to the ratios of charge state emissions at a given electron temperature. Analogous simulations with a neon impurity yield qualitatively similar results.

  6. How to calculate the neoclassical viscosity, diffusion, and current coefficients in general toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H.; Nishimura, S.

    2002-05-01

    A novel method to obtain the full neoclassical transport matrix for general toroidal plasmas by using the solution of the linearized drift kinetic equation with the pitch-angle-scattering collision operator is shown. In this method, the neoclassical coefficients for both poloidal and toroidal viscosities in toroidal helical systems can be obtained, and the neoclassical transport coefficients for the radial particle and heat fluxes and the bootstrap current with the non-diagonal coupling between unlike-species particles are derived from combining the viscosity-flow relations, the friction-flow relations, and the parallel momentum balance equations. Since the collisional momentum conservation is properly retained, the well-known intrinsic ambipolar condition of the neoclassical particle fluxes in symmetric systems is recovered. Thus, these resultant neoclassical diffusion and viscosity coefficients are applicable to evaluating accurately how the neoclassical transport in quasi-symmetric toroidal systems deviates from that in exactly-symmetric systems. (author)

  7. Neoclassical Theory and Its Applications

    Energy Technology Data Exchange (ETDEWEB)

    Shaing, Ker-Chung [Univ. of Wisconsin, Madison, WI (United States)

    2015-11-20

    The grant entitled Neoclassical Theory and Its Applications started on January 15 2001 and ended on April 14 2015. The main goal of the project is to develop neoclassical theory to understand tokamak physics, and employ it to model current experimental observations and future thermonuclear fusion reactors. The PI had published more than 50 papers in refereed journals during the funding period.

  8. Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST

    International Nuclear Information System (INIS)

    Xu, X Q

    2007-01-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. With our 4D (ψ, θ, ε, μ) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices

  9. A study of runaway electron confinement and theory of neoclassical MHD turbulence

    International Nuclear Information System (INIS)

    Kwon, Oh Jin

    1989-07-01

    This thesis consists of two major studies: a study of runaway electron confinement and a theory of neoclassical MHD turbulence. The aim of the former is to study the structure of internal magnetic turbulence in tokamaks, which is thought by many to be responsible for the heat transport. The aim of the latter is to extend existing theories of MHD turbulence in tokamaks into experimentally relevant low-collisionality regimes. This section contains a theory of neoclassical pressure-gradient-driven turbulence and a theory of neoclassical resistivity-gradient-driven turbulence

  10. Revealed Preference Theory, Rationality, and Neoclassical ...

    African Journals Online (AJOL)

    The issue is not solved even when decision making is construed within the context of imperfect, that is, 'bounded rationality'. I argue that neoclassical economic theory is best understood as a form of rule utilitarianism. In this regard, neoclassical economics is unavoidably value-laden and should be construed as an aspect of

  11. Crew Transportation Technical Management Processes

    Science.gov (United States)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  12. Transport processes and entropy production in toroidally rotating plasmas with electrostatic turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1996-08-01

    Transport processes and resultant entropy production in magnetically confined plasmas are studied in detail for toroidally rotating systems with electrostatic turbulence. A new gyrokinetic equation is derived for rotating plasmas with large flow velocities on the order of the ion thermal speed. Neoclassical and anomalous transport of particles, energy, and toroidal momentum are systematically formulated from the ensemble-averaged kinetic equation with the gyrokinetic equation. As a conjugate pair of the thermodynamic force and the transport flux, the shear of the toroidal flow, which is caused by the radial electric field shear, and the toroidal viscosity enter both the neoclassical and anomalous entropy production. The interaction between the fluctuations and the sheared toroidal flow is self-consistently described by the gyrokinetic equation containing the flow shear as the thermodynamic force and by the toroidal momentum balance equation including the anomalous viscosity. Effects of the toroidal flow shear on the toroidal ion temperature gradient driven modes are investigated. Linear and quasilinear analyses of the modes show that the toroidal flow shear decreases the growth rates and reduces the anomalous toroidal viscosity. (author)

  13. Transport Phenomena and Materials Processing

    Science.gov (United States)

    Kou, Sindo

    1996-10-01

    An extremely useful guide to the theory and applications of transport phenomena in materials processing This book defines the unique role that transport phenomena play in materials processing and offers a graphic, comprehensive treatment unlike any other book on the subject. The two parts of the text are, in fact, two useful books. Part I is a very readable introduction to fluid flow, heat transfer, and mass transfer for materials engineers and anyone not yet thoroughly familiar with the subject. It includes governing equations and boundary conditions particularly useful for studying materials processing. For mechanical and chemical engineers, and anyone already familiar with transport phenomena, Part II covers the many specific applications to materials processing, including a brief description of various materials processing technologies. Readable and unencumbered by mathematical manipulations (most of which are allocated to the appendixes), this book is also a useful text for upper-level undergraduate and graduate-level courses in materials, mechanical, and chemical engineering. It includes hundreds of photographs of materials processing in action, single and composite figures of computer simulation, handy charts for problem solving, and more. Transport Phenomena and Materials Processing: * Describes eight key materials processing technologies, including crystal growth, casting, welding, powder and fiber processing, bulk and surface heat treating, and semiconductor device fabrication * Covers the latest advances in the field, including recent results of computer simulation and flow visualization * Presents special boundary conditions for transport phenomena in materials processing * Includes charts that summarize commonly encountered boundary conditions and step-by-step procedures for problem solving * Offers a unique derivation of governing equations that leads to both overall and differential balance equations * Provides a list of publicly available computer

  14. Theory of neoclassical ion temperature-gradient-driven turbulence

    Science.gov (United States)

    Kim, Y. B.; Diamond, P. H.; Biglari, H.; Callen, J. D.

    1991-02-01

    The theory of collisionless fluid ion temperature-gradient-driven turbulence is extended to the collisional banana-plateau regime. Neoclassical ion fluid evolution equations are developed and utilized to investigate linear and nonlinear dynamics of negative compressibility ηi modes (ηi≡d ln Ti/d ln ni). In the low-frequency limit (ωB2p. As a result of these modifications, growth rates are dissipative, rather than sonic, and radial mode widths are broadened [i.e., γ˜k2∥c2s(ηi -(2)/(3) )/μi, Δx˜ρs(Bt/Bp) (1+ηi)1/2, where k∥, cs, and ρs are the parallel wave number, sound velocity, and ion gyroradius, respectively]. In the limit of weak viscous damping, enhanced neoclassical polarization persists and broadens radial mode widths. Linear mixing length estimates and renormalized turbulence theory are used to determine the ion thermal diffusivity in both cases. In both cases, a strong favorable dependence of ion thermal diffusivity on Bp (and hence plasma current) is exhibited. Furthermore, the ion thermal diffusivity for long wavelength modes exhibits favorable density scaling. The possible role of neoclassical ion temperature-gradient-driven modes in edge fluctuations and transport in L-phase discharges and the L to H transition is discussed.

  15. What is this 'school' called neoclassical economics?

    OpenAIRE

    Tony Lawson

    2013-01-01

    What is this school called neoclassical economics? Does it exist? Should it? Where does the term 'neoclassical economics' come from, and is there any connection between any of the current interpretations of the term and its original meaning? How do we make sense of competing current interpretations? Is there a sustainable formulation? These and related questions are raised and answered in an attempt to bring clarity to ongoing economic discussion and debate, thereby to under-labour for a more...

  16. Neoclassical vs. Endogenous Growth Analysis: An Overview

    OpenAIRE

    Bennett T. McCallum

    1996-01-01

    This paper begins with an exposition of neoclassical growth theory, including several analytical results such as the distinction between golden-rule and optimal steady states. Next it emphasizes that the neoclassical approach fails to provide any explanation of steady-state growth in per capita values of output and consumption, and also cannot plausibly explain actual growth differences by reference to transitional episodes. Three types of endogenous growth models, which attempt to provide ex...

  17. Neoclassical tearing modes in a tokamak

    International Nuclear Information System (INIS)

    Hahm, T.S.

    1988-08-01

    Linear tearing instability is studied in the banana collisionality regime in tokamak geometry. Neoclassical effects produce significant modifications of Ohm's law and the vorticity equation so that the growth rate of tearing modes driven by Δ' is dramatically reduced compared to the usual resistive MHD value. Consequences of this result, regarding the presence of pressure-gradient-driven neoclassical resistive interchange instabilities and the evolution of magnetic islands in the Rutherford regime, are discussed. 10 refs

  18. Relaxation processes in Aeolian transport

    Directory of Open Access Journals (Sweden)

    Selmani Houssem

    2017-01-01

    Full Text Available We investigate experimentally the relaxation process toward the equilibrium regime of saltation transport in the context of spatial inhomogeneous conditions. The relaxation length associated to this process is an important length in aeolian transport. This length stands for the distance needed for the particle flux to adapt to a change in flow conditions or in the boundary conditions at the bed. Predicting the value of this length under given conditions of transport remains an open and important issue. We conducted wind tunnel experiments to document the influence of the upstream particle flux and wind speed on the relaxation process toward the saturated transport state. In the absence of upstream particle flux, data show that the relaxation length is independent of the wind strength (except close to the threshold of transport. In contrast, in the case of a finite upstream flux, the relaxation length exhibits a clear increase with increasing air flow velocity. Moreover, in the latter the relaxation is clearly non-monotonic and presents an overshoot.

  19. Anomalous transport and stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Balescu, R. [Universite Libre de Bruxelles (Belgium)

    1996-03-01

    The relation between kinetic transport theory and theory of stochastic processes is reviewed. The Langevin equation formalism provides important, but rather limited information about diffusive processes. A quite promising new approach to modeling complex situations, such as transport in incompletely destroyed magnetic surfaces, is provided by the theory of Continuous Time Random Walks (CTRW), which is presented in some detail. An academic test problem is discussed in great detail: transport of particles in a fluctuating magnetic field, in the limit of infinite perpendicular correlation length. The well-known subdiffusive behavior of the Mean Square Displacement (MSD), proportional to t{sup 1/2}, is recovered by a CTRW, but the complete density profile is not. However, the quasilinear approximation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be generated by a CTRW. 16 refs., 3 figs.

  20. Neoclassical islands on COMPASS-D

    International Nuclear Information System (INIS)

    Gates, D.A.; Lloyd, B.; Morris, A.W.; McArdle, G.; O'Brien, M.R.; Valovic, M.; Warrick, C.D.; Wilson, H.R.

    1997-01-01

    Neoclassical magnetic islands are observed to limit the achievable β in COMPASS-D low collisionality single null divertor tokamak plasmas with ITER-like geometry (R 0 = 0.56 m, B 0 1.2 T, I p = 120-180 kA, κ = 1.6, ε = 0.3). The limiting β is typically well below that expected from ideal instabilities with maximum βN in the range of 1.6 to 2.1. The plasma is heated with up to 1.8 MW of 60 GHz electron cyclotron resonance heating (ECRH) at the second harmonic with X mode polarization. The time history of the measured island width is compared with the predictions of neoclassical tearing mode theory, with good agreement between theory and experiment. The measured islands have a threshold width below which the mode will not grow. The density scaling of the point of onset of the measured instabilities is compared with two theories that predict a threshold island width for the onset of neoclassical tearing modes. Applied resonant helical error fields are used to induce islands in collisionality regimes wherein the neoclassical islands do not occur naturally, allowing the study of the behaviour of neoclassical tearing modes in this regime. The critical β for the onset of neoclassical tearing modes is seen to be ∼3 times higher in the naturally stable region. This observation is compared with the predictions of both threshold theories. A simple expression for the q scaling of the maximum achievable β N in the presence of neoclassical tearing modes is derived on the basis of the assumption of a maximum allowable island width. The predicted q scaling of this β limit is compared with data from a q scan, and the results are in good agreement. (author)

  1. Measurement of temperature fluctuations and anomalous transport ...

    Indian Academy of Sciences (India)

    Coulomb collisions in a magnetised plasma give rise to electrical resistivity and particle diffusion across the magnetic field. This diffusion process is known as classical trans- port and can be calculated exactly. For the curved magnetic geometry of a tokamak, the collisional transport is termed as neoclassical transport.

  2. Neoclassical study of temperature anisotropy in NSTX experiments using the GTC-NEO particle code

    Science.gov (United States)

    Perkins, David; Ethier, Stephane; Wang, Weixing

    2012-10-01

    It is well-known that the level of ion transport in the National Spherical Torus eXperiment (NSTX) is close to the neoclassical level. This makes self-consistent neoclassical simulations carried out with the GTC-NEO particle code highly relevant for studying transport-related issues in NSTX. GTC-NEO, which now treats multiple species of ion impurities [1], takes as input the experimental profiles from NSTX discharges and calculates the fully non-local, self-consistent neoclassical fluxes and radial electric field. One unanswered question related to NSTX plasmas is that of possible ion temperature anisotropy, which cannot be determined experimentally with the current diagnostics. This work describes new numerical diagnostics and computational improvements that were implemented in GTC-NEO to enable the study of temperature anisotropy.[4pt] [1] R.A. Kolesnikov et al., Phy. Plasmas 17, 022506 (2010)

  3. Transport processes at fluidic interfaces

    CERN Document Server

    Reusken, Arnold

    2017-01-01

    There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplina...

  4. Neo-classical economics, institutional economics and improved fisheries management

    NARCIS (Netherlands)

    van der Burg, Tsjalle

    2000-01-01

    According to neo-classical economists, taxes and individual transferable quotas (ITQs) are the most efficient measures for dealing with the problem of overfishing. Institutional economists, however, criticise neo-classical economists for neglecting political problems, enforcement problems and

  5. The neoclassical theory of growth and distribution

    Directory of Open Access Journals (Sweden)

    Robert M. Solow

    2000-12-01

    Full Text Available The paper surveys the neoclassical theory of growth. As a preliminary, the meaning of the adjective "neoclassical" is discussed. The basic model is then sketched, and the conditions ensuring a stationary state are illustrated. The issue of the convergence to a stationary state (and that of the speed of convergence is further considered. A discussion of "primary factors" opens the way to the "new" theory of growth, with endogenous technical progress. A number of extensions of the basic model are then recalled: two-sector and multi-sectoral models, overlapping generations models, the role of money in growth models.

  6. In Search of Lost Time: The Neoclassical Synthesis

    OpenAIRE

    Michel De Vroey; Pedro Garcia Duarte

    2012-01-01

    Present-day macroeconomics has sometimes been dubbed ‘the new neoclassical synthesis’, suggesting that it constitutes a reincarnation of the neoclassical synthesis of the 1950s. This paper assesses this understanding. To this end, we examine the contents of the ‘old’ and the ‘new’ neoclassical syntheses. We show that the neoclassical synthesis originally had no fixed content, but two meanings gradually became dominant. First, it designates the program of integrating Keynesian and Walrasian th...

  7. Statistical properties of the neoclassical radial diffusion in a tokamak equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Maluckov, A. [Department of Fusion Science, Graduate Univ. for Advanced Studies, Toki, Gifu (Japan); Nakajima, N.; Okamoto, M.; Murakami, S.; Kanno, R. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    The statistical properties of the neoclassical radial diffusion are confirmed through direct comparison with a Wiener process by the numerical evaluations of the cumulant, diffusion and autocorrelation coefficients. Within the neoclassical framework the origin of stochasticity exists only in velocity space. It is characterized by the stationary, subdiffusive, uniform and Markov process. Through the drift motion of particle guiding centers, the stochasticity in velocity space leads to that in configuration space, i.e., the radial diffusion. It is shown that such a radial diffusion develops as an approximately Wiener process, i.e. the statistically non-stationary, normal diffusive, Gaussian, and Markov process in the asymptotic time region. (author)

  8. A critical approach to neoclassic monetarism

    Directory of Open Access Journals (Sweden)

    Yoandris Sierra Lara

    2014-08-01

    Full Text Available This article is aimed at assessing the current universal economic thought called Monetarism, especially in its neo-classic variant, represented by US economist Milton Friedman. The paper focuses on the analysis of the historical context that leads Monetarism to become a dominant doctrine, its main methodological features and the notions regarding inflation as a macroeconomic imbalance.

  9. Comparison of Parallel Viscosity with Neoclassical Theory

    OpenAIRE

    K., Ida; N., Nakajima

    1996-01-01

    Toroidal rotation profiles are measured with charge exchange spectroscopy for the plasma heated with tangential NBI in CHS heliotron/torsatron device to estimate parallel viscosity. The parallel viscosity derived from the toroidal rotation velocity shows good agreement with the neoclassical parallel viscosity plus the perpendicular viscosity. (mu_perp =2m^2 /s).

  10. Is neoclassical microeconomics formally valid? An approach based on an analogy with equilibrium thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Tania; Domingos, Tiago [Environment and Energy Section, DEM, Instituto Superior Tecnico, Avenida Rovisco Pais, 1, 1049-001 Lisboa (Portugal)

    2006-06-10

    The relation between Thermodynamics and Economics is a paramount issue in Ecological Economics. Two different levels can be distinguished when discussing it: formal and substantive. At the formal level, a mathematical framework is used to describe both thermodynamic and economic systems. At the substantive level, thermodynamic laws are applied to economic processes. In Ecological Economics, there is a widespread claim that neoclassical economics has the same mathematical formulation as classical mechanics and is therefore fundamentally flawed because: (1) utility does not obey a conservation law as energy does; (2) an equilibrium theory cannot be used to study irreversible processes. Here, we show that neoclassical economics is based on a wrong formulation of classical mechanics, being in fact formally analogous to equilibrium thermodynamics. The similarity between both formalisms, namely that they are both cases of constrained optimisation, is easily perceived when thermodynamics is looked upon using the Tisza-Callen axiomatisation. In this paper, we take the formal analogy between equilibrium thermodynamics and economic systems far enough to answer the formal criticisms, proving that the formalism of neoclassical economics has irreversibility embedded in it. However, the formal similarity between equilibrium thermodynamics and neoclassical microeconomics does not mean that economic models are in accordance with mass, energy and entropy balance equations. In fact, neoclassical theory suffers from flaws in the substantive integration with thermodynamic laws as has already been fully demonstrated by valuable work done by ecological economists in this field. (author)

  11. Rotary kilns - transport phenomena and transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Boateng, A.

    2008-01-15

    Rotary kilns and rotating industrial drying ovens are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This book treats all engineering aspects of rotary kilns, including thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. Chapter 1: The Rotary Kiln Evolution and Phenomenon Chapter 2: Basic Description of Rotary Kiln Operation Chapter 3: Freeboard Aerodynamic Phenomena Chapter 4: Granular Flows in Rotary Kilns Chapter 5: Mixing and Segregation Chapter 6: Combustion and Flame - includes section on types of fuels used in rotary kilns, coal types, ranking and analysis, petroleum coke combustion, scrap tire combustion, pulverized fuel (coal/coke) firing in kilns, pulverized fuel delivery and firing systems. Chapter 7: Freeboard Heat Transfer Chapter 8: Heat Transfer Processes in the Rotary Kiln Bed Chapter 9: Mass and Energy Balance Chapter 10: Rotary Kiln Minerals Process Applications.

  12. Radial electric field computations with DKES and neoclassical models in TJ-II stellarator

    Science.gov (United States)

    Martinell, Julio; Gutierrez-Tapia, Cesar; Lopez-Bruna, Daniel

    2015-11-01

    Radial electric fields arise due to the non-ambipolar transport in stellarator plasmas and play an important role in determining some improved confinement regimes. In order to calculate this electric field it is necessary to take all particle fluxes that are not ambipolar. The most important contribution to these fluxes comes from neoclassical transport. Here we use particle fluxes obtained from kinetic equation computations using the code DKES to evaluate the radial electric field profiles for certain discharges of the heliac TJ-II. Experimental profiles for the density and temperatures are used together with the diffusion coefficients obtained with DKES. A similar computation of the electric field is performed with three analytical neoclassical models that use an approximation for the magnetic geometry. The ambipolar electric field from the models is compared with the one given by DKES and we find that they are all qualitatively similar. They are also compared with experimental measurements of the electric field obtained with HIBP. It is shown that, although the electric field is reasonably well reproduced by the neoclassical computations, especially in high temperature regimes, the particle fluxes are not. Thus, neoclassical theory provides good Er estimates in TJ-II. Support from CONACyT 152905 and DGAPA IN109115 projects is acknowledged.

  13. General Equilibrium and The New Neoclassical Synthesis

    OpenAIRE

    Herings P. Jean-Jacques

    2012-01-01

    We present a general equilibrium model of the new neoclassical synthesis that has the same levelof generality as the Arrow-Debreu model. This involves a stochastic multi-period economy with amonetary sector and sticky commodity prices. We formulate the notion of a sticky price equilibriumwhere all agents form rational expectations on prices for commodities and assets, interest rates,and rationing. We present a general result showing that monetary policy imposes no restrictionswhatsoever on no...

  14. Microfluidics and microscale transport processes

    CERN Document Server

    Chakraborty, Suman

    2012-01-01

    With an intense focus on micro- and nanotechnology from a fluidic perspective, this book details the research activities in key directions on both the theoretical and experimental fronts. As part of the IIT Kharagpur Research Monograph series, the text discusses topics such as capillary transport in microchannels, fluid friction and heat transfer in microchannels, electrokinetics, and interfacial transport in nanochannels. It also covers nanoparticle transport in colloidal suspensions, bubble generation in microfluidic channels, micro-heat pipe, the lattice Boltzmann method for phase changing

  15. Radon transport processes below the earth's surface

    International Nuclear Information System (INIS)

    Wilkening, M.

    1980-01-01

    Processes by which 222 Rn is transported from the soil to the earth's surface are reviewed. The mechanisms effective in transporting 222 Rn to the surface are related to the size and configuration of the spaces occupied by the soil gas which may vary from molecular interstices to large underground caverns. The near-surface transport processes are divided into two categories: (1) a microscopic process that includes molecular diffusion and viscous flow in fine capillaries and (2) macroscopic flow in fissures and channels. Underground air rich in 222 Rn can also reach the surface through cracks, fissures, and underground channels. This type of transport is shown for (1) a horizontal tunnel penetrating a fractured hillside, (2) a large underground cave, and (3) volcanic activity. Pressure differentials having various natural origins and thermal gradients are responsible for the transport in these examples. 222 Rn transport by ordinary molecular diffusion appears to be the dominant process

  16. Transport processes of the legume symbiosome membrane

    Directory of Open Access Journals (Sweden)

    Victoria C Clarke

    2014-12-01

    Full Text Available The symbiosome membrane (SM is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume-rhizobium symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologues of transporters of sulfate, calcium, peptides and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.

  17. Neoclassical compounds and final combining forms in English

    Directory of Open Access Journals (Sweden)

    Ana Díaz-Negrillo

    2014-12-01

    Full Text Available English neoclassical compounds rely on a distinct vocabulary stock and present morphological features which raise a number of theoretical questions. Generalisations about neoclassical compounds are also problematic because the output is by no means homogeneous, that is, defining features of neoclassical compounds sometimes co-exist with features that are not prototypical of these formations. The paper looks at neoclassical compounds with a view to exploring patterns of morphological behaviour and development in this class of compounds. The approach is both synchronic and diachronic: it researches whether the morphological behaviour of recently formed compounds is different from that of earlier compounds and, if so, in which respects. This is assessed on data from the BNC with respect to some of the features that are cited in the literature as defining properties of neoclassical compounds, specifically, their internal configuration, the occurrence or not of a linking vowel, and their productivity.

  18. Surface transport processes in charged porous media.

    Science.gov (United States)

    Gabitto, Jorge; Tsouris, Costas

    2017-07-15

    Surface transport processes are very important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations in the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Hydrothermal processes and radionuclide transport

    International Nuclear Information System (INIS)

    Chapman, N.; McKinley, I.; Shea, M.; Smellie, J.

    1993-01-01

    The fourth objective of Pocos de Caldas Project is related to the hydrothermal processes expected to occur in some high-level waste repository concepts. Such processes are modelled with the same physical model used to analyse the hydrothermal processes which occur during the formation of the primary uranium mineralisation in the breccia pipes at the Osamu Utsumi mine. The temperature distribution, system dimensions and mechanisms of rock alteration show marked similarities to a United States repository case, although the fluid flux is much smaller in the case of the repository. (author) 1 fig

  20. Transport processes: Momentum, heat and mass

    International Nuclear Information System (INIS)

    Geankoplis, C.J.

    1983-01-01

    This book discusses basic transport processes including mass transport. Topics covered are as follows: an introduction to engineering principles and units; principles of momentum transfer and overall balances; principles of momentum transfer and applications; principles of steady-state heat transfer; principles of unsteady-state heat transfer; principles of mass transfer; principles of unsteady-state and convective mass transfer

  1. Transport processes in magnetically confined plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J.D.

    1991-12-01

    Intensified studies of plasma transport in toroidal plasmas over the past three to five years have progressed through increased understanding in some areas and changed perceptions about the most important issues in other areas. Recent developments are reviewed for six selected topics: edge fluctuations and transport; L-H mode transition; core fluctuations; modern plasma turbulence theory; transient transport; and global scaling. Some of the developments that are highlighted include: the role of a strongly sheared poloidal flow in edge plasma turbulence, transport and the L-H transition; change of focus from {kappa}{perpendicular}{rho}s {approximately} 1 to {kappa}{perpendicular}{rho}s {much_lt} 1 fluctuations in tokamak plasmas; modern Direct-Interaction-Approximation plasma turbulence and hybrid fluid/kinetic theoretical models; and transient transport experiments that are raising fundamental questions about our conceptions of local transport processes in tokamaks. 104 refs., 6 figs.

  2. Transport processes in magnetically confined plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J.D.

    1991-12-01

    Intensified studies of plasma transport in toroidal plasmas over the past three to five years have progressed through increased understanding in some areas and changed perceptions about the most important issues in other areas. Recent developments are reviewed for six selected topics: edge fluctuations and transport; L-H mode transition; core fluctuations; modern plasma turbulence theory; transient transport; and global scaling. Some of the developments that are highlighted include: the role of a strongly sheared poloidal flow in edge plasma turbulence, transport and the L-H transition; change of focus from {kappa}{perpendicular}{rho}s {approximately} 1 to {kappa}{perpendicular}{rho}s {much lt} 1 fluctuations in tokamak plasmas; modern Direct-Interaction-Approximation plasma turbulence and hybrid fluid/kinetic theoretical models; and transient transport experiments that are raising fundamental questions about our conceptions of local transport processes in tokamaks. 104 refs., 6 figs.

  3. Geometrical influences on neoclassical magnetohydrodynamic tearing modes

    International Nuclear Information System (INIS)

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1997-07-01

    The influence of geometry on the pressure drives of nonideal magnetohydrodynamic tearing modes is presented. In order to study the effects of elongation, triangularity, and aspect ratio, three different machines are considered to provide a range of tokamak configurations: TFTR (circular), DIII-D (D-shaped), and Pegasus (extremely low aspect ratio). For large aspect ratio tokamaks, shaping does very little to influence the pressure gradient drives, while at low aspect ratios, a very strong sensitivity to the profiles is found. In particular, this sensitivity is connected to the strong dependence on the magnetic shear. This suggests that at low aspect ratio it may be possible to stabilize neoclassical tearing modes by flattening the q profile near low order rational surfaces (e.g., q = 2/1) using a combination of shaping and localized current drive, whereas at large aspect ratio it is more difficult

  4. Transport processes in multicomponent plasma

    International Nuclear Information System (INIS)

    Zissis, G.

    2002-01-01

    Full text: This book treats in detail, as indicated in the title, the transport phenomena in multicomponent plasmas. Here, the term 'transport' applies to the study of mass and energy transfer in plasmas due to the interactions between pairs of particles only. Radiation is legitimately omitted; anyway, radiative transfer is another field of study. As the author himself mentions in the introduction, 'the term multicomponent plasma implies a partially or fully ionized mixture of arbitrary number of species of neutral and charged particles satisfying the condition of quasi-neutrality'. In fact, this book treats a large variety of plasmas applying to different systems ranging from low-pressure systems which may be far from local thermodynamic equilibrium (LTE) conditions, to thermal plasmas in LTE or near-LTE states with special attention to two-temperature systems; partially ionized plasmas with low ionization degree for which electron-neutral interactions are predominant, to systems with higher ionization degrees in which charged particle interactions are no more negligible. In addition, for all the above stated situations, the author treats both plasmas which are subjected to an external electromagnetic field and those which are not (homogeneous and inhomogeneous cases). Furthermore, in the last chapters a special discussion concerning molecular plasmas is presented. Taking into account the evolution of plasma modelling in the last few years, the subject is of current interest and the reader will find in the book a large amount of information necessary for a good understanding of transport phenomena in plasmas: for a plasma simulation specialist, this book may be regarded as reference text, which includes all necessary mathematical relations for his work. However, it should not be considered a simple formulary; the reader will also find here an excellent description of the theoretical basis necessary for the derivation of all given expressions. To this point of view

  5. Mode coupling trigger of neoclassical magnetohydrodynamic tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Gianakon, T.A.; Hegna, C.C.; Callen, J.D.

    1997-05-01

    Numerical studies of the nonlinear evolution of coupled magnetohydrodynamic - type tearing modes in three-dimensional toroidal geometry with neoclassical effects are presented. The inclusion of neoclassical physics introduces an additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm's law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise Δ' stable, albeit once a threshold island width is exceeded. A possible mechanism for exceeding or eliminating this threshold condition is demonstrated based on mode coupling due to toroidicity with a pre-existing instability at the q = 1 surface

  6. SCIENCE WHERE CULTURE MATTERS: A NEO-CLASSICAL ...

    Indian Academy of Sciences (India)

    SCIENCE WHERE CULTURE MATTERS: A NEO-CLASSICAL APPROACH TO EXPLORE UNTAPPED BACTERIAL DIVERSITY. MILIND WATVE; Dept of Microbiology, Abasaheb Garware College, Pune. www.culturematters.org; * Life Research Foundation, Pune; * Evolvus Biotech Pvt. Ltd.,Pune ...

  7. Comparison of Poloidal Velocity Meassurements to Neoclassical Theory on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bell, R E; Kaye, S M; Kolesnikov, R A; LeBlance, B P; Rewolldt, G; Wang, W X

    2010-04-07

    Knowledge of poloidal velocity is necessary for the determination of the radial electric field, Er, which along with its gradient is linked to turbulence suppression and transport barrier formation. Recent measurements of poloidal flow on conventional tokamaks have been reported to be an order of magnitude larger than expected from neoclassical theory. In contrast, recent poloidal velocity measurements on the NSTX spherical torus [S. M. Kaye et al., Phys. Plasmas 8, 1977 (2001)] are near or below neoclassical estimates. A novel charge exchange recombination spectroscopy diagnostic is used, which features active and passive sets of up/down symmetric views to produce line-integrated poloidal velocity measurements that do not need atomic physics corrections. Local profiles are obtained with an inversion. Poloidal velocity measurements are compared with neoclassical values computed with the codes NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] and GTC-Neo [W. X. Wang, et al., Phys. Plasmas 13, 082501 (2006)], which has been updated to handle impurities. __________________________________________________

  8. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  9. Steady-state temperature profile of the tokamak reactor in the neoclassic mode

    International Nuclear Information System (INIS)

    Volkov, T.F.; Igitkhanov, Yu.L.; Tokar, M.Z.

    It has been shown that when transfer processes are neoclassic in nature, it is possible to have a thermonuclear reactor combustion mode during which there is formed in the near-wall area a protective zone of dense cold plasma which is capable of preventing the wall from being eroded. The fact that it is possible to establish this mode is due to the ''opacity'' of reactor plasma with regard to neutrals

  10. Are neoclassical canons valid for southern Chinese faces?

    Directory of Open Access Journals (Sweden)

    Yasas S N Jayaratne

    Full Text Available BACKGROUND: Proportions derived from neoclassical canons, initially described by Renaissance sculptors and painters, are still being employed as aesthetic guidelines during the clinical assessment of the facial morphology. OBJECTIVE: 1. to determine the applicability of neoclassical canons for Southern Chinese faces and 2. to explore gender differences in relation to the applicability of the neoclassical canons and their variants. METHODOLOGY: 3-D photographs acquired from 103 young adults (51 males and 52 females without facial dysmorphology were used to test applicability of four neoclassical canons. Standard anthropometric measurements that determine the facial canons were made on these 3-D images. The validity of the canons as well as their different variants were quantified. PRINCIPAL FINDINGS: The neoclassical cannons seldom applied to these individuals, and facial three-section and orbital canons did not apply at all. The orbitonasal canon was most frequently applicable, with a frequency of 19%. Significant sexual dimorphism was found relative to the prevalence of the variants of facial three-section and orbitonasal canons. CONCLUSION: The neoclassical canons did not appear to apply to our sample when rigorous quantitative measurements were employed. Thus, they should not be used as esthetic goals for craniofacial surgical interventions.

  11. Nonlinear dynamics of single-helicity neoclassical MHD tearing instabilities

    International Nuclear Information System (INIS)

    Spong, D.A.; Shaing, K.C.; Carreras, B.A.; Callen, J.D.; Garcia, L.

    1988-10-01

    Neoclassical magnetohydrodynamic (MHD) effects can significantly alter the nonlinear evolution of resistive tearing instabilities. This is studied numerically by using a flux-surface-averaged set of evolution equations that includes the lowest-order neoclassical MHD effects. The new terms in the equations are fluctuating bootstrap current, neoclassical modification of the resistivity, and neoclassical damping of the vorticity. Single-helicity tearing modes are studied in a cylindrical model over a range of neoclassical viscosities (μ/sub e//ν/sup e/) and values of the Δ' parameter of tearing mode theory. Increasing the neoclassical viscosity leads to increased growth rate and saturated island width as predicted analytically. The larger island width is caused by the fluctuating bootstrap current contribution in Ohm's law. The Δ' parameter no longer solely determines the island width, and finite-width saturated islands may be obtained even when Δ' is negative. The importance of the bootstrap current (/approximately/∂/rho///partial derivative/psi/) in the nonlinear dynamics leads us to examine the sensitivity of the results with respect to different models for the density evolution. 11 refs., 8 figs

  12. Gravity-Dependent Transport in Industrial Processes

    Science.gov (United States)

    Ostrach, Simon; Kamotani, Yasuhiro

    1996-01-01

    Gravity dependent transport phenomena in various industrial processes are investigated in order to indicate new directions for micro-gravity research that enhance the commercial success of the space program. The present article describes the commercialization possibilities of such topics associated with physicochemical transport phenomena. The topics are: coating flow, rotating electrochemical system, and convection in low Plandtl number fluids. The present study is directed to understand these phenomena, and to develop a knowledge base for their applications with emphasis to a micro-gravity environment.

  13. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  14. Transport process and block diagram of Cd in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Wei, Linzhen; Feng, Ming; Chen, Mei; Miao, Zhenqing

    2017-08-01

    Many marine bays have been polluted by various pollutants due to the rapid development of economic and population. Understanding the transport processes of pollutants in marine bays is essential to pollution control. This paper analyzed the transport processes of Cd in Jiaozhou Bay based on investigation data during 1979-1983. Results showed that the major transport processes of Cd included terrestrial transport process, atmospheric transport process and oceanic transport process, respectively. Furthermore, this paper provided the block diagrams for these transport processes, which were determining the migrating paths and traces of Cd.

  15. Effect of sheared flows on neoclassical tearing modes

    International Nuclear Information System (INIS)

    Sen, A.; Chandra, D.; Kaw, P.; Bora, M.P.; Kruger, S.; Ramos, J.

    2005-01-01

    The influence of toroidal sheared equilibrium flows on the nonlinear evolution of classical and neoclassical tearing modes (NTMs) is studied through numerical solutions of a set of reduced generalized MHD equations that include viscous force effects based on neoclassical closures. In general, differential flow is found to have a strong stabilizing influence leading to lower saturated island widths for the classical (m/n = 2/1) mode and reduced growth rates for the (m/n = 3/1) neoclassical mode. Velocity shear on the other hand is seen to make a destabilizing contribution. An analytic model calculation, consisting of a generalized Rutherford island evolution equation that includes shear flow effects is also presented and the numerical results are discussed in the context of this model. (author)

  16. The status of -o- or on the allomorphy of neo-classical compounds

    NARCIS (Netherlands)

    Hamans, C.; de la Cruz Cabanillas, I.; Tejedor Martínez, C.

    2014-01-01

    This paper aims at solving an old descriptive problem in dealing with neoclassical compounds: the status of the segment -o- which usually appears between the two elements of neoclassical compounds as in hamburgerology, buyology, bacteriology and epidemiology.

  17. Transport and radial electric field in torus plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Masao; Nakajima, Noriyoshi; Sugama, Hideo [National Inst. for Fusion Science, Toki, Gifu (Japan); Maluckov, Aleksandra A. [University of Nis, Prirodno-Matematicki Fakultet, FR (Yugoslavia); Satake, Shinsuke [Graduate University for Advanced Studies, Hayama, Kanagawa (Japan)

    2002-12-01

    Transport phenomena in torus plasmas are discussed focusing on the generation of the neoclassical radial electric field. A sophisticated {delta}f Monte Carlo particle simulation code 'FORTEC' is developed including the effect of finite orbit width (FOW), which is the non-local property of the plasma transport. It will be shown that the neoclassical radial electric field in the axisymmetric tokamak is generated due to this FOW effect. The Lagrangian approach is applied to construct a non-local transport theory in the region of near-axis. The reduction of the heat diffusivity toward the axis will be shown. From a statistical point of view, diffusion processes are studied in the presence of irregular magnetic fields. It is shown that the diffusion processes are non-local in almost all the cases if there are some irregularities in the magnetic field. (author)

  18. From current driven to neoclassically driven tearing modes

    International Nuclear Information System (INIS)

    Reimerdes, H.; Sauter, O.; Goodman, T.; Pochelon, A.

    2001-12-01

    In the TCV tokamak, the m/n = 2/1 island is observed in low density discharges with central electron cyclotron current drive. The evolution of its width has two distinct growth phases, one of which can be linked to a 'conventional' tearing mode driven unstable by the current profile and the other to a neoclassical tearing mode driven by a perturbation of the bootstrap current. The TCV results provide the first clear observation of such a destabilization mechanism and reconcile the theory of conventional and neoclassical tearing modes, which only differ in their dominant driving term. (author)

  19. Modeling of Neoclassical Tearing Mode Stability for Generalized Toroidal Geometry

    International Nuclear Information System (INIS)

    A.L. Rosenberg; D.A. Gates; A. Pletzer; J.E. Menard; S.E. Kruger; C.C. Hegna; F. Paoletti; S. Sabbagh

    2002-01-01

    Neoclassical tearing modes (NTMs) can lead to disruption and loss of confinement. Previous analysis of these modes used large aspect ratio, low beta (plasma pressure/magnetic pressure) approximations to determine the effect of NTMs on tokamak plasmas. A more accurate tool is needed to predict the onset of these instabilities. As a follow-up to recent theoretical work, a code has been written which computes the tearing mode island growth rate for arbitrary tokamak geometry. It calls PEST-3 [A. Pletzer et al., J. Comput. Phys. 115, 530 (1994)] to compute delta prime, the resistive magnetohydrodynamic (MHD) matching parameter. The code also calls the FLUXGRID routines in NIMROD [A.H. Glasser et al., Plasma Phys. Controlled Fusion 41, A747 (1999)] for Dnc, DI and DR [C.C. Hegna, Phys. Plasmas 6, 3980 (1999); A.H. Glasser et al., Phys. Fluids 18, 875 (1975)], which are the bootstrap current driven term and the ideal and resistive interchange mode criterion, respectively. In addition to these components, the NIMROD routines calculate alphas-H, a new correction to the Pfirsch-Schlter term. Finite parallel transport effects were added and a National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] equilibrium was analyzed. Another program takes the output of PEST-3 and allows the user to specify the rational surface, island width, and amount of detail near the perturbed surface to visualize the total helical flux. The results of this work will determine the stability of NTMs in an spherical torus (ST) [Y.-K.M. Peng et al., Nucl. Fusion 26, 769 (1986)] plasma with greater accuracy than previously achieved

  20. Testing Neoclassical Competitive Theory in Multilateral Decentralized Markets

    Science.gov (United States)

    List, John A.

    2004-01-01

    Walrasian tatonnement has been a fundamental assumption in economics ever since Walras' general equilibrium theory was introduced in 1874. Nearly a century after its introduction, Vernon Smith relaxed the Walrasian tatonnement assumption by showing that neoclassical competitive market theory explains the equilibrating forces in "double-auction"…

  1. a neo-classical approach to explore untapped bacterial diversity

    Indian Academy of Sciences (India)

    Table of contents. SCIENCE WHERE CULTURE MATTERS: A NEO-CLASSICAL APPROACH TO EXPLORE UNTAPPED BACTERIAL DIVERSITY · UNDER GRADUATE RESEARCH An alternative model of doing science · THE EXPANSE OF LIFE · HOW MANY SP. OF BACTERIA IN 1 g SOIL? TORSVIK ET AL 1990.

  2. Critique of the neoclassical theory of growth and distribution

    Directory of Open Access Journals (Sweden)

    Luigi L. Pasinetti

    2000-12-01

    Full Text Available The paper surveys the main theories of income distribution in their relationship with the theories of economic growth. First, the Classical approach is considered, focusing on the Ricardian theory. Then the neoclassical theory is discussed, highlighting its origins (Bohm-Bawerk, Wicksell, Clark and the role of the aggregate production function. The emergence of a "Keynesian" theory of income distributionin the wake of Harrod's model of growth is then recalled together with the surprising resurgence of the neoclassical theory (following the contributions of Solow and Meade. But, as the paper shows, the neoclassical theory of income distributionlacks logical consistency and has shaky foundations, as has been revealed by the severecritiques moved to the neoclassical production function. Mainstream economic literature circumvents this problem by simply ignoring it, while the models of endogenous growth exclude the issue of distribution theory from their consideration. However, while mainstream economics bypasses the problems of incomedistribution, this is too relevant an issue to be ignored and a number of new research lines, briefly surveyed, try new approaches to it.

  3. Radionuclide transport processes in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Whicker, F.W.

    1983-01-01

    Some major principles and the status of knowledge concerning the transport of radionuclides through terrestrial ecosystems are reviewed. Fundamental processes which control the flow of radionuclides between ecosystem components such as air, soil, plants, and animals are described, with emphasis on deposition, resuspension, plant uptake, ingestion, and assimilation. Properties of radionuclides, organisms, and ecosystems are examined in relation to their influence on the accumulation of radioactive materials by plants and animals. The effects of the physicochemical nature of the radionuclide; morphology, physiology, and behavior of the organism; and soil, nutrient, and trophic characteristics of the ecosystem are highlighted. Observations in natural ecosystems on radionuclides such as 137 Cs, 90 Sr, 131 I, 3 H, and 239 Pu are used to illustrate current concepts. An assessment of the degree to which the processes controlling radionuclide behavior are understood and of our ability to simulate and predict such behavior with computerized models is offered. Finally, brief comments are made on research needs

  4. Technology strategy for subsea processing and transport; Technology Target Areas; TTA6 - Subsea processing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    OG21 (www.OG21.org) Norway's official technology strategy for the petroleum sector issued a revised strategy document in November 2005 (new strategy planned in 2009). In this document 'Subsea processing and transport' was identified as one of the eight new technology target areas (TTAs). The overall OG21 strategy document is on an aggregated level, and therefore the Board of OG21 decided that a sub-strategy for each TTA was needed. This document proposes the sub-strategy for the technology target area 'Subsea processing and transport' which covers the technology and competence necessary to effectively transport well stream to a platform or to onshore facilities. This includes multiphase flow modelling, flow assurance challenges to avoid problems with hydrates, asphaltenes and wax, subsea or downhole fluid conditioning including bulk water removal, and optionally complete water removal, and sand handling. It also covers technologies to increase recovery by pressure boosting from subsea pumping and/or subsea compression. Finally it covers technologies to facilitate subsea processing such as control systems and power supply. The vision of the Subsea processing and transport TTA is: Norway is to be the leading international knowledge- and technology cluster in subsea processing and transport: Sustain increased recovery and accelerated production on the NCS by applying subsea processing and efficient transport solutions; Enable >500 km gas/condensate multiphase well stream transport; Enable >200 km oil-dominated multiphase well stream transport; Enable well stream transport of complex fluids; Enable subsea separation, boosting compression, and water injection; Enable deepwater developments; Enable environmentally friendly and energy efficient field development. Increase the export of subsea processing and transport technology: Optimize technology from the NCS for application worldwide; Develop new technology that can meet the challenges found in

  5. Control of neoclassical tearing modes in large tokamaks

    International Nuclear Information System (INIS)

    Sen, A.; Kaw, P.K.; Chandra, D.

    2001-01-01

    Some self-consistent effects pertaining to feedback control of neoclassical tearing modes in high temperature large tokamaks are investigated. For the ECRH scheme of local electron heating, it is shown that the self-consistent bootstrap currents created by the driven pressure gradients within the island are comparable to those due to the usually considered resistivity change mechanism. Similar self-consistent currents can also arise from pressure gradients created by density and energy deposition from neutral beams, thereby offering a new possibility of neoclassical mode control. The stabilising current in such an application of neutral beams is estimated. It is further shown that such a feedback scheme can be made even more effective through appropriate modulation of the beam source to match the phase variation arising from the island rotation. (author)

  6. Transport Processes in Materials Processing Plasmas: Particulate Behavior and Neutral Gas Transport.

    Science.gov (United States)

    Kilgore, Michael Duane

    This research work focuses on two transport problems in low pressure plasma reactors which are used in thin film manufacturing processes. Computer simulation techniques are used to study particulate behavior in processing discharges and neutral species transport in high plasma density discharges. Particulate behavior is predicted by combining models of charging and transport with numerical plasma simulation. A charged particulate is influenced by discharge electric fields and by momentum transfer collisions with drifting plasma species. A particulate is also subject to other forces including neutral gas drag, thermophoresis, and gravity. For radio frequency capacitively coupled discharges, several forces which act on a particulate may be of comparable magnitude. This results in particulate trapping at plasma-sheath boundaries in many cases. For high plasma density discharges, high ion fluxes make the ion drag force dominate particulate behavior. This means that it is more difficult for particulates to be suspended in the plasma, compared to the situation in parallel plate systems. However, particulate contamination of a wafer can still occur in high density plasmas because particulates may be ejected from chamber walls and reach the wafer after residing very briefly in the gas phase. The direct simulation Monte Carlo method is applied to follow transition regime neutral gas transport in high plasma density processing discharges. Three effects are evaluated: neutral depletion by ionization; neutral heating by collisions with energetic plasma species; and gas flow and pumping. These effects are important for discharges that operate at relatively high fractional ionization. Results show the magnitude of these effects in an electron cyclotron resonance reactor and in an inductively coupled reactor operated under a range of typical conditions. The neutral gas transport simulation is extended to investigate neutral beam processing. A high density inductively coupled

  7. A neoclassical analysis of the 2001 crisis in Turkey

    OpenAIRE

    Türe, Elif Hatice; Ture, Elif Hatice

    2008-01-01

    In early 2001, Turkey experienced a severe economic crisis and many researchers attempted to qualitatively explain this downturn through analyzing the facts that caused the crisis and the effects it had on the economy. The focus of this paper is to complement these studies by quantitatively analyzing the economic fluctuations during the 2001 crisis in the light of the neoclassical growth theory. In this paper, it is shown that a standard dynamic stochastic small open economy model with exogen...

  8. Scope and Flaws of the New Neoclassical Synthesis

    OpenAIRE

    Ronny Mazzocchi

    2013-01-01

    The current consensus in macroeconomics represented by the New Neoclassical Synthesis (NNS) is based on dynamically stochastic general equilibrium (DSGE) modeling with Real Business Cycle (RBC) core to which nominal rigidities are added by way of imperfect competition. The claim is that the NNS model is capable of rigorously reproducing observable phenomena and is able to provide a microeconomically well-founded basis for the design of optimal policy rules, since it is amenable to welfare ana...

  9. Credit and Prices in Woodford's New Neoclassical Synthesis

    OpenAIRE

    Alexander Tobon; Nicolas Barbaroux

    2015-01-01

    Following recent debates on the New Neoclassical Synthesis, the theory of monetary policy has been renewed. The prevailing method, illustrated by Woodford's version of Interest and Prices, is a Dynamic Stochastic General Equilibrium Model in which the old LM curve is voluntarily substituted by an optimal monetary rule. Such a turning point requires a peculiar set of assumptions, especially regarding monetary prices. The recent debate pays attention to de-emphasis on the nominal monetary aggre...

  10. Analysis of clusterization and networking processes in developing intermodal transportation

    Directory of Open Access Journals (Sweden)

    Sinkevičius Gintaras

    2016-06-01

    Full Text Available Analysis of the processes of clusterization and networking draws attention to the necessity of integration of railway transport into the intermodal or multimodal transport chain. One of the most widespread methods of combined transport is interoperability of railway and road transport. The objective is to create an uninterrupted transport chain in combining several modes of transport. The aim of this is to save energy resources, to form an effective, competitive, attractive to the client and safe and environmentally friendly transport system.

  11. Parallel processing Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1994-01-01

    Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine

  12. Incorporating security into the transportation planning process.

    Science.gov (United States)

    2009-03-01

    The transportation system is an important network established to ensure the mobility of people and goods between destinations. In addition, it also serves a vital role in responding to disasters, and therefore deserves special attention when those di...

  13. Financially Constrained Transportation Planning and Programming Process

    Science.gov (United States)

    1997-03-01

    This case study report is intended to provide metropolitan planning organizations (MPOs), state departments of transportation and transit agencies with a greater understanding of the important role that financial information plays in the planning and...

  14. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  15. Charge Transport Processes in Molecular Junctions

    Science.gov (United States)

    Smith, Christopher Eugene

    Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (films, and open opportunities to engineer improved electronic functionality into molecular devices.

  16. Transport phenomena in materials processing---1990

    International Nuclear Information System (INIS)

    Bishop, B.J.; Lior, N.; Lavine, A.; Flik, M.; Karwe, M.V.; Bergman, T.L.; Beckermann, C.; Charmchi, M.

    1990-01-01

    The papers contained in this volume represent a wide range of current research interests in processes such as food and polymer processing, casting, welding, machining, laser cutting, and superconductor processing. This volume includes papers presented in four sessions: Heat Transfer in Materials Processing; Thermal Phenomena in Superconductor Processing; Heat Transfer in Food and Polymer Processing; Heat Transfer in CAsting and Welding

  17. Dual Transport Process for Targeted Delivery in Porous Media

    Science.gov (United States)

    Deng, W.; Fan, J.

    2015-12-01

    The targeted delivery in porous media is a promising technology to encapsulate the solute (i.e., the cargo) in colloid-like microcapsules (i.e., the carriers), transport the microcapsules in the targeted location in porous media, and then release the solute. While extensive literatures and applications about the drug delivery in human and animal bodies exist, the targeted delivery using similar delivery carriers in subsurface porous media is not well understood. The dual transport process study is an explorative study for the targeted delivery in porous media. While the colloid transport is dominated by the advection process and the solute transport is dominated by the advection-dispersion, the dual transport process is the process with the first step of carrier transport, which is dominated by advection, and then after the release of cargo, the transport of cargo is dominated by advection-dispersion. By applying the random walk particle tracking (RWPT) approach, we investigate how the carriers transport in porous media and how the cargo release mechanisms affect the cargo distribution for the targeted delivery in various patterns of porous media. The RWPT numerical model will be verified against the experimental results of dual transport process in packed-disk 2D micromodels. The understanding of the mechanism of dual transport process is crucial to achieve the potential applications of targeted delivery in improved oil and gas recovery, CO2 sequestration, environmental remediation, and soil biomediation.

  18. Flux-force relation for non-axisymmetric tori in general flux coordinates and neoclassical toroidal plasma viscosity

    Science.gov (United States)

    Shaing, K. C.; Chu, M. S.; Sabbagh, S. A.

    2010-12-01

    Flux-force relation, a fundamental relation that relates transport fluxes to forces, for non-axisymmetric tori in general magnetic flux coordinates that are not Hamada coordinates, is derived. The derivation is based on kinetic theory instead of fluid theory. It is shown that pressure force also contributes to the relation in non-Hamada coordinates in general to make the relation compatible with kinetic theory and to make it coordinates invariant. The results are applied to the theory for the neoclassical toroidal viscosity in tokamaks that have error fields or resistive magnetohydrodynamic (MHD) modes.

  19. Management of the process of nuclear transport

    International Nuclear Information System (INIS)

    Requejo, P.

    2015-01-01

    Since 1996 ETSA is the only Spanish logistics operator specialized on servicing the nuclear and radioactive industry. Nowadays ETSA has some technological systems specifically designed for the management of nuclear transports. These tools have been the result of the analysis of multiple factors involved in nuclear shipments, of ETSAs wide experience as a logistics operator and the search for continuous improvement. (Author)

  20. The dynamics of local processes towards environmentally sustainable transport

    DEFF Research Database (Denmark)

    Hansen, Carsten Jahn

    1999-01-01

    The paper explores and discusses the dynamics of local leading towards the creation of an environmentally sustainable transport system. processes......The paper explores and discusses the dynamics of local leading towards the creation of an environmentally sustainable transport system. processes...

  1. Theories of transporting processes of Cu in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Su, Chunhua; Zhu, Sixi; Wu, Yunjie; Zhou, Wei

    2018-02-01

    Many marine bays have been polluted along with the rapid development of industry and population size, and understanding the transporting progresses of pollutants is essential to pollution control. In order to better understanding the transporting progresses of pollutants in marine, this paper carried on a comprehensive research of the theories of transporting processes of Cu in Jiaozhou Bay. Results showed that the transporting processes of Cu in this bay could be summarized into seven key theories including homogeneous theory, environmental dynamic theory, horizontal loss theory, source to waters transporting theory, sedimentation transporting theory, migration trend theory and vertical transporting theory, respectively. These theories helpful to better understand the migration progress of pollutants in marine bay.

  2. Foundations of educational psychology: Howard Gardner's neoclassical psyche.

    Science.gov (United States)

    Diessner, R

    2001-12-01

    This article is a theoretical examination of the implications of Howard Gardner's work in developmental and educational psychology (1983, 1993, 1999a, 1999b) for the structure of the psyche. The author accepts as axiomatic, in the context of this article, Gardner's educational manifesto (1999a) that all students should be taught disciplinary understandings of truth, beauty, and goodness. Rational inferences are then made indicating that the psyche that Gardner intends to educate and help develop is in the form of a neoclassical psyche and that it is structured by the capacities to know truth, to love beauty, and to will goodness.

  3. The Artistic Commitment of Kenyon Cox: An American Neoclassical Artist

    OpenAIRE

    SMITH, Marc S.

    2016-01-01

    At the end of the nineteenth century, the United States had undergone deep transformations. The second Industrial Revolution had created huge amounts of new wealth and power. This led to an alteration of the urban social fabric and to a repositioning of the country on the international scene.Since the 1870s, the American Renaissance had been a vehicle for the diffusion of new values and new concepts. As a broad neoclassical movement in the arts, it was committed to a rewriting of the country’...

  4. Neoclassical theory of durable good diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.R.; Kaserman, D.L.

    1979-10-01

    Existing studies that deal with the diffusion of durable good innovations have been justifiably criticized for their common lack of an explicit testable theory of new product growth. This paper attempts to remedy this situation by providing a theoretical model of market penetration of new durable goods that is derived from the basic assumption that potential users of the new intermediate product attempt to minimize the discounted costs of production over time. The resulting model defines a time path of short-run equilibrium market shares that are determined by the cost characteristics (capital cost and operating and maintenance expenses) of both the new innovation and the equipment that it is designed to replace, the age distribution of the existing capital stock, and the growth rate of the adopting sector. This model is shown to exhibit several attractive features lacking in existing models of the diffusion process. First, it yields a number of testable hypotheses, some of which have received indirect empirical support in previous studies on the subject. Second, it is operational in the absence of historical data on the market experience of the new good under investigation. And third, it is capable of generating, on the basis of such ex ante information, the complete range of functional forms used in prior models to represent the relationship between market share and elapsed time since introduction of the new innovation. These features render the model inherently superior to existing studies for the analysis of emerging products and frontier technologies for which market data are not yet available.

  5. Energetics of turbulent transport processes in tokamaks

    International Nuclear Information System (INIS)

    Haas, F.A.; Thyagaraja, A.

    1987-01-01

    The effect of electromagnetic turbulence on electrons and ions under Tokamak conditions is considered using a kinetic description. Taking the magnetic fluctuation spectrum as given, the density fluctuation spectrum is self-consistently calculated taking account of quasi-neutrality. The calculation is valid for arbitrary collisionality and appropriate to low frequencies typical of experiment. In addition to the usual enhancement of the radial electron energy transport, it is found that the turbulent fluctuations can heat the plasma at rates comparable to ordinary ohmic heating under well-defined conditions. Interestingly, electromagnetic turbulence appears to imply only an insignificant correction to the toroidal resistance of the plasma as estimated from Spitzer resistivity. The scalings of anomalous transport, fluctuations and heating with temperature and plasma volume are investigated. The assumption that the magnetic fluctuation spectrum of the turbulence is invariant under a wide range of conditions is shown to result in interesting consequences for JET-like plasmas. (author)

  6. ANALYSIS OF A TRANSPORT PROCESS USING HYBRID PETRI NETS

    Directory of Open Access Journals (Sweden)

    Elisabeta Mihaela CIORTEA

    2013-05-01

    Full Text Available Purpose of the paper is to analyze the Petri net model, to describe the transport process, part of amanufacturing system and its dynamics.A hibrid Petri net model is built to describe the dinamics of the transport process manufacturingsystem. Mathematical formulation of the dinamycs processes a detailed description. Based on this model, theanalysis of the transport process is designed to be able to execute a production plan and resolve any conflictsthat may arise in the system.In the analysis dinamics known two stages: in the continuous variables are discrete hybrid system in thehibrid discrete variables are used as safety control with very well defined responsibilities.In terms of the chosen model, analyze transport process is designed to help execute a production planand resolve conflicts that may arise in the process, and then the ones in the system

  7. History versus Equilibrium Revisited: Rethinking Neoclassical Economics as the Foundation of Business Education

    Science.gov (United States)

    Clark, Charles Michael Andres

    2014-01-01

    The financial crisis was partially caused by neoclassical economic theory and theorists. This failure has prompted business educators to rethink the role of neoclassical economics as the foundation of business education. The author connects this question to the more general critique of the scientific model of business education and the old…

  8. Conditions and processes affecting radionuclide transport

    Science.gov (United States)

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media.

  9. Influence of collision frequency on neoclassical polarization current

    Energy Technology Data Exchange (ETDEWEB)

    Imada, K; Wilson, H R, E-mail: ki504@york.ac.u [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2009-10-15

    A kinetic theory for the evolution of magnetic islands is considered in a tokamak plasma, in both the low (nu{sub i} << epsilonomega) and high (nu{sub i} >> epsilonomega) collision frequency limits (nu{sub i} is the ion collision frequency, epsilon is the inverse aspect ratio and omega is the island propagation frequency in the E x B rest frame). The calculation of the bootstrap current perturbation in the presence of a magnetic island is reviewed, and is confirmed to be independent of omega and the collision frequency regime. The neoclassical polarization current perturbation is calculated in the two collision frequency limits (within the banana regime). The result in the collisional limit is in agreement with a fluid theory. The effect of collisions in the 'dissipation layer' at the trapped/passing boundary is also considered, for nu{sub i} << epsilonomega. It is found that the dissipation layer provides an additional contribution to the neoclassical polarization current perturbation. Consequently, if the polarization current is stabilizing, it provides a critical island width for instability, which is found to scale as [1+rsq rootnu{sub i}/epsilonomega]{sup 1/2}, where r is a weak logarithmic function of sq rootnu{sub i}/epsilonomega.

  10. Nonlinear growth of a single neoclassical MHD tearing mode in a tokamak

    International Nuclear Information System (INIS)

    Qu, W.X.; Callen, J.D.

    1985-10-01

    The nonlinear evolution equation for the growth of a single neoclassical MHD tearing mode is derived from the usual resistive MHD equations with neoclassical effects included. For the case Δ' > 0 where the usual resistive MHD modes are unstable, in nonlinear neoclassical MHD there is an intermediate time regime in which the island width w grows only as t/sup 1/2/. However, eventually the neoclassical MHD tearing modes are found to enter the usual resistive MHD Rutherford regime where w infinity t. Physically, the neoclassical MHD bootstrap current effects modify the linear and early nonlinear growth of tearing modes. However, eventually the magnetic islands flatten the pressure gradient within the island to remove these effects and return, at long times, to the usual quasilinear picture for the nonlinear evolution of a single resistive MHD tearing mode

  11. Transition from resistive ballooning to neoclassical magnetohydrodynamic pressure-gradient-driven instability

    International Nuclear Information System (INIS)

    Spong, D.A.; Shaing, K.C.; Carreras, B.A.; Charlton, L.A.; Callen, J.D.; Garcia, L.

    1988-10-01

    The linearized neoclassical magnetohydrodynamic equations, including perturbed neoclassical flows and currents, have been solved for parameter regimes where the neoclassical pressure-gradient-driven instability becomes important. This instability is driven by the fluctuating bootstrap current term in Ohm's law. It begins to dominate the conventional resistive ballooning mode in the banana-plateau collisionality regime [μ/sub e//ν/sub e/ /approximately/ √ε/(1 + ν/sub *e/) > ε 2 ] and is characterized by a larger radial mode width and higher growth rate. The neoclassical instability persists in the absence of the usual magnetic field curvature drive and is not significantly affected by compressibility. Scalings with respect to β, n (toroidal mode number), and μ (neoclassical viscosity) are examined using a large-aspect-ratio, three-dimensional initial-value code that solves linearized equations for the magnetic flux, fluid vorticity, density, and parallel ion flow velocity in axisymmetric toroidal geometry. 13 refs., 10 figs

  12. IMPROVEMENT OF FREIGHT TRANSPORTATION PROCESS AND THEIR MANAGEMENT MECHANISM

    Directory of Open Access Journals (Sweden)

    L. V. Martsenyuk

    2014-03-01

    Full Text Available Purpose. For Ukraine as for a post-socialist state there is an objective need of reforming on railway transport. In order to meet the requirements of consumers both within the country and outside of it, it is necessary to solve transport problems in time and to introduce new technologies, without lagging behind the developed European states. The purpose of this article is identification of problems in the process of freight transportations and development of ways of their overcoming, formation of the principles of economic efficiency increase for the use of freight cars using the improvement of management mechanism of freight transportations in the conditions of reforming. Methodology. Methods of strategic planning, system approach for research on improvement of the management mechanism of freight transportations, as well as the organizational-administrative method for structure of management construction were used in this research. Findings. Authors have explored the problems arising in the process of transportation of goods and measures, which will increase the efficiency of goods transportation. Advanced mechanism of freight transportation management for its application in the conditions of the railway transport reforming was developed. It is based on management centralization. Originality. The major factors, which slow down process of cargo transportations, are investigated in the article. The principles of management mechanism improvement of freight transportations are stated. They are based on association of commercial and car-repair activity of depots. All this will allow reducing considerably a car turn by decrease in duration of idle times on railway transport, increasing the speed of freight delivery and cutting down a transport component in the price of delivered production. Practical value. The offered measures will improve the efficiency of rolling stock use and increase cargo volumes turnover, promote links of Ukraine with

  13. Extracellular Electron Transport Coupling Biogeochemical Processes Centimeters

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Fossing, Henrik; Christensen, Peter Bondo

    2010-01-01

    Recent observations in marine sediment have revealed  conductive networks transmitting electrons from oxidation processes in the anoxic zone to oxygen reduction in the oxiczone [1]. The electrochemical processes and conductors seem to be biologically controlled and may account for more than half...

  14. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways...

  15. Numerical studies of transport processes in Tokamak plasma

    International Nuclear Information System (INIS)

    Spineanu, F.; Vlad, M.

    1984-09-01

    The paper contains the summary of a set of studies of the transport processes in tokamak plasma, performed with a one-dimensional computer code. The various transport models (which are implemented by the expressions of the transport coefficients) are presented in connection with the regimes of the dynamical development of the discharge. Results of studies concerning the skin effect and the large scale MHD instabilities are also included

  16. Quality in Air transport process of LOT Polish Airlines

    Directory of Open Access Journals (Sweden)

    Robert Rozenberg

    2015-10-01

    Full Text Available This article discusses the air transport process on scheduled long-haul flights of LOT Polish Airlines. Main focus is taken on price development of these routes. The introduction consists of a brief profile characterized LOT Polish Airlines. Next chapter summarizes the air transport process on scheduled longhaul flights. The frame of article is formed by price development statistics for scheduled long-haul flights to / from Beijing of LOT Polish Airlines and two other competing companies. Conclusion contains results of analysis and puts forward proposals to streamline of the air transport process on reviewed routes.

  17. Assessment of the overall effectiveness of the transport process

    Directory of Open Access Journals (Sweden)

    Radosavljević Dušan

    2017-01-01

    Full Text Available Achieving sustainable road transport requires the existence of methods for assessing its effectiveness, ie for assessing the overall efficiency of the transport process, road transport vehicles, vehicles and drivers. Transport companies and fleet companies for their own needs aim to increase the effectiveness of the resources they have and increase the quality of transport services in order to achieve a competitive position on the market. The achievement of the world class level in assessing the overall efficiency of the transport process is the goal of the state, the owner of the fleet, as well as the educational, professional and scientific community. The paper presents the importance of researching and managing the efficiency of the transport process, a literature review is presented, and a method for calculating the OVE Human indicators is presented, which is used as a tool for assessing the overall efficiency of the transport process, which can be corrected in the local environment. It was pointed out to the problems that were observed in the application of similar indicators and final conclusions were given.

  18. The impact of transport processes standardization on supply chain efficiency

    Directory of Open Access Journals (Sweden)

    Maciej Stajniak

    2016-03-01

    Full Text Available Background: During continuous market competition, focusing on the customer service level, lead times and supply flexibility is very important to analyze the efficiency of logistics processes. Analysis of supply chain efficiency is one of the fundamental elements of controlling analysis. Transport processes are a key process that provides physical material flow through the supply chain. Therefore, in this article Authors focus attention on the transport processes efficiency. Methods: The research carried out in the second half of 2014 year, in 210 enterprises of the Wielkopolska Region. Observations and business practice studies conducted by the authors, demonstrate a significant impact of standardization processes on supply chain efficiency. Based on the research results, have been developed standard processes that have been assessed as being necessary to standardize in business practice. Results: Based on these research results and observations, authors have developed standards for transport processes by BPMN notation. BPMN allows authors to conduct multivariate simulation of these processes in further stages of research. Conclusions: Developed standards are the initial stage of research conducted by Authors in the assessment of transport processes efficiency. Further research direction is to analyze the use efficiency of transport processes standards in business practice and their impact on the effectiveness of the entire supply chain.

  19. Divide and conquer: processive transport enables multidrug transporters to tackle challenging drugs

    Directory of Open Access Journals (Sweden)

    Nir Fluman

    2014-09-01

    Full Text Available Multidrug transporters are membrane proteins that catalyze efflux of antibiotics and other toxic compounds from cells, thereby conferring drug resistance on various organisms. Unlike most solute transporters that transport a single type of compound or similar analogues, multidrug transporters are extremely promiscuous. They transport a broad spectrum of dissimilar drugs and represent a serious obstacle to antimicrobial or anticancer chemotherapy. Many challenging aspects of multidrug transporters, which are unique, have been studied in detail, including their ability to interact with chemically unrelated drugs, and how they utilize energy to drive efflux of compounds that are not only structurally but electrically different. A new and surprising dimension of the promiscuous nature of multidrug transporters has been described recently: they can move long molecules through the membrane in a processive manner.

  20. Interfacial fluid dynamics and transport processes

    CERN Document Server

    Schwabe, Dietrich

    2003-01-01

    The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by the many demands for applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.

  1. Elucidating the Role of Transport Processes in Leaf Glucosinolate Distribution

    DEFF Research Database (Denmark)

    Madsen, Svend Roesen; Olsen, Carl Erik; Nour-Eldin, Hussam Hassan

    2014-01-01

    in Arabidopsis, also play key roles in glucosinolate allocation within a mature leaf by effectively importing apoplastically localized glucosinolates into appropriate cells. Detection of glucosinolates in root xylem sap unambiguously shows that this transport route is involved in root-to-shoot glucosinolate...... that the margin accumulation is established through transport, little is known about these transport processes. Here, we show through leaf apoplastic fluid analysis and glucosinolate feeding experiments that two glucosinolate transporters, GTR1 and GTR2, essential for long-distance transport of glucosinolates...... allocation. Detailed leaf dissections show that in the absence of GTR1 and GTR2 transport activity, glucosinolates accumulate predominantly in leaf margins and leaf tips. Furthermore, we show that glucosinolates accumulate in the leaf abaxial epidermis in a GTR-independent manner. Based on our results, we...

  2. Models of transport processes in concrete

    International Nuclear Information System (INIS)

    Pommersheim, J.M.; Clifton, J.R.

    1991-01-01

    An approach being considered by the US Nuclear Regulatory Commission for disposal of low-level radioactive waste is to place the waste forms in concrete vaults buried underground. The vaults would need a service life of 500 years. Approaches for predicting the service life of concrete of such vaults include the use of mathematical models. Mathematical models are presented in this report for the major degradation processes anticipated for the concrete vaults, which are corrosion of steel reinforcement, sulfate attack, acid attack, and leaching. The models mathematically represent rate controlling processes including diffusion, convection, and reaction and sorption of chemical species. These models can form the basis for predicting the life of concrete under in-service conditions. 33 refs., 6 figs., 7 tabs

  3. Intelligent Transportation Control based on Proactive Complex Event Processing

    Directory of Open Access Journals (Sweden)

    Wang Yongheng

    2016-01-01

    Full Text Available Complex Event Processing (CEP has become the key part of Internet of Things (IoT. Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is proposed as sequential decision model. A Q-learning method is proposed for this model. The experimental evaluations show that this method works well when used to control congestion in in intelligent transportation systems.

  4. A Process-Based Transport-Distance Model of Aeolian Transport

    Science.gov (United States)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  5. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-01-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimension transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 refs., 8 figs

  6. Ethnic Rhinoplasty in Female Patients: The Neoclassical Canons Revisited.

    Science.gov (United States)

    Saad, Ahmad; Hewett, Sierra; Nolte, Megan; Delaunay, Flore; Saad, Mariam; Cohen, Steven R

    2018-04-01

    Despite the substantial amount of research devoted to objectively defining facial attractiveness, the canons have remained a paradigm of aesthetic facial analysis, yet their omnipresence in clinical assessments revealed their limitations outside of a subset of North American Caucasians, leading to criticism about their validity as a standard of facial beauty. In an effort to introduce more objective treatment planning into ethnic rhinoplasty, we compared neoclassical canons and other current standards pertaining to nasal proportions to anatomic proportions of attractive individuals from seven different ethnic backgrounds. Beauty pageant winners (Miss Universe and Miss World nominees) between 2005 and 2015 were selected and assigned to one of seven regionally defined ethnic groups. Anteroposterior and lateral images were obtained through Google, Wikipedia, Miss Universe, and Miss World Web sites. Anthropometry of facial features was performed via Adobe Photoshop TM. Individual facial measurements were then standardized to proportions and compared to the neoclassical canons. Our data reflected an ethnic-dependent preference for the multiple fitness model. Wide-set eyes, larger mouth widths, and smaller noses were significantly relevant in Eastern Mediterranean and European ethnic groups. Exceptions lied within East African and Asian groups. As in the attractive face, the concept of the ideal nasal anatomy varies between different ethnicities. Using objective criteria and proportions of beauty to plan and execute rhinoplasty in different ethnicities can help the surgeon plan and deliver results that are in harmony with patients' individual background and facial anatomy. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  7. Radially global δf computation of neoclassical phenomena in a tokamak pedestal

    International Nuclear Information System (INIS)

    Landreman, Matt; Parra, Felix I; Catto, Peter J; Ernst, Darin R; Pusztai, Istvan

    2014-01-01

    Conventional radially-local neoclassical calculations become inadequate if the radial gradient scale lengths of the H-mode pedestal become as small as the poloidal ion gyroradius. Here, we describe a radially global δf continuum code that generalizes neoclassical calculations to allow for stronger gradients. As with conventional neoclassical calculations, the formulation is time-independent and requires only the solution of a single sparse linear system. We demonstrate precise agreement with an asymptotic analytic solution of the radially global kinetic equation in the appropriate limits of aspect ratio and collisionality. This agreement depends crucially on accurate treatment of finite orbit width effects. (paper)

  8. Role of Passive Diffusion, Transporters, and Membrane Trafficking-Mediated Processes in Cellular Drug Transport.

    Science.gov (United States)

    Cocucci, E; Kim, J Y; Bai, Y; Pabla, N

    2017-01-01

    Intracellular drug accumulation is thought to be dictated by two major processes, passive diffusion through the lipid membrane or membrane transporters. The relative role played by these distinct processes remains actively debated. Moreover, the role of membrane-trafficking in drug transport remains underappreciated and unexplored. Here we discuss the distinct processes involved in cellular drug distribution and propose that better experimental models are required to elucidate the differential contributions of various processes in intracellular drug accumulation. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  9. Mathematical Model of Ion Transport in Electrodialysis Process

    Directory of Open Access Journals (Sweden)

    F.S. Rohman

    2010-10-01

    Full Text Available Mathematical models of ion transport in electrodialysis process is reviewed and their basics concept is discussed. Three scales of ion transport reviewed are: 1 ion transport in the membrane, where two approaches are used, the irreversible thermodynamics and modeling of the membrane material; 2 ion transport in a three-layer system composed of a membrane with two adjoining diffusion layers; and 3 coupling with hydraulic flow system in an electrodialysis 2D and 3D cell, where the differential equation of convectivediffusion is used. Most of the work carried out in the past implemented NP equations since relatively easily coupled with other equations describing hydrodynamic conditions and ion transport in the surrounding solutions, chemical reactions in the solutions and the membrane, boundary and other conditions. However, it is limited to point ionic transport in homogenous and uniformly - grainy phases of structure. © 2008 BCREC UNDIP. All rights reserved.[Received: 21 January 2008, Accepted: 10 March 2008][How to Cite: F.S. Rohman, N. Aziz (2008. Mathematical Model of Ion Transport in Electrodialysis Process. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 3-8. doi:10.9767/bcrec.3.1-3.7122.3-8][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7122.3-8 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7122 ] 

  10. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2000-01-01

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone

  11. Role of glutathione transport processes in kidney function

    International Nuclear Information System (INIS)

    Lash, Lawrence H.

    2005-01-01

    The kidneys are highly dependent on an adequate supply of glutathione (GSH) to maintain normal function. This is due, in part, to high rates of aerobic metabolism, particularly in the proximal tubules. Additionally, the kidneys are potentially exposed to high concentrations of oxidants and reactive electrophiles. Renal cellular concentrations of GSH are maintained by both intracellular synthesis and transport from outside the cell. Although function of specific carriers has not been definitively demonstrated, it is likely that multiple carriers are responsible for plasma membrane transport of GSH. Data suggest that the organic anion transporters OAT1 and OAT3 and the sodium-dicarboxylate 2 exchanger (SDCT2 or NaDC3) mediate uptake across the basolateral plasma membrane (BLM) and that the organic anion transporting polypeptide OATP1 and at least one of the multidrug resistance proteins mediate efflux across the brush-border plasma membrane (BBM). BLM transport may be used pharmacologically to provide renal proximal tubular cells with exogenous GSH to protect against oxidative stress whereas BBM transport functions physiologically in turnover of cellular GSH. The mitochondrial GSH pool is derived from cytoplasmic GSH by transport into the mitochondrial matrix and is mediated by the dicarboxylate and 2-oxoglutarate exchangers. Maintenance of the mitochondrial GSH pool is critical for cellular and mitochondrial redox homeostasis and is important in determining susceptibility to chemically induced apoptosis. Hence, membrane transport processes are critical to regulation of renal cellular and subcellular GSH pools and are determinants of susceptibility to cytotoxicity induced by oxidants and electrophiles

  12. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2004-01-01

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data

  13. Gathering Information from Transport Systems for Processing in Supply Chains

    Science.gov (United States)

    Kodym, Oldřich; Unucka, Jakub

    2016-12-01

    Paper deals with complex system for processing information from means of transport acting as parts of train (rail or road). It focuses on automated information gathering using AutoID technology, information transmission via Internet of Things networks and information usage in information systems of logistic firms for support of selected processes on MES and ERP levels. Different kinds of gathered information from whole transport chain are discussed. Compliance with existing standards is mentioned. Security of information in full life cycle is integral part of presented system. Design of fully equipped system based on synthesized functional nodes is presented.

  14. La teoria neoclassica della crescita e della distribuzione (Neoclassical Theory of growth and Income Distribution)

    OpenAIRE

    Robert M. Solow

    2012-01-01

    The paper surveys the neoclassical theory of growth. As a preliminary, the meaning of the adjective "neoclassical" is discussed. The basic model is then sketched, and the conditions ensuring a stationary state are illustrated. The issue of the convergence to a stationary state (and that of the speed of convergence) is further considered. A discussion of "primary factors" opens the way to the "new" theory of growth, with endogenous technical progress. A number of extensions of the basic model ...

  15. Transportation informatics : advanced image processing techniques automated pavement distress evaluation.

    Science.gov (United States)

    2010-01-01

    The current project, funded by MIOH-UTC for the period 1/1/2009- 4/30/2010, is concerned : with the development of the framework for a transportation facility inspection system using : advanced image processing techniques. The focus of this study is ...

  16. Electromagnetic and quantum measurements a bitemporal neoclassical theory

    CERN Document Server

    Wessel-Berg, Tore

    2001-01-01

    It is a pleasure to write a foreword for Professor Tore Wessel-Berg's book, "Electromagnetic and Quantum Measurements: A Bitemporal Neoclassical Theory." This book appeals to me for several reasons. The most important is that, in this book, Wessel-Berg breaks from the pack. The distinguished astrophysicist Thomas Gold has written about the pressures on scientists to move in tight formation, to avoid having their legs nipped by the sheepdogs of science. This book demonstrates that Wessel-Berg is willing to take that risk. I confess that I do not sufficiently understand this book to be able to either agree or disagree with its thesis. Nevertheless, Wessel-Berg makes very cogent arguments for setting out on his journey. The basic equations of physics are indeed time-reversible. Our experience, that leads us to the concept of an "arrow of time," is derived from macro­ scopic phenomena, not from fundamental microscopic phenomena. For this reason, it makes very good sense to explore the consequences of treating mi...

  17. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Houseworth, J.E.

    2001-01-01

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS MandO 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow

  18. Features, Events, and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    J.E. Houseworth

    2001-04-10

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS M&O 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow and

  19. Correlated receptor transport processes buffer single-cell heterogeneity.

    Science.gov (United States)

    Kallenberger, Stefan M; Unger, Anne L; Legewie, Stefan; Lymperopoulos, Konstantinos; Klingmüller, Ursula; Eils, Roland; Herten, Dirk-Peter

    2017-09-01

    Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR) trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  20. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  1. Recent achievements in facilitated transport membranes for separation processes

    Directory of Open Access Journals (Sweden)

    H. C. Ferraz

    2007-03-01

    Full Text Available Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes.

  2. Review of modeling and control during transport airdrop process

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2016-12-01

    Full Text Available This article presents the review of modeling and control during the airdrop process of transport aircraft. According to the airdrop height, technology can be classified into high and low altitude airdrop and in this article, the research is reviewed based on the two scenarios. While high altitude airdrop is mainly focusing on the precise landing control of cargo, the low altitude flight airdrop is on the control of transport aircraft dynamics to ensure flight safety. The history of high precision airdrop system is introduced first, and then the modeling and control problem of the ultra low altitude airdrop in transport aircraft is presented. Finally, the potential problems and future direction of low altitude airdrop are discussed.

  3. Green Transport Balanced Scorecard Model with Analytic Network Process Support

    Directory of Open Access Journals (Sweden)

    David Staš

    2015-11-01

    Full Text Available In recent decades, the performance of economic and non-economic activities has required them to be friendly with the environment. Transport is one of the areas having considerable potential within the scope. The main assumption to achieve ambitious green goals is an effective green transport evaluation system. However, these systems are researched from the industrial company and supply chain perspective only sporadically. The aim of the paper is to design a conceptual framework for creating the Green Transport (GT Balanced Scorecard (BSC models from the viewpoint of industrial companies and supply chains using an appropriate multi-criteria decision making method. The models should allow green transport performance evaluation and support of an effective implementation of green transport strategies. Since performance measures used in Balanced Scorecard models are interdependent, the Analytic Network Process (ANP was used as the appropriate multi-criteria decision making method. The verification of the designed conceptual framework was performed on a real supply chain of the European automotive industry.

  4. Innovative approach to collaboration in joint organization of transport processes

    Directory of Open Access Journals (Sweden)

    Marcin Hajdul

    2014-03-01

    Full Text Available Background: The paper presents an innovative approach to the collaboration in joint transport processes within existing supply chains which has been implementing by member companies of ECR Poland. Current approach results in inefficient use of resources due to mainly horizontal cooperation between individual service users and service providers. This effect has been demonstrated by research conducted by the author as well as by the European Environmental Agency. Methods: The aim of this paper is to present how design thinking approach allows creation of new transport business model and communication platform. Results: Created solution allowing simultaneous vertical and horizontal co-operation of independent companies involved in the organization of transport processes. The result of such cooperation is the elimination of identified inefficiencies through sustainable use of available resources. Conclusions: The work is summarized by the results of the implementation of presented solutions within the group of companies operating in the FMCG sector in Poland. Companies were able to reduce their transport costs, increase load factor, reduce empty runs as well as reduce congestion on roads where they operate.

  5. Contemporary sediment-transport processes in submarine canyons.

    Science.gov (United States)

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  6. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  7. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  8. Serpentinization as a reactive transport process: The brucite silicification reaction

    Science.gov (United States)

    Tutolo, B. M.; Luhmann, A. J.; Tosca, N. J.; Seyfried, W. E., Jr.

    2017-12-01

    considering serpentinization and many other hydrothermal processes in a reactive transport framework whereby fluid, solute, and heat transport are intimately coupled to kinetically-controlled reactions.

  9. The gBL transport equations

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1989-05-01

    The transport equations arising from the ''generalized Balescu- Lenard'' (gBL) collision operator are obtained, and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases, having the same structure. The resultant theory offers potential explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy to neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. 10 refs

  10. Coupled Modeling of Rhizosphere and Reactive Transport Processes

    Science.gov (United States)

    Roque-Malo, S.; Kumar, P.

    2017-12-01

    The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.

  11. Equilibrium econophysics: A unified formalism for neoclassical economics and equilibrium thermodynamics

    Science.gov (United States)

    Sousa, Tânia; Domingos, Tiago

    2006-11-01

    We develop a unified conceptual and mathematical structure for equilibrium econophysics, i.e., the use of concepts and tools of equilibrium thermodynamics in neoclassical microeconomics and vice versa. Within this conceptual structure the results obtained in microeconomic theory are: (1) the definition of irreversibility in economic behavior; (2) the clarification that the Engel curve and the offer curve are not descriptions of real processes dictated by the maximization of utility at constant endowment; (3) the derivation of a relation between elasticities proving that economic elasticities are not all independent; (4) the proof that Giffen goods do not exist in a stable equilibrium; (5) the derivation that ‘economic integrability’ is equivalent to the generalized Le Chatelier principle and (6) the definition of a first order phase transition, i.e., a transition between separate points in the utility function. In thermodynamics the results obtained are: (1) a relation between the non-dimensional isothermal and adiabatic compressibilities and the increase or decrease in the thermodynamic potentials; (2) the distinction between mathematical integrability and optimization behavior and (3) the generalization of the Clapeyron equation.

  12. The imagined city: The neoclassical landscape in Guadalajara and its designers

    Directory of Open Access Journals (Sweden)

    Luis Felipe Cabrales Barajas

    2014-02-01

    Full Text Available The text offers an approach to an understanding of the process of social construction of urban imagery of Guadalajara during the nineteenth century. This was characterized by the privileging of certain neoclassical architectural works that formed an institutionalized landscape with repeated representations of buildings such as the Cabañas Hospice and the Degollado Theater. The analysis provides a link between material and symbolic dimensions. Monitoring is provided by a chain of knowledge with roots in New Spain that cultivated enlightened ideas that flourished with the arrival of architect José Gutiérrez in Guadalajara and then linked to the local intelligentsia personified by Manuel Gómez Ibarra, Jacobo Gálvez and David Bravo, thanks to the existence of the Institute of Science and Engineering Society of Jalisco. Reading imaginary resources uses graphic and literary representations: for this purpose the “Guadalajara” scheet published in 1887 in the journal La Ilustración Española y Americana and stories of traveler Edward Gibbon embodied in his book Guadalajara (the Mexican Florence, published in 1893.

  13. Analytical model of reactive transport processes with spatially variable coefficients.

    Science.gov (United States)

    Simpson, Matthew J; Morrow, Liam C

    2015-05-01

    Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems.

  14. Neoclassical economic orthodoxy and the need for a new post-crisis economic paradigm

    Directory of Open Access Journals (Sweden)

    Andrei JOSAN

    2013-08-01

    Full Text Available Capitalism is a social adaptive system that evolve, change and grow in response to the challenges of a rapidly changing economic environment. When capitalism is seriously threatened by a systemic crisis, a new version much better adapted to existing conditions appears. Critical analysis of the fundamental ideas underlying neoclassical economic theory shows that the capitalist system is fundamentally a dynamic and therefore static neoclassical models proved to be unsuitable for studying it. Contrary to neoclassical economic vision, the capitalist economy is not governed by immutable economic laws. Global systemic crisis of capitalism that began in 2007 has highlighted the need for a new economic paradigm on which to be built and to be performed a new version of capitalism, in line with the increasingly complex realities of a globalized and quick changing world.

  15. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Science.gov (United States)

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  16. Specific Lipids Modulate the Transporter Associated with Antigen Processing (TAP)*

    Science.gov (United States)

    Schölz, Christian; Parcej, David; Ejsing, Christer S.; Robenek, Horst; Urbatsch, Ina L.; Tampé, Robert

    2011-01-01

    The transporter associated with antigen processing (TAP) plays a key role in adaptive immunity by translocating proteasomal degradation products from the cytosol into the endoplasmic reticulum lumen for subsequent loading onto major histocompatibility (MHC) class I molecules. For functional and structural analysis of this ATP-binding cassette complex, we established the overexpression of TAP in the methylotrophic yeast Pichia pastoris. Screening of optimal solubilization and purification conditions allowed the isolation of the heterodimeric transport complex, yielding 30 mg of TAP/liter of culture. Detailed analysis of TAP function in the membrane, solubilized, purified, and reconstituted states revealed a direct influence of the native lipid environment on activity. TAP-associated phospholipids, essential for function, were profiled by liquid chromatography Fourier transform mass spectrometry. The antigen translocation activity is stimulated by phosphatidylinositol and -ethanolamine, whereas cholesterol has a negative effect on TAP activity. PMID:21357424

  17. Parallel processing of two-dimensional Sn transport calculations

    International Nuclear Information System (INIS)

    Uematsu, M.

    1997-01-01

    A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation

  18. Simulation of business processes of processing and distribution of orders in transportation

    Directory of Open Access Journals (Sweden)

    Ольга Ігорівна Проніна

    2017-06-01

    Full Text Available Analyzing modern passenger transportation in Ukraine, we can conclude that with the increasing number of urban population the necessity to develop passenger traffic, as well as to improve the quality of transport services is increasing too. The paper examines the three existing models of private passenger transportation (taxi: a model with the use of dispatching service, without dispatching service model and a mixed model. An algorithm of getting an order, processing it, and its implementation according to the given model has been considered. Several arrangements schemes that characterize the operation of the system have been shown in the work as well. The interrelation of the client making an order and the driver who receives the order and executes it has been represented, the server being a connecting link between the customer and the driver and regulating the system as a whole. Business process of private passenger transportation without dispatching service was simulated. Basing on the simulation results it was proposed to supplement the model of private transportation by the making advice system, as well as improving the car selection algorithm. Advice system provides the optimum choice of the car, taking into account a lot of factors. And it will also make it possible to use more efficiently the specific additional services provided by the drivers. Due to the optimization of the order handling process it becomes possible to increase the capacity of the drivers thus increasing their profits. Passenger transportation without the use of dispatching service has some weak points and they were identified. Application of the system will improve transport structure in modern conditions, and improve the transportation basing on modern operating system

  19. La teoria neoclassica della crescita e della distribuzione (Neoclassical Theory of growth and Income Distribution

    Directory of Open Access Journals (Sweden)

    Robert M. Solow

    2000-05-01

    Full Text Available The paper surveys the neoclassical theory of growth. As a preliminary, the meaning of the adjective "neoclassical" is discussed. The basic model is then sketched, and the conditions ensuring a stationary state are illustrated. The issue of the convergence to a stationary state (and that of the speed of convergence is further considered. A discussion of "primary factors" opens the way to the "new" theory of growth, with endogenous technical progress. A number of extensions of the basic model are then recalled: two-sector and multi-sectoral models, overlapping generations models, the role of money in growth models.

  20. Evaluation of negative environmental impacts of electricity generation: Neoclassical and institutional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sang-Hoon Kim [University of Kyoto (Japan). Graduate School of Economics

    2007-01-15

    Neoclassical and institutional economics have developed different theories and methodologies for evaluating environmental and social impacts of electricity generation. The neoclassical approach valuates external costs, and the institutional approach uses social cost valuation and MCDM methods. This paper focuses on three dimensions: theoretical and methodological backgrounds; critical review of specific studies: methodologies, results, and limitations; and discussing their results and implications for environmental policy and further research. The two approaches lead to a common conclusion that fossil fuels and nuclear power show the highest environmental impact. Despite the common conclusion, the conclusion has limited implications for environmental policy because of the weakness of their methodologies. (author)

  1. Evaluation of negative environmental impacts of electricity generation: Neoclassical and institutional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Hoon [Graduate School of Economics, University of Kyoto, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)]. E-mail: shkim7305@hotmail.com

    2007-01-15

    Neoclassical and institutional economics have developed different theories and methodologies for evaluating environmental and social impacts of electricity generation. The neoclassical approach valuates external costs, and the institutional approach uses social cost valuation and MCDM methods. This paper focuses on three dimensions: theoretical and methodological backgrounds; critical review of specific studies: methodologies, results, and limitations; and discussing their results and implications for environmental policy and further research. The two approaches lead to a common conclusion that fossil fuels and nuclear power show the highest environmental impact. Despite the common conclusion, the conclusion has limited implications for environmental policy because of the weakness of their methodologies.

  2. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  3. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  4. Hydrological balance and water transport processes of partially sealed soils

    Science.gov (United States)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  5. Transport Infrastructure in the Process of Cataloguing Brownfields

    Science.gov (United States)

    Kramářová, Zuzana

    2017-10-01

    To begin with, the identification and follow-up revitalisation of brownfields raises a burning issue in territorial planning as well as in construction engineering. This phenomenon occurs not only in the Czech Republic and Europe, but also world-wide experts conduct its careful investigation. These issues may be divided into several areas. First, it is identifying and cataloguing single territorial localities; next, it means a complex process of locality revitalisation. As a matter of fact, legislative framework represents a separate area, which is actually highly specific in individual countries in accordance with the existing law, norms and regulations (it concerns mainly territorial planning and territory segmentation into appropriate administrative units). Legislative base of the Czech Republic was analysed in an article at WMCAUS in 2016. The solution of individual identification and following cataloguing of brownfields is worked out by Form of Regional Studies within the Legislation of the Czech Republic. Due to huge the scale of issues to be tackled, their content is only loosely defined in regard to Building Act and its implementing regulations, e.g. examining the layout of future construction in the area, locating architecturally or otherwise interesting objects, transport or technical infrastructure management, tourism, socially excluded localities etc. Legislative base does not exist, there is no common method for identifying and cataloguing brownfields. Therefore, individual catalogue lists are subject to customer’s requirements. All the same, the relevant information which the database contains may be always examined. One of them is part about transport infrastructure. The information may be divided into three subareas - information on transport accessibility of the locality, information on the actual infrastructure in the locality and information on the transport accessibility of human resources.

  6. Integrating climate change into the transportation planning process : final report

    Science.gov (United States)

    2008-07-01

    The objective of this study is to advance the practice and application of transportation planning among state, regional, and local transportation planning agencies to successfully meet growing concerns about the relationship between transportation an...

  7. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  8. Reported Design Processes for Accessibility in Rail Transport

    DEFF Research Database (Denmark)

    Herriott, Richard; Cook, Sharon

    2014-01-01

    ). The research found that the role of users in the design process of manufacturers was limited and that compliance with industry standards was the dominant means to achieving accessibility goals. Design consultancies were willing to apply more user-centred design if the client requested it. Where operators were......Accessibility is a fundamental requirement in public transport (PT) yet there exists little research on design for accessibility or inclusive design (ID) in this area. This paper sets out to discover what methods are used in the rail sector to achieve accessibility goals and to examine how far...... these methods deviate from user-centred and ID norms. Semi-structured interviews were conducted with nine rolling stock producers, operators and design consultancies. The purpose was to determine if ID design methods are used explicitly and the extent to which the processes used conformed to ID (if at all...

  9. Features, Events and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    P. Persoff

    2005-08-04

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  10. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Persoff, P.

    2004-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  11. Features, Events and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    P. Persoff

    2005-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  12. Efficient processing of transportation surveillance videos in the compressed domain

    Science.gov (United States)

    Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.

    2013-10-01

    Video surveillance is used extensively in intelligent transportation systems to enforce laws, collect tolls, and regularize traffic flow. Benefits to society include reduced fuel consumption and emissions, improved safety, and reduced traffic congestion. These video cameras installed at traffic lights, highways, toll booths, etc., continuously capture video and hence generate a vast amount of data that are stored in large databases. The captured video is typically compressed before being transmitted and/or stored. While all the archived information is present in the compressed video, most current applications operate on uncompressed video. The aim is to improve the efficiency of processing by utilizing features of the compression process and the compressed video stream. Key methods that are employed involve intelligent selection of reference frames (I-frames) and exploitation of the compression motion vectors. Although specific applications in the transportation imaging domain are presented, the methods proposed here can generally impact the ability to mine vast amounts of video data for usable information in many diverse settings. Applications presented include rapid search for target vehicles (Amber Alert, Silver Alert, stolen car, etc.), vehicle counting, stop sign/light enforcement, and vehicle speed estimation.

  13. Use of GIS technologies to facilitate the transportation project programming process.

    Science.gov (United States)

    2008-05-01

    Transportation project programming in a transportation agency is a process of matching : potential projects with available funds to accomplish the agencys mission and goals of a : given period of time. Result of this process is normally a transpor...

  14. Control of sawteeth and neo-classical tearing modes in tokamaks using electron cyclotron waves

    NARCIS (Netherlands)

    Baar, M.R. de; Bongers, W.A.; Berkel, M. van; Doelman, N.J.; Hennen, B.A.; Nuij, P.; Oosterbeek, J.W.; Steinbuch, M.; Westerhof, E.; Witvoet, G.

    2011-01-01

    Resistive magneto-hydrodynamic instabilities are expected to limit the performance of nuclear fusion reactors. Prime examples are the sawtooth instability and the neoclassical tearing modes. The sawtooth instability will affect the refueling of the plasma core and the fast particle concentration. In

  15. Neoclassical and Institutional Economics as Foundations for Human Resource Development Theory

    Science.gov (United States)

    Wang, Greg G.; Holton, Elwood F., III

    2005-01-01

    In an effort to more comprehensively understand economics as a foundation of human resource development (HRD), this article reviews economic theories and models pertinent to HRD research and theory building. By examining neoclassical and neoinstitutional schools of contemporary economics, especially the screening model and the internal labor…

  16. Is China becoming more Aggressive? A Neo-classical Realist Analysis

    DEFF Research Database (Denmark)

    Sørensen, Camilla T. N.

    2013-01-01

    In this article I seek to improve the dominant neorealist analysis of China's rise. I offer a neoclassical realist analytical framework in order to identify the influence of certain Chinese domestic developments and priorities on Chinese foreign and security policy behavior. Rather than reflecting...

  17. Anthropic Reasoning about Fine-Tuning, and Neoclassical Cosmology: Providence, Omnipresence, and Observation Selection Theory

    Science.gov (United States)

    Walker, Theodore, Jr.

    2011-10-01

    Anthropic reasoning about observation selection effects upon the appearance of cosmic providential fine-tuning (fine-tuning that provides for life) is often motivated by a desire to avoid theological implications (implications favoring the idea of a divine cosmic provider) without appealing to sheer lucky-for-us-cosmic-jackpot happenstance and coincidence. Cosmic coincidence can be rendered less incredible by appealing to a multiverse context. Cosmic providence can be rendered non-theological by appealing to an agent-less providential purpose, or by appealing to less-than-omnipresent/local providers, such as alien intelligences creating life- providing baby universes. Instead of choosing either cosmic coincidence or cosmic providence, as though they were mutually exclusive; it is better to accept both. Neoclassical thought accepts coincidence and providence, plus many local providers and one omnipresent provider. Moreover, fundamental observation selection theory should distinguish the many local observers of some events from the one omnipresent observer of all events. Accepting both coincidence and providence avoids classical theology (providence without coincidence) and classical atheism (coincidence without providence), but not neoclassical theology (providence with coincidence). Cosmology cannot avoid the idea of an all-inclusive omnipresent providential dice-throwing living-creative whole of reality, an idea essential to neoclassical theology, and to neoclassical cosmology.

  18. The role of asymmetries in the growth and suppression of neoclassical tearing modes

    NARCIS (Netherlands)

    De Lazzari, D.; Westerhof, E.

    2011-01-01

    The evolution of neoclassical tearing modes (NTMs) is usually described by the generalized Rutherford equation for a symmetric magnetic island. Despite the success of this representation, various experiments have found the evidence of asymmetries in the island geometry. A generalization of the model

  19. STATE OF TRANSPORT PROCESSES FOR REPAIRING AND ASPHALTING OF ASPHALT ROADS AND WAYS THEIR DEVELOPMENT

    OpenAIRE

    Nikolaev N. N.; Berezhnaya M. S.

    2015-01-01

    The article explains the importance of the transport process when performing repair jobs of asphalt roads. The scheme of the technological process was drawn up; job steps were identified, while the latter may be characterized by non-productive downtime of transport as well as that one of technological machines. We have analyzed the following steps of the flowchart of the road concrete mix transportation: the preparation of the road concrete mix for transportation, loading, transportation, unl...

  20. Bounded rational choice behaviour: applications in transport

    DEFF Research Database (Denmark)

    Jensen, Anders Fjendbo

    2016-01-01

    Even though the theory of rational behaviour has been challenged for almost 100 years, the dominant approach within the field of transport has been based upon the assumptions of neoclassical economics that we live in a world of rational decision makers who always have perfect knowledge and aim to...... and limited processing may occur due to time constraints, low involvement in the decision at hand, relying on habits or the task requiring too high a mental effort....... to maximise some subjective measure. Where other fields, for example within the social sciences and psychology, have made serious efforts to explore alternative models derived from principles of bounded rationality, this direction has begun to take speed within transport applications only recently. Bounded...

  1. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    K. Economy

    2004-11-16

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  2. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    S. Kuzio

    2005-01-01

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  3. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    S. Kuzio

    2005-08-20

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  4. Moisture origin and transport processes in Colombia, northern South America

    Science.gov (United States)

    Hoyos, I.; Dominguez, F.; Cañón-Barriga, J.; Martínez, J. A.; Nieto, R.; Gimeno, L.; Dirmeyer, P. A.

    2018-02-01

    We assess the spatial structure of moisture flux divergence, regional moisture sources and transport processes over Colombia, in northern South America. Using three independent methods the dynamic recycling model (DRM), FLEXPART and the Quasi-isentropic back-trajectory (QIBT) models we quantify the moisture sources that contribute to precipitation over the region. We find that moisture from the Atlantic Ocean and terrestrial recycling are the most important sources of moisture for Colombia, highlighting the importance of the Orinoco and Amazon basins as regional providers of atmospheric moisture. The results show the influence of long-range cross-equatorial flow from the Atlantic Ocean into the target region and the role of the study area as a passage of moisture into South America. We also describe the seasonal moisture transport mechanisms of the well-known low-level westerly and Caribbean jets that originate in the Pacific Ocean and Caribbean Sea, respectively. We find that these dynamical systems play an important role in the convergence of moisture over western Colombia.

  5. Transport of a multiple ion species plasma in the Pfirsch--Schluter regime

    International Nuclear Information System (INIS)

    Hirshman, S.P.

    1976-10-01

    The classical parallel friction coefficients, which relate the collisional friction forces to the flow of particles and heat along the magnetic field, are calculated for a multiple ion species plasma. In the short mean free path regime, the neoclassical Pfirsch--Schlueter transport coefficients for a toroidally confined multispecies plasma are computed in terms of the classical friction coefficients. The dependence of the neoclassical cross-field transport on the equilibration of the parallel ion temperature profiles is determined

  6. A Cloud Computing Model for Optimization of Transport Logistics Process

    Directory of Open Access Journals (Sweden)

    Benotmane Zineb

    2017-09-01

    Full Text Available In any increasing competitive environment and even in companies; we must adopt a good logistic chain management policy which is the main objective to increase the overall gain by maximizing profits and minimizing costs, including manufacturing costs such as: transaction, transport, storage, etc. In this paper, we propose a cloud platform of this chain logistic for decision support; in fact, this decision must be made to adopt new strategy for cost optimization, besides, the decision-maker must have knowledge on the consequences of this new strategy. Our proposed cloud computing platform has a multilayer structure; this later is contained from a set of web services to provide a link between applications using different technologies; to enable sending; and receiving data through protocols, which should be understandable by everyone. The chain logistic is a process-oriented business; it’s used to evaluate logistics process costs, to propose optimal solutions and to evaluate these solutions before their application. As a scenario, we have formulated the problem for the delivery process, and we have proposed a modified Bin-packing algorithm to improve vehicles loading.

  7. Modelling of transport processes in porous media for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Kangas, M.

    1996-12-31

    Flows in porous media are encountered in many branches of technology. In these phenomena, a fluid of some sort is flowing through porous matrix of a solid medium. Examples of the fluid are water, air, gas and oil. The solid matrix can be soil, fissured rock, ceramics, filter paper, etc. The flow is in many cases accompanied by transfer of heat or solute within the fluid or between the fluid and the surrounding solid matrix. Chemical reactions or microbiological processes may also be taking place in the system. In this thesis, a 3-dimensional computer simulation model THETA for the coupled transport of fluid, heat, and solute in porous media has been developed and applied to various problems in the field of energy research. Although also applicable to porous medium applications in general, the version of the model described and used in this work is intended for studying the transport processes in aquifers, which are geological formations containing groundwater. The model highlights include versatile input and output routines, as well as modularity which, for example, enables an easy adaptation of the model for use as a subroutine in large energy system simulations. Special attention in the model development has been attached to high flow conditions, which may be present in Nordic esker aquifers located close to the ground surface. The simulation model has been written with FORTRAN 77 programming language, enabling a seamless operation both in PC and main frame environments. For PC simulation, a special graphic user interface has been developed. The model has been used with success in a wide variety of applications, ranging from basic thermal analyses to thermal energy storage system evaluations and nuclear waste disposal simulations. The studies have shown that thermal energy storage is feasible also in Nordic high flow aquifers, although at the cost of lower recovery temperature level, usually necessitating the use of heat pumps. In the nuclear waste studies, it

  8. Modeling transport phenomena and uncertainty quantification in solidification processes

    Science.gov (United States)

    Fezi, Kyle S.

    Direct chill (DC) casting is the primary processing route for wrought aluminum alloys. This semicontinuous process consists of primary cooling as the metal is pulled through a water cooled mold followed by secondary cooling with a water jet spray and free falling water. To gain insight into this complex solidification process, a fully transient model of DC casting was developed to predict the transport phenomena of aluminum alloys for various conditions. This model is capable of solving mixture mass, momentum, energy, and species conservation equations during multicomponent solidification. Various DC casting process parameters were examined for their effect on transport phenomena predictions in an alloy of commercial interest (aluminum alloy 7050). The practice of placing a wiper to divert cooling water from the ingot surface was studied and the results showed that placement closer to the mold causes remelting at the surface and increases susceptibility to bleed outs. Numerical models of metal alloy solidification, like the one previously mentioned, are used to gain insight into physical phenomena that cannot be observed experimentally. However, uncertainty in model inputs cause uncertainty in results and those insights. The analysis of model assumptions and probable input variability on the level of uncertainty in model predictions has not been calculated in solidification modeling as yet. As a step towards understanding the effect of uncertain inputs on solidification modeling, uncertainty quantification (UQ) and sensitivity analysis were first performed on a transient solidification model of a simple binary alloy (Al-4.5wt.%Cu) in a rectangular cavity with both columnar and equiaxed solid growth models. This analysis was followed by quantifying the uncertainty in predictions from the recently developed transient DC casting model. The PRISM Uncertainty Quantification (PUQ) framework quantified the uncertainty and sensitivity in macrosegregation, solidification

  9. Effect of impurities on kinetic transport processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Stefanie

    2010-12-10

    Within the framework of this thesis, different problems arising in connection with impurities have been investigated. Collisional damping of zonal flows in tokamaks: Since the Coulomb collision frequency increases with increasing ion charge, heavy, highly charged impurities play an important role in this process. The effect of such impurities on the linear response of the plasma to an external potential perturbation, as caused by zonal flows, is calculated with analytical methods. In comparison with a pure plasma, the damping of the flows occurs, as expected, considerably faster; for experimentally relevant parameters, the enhancement exceeds the effective charge Z{sub eff} of the plasma. Impurity transport driven by microturbulence in tokamaks: With regard to impurities, it is especially important whether the resulting flows are directed inwards or outwards, since they are deleterious for core energy confinement on the one hand, but on the other hand help protecting plasma-facing components from too high energy fluxes in the edge region. A semi-analytical model is presented describing the resulting impurity fluxes and the stability boundary of the underlying mode. The main goal is to bridge the gap between, on the one hand, costly numerical simulations, which are applicable to a broad range of problems but yield scarcely traceable results, and, on the other hand, analytical theory, which might ease the interpretation of the results but is so far rather rudimentary. The model is based on analytical formulae whenever possible but resorts to a numerical treatment when the approximations necessary for an analytical solution would lead to a substantial distortion of the results. Both the direction of the impurity flux and the stability boundary are found to depend sensitively on the plasma parameters such as the impurity density and the temperature gradient. Pfirsch-Schlueter transport in stellarators: Due to geometry effects, collisional transport plays a much more

  10. Measuring hydrodynamics and sediment transport processes in the Dee Estuary

    Directory of Open Access Journals (Sweden)

    R. Bolaños

    2010-06-01

    Full Text Available The capability of monitoring and prediction in the marine environment provides information that may allow sustainable development of coastal and offshore regions. Therefore, the continuous measurement of environmental processes becomes an important source of information. The present paper shows data collected during 6 years, and in particular during 2008, in the Dee Estuary. The aim of the data collection is to improve the observations of the mobile sediments in coastal areas and its forcing hydrodynamics and turbulence. Data includes information from the deployment of instrumented rigs measuring sediment in suspension, currents, waves, sea level, sediment size and bedforms as well as cruise work including grab sampling, CTD profiles and side-scan sonar. The data cover flood and ebb tides during spring and neap periods with moderate and mild wave events, thus, having a good coverage of the processes needed to improve knowledge of sediment transport and the parameterizations used in numerical modelling. The data, in raw and treated, are being banked at BODC (British Oceanographic Data Centre, http://www.bodc.ac.uk/ which is the formal British organization for looking after and distributing data concerning the marine environment.

  11. Measuring hydrodynamics and sediment transport processes in the Dee Estuary

    Science.gov (United States)

    Bolaños, R.; Souza, A.

    2010-06-01

    The capability of monitoring and prediction in the marine environment provides information that may allow sustainable development of coastal and offshore regions. Therefore, the continuous measurement of environmental processes becomes an important source of information. The present paper shows data collected during 6 years, and in particular during 2008, in the Dee Estuary. The aim of the data collection is to improve the observations of the mobile sediments in coastal areas and its forcing hydrodynamics and turbulence. Data includes information from the deployment of instrumented rigs measuring sediment in suspension, currents, waves, sea level, sediment size and bedforms as well as cruise work including grab sampling, CTD profiles and side-scan sonar. The data cover flood and ebb tides during spring and neap periods with moderate and mild wave events, thus, having a good coverage of the processes needed to improve knowledge of sediment transport and the parameterizations used in numerical modelling. The data, in raw and treated, are being banked at BODC (British Oceanographic Data Centre, blank">http://www.bodc.ac.uk/) which is the formal British organization for looking after and distributing data concerning the marine environment.

  12. Features, Events, and Processes in UZ and Transport

    Energy Technology Data Exchange (ETDEWEB)

    P. Persoff

    2004-11-06

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  13. Interfacial phenomena and microscale transport processes in evaporating ultrathin menisci

    Science.gov (United States)

    Panchamgam, Sashidhar S.

    The study of interfacial phenomena in the three-phase contact line region, where a liquid-vapor interface intersects a solid surface, is of importance to many equilibrium and non-equilibrium processes. However, lack of experimental data on microscale transport processes controlled by interfacial phenomena has restricted progress. This thesis includes a high resolution image analyzing technique, based on reflectivity measurements, that accurately measures the thickness, contact angle and curvature profiles of ultrathin films, drops and curved menisci. In particular, the technique was used to emphasize measurements for thicknesses, delta contact line region. Experiments included flow instabilities in HFE-7000 meniscus on quartz (System S1), the spreading of a pentane (System S2 and S3), octane (System S4) and binary mixture menisci (System S5) during evaporation. The main objectives of the work are to present a new experimental technique, new observations, new data, and the use of a simple control volume, continuum and Kelvin-Clapeyron models to discuss the results. In addition, the interplay and importance of the microscopic fundamental forces, i.e., van der Waals forces, capillary forces and Marangoni stresses, during evaporation of the wetting fluids on the quartz surface is emphasized.

  14. Particle transport model sensitivity on wave-induced processes

    Science.gov (United States)

    Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna

    2017-04-01

    Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.

  15. Application studies of RFID technology in the process of coal logistics transport

    Science.gov (United States)

    Qiao, Bingqin; Chang, Xiaoming; Hao, Meiyan; Kong, Dejin

    2012-04-01

    For quality control problems in coal transport, RFID technology has been proposed to be applied to coal transportation process. The whole process RFID traceability system from coal production to consumption has been designed and coal supply chain logistics tracking system integration platform has been built, to form the coal supply chain traceability and transport tracking system and providing more and more transparent tracking and monitoring of coal quality information for consumers of coal. Currently direct transport and combined transport are the main forms of coal transportation in China. The means of transport are cars, trains and ships. In the booming networking environment of RFID technology, the RFID technology will be applied to coal logistics and provide opportunity for the coal transportation tracking in the process transportation.

  16. Transport and mass exchange processes in sand and gravel aquifers (v.1)

    International Nuclear Information System (INIS)

    Moltyaner, G.

    1990-01-01

    The objectives of this conference were to exchange information on promising field measurement techniques used for the characterization of spatial variability of geologic formations and on new methods used for quantifying the effect of spatial variability on groundwater flow and transport of materials; to discuss novel developments in the theory of transport processes and simulation methods; and to present views and opinions on future initiatives and directions in the design of large-scale field tracer experiments and the development of conceptual and mathematical models of transport and mass exchange processes. The 46 papers presented in these proceedings are divided into six sections: field studies of transport processes; groundwater tracers and novel field measurement techniques; promising methods and field measurement techniques for quantifying the effect of geological heterogeneities on groundwater flow and transport; novel developments in the theory of transport processes; numerical modelling of transport and mass exchange processes; and field and modelling studies of mass exchange processes. (L.L.)

  17. The relationship of title VI requirements to Florida's transportation planning process.

    Science.gov (United States)

    2011-10-01

    The Florida Department of Transportation (FDOT) and metropolitan planning organizations (MPO) in Florida are : required to address Title VI and environmental justice (EJ) in the transportation planning process. This study : reviews those practices an...

  18. Physical processes that control droplet transport in rock fracture systems

    Science.gov (United States)

    Hay, Katrina Moran

    Aquifer recharge is generally driven by fluids that move from the Earths surface to groundwater through the unsaturated zone, also known as the vadose zone. When the vadose zone is fractured, fluids, which may include contaminants, can move through the fracture network as well as the porous matrix. Such a network of fractures can provide a more rapid path, thereby reducing contact time between the fluid and the matrix. Contact time allows for exchange of solutes between the fluid and the porous matrix, thus being able to quantify contact time is important. In addition, the behavior of fluids within a fracture network has been found to be very complex; large-scale models are yet not able to predict transport paths or flux rates. Because, small-scale flow phenomena can strongly influence the large-scale behavior of fluid movement through systems of fractures, it is important that small-scale dynamics be properly understood in order to improve our predictive capabilities in these complex systems. Relevant flow dynamics includes the impact of boundary conditions, fluid modes that evolve in time and space and transitions between modes. This thesis presents three investigations aimed at understanding the physical processes governing fluid movement in unsaturated fractures, with the ultimate goal of improving predictive relationships for fluid transport in rock fracture systems. These investigations include a theoretical analysis of the wetting of a rough surface, an experimental study of the dynamics of fluid droplets (or liquid bridges) moving in a single fracture and a theoretical analysis of the movement of a fluid droplet encountering a fracture intersection. Each investigation is motivated by environmental applications. Development of an analytical equation for the wetting of a rough surface is based on a balance between capillary forces and frictional resistive forces. The resulting equation predicts movement of the liquid invasion front driven solely by the

  19. Transport in a small aspect ratio torus

    International Nuclear Information System (INIS)

    White, R.B.; Gates, D.A.; Mynick, H.E.

    2005-01-01

    Transport theory in toroidal devices often assumes large aspect ratio and also assumes the poloidal field is small compared to the toroidal field. These assumptions result in transport which in the low collision rate limit is dominated by banana orbits, giving the largest collisionless excursion of a particle from an initial flux surface. However in a small aspect ratio device the gyro radius may be larger than the banana excursion, resulting in significant deviations from the standard neoclassical predictions. In this paper we report numerical simulation of diffusion in low and high beta low aspect ratio equilibria. We also sketch an analytic theory. The diffusion, which we refer to as omniclassical, is a combination of neoclassical and properly averaged classical effects, and can be two or three times the neoclassical value. Good agreement of the analytic theory with numerical simulations is obtained. (author)

  20. Space Transportation System Liftoff Debris Mitigation Process Overview

    Science.gov (United States)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  1. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  2. Denting the Hub, or Strengthening the Spokes? A Neoclassical Realism Analysis of New Security Trends in the Pacific

    Science.gov (United States)

    2009-06-01

    National Security Advisor Steve Hadley to the National Bureau of Asian Research Strategic Asia Forum ( Ritz - Carlton Hotel, Washington, D.C.: 5 April... Ritz - Carlton Hotel, Washington, D.C., 5 April 1996. Ripsman, Norrin M. "Neoclassical Realism and Domestic Interest Groups." In Neoclassical...Realism and its concept of a variable intervening in foreign policy decision-making. In the literature, the intervening variable is often identified as a

  3. La teoria neoclassica della crescita e della distribuzione (Neoclassical Theory of growth and Income Distribution

    Directory of Open Access Journals (Sweden)

    Robert M. Solow

    2012-10-01

    Full Text Available The paper surveys the neoclassical theory of growth. As a preliminary, the meaning of the adjective "neoclassical" is discussed. The basic model is then sketched, and the conditions ensuring a stationary state are illustrated. The issue of the convergence to a stationary state (and that of the speed of convergence is further considered. A discussion of "primary factors" opens the way to the "new" theory of growth, with endogenous technical progress. A number of extensions of the basic model are then recalled: two-sector and multi-sectoral models, overlapping generations models, the role of money in growth models.       JEL Codes: O41, E25Keywords: Distribution, Growth, Income Distribution, Income

  4. Neoclassical Drift of Circulating Orbits Due toToroidal Electric Field in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Qin; Guan, Xiaoyin; Fisch, Nathaniel J.

    2011-07-19

    In tokamaks, Ware pinch is a well known neoclassical effect for trapped particles in response to a toroidal electric field. It is generally believed that there exists no similar neoclassical effect for circulating particles without collisions. However, this belief is erroneous, and misses an important effect. We show both analytically and numerically that under the influence of a toroidal electric field parallel to the current, the circulating orbits drift outward toward the outer wall with a characteristic velocity O ({var_epsilon}{sup -1}) larger than the E x B velocity, where {var_epsilon} is the inverse aspect-ratio of a tokamak. During a RF overdrive, the toroidal electric field is anti-parallel to the current. As a consequence, all charged particles, including backward runaway electrons, will drift inward towards the inner wall.

  5. Neoclassical theory of electromagnetic interactions a single theory for macroscopic and microscopic scales

    CERN Document Server

    Babin, Anatoli

    2016-01-01

    In this monograph, the authors present their recently developed theory of electromagnetic interactions. This neoclassical approach extends the classical electromagnetic theory down to atomic scales and allows the explanation of various non-classical phenomena in the same framework. While the classical Maxwell–Lorentz electromagnetism theory succeeds in describing the physical reality at macroscopic scales, it struggles at atomic scales. Here, quantum mechanics traditionally takes over to describe non-classical phenomena such as the hydrogen spectrum and de Broglie waves. By means of modifying the classical theory, the approach presented here is able to consistently explain quantum-mechanical effects, and while similar to quantum mechanics in some respects, this neoclassical theory also differs markedly from it. In particular, the newly developed framework omits probabilistic interpretations of the wave function and features a new fundamental spatial scale which, at the size of the free electron, is much lar...

  6. Neoclassical Drift of Circulating Orbits Due toToroidal Electric Field in Tokamaks

    International Nuclear Information System (INIS)

    Qin, Hong; Guan, Xiaoyin; Fisch, Nathaniel J.

    2011-01-01

    In tokamaks, Ware pinch is a well known neoclassical effect for trapped particles in response to a toroidal electric field. It is generally believed that there exists no similar neoclassical effect for circulating particles without collisions. However, this belief is erroneous, and misses an important effect. We show both analytically and numerically that under the influence of a toroidal electric field parallel to the current, the circulating orbits drift outward toward the outer wall with a characteristic velocity O ((var e psilon) -1 ) larger than the E x B velocity, where (var e psilon) is the inverse aspect-ratio of a tokamak. During a RF overdrive, the toroidal electric field is anti-parallel to the current. As a consequence, all charged particles, including backward runaway electrons, will drift inward towards the inner wall.

  7. Different stages and status of vertical transporting process of Cu in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Li, Haixia; Wang, Qi; Zhang, Xiaolong; Ding, Jun

    2017-12-01

    Understanding the stages and status of vertical transporting process of pollutant in marine bay is essential to pollution control. This paper analyzed the stages and status of Cu’s vertical transporting process in waters in Jiaozhou Bay. Results showed that the vertical transporting process in waters in Jiaozhou Bay included four stages of 1) Cu was imported to the bay by major sources, 2) Cu was transported to surface waters, 3) Cu was transported from surface waters to sediment in sea bottom, and 4) Cu was fixed and buried in sediment. Furthermore, Cu’s vertical transporting process could be divided into seven status in detail, and he characteristics of the vertical transport process of Cu were also analyzed.

  8. Quantitative analysis of microtubule transport in growing nerve processes

    DEFF Research Database (Denmark)

    Ma*, Ytao; Shakiryanova*, Dinara; Vardya, Irina

    2004-01-01

    assumed that only a small fraction of MTs translocates along the axon by saltatory movement reminiscent of the fast axonal transport. Such intermittent "stop and go" MT transport has been difficult to detect or to exclude by using direct video microscopy methods. In this study, we measured...

  9. Quantitative analysis of microtubule transport in growing nerve processes

    DEFF Research Database (Denmark)

    Ma*, Ytao; Shakiryanova*, Dinara; Vardya, Irina

    2004-01-01

    the translocation of MT plus ends in the axonal shaft by expressing GFP-EB1 in Xenopus embryo neurons in culture. Formal quantitative analysis of MT assembly/disassembly indicated that none of the MTs in the axonal shaft were rapidly transported. Our results suggest that transport of axonal MTs is not required...

  10. Neoclassical tearing dynamo and self-sustainment of a bootstrapped tokamak

    International Nuclear Information System (INIS)

    Bhattacharjee, A.; Yuan, Y.

    1993-01-01

    It has been suggested by Boozer that a completely bootstrapped tokamak which requires no seed current is possible due to the open-quotes dynamo effectclose quotes caused by tearing modes. Numerical calculations have been carried out by Weening and Boozer confirming the feasibility of a completely bootstrapped tokamak. These calculations use the resistive MHD model, with the pressure profile held arbitrarily fixed. Several questions naturally arise. Is resistive MHD a good model in the low-collisionality regime of present-day tokamaks in which large bootstrap currents have been observed? Is it consistent to rely on pressure gradients to provide the bootstrap current, but then omit pressure gradients in investigating the tearing instabilities that provide the dynamo effect? And how realistic is it to assume that a strong pressure gradient is sustainable in the central region where current relaxation is expected to produce a dynamo effect? In this paper, the authors investigate the dynamo effect in a bootstrapped tokamak within the framework of the neoclassical MHD model which is more realistic than resistive MHD for the regime in question. Since neoclassical MHD includes trapped-particle effects, it can, in principle, provide an additional mechanism for exciting tearing modes which are known to be stabilized by temperature gradients. They investigate the properties of the dynamo field var-epsilon, and find that the original definition var-epsilon = 1 x b 1 > used in incompressible resistive MHD is no longer adequate; neoclassical MHD forces a redefinition of var-epsilon due to the requirements imposed by the helicity conservation constraint. Thus a completely steady-state bootstrapped tokamak sustained by a neoclassical tearing dynamo is realizable. However, they are pessimistic that such a tokamak, even if it were resistively stable, would be stable to ideal kink modes

  11. How energy conversion drives economic growth far from the equilibrium of neoclassical economics

    International Nuclear Information System (INIS)

    Kümmel, Reiner; Lindenberger, Dietmar

    2014-01-01

    Energy conversion in the machines and information processors of the capital stock drives the growth of modern economies. This is exemplified for Germany, Japan, and the USA during the second half of the 20th century: econometric analyses reveal that the output elasticity, i.e. the economic weight, of energy is much larger than energy's share in total factor cost, while for labor just the opposite is true. This is at variance with mainstream economic theory according to which an economy should operate in the neoclassical equilibrium, where output elasticities equal factor cost shares. The standard derivation of the neoclassical equilibrium from the maximization of profit or of time-integrated utility disregards technological constraints. We show that the inclusion of these constraints in our nonlinear-optimization calculus results in equilibrium conditions, where generalized shadow prices destroy the equality of output elasticities and cost shares. Consequently, at the prices of capital, labor, and energy we have known so far, industrial economies have evolved far from the neoclassical equilibrium. This is illustrated by the example of the German industrial sector evolving on the mountain of factor costs before and during the first and the second oil price explosion. It indicates the influence of the ‘virtually binding’ technological constraints on entrepreneurial decisions, and the existence of ‘soft constraints’ as well. Implications for employment and future economic growth are discussed. (paper)

  12. How energy conversion drives economic growth far from the equilibrium of neoclassical economics

    Science.gov (United States)

    Kümmel, Reiner; Lindenberger, Dietmar

    2014-12-01

    Energy conversion in the machines and information processors of the capital stock drives the growth of modern economies. This is exemplified for Germany, Japan, and the USA during the second half of the 20th century: econometric analyses reveal that the output elasticity, i.e. the economic weight, of energy is much larger than energy's share in total factor cost, while for labor just the opposite is true. This is at variance with mainstream economic theory according to which an economy should operate in the neoclassical equilibrium, where output elasticities equal factor cost shares. The standard derivation of the neoclassical equilibrium from the maximization of profit or of time-integrated utility disregards technological constraints. We show that the inclusion of these constraints in our nonlinear-optimization calculus results in equilibrium conditions, where generalized shadow prices destroy the equality of output elasticities and cost shares. Consequently, at the prices of capital, labor, and energy we have known so far, industrial economies have evolved far from the neoclassical equilibrium. This is illustrated by the example of the German industrial sector evolving on the mountain of factor costs before and during the first and the second oil price explosion. It indicates the influence of the ‘virtually binding’ technological constraints on entrepreneurial decisions, and the existence of ‘soft constraints’ as well. Implications for employment and future economic growth are discussed.

  13. Thermodynamics of Irreversible Processes. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Levin, Michael; Gallucci, V. F.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes the application of irreversible thermodynamics to biology. It begins with…

  14. CO2-ECBM related coupled physical and mechanical transport processes

    Science.gov (United States)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  15. Regulation of transport processes across the tonoplast membrane

    Directory of Open Access Journals (Sweden)

    Oliver eTrentmann

    2014-09-01

    Full Text Available In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g. due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation.

  16. Effects of interacting magnetic islands on magnetic topology and plasma transport

    International Nuclear Information System (INIS)

    Hegna, C.C.; Callen, J.D.

    1991-01-01

    Density and temperature gradients via neoclassical effects can cause the growth of magnetic islands in the nonlinear Rutherford regime of tearing mode theory. As neighboring magnetic islands interact, profiles of the plasma density and temperature in the vicinity of the island separatrix flatten; thus, the free energy source for the magnetic perturbation is shut off. In addition, the diamagnetic flow velocity tends toward zero and thus drift wave effects are reduced. A model is presented that takes both the neoclassical pressure gradient effect and island interaction into account. The magnetic configuration is described as a bath of low to medium mode number (m congruent 3-10) magnetic islands whose amplitudes sporadically grow and decay (magnetic bubbling). The effects of magnetic islands produced by low to medium mode number magnetic perturbations are generally not addressed in statistical theories of transport due to magnetic turbulence, where coherent structures are mostly neglected and magnetic stochasticity is usually assumed because of island overlap. Consequently, the transport due to magnetic bubbling has a different character than that described by stochastic processes since the magnetic island width becomes the cross-field step size for plasma transport. These studies suggest the possibility that tokamak discharges have short-lived (approximately 1 msec) relatively coherent magnetic structures present. 4 refs

  17. Partial ages : Diagnosing transport processes by means of multiple clocks

    NARCIS (Netherlands)

    Mouchet, A.; Cornaton, F.; Deleersnijder, E.L.C.; Delhez, E.J.M.

    2016-01-01

    The concept of age is widely used to quantify the transport rate of tracers - or pollutants - in the environment. The age focuses only on the time taken to reach a given location and disregards other aspects of the path followed by the tracer parcel. To keep track of the subregions visited by the

  18. Continuous phosphorus measurements reveal catchment-scale transport processes

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.

    2012-01-01

    A small fraction of the nutrients used for agriculture is transported by rivers and artificial drainage networks to downstream waters. In lakes and coastal seas such as the Baltic Sea and the Gulf of Mexico these nutrients cause large-scale algal blooms and hypoxia and thus are a major

  19. Underground Coal Gasification: Rates of Post Processing Gas Transport

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Stanczyk, K.; Šolcová, Olga

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1707-1715 ISSN 0366-6352 R&D Projects: GA MŠk 7C12017 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gas ification * gas transport * textural properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  20. Elucidating the Roles of Transport Processes in Glucosinolate Distribution

    DEFF Research Database (Denmark)

    Madsen, Svend Roesen

    1 and GTR2 would influence the ability of the plant to defend itself against attackers. Infecting WT and gtr1gtr2 dKO leaves with the necrotic fungus Botrytis cinerea showed an increased susceptibility of the transporter mutant compared to WT. In a second biotic interaction, we infested WT and gtr1...

  1. Scaling and predicting solute transport processes in streams

    Science.gov (United States)

    R. González-Pinzón; R. Haggerty; M. Dentz

    2013-01-01

    We investigated scaling of conservative solute transport using temporal moment analysis of 98 tracer experiments (384 breakthrough curves) conducted in 44 streams located on five continents. The experiments span 7 orders of magnitude in discharge (10-3 to 103 m3/s), span 5 orders of magnitude in...

  2. 23 CFR 450.320 - Congestion management process in transportation management areas.

    Science.gov (United States)

    2010-04-01

    ... TRANSPORTATION PLANNING AND RESEARCH PLANNING ASSISTANCE AND STANDARDS Metropolitan Transportation Planning and... planning process in a TMA shall address congestion management through a process that provides for safe and... travel demand reduction and operational management strategies. (b) The development of a congestion...

  3. Scaling with toroidal current of impurity transport in ATC

    International Nuclear Information System (INIS)

    Marmar, E.S.; Cohen, S.A.; Cecchi, J.L.

    1976-06-01

    An experiment measuring the scaling with changing plasma conditions of a parameter characteristic of the transport of aluminum injected into the ATC tokamak is discussed. This parameter is the time after injection at which the photon signal from Al XI reaches its maximum. It is found that the data are in agreement with the predictions of a computer code which uses neoclassical theory in the Pfirsch-Schluter regime. An approximate model describing impurity transport in ATC is also presented. This model is utilized to calculate the expected scaling with current of the aluminum transport assuming classical, neoclassical and pseudoclassical forms for the diffusion coefficient. The data are in agreement with both the neoclassical and pseudoclassical results from this model

  4. Modeling field scale unsaturated flow and transport processes

    International Nuclear Information System (INIS)

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data

  5. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  6. System of business-processes management at motor-transport enterprise

    OpenAIRE

    Коgut, Y.

    2010-01-01

    The place of the system of business-processes management at motor-transport enterprise in the general system of management of the enterprise has been substantiated. The subsystems of strategic management, business-processes management of strategic orientation and current activity, processes of enterprise functioning management have been marked out. The system of motor-transport enterprise business-processes management has been formed, which, unlike the existing ones, is based on the system-cy...

  7. Analysis of transportation and handling system for advanced spent fuel management process

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Dong Hee; Yoon, J. S.; Park, B. S.; Ahn, S. H.; Kim, Y. H.; Jung, J. H.; Jin, J. H.; Park, G. Y.; Song, T. G. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    In this report, several devices which are used to safely transport and handle nuclear materials without scattering have been derived by analyzing the Advanced Management Process, object nuclear material and modules of process equipment and performing graphical simulation of transportation/handling by computers for the demonstration of the Advanced Spent Fuel Management Process. For verification, powder transportation vessel and handling device have been designed and manufactured. And several tests such as transporting, grappling, rotating the vessel have been performed. Also, the functional requirements of transportation/handling equipment have been analyzed based on test results and process studies. The developed functional requirements in this research will be used as the design data for the Advanced Management Process. 6 refs., 25 figs., 6 tabs. (Author)

  8. Transport processes in partially saturate concrete: Testing and liquid properties

    Science.gov (United States)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  9. Magnetosheath excursion and the relevant transport process at the magnetopause

    Directory of Open Access Journals (Sweden)

    C. L. Cai

    2009-08-01

    Full Text Available A large-amplitude excursion of the magnetosheath (MS in quiet solar wind conditions on 17 March 2004 was recorded simultaneously by the Cluster and TC-1 spacecraft. During this period, the IMF Bz was entirely northward. The coherence between the bow shock motion and magnetopause (MP motion is revealed and the excursion velocities of the bow shock motion are analyzed. In addition, the relevant plasma transport phenomenon in the form of flux fluctuations below the ion gyrofrequency at the MP is exposed and is interpreted as manifestation of the drift instability. Correlated observations on charge accumulation and electrostatic potential perturbation are recorded by electron measurements in high energy regime, and also the eventual cross-field vortex motion in the nonlinear stage and the consequential mass exchange are exhibited. The present investigation gives some new insight into the MS plasma transport mechanism across the subsolar MP region in quiet solar wind conditions during a period of northward IMF.

  10. Determination of Bruising Damages of Tomato during Road Transportation Process

    Directory of Open Access Journals (Sweden)

    A Mansouri Alam

    2018-03-01

    Full Text Available Introduction The most important post-harvest mechanical damage is bruising. Bruising occurs during the stages of handling, transporting and packaging due to quasi-static and dynamic loads. Vibrations of tomato fruits during transportation by truck will decrease their quality. More than 2.5 million tons damages have been reported during tomato transportation in Iran. Therefore, it is necessary to recognize different parameters of damages during road transportation in order to detect and prevent bruising injury. Materials and Methods In this study, healthy Super Queen verity of tomatoes devoid of any corrosion and mechanical damage multipliers were used. Aaverage of 7 and 5 pieces of fruit in each length and width, respectively in 13*25*37 cm boxes with a capacity of 8 kg were arranged. The boxes were divided into 2 types of truck suspension (model M2631 AIMCO, manufactured in 2010 with air suspension and Nissan trucks 2400, manufactured in 2010 with suspension spring. Boxes were established in three different heights truck, floor truck, height of middle and top of truck, in addition to two different situation boxes on the front axle (S1 and rear axle (S2. In each situation, three levels of height (H1, floor truck, the truck (H2 and the truck (H3 there. The location of each sample inside the fruit boxes bottom row (Loc1 and top (Loc2 boxes marked with marker. In this study, two types of road, highway asphalt and asphalt secondary road was used for transportation. Trucks and vans had the same distance route about 400 km. Fruits were transferred to Hamadan agricultural college. Rheology lab test was a hit with the pendulum. In this study, the amount of energy absorbed from the index (as a parameter to determine the sensitivity and the fruits bruises were used. Hit test was done after transportation of fruits and transferring those to the laboratory in less than 2 hours. Impact energy products were considered higher than the dynamic submission

  11. Coping with Crises: A Neo-Classical View on Professions

    Directory of Open Access Journals (Sweden)

    Peter Münte

    2017-02-01

    Full Text Available The classical view in the sociology of professions is rooted in Parsons’ work. By using the term “profession,” this view tries to distinguish a class of occupations that serves a specific function in society. As is well known, such a functional view in the sociology of professions came under attack in the 1970s, when professionalization processes were increasingly analyzed in terms of interests and power. In this article, we have pointed out the theoretical and empirical relevance of a line of thought that emerged in the 1980s in the German-speaking academic world. It has revitalized a functional approach based on research into the interaction between professionals and their clients. The general idea that has emerged is that research into the microstructures of professional action could reveal a societal function that would explain the particular institutional features ascribed to professions.

  12. The principle of holism in post-neoclassical philosophy of history

    Directory of Open Access Journals (Sweden)

    Y. A. Dobrolyubska

    2014-02-01

    Full Text Available The principle of holism restores historical science tendency to grasp the past as a «whole matter» and raises the questions about the global synthesis, based on the integration of micro­ and makrohistory, narrative and metatheory. Post­neoclassical subsystem in the philosophy of history operates of the corresponding concept of truth. Scientific truth is always contextual. She stated subject to the methodological postulates, which designed a specific research situation. Historical studies of scientific search for truth is always associated with the study of specific historical events or historical building theories. Both approaches solve the problem of objectivity: a theoretical history try to discover the truth, liberated from specific features and history of events wishes to discover the truth, given in the particular nuances of the entire event. Based on the corresponding concept of truth post­neoclassical subsystem aims to reconstruct the historical reality in all its fullness, complexity and specificity. This subsystem comes to the fundamental principle of post­neoclassical philosophy of history – to the principle of holism. On the one hand this principle orients the historian to the need for a holistic study of the subject of research, on the other hand he directs the historian to the study of historical reality as a hierarchy of «integrality», which can not be reduced to the parts that make up. Also it is emphasized that the meaning of these parts must necessarily be present as a sense of the whole context.

  13. Gyrokinetic Calculations of the Neoclassical Radial Electric Field in Stellarator Plasmas

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.; Williams, J.; Boozer, A.H.; Lin, Z.

    2001-01-01

    A novel method to calculate the neoclassical radial electric field in stellarator plasmas is described. The method, which does not have the inconvenience of large statistical fluctuations (noise) of standard Monte Carlo technique, is based on the variation of the combined parallel and perpendicular pressures on a magnetic surface. Using a three-dimensional gyrokinetic delta f code, the calculation of the radial electric field in the National Compact Stellarator Experiment has been carried out. It is shown that a direct evaluation of radial electric field based on a direct calculation of the radial particle flux is not tractable due to the considerable noise

  14. Neo-classical theory of competition or Adam Smith's hand as mathematized ideology

    Science.gov (United States)

    McCauley, Joseph L.

    2001-10-01

    Orthodox economic theory (utility maximization, rational agents, efficient markets in equilibrium) is based on arbitrarily postulated, nonempiric notions. The disagreement between economic reality and a key feature of neo-classical economic theory was criticized empirically by Osborne. I show that the orthodox theory is internally self-inconsistent for the very reason suggested by Osborne: lack of invertibility of demand and supply as functions of price to obtain price as functions of supply and demand. The reason for the noninvertibililty arises from nonintegrable excess demand dynamics, a feature of their theory completely ignored by economists.

  15. Management of the process of nuclear transport; Gestion del proceso de transporte nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Requejo, P.

    2015-07-01

    Since 1996 ETSA is the only Spanish logistics operator specialized on servicing the nuclear and radioactive industry. Nowadays ETSA has some technological systems specifically designed for the management of nuclear transports. These tools have been the result of the analysis of multiple factors involved in nuclear shipments, of ETSAs wide experience as a logistics operator and the search for continuous improvement. (Author)

  16. Background ozone in the southern Europe and Mediterranean area: Influence of the transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Cristofanelli, Paolo [Institute of Atmospheric Sciences and Climate-National Research Council (ISAC-CNR), via Gobetti 101, 40129 Bologna (Italy); Bonasoni, Paolo, E-mail: p.bonasoni@isac.cnr.i [Institute of Atmospheric Sciences and Climate-National Research Council (ISAC-CNR), via Gobetti 101, 40129 Bologna (Italy)

    2009-05-15

    The troposphere is subject to continuous inputs, production and removal processes of ozone and its precursors from natural processes and human activities acting together within a very complex system. In order to assess the behaviour of background ozone in the Mediterranean area, a description of trends, seasonal and diurnal behaviours of free tropospheric ozone is provided. In the Mediterranean area and southern Europe the background tropospheric ozone concentration appears significantly affected by three main air mass transport processes: (i) transport of polluted air masses on regional and long-range scales, (ii) downward transport of stratospheric air masses, and (iii) transport of mineral dust from the Sahara desert. In this review of the literature of the last two decades, we present an overview of these phenomena, mainly monitored at high baseline mountain stations representative of background atmospheric conditions. - How background ozone is influenced by vertical and horizontal transport processes in the southern Europe and the Mediterranean area.

  17. Transport processes in space physics and astrophysics problems and solutions

    CERN Document Server

    Dosch, Alexander

    2016-01-01

     This is the problems and solution manual for the graduate text with the same title and published as Lecture Notes in Physics Vol 877 which provides the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. The very detailed and self-contained problems and solutions will be an essential part of the training of any graduate student wishing to enter and pursuing research in this field. .

  18. Whole tree transportation system for timber processing depots

    Science.gov (United States)

    John Lancaster; Tom Gallagher; Tim  McDonald; Dana Mitchell

    2016-01-01

    The growing demand for alternative energy has led those who are interested in producing sustainable energy from renewable timber to devise new concepts to satisfy those demands. The concept of timber processing depots, where whole stem trees will be delivered for future processing into wood products and high quality energy fuel, has led to the re-evaluation of our...

  19. Energy and particle core transport in tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, Marc; Angioni, Clemente; Beidler, Craig; Dinklage, Andreas; Fuchert, Golo; Hirsch, Matthias; Puetterich, Thomas; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald/Garching (Germany)

    2016-07-01

    The paper discusses expectations for core transport in the Wendelstein 7-X stellarator (W7-X) and presents a comparison to tokamaks. In tokamaks, the neoclassical trapped-particle-driven losses are small and turbulence dominates the energy and particle transport. At reactor relevant low collisionality, the heat transport is limited by ion temperature gradient limited turbulence, clamping the temperature gradient. The particle transport is set by an anomalous inward pinch, yielding peaked profiles. A strong edge pedestal adds to the good confinement properties. In traditional stellarators the 3D geometry cause increased trapped orbit losses. At reactor relevant low collisionality and high temperatures, these neoclassical losses would be well above the turbulent transport losses. The W7-X design minimizes neoclassical losses and turbulent transport can become dominant. Moreover, the separation of regions of bad curvature and that of trapped particle orbits in W7-X may have favourable implications on the turbulent electron heat transport. The neoclassical particle thermodiffusion is outward. Without core particle sources the density profile is flat or even hollow. The presence of a turbulence driven inward anomalous particle pinch in W7-X (like in tokamaks) is an open topic of research.

  20. Effect of electron cyclotron beam width to neoclassical tearing mode stabilization by minimum seeking control in ITER

    Science.gov (United States)

    Park, Minho; Na, Yong-Su; Seo, Jaemin; Kim, M.; Kim, Kyungjin

    2018-01-01

    We report the effect of the electron cyclotron (EC) beam width on the full suppression time of neoclassical tearing mode (NTM) using the finite difference method (FDM) based minimum seeking controller in ITER. An integrated numerical system is setup for time-dependent simulations of the NTM evolution in ITER by solving the modified Rutherford equation together with the plasma equilibrium, transport, and EC heating and current drive. The calculated magnetic island width and growth rate is converted to the Mirnov diagnostic signal as an input to the controller to mimic the real experiment. In addition, 10% of the noise is enforced to this diagnostic signal to evaluate the robustness of the controller. To test the dependency of the NTM stabilization time on the EC beam width, the EC beam width scan is performed for a perfectly aligned case first, then for cases with the feedback control using the minimum seeking controller. When the EC beam is perfectly aligned, the narrower the EC beam width, the smaller the NTM stabilization time is observed. As the beam width increases, the required EC power increases exponentially. On the other hand, when the minimum seeking controller is applied, NTM stabilization sometimes fails as the EC beam width decreases. This is consistently observed in the simulation with various representations of the noise as well as without the noise in the Mirnov signal. The higher relative misalignment, misalignment divided by the beam width, is found to be the reason for the failure with the narrower beam widths. The EC stabilization effect can be lower for the narrower beam widths than the broader ones even at the same misalignment due to the smaller ECCD at the island O-point. On the other hand, if the EC beam is too wide, the NTM stabilization time takes too long. Accordingly, the optimal EC beam width range is revealed to exist in the feedback stabilization of NTM.

  1. Transport and redistribution of Chernobyl fallout radionuclides by fluvial processes: some preliminary evidence

    International Nuclear Information System (INIS)

    Walling, D.E.; Bradley, S.B.

    1988-01-01

    Several measurements of 137 Cs concentrations in suspended sediment transported by the River Severn during the post-Chernobyl period and in recent channel and floodplain deposits along the river emphasise the potential significance of fluvial processes in the transport and concentration of fallout radionuclides. (author)

  2. Production and cost of harvesting, processing, and transporting small-diameter (< 5 inches) trees for energy

    Science.gov (United States)

    Fei Pan; Han-Sup Han; Leonard R. Johnson; William J. Elliot

    2008-01-01

    Dense, small-diameter stands generally require thinning from below to improve fire-tolerance. The resulting forest biomass can be used for energy production. The cost of harvesting, processing, and transporting small-diameter trees often exceeds revenues due to high costs associated with harvesting and transportation and low market values for forest biomass....

  3. Neoclassical physics

    CERN Document Server

    Cunningham, Mark A

    2015-01-01

    In this introductory text, physics concepts are introduced as a means of understanding experimental observations, not as a sequential list of facts to be memorized. The book is structured around the key scientific discoveries that led to much of our current understanding of the universe. Numerous exercises are provided that utilize Mathematica software to help students explore how the language of mathematics is used to describe physical phenomena. Topics requiring quantum mechanics for a more complete explanation are identified but not pursued. In a departure from the traditional methodology and subject matter used in introductory physics texts, this is organized in a manner that will facilitate a guided discovery style of instruction. Students will obtain much more detailed information about fewer topics and will also gain proficiency with Mathematica, a powerful tool with many potential uses in subsequent courses.

  4. Modelling of transport and biogeochemical processes in pollution plumes: Literature review of model development

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard

    2002-01-01

    A literature survey shows how biogeochemical (coupled organic and inorganic reaction processes) transport models are based on considering the complete biodegradation process as either a single- or as a two-step process. It is demonstrated that some two-step process models rely on the Partial Equi....... A second paper [J. Hydrol. 256 (2002) 230-249], reports the application of the model to a field study of biogeochemical transport processes in a landfill plume in Denmark (Vejen). (C) 2002 Elsevier Science B.V. All rights reserved....

  5. Magnetic Processing of Structural Components for Transportation Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Mackiewicz-Ludtka, G.; Ludtka, G. M.; Fleming, S. [Metalsa Roanoke, Inc.; del Prado Villasana, J. [Metalsa Roanoke, Inc.

    2011-09-30

    The specific goal of this project was to develop and evaluate the effect of magnetic processing as a viable and new technology to manufacture side‐rails for heavy trucks; and to demonstrate the applicability of this technology for an industrial truck/automotive process. The targeted performance enhancements for this project were to increase the hardness or strength of two families of alloys (comparable carbon contents but one alloy system incorporating hardenability improving additions of titanium and boron) by 15 to 20%. Thermomagnetic processing has been shown to make significant and unprecedented, simultaneous improvements in yield strength and ultimate tensile strength with no loss of ductility for the truck rail application investigated in this project. Improvements in the ultimate tensile strength and yield strength in the range 20 to 30% have been measured even for the lower hardenability alloy samples that only received a very low magnetic field tempering treatment at a tempering temperature that was 67% lower than the current non-magnetic field enhanced commercial process and for a brief tempering time of 20% of the time required in their current process at the higher temperature. These significant developments, that require further demonstration and investigation on current commercial and other alloy systems, promise the evolution of a much more energy efficient and lower-carbon footprint process to be used in the future to produce stronger, tougher, and lighter weight truck rails. The property increases in the truck rails themselves will enable lighter weight truck side-rails to be produced which will reduce the overall weight of heavy duty trucks which will reduce fuel consumption and be an enabler of the goals of the DOE EERE SuperTruck Program where fuel consumption reductions of 50% are targeted for the future generation of trucks.

  6. Silver Nanoparticle Transport Through Soil: Illuminating the Pore-Scale Processes

    Science.gov (United States)

    Molnar, I. L.; Willson, C. S.; Gerhard, J.; O'Carroll, D. M.

    2015-12-01

    For nanoparticle transport through soil, the pore-scale (i.e., tens to hundreds of grains and pores) is a crucial intermediate scale which links nanoparticle-surface interactions with field-scale transport behaviour. However, very little information exists on how nanoparticles behave within real three-dimensional pore spaces. As a result, pore-scale processes are poorly characterized for nanoparticle systems and, subsequently, continuum-scale transport models struggle to describe commonly observed 'anomalous' behaviour such as extended tailing. This knowledge gap is due to two primary factors: an inability to experimentally observe nanoparticles within real pore spaces, and the computationally expensive models required to simulate nanoparticle movement. However, due to recent advances in Synchrotron X-Ray Computed Microtomography (SXCMT), it is now possible to quantify in-situ pore-scale nanoparticle concentrations during transport through real 3-dimensional porous media [1]. Employing this SXCMT quantification method to examine real nanoparticle/soil transport experiments has yielded new insights into the pore-scale processes governing nanoparticle transport. By coupling SXCMT nanoparticle quantification method with Computational Fluid Dynamics (CFD) simulations we are able to construct a better picture of how nanoparticles flow through real pore spaces. This talk presents SXCMT/CFD analyses of three silver nanoparticle transport experiments. Silver nanoparticles were flushed through three different sands to characterize the influence of grain distribution and retention rates on pore-scale flow and transport processes. These CFD/SXCMT analyses illuminate how processes such as temporary hydraulic retention govern nanoparticle transport. In addition, the observed distributions of pore water velocities and nanoparticle mass flow rates challenge the standard conceptual model of nanoparticle transport, suggesting that pore-scale processes require explicit consideration

  7. An evaluation of Mexican transportation planning, finance, implementation, and construction processes.

    Science.gov (United States)

    2009-10-01

    This research examined the legal, financial, institutional and policy processes that Mexico uses to plan, finance, : construct, and implement its transportation network. It documents through twelve case studies the state of the : practice in planning...

  8. Study of salt transport processes in Delaware Bay

    Science.gov (United States)

    Walters, Roy

    1992-01-01

    The study described here is a subset of a broader climate-related study, and is focused primarily on salinity intrusion into Delaware Bay and River. Given changes in freshwater discharge into the Delaware River as determined from the larger study, and given probable sea level rise estimates, the purpose here is to calculate the distribution of salinity within Delaware Bay and River. The approach adopted for this study is composed of two parts: an analysis of existing physical data in order to derive a basic understanding of the salt dynamics, and numerical simulation of future conditions based on this analysis. There are two important constraints in the model used: it must resolve the spatial scales important to the salt dynamics, and it must be sufficiently efficient to allow extensive sensitivity studies. This has led to the development of a 3D model that uses harmonic decomposition in time and irregular finite elements in space. All nonlinear terms are retained in the governing equations, including quadratic bottom stress, advection, and wave transport (continuity nonlinearity). These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. Although this study is still in progress, the model has reproduced sea level variations and the 3D structure of tidal and residual currents very well. In addition, the study has addressed the effects of a 1-meter rise in mean sea level on hydrodynamics of the study area. Current work is focused on salt dynamics.

  9. Recombination process in solar cells: Impact on the carrier transport

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, Yuri G. [Departamento de Fisica, CINVESTAV-IPN, Av. IPN 2508, Apartado Postal 14-740, Mexico D.F. 07000 (Mexico); Velazquez-Perez, Jesus E. [Departamento Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced, 37008 Salamanca (Spain)

    2012-10-15

    Thickness of Si solar cells is being reduced below 200 {mu}m to reduce costs and improve their performance. In conventional solar cells recombination of photo-generated charge carriers plays a major limiting role in the cell efficiency. High quality thin-film solar cells may overcome this limit if the minority diffusion lengths become large as compared to the cell dimensions, but, strikingly, the conventional model fails to describe the cell electric behaviour under these conditions. Moreover, it is shown that in the conventional model the reverse-saturation current diverges (tends to infinity) in thin solar cells. A new formulation of the basic equations describing charge carrier transport in the cell along with a set of boundary conditions is presented. An analytical closed-form solution is obtained under a linear approximation. In the new framework given, the calculation of the open-circuit voltage of the solar cell diode does not lead to unphysical results. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    NARCIS (Netherlands)

    Chen, Wei

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane

  11. Efficient catalytic processes for the manufacturing of high-quality transportation fuels

    NARCIS (Netherlands)

    Jong, K.P. de

    1996-01-01

    Manufacturing of transportation fuels incorporates a number of generations of technology, viz. (1) refining processes to arrive at the desired product quality, (2) conversion processes to balance the feedstock supply with the product demand, (3) processes to steer product composition and (4)

  12. Evaluation of Transportation Vibration Associated with Relocation of Work in Process As Part of KCRIMS

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, Troy

    2013-04-01

    During relocation of the Kansas City Plant (KCP) from the site at Bannister Road to the site at Botts Road, work in process (WIP) within a production department must be transported. This report recommends packaging to mitigate vibration levels experienced by products during between-facility transportation. Measurements and analysis demonstrate that this mitigation results in vibration levels less than those experienced by the product during routine production processes within potentially damaging frequency ranges.

  13. Quasi-Three-Dimensional Mathematical Modeling of Morphological Processes Based on Equilibrium Sediment Transport

    Science.gov (United States)

    Charafi, My. M.; Sadok, A.; Kamal, A.; Menai, A.

    A quasi-three-dimensional mathematical model has been developed to study the morphological processes based on equilibrium sediment transport method. The flow velocities are computed by a two-dimensional horizontal depth-averaged flow model (H2D) in combination with logarithmic velocity profiles. The transport of sediment particles by a flow water has been considered in the form of bed load and suspended load. The bed load transport rate is defined as the transport of particles by rolling and saltating along the bed surface and is given by the Van Rijn relationship (1987). The equilibrium suspended load transport is described in terms of an equilibrium sediment concentration profile (ce) and a logarithmic velocity (u). Based on the equilibrium transport, the bed change rate is given by integration of the sediment mass-balance equation. The model results have been compared with a Van Rijn results (equilibrium approach) and good agreement has been found.

  14. Grout pump selection process for the Transportable Grout Facility

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, D.; Treat, R.L.

    1985-01-01

    Selected low-level radioactive liquid wastes at Hanford will be disposed by grouting. Grout is formed by mixing the liquid wastes with solid materials, including Portland cement, fly ash, and clay. The mixed grouts will be pumped to disposal sites (e.g., trenches and buried structures) where the grout will be allowed to harden and, thereby, immobilize the wastes. A Transportable Grout Facility (TGF) will be constructed and operated by Rockwell Hanford Operations to perform the grouting function. A critical component of the TGF is the grout pump. A preliminary review of pumping requirements identified reciprocating pumps and progressive cavity pumps as the two classes of pumps best suited for the application. The advantages and disadvantages of specific types of pumps within these two classes were subsequently investigated. As a result of this study, the single-screw, rotary positive displacement pump was identified as the best choice for the TGF application. This pump has a simple design, is easy to operate, is rugged, and is suitable for a radioactive environment. It produces a steady, uniform flow that simplifies suction and discharge piping requirements. This pump will likely require less maintenance than reciprocating pumps and can be disassembled rapidly and decontaminated easily. If the TGF should eventually require discharge pressures in excess of 500 psi, a double-acting duplex piston pump is recommended because it can operate at low speed, with only moderate flow rate fluctuations. However, the check valves, stuffing box, piston, suction, and discharge piping must be designed carefully to allow trouble-free operations.

  15. Laminar flow and convective transport processes scaling principles and asymptotic analysis

    CERN Document Server

    Brenner, Howard

    1992-01-01

    Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat

  16. Reported Design Processes for Accessibility in Rail Transport

    DEFF Research Database (Denmark)

    Herriott, Richard; Cook, Sharon

    2014-01-01

    the methods used conform to ID processes (if at all). The research found that for some actors the industry standards were held to be a sufficient guarantee of achieving accessibility goals. For others specific design methods were also required to ensure the requirement of accessibility had been reached.......This paper sets out to find out what methods are used in the rail sector to achieve accessibility goals and to examine the extent these methods deviate from user-centred and inclusive design norms. Inclusive design (ID) stresses the deployment of diverse design methods to determine user...

  17. Critica della teoria neoclassica della crescita e della distribuzione (A Critique of the Neoclassical Theory of Growth and Income Distribution

    Directory of Open Access Journals (Sweden)

    Luigi Pasinetti

    2000-05-01

    Full Text Available The paper surveys the main theories of income distribution in their relationship with the theories of economic growth. First, the Classical approach is considered, focusing on the Ricardian theory. Then the neoclassical theory is discussed, highlighting its origins (Bohm-Bawerk, Wicksell, Clark and the role of the aggregate production function. The emergence of a "Keynesian" theory of income distribution in the wake of Harrod's model of growth is then recalled together with the surprising resurgence of the neoclassical theory (following the contributions of Solow and Meade. But, as the paper shows, the neoclassical theory of income distribution lacks logical consistency and has shaky foundations, as has been revealed by the severe critiques moved to the neoclassical production function. Mainstream economic literature circumvents this problem by simply ignoring it; while the models of endogenous growth exclude the issue of distribution theory from their consideration. However, while mainstream economics bypasses the problems of income distribution, this is too relevant an issue to be ignored and a number of new research lines, briefly surveyed, try new approaches to it.

  18. Critica della teoria neoclassica della crescita e della distribuzione (A Critique of the Neoclassical Theory of Growth and Income Distribution

    Directory of Open Access Journals (Sweden)

    Luigi Pasinetti

    2012-10-01

    Full Text Available The paper surveys the main theories of income distribution in their relationship with the theories of economic growth. First, the Classical approach is considered, focusing on the Ricardian theory. Then the neoclassical theory is discussed, highlighting its origins (Bohm-Bawerk, Wicksell, Clark and the role of the aggregate production function. The emergence of a "Keynesian" theory of income distribution in the wake of Harrod's model of growth is then recalled together with the surprising resurgence of the neoclassical theory (following the contributions of Solow and Meade. But, as the paper shows, the neoclassical theory of income distribution lacks logical consistency and has shaky foundations, as has been revealed by the severe critiques moved to the neoclassical production function. Mainstream economic literature circumvents this problem by simply ignoring it; while the models of endogenous growth exclude the issue of distribution theory from their consideration. However, while mainstream economics bypasses the problems of income distribution, this is too relevant an issue to be ignored and a number of new research lines, briefly surveyed, try new approaches to it.          JEL Codes: O41, E25Keywords: Distribution, Economic Growth, Growth, Income Distribution, Income

  19. Transport processes investigation: A necessary first step in site scale characterization plans

    International Nuclear Information System (INIS)

    Roepke, C.; Glass, R.J.; Brainard, J.; Mann, M.; Kriel, K.; Holt, R.; Schwing, J.

    1995-01-01

    We propose an approach, which we call the Transport Processes Investigation or TPI, to identify and verify site-scale transport processes and their controls. The TPI aids in the formulation of an accurate conceptual model of flow and transport, an essential first step in the development of a cost effective site characterization strategy. The TPI is demonstrated in the highly complex vadose zone of glacial tills that underlie the Fernald Environmental Remediation Project (FEMP) in Fernald, Ohio. As a result of the TPI, we identify and verify the pertinent flow processes and their controls, such as extensive macropore and fracture flow through layered clays, which must be included in an accurate conceptual model of site-scale contaminant transport. We are able to conclude that the classical modeling and sampling methods employed in some site characterization programs will be insufficient to characterize contaminant concentrations or distributions at contaminated or hazardous waste facilities sited in such media

  20. Impact of different vertical transport representations on simulating processes in the tropical tropopause layer (TTL)

    Energy Technology Data Exchange (ETDEWEB)

    Ploeger, Felix

    2011-07-06

    The chemical and dynamical processes in the tropical tropopause layer (TTL) control the amount of radiatively active species like water vapour and ozone in the stratosphere, and hence turn out to be crucial for atmospheric trends and climate change. Chemistry transport models and chemistry climate models are suitable tools to understand these processes. But model results are subject to uncertainties arising from the parametrization of model physics. In this thesis the sensitivity of model predictions to the choice of the vertical transport representation will be analysed. Therefore, backtrajectories are calculated in the TTL, based on different diabatic and kinematic transport representations using ERA-Interim and operational ECMWF data. For diabatic transport on potential temperature levels, the vertical velocity is deduced from the ERA-Interim diabatic heat budget. For kinematic transport on pressure levels, the vertical wind is used as vertical velocity. It is found that all terms in the diabatic heat budget are necessary to cause transport from the troposphere to the stratosphere. In particular, clear-sky heating rates alone miss very important processes. Many characteristics of transport in the TTL turn out to depend very sensitively on the choice of the vertical transport representation. Timescales for tropical troposphere-to-stratosphere transport vary between one and three months, with respect to the chosen representation. Moreover, for diabatic transport ascent is found throughout the upper TTL, whereas for kinematic transport regions of mean subsidence occur, particularly above the maritime continent. To investigate the sensitivity of simulated trace gas distributions in the TTL to the transport representation, a conceptual approach is presented to predict water vapour and ozone concentrations from backtrajectories, based on instantaneous freeze-drying and photochemical ozone production. It turns out that ozone predictions and vertical dispersion of the

  1. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  2. Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Filtenborg, Troels; Fukunaga, Kaori

    2015-01-01

    Terahertz time-domain imaging (THz-TDI) has been applied for imaging a hidden portrait and other subsurfacecomposition layers of an 18th century (18C) easel painting by Nicolai Abildgaard, the most important 18CDanish neoclassical painter of historical and mythological subjects. For the first time......, a real hidden portraiton an easel painting has been imaged by THz-TDI, with an unexpected richness of detail. THz C- andB-scans have been compared with images obtained by x-ray radiography and invasive cross-sectional imaging,leading to a deeper understanding of the strengths and limitations...... in practical applications of the technique. Interfaces between layers ofthe painting have been successfully imaged, contributing substantially to the understanding of the structure of the painting....

  3. Onset of the radial electric field oscillations in the neoclassical plasmas

    International Nuclear Information System (INIS)

    Liu, C.S.; Novakovskii, S.V.; Sagdeev, R.Z.; Galeev, A.A.

    1996-01-01

    It is shown that the relaxation of the radial electric field in the tokomak plasmas towards its neoclassical value is accompanied by the fast oscillations of the order of the ion transient frequency V T /qR. This happens during the transition from the Pfirsch-Schluter collisional regime to the plateau regime at v c qR/V T ≤ c cr ≤ 1. The investigation has been performed with the help of the specially developed numerical code for solution of the nonsteady-state drift kinetic equation with the exact collisional term in the Hirshman-Sigmar-Clarke form. Comparison with the analytical results, corresponding to the regime of the very low collisions as well as with previous approximate models for the plateau regime will also be reported

  4. Russian foreign policy in the realm of European security through the lens of neoclassical realism

    Directory of Open Access Journals (Sweden)

    Elena Kropatcheva

    2012-01-01

    Full Text Available There are different views on (in-predictability and on (non-cooperation in Russian foreign policy towards the West, but also on the question about how - that is, through which theoretical framework - to interpret it. This essay aims at contributing to the debate around these three issues. Its goal is to demonstrate the expediency of using a neoclassical realist theoretical perspective, enhanced by the inclusion of such subjective factors as status/prestige and perceptions. While there are factors in Russian domestic and foreign policy which give it a certain degree of unpredictability, nevertheless, if it is studied in a comprehensive way, it turns out to be more consistent and predictable than it at first seems. Even though Russia is often accused of being anti-Western and non-cooperative, this argument does not hold true: Russian foreign policy is selective and includes both cooperative and non-cooperative tactics.

  5. Vanishing neoclassical viscosity and physics of the shear layer in stellarators.

    Science.gov (United States)

    Velasco, J L; Alonso, J A; Calvo, I; Arévalo, J

    2012-09-28

    The drift kinetic equation is solved for low density TJ-II plasmas employing slowly varying, time-dependent profiles. This allows us to simulate density ramp-up experiments and describe from first principles the formation and physics of the radial electric field shear layer. The main features of the transition are perfectly captured by the calculation, and good quantitative agreement is also found. The results presented here, that should be valid for other nonquasisymmetric stellarators, provide a fundamental explanation for a wealth of experimental observations connected to the shear layer emergence in TJ-II. The key quantity is the neoclassical viscosity, which is shown to go smoothly to zero when the critical density is approached from below. This makes it possible for turbulence-related phenomena, and particularly zonal flows, to arise in the neighborhood of the transition.

  6. Reactionary - electrodiffusion equations of transport processes of electrolyte solutions of radioelements through porous clayey structures

    Directory of Open Access Journals (Sweden)

    T.V.Shymchuk

    2007-01-01

    Full Text Available The statistical model of the water solution of radioactive elements and the porous clayey matrix is proposed. The generalized transport equations for the description of diffusion, sorption,radiative processes and chemical reactions are obtained taking into account the electromagnetic processes.

  7. Signal processing of bedload transport impact amplitudes on accelerometer instrumented plates

    Science.gov (United States)

    This work was performed to help establish a data processing methodology for relating accelerometer signals caused by impacts of gravel on steel plates to the mass and size of the transported material. Signal processing was performed on impact plate data collected in flume experiments at the Nationa...

  8. Modeling the coupled mechanics, transport, and growth processes in collagen tissues.

    Energy Technology Data Exchange (ETDEWEB)

    Holdych, David J.; Nguyen, Thao D.; Klein, Patrick A.; in' t Veld, Pieter J.; Stevens, Mark Jackson

    2006-11-01

    The purpose of this project is to develop tools to model and simulate the processes of self-assembly and growth in biological systems from the molecular to the continuum length scales. The model biological system chosen for the study is the tendon fiber which is composed mainly of Type I collagen fibrils. The macroscopic processes of self-assembly and growth at the fiber scale arise from microscopic processes at the fibrillar and molecular length scales. At these nano-scopic length scales, we employed molecular modeling and simulation method to characterize the mechanical behavior and stability of the collagen triple helix and the collagen fibril. To obtain the physical parameters governing mass transport in the tendon fiber we performed direct numerical simulations of fluid flow and solute transport through an idealized fibrillar microstructure. At the continuum scale, we developed a mixture theory approach for modeling the coupled processes of mechanical deformation, transport, and species inter-conversion involved in growth. In the mixture theory approach, the microstructure of the tissue is represented by the species concentration and transport and material parameters, obtained from fibril and molecular scale calculations, while the mechanical deformation, transport, and growth processes are governed by balance laws and constitutive relations developed within a thermodynamically consistent framework.

  9. UV Irradiation Accelerates Amyloid Precursor Protein (APP) Processing and Disrupts APP Axonal Transport

    Science.gov (United States)

    Almenar-Queralt, Angels; Falzone, Tomas L.; Shen, Zhouxin; Lillo, Concepcion; Killian, Rhiannon L.; Arreola, Angela S.; Niederst, Emily D.; Ng, Kheng S.; Kim, Sonia N.; Briggs, Steven P.; Williams, David S.

    2014-01-01

    Overexpression and/or abnormal cleavage of amyloid precursor protein (APP) are linked to Alzheimer's disease (AD) development and progression. However, the molecular mechanisms regulating cellular levels of APP or its processing, and the physiological and pathological consequences of altered processing are not well understood. Here, using mouse and human cells, we found that neuronal damage induced by UV irradiation leads to specific APP, APLP1, and APLP2 decline by accelerating their secretase-dependent processing. Pharmacological inhibition of endosomal/lysosomal activity partially protects UV-induced APP processing implying contribution of the endosomal and/or lysosomal compartments in this process. We found that a biological consequence of UV-induced γ-secretase processing of APP is impairment of APP axonal transport. To probe the functional consequences of impaired APP axonal transport, we isolated and analyzed presumptive APP-containing axonal transport vesicles from mouse cortical synaptosomes using electron microscopy, biochemical, and mass spectrometry analyses. We identified a population of morphologically heterogeneous organelles that contains APP, the secretase machinery, molecular motors, and previously proposed and new residents of APP vesicles. These possible cargoes are enriched in proteins whose dysfunction could contribute to neuronal malfunction and diseases of the nervous system including AD. Together, these results suggest that damage-induced APP processing might impair APP axonal transport, which could result in failure of synaptic maintenance and neuronal dysfunction. PMID:24573290

  10. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  11. Electronic repository and standardization of processes and electronic documents in transport

    Directory of Open Access Journals (Sweden)

    Tomasz DĘBICKI

    2007-01-01

    Full Text Available The article refers to the idea of the use of electronic repository to store standardised scheme of processes between a Logistics Service Provider and its business partners. Application of repository for automatic or semi-automatic configuration of interoperability in electronic data interchange between information systems of differentcompanies based on transport (road, rail, sea and combined related processes. Standardisation includes processes, scheme of cooperation and related to them, electronic messages.

  12. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay.

    Science.gov (United States)

    Bach, Cathrine Carlsen; Henriksen, Tine Brink; Bossi, Rossana; Bech, Bodil Hammer; Fuglsang, Jens; Olsen, Jørn; Nohr, Ellen Aagaard

    2015-01-01

    In studies of perfluoroalkyl acids, the validity and comparability of measured concentrations may be affected by differences in the handling of biospecimens. We aimed to investigate whether measured plasma levels of perfluoroalkyl acids differed between blood samples subjected to delay and transportation prior to processing and samples with immediate processing and freezing. Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88) provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort). We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification. For samples taken in the winter, relative differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27) for perfluorooctane sulfonate. For perfluorooctanoate there was no difference between the two setups [corresponding estimate 1% (0, 3)]. Differences were negligible in the summer for all compounds. Transport of blood samples and processing delay, similar to conditions applied in some large, population-based studies, may affect measured perfluoroalkyl acid concentrations, mainly when outdoor temperatures are low. Attention to processing conditions is needed in studies of perfluoroalkyl acid exposure in humans.

  13. The peculiarities of process-based approach realization in transport sector company management

    Science.gov (United States)

    Khripko, Elena; Sidorov, Gennadiy

    2017-10-01

    In the present article we study the phenomena of multiple meaning in understanding process-based management method in construction of transport infrastructure facilities. The idea of multiple meaning is in distortions which appear during reception of the management process paradigm in organizational environment of transport sector. The cause of distortion in process management is organizational resistance. The distortions of management processes are discovered at the level of diffusion among spheres of responsibility, collision in forms of functional, project and process interaction between the owner of the process and its participants. The level of distortion is affected by the attitude towards the result of work which means that process understanding of the result is replaced by the functional one in practice of management. This transfiguration is the consequence of regressive defensive mechanisms of the organizational environment. On the base of experience of forming process management in construction of transport infrastructure facilities company of the issues of diagnostics of various forms of organizational resistance and ways of reducing the destructive influence on managing processes are reviewed.

  14. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  15. Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Raymond H. [Navarro Research and Engineering, Inc.; Morrison, Stan [Navarro Research and Engineering, Inc.; Morris, Sarah [Navarro Research and Engineering, Inc.; Tigar, Aaron [Navarro Research and Engineering, Inc.; Dam, William [U.S. Department of Energy, Office of Legacy Management; Dayvault, Jalena [U.S. Department of Energy, Office of Legacy Management

    2016-04-26

    Motivation for Study: Natural flushing of contaminants at various U.S. Department of Energy Office of Legacy Management sites is not proceeding as quickly as predicted (plume persistence) Objectives: Help determine natural flushing rates using column tests. Use 1D reactive transport modeling to better understand the major processes that are creating plume persistence Approach: Core samples from under a former mill tailings area Tailings have been removed. Column leaching using lab-prepared water similar to nearby Gunnison River water. 1D reactive transport modeling to evaluate processes

  16. Connected vehicle impacts on transportation planning technical memorandum #2 : connected vehicle planning processes and products and stakeholder roles and responsibilities.

    Science.gov (United States)

    2015-01-01

    The objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should : be considered across the range of transportation planning processes and products developed by Stat...

  17. Role of transportation in the persuasion process: cognitive and affective responses to antidrug narratives.

    Science.gov (United States)

    Banerjee, Smita C; Greene, Kathryn

    2012-01-01

    This study examined transportation effects of first- and third-person narratives as well as the role of transportation in the persuasion process. In particular, the authors evaluated the role of transportation in affecting cognitive and affective responses. Last, they addressed the relation between (a) cognitive and affective responses and (b) antidrug expectancies. Participants were 500 undergraduate students at a large northern university in the United Kingdom who were randomly assigned to 1 of 2 conditions: first- or third-person narratives on cocaine use. The results demonstrated that there was no difference between first- and third-person narratives in terms of transportation. However, overall, greater transportation was associated with more favorable cognitive responses, and more favorable cognitive response was associated with stronger anticocaine expectancies. In terms of affective responses, results indicated the mediating role of sadness and contentment in the association between transportation and anticocaine expectancies. In particular, increased transportation was associated with greater sadness and lower contentment. Lower sadness and contentment were associated with stronger anticocaine expectancies. Important theoretical and empirical implications are discussed.

  18. Spatial Evaluation Approach in the Planning Process of Transport Logistic Terminals

    Directory of Open Access Journals (Sweden)

    Mitja Pavliha

    2006-09-01

    Full Text Available The "state-of-the-art" of the present global European situationis in desperate need for a new approach to development ofurban and rural environment with an interdisciplinary approach,when introducing the elements of transport infrastructureand transport infrastructure landscape into space and environment.In order to reach a decision regarding the location of a certaintransport logistic terminal some constraints (technical andtechnological as well as financial should be considered. Aspart of the process trying to respond to these constraints, associatedprimarily with the traffic conditions at the appointed networklocations, a careful evaluation in respect to cargo flowsand infrastructure connections as well as spatial planningshould be performed.M01phological indicators, which directly and indirectly affectthe structure and the form of the transport infrastructure elements- transport logistic terminals, are extracted and presentedin the paper. At this point, the paper concludes that thelaying down and the evaluation of transport infrastructure elementsare based on two categories of morphological elements:Constructed morphological elements (all constntctionsand their elements, andNatural morphological elements (topography, climate, vegetation,etc..The presented spatial methodology deals with the interactionsbetween the constructed and natural morphological elements- the quality and the characteristics of the design areadded to both groups.Findings and projections acquired on the basis of a spatialevaluation and transport logistic analysis constitute, togetherwith financial-economic assumptions, the basis for elaboratinga business plan - a significant element in the decision-makingprocess regarding the development of a transport logistic terminal.

  19. Trace and major element pollution originating from coal ash suspension and transport processes.

    Science.gov (United States)

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  20. Trace and major element pollution originating from coal ash suspension and transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D.; Polic, P. [University of Belgrade, Belgrade (Yugoslavia). Faculty of Science, Dept. of Chemistry

    2001-07-01

    Coal ash obtained from Nikola Tesla A power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. It is concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  1. Evaluation of transport safety analysis processes of radioactive material performed by a regulatory body

    International Nuclear Information System (INIS)

    Mattar, Patricia Morais

    2017-01-01

    Radioactive substances have many beneficial applications, ranging from power generation to uses in medicine, industry and agriculture. As a rule, they are produced in different places from where they are used, needing to be transported. In order for transport to take place safely and efficiently, national and international standards must be complied with. This research aims to assess the safety analysis processes for the transport of radioactive material carried out by the regulatory body in Brazil, from the point of view of their compliance with the International Atomic Energy Agency (IAEA) standards. The self-assessment methodology named SARIS, developed by the AIEA, was used. The following steps were carried out: evaluation of the Diagnosis and Processes Mapping; responses to the SARIS Question Set and complementary questions; SWOT analysis; interviews with stakeholders and evaluation of a TranSAS mission conducted by the IAEA in 2002. Considering only SARIS questions, processes are 100% adherent. The deepening of the research, however, led to the development of twenty-two improvement proposals and the identification of nine good practices. The results showed that the safety analysis processes of the transport of radioactive material are being carried out in a structured, safe and reliable way but also that there is much opportunity for improvement. The formulation of an action plan, based on the presented proposals, can bring to the regulatory body many benefits. This would be an important step towards convening an external evaluation, providing greater reliability and transparency to the regulatory body´s processes. (author)

  2. Effects of orbit squeezing on neoclassical toroidal plasma viscosity in tokamaks

    Czech Academy of Sciences Publication Activity Database

    Shaing, K.C.; Sabbagh, S.A.; Chu, M.S.; Bécoulet, M.; Cahyna, Pavel

    2008-01-01

    Roč. 15, č. 8 (2008), 082505-1-082505-8 ISSN 1070-664X Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma boundary layers * plasma instability * plasma magnetohydrodynamics * plasma toroidal confinement * plasma transport processes * Tokamak devices Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.427, year: 2008 http://dx.doi.org/10.1063/1.2965146

  3. Contribution to the logistic evaluation system in the transportation process in Santo Domingo, Ecuador

    Directory of Open Access Journals (Sweden)

    Rodobaldo Martínez Vivar

    2018-02-01

    Full Text Available Purpose: The objective of the present research is to design and apply a methodology to evaluate the logistics system in the transportation process in a base vehicle fleet, which contributes to decrease the costs of distribution and to increase the performance of the logistics system of the organization. Design/methodology: The proposal of a holistic technology for the management of this process is carried out, which integrates indicators and tools that improve control and decision-making activities in this area. Findings: The application of the procedure developed in the selected organization contributed to the identification of deficiencies related to the availability of the equipment and the needs of the clients, the low technical availability of the automotive plant, the low utilization of the capacity of the freight vehicles, the absence of a plan of measures to diminish the empty routes of the transport and the overconsumption of fuel due to the accomplishment of extra trips. Aspects that contributed to the redesign of some of the main functions of physical distribution such as itinerary planning, selection of means of transport and analysis of operating indicators, aspects that favored the optimization of the number of trips and, consequently, the adequate use of the equipment and the loads to be transported, observing a saving of 15% in the fuel consumption per load transported. Originality: The originality of the present research lies in the combination of different theories and techniques that contribute from a holistic approach to the logistics evaluation of the transportation process, facilitating the optimization of transportation requirements, its operation and maintenance.

  4. Tomographic radiotracer studies of the spatial distribution of heterogeneous geochemical transport processes

    International Nuclear Information System (INIS)

    Gruendig, Marion; Richter, Michael; Seese, Anita; Sabri, Osama

    2007-01-01

    Within the scope of the further development of geochemical transport models the consideration of the influence of the heterogeneous structures of the geological layers plays an important role. For the verification and parameter estimation of such models it is necessary to measure the heterogeneous transport and sorption processes inside the samples. Tomographic radiotracer methods (positron emission tomography (PET)) enable nondestructive spatially resolved observations of the transport processes in these layers. A special quantitative evaluation system for geoscientific PET studies was developed. Investigations of the water flow distribution in a drill core of a lignite mining dump and of the migration of Cu ions in a horizontal soil column illustrate the potential of this method. Spatial distribution functions of the flow velocity, the specific mass flow and the longitudinal dispersivity were determined on the basis of PET investigations

  5. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, Douglas; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  6. Prospects for stabilization of neoclassical tearing modes by electron cyclotron current drive in ITER

    International Nuclear Information System (INIS)

    La Haye, R.J.; Isayama, A.; Maraschek, M.

    2009-01-01

    The system planned for electron cyclotron current drive (ECCD) in ITER can mitigate the deleterious effects of neoclassical tearing modes (NTMs) provided that either adequate alignment of the ECCD to the rational surface is maintained or too large a misalignment is corrected on a time scale shorter than the deleterious plasma response to 'large' islands. Resistive neoclassical tearing modes will be the principal limit on stability and performance in the ITER standard scenario as the drag from rotating island induced eddy current in the resistive wall (particularly from the m/n = 2/1 mode) can slow the plasma rotation, produce locking to the wall and cause loss of high-confinement H-mode and disruption. Continuous wave (cw) ECCD at the island rational surface is successful in stabilization and/or prevention of NTMs in ASDEX Upgrade, DIII-D and JT-60U. Modulating the ECCD so that it is absorbed only on the rotating island O-point is proving successful in recovering effectiveness in ASDEX Upgrade when the ECCD is configured for wider deposition as expected in ITER. The models for the effect of misalignment on ECCD effectiveness are applied to ITER. Tolerances for misalignment are presented to establish criteria for both the alignment (by moving mirrors in ITER) in the presence of an island, and for the accuracy of real-time ITER MHD equilibrium reconstruction in the absence of an island, i.e. alignment to the mode or to the rational surface in the absence of the mode. The narrower ECCD with front steering makes precise alignment more necessary for the most effective stabilization even though the ECCD is still relatively broad, with current density deposition (full width half maximum) almost twice the marginal island width. This places strict requirements on ECCD alignment with the expected ECCD effectiveness dropping to zero for misalignments as small as 1.7 cm. The system response time for growing islands and slowing rotation without and with ECCD (at different

  7. Turbulence and Fluid Flow: Perspectives. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Simpson, James R.

    This module is part of a series on Physical Processes in Terrestrial and Aquatic Ecosystems. The materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process.…

  8. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay

    DEFF Research Database (Denmark)

    Bach, Cathrine Carlsen; Henriksen, Tine Brink; Bossi, Rossana

    2015-01-01

    BACKGROUND: In studies of perfluoroalkyl acids, the validity and comparability of measured concentrations may be affected by differences in the handling of biospecimens. We aimed to investigate whether measured plasma levels of perfluoroalkyl acids differed between blood samples subjected to delay...... and transportation prior to processing and samples with immediate processing and freezing. METHODS: Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88) provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed...... and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort). We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification. RESULTS: For samples taken in the winter, relative...

  9. Transport infrastructure SEA in The Netherlands between procedure, process and content

    NARCIS (Netherlands)

    S.G. Nooteboom (Sibout)

    2007-01-01

    textabstractExperience with the EU Strategic Environmental Assessment directive is emerging. In the Netherlands it has been applied to large transport since 2005. In 2006, an evaluation of the organization of this process was done. Key lesson: infrastructure developers undertaking an environmental

  10. Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes

    CERN Document Server

    Nagnibeda, Ekaterina; Nagnibeda, Ekaterina

    2009-01-01

    This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.

  11. Symposium on intermediate-range atmospheric-transport processes and technology assessment. [Lead Abstract

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    Separate abstracts were prepared for the 47 papers in this proceedings. The purpose of this meeting was to assess the state of the art of modeling atmospheric transport processes 10 to 100 km downwind of point and area sources of pollution. (KRM)

  12. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs

    National Research Council Canada - National Science Library

    Siegrist, Robert L; Crimi, Michelle; Munakata-Marr, Junko; Illangasekare, Tissa; Dugan, Pamela; Heiderscheidt, Jeff; Jackson, Shannon; Petri, Ben; Sahl, Jason; Seitz, Sarah

    2006-01-01

    ..., and/or toxicity of contamination. The objective of this project was to quantify the pore/interfacial scale DNAPL reactions and porous media transport processes that govern the delivery of oxidant to a DNAPL-water interface and degradation of the DNAPL...

  13. Symposium on intermediate-range atmospheric-transport processes and technology assessment

    International Nuclear Information System (INIS)

    1981-10-01

    Separate abstracts were prepared for the 47 papers in this proceedings. The purpose of this meeting was to assess the state of the art of modeling atmospheric transport processes 10 to 100 km downwind of point and area sources of pollution

  14. Recent progress in process engineering: mixture-microgeometry, transport/energy transfer

    International Nuclear Information System (INIS)

    Antonini, G.; Ben Aim, R.

    1991-01-01

    This congress on process engineering is divided into six parts: 1 Agitation, mixing and fluids handling; 2 Microgeometry and microstructures in porous media; 3 Heat exchangers, multifunction exchangers; 4 Cold and heat production, using, energy conversion, furnaces, thermal treatments; 5 Materials handling and treatments: crushing, fluidization, pneumatic transport; 6 Formulation. 62 papers are presented

  15. Effect of Theophylline on Elongation and some Transport Processes in Embryos of Haplopappus gracilis.

    Science.gov (United States)

    Levi, M; Chiatante, D; Sparvoli, E

    1984-09-01

    In germinating embryos of Haplopappus gracilis, theophylline induced a FC-reversible inhibition of elongation and K(+) uptake. The possible action of theophylline on the proton pump and other transport processes is discussed and compared with the effects of its ethylenediamine salt, aminophylline. Copyright © 1984 Gustav Fischer Verlag, Stuttgart. Published by Elsevier GmbH.. All rights reserved.

  16. Ozone using outlook for efficiency increasing of transportation and processing of high viscous petroleum raw materials

    International Nuclear Information System (INIS)

    Nadirov, N.K.; Zajkina, R.F.; Mamonova, T.B.

    1997-01-01

    Main types of oxidation reactions preceding during petroleum feedstock ozonization are generalized. The slight ozone high paraffin-content petroleum processing sites in shown on the example will make possible to rise the pipe transport efficiency and to increase the light fraction contents in petroleums. The prospects are discussed to application of ozone forming as a by-product of radiation-chemical facilities action for petroleum feedstock processing. (author)

  17. The potassium battery: a mobile energy source for transport processes in plant vascular tissues.

    Science.gov (United States)

    Dreyer, Ingo; Gomez-Porras, Judith Lucia; Riedelsberger, Janin

    2017-12-01

    Contents 1049 I. 1049 II. 1050 III. 1050 IV. 1050 V. 1051 VI. 1051 VII. 1052 VIII. 1052 1053 References 1053 SUMMARY: Plant roots absorb potassium ions from the soil and transport them in the xylem via the transpiration stream to the shoots. There, in source tissues where sufficient chemical energy (ATP) is available, K + is loaded into the phloem and then transported with the phloem stream to other parts of the plant; in part, transport is also back to the roots. This, at first sight, futile cycling of K + has been uncovered to be part of a sophisticated mechanism that (1) enables the shoot to communicate its nutrient demand to the root, (2) contributes to the K + nutrition of transport phloem tissues and (3) transports energy stored in the K + gradient between phloem cytosol and the apoplast. This potassium battery can be tapped by opening AKT2-like potassium channels and then enables the ATP-independent energization of other transport processes, such as the reloading of sucrose. Insights into these mechanisms have only been possible by combining wet-lab and dry-lab experiments by means of computational cell biology modeling and simulations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. LRP1 Modulates APP Intraneuronal Transport and Processing in Its Monomeric and Dimeric State

    Directory of Open Access Journals (Sweden)

    Claus U. Pietrzik

    2017-04-01

    Full Text Available The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and affects its processing. This is assumed to be mostly caused by the impact of LRP1 on APP endocytosis. More recently, also an interaction of APP and LRP1 early in the secretory pathway was reported whereat retention of LRP1 in the ER leads to decreased APP cell surface levels and in turn, to reduced Aβ secretion. Here, we extended the biochemical and immunocytochemical analyses by showing via live cell imaging analyses in primary neurons that LRP1 and APP are transported only partly in common (one third but to a higher degree in distinct fast axonal transport vesicles. Interestingly, co-expression of LRP1 and APP caused a change of APP transport velocities, indicating that LRP1 recruits APP to a specific type of fast axonal transport vesicles. In contrast lowered levels of LRP1 facilitated APP transport. We further show that monomeric and dimeric APP exhibit similar transport characteristics and that both are affected by LRP1 in a similar way, by slowing down APP anterograde transport and increasing its endocytosis rate. In line with this, a knockout of LRP1 in CHO cells and in primary neurons caused an increase of monomeric and dimeric APP surface localization and in turn accelerated shedding by meprin β and ADAM10. Notably, a choroid plexus specific LRP1 knockout caused a much higher secretion of sAPP dimers into the cerebrospinal fluid compared to sAPP monomers. Together, our data show that LRP1 functions as a sorting receptor for APP, regulating its cell surface localization and thereby its processing by ADAM10 and meprin β, with the latter exhibiting a preference for APP in its dimeric state.

  19. The physics of W transport illuminated by recent progress in W density diagnostics at ASDEX Upgrade

    Science.gov (United States)

    Odstrcil, T.; Pütterich, T.; Angioni, C.; Bilato, R.; Gude, A.; Odstrcil, M.; ASDEX Upgrade Team; the EUROfusion MST1 Team

    2018-01-01

    Due to the high mass and charge of the heavy ions, centrifugal and electrostatic forces cause a significant variation in their poloidal density. The impact of these forces on the poloidal density profile of tungsten was investigated utilizing the detailed two-dimensional SXR emissivity profiles from the ASDEX Upgrade tokamak. The perturbation in the electrostatic potential generated by magnetic trapping of the non-thermal ions from neutral beam injection was found to be responsible for significant changes in the poloidal distribution of tungsten ions. An excellent match with the results from fast particle modeling was obtained, validating the model for the poloidal fast particle distribution. Additionally, an enhancement of the neoclassical transport due to an outboard side impurity localization was measured in the experiment when analyzing the tungsten flux between sawtooth crashes. A qualitative match with neoclassical modeling was found, demonstrating the possibility of minimizing neoclassical transport by an optimization of the poloidal asymmetry profile of the impurity.

  20. Specificity of the fluorescein transport process in Malpighian tubules of the cricket Acheta domesticus.

    Science.gov (United States)

    Neufeld, Douglas S G; Kauffman, Ross; Kurtz, Zachary

    2005-06-01

    We demonstrate the presence of an efficient, multispecific transport system for excretion of organic anions in the Malpighian tubules of the cricket Acheta domesticus using fluorescein (FL) as a model substrate. Malpighian tubules rapidly accumulated FL via a high affinity process (Km = 7.75 micromol l(-1)); uptake was completely eliminated by the prototypical organic anion transport inhibitor probenecid (1 mmol l(-1)), but not by p-aminohippuric acid (3 mmol l(-1)). FL uptake was inhibited by monocarboxylic acids at a high concentration (3 mmol l(-1)), and inhibition was more effective with an increase in the carbon chain of the monocarboxylic acid (37% inhibition by 5-carbon valeric acid, and 89% inhibition by 7-carbon caprylic acid). Likewise, tests using a series of aliphatic glutathione conjugates indicated that only the compound with the longest side-chain (decyl-glutathione) significantly inhibited FL uptake (81% inhibition). FL uptake was inhibited by a number of xenobiotics, including a plant alkaloid (quinine), herbicides (2,4-dichlorophenoxyacetic acid and 4-(2,4-dichlorophenoxy)-butyric acid), and the insecticide metabolites malathion monocarboxylic acid (MMA) and 3-phenoxybenzoic acid (PBA), suggesting that this transport system plays an active role in excretion of xenobiotics from Acheta by Malpighian tubules. HPLC quantification of MMA and PBA accumulation into Malpighian tubules verified that MMA accumulation was via a mediated transport process, but suggested that PBA accumulation was by nonspecific binding. The presence of a transport system in Malpighian tubules that handles at least one pesticide metabolite (MMA) suggests that transport processes could be a mechanism conferring resistance to xenobiotic exposure in insects.

  1. Some analytic diagnostic models for transport processes in estuarine and coastal waters

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-03-01

    Advection and dispersion processes in estuarine and coastal waters are briefly reviewed. Beginning from the basic macroscopic equations of transport for a substance diluted or suspended in the considered body of water,several levels of filtering in time and space are described and applied to obtain suitable diagnostic mathematical models both with scale effects and gaussian.The solutions of the aforementioned models,for initial distributions and boundary conditions with enough symmetry,are discussed, as well as their applications to a parameter characterization of the transport properties of the receiving body of water

  2. Electron cyclotron power management for control of neoclassical tearing modes in the ITER baseline scenario

    Science.gov (United States)

    Poli, F. M.; Fredrickson, E. D.; Henderson, M. A.; Kim, S.-H.; Bertelli, N.; Poli, E.; Farina, D.; Figini, L.

    2018-01-01

    Time-dependent simulations are used to evolve plasma discharges in combination with a modified Rutherford equation for calculation of neoclassical tearing mode (NTM) stability in response to electron cyclotron (EC) feedback control in ITER. The main application of this integrated approach is to support the development of control algorithms by analyzing the plasma response with physics-based models and to assess how uncertainties in the detection of the magnetic island and in the EC alignment affect the ability of the ITER EC system to fulfill its purpose. Simulations indicate that it is critical to detect the island as soon as possible, before its size exceeds the EC deposition width, and that maintaining alignment with the rational surface within half of the EC deposition width is needed for stabilization and suppression of the modes, especially in the case of modes with helicity (2, 1) . A broadening of the deposition profile, for example due to wave scattering by turbulence fluctuations or not well aligned beams, could even be favorable in the case of the (2, 1)- NTM, by relaxing an over-focussing of the EC beam and improving the stabilization at the mode onset. Pre-emptive control reduces the power needed for suppression and stabilization in the ITER baseline discharge to a maximum of 5 MW, which should be reserved and available to the upper launcher during the entire flattop phase. Assuming continuous triggering of NTMs, with pre-emptive control ITER would be still able to demonstrate a fusion gain of Q=10 .

  3. Control system of neoclassical tearing modes in real time on HL-2A tokamak

    Science.gov (United States)

    Yan, Longwen; Ji, Xiaoquan; Song, Shaodong; Xia, Fan; Xu, Yuan; Ye, Jiruo; Jiang, Min; Chen, Wenjin; Sun, Tengfei; Liang, Shaoyong; Ling, Fei; Ma, Rui; Huang, Mei; Qu, Hongpeng; Song, Xianming; Yu, Deliang; Shi, Zhongbin; Liu, Yi; Yang, Qingwei; Xu, Min; Duan, Xuru; Liu, Yong

    2017-11-01

    The stability and performance of tokamak plasmas are routinely limited by various magneto-hydrodynamic instabilities, such as neoclassical tearing modes (NTMs). This paper presents a rather simple method to control the NTMs in real time (RT) on a tokamak, including the control principle of a feedback approach for RT suppression and stabilization for the NTMs. The control system combines Mirnov, electron cyclotron emission, and soft X-ray diagnostics used for determining the NTM positions. A methodology for fast detection of 2/1 or 3/2 NTM positions with 129 × 129 grid reconstruction is elucidated. The forty poloidal angles for steering the electron cyclotron resonance heating (ECRH)/electron cyclotron current drive launcher are used to establish the alignment of antenna mirrors with the center of the NTM and to ensure launcher emission intersecting with the rational surface of a magnetic island. Pilot experiments demonstrate the RT control capability to trace the conventional tearing modes (CTMs) in the HL-2A tokamak. The 2/1 CTMs have been suppressed or stabilized by the ECRH power deposition on site or with the steerable launcher.

  4. A theory of planning horizons (1: market design in a post-neoclassical world

    Directory of Open Access Journals (Sweden)

    Frederic B. Jennings, Jr.

    2012-05-01

    Full Text Available The neoclassical case supporting competitive frames and market solutions has failed to promote stable world-wide economic development. Other approaches in economics incorporate social culture, increasing returns, market power, ecological limits and complementarity, yielding broader applications for development theory. In this paper a theory of planning horizons is introduced to raise some meaningful questions about the traditional view with respect to its substitution, decreasing returns and independence assumptions. Suppositions of complementarity, increasing returns and interdependence suggest that competition is inefficient by upholding a myopic culture resistant to learning. Growth – though long believed to rise from markets and competitive values – may not derive from these sources. Instead, as civilizations advance, shifting from material wants to higher-order intangible output, they evolve from market tradeoffs (substitution and scarcity into realms of common need (complementarity and abundance. The policy implications of horizonal theory are explored, with respect to regulatory aims and economic concerns. Such an approach emphasizes strict constraints against entry barriers, ecological harm, market power abuse and ethical lapses. Social cohesion – not competition – is sought as a means to extend horizons and thereby increase efficiency, equity and ecological health. The overriding importance of horizon effects for regulatory assessment dominates other orthodox standards in economics and law. Reframing economics along horizonal lines suggests some meaningful insight on the proper design of economic systems.

  5. Age structure and capital dilution effects in neo-classical growth models.

    Science.gov (United States)

    Blanchet, D

    1988-01-01

    Economists often over estimate capital dilution effects when applying neoclassical growth models which use age structured population and depreciation of capital stock. This occurs because capital stock is improperly characterized. A standard model which assumes a constant depreciation of capital intimates that a population growth rate equal to a negative constant savings ratio is preferable to any higher growth rate. Growth rates which are lower than a negative constant savings ratio suggest an ever growing capital/labor ratio and an ever growing standard of living, even if people do not save. This is suggested because the natural reduction of the capital stock through depreciation is slower than the population decrease which is simply unrealistic. This model overlooks the fact that low or negative growth rates result in an ageing of the capital stock, and this ageing subsequently results in an increase of the overall rate of capital depreciation. In that overly simplistic model, depreciation was assumed independent of the age of the captial stock. Incorporating depreciation as a variable into a model allows a more symmetric treatment of capital. Using models with heterogenous capital, this article explores what occurs when more than 1 kind of capital good is involved in production and when these various captial goods have different lengths of life. Applying economic models, it also examines what occurs when the length of life of capital may vary. These variations correct the negative impact that population growth can have on per capital production and consumption.

  6. Growth and inequality examined by integrating the Walrasian general equilibrium and neoclassical growth theories

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2014-04-01

    Full Text Available This paper builds a heterogeneous-households growth model of a small open economy with fixed resource (land by integrating the Walrasian general equilibrium and neoclassical growth theories. The production side consists of two sectors. We use an alternative utility function proposed by Zhang, which enable us to develop a dynamic growth model with genuine heterogeneity. The wealth and income inequality is due to household heterogeneity in preferences and human capital as well as the households’ initial wealth. This is different from the standard Ramsey-type heterogeneous-households growth models, for instance, by Turnovsky and Garcia-Penalosa (2008, where agents are heterogeneous only in their initial capital endowment, not in preference or/and human capital. We simulate the model for an economy with three types of households. The system has a unique stable equilibrium point. We also simulate the motion of the national economy and carry out comparative dynamic analysis with regard to changes in the rate of interest, the population, the propensity to stay at home, and the propensity to save. The comparative dynamic analysis provides some important insights.

  7. Graphene transport properties upon exposure to PMMA processing and heat treatments

    DEFF Research Database (Denmark)

    Gammelgaard, Lene; Caridad, Jose; Cagliani, Alberto

    2014-01-01

    The evolution of graphene's electrical transport properties due to processing with the polymer polymethyl methacrylate (PMMA) and heat are examined in this study. The use of stencil (shadow mask) lithography enables fabrication of graphene devices without the usage of polymers, chemicals or heat......, allowing us to measure the evolution of the electrical transport properties during individual processing steps from the initial as-exfoliated to the PMMA-processed graphene. Heating generally promotes the conformation of graphene to SiO2 and is found to play a major role for the electrical properties...... that flakes conforming poorly to the substrate will have a higher carrier mobility which will however be reduced as heat treatment enhance the conformation. We finally show the electrical properties of graphene to be reversible upon heat treatments in air up to 200°C....

  8. Analytical solutions for transport processes fluid mechanics, heat and mass transfer

    CERN Document Server

    Brenn, Günter

    2017-01-01

    This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field. .

  9. A biophysical analysis of mitochondrial movement: differences between transport in neuronal cell bodies versus processes.

    Science.gov (United States)

    Narayanareddy, Babu Reddy Janakaloti; Vartiainen, Suvi; Hariri, Neema; O'Dowd, Diane K; Gross, Steven P

    2014-07-01

    There is an increasing interest in factors that can impede cargo transport by molecular motors inside the cell. Although potentially relevant (Yi JY, Ori-McKenney KM, McKenney RJ, Vershinin M, Gross SP, Vallee RB. High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J Cell Biol 2011;195:193-201), the importance of cargo size and subcellular location has received relatively little attention. Here we address these questions taking advantage of the fact that mitochondria - a common cargo - in Drosophila neurons exhibit a wide distribution of sizes. In addition, the mitochondria can be genetically marked with green fluorescent protein (GFP) making it possible to visualize and compare their movement in the cell bodies and in the processes of living cells. Using total internal reflection microscopy coupled with particle tracking and analysis, we quantified the transport properties of GFP-positive mitochondria as a function of their size and location. In neuronal cell bodies, we find little evidence for significant opposition to motion, consistent with a previous study on lipid droplets (Shubeita GT, Tran SL, Xu J, Vershinin M, Cermelli S, Cotton SL, Welte MA, Gross SP. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 2008;135:1098-1107). However, in the processes, we observe an inverse relationship between the mitochondrial size and velocity and the run distances. This can be ameliorated via hypotonic treatment to increase process size, suggesting that motor-mediated movement is impeded in this more-confined environment. Interestingly, we also observe local mitochondrial accumulations in processes but not in cell bodies. Such accumulations do not completely block the transport but do increase the probability of mitochondria-mitochondria interactions. They are thus particularly interesting in relation to mitochondrial exchange of elements.

  10. Fluid Dynamics Applied to Streams. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Cowan, Christina E.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module deals specifically with concepts that are basic to fluid flow and…

  11. Transpiration and Leaf Temperature. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Gates, David M.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This report introduces two models of the thermal energy budget of a leaf. Typical values for…

  12. Pressure and Buoyancy in Aquatic Ecosystems. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Cowan, Christina E.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module explores some of the characteristics of aquatic organisms which can be…

  13. Particle and heat transport in Tokamaks

    International Nuclear Information System (INIS)

    Chatelier, M.

    1984-01-01

    A limitation to performances of tokamaks is heat transport through magnetic surfaces. Principles of ''classical'' or ''neoclassical'' transport -i.e. transport due to particle and heat fluxes due to Coulomb scattering of charged particle in a magnetic field- are exposed. It is shown that beside this classical effect, ''anomalous'' transport occurs; it is associated to the existence of fluctuating electric or magnetic fields which can appear in the plasma as a result of charge and current perturbations. Tearing modes and drift wave instabilities are taken as typical examples. Experimental features are presented which show that ions behave approximately in a classical way whereas electrons are strongly anomalous [fr

  14. Environmental Transport of Plutonium: Biogeochemical Processes at Femtomolar Concentrations and Nanometer Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-10-05

    The major challenge in predicting the mobility and transport of plutonium (Pu) is determining the dominant geochemical processes that control its behavior in the subsurface. The reaction chemistry of Pu (i.e., aqueous speciation, solubility, sorptivity, redox chemistry, and affinity for colloidal particles, both abiotic and microbially mediated) is particularly complicated. It is generally thought that due to its low solubility and high sorptivity, Pu migration in the environment occurs only when facilitated by transport on particulate matter (i.e., colloidal particles). Despite the recognized importance of colloid-facilitated transport of Pu, very little is known about the geochemical and biochemical mechanisms controlling Pu-colloid formation and association, particularly at femtomolar Pu concentrations observed at DOE sites.

  15. Inhibiting Cadmium Transport Process in Root Cells of Plants: A Review

    Directory of Open Access Journals (Sweden)

    ZHAO Yan-ling

    2016-05-01

    Full Text Available Cadmium(Cd is the most common element found in the heavy-metal contaminated soils in China. Roots of rice and vegetables can concentrate Cd from acid soils, and then transport Cd to above-ground parts. Cd in edible part of plants directly influences the food safety. Cellwall, plasma membrane and organells of root cells in plant can discriminate Cd from other elements. A lot of Cd can be fixed in root cells by precipitation, complexation, compartmentation, and so on, to inhibit its transport from roots to shoot and guarantee the physiological activities in above-ground parts carrying out normally. This paper summarized recent advance on inhibiting Cd transport process in subcellular fractions of root cells of plants, which is in advantage of exploring excellent germplasms and gene resources in the future.

  16. Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Wenbin [General Motors LLC, Pontiac, MI (United States)

    2014-08-29

    This report documents the work performed by General Motors (GM) under the Cooperative agreement No. DE-EE0000470, “Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance,” in collaboration with the Penn State University (PSU), University of Tennessee Knoxville (UTK), Rochester Institute of Technology (RIT), and University of Rochester (UR) via subcontracts. The overall objectives of the project are to investigate and synthesize fundamental understanding of transport phenomena at both the macro- and micro-scales for the development of a down-the-channel model that accounts for all transport domains in a broad operating space. GM as a prime contractor focused on cell level experiments and modeling, and the Universities as subcontractors worked toward fundamental understanding of each component and associated interface.

  17. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Schløer, Signe; Sterner, Johanna

    2013-01-01

    with bed and suspended load descriptions, the latter based on an unsteady turbulent-diffusion equation, for simulation of sheet-flow sediment transport processes. In addition to standard features common within such RANS-based approaches, the present model includes: (1) hindered settling velocities at high...... of a number of local factors important within cross-shore wave boundary layer and sediment transport dynamics. The hydrodynamic model is validated for both hydraulically smooth and rough conditions, based on wave friction factor diagrams and boundary layer streaming profiles, with the results in excellent...... agreement with experimental and/or previous numerical work. The sediment transport model is likewise validated against oscillatory tunnel experiments involving both velocity-skewed and acceleration-skewed flows, as well as against measurements beneath real progressive waves.Model capabilities are exploited...

  18. Micro-instabilities and anomalous transport

    International Nuclear Information System (INIS)

    Connor, J.W.

    1992-01-01

    In order to optimise the design of a tokamak fusion reactor it is necessary to understand how the energy confinement time depends on the plasma and machine parameters. In principle the neo-classical theory provides this information but empirical evidence yields confinement times up to two orders of magnitude less than the predictions of this model. Experimental evidence of microscopic fluctuations in plasma density and other quantities suggests turbulent electro-magnetic fluctuations may be responsible for this anomalous transport. (Author)

  19. Decision process involved in preparing the Shippingport reactor pressure vessel for transport

    International Nuclear Information System (INIS)

    Murphie, W.E.

    1989-01-01

    The most significant part of the Shippingport Station Decommissioning Project was the one-piece removal and shipment of the reactor pressure vessel (RPV). Implicit in the RPV transport was the task of qualifying the RPV as a waste package acceptable for shipment. Soon after physical decommissioning began on September 1985, questions regarding the packaging certification and transport of the RPV from Shippingport, Pennsylvania to the US Department of Energy (DOE) Hanford Waste Burial Site necessitated reexamination of several planning assumptions. A complete reassessment of the regulatory requirements governing the RPV shipment resulted in a programmatic decision to obtain a type B(U) Certificate of Compliance and abandon the originally planned US Department of Transportation (DOT) low specific activity (LSA) shipment. The decision process resulting in this conclusion was extensive and involved many organizations and agencies. Incidental to this process, several subtle certification issues were identified that required resolution. Some of these issues involved the definition of LSA material for large packages; interpretation and compliance with DOE, DOT and US Nuclear Regulatory Commission (NRC) regulations for the transport of radioactive material; incorporation of the International Atomic Energy Agency (IAEA) regulations by the Panama Canal; and DOE policy requiring advance notification to states of radioactive waste shipments. 2 figs

  20. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    Science.gov (United States)

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  1. Disparate effects of p24alpha and p24delta on secretory protein transport and processing.

    Directory of Open Access Journals (Sweden)

    Jeroen R P M Strating

    Full Text Available BACKGROUND: The p24 family is thought to be somehow involved in endoplasmic reticulum (ER-to-Golgi protein transport. A subset of the p24 proteins (p24alpha(3, -beta(1, -gamma(3 and -delta(2 is upregulated when Xenopus laevis intermediate pituitary melanotrope cells are physiologically activated to produce vast amounts of their major secretory cargo, the prohormone proopiomelanocortin (POMC. METHODOLOGY/PRINCIPAL FINDINGS: Here we find that transgene expression of p24alpha(3 or p24delta(2 specifically in the Xenopus melanotrope cells in both cases causes an effective displacement of the endogenous p24 proteins, resulting in severely distorted p24 systems and disparate melanotrope cell phenotypes. Transgene expression of p24alpha(3 greatly reduces POMC transport and leads to accumulation of the prohormone in large, ER-localized electron-dense structures, whereas p24delta(2-transgenesis does not influence the overall ultrastructure of the cells nor POMC transport and cleavage, but affects the Golgi-based processes of POMC glycomaturation and sulfation. CONCLUSIONS/SIGNIFICANCE: Transgenic expression of two distinct p24 family members has disparate effects on secretory pathway functioning, illustrating the specificity and non-redundancy of our transgenic approach. We conclude that members of the p24 family furnish subcompartments of the secretory pathway with specific sets of machinery cargo to provide the proper microenvironments for efficient and correct secretory protein transport and processing.

  2. Decision process involved in preparing the Shippingport reactor pressure vessel for transport

    International Nuclear Information System (INIS)

    Murphie, W.E.

    1990-01-01

    The most significant part of the Shippingport Station Decommissioning Project was the one-piece removal and shipment of the reactor pressure vessel (RPV). Implicit in the RPV transport was the task of qualifying the RPV as a waste package acceptable for shipment. Soon after physical decommissioning began on September, 1985, questions regarding the packaging certification and transport of the RPV from Shippingport, Pennsylvania to the U.S. Department of Energy (DOE) Hanford waste burial site necessitated reexamination of several planning assumptions. A complete reassessment of the regulatory requirements governing the RPV shipment resulting in a programmatic decision to obtain a Type B(U) Certification of Compliance and abandon the originally planned U.S. Department of Transportation (DOT) low specific activity (LSA) shipment. The decision process resulting in this conclusion was extensive and involved many organizations and agencies. Incidental to this process, several subtle certification issues were identified that required resolution. Some of these issues involved the definition of LSA material for large packages; interpretation and compliance with DOE, DOT and U.S. Nuclear Regulatory Commission (NRC) regulations for the transport of radioactive material; incorporation of the International Atomic Energy Agency (IAEA) regulations by the Panama Canal; and DOE policy requiring advance notification to states of radioactive waste shipments

  3. Heat Transfer Processes for the Thermal Energy Balance of Organisms. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Stevenson, R. D.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes heat transfer processes involved in the exchange of heat…

  4. Flow and transport processes in a macroporous subsurface-drained glacial till soil

    DEFF Research Database (Denmark)

    Villholth, Karen Grothe; Jensen, Karsten Høgh; Fredericia, Johnny

    1998-01-01

    of macropore structure and hydraulic efficiency, using image analysis and tension infiltration, and of soil water content, level of groundwater table, and chloride content of soil water within the soil profile yielded insights into small-scale processes and their associated variability. Macropore how......The qualitative and quantitative effects of macropore flow and transport in an agricultural subsurface-drained glacial till soil in eastern Denmark have been investigated. Three controlled tracer experiments on individual field plots (each approximately 1000 m(2)) were carried out by surface...... into the soil profile. Dye infiltration experiments in the field as well as in the laboratory supported the recognition of the dominant contribution of macropores to the infiltration and transport process. The soil matrix significantly influenced the tracer distribution by acting as a source or sink...

  5. An integrated methodology for characterizing flow and transport processes in fractured rock

    International Nuclear Information System (INIS)

    Wu, Yu-Shu

    2007-01-01

    To investigate the coupled processes involved in fluid and heat flow and chemical transport in the highly heterogeneous, unsaturated-zone (UZ) fractured rock of Yucca Mountain, we present an integrated modeling methodology. This approach integrates a wide variety of moisture, pneumatic, thermal, and geochemical isotopic field data into a comprehensive three-dimensional numerical model for modeling analyses. The results of field applications of the methodology show that moisture data, such as water potential and liquid saturation, are not sufficient to determine in situ percolation flux, whereas temperature and geochemical isotopic data provide better constraints to net infiltration rates and flow patterns. In addition, pneumatic data are found to be extremely valuable in estimating large-scale fracture permeability. The integration of hydrologic, pneumatic, temperature, and geochemical data into modeling analyses is thereby demonstrated to provide a practical modeling approach for characterizing flow and transport processes in complex fractured formations

  6. Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors

    OpenAIRE

    Furuta, Ken’ya; Furuta, Akane; Toyoshima, Yoko Y.; Amino, Misako; Oiwa, Kazuhiro; Kojima, Hiroaki

    2012-01-01

    Intracellular transport is thought to be achieved by teams of motor proteins bound to a cargo. However, the coordination within a team remains poorly understood as a result of the experimental difficulty in controlling the number and composition of motors. Here, we developed an experimental system that links together defined numbers of motors with defined spacing on a DNA scaffold. By using this system, we linked multiple molecules of two different types of kinesin motors, processive kinesin-...

  7. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem

    2017-07-01

    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  8. Size graded sediment dynamics: from the processes characterization to the transport modelling in the English Channel

    International Nuclear Information System (INIS)

    Blanpain, O.

    2009-10-01

    The purpose of this work is the implementation of a sediment transport model in the English Channel. The design of such a model requires the identification of the physical processes, their modelling and their in-situ validation. Because of the sedimentary particularities of the study area, modelling of the mechanical behaviour of a non uniform mixture of sediments and particularly of the fine grains within a coarse matrix is required. This study focused on the characterization of the relevant processes by acquisition of experimental and in-situ data. Data acquired in hydro-sedimentary conditions comparable to those found in the English Channel are scarce. A new instrument and image processing technique were specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected compared well with several existing formulations. One of these formulations was chosen to be adapted. The transfer dynamics of fine grains in coarse sediments and their depth of penetration were acquired from stratigraphic samples. The sediment transport model deals with multi-size grains and multi sedimentary layers, it is forced by swell and currents, and accounts for bead load and suspended load transports. It was applied to realistic scenarios for the English Channel. (author)

  9. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  10. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    International Nuclear Information System (INIS)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  11. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  12. Spectral Induced Polarization approaches to characterize reactive transport parameters and processes

    Science.gov (United States)

    Schmutz, M.; Franceschi, M.; Revil, A.; Peruzzo, L.; Maury, T.; Vaudelet, P.; Ghorbani, A.; Hubbard, S. S.

    2017-12-01

    For almost a decade, geophysical methods have explored the potential for characterization of reactive transport parameters and processes relevant to hydrogeology, contaminant remediation, and oil and gas applications. Spectral Induced Polarization (SIP) methods show particular promise in this endeavour, given the sensitivity of the SIP signature to geological material electrical double layer properties and the critical role of the electrical double layer on reactive transport processes, such as adsorption. In this presentation, we discuss results from several recent studies that have been performed to quantify the value of SIP parameters for characterizing reactive transport parameters. The advances have been realized through performing experimental studies and interpreting their responses using theoretical and numerical approaches. We describe a series of controlled experimental studies that have been performed to quantify the SIP responses to variations in grain size and specific surface area, pore fluid geochemistry, and other factors. We also model chemical reactions at the interface fluid/matrix linked to part of our experimental data set. For some examples, both geochemical modelling and measurements are integrated into a SIP physico-chemical based model. Our studies indicate both the potential of and the opportunity for using SIP to estimate reactive transport parameters. In case of well sorted granulometry of the samples, we find that the grain size characterization (as well as the permeabililty for some specific examples) value can be estimated using SIP. We show that SIP is sensitive to physico-chemical conditions at the fluid/mineral interface, including the different pore fluid dissolved ions (Na+, Cu2+, Zn2+, Pb2+) due to their different adsorption behavior. We also showed the relevance of our approach to characterize the fluid/matrix interaction for various organic contents (wetting and non-wetting oils). We also discuss early efforts to jointly

  13. Simulation of neoclassical tearing mode stabilization via minimum seeking method on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Park, M. H.; Kim, K.; Na, D. H.; Byun, C. S.; Na, Y. S. [Seoul National Univ., Seoul (Korea, Republic of); Kim, M. [FNC Technology Co. Ltd, Yongin (Korea, Republic of)

    2016-10-15

    Neoclassical tearing modes (NTMs) are well known resistive magnetohydrodynamic (MHD) instabilities. These instabilities are sustained by a helically perturbed bootstrap current. NTMs produce magnetic islands in tokamak plasmas that can degrade confinement and lead to plasma disruption. Because of this, the stabilization of NTMs is one of the key issues for tokamaks that achieve high fusion performance such as ITER. Compensating for the lack of bootstrap current by an Electron Cyclotron Current Drive (ECCD) has been proved experimentally as an effective method to stabilize NTMs. In order to stabilize NTMs, it is important to reduce misalignment. So that even ECCD can destabilize the NTMs when misalignment is large. Feedback control method that does not fully require delicate and accurate real-time measurements and calculations, such as equilibrium reconstruction and EC ray-tracing, has also been proposed. One of the feedback control methods is minimum seeking method. This control method minimizes the island width by tuning the misalignment, assuming that the magnetic island width is a function of the misalignment. As a robust and simple method of controlling NTM, minimum 'island width growth rate' seeking control is purposed and compared with performance of minimum ' island width' seeking control. At the integrated numerical system, simulations of the NTM suppression are performed with two types of minimum seeking controllers; one is a FDM based minimum seeking controller and the other is a sinusoidal perturbation based minimum seeking method. The full suppression is achieved both types of controller. The controllers adjust poloidal angle of EC beam and reduce misalignment to zero. The sinusoidal perturbation based minimum seeking control need to modify the adaptive gain.

  14. Numerical Calculation of Neoclassical Distribution Functions and Current Profiles in Low Collisionality, Axisymmetric Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    B.C. Lyons, S.C. Jardin, and J.J. Ramos

    2012-06-28

    A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f ) in the conventional banana regime for both ions and elec trons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h ). We work in a 4D phase space in which Ψ defines a flux surface, θ is the poloidal angle, v is the total velocity referenced to the mean flow velocity, and λ is the dimensionless magnetic moment parameter. We expand h in finite elements in both v and λ . The Rosenbluth potentials, φ and ψ, which define the integral part of the collision operator, are expanded in Legendre series in cos χ , where χ is the pitch angle, Fourier series in cos θ , and finite elements in v . At each ψ , we solve a block tridiagonal system for hi (independent of fe ), then solve another block tridiagonal system for he (dependent on fi ). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia, et al., J. Comput. Phys. 37 , pp 183-204 (1980).] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D-C1 [S.C. Jardin, et al ., Computational Science & Discovery, 4 (2012).]).

  15. Reactive transport modeling of coupled inorganic and organic processes in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Adam

    1997-12-31

    The main goals of this project are to develop and apply a reactive transport code for simulation of coupled organic and inorganic processes in the pollution plume in the ground water down-gradient from the Vejen landfill, Denmark. The detailed field investigations in this aquifer have previously revealed a complex pattern of strongly interdependent organic and inorganic processes. These processes occur simultaneously in a flow and transport system where the mixing of reactive species is influenced by the rather complex geology in the vicinity of the landfill. The removal of organic matter is influenced by the presence of various electron acceptors that also are involved in various inorganic geochemical reactions. It was concluded from the investigations that degradation of organic matter, complexation, mineral precipitation and dissolution, ion-exchange and inorganic redox reactions, as a minimum, should be included in the formulation of the model. The coupling of the organic and inorganic processes is developed based on a literature study. All inorganic processes are as an approximation described as equilibriumm processes. The organic processes are described by a maximum degradation rate that is decreased according to the availability of the participants in the processes, the actual pH, and the presence of inhibiting species. The reactive transport code consists of three separate codes, a flow and transport code, a geochemical code, and a biodegradation code. An iterative solution scheme couples the three codes. The coupled code was successfully verified for simple problems for which analytical solutions exist. For more complex problems the code was tested on synthetic cases and expected plume behavior was successfully simulated. Application of the code to the Vejen landfill aquifer was successful to the degree that the redox zonation down-gradient from the landfill was simulated correctly and that several of the simulated plumes showed a reasonable agreement with

  16. Mass transfer processes and field-scale transport of organic solutes

    International Nuclear Information System (INIS)

    Brusseau, M.L.

    1990-01-01

    The influence of mass transfer processes, such as sorption/desorption and mass transfer between immiscible liquids and water, on the transport of organic solutes is discussed. Rate-limited sorption of organic solutes caused by a diffusion-constrained mechanism is shown to be significant under laboratory conditions. The significance of the impact of nonequilibrium sorption on field-scale transport is scale dependent. The impact of organic liquids on mass transfer and transport of organic solutes depends upon the nature of the solute and the nature and form of the organic liquid. For example, while retardation of nonionic solutes is decreased in mixed-solvent systems, (i.e. systems comprised of water and a miscible organic liquid or an immiscible liquid present in concentrations below phase separation), the retardation of organic acids may, in some cases, increase with addition of a cosolvent. While the presence of an immiscible liquid existing as a mobile phase will reduce retention of organic solutes, the presence of residual saturation of an immiscible liquid can significantly increase retention. A model is presented that incorporates the effects of retention resulting from residual saturation, as well as nonequilibrium sorption, on the transport of organic solutes. (Author) (70 refs., 3 figs.)

  17. Three-Dimensional Mathematical Model of Oxygen Transport Behavior in Electroslag Remelting Process

    Science.gov (United States)

    Huang, Xuechi; Li, Baokuan; Liu, Zhongqiu

    2018-04-01

    A transient three-dimensional model has been proposed to investigate the oxygen transport behavior in electroslag remelting process. The electromagnetism, heat transfer, multiphase flow, and species transport were calculated simultaneously by finite volume method. The volume of fluid approach was adopted to trace the metal-slag-air three-phase flow. Based on the necessary thermodynamics of oxygen transport behavior, a kinetic model was established to predict the mass source terms in species transport equation. The kinetic correction factor was proposed to account for the effect of the oxide scale formed on the electrode on the FeO content in slag. Finally, the effect of applied current on the oxygen transfer was studied. The predicted result agrees well with the measured data when the kinetic correction factor is set to be 0.5. The temperature distribution that affects the thermodynamics differs at the interfaces. The oxygen in air is absorbed into slag due to the oxidation at the slag/air interface. The Fe2O3 in slag and the oxide scale contribute to the increase of FeO content in slag, and the latter one plays the leading role. The oxygen transfer from slag to metal mainly occurs during the formation of the droplet at the slag/metal droplet interface. With the current increasing from 1200 to 1800 A, the oxygen content increases from 76.4 to 89.8 ppm, and then slightly declines to 89.2 ppm when the current increases to 2100 A.

  18. Three-Dimensional Mathematical Model of Oxygen Transport Behavior in Electroslag Remelting Process

    Science.gov (United States)

    Huang, Xuechi; Li, Baokuan; Liu, Zhongqiu

    2017-12-01

    A transient three-dimensional model has been proposed to investigate the oxygen transport behavior in electroslag remelting process. The electromagnetism, heat transfer, multiphase flow, and species transport were calculated simultaneously by finite volume method. The volume of fluid approach was adopted to trace the metal-slag-air three-phase flow. Based on the necessary thermodynamics of oxygen transport behavior, a kinetic model was established to predict the mass source terms in species transport equation. The kinetic correction factor was proposed to account for the effect of the oxide scale formed on the electrode on the FeO content in slag. Finally, the effect of applied current on the oxygen transfer was studied. The predicted result agrees well with the measured data when the kinetic correction factor is set to be 0.5. The temperature distribution that affects the thermodynamics differs at the interfaces. The oxygen in air is absorbed into slag due to the oxidation at the slag/air interface. The Fe2O3 in slag and the oxide scale contribute to the increase of FeO content in slag, and the latter one plays the leading role. The oxygen transfer from slag to metal mainly occurs during the formation of the droplet at the slag/metal droplet interface. With the current increasing from 1200 to 1800 A, the oxygen content increases from 76.4 to 89.8 ppm, and then slightly declines to 89.2 ppm when the current increases to 2100 A.

  19. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers

    Science.gov (United States)

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang (Michael); Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiOx and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiOx/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

  20. Emotional voice processing: investigating the role of genetic variation in the serotonin transporter across development.

    Directory of Open Access Journals (Sweden)

    Tobias Grossmann

    Full Text Available The ability to effectively respond to emotional information carried in the human voice plays a pivotal role for social interactions. We examined how genetic factors, especially the serotonin transporter genetic variation (5-HTTLPR, affect the neurodynamics of emotional voice processing in infants and adults by measuring event-related brain potentials (ERPs. The results revealed that infants distinguish between emotions during an early perceptual processing stage, whereas adults recognize and evaluate the meaning of emotions during later semantic processing stages. While infants do discriminate between emotions, only in adults was genetic variation associated with neurophysiological differences in how positive and negative emotions are processed in the brain. This suggests that genetic association with neurocognitive functions emerges during development, emphasizing the role that variation in serotonin plays in the maturation of brain systems involved in emotion recognition.

  1. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  2. Thermodynamic calculations for biochemical transport and reaction processes in metabolic networks.

    Science.gov (United States)

    Jol, Stefan J; Kümmel, Anne; Hatzimanikatis, Vassily; Beard, Daniel A; Heinemann, Matthias

    2010-11-17

    Thermodynamic analysis of metabolic networks has recently generated increasing interest for its ability to add constraints on metabolic network operation, and to combine metabolic fluxes and metabolite measurements in a mechanistic manner. Concepts for the calculation of the change in Gibbs energy of biochemical reactions have long been established. However, a concept for incorporation of cross-membrane transport in these calculations is still missing, although the theory for calculating thermodynamic properties of transport processes is long known. Here, we have developed two equivalent equations to calculate the change in Gibbs energy of combined transport and reaction processes based on two different ways of treating biochemical thermodynamics. We illustrate the need for these equations by showing that in some cases there is a significant difference between the proposed correct calculation and using an approximative method. With the developed equations, thermodynamic analysis of metabolic networks spanning over multiple physical compartments can now be correctly described. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Development of a Monte Carlo software to photon transportation in voxel structures using graphic processing units

    International Nuclear Information System (INIS)

    Bellezzo, Murillo

    2014-01-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)

  4. Transport survey calculations using the spectral collocation method

    International Nuclear Information System (INIS)

    Painter, S.L.; Lyon, J.F.

    1989-01-01

    A novel transport survey code has been developed and is being used to study the sensitivity of stellarator reactor performance to various transport assumptions. Instead of following one of the usual approaches, the steady-state transport equation are solved in integral form using the spectral collocation method. This approach effectively combine the computational efficiency of global models with the general nature of 1-D solutions. A compact torsatron reactor test case was used to study the convergence properties and flexibility of the new method. The heat transport model combined Shaing's model for ripple-induced neoclassical transport, the Chang-Hinton model for axisymmetric neoclassical transport, and neoalcator scaling for anomalous electron heat flux. Alpha particle heating, radiation losses, classical electron-ion heat flow, and external heating were included. For the test problem, the method exhibited some remarkable convergence properties. As the number of basis functions was increased, the maximum, pointwise error in the integrated power balance decayed exponentially until the numerical noise level as reached. Better than 10% accuracy in the globally-averaged quantities was achieved with only 5 basis functions; better than 1% accuracy was achieved with 10 basis functions. The numerical method was also found to be very general. Extreme temperature gradients at the plasma edge which sometimes arise from the neoclassical models and are difficult to resolve with finite-difference methods were easily resolved. 8 refs., 6 figs

  5. The Goal of Evolutionary and Neoclassical Economics as a Consequence of the Changes in Concepts of Human Nature

    Directory of Open Access Journals (Sweden)

    Anna Horodecka

    2015-11-01

    Full Text Available The economics depends on the concept of human nature very strongly. The concepts of human nature can be understood as a set of assumptions made about the individual (on different levels: behavior, motives, meaning and his interactions with other people, with groups and diverse institutions. It corresponds with the image of world people have. The concept of human nature together with an image of the world builds the basis of thinking about the economics and about such fundamental element of it as its goal. Therefore if those images of men change, the way of thinking about economics and their elements adjust to those changes as well. The goal of the paper is to present the impact of these alterations of image of man on the economics. This impact will be illustrated on the example of the evolutionary economics, which is contrasted with the orthodox concept of human nature persisting in the neoclassical economics – homo economicus. The method applied to this research is, among others, a content analysis of the most important texts developed within neoclassical and evolutionary economics. To reach this goal, the following steps will be conducted: firstly, the concepts of human nature will be defined in regards of their particularity depending on the discipline by which they are defined; secondly, the main differences between concepts of human nature in neoclassical and evolutionary economics will be analyzed, and thirdly the differences in understanding of the goal and field between those two schools will be explained as resulting from the diverse concepts of human nature. The analysis proved that the main differences in those economic schools might be explained by the changed assumptions about the human nature and the image of the world.

  6. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    Science.gov (United States)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to biofuel. Finally, an integration of the H2Bioil process with the H2CAR process is suggested which can achieve 100% carbon efficiency (330 ege/ton of biomass) at the expense of 0.24 kg hydrogen/liter of oil. A sun-to-fuel efficiency analysis shows that extracting CO2 from air and converting it to liquid fuel is at least two times more efficient than growing dedicated fuel crops and converting them to liquid fuel even for the highest biomass growth rates feasible by algae. This implies that liquid fuel should preferably be produced from sustainably available waste (SAW) biomass first and if the SAW biomass is unable to meet the demand for liquid fuel, then, CO2 should be extracted from air and converted to liquid fuel, rather than growing biomass. Furthermore, based on the Sun-to-Wheels recovery for different transportation pathways, synergistic and complementary use of electricity, hydrogen and biomass, all derived from solar energy, is presented in an energy

  7. Calsyntenin-1 shelters APP from proteolytic processing during anterograde axonal transport

    Directory of Open Access Journals (Sweden)

    Martin Steuble

    2012-06-01

    Endocytosis of amyloid-β precursor protein (APP is thought to represent the major source of substrate for the production of the amyloidogenic Aβ peptide by the β-secretase BACE1. The irreversible nature of proteolytic cleavage implies the existence of an efficient replenishment route for APP from its sites of synthesis to the cell surface. We recently found that APP exits the trans-Golgi network in intimate association with calsyntenin-1, a transmembrane cargo-docking protein for Kinesin-1-mediated vesicular transport. Here we characterized the function of calsyntenin-1 in neuronal APP transport using selective immunoisolation of intracellular trafficking organelles, immunocytochemistry, live-imaging, and RNAi. We found that APP is co-transported with calsyntenin-1 along axons to early endosomes in the central region of growth cones in carriers that exclude the α-secretase ADAM10. Intriguingly, calsyntenin-1/APP organelles contained BACE1, suggesting premature cleavage of APP along its anterograde path. However, we found that APP contained in calsyntenin-1/APP organelles was stable. We further analyzed vesicular trafficking of APP in cultured hippocampal neurons, in which calsyntenin-1 was reduced by RNAi. We found a markedly increased co-localization of APP and ADAM10 in axons and growth cones, along with increased proteolytic processing of APP and Aβ secretion in these neurons. This suggested that the reduced capacity for calsyntenin-1-dependent APP transport resulted in mis-sorting of APP into additional axonal carriers and, therefore, the premature encounter of unprotected APP with its ectodomain proteases. In combination, our results characterize calsyntenin-1/APP organelles as carriers for sheltered anterograde axonal transport of APP.

  8. Advances in Understanding Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface

    Science.gov (United States)

    Karapanagioti, H. K.; Werner, D.; Werth, C.

    2012-04-01

    The results of a call for a special issue that is now in press by the Journal of Contaminant Hydrology will be presented. This special issue is edited by the authors and is entitled "Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface". A short abstract of each paper will be presented along with the most interesting results. Nine papers were accepted. Pollutants studied include: biocolloids, metals (arsenic, chromium, nickel), organic compounds such as hydrocarbons, chlorinated hydrocarbons, micropollutants (PAHs, PCBs), pesticides (glyphosate, 2,4-D). Findings presented in the papers include a modified batch reactor system to study equilibrium-reactive transport problems of metals. Column studies along with theoretical approximations evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three biocolloids. A polluted sediment remediation method is evaluated considering site-specific conditions through monitoring results and modelling. A field study points to glogging and also sorption as mechanisms affecting the effectiveness of sub-surface flow constructed wetlands. A new isotherm model combining modified traditionally used isotherms is proposed that can be used to simulate pH-dependent metal adsorption. Linear free energy relationships (LFERs) demonstrate ability to predict slight isotope shifts into the groundwater due to sorption. Possible modifications that improve the reliability of kinetic models and parameter values during the evaluation of experiments that assess the sorption of pesticides on soils are tested. Challenges in selecting groundwater pollutant fate and transport models that account for the effect of grain-scale sorption rate limitations are evaluated based on experimental results and are discussed based on the Damköhler number. Finally, a thorough review paper presents the impact of mineral micropores on the transport and fate of

  9. Indirect Transportation Cost in the border crossing process: The United States–Mexico trade

    Directory of Open Access Journals (Sweden)

    Carlos Obed Figueroa Ortiz

    2015-12-01

    Full Text Available Using a Social Accounting Matrix as database, a Computable General Equilibrium model is implemented in order to estimate the Indirect Transportations Costs (ITC present in the border crossing for the U.S.–Mexico bilateral trade. Here, an “iceberg–type” transportation function is assumed to determine the amount of loss that must be faced as a result of border crossing process through the ports of entry existing between the two countries. The study period covers annual data from 1995 to 2009 allowing the analysis of the trend of these costs considering the trade liberalisation that is experienced. Results show that the ITC have experienced a decrease of 12% during the period.Test

  10. Process of Judging Significant Modifications for Different Transportation Systems compared to the Approach for Nuclear Installations

    Directory of Open Access Journals (Sweden)

    Nicolas Petrek

    2015-12-01

    Full Text Available The implementation of the CSM regulation by the European Commission in 2009 which harmonizes the risk assessment process and introduces a rather new concept of judging changes within the European railway industry. This circumstance has risen the question how other technology sectors handle the aspect of modifications and alterations. The paper discusses the approaches for judging the significance of modifications within the three transport sectors of European railways, aviation and maritime transportation and the procedure which is used in the area of nuclear safety. We will outline the similarities and differences between these four methods and discuss the underlying reasons. Finally, we will take into account the role of the European legislator and the fundamental idea of a harmonization of the different approaches.

  11. Monte Carlo method for neutron transport calculations in graphics processing units (GPUs)

    International Nuclear Information System (INIS)

    Pellegrino, Esteban

    2011-01-01

    Monte Carlo simulation is well suited for solving the Boltzmann neutron transport equation in an inhomogeneous media for complicated geometries. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop PC. The interest in adopting Graphics Processing Units (GPUs) for Monte Carlo acceleration is rapidly growing. This is due to the massive parallelism provided by the latest GPU technologies which is the most promising solution to the challenge of performing full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem were developed for GPU environments in order to evaluate issues associated with computational speedup using GPUs. Results obtained in this work suggest that a speedup of several orders of magnitude is possible using the state-of-the-art GPU technologies. (author) [es

  12. CONCEPTUALIZATION OF THE CONCEPT INSTITUTE OF THE MARKET OF INSURANCE SERVICES BASED ON THE NEO-CLASSIC ECONOMY

    Directory of Open Access Journals (Sweden)

    Yurii Klapkiv

    2017-08-01

    Full Text Available The article explores the issues related to the institutional and financial infrastructure based on the scientific achievements of the neoclassical economy. The specific features of the concept of "institutionalization" are substantiated. The initial interpretation of the interpretation of institutions is revealed. Conceptual approaches to the study of the concept of “institutionalization” and “institute” in the insurance services market are defined. The attention to the galaxy values provided by the notion of an institution or organization. Key words: institutionalization, institute, organization, market of insurance services, insurance culture.

  13. A model for the advantage of early electron cyclotron current drive in the suppression of neoclassical tearing modes

    International Nuclear Information System (INIS)

    Lazaros, Avrilios; Maraschek, Marc; Zohm, Hartmut

    2007-01-01

    An analytic model for the advantage of the early application of electron cyclotron current drive (ECCD) in the suppression of neoclassical tearing modes (NTMs) is presented. The improved performance of early ECCD is attributed to the second (smaller) saturation island width, which appears for sufficiently small (relative to the ECCD deposition width) critical island widths, in the strongly nonlinear growth rate profile. The operational range for the advantage of early ECCD is obtained, and it is shown that it is favored by broad deposition profiles. The preliminary experimental results in ASDEX Upgrade [H. Zohm et al., Nucl. Fusion 41, 197 (2001)] are consistent with the present model

  14. Evaluation and analysis method for natural gas hydrate storage and transportation processes

    International Nuclear Information System (INIS)

    Hao Wenfeng; Wang Jinqu; Fan Shuanshi; Hao Wenbin

    2008-01-01

    An evaluation and analysis method is presented to investigate an approach to scale-up a hydration reactor and to solve some economic problems by looking at the natural gas hydrate storage and transportation process as a whole. Experiments with the methane hydration process are used to evaluate the whole natural gas hydrate storage and transportation process. The specific contents and conclusions are as follows: first, batch stirring effects and load coefficients are studied in a semi-continuous stirred-tank reactor. Results indicate that batch stirring and appropriate load coefficients are effective in improving hydrate storage capacity. In the experiments, appropriate values for stirring velocity, stirring time and load coefficient were found to be 320 rpm, 30 min and 0.289, respectively. Second, throughput and energy consumption of the reactor for producing methane hydrates are calculated by mass and energy balance. Results show that throughput of this is 1.06 kg/d, with a product containing 12.4% methane gas. Energy consumption is 0.19 kJ, while methane hydrates containing 1 kJ heat are produced. Third, an energy consumption evaluation parameter is introduced to provide a single energy consumption evaluation rule for different hydration reactors. Parameter analyses indicate that process simplicity or process integration can decrease energy consumption. If experimental gas comes from a small-scale natural gas field and the energy consumption is 0.02 kJ when methane hydrates containing 1 kJ heat are produced, then the decrease is 87.9%. Moreover, the energy consumption evaluation parameter used as an economic criterion is converted into a process evaluation parameter. Analyses indicate that the process evaluation parameter is relevant to technology level and resource consumption for a system, which can make it applicable to economic analysis and venture forecasting for optimal capital utilization

  15. Function and repair of dental enamel - Potential role of epithelial transport processes of ameloblasts.

    Science.gov (United States)

    Varga, Gábor; Kerémi, Beáta; Bori, Erzsébet; Földes, Anna

    2015-07-01

    The hardest mammalian tissue, dental enamel is produced by ameloblasts, which are electrolyte-transporting epithelial cells. Although the end product is very different, they show many similarities to transporting epithelia of the pancreas, salivary glands and kidney. Enamel is produced in a multi-step epithelial secretory process that features biomineralization which is an interplay of secreted ameloblast specific proteins and the time-specific transport of minerals, protons and bicarbonate. First, "secretory" ameloblasts form the entire thickness of the enamel layer, but with low mineral content. Then they differentiate into "maturation" ameloblasts, which remove organic matrix from the enamel and in turn further build up hydroxyapatite crystals. The protons generated by hydroxyapatite formation need to be buffered, otherwise enamel will not attain full mineralization. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. The whole process has been the focus of many immunohistochemical and gene knock-out studies, but, perhaps surprisingly, no functional data existed for mineral ion transport by ameloblasts. However, recent studies including ours provided a better insight for molecular mechanism of mineral formation. The secretory regulation is not completely known as yet, but its significance is crucial. Impairing regulation retards or prevents completion of enamel mineralization and results in the development of hypomineralized enamel that easily erodes after dental eruption. Factors that impair this function are fluoride and disruption of pH regulators. Revealing these factors may eventually lead to the treatment of enamel hypomineralization related to genetic or environmentally induced malformation. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  16. Sediment Transport Capacity and Channel Processes in a Humid Tropical Montane River - Rio Pacuare, Costa Rica

    Science.gov (United States)

    Lind, P.; McDowell, P. F.

    2017-12-01

    Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport

  17. Soft Factors, Smooth Transport? The role of safety climate and team processes in reducing adverse events during intrahospital transport in intensive care.

    Science.gov (United States)

    Latzke, Markus; Schiffinger, Michael; Zellhofer, Dominik; Steyrer, Johannes

    2017-11-15

    Intrahospital patient transports (IHTs) in intensive care involve an appreciable risk of adverse events (AEs). Research on determinants of AE occurrence during IHT has hitherto focused on patient, transport, and intensive care unit (ICU) characteristics. By contrast, the role of "soft" factors, although arguably relevant for IHTs and a topic of interest in general health care settings, has not yet been explored. The study aims at examining the effect of safety climate and team processes on the occurrence of AE during IHT and whether team processes mediate the effect of safety climate. Data stem from a noninterventional, observational multicenter study in 33 ICUs (from 12 European countries), with 858 transports overall recorded during 28 days. AEs include medication errors, dislodgments, equipment failures, and delays. Safety climate scales were taken from the "Patient Safety Climate in Healthcare Organizations" (short version), team processes scales from the "Leiden Operating Theatre and Intensive Care Safety" questionnaire. Patient condition was assessed with NEMS (Nine Equivalents of Nursing Manpower Use Score). All other variables could be directly observed. Hypothesis testing and assessment of effects rely on bivariate correlations and binomial logistic multilevel models (with ICU as random effect). Both safety climate and team processes are comparatively important determinants of AE occurrence, also when controlling for transport-, staff-, and ICU-related variables. Team processes partially mediate the effect of safety climate. Patient condition and transport duration are consistently related with AE occurrence, too. Unlike most patient, transport, and ICU characteristics, safety climate and team processes are basically amenable to managerial interventions. Coupled with their considerable effect on AE occurrence, this makes pertinent endeavors a potentially promising approach for improving patient safety during IHT. Although literature suggests that safety

  18. Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process

    International Nuclear Information System (INIS)

    Aiki, Toyohiko; Kumazaki, Kota

    2012-01-01

    From civil engineering point of view it is very important to construct and analyze a mathematical model for a mechanism of concrete carbonation process. On this subject there are several mathematical results concerned with a one-dimensional model, in which hysteresis effects are neglected. Our aim is to give a model with hysteresis effects appearing in carbonation process. In this paper, as the first step of this research we focus only on moisture transport in the process and propose an initial boundary value problem for a system of partial differential equations as a mathematical model. Also, we give results on the existence of a solution to the problem, globally in time and the uniqueness in only one-dimensional case without proofs.

  19. Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process

    Science.gov (United States)

    Aiki, Toyohiko; Kumazaki, Kota

    2012-05-01

    From civil engineering point of view it is very important to construct and analyze a mathematical model for a mechanism of concrete carbonation process. On this subject there are several mathematical results concerned with a one-dimensional model, in which hysteresis effects are neglected. Our aim is to give a model with hysteresis effects appearing in carbonation process. In this paper, as the first step of this research we focus only on moisture transport in the process and propose an initial boundary value problem for a system of partial differential equations as a mathematical model. Also, we give results on the existence of a solution to the problem, globally in time and the uniqueness in only one-dimensional case without proofs.

  20. Collection, transport and general processing of clinical specimens in Microbiology laboratory.

    Science.gov (United States)

    Sánchez-Romero, M Isabel; García-Lechuz Moya, Juan Manuel; González López, Juan José; Orta Mira, Nieves

    2018-02-06

    The interpretation and the accuracy of the microbiological results still depend to a great extent on the quality of the samples and their processing within the Microbiology laboratory. The type of specimen, the appropriate time to obtain the sample, the way of sampling, the storage and transport are critical points in the diagnostic process. The availability of new laboratory techniques for unusual pathogens, makes necessary the review and update of all the steps involved in the processing of the samples. Nowadays, the laboratory automation and the availability of rapid techniques allow the precision and turn-around time necessary to help the clinicians in the decision making. In order to be efficient, it is very important to obtain clinical information to use the best diagnostic tools. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  1. Business process integration between European manufacturers and transport and logistics service providers

    DEFF Research Database (Denmark)

    Mortensen, Ole; Lemoine, W

    2005-01-01

    The goal of the Supply Chain Management process is to create value for customers, stakeholders and all supply chain members, through the integration of disparate processes like manufacturing flow management, customer service and order fulfillment. However, many firms fail in the path of achieving...... a total integration. This study illustrates, from an empirical point of view, the problems associated to SC integration among European firms operating in global/international markets. The focus is on the relationship between two echelons in the supply chain: manufacturers and their transport and logistics...... service providers (TLSPs). The paper examines (1) the characteristics of the collaborative partnerships established between manufacturers and their TLSPs; (2) to what extent manufacturers and their TLSPs have integrated SC business processes; (3) the IT used to support the SC cooperation and integration...

  2. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    Science.gov (United States)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  3. Transport and transformation of mercury during wet flue gas cleaning process of nonferrous metal smelting.

    Science.gov (United States)

    Liu, Zhilou; Wang, Dongli; Peng, Bing; Chai, Liyuan; Liu, Hui; Yang, Shu; Yang, Bentao; Xiang, Kaisong; Liu, Cao

    2017-10-01

    Reducing mercury emission is hot topic for international society. The first step for controlling mercury in fuel gas is to investigate mercury distribution and during the flue gas treatment process. The mercury transport and transformation in wet flue gas cleaning process of nonferrous smelting industry was studied in the paper with critical important parameters, such as the solution temperature, Hg 0 concentration, SO 2 concentration, and Hg 2+ concentration at the laboratory scale. The mass ratio of the mercury distribution in the solution, flue gas, sludge, and acid fog from the simulated flue gas containing Hg 2+ and Hg 0 was 49.12~65.54, 18.34~35.42, 11.89~14.47, and 1.74~3.54%, respectively. The primary mercury species in the flue gas and acid fog were gaseous Hg 0 and dissolved Hg 2+ . The mercury species in the cleaning solution were dissolved Hg 2+ and colloidal mercury, which accounted for 56.56 and 7.34% of the total mercury, respectively. Various mercury compounds, including Hg 2 Cl 2 , HgS, HgCl 2 , HgSO 4 , and HgO, existed in the sludge. These results for mercury distribution and speciation are highly useful in understanding mercury transport and transformation during the wet flue gas cleaning process. This research is conducive for controlling mercury emissions from nonferrous smelting flue gas and by-products.

  4. Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics.

    Science.gov (United States)

    Choy, Wallace C H; Zhang, Di

    2016-01-27

    Carrier (electron and hole) transport layers (CTLs) are essential components for boosting the performance of various organic optoelectronic devices such as organic solar cells and organic light-emitting diodes. Considering the drawbacks of conventional CTLs (easily oxidized/unstable, demanding/costly fabrication, etc.), transition metal oxides with good carrier transport/extraction and superior stability have drawn extensive research interest as CTLs for next-generation devices. In recent years, many research efforts have been made toward the development of solution-based metal oxide CTLs with the focus on low- or even room-temperature processes, which can potentially be compatible with the deposition processes of organic materials and can significantly contribute to the low-cost and scale-up of organic devices. Here, the recent progress of different types of solution-processed metal oxide CTLs are systematically reviewed in the context of organic photovoltaics, from synthesis approaches to device performance. Different approaches for further enhancing the performance of solution-based metal oxide CTLs are also discussed, which may push the future development of this exciting field. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Numerical modelling of flow and transport processes in a calciner for cement production

    Energy Technology Data Exchange (ETDEWEB)

    Fidaros, D.K.; Baxevanou, C.A.; Dritselis, C.D.; Vlachos, N.S. [University of Thessaly, Volos (Greece). Dept. for Mechanical & Industrial Engineering

    2007-02-15

    Controlling the calcination process in industrial cement kilns is of particular importance because it affects fuel consumption, pollutant emission and the final cement quality. Therefore, understanding the mechanisms of flow and transport phenomena in the calciner is important for efficient cement production. The main physico-chemical processes taking place in the calciner are coal combustion and the strongly endothermic calcination reaction of the raw materials. In this paper a numerical model and a parametric study are presented of the flow and transport processes taking place in an industrial calciner. The numerical model is based on the solution of the Navier-Stokes equations for the gas flow, and on Lagrangean dynamics for the discrete particles. All necessary mathematical models were developed and incorporated into a computational fluid dynamics model with the influence of turbulence simulated by a two-equation (k-epsilon) model. Distributions of fluid velocities, temperatures and concentrations of the reactants and products as well as the trajectories of particles and their interaction with the gas phase are calculated. The results of the present parametric study allow estimations to be made and conclusions to be drawn that help in the optimization of a given calciner.

  6. Non-perturbative measurement of cross-field thermal diffusivity reduction at the O-point of 2/1 neoclassical tearing mode islands in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bardóczi, L.; Rhodes, T. L.; Carter, T. A.; Crocker, N. A.; Peebles, W. A. [University of California Los Angeles, Los Angeles, California 90095 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-05-15

    Neoclassical tearing modes (NTMs) often lead to the decrease of plasma performance and can lead to disruptions, which makes them a major impediment in the development of operating scenarios in present toroidal fusion devices. Recent gyrokinetic simulations predict a decrease of plasma turbulence and cross-field transport at the O-point of the islands, which in turn affects the NTM dynamics. In this paper, a heat transport model of magnetic islands employing spatially non-uniform cross-field thermal diffusivity (χ{sub ⊥}) is presented. This model is used to derive χ{sub ⊥} at the O-point from electron temperature data measured across 2/1 NTM islands in DIII-D. It was found that χ{sub ⊥} at the O-point is 1 to 2 orders of magnitude smaller than the background plasma transport, in qualitative agreement with gyrokinetic predictions. As the anomalously large values of χ{sub ⊥} are often attributed to turbulence driven transport, the reduction of the O-point χ{sub ⊥} is consistent with turbulence reduction found in recent experiments. Finally, the implication of reduced χ{sub ⊥} at the O-point on NTM dynamics was investigated using the modified Rutherford equation that predicts a significant effect of reduced χ{sub ⊥} at the O-point on NTM saturation.

  7. Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill, Denmark

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard; Christensen, Thomas Højlund

    2002-01-01

    A biogeochemical transport code is used to simulate leachate attenuation. biogeochemical processes. and development of redox zones in a pollution plume downstream of the Vejen landfill in Denmark. Calibration of the degradation parameters resulted in a good agreement with the observed distribution...... redox zone were determined giving DOC half-lives ranging from 100 to 1-2 days going from the methanogenic to the aerobic zone. The order of decrease in DOC half-lives from the anaerobic to the aerobic zone corresponds to findings at other landfills. (C) 2002 Elsevier Science B.V. All rights reserved....

  8. Simulation of neutron transport process, photons and charged particles within the Monte Carlo method

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Artamonov, S.N.; Bolonkina, G.V.; Lomtev, V.L.; Pupko, S.V.

    1991-01-01

    Description is given to the program system BRAND designed for the accurate solution of non-stationary transport equation of neutrons, photons and charged particles in the conditions of real three-dimensional geometry. An extensive set of local and non-local estimates provides an opportunity of calculating a great set of linear functionals normally being of interest in the calculation of reactors, radiation protection and experiment simulation. The process of particle interaction with substance is simulated on the basis of individual non-group data on each isotope of the composition. 24 refs

  9. Mathematical modeling of a carrier-mediated transport process in a liquid membrane.

    Science.gov (United States)

    Ganesan, Subramanian; Anitha, Shanmugarajan; Subbiah, Alwarappan; Rajendran, Lakshmanan

    2013-06-01

    An analysis of the reaction diffusion in a carrier-mediated transport process through a membrane is presented. A simple approximate analytical expression of concentration profiles is derived in terms of all dimensionless parameters. Furthermore, in this work we employ the homotopy perturbation method to solve the nonlinear reaction-diffusion equations. Moreover, the analytical results have been compared to the numerical simulation using the Matlab program. The simulated results are comparable with the appropriate theories. The results obtained in this work are valid for the entire solution domain.

  10. Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Larsen, Flemming; Hue, N.T.M.

    2007-01-01

    chemistry over depth is homogeneous and a reactive transport model was constructed to quantify the geochemical processes along the vertical groundwater flow component. A redox zonation model was constructed using the partial equilibrium approach with organic carbon degradation in the sediment as the only...... rate controlling parameter. Apart from the upper meter a constant degradation rate of 0.15 C mmol/L/yr could explain the redox zonation throughout the aquifer. Modeling also indicates that the Fe-oxide being reduced is of a stable type like goethite or hematite. Arsenic is contained in the Fe...

  11. Transport processes for Chernobyl-labelled sediments: preliminary evidence from upland mid-Wales

    International Nuclear Information System (INIS)

    Bonnett, P.J.P.; Leeks, G.J.L.; Cambray, R.S.

    1989-01-01

    The nuclear accident at Chernobyl in April 1986 resulted in a significant increase in the inventory of radiocaesium retained in the soil in many regions of the United Kingdom. The deposition of 134 Cs provides a convenient tool for the examination of erosional processes in upland systems. Detailed soil sampling has been undertaken within the Plynlimon experimental catchments to establish the pattern of deposition of Chernobyl-derived radionuclides. The preliminary results of a combined radiometric and mineral magnetic approach to the study of the transport of Chernobyl-labelled sediments and their source areas on these upland catchments in mid-Wales are described. (author)

  12. The TOUGH codes - a family of simulation tools for multiphase flowand transport processes in permeable media

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten

    2003-08-08

    Numerical simulation has become a widely practiced andaccepted technique for studying flow and transport processes in thevadose zone and other subsurface flow systems. This article discusses asuite of codes, developed primarily at Lawrence Berkeley NationalLaboratory (LBNL), with the capability to model multiphase flows withphase change. We summarize history and goals in the development of theTOUGH codes, and present the governing equations for multiphase,multicomponent flow. Special emphasis is given to space discretization bymeans of integral finite differences (IFD). Issues of code implementationand architecture are addressed, as well as code applications,maintenance, and future developments.

  13. All-solution-processed inverted organic solar cell with a stacked hole-transporting layer

    Science.gov (United States)

    Lin, Wen-Kai; Su, Shui-Hsiang; Liu, Che-Chun; Yokoyama, Meiso

    2014-11-01

    In this study, inverted organic solar cells (IOSCs) have been fabricated and characterized. A sol-gel zinc oxide (ZnO) film is used as a hole-blocking layer (HBL). Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and copper phthalocyanine (CuPc) are used as a hole-transporting layer (HTL). The HBL, active layer, and HTL films are fabricated by spin-coating technique. The anode is fabricated from Ag nanoparticles by drop titration using a Pasteur burette. Experimental results show that the PEDOT:PSS/CuPc stacked HTL provides a stepwise hole-transporting energy diagram configuration, which subsequently increases the charge carrier transporting capability and extracts holes from the active layer to the anode. The characteristics of the IOSCs were optimized and exhibited an open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE) of 0.53 V, 6.13 mA/cm2, 37.53%, and 1.24%, respectively, under simulated AM1.5G illumination of 100 mW/cm2. Hence, a solution process is feasible for fabricating low-cost and large-area solar energy devices.

  14. Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Tsita, Katerina G.; Pilavachi, Petros A.

    2012-01-01

    This paper evaluates alternative fuels for the Greek road transport sector, using the Analytic Hierarchy Process. Seven different alternatives of fuel mode are considered in this paper: internal combustion engine (ICE) and its combination with petroleum and 1st and 2nd generation biofuels blends, fuel cells, hybrid vehicles, plug-in hybrids and electric vehicles. The evaluation of alternative fuel modes is performed according to cost and policy aspects. In order to evaluate each alternative fuel, one base scenario and ten alternative scenarios with different weight factors selection per criterion are presented. After deciding the alternative fuels’ scoring against each criterion and the criteria weights, their synthesis gives the overall score and ranking for all ten alternative scenarios. It is concluded that ICE blended with 1st and 2nd generation biofuels are the most suitable alternative fuels for the Greek road transport sector. - Highlights: ► Alternative fuels for the Greek road transport sector have been evaluated. ► The method of the AHP was used. ► Seven different alternatives of fuel mode are considered. ► The evaluation is performed according to cost and policy aspects. ► The ICE with 1st and 2nd generation biofuels are the most suitable fuels.

  15. Anthropogenic disturbance on sediment transport processes in the tidal power plant

    Science.gov (United States)

    Ha, Ho Kyung; Kim, Jong-wook; Woo, Seung-Buhm; Kwon, Hyo Keun

    2017-04-01

    A series of in-situ mooring observations have been conducted to investigate the anthropogenic disturbance of sediment transport processes in the Sihwa tidal power plant (TPP). The mooring data show that the profiels of velocity and suspended sediment concentration (SSC) were significantly disturbed over the various time scales. On the short-term (flood-ebb) time scale, resuspension of bottom sediment is mainly controlled by the strong jet-flow (>2 m/s) and anticlockwise rotating vortex associated with the artificial discharge. During ebb phase, the strong flow resulted in suspension of high-concentration near-bed sediment and seaward transport of the suspended sediment. After turning to flood phase, the vortex produced secondary SSC peaks, transporting the suspended sediment toward the TPP. The most active suspension of bottom sediment predominantly occurred during 1-2 hr immediately after the start of artificial discharge. On the fortnightly (spring-neap) time scale, SSC during spring tide was approximately 2-5 times higher than that during neap tide. During the presentation, it will be discussed how the periodic artificial discharge can disturb the responses of SSC in the TPP.

  16. Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes

    Science.gov (United States)

    Xue, L. K.; Wang, T.; Gao, J.; Ding, A. J.; Zhou, X. H.; Blake, D. R.; Wang, X. F.; Saunders, S. M.; Fan, S. J.; Zuo, H. C.; Zhang, Q. Z.; Wang, W. X.

    2014-12-01

    We analyzed the measurements of ozone (O3) and its precursors made at rural/suburban sites downwind of four large Chinese cities - Beijing, Shanghai, Guangzhou and Lanzhou, to elucidate their pollution characteristics, regional transport, in situ production, and impacts of heterogeneous processes. The same measurement techniques and observation-based model were used to minimize uncertainties in comparison of the results due to difference in methodologies. All four cities suffered from serious O3 pollution but showed different precursor distributions. The model-calculated in situ O3 production rates were compared with the observed change rates to infer the relative contributions of on-site photochemistry and transport. At the rural site downwind of Beijing, export of the well-processed urban plumes contributed to the extremely high O3 levels (up to an hourly value of 286 ppbv), while the O3 pollution observed at suburban sites of Shanghai, Guangzhou and Lanzhou was dominated by intense in situ production. The O3 production was in a volatile organic compound (VOC)-limited regime in both Shanghai and Guangzhou, and a NOx-limited regime in Lanzhou. The key VOC precursors are aromatics and alkenes in Shanghai, and aromatics in Guangzhou. The potential impacts on O3 production of several heterogeneous processes, namely, hydrolysis of dinitrogen pentoxide (N2O5), uptake of hydro peroxy radical (HO2) on particles and surface reactions of NO2 forming nitrous acid (HONO), were assessed. The analyses indicate the varying and considerable impacts of these processes in different areas of China depending on the atmospheric abundances of aerosol and NOx, and suggest the urgent need to better understand these processes and represent them in photochemical models.

  17. Heavy ion transport in the core of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Odstrcil, Tomas [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, 85747 Garching (Germany); Puetterich, Thomas; Angioni, Clemente; Bilato, Roberto; Gude, Anja; Vezinet, Didier [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Mazon, Didier [CEA, IRFM F-13108 Saint Paul-lez-Durance (France); Collaboration: ASDEX Upgrade Team

    2016-07-01

    High impurity concentration in the core of the future fusion reactors can lead to the serious degradation of the achievable fusion gain. Therefore, a better understanding of the underlying impurity transport processes is necessary for higher performance, more efficient power exhaust and avoidance of impurity accumulation. Radial impurity transport is mainly driven by neoclassical and turbulent particle fluxes. Both these components show substantial variation depending on the poloidal angle. Consequently, an asymmetry in the poloidal distribution of impurities leads to significant changes in the radial impurity flow and the total content of the plasma core. The aim of this contribution is to experimentally verify a model describing the poloidal asymmetry of heavy impurities using measurements from ASDEX Upgrade. The observed asymmetries are caused mainly by the centrifugal force and poloidal electric force created by the fast particles produced by intensive ion-cyclotron heating. Finally, a change in the radial transport of the tungsten ions will be presented in the case of large inboard and outboard impurity accumulation.

  18. Geo-Hydro Statistical Characterization of Preferential Flow and Transport Processes in Karst Groundwater Systems

    Science.gov (United States)

    Anaya, A. A.; Padilla, I. Y.; Macchiavelli, R. E.

    2011-12-01

    Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are chlorinated organic contaminants and phthalates derived from industrial solvents and plastic by-products. These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the development of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes. Multidimensional, laboratory-scale Geo-Hydrobed models were developed and tested for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entailed making a series of point injections in wells while monitoring the hydraulic response in other wells. Statistical mixed models were applied to spatial probabilities of hydraulic response and weighted injected volume data, and were used to determinate the best spatial correlation structure to represent paths of preferential flow in the limestone units under different groundwater flow regimes. Preliminary testing

  19. US SciDAC Program on Integrated Simulation of Edge Transport in Fusion Plasmas, and its Progress

    International Nuclear Information System (INIS)

    Chang, C.S.

    2007-01-01

    The multi-institutional collaborative center for plasma edge simulation (CPES) has been launched in the USA under the SciDAC (Scientific Discovery through Advanced Computing) Fusion Simulation Program. This is a multi-disciplinary effort among physicists, applied mathematicians, and computer scientists from 15 national laboratories and universities. Its goal is to perform first principles simulations on plasma transport in the edge region from the top of the pedestal to the scrape off/divertor regions bounded by a material wall, and to predict L-H transition, pedestal buildup, ELM crashes, scrape-off transport and divertor heat load. As a major part of the effort, a PIC gyrokinetic edge code XGC is constructed. The gyrokinetic edge code XGC is coupled to a nonlinear edge MHD/2fluid code (M3D and NIMROD) to predict the cycle of pedestal buildup and ELM crash. The magnetic geometry includes the realistic separatrix, X-point, open field lines and material wall. In the first phase of this effort, the electrostatic version of the PIC gyrokinetic code XGC-1 has been built, to be extended into an electromagnetic version soon in the next phase. XGC-1 includes the gyrokinetic ions, electrons, and Monte Carlo neutrals with wall recycling. Since the ions have non-Maxwellian distribution function in the edge, as demonstrated in XGC, a full-f ion technique is used. Electrons are, though, handled with a mixed-f technique: the full-f technique for neoclassical and adiabatic or delta-f split-weight techniques for turbulence physics. The mixed-f electron approach used in XGC is new, successfully integrating the neoclassical and turbulence physics. Recent progress and results on neoclassical and electrostatic turbulence transports will be reported, which includes the pedestal buildup by neutral ionization, density pedestal width scaling, electrostatic potential and plasma flow distributions in the pedestal and scrape-off, and other important physical effects in the pedestal

  20. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    International Nuclear Information System (INIS)

    Jinsong Liu

    2006-04-01

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10 5 years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10 5 years

  1. A reactive transport modeling approach to simulate biogeochemical processes in pore structures with pore-scale heterogeneities

    NARCIS (Netherlands)

    Gharasoo, M.G.; Centler, F.; Regnier, P.; Harms, H.; Thullner, M.

    2012-01-01

    Redox processes, including degradation of organic contaminants, are often controlled by microorganisms residing in natural porous media like soils or aquifers. These environments are characterized by heterogeneities at various scales which influence the transport of chemical species and the spatial

  2. Validating commercial remote sensing and spatial information (CRS&SI) technologies for streamlining environmental and planning processes in transportation projects.

    Science.gov (United States)

    2010-03-01

    Transportation corridor-planning processes are well understood, and consensus exists among practitioners : about common practices for stages and tasks included in traditional EIS approaches. However, traditional approaches do : not typically employ f...

  3. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    2001-05-29

    This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  4. Processing and transport properties of high Jc silver clad Bi-2223 tapes and coils

    International Nuclear Information System (INIS)

    Haldar, P.; Hoehn, J.G. Jr.; Balachandran, U.

    1993-02-01

    The powder-in-tube process has been used to fabricate long lengths of flexible, high J c , silver clad Bi-2223 HTS conductors. By improving thermo-mechanical processing and precursor powder preparationwe have succeeded in achieving J c 's exceeding 4 x 10 4 A/cm 2 at liquid nitrogen (77K) and > 10 5 A/cm 2 at liquid helium (4.2K) and liquid neon (27K) temperatures for short tapesamples. Detailed measurements with high applied magnetic fields are reported. Several long tapes up to 10 meters in length have also been fabricated and co-wound into small superconducting pancake coils using the ''wind-and-react'' approach. Transport measurements at 77K and 4.2K for these coils are also reported

  5. Microscopic Charge Transport and Recombination Processes behind the Photoelectric Hysteresis in Perovskite Solar Cells.

    Science.gov (United States)

    Shi, Jiangjian; Zhang, Huiyin; Xu, Xin; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

    2016-10-01

    The microscopic charge transport and recombination processes behind the widely concerned photoelectric hysteresis in the perovskite solar cell have been investigated with both in situ transient photovoltage/photocurrent measurements and the semiconductor device simulation. Time-dependent behaviors of intensity and direction of the photocurrent and photovoltage are observed under the steady-state bias voltages and open-circuit conditions. These charge processes reveal the electric properties of the cell, demonstrating evolutions of both strength and direction of the internal electric field during the hysteresis. Further calculation indicates that this behavior is mainly attributed to both the interfacial doping and defect effects induced by the ion accumulation, which may be the origins for the general hysteresis in this cell. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Developing emergency exercises for hazardous material transportation: process, documents and templates.

    Science.gov (United States)

    Crichton, Margaret; Kelly, Terence

    2012-01-01

    Multi-agency emergency exercises establish and reinforce relationships, and bring people from different areas together to work as a team, realise clear goals, understand roles and responsibilities, and get to know and respect each agency's strengths and weaknesses. However, despite the long-held belief in and respect for exercises in their provision of benefits to the individual and the organisation, there is little evidence of a consistent and clear process for exercise design, especially identifying the documents that may need to be completed to ensure efficient exercise preparation and performance. This paper reports the results of a project undertaken on behalf of the organisations that form the radioactive material transportation mutual-aid agreement, RADSAFE, to develop a standardised process to design emergency exercises. Three stages, from identifying the requirement for an exercise (Stage I), through to obtaining approval for operational orders (Stage II), then conducting a management review as part of the continuous improvement cycle (Stage III), were developed. Although designed for radioactive material transportation events, it is suggested that many of the factors within these three stages can be generalised for the design of exercises in other high-hazard industries.

  7. Data processing in studies of diffusion for seawage disposal and of sediment transportation

    International Nuclear Information System (INIS)

    Szulak, C.; Agudo, E.G.

    1974-01-01

    The radiotracer applications on diffusion studies for sewage disposal in sea waters, as well as some large scale experiments on sediments transportation, are characterized by the bulky amount data obtained in the field. Data processing and plotting is a very time consuming task if they are to be handled manually, as may occurs in small research institutes. In order to overcome this difficulty, a program suitable for a 9810-A, Model Hewlett Packard calculator with plotter, was been developed. Through this program the following sequence of operations is performed: 1 - Background and decay corrections on activity measurements; 2 - conversion of angular position data taken with sextants, to rectangular coordinates; 3 - Position corrections as a function of the mean transport velocity of the radioactive cloud; 4 - Interpolation and plotting for each cloud section; of the points belonging ro preselected values of isoactivity curves; 5 - Interpolation and plotting between maximum activity points from two consecutive trajectories of the points belonging to preselected isoactivity curves. As a result of each data processing and plotting, a definition of shape of the radioactive, as well as the instantaneous concentration distribution are obtained. Interpolating a curve through the points with same activity, the preselected isoactivity lines are easily drawn [pt

  8. A Data-Driven Air Transportation Delay Propagation Model Using Epidemic Process Models

    Directory of Open Access Journals (Sweden)

    B. Baspinar

    2016-01-01

    Full Text Available In air transport network management, in addition to defining the performance behavior of the system’s components, identification of their interaction dynamics is a delicate issue in both strategic and tactical decision-making process so as to decide which elements of the system are “controlled” and how. This paper introduces a novel delay propagation model utilizing epidemic spreading process, which enables the definition of novel performance indicators and interaction rates of the elements of the air transportation network. In order to understand the behavior of the delay propagation over the network at different levels, we have constructed two different data-driven epidemic models approximating the dynamics of the system: (a flight-based epidemic model and (b airport-based epidemic model. The flight-based epidemic model utilizing SIS epidemic model focuses on the individual flights where each flight can be in susceptible or infected states. The airport-centric epidemic model, in addition to the flight-to-flight interactions, allows us to define the collective behavior of the airports, which are modeled as metapopulations. In network model construction, we have utilized historical flight-track data of Europe and performed analysis for certain days involving certain disturbances. Through this effort, we have validated the proposed delay propagation models under disruptive events.

  9. Nuclear data for fusion: Validation of typical pre-processing methods for radiation transport calculations

    International Nuclear Information System (INIS)

    Hutton, T.; Sublet, J.C.; Morgan, L.; Leadbeater, T.W.

    2015-01-01

    Highlights: • We quantify the effect of processing nuclear data from ENDF to ACE format. • We consider the differences between fission and fusion angular distributions. • C-nat(n,el) at 2.0 MeV has a 0.6% deviation between original and processed data. • Fe-56(n,el) at 14.1 MeV has a 11.0% deviation between original and processed data. • Processed data do not accurately depict ENDF distributions for fusion energies. - Abstract: Nuclear data form the basis of the radiation transport codes used to design and simulate the behaviour of nuclear facilities, such as the ITER and DEMO fusion reactors. Typically these data and codes are biased towards fission and high-energy physics applications yet are still applied to fusion problems. With increasing interest in fusion applications, the lack of fusion specific codes and relevant data libraries is becoming increasingly apparent. Industry standard radiation transport codes require pre-processing of the evaluated data libraries prior to use in simulation. Historically these methods focus on speed of simulation at the cost of accurate data representation. For legacy applications this has not been a major concern, but current fusion needs differ significantly. Pre-processing reconstructs the differential and double differential interaction cross sections with a coarse binned structure, or more recently as a tabulated cumulative distribution function. This work looks at the validity of applying these processing methods to data used in fusion specific calculations in comparison to fission. The relative effects of applying this pre-processing mechanism, to both fission and fusion relevant reaction channels are demonstrated, and as such the poor representation of these distributions for the fusion energy regime. For the nat C(n,el) reaction at 2.0 MeV, the binned differential cross section deviates from the original data by 0.6% on average. For the 56 Fe(n,el) reaction at 14.1 MeV, the deviation increases to 11.0%. We

  10. Relevance of the time-quasi-polynomials in the classic linear thermodynamic theory of coupled transport processes

    Science.gov (United States)

    Mészáros, Cs.; Kirschner, I.; Bálint, Á.

    2014-07-01

    A general description of the basic system of ordinary differential equations of coupled transport processes is given within framework of a linear approximation and treated by tools of matrix analysis and group representation theory. It is shown that the technique of hyperdyads directly generalizes the method of simple dyadic decomposition of operators used earlier in the classical linear irreversible thermodynamics and leads to possible new applications of the concept of quasi-polynomials at descriptions of coupled transport processes.

  11. The Application of Online Check-in in the Process of Passenger Handling in Air Transportation

    Directory of Open Access Journals (Sweden)

    František Adamčík

    2017-11-01

    Full Text Available Passenger handling is one of the most important activities any passenger is obliged to carry out prior to boarding the plane to depart. For the handling process to be safeguarded, it is inevitable to perform the services involved in it fast and efficiently so as to prevent idle times or delays during the procedures potentially resulting in delay of flight. By gradual development of the so-called web-based information technologies, some of the activities involved in the handling process can be delegated to the passengers themselves, thereby achieving a faster course of the passenger handling process. In this contribution the authors are dealing with the status quo of the on-line web-based check-in process in air transportation forecasting the expected course of events in these services in the future. Next, based on analyzing functions and characteristics of similar solutions available in the market, the authors are putting forward their new proposal of their own design of a self-service, on-line system of passenger handling with the aim to simplify and expedite the entire handling process. It is the aim of the authors to develop a competitive design in terms of costs as well as new function and services not offered by the hitherto existing with emphasis on improving efficiency of passenger handling at the airports. The resulting solution thanks to internet based technologies is platform independent and fully applicable to the process of airport passenger handling. To an equal extent, the solutions are being applied by the authors to the educational process, as a training tool for the preparation of the aviation personnel and also as part of simulation models for research in the field of airport processes optimization.

  12. Mechanisms of meridional transport processes in the tropical Atlantic; Mechanismen meridionaler Transportprozesse im tropischen Atlantik

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, J.

    2001-07-01

    Meridional transport processes of water masses and tracers in the subtropical and tropical Atlantic are investigated using a regional eddy resolving model of the wind driven and thermohaline circulation. Analytical emphasis is on float simulations in the model which, complementary to Eulerian means, represent the Lagrangian view and give further insight into the spreading and pathways of characteristic water masses in this area. In the tropics and subtropics shallow 3-dimensional circulation cells are superimposed on the northward warm water transfer within the deep reaching thermohaline overturning cell (MOC) as part of the global ''Conveyor Belt''. Under present-day climate conditions the model shows that the equatorial thermocline is exclusively ventilated by subsurface flow within the tropical-subtropical cell (STC) of the South Atlantic. Only with a prescribed ''Conveyor-off''-Mode the STC of the North Atlantic contributes to this ventilation process with equal amounts. Throughout the year the interhemispheric transport of surface and central water masses of South Atlantic origin into the Caribbean Sea is dominated by zonal detours to the east as a consequence of the interplay of several retroflection events occuring in the North Atlantic. The eulerian mean flow field in the deep layer postulates the interhemispheric mass transport into the South Atlantic to be confined entirely to the western boundary, whereas Lagrangian means indicate intermittent eastward excursions along the equator, related to seasonally alternating zonal currents due to long Rossby waves. It was suggested that the observed characteristic eastward maximum of tracer concentrations along the equator is a consequence of rectifying effects of single or interacting equatorial waves. The model does not validate this hypothesis. The response to transport anomalies of subpolar origin and long periodicity is subject to different time-scales in both

  13. Modeling coupled thermal, flow, transport and geochemical processes controlling near field long-term evolution

    International Nuclear Information System (INIS)

    Zhou, W.; Arthur, R.; Xu, T.; Pruess, K.

    2005-01-01

    Full text of publication follows: Bentonite is planned for use as a buffer material in the Swedish nuclear waste disposal concept (KBS-3). Upon emplacement, the buffer is expected to experience a complex set of coupled processes involving heating, re-saturation, reaction and transport of groundwater imbibed from the host rock. The effect of these processes may eventually lead to changes in desirable physical and rheological properties of the buffer, but these processes are not well understood. In this paper, a new quantitative model is evaluated to help improve our understanding of the long-term performance of buffer materials. This is an extension of a previous study [1] that involved simple thermal and chemical models applied to a fully saturated buffer. The thermal model in the present study uses heating histories for spent fuel in a single waste package [2]. The model uses repository dimensions, such as borehole and tunnel spacings [2], which affect the temperature distribution around the waste package. At the time of emplacement, bentonite is partially saturated with water having a different composition than the host-rock groundwater. The present model simulates water imbibition from the host rock into the bentonite under capillary and hydraulic pressure gradients. The associated chemical reactions and solute transport are simulated using Aespoe water composition [3]. The initial mineralogy of bentonite is assumed to be dominated by Na-smectite with much smaller amounts of anhydrite and calcite. Na-smectite dissolution is assumed to be kinetically-controlled while all other reactions are assumed to be at equilibrium controlled. All equilibrium and kinetic constants are temperature dependent. The modeling tool used is TOUGHREACT, developed by Lawrence Berkeley National Laboratory [4]. TOUGHREACT is a numerical model that is well suited for near-field simulations because it accounts for feedback between porosity and permeability changes from mineral

  14. Quantum field kinetics of QCD: Quark-gluon transport theory for light-cone-dominated processes

    International Nuclear Information System (INIS)

    Geiger, K.

    1996-01-01

    A quantum-kinetic formalism is developed to study the dynamical interplay of quantum and statistical-kinetic properties of nonequilibrium multiparton systems produced in high-energy QCD processes. The approach provides the means to follow the quantum dynamics in both space-time and energy-momentum, starting from an arbitrary initial configuration of high-momentum quarks and gluons. Using a generalized functional integral representation and adopting the open-quote open-quote closed-time-path close-quote close-quote Green function techniques, a self-consistent set of equations of motions is obtained: a Ginzburg-Landau equation for a possible color background field, and Dyson-Schwinger equations for the two-point functions of the gluon and quark fields. By exploiting the open-quote open-quote two-scale nature close-quote close-quote of light-cone-dominated QCD processes, i.e., the separation between the quantum scale that specifies the range of short-distance quantum fluctuations, and the kinetic scale that characterizes the range of statistical binary interactions, the quantum field equations of motion are converted into a corresponding set of open-quote open-quote renormalization equations close-quote close-quote and open-quote open-quote transport equations.close-quote close-quote The former describe renormalization and dissipation effects through the evolution of the spectral density of individual, dressed partons, whereas the latter determine the statistical occurrence of scattering processes among these dressed partons. The renormalization equations and the transport equations are coupled, and, hence, must be solved self-consistently. This amounts to evolving the multiparton system, from a specified initial configuration, in time and full seven-dimensional phase space, constrained by the Heisenberg uncertainty principle. (Abstract Truncated)

  15. Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors.

    Science.gov (United States)

    Furuta, Ken'ya; Furuta, Akane; Toyoshima, Yoko Y; Amino, Misako; Oiwa, Kazuhiro; Kojima, Hiroaki

    2013-01-08

    Intracellular transport is thought to be achieved by teams of motor proteins bound to a cargo. However, the coordination within a team remains poorly understood as a result of the experimental difficulty in controlling the number and composition of motors. Here, we developed an experimental system that links together defined numbers of motors with defined spacing on a DNA scaffold. By using this system, we linked multiple molecules of two different types of kinesin motors, processive kinesin-1 or nonprocessive Ncd (kinesin-14), in vitro. Both types of kinesins markedly increased their processivities with motor number. Remarkably, despite the poor processivity of individual Ncd motors, the coupling of two Ncd motors enables processive movement for more than 1 μm along microtubules (MTs). This improvement was further enhanced with decreasing spacing between motors. Force measurements revealed that the force generated by groups of Ncd is additive when two to four Ncd motors work together, which is much larger than that generated by single motors. By contrast, the force of multiple kinesin-1s depends only weakly on motor number. Numerical simulations and single-molecule unbinding measurements suggest that this additive nature of the force exerted by Ncd relies on fast MT binding kinetics and the large drag force of individual Ncd motors. These features would enable small groups of Ncd motors to crosslink MTs while rapidly modulating their force by forming clusters. Thus, our experimental system may provide a platform to study the collective behavior of motor proteins from the bottom up.

  16. Characteristics Of Basaltic Sand: Size, Shape, And Composition As A Function Of Transport Process And Distance

    Science.gov (United States)

    Craddock, R. A.; Needell, Z. A.; Rose, T. R.

    2012-04-01

    Overview: The chemical and physical characteristics of sedimentary material can provide valuable clues about transport processes, distance traveled, and provenance, all of which are aspects of Martian geography that we would like to better understand. For a typical sedimentary deposit on Earth, for example, it has been shown that the ratio of feldspar to quartz can be used to assess the maturity (or transport distance) of a terrestrial deposit, because feldspar is more vulnerable to weathering than quartz. Further, chemical analysis can also be used to determine potential sediment sources, and grain-size sorting can be used to distinguish aeolian sediments (typically well-sorted) from fluvial sediments (poorly sorted in high energy environments). It is also common to use the shapes of individual quartz particles to determine transport process and distance, all of which can help us better understand the history of a sample of sedimentary material and the geological processes that created and emplaced it. These traditional sedimentological concepts are now being applied to our interpretation of Martian surface materials. Sullivan et al. [2008], for example, used grain-size and shape to assess eolian processes and to qualify transport distances of deposits found at the Spirit landing site in Gusev Crater. Stockstill-Cahill et al. [62008 used variations in mineral abundances observed in multispectral data to determine the provenance of dark dunes found in Amazonis Planitia craters. While applying our understanding of terrestrial sedimentary materials to Martian surface materials is intuitively sound and logical, the problem is that most of our current understanding is based on sediments derived from felsic materials (e.g., granite) primarily because that is the composition of most of the landmass on the Earth. However, the Martian surface is composed primarily of mafic material, or basalt, which generates much different sedimentary particles as it weathers. Instead of

  17. Dispersal and population connectivity in the deep North Atlantic estimated from physical transport processes

    Science.gov (United States)

    Etter, Ron J.; Bower, Amy S.

    2015-10-01

    Little is known about how larvae disperse in deep ocean currents despite how critical estimates of population connectivity are for ecology, evolution and conservation. Estimates of connectivity can provide important insights about the mechanisms that shape patterns of genetic variation. Strong population genetic divergence above and below about 3000 m has been documented for multiple protobranch bivalves in the western North Atlantic. One possible explanation for this congruent divergence is that the Deep Western Boundary Current (DWBC), which flows southwestward along the slope in this region, entrains larvae and impedes dispersal between the upper/middle slope and the lower slope or abyss. We used Lagrangian particle trajectories based on an eddy-resolving ocean general circulation model (specifically FLAME - Family of Linked Atlantic Model Experiments) to estimate the nature and scale of dispersal of passive larvae released near the sea floor at 4 depths across the continental slope (1500, 2000, 2500 and 3200 m) in the western North Atlantic and to test the potential role of the DWBC in explaining patterns of genetic variation on the continental margin. Passive particles released into the model DWBC followed highly complex trajectories that led to both onshore and offshore transport. Transport averaged about 1 km d-1 with dispersal kernels skewed strongly right indicating that some larvae dispersed much greater distances. Offshore transport was more likely than onshore and, despite a prevailing southwestward flow, some particles drifted north and east. Dispersal trajectories and estimates of population connectivity suggested that the DWBC is unlikely to prevent dispersal among depths, in part because of strong cross-slope forces induced by interactions between the DWBC and the deeper flows of the Gulf Stream. The strong genetic divergence we find in this region of the Northwest Atlantic is therefore likely driven by larval behaviors and/or mortality that limit

  18. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed

    2017-03-20

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux, convection schemes and the chemical aging of mineral dust, by using the EMAC model following Abdelkader et al. (2015). To characterize the dust outflow over the Atlantic Ocean, we distinguish two geographic zones: (i) dust interactions within the Intertropical Convergence Zone (ITCZ), or the dust–ITCZ interaction zone (DIZ), and (ii) the adjacent dust transport over the Atlantic Ocean (DTA) zone. In the latter zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean since particle sedimentation is the dominant removal process, whereas in the DIZ zone aerosol–cloud interactions, wet deposition and scavenging processes determine the extent of the dust outflow. Generally, the EMAC simulated dust compares well with CALIPSO observations; however, our reference model configuration tends to overestimate the dust extinction at a lower elevation and underestimates it at a higher elevation. The aerosol optical depth (AOD) over the Caribbean responds to the dust emission flux only when the emitted dust mass is significantly increased over the source region in Africa by a factor of 10. These findings point to the dominant role of dust removal (especially wet deposition) in transatlantic dust transport. Experiments with different convection schemes have indeed revealed that the transatlantic dust transport is more sensitive to the convection scheme than to the dust emission flux parameterization. To study the impact of dust chemical aging, we focus on a major dust outflow in July 2009. We use the calcium cation as a proxy for the overall chemical reactive dust fraction and consider the uptake of major inorganic acids (i.e., H2SO4, HNO3 and HCl) and their anions, i.e., sulfate (SO42−), bisulfate

  19. Sediment transport processes and their resulting stratigraphy: informing science and society

    Science.gov (United States)

    Nittrouer, J. A.

    2013-12-01

    Sediment transport physically shapes planetary surfaces by producing patterns of erosion and deposition, with the relative magnitudes of geomorphic actions varying according to environmental conditions. Where sediment fills accommodation space and generates accumulation, a stratigraphic archive develops that potentially harbors a trove of information documenting dynamic conditions during the periods of sediment production, transport and deposition. By investigating the stratigraphic record, it is possible to describe changes in surface environments, as well as hypothesize about the development of regional tectonic and climate regimes. Ultimately, information contained within the stratigraphic record is critical for evaluating the geological history of terrestrial planets. The enigma of stratigraphy, however, is that sediment deposition is finicky, there is no uninterrupted record, and while deposits may reflect only a brief temporal window, they may still be used to infer about conditions that encompass much longer periods of time. Consider a case where meter-scale dune foresets, deposited in a matter of minutes to hours, are in contact with sediments above and below that reflect entirely different depositional circumstances and are separated in time by a hiatus of thousands or perhaps millions of years. To effectively unlock the scientific trove bound in stratigraphy, it is first necessary to identify where such unconformities exist and the conditions that lead to their development. This challenge is made much simpler through scientific advances in understanding sediment transport processes -- the examination of how fluid and solids interact under modern conditions -- because this is precisely where sediment patterns first emerge to produce accumulation that builds a stratigraphic record. By advancing an understanding of process-based sedimentology, it is possible to enhance diagnostic evaluations of the stratigraphic record. Fortunately, over the past several

  20. Transport processes of contaminants in argillite; Les processus de transport des contaminants dans l'argilite

    Energy Technology Data Exchange (ETDEWEB)

    Matray, J.M. [Institut de Radioprotection et de Surete Nucleaire, Laboratoire de Recherche sur le stockage geologique des dechets et les transferts dans les sols, 92 - Fontenay-aux-Roses (France)

    2011-04-15

    Within the project of deep storage of long life radioactive wastes in clayey formations, this article briefly reports investigations performed by the IRSN to assess the safety of such a storage. Tests have been performed in an ancient railway tunnel drilled in a very compact clayey rock, the argillite. Research projects have investigated different possible radionuclide transport mechanisms through the rock: through cracks in damaged media, by molecular diffusion, or by chemical and thermal osmosis

  1. Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells.

    Science.gov (United States)

    Liang, Xiaoyong; Bai, Sai; Wang, Xin; Dai, Xingliang; Gao, Feng; Sun, Baoquan; Ning, Zhijun; Ye, Zhizhen; Jin, Yizheng

    2017-03-21

    Colloidal metal oxide nanocrystals offer a unique combination of excellent low-temperature solution processability, rich and tuneable optoelectronic properties and intrinsic stability, which makes them an ideal class of materials as charge transporting layers in solution-processed light-emitting diodes and solar cells. Developing new material chemistry and custom-tailoring processing and properties of charge transporting layers based on oxide nanocrystals hold the key to boosting the efficiency and lifetime of all-solution-processed light-emitting diodes and solar cells, and thereby realizing an unprecedented generation of high-performance, low-cost, large-area and flexible optoelectronic devices. This review aims to bridge two research fields, chemistry of colloidal oxide nanocrystals and interfacial engineering of optoelectronic devices, focusing on the relationship between chemistry of colloidal oxide nanocrystals, processing and properties of charge transporting layers and device performance. Synthetic chemistry of colloidal oxide nanocrystals, ligand chemistry that may be applied to colloidal oxide nanocrystals and chemistry associated with post-deposition treatments are discussed to highlight the ability of optimizing processing and optoelectronic properties of charge transporting layers. Selected examples of solution-processed solar cells and light-emitting diodes with oxide-nanocrystal charge transporting layers are examined. The emphasis is placed on the correlation between the properties of oxide-nanocrystal charge transporting layers and device performance. Finally, three major challenges that need to be addressed in the future are outlined. We anticipate that this review will spur new material design and simulate new chemistry for colloidal oxide nanocrystals, leading to charge transporting layers and solution-processed optoelectronic devices beyond the state-of-the-art.

  2. Expanding the role of reactive transport models in critical zone processes

    Science.gov (United States)

    Li, Li; Maher, Kate; Navarre-Sitchler, Alexis; Druhan, Jennifer; Meile, Christof; Lawrence, Corey; Moore, Joel; Perdrial, Julia; Sullivan, Pamela; Thompson, Aaron; Jin, Lixin; Bolton, Edward W.; Brantley, Susan L.; Dietrich, William E.; Mayer, K. Ulrich; Steefel, Carl; Valocchi, Albert J.; Zachara, John M.; Kocar, Benjamin D.; McIntosh, Jennifer; Tutolo, Benjamin M.; Kumar, Mukesh; Sonnenthal, Eric; Bao, Chen; Beisman, Joe

    2017-01-01

    Models test our understanding of processes and can reach beyond the spatial and temporal scales of measurements. Multi-component Reactive Transport Models (RTMs), initially developed more than three decades ago, have been used extensively to explore the interactions of geothermal, hydrologic, geochemical, and geobiological processes in subsurface systems. Driven by extensive data sets now available from intensive measurement efforts, there is a pressing need to couple RTMs with other community models to explore non-linear interactions among the atmosphere, hydrosphere, biosphere, and geosphere. Here we briefly review the history of RTM development, summarize the current state of RTM approaches, and identify new research directions, opportunities, and infrastructure needs to broaden the use of RTMs. In particular, we envision the expanded use of RTMs in advancing process understanding in the Critical Zone, the veneer of the Earth that extends from the top of vegetation to the bottom of groundwater. We argue that, although parsimonious models are essential at larger scales, process-based models offer tools to explore the highly nonlinear coupling that characterizes natural systems. We present seven testable hypotheses that emphasize the unique capabilities of process-based RTMs for (1) elucidating chemical weathering and its physical and biogeochemical drivers; (2) understanding the interactions among roots, micro-organisms, carbon, water, and minerals in the rhizosphere; (3) assessing the effects of heterogeneity across spatial and temporal scales; and (4) integrating the vast quantity of novel data, including “omics” data (genomics, transcriptomics, proteomics, metabolomics), elemental concentration and speciation data, and isotope data into our understanding of complex earth surface systems. With strong support from data-driven sciences, we are now in an exciting era where integration of RTM framework into other community models will facilitate process

  3. Reentrant transport transition in oxide superconductors prepared with a quenching-process

    CERN Document Server

    Akinaga, M; Rinderer, L

    1999-01-01

    We studied the transport properties of tetragonal CaLaBaCu sub 3 O sub y , EuSrBaCu sub 3 O sub y , and GdSrBaCu sub 3 O sub y samples and of orthorhombic DySrBaCu sub 3 O sub y samples, which are expected to be isomorphic to YBa sub 2 Cu sub 3 O sub 7 sub - subdelta. Samples with various oxygen contents were prepared by changing the annealing temperature or the annealing time in O sub 2 gas and quenching in liquid nitrogen. The transport properties were measured in detail below the usual critical temperature T sub c. The reported correlation of T sub c with oxygen content was reconfirmed, and the reentrant transition toward a voltage state below T sub c was confirmed in the R - T curves and the I-V curves for various measuring currents and temperatures not nobly in CaLaBaCu sub 3 O sub y but also in GdSrBaCu sub 3 O sub y and EuSrBaCu sub 3 O sub y. These phenomena exhibited good reproducibility in several samples prepared by the liquid-nitrogen quenching process. In these phenomena, the inhomogeneous distri...

  4. Numerical simulation of sediment transport from Ba Lat Mouth and the process of coastal morphology

    International Nuclear Information System (INIS)

    Chung, Dang Huu

    2008-01-01

    This paper presents an application of a 3D numerical model to simulate one vertical layer sediment transport and coastal morphodynamical process for the Hai Hau coastal area located in the north of Vietnam, where a very large amount of suspended sediment is carried into the sea from Ba Lat Mouth every year. Four simulations are based on the real data of waves supplied by the observation station close to Ba Lat Mouth. The conditions of wind and suspended sand concentration at Ba Lat Mouth are basically assumed from practice. The computed results show that the hydrodynamic factors strongly depend on the wind condition and these factors govern the direction and the range of suspended sand transport, especially in the shallow-water region. In the deep-water region this influence is not really clear when the wind force is not strong enough to modify the tidal current. In the area close to Ba Lat Mouth the flow velocity is very large with the maximum flood flow about 2.6 m s −1 and the maximum ebb flow about 1 m s −1 at the mouth, and this is one of the reasons for strong erosion. In the case of tidal flow only, the suspended sand concentration decreases resulting in local deposition. Therefore, the area influenced by suspended transport is small, about 12 km from the mouth. In the condition of wind and waves, the suspended sand transport reaches the end of the computation area within a few days, especially the cases with wind from the north-east-north. Through these simulation results, a common tendency of sediment movement from the north to the south is specified for the Hai Hau coastal area. In addition, the results also show that the coast suffers from strong erosion, especially the region near Ba Lat Mouth. From the simulation results it can be seen that the movement of the Red River sand along the Vietnamese coast is quite possible, which is an answer to a long-standing question. Furthermore, although the suspended sediment concentration is quite large, it is

  5. Asymmetric exclusion processes with site sharing in a one-channel transport system

    International Nuclear Information System (INIS)

    Liu Mingzhe; Hawick, Ken; Marsland, Stephen

    2010-01-01

    This Letter investigates two-species totally asymmetric simple exclusion process (TASEP) with site sharing in a one-channel transport system. In the model, different species of particles may share the same sites, while particles of the same species may not (hard-core exclusion). The site-sharing mechanism is applied to the bulk as well as the boundaries. Such sharing mechanism within the framework of the TASEP has been largely ignored so far. The steady-state phase diagrams, currents and bulk densities are obtained using a mean-field approximation and computer simulations. The presence of three stationary phases (low-density, high-density, and maximal current) are identified. A comparison on the stationary current with the Bridge model [M.R. Evans, et al., Phys. Rev. Lett. 74 (1995) 208] has shown that our model can enhance the current. The theoretical calculations are well supported by Monte Carlo simulations.

  6. Sediment processes and mercury transport in a frozen freshwater fluvial lake (Lake St. Louis, QC, Canada).

    Science.gov (United States)

    Canário, João; Poissant, Laurier; O'Driscoll, Nelson; Vale, Carlos; Pilote, Martin; Lean, David

    2009-04-01

    An open-bottom and a closed-bottom mesocosm were developed to investigate the release of mercury from sediments to the water column in a frozen freshwater lake. The mesoscosms were deployed in a hole in the ice and particulate mercury (Hg(P)) and total dissolved mercury (TDHg) were measured in sediments and in water column vertical profiles. In addition, dissolved gaseous mercury (DGM) in water and mercury water/airflux were quantified. Concentrations of TDHg, DGM, and mercury flux were all higher in the open-bottom mesocosm than in the closed-bottom mesocosm. In this paper we focus on the molecular diffusion of mercury from the sediment in comparison with the TDHg accumulation in the water column. We conclude that the molecular diffusion and sediment resuspension play a minor role in mercury release from sediments suggesting that solute release during ebullition is an important transport process for mercury in the lake.

  7. Titanium contacts to graphene: process-induced variability in electronic and thermal transport

    Science.gov (United States)

    Freedy, Keren M.; Giri, Ashutosh; Foley, Brian M.; Barone, Matthew R.; Hopkins, Patrick E.; McDonnell, Stephen

    2018-04-01

    Contact resistance (R C) is a major limiting factor in the performance of graphene devices. R C is sensitive to the quality of the interface and the composition of the contact, which are affected by the graphene transfer process and contact deposition conditions. In this work, a linear correlation is observed between the composition of Ti contacts, characterized by x-ray photoelectron spectroscopy, and the Ti/graphene contact resistance measured by the transfer length method. We find that contact composition is tunable via deposition rate and base pressure. Reactor base pressure is found to effect the resultant contact resistance. The effect of contact deposition conditions on thermal transport measured by time-domain thermoreflectance is also reported. Interfaces with higher oxide composition appear to result in a lower thermal boundary conductance. Possible origins of this thermal boundary conductance change with oxide composition are discussed.

  8. A Spatially Continuous Model of Carbohydrate Digestion and Transport Processes in the Colon.

    Directory of Open Access Journals (Sweden)

    Arun S Moorthy

    Full Text Available A spatially continuous mathematical model of transport processes, anaerobic digestion and microbial complexity as would be expected in the human colon is presented. The model is a system of first-order partial differential equations with context determined number of dependent variables, and stiff, non-linear source terms. Numerical simulation of the model is used to elucidate information about the colon-microbiota complex. It is found that the composition of materials on outflow of the model does not well-describe the composition of material in other model locations, and inferences using outflow data varies according to model reactor representation. Additionally, increased microbial complexity allows the total microbial community to withstand major system perturbations in diet and community structure. However, distribution of strains and functional groups within the microbial community can be modified depending on perturbation length and microbial kinetic parameters. Preliminary model extensions and potential investigative opportunities using the computational model are discussed.

  9. Development of Dual-Phase Oxygen Transport Membranes for Carbon Capture Processes

    DEFF Research Database (Denmark)

    Pirou, Stéven

    -fuel combustion power plants. For the case of direct integration considered here the permeate side of the OTMs will be swept with recirculated flue gas whereby a driving force for oxygen transport through the membrane, which is fed with air on the other side, is directly established. It further facilitates...... developed and characterized as thick (1 mm) self-standing membranes and thin (8 μm) supported membranes. The stability of these membranes in gas streams containing CO2, SO2 and H2O was found to be excellent. However, the high volatility of the Zn in the AZO phase under mildly reducing atmospheres makes...... in the combustion, which greatly facilitates the down-stream CO2 capture. The main energy penalty for the oxy-fuel process is related to the production of the oxygen, which today commonly is done in cryogenic air separation units (ASUs). An alternative approach, which requires significant less energy is the use...

  10. A case study of electrostatic accidents in the process of oil-gas storage and transportation

    International Nuclear Information System (INIS)

    Hu, Yuqin; Liu, Jinyu; Gao, Jianshen; Wang, Diansheng

    2013-01-01

    Ninety nine electrostatic accidents were reviewed, based on information collected from published literature. All the accidents over the last 30 years occurred during the process of oil-gas storage and transportation. Statistical analysis of these accidents was performed based on the type of complex conditions where accidents occurred, type of tanks and contents, and type of accidents. It is shown that about 85% of the accidents occurred in tank farms, gas stations or petroleum refineries, and 96% of the accidents included fire or explosion. The fishbone diagram was used to summarize the effects and the causes of the effects. The results show that three major reasons were responsible for accidents, including improper operation during loading and unloading oil, poor grounding and static electricity on human bodies, which accounted for 29%, 24% and 13% of the accidents, respectively. Safety actions are suggested to help operating engineers to handle similar situations in the future.

  11. Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing, and effects on the river ecosystem

    Science.gov (United States)

    Houser, J.N.; Richardson, W.B.

    2010-01-01

    Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in

  12. Heavy metal transport processes in surface water and groundwater. Geochemical and isotopic aspects

    International Nuclear Information System (INIS)

    Tricca, A.

    1997-01-01

    This work deals with the transport mechanisms of trace elements in natural aquatic systems. The experimental field is situated in the Upper Rhine Rift Valley because of the density and variety of its hydrological net. This study focused on three aspects: the isotopic tracing with Sr, Nd and O allowed to characterize the hydro-system. The 87 Sr/ 86 Sr and 143 Nd/ 144 Nd ratios show that the system is controlled by two natural end members a carbonate and a silicate one and a third end member of anthropogenic origin. The isotopic data allowed also to investigate the exchange processes between the dissolved and the particulate phases of the water samples. Because of their use in the industry and their very low concentrations in natural media, the Rare Earth Elements (REE) are very good tracers of anthropogenic contamination. Furthermore, due to their similar chemical properties with the actinides,they constitute excellent analogues to investigate the behaviour of fission products in the nature. In this study we determined the distribution of the REE within a river between the dissolved, the colloidal and the particulate phases. Among the REE of the suspended load, we distinguished between the exchangeable and the residual REE by means OF IN HCl leading experiments. The third topic is the investigation of uranium series disequilibrium using α-Spectrometry. The determination of ratios 234 U/ 238 U as well as of the activities short-lived radionuclides like 222 Rn, 224 Ra, 226 Ra, 228 Ra, 210 Po and 210 Pb have been performed. Their activities are controlled by chemical and physical parameters and depend also on the lithology of the source area. The combination of the three aspects provided relevant informations about the exchanges between the different water masses, about the transport mechanisms of the REE. Furthermore, the uranium series disequilibrium provided informations about the geochemical processes at a micro-scale. (author)

  13. Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes

    Science.gov (United States)

    Johnson, R. H.; Morrison, S.; Morris, S.; Tigar, A.; Dam, W. L.; Dayvault, J.

    2015-12-01

    At many U.S. Department of Energy Office of Legacy Management sites, 100 year natural flushing was selected as a remedial option for groundwater uranium plumes. However, current data indicate that natural flushing is not occurring as quickly as expected and solid-phase and aqueous uranium concentrations are persistent. At the Grand Junction, Colorado office site, column testing was completed on core collected below an area where uranium mill tailings have been removed. The total uranium concentration in this core was 13.2 mg/kg and the column was flushed with laboratory-created water with no uranium and chemistry similar to the nearby Gunnison River. The core was flushed for a total of 91 pore volumes producing a maximum effluent uranium concentration of 6,110 μg/L at 2.1 pore volumes and a minimum uranium concentration of 36.2 μg/L at the final pore volume. These results indicate complex geochemical reactions at small pore volumes and a long tailing affect at greater pore volumes. Stop flow data indicate the occurrence of non-equilibrium processes that create uranium concentration rebound. These data confirm the potential for plume persistence, which is occurring at the field scale. 1D reactive transport modeling was completed using PHREEQC (geochemical model) and calibrated to the column test data manually and using PEST (inverse modeling calibration routine). Processes of sorption, dual porosity with diffusion, mineral dissolution, dispersion, and cation exchange were evaluated separately and in combination. The calibration results indicate that sorption and dual porosity are major processes in explaining the column test data. These processes are also supported by fission track photographs that show solid-phase uranium residing in less mobile pore spaces. These procedures provide valuable information on plume persistence and secondary source processes that may be used to better inform and evaluate remedial strategies, including natural flushing.

  14. Measurement of particle transport coefficients on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.

  15. Measurement of particle transport coefficients on Alcator C-Mod

    International Nuclear Information System (INIS)

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial (∼ 2 cm) and high temporal (≤ 1.0 ms) resolution. The system consists of 10 CO 2 (10.6 μm) and 4 HeNe (.6328 μm) chords that are used to measure the line integrated density to within 0.08 CO 2 degrees or 2.3 x 10 16 m -2 theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment

  16. The influence on the environment of uranium ore transport from mining sites to processing site in Romania

    International Nuclear Information System (INIS)

    Peic, T.; Banciu, O.; Bardan, N.; Radulescu, C.

    1997-01-01

    In Romania, the transport of uranium ores from mining sites to the processing plant is carried out by road and rail. The length of the road transport routes is between 5 and 45 km and rail routes between 300 and 500 km. This laboratory began to monitor these transport routes in 1984. Gamma dose rate measurements were made on and around the special wagons and trucks along the road and rail transport routes and in railway stations. Soil and vegetation samples have also been collected along the road and rail transport routes and in railway stations. From the collected samples the specific activity of natural uranium and 226 Ra were measured. The level of natural radioactivity in the train assembling stations in the period 1984-1996, increased 1-4 times in comparison with the natural background. (Author)

  17. THE CONCEPT OF ORGANIZING TRANSPORT AND LOGISTICS PROCESSES, TAKING INTO ACCOUNT THE ECONOMIC, SOCIAL AND ENVIRONMENTAL ASPECTS

    Directory of Open Access Journals (Sweden)

    Leszek MINDUR

    2015-12-01

    Full Text Available Current model of organization of supply chains results in inefficient use of transport resources, high transport costs, increasing congestions and CO2 emission. This effect has been demonstrated by research conducted by the authors as well as by the European Environmental Agency. This situation can be change by development of alternative business model for collaboration in organisation of the transport processes within the supply chains. The aim of this paper is to present practical implementation of the T-Scale platform that enables collaboration between independent transport users and transport service providers. Moreover, an overview of existing communication platform with its major functionalities are presented. The work is summarized by the major benefits of collaboration achieved by the group of companies operating in the FMCG sector in Poland.

  18. Impact of peculiar features of construction of transport infrastructure on the choice of tools for reengineering of business processes

    Science.gov (United States)

    Khripko, Elena

    2017-10-01

    In the present article we study the issues of organizational resistance to reengineering of business processes in construction of transport infrastructure. Reengineering in a company of transport sector is, first and foremost, an innovative component of business strategy. We analyze the choice of forward and reverse reengineering tools and terms of their application in connection with organizational resistance. Reengineering is defined taking into account four aspects: fundamentality, radicality, abruptness, business process. We describe the stages of reengineering and analyze key requirements to newly created business processes.

  19. Transport process of Pu isotope in marginal seas of the western North Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Masatoshi [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Aomori (Japan); Zheng, Jian [Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, 263-8555, Chiba (Japan)

    2014-07-01

    Significant quantities of Pu isotopes have been released into the marine environment as the result of atmospheric nuclear weapons testing. Most radionuclides globally dispersed in atmospheric nuclear weapons testing were released into the environment during the 1950's and 1960's. In the western North Pacific Ocean, the principal source can be further distinguished as two distinct sources of Pu: close-in tropospheric fallout from nuclear weapons testing at the Pacific Proving Grounds (PPG) in the Marshall Islands and global stratospheric fallout. Since the {sup 240}Pu/{sup 239}Pu atom ratio is characteristic for the Pu emission source, information on Pu isotopic signature is very useful to better understand the transport process in the oceans and to identify the sources of Pu. The mean atom ratio of {sup 240}Pu/{sup 239}Pu from the global stratospheric fallout is 0.180 ±0.014 based on soil sample data, whereas that from close-in tropospheric fallout from the PPG is 0.33 - 0.36. The {sup 240}Pu/{sup 239}Pu atom ratios in seawater samples collected in marginal seas of the western North Pacific Ocean will provide important and useful data for understanding the process controlling Pu transport and for distinguishing future Pu sources. The objectives of this study were to measure the {sup 239+240}Pu concentrations and {sup 240}Pu/{sup 239}Pu atom ratios in seawater from the Sea of Okhotsk, Japan Sea, South China Sea and Sulu Sea and to discuss the transport process of Pu. Large-volume seawater samples (250 L each) were collected from the surface to the bottom in marginal seas of the western North Pacific Ocean with acoustically triggered quadruple PVC sampling bottles during the R/V Hakuho-Maru cruise. The {sup 239}Pu and {sup 240}Pu concentrations and {sup 240}Pu/{sup 239}Pu atom ratios were measured with a double-focusing SF-ICP-MS, which was equipped with a guard electrode to eliminate secondary discharge in the plasma and to enhance overall sensitivity. In

  20. Systems contestability in electricity distribution networks. An analysis from the telecommunications models within the neoclassical economic paradigm

    International Nuclear Information System (INIS)

    Schweickardt, Gustavo Alejandro; Pistonesi, Hector

    2008-01-01

    The introduction of contestability conditions in the market of electricity distribution, following the dominant economic paradigm (Neoclassical or Marginalist) and solidary to the commercialization segment, it doesn't exhibit satisfactory solutions at the present time. This asseveration, of general character, have special incumbency for those countries of Latin America that, from regulatory schemes, try to define a deregulated market for certain kind of user (denominated eligible). A eligible user is characterized by to have demands equal or higher than a preset threshold value of electric power/ energy. In this work, considering the models implemented in the telecommunications networks, the problem of allocation of distribution costs, as the first step toward a contestable offer in the retail energy service, is discussed to establishing access prices in the distribution networks (non contestable markets). The analysis is focalized to definition of two market segments: one regulated and other competitive. Their methodological and instrumentation difficulties, are presented, concluding in the necessity of an alternative paradigm.

  1. Braking due to non-resonant magnetic perturbations and comparison with neoclassical toroidal viscosity torque in EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Sun, Y.; Fridström, R.; Menmuir, S.; Olofsson, K. E. J.; Brunsell, P. R.; Khan, M. W. M.; Liang, Y.; Drake, J. R.

    2015-09-01

    The non-resonant magnetic perturbation (MP) braking is studied in the EXTRAP T2R reversed-field pinch (RFP) and the experimental braking torque is compared with the torque expected by the neoclassical toroidal viscosity (NTV) theory. The EXTRAP T2R active coils can apply magnetic perturbations with a single harmonic, either resonant or non-resonant. The non-resonant MP produces velocity braking with an experimental torque that affects a large part of the core region. The experimental torque is clearly related to the plasma displacement, consistent with a quadratic dependence as expected by the NTV theory. The work show a good qualitative agreement between the experimental torque in a RFP machine and NTV torque concerning both the torque density radial profile and the dependence on the non-resonant MP harmonic.

  2. Impurities in a non-axisymmetric plasma: Transport and effect on bootstrap current

    Energy Technology Data Exchange (ETDEWEB)

    Mollén, A., E-mail: albertm@chalmers.se [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden); Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Landreman, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Smith, H. M.; Helander, P. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Braun, S. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); German Aerospace Center, Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-11-15

    Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21, 042503 (2014)] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/ν-scaling of the inter-species radial transport coefficient at low collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We also use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Z{sub eff} of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.

  3. 23 CFR 450.306 - Scope of the metropolitan transportation planning process.

    Science.gov (United States)

    2010-04-01

    ... transportation plan and TIP. In developing proposed simplified planning procedures, consideration shall be given... transportation problems in the area. The simplified procedures shall be developed by the MPO in cooperation with... 23 Highways 1 2010-04-01 2010-04-01 false Scope of the metropolitan transportation planning...

  4. 3D effects on transport and plasma control in the TJ-II stellarator

    Science.gov (United States)

    Castejón, F.; Alegre, D.; Alonso, A.; Alonso, J.; Ascasíbar, E.; Baciero, A.; de Bustos, A.; Baiao, D.; Barcala, J. M.; Blanco, E.; Borchardt, M.; Botija, J.; Cabrera, S.; de la Cal, E.; Calvo, I.; Cappa, A.; Carrasco, R.; Castro, R.; De Castro, A.; Catalán, G.; Chmyga, A. A.; Chamorro, M.; Dinklage, A.; Eliseev, L.; Estrada, T.; Fernández-Marina, F.; Fontdecaba, J. M.; García, L.; García-Cortés, I.; García-Gómez, R.; García-Regaña, J. M.; Guasp, J.; Hatzky, R.; Hernanz, J.; Hernández, J.; Herranz, J.; Hidalgo, C.; Hollmann, E.; Jiménez-Denche, A.; Kirpitchev, I.; Kleiber, R.; Komarov, A. D.; Kozachoek, A. S.; Krupnik, L.; Lapayese, F.; Liniers, M.; Liu, B.; López-Bruna, D.; López-Fraguas, A.; López-Miranda, B.; López-Razola, J.; Losada, U.; de la Luna, E.; Martín de Aguilera, A.; Martín-Díaz, F.; Martínez, M.; Martín-Gómez, G.; Martín-Hernández, F.; Martín-Rojo, A. B.; Martínez-Fernández, J.; McCarthy, K. J.; Medina, F.; Medrano, M.; Melón, L.; Melnikov, A. V.; Méndez, P.; Merino, R.; Miguel, F. J.; van Milligen, B.; Molinero, A.; Momo, B.; Monreal, P.; Moreno, R.; Navarro, M.; Narushima, Y.; Nedzelskiy, I. S.; Ochando, M. A.; Olivares, J.; Oyarzábal, E.; de Pablos, J. L.; Pacios, L.; Panadero, N.; Pastor, I.; Pedrosa, M. A.; de la Peña, A.; Pereira, A.; Petrov, A.; Petrov, S.; Portas, A. B.; Poveda, E.; Rattá, G. A.; Rincón, E.; Ríos, L.; Rodríguez, C.; Rojo, B.; Ros, A.; Sánchez, J.; Sánchez, M.; Sánchez, E.; Sánchez-Sarabia, E.; Sarksian, K.; Satake, S.; Sebastián, J. A.; Silva, C.; Solano, E. R.; Soleto, A.; Sun, B. J.; Tabarés, F. L.; Tafalla, D.; Tallents, S.; Tolkachev, A.; Vega, J.; Velasco, G.; Velasco, J. L.; Wolfers, G.; Yokoyama, M.; Zurro, B.

    2017-10-01

    The effects of 3D geometry are explored in TJ-II from two relevant points of view: neoclassical transport and modification of stability and dispersion relation of waves. Particle fuelling and impurity transport are studied considering the 3D transport properties, paying attention to both neoclassical transport and other possible mechanisms. The effects of the 3D magnetic topology on stability, confinement and Alfvén Eigenmodes properties are also explored, showing the possibility of controlling Alfvén modes by modifying the configuration; the onset of modes similar to geodesic acoustic modes are driven by fast electrons or fast ions; and the weak effect of magnetic well on confinement. Finally, we show innovative power exhaust scenarios using liquid metals.

  5. INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Yannis C. Yortsos

    2003-02-01

    This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

  6. The relative contribution of near-bed vs. intragravel horizontal transport to fine sediment accumulation processes in river gravel beds

    Science.gov (United States)

    Casas-Mulet, Roser; Lakhanpal, Garima; Stewardson, Michael J.

    2018-02-01

    Understanding flow-sediment interactions is important for comprehending river functioning. Fine sediment accumulation processes, in particular, have key implications for ecosystem health. However, the amount of fines generated by intragravel flows and later accumulated in gravel streambeds may have been underestimated, as the hydraulic-related driving transport mechanisms in play are not clearly identified. Specifically, the relative contribution of fines from upper vs. lower sediment layers in gravel beds is not well understood. By recreating flooded and dewatered conditions in an experimental flume filled with natural sediment, we estimated such contributions by observing and collecting intragravel transported fines that were later accumulated into a void in the middle of the sediment matrix. Near-bed transport in the upper sediment layers (named Brinkman load) during flooded conditions accounted for most (90%) of the accumulated fines. Intragravel transport in the lower sediment layers (named Interstitial load) was the sole source of transport and accumulation during dewatered conditions with steeper hydraulic gradients. Interstitial load accounted for 10% of the total transport during flooded conditions. Although small, such estimations demonstrate that hydraulic-gradient transport in the lower sediment layers occurs in spite of the contradicting analytical assessments. We provide a case study to challenge the traditional approaches of assessing intragravel transport, and a useful framework to understand the origin and relative contribution of fine sediment accumulation in gravel beds. Such knowledge will be highly useful for the design of monitoring programs aiding river management, particularly in regulated rivers.

  7. On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process

    Directory of Open Access Journals (Sweden)

    Jennifer A Flegg

    2015-09-01

    Full Text Available Over the last thirty years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e. capillary sprout growth has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made towards the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.

  8. On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process.

    Science.gov (United States)

    Flegg, Jennifer A; Menon, Shakti N; Maini, Philip K; McElwain, D L Sean

    2015-01-01

    Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.

  9. Quantification of soil erosion and transport processes in the in the Myjava Hill Land

    Science.gov (United States)

    Hlavcová, Kamila; Kohnová, Silvia; Velisková, Yvetta; Studvová, Zuzana; Socuvka, Valentin; Németová, Zuzana; Duregová, Maria

    2017-04-01

    The aim of the study is a complex analysis of soil erosion processes and proposals for erosion control in the region of the Myjava Hill Land located in western Slovakia. The Myjava Hill Land is characteristic of quick runoff response, intensive soil erosion by water and related muddy floods, which are determined by both natural and socio-economic conditions. In this paper a case study in the Svacenický Creek catchment, with a focus on the quantification of soil loss from the agriculturally arable lands and sediment transport to the dry water reservoir (polder) of the Svacenický Creek is presented. Erosion, sediment transport, and the deposition of sediments in the water reservoir represent a significant impact on its operation, mainly with regard to reducing its accumulation volume. For the analysis of the soil loss and sediment transport from the Svacenický Creek catchment, the Universal Soil Loss Equation, the USLE 2D, and the Sediment Delivery Ratio (SDR) models were applied. Because the resulting values of the soil loss exceeded the values of the tolerated soil loss, erosion control measures by strip cropping were designed. Strip cropping is based on altering crop strips with protective (infiltration) strips. The effectiveness of the protective (infiltration) strips for reducing runoff from the basin by the SCS-CN method was estimated. Monitoring the morphological parameters of bottom sediments and their changes over time is crucial information in the field of water reservoir operations. In September 2015, the AUV EcoMapper was used to gather the data information on the Svacenický Creek reservoir. The data includes information about the sediment depths and parameters of the water quality. The results of the surveying are GIS datasets and maps, which provide a higher resolution of the bathymetric data and contours of the bottom reservoir. To display the relief of the bottom, the ArcMap 10.1. software was used. Based on the current status of the bottom

  10. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium.

    Science.gov (United States)

    Hahn, Anne; Faulhaber, Johannes; Srisawang, Lalita; Stortz, Andreas; Salomon, Johanna J; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2017-06-01

    Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca 2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca 2+ - dependent and cAMP- dependent Cl - secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca 2+ -gated Cl - channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel, the epithelial Na + channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl - secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl - secretion and Na + absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca 2+ -dependent Cl - secretion in this tissue. These characteristic features of Cl - -dependent secretion reveal similarities and distinct differences to secretory processes in human airways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. Lung vitamin E transport processes are affected by both age and environmental oxidants in mice

    International Nuclear Information System (INIS)

    Valacchi, Giuseppe; Vasu, Vihas T.; Yokohama, Wallace; Corbacho, Ana M.; Phung, Anh; Lim, Yunsook; Aung, Hnin Hnin; Cross, Carroll E.; Davis, Paul A.

    2007-01-01

    Despite the physiological importance of alpha-tocopherol (AT), the molecular mechanisms involved in maintaining cellular and tissue tocopherol levels remain to be fully characterized. Scavenger receptor B1 (SRB1), one of a large family of scavenger receptors, has been shown to facilitate AT transfer from HDL to peripheral tissues via apo A-1-mediated processes and to be important in the delivery of AT to the lung cells. In the present studies the effects of age and two environmental oxidants ozone (O 3 ) (0.25 ppm 6 h/day) and cigarette smoke (CS) (60 mg/m 3 6 h/day) for 4 days on selected aspects of AT transport in murine lung tissues were assessed. While AT levels were 25% higher (p 3 or CS at the doses used had no effect. Gene expression levels, determined by RT-PCR of AT transport protein (ATTP), SRB1, CD36, ATP binding cassette 3 (ABCA3) and ABCA1 and protein levels, determined by Western blots for SRB1, ATTP and ABCA1 were assessed. Aged mouse lung showed a lower levels of ATTP, ABCA3 and SRB1 and a higher level CD36 and ABCA1. Acute exposure to either O 3 or CS induced declines in ATTP and SRB1 in both aged and young mice lung. CD36 increased in both young and aged mice lung upon exposure to O 3 and CS. These findings suggest that both age and environmental oxidant exposure affect pathways related to lung AT homeostasis and do so in a way that favors declines in lung AT. However, given the approach taken, the effects cannot be traced to changes in these pathways or AT content in any specific lung associated cell type and thus highlight the need for further follow-up studies looking at specific lung associated cell types

  12. Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling

    Czech Academy of Sciences Publication Activity Database

    Angioni, C.; Mantica, P.; Pütterich, T.; Valisa, M.; Baruzzo, M.; Belli, A.E.; Belo, P.; Casson, F.J.; Challis, C.; Drewelow, P.; Giroud, C.; Hawkes, N.; Hender, T.C.; Hobirk, J.; Koskela, T.; Lauro Taroni, L.; Maggi, C.F.; Mlynář, Jan; Odstrčil, T.; Reinke, M.L.; Romanelli, M.

    Roč. 54, č. 8 ( 2014 ), 083028-083028 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : heavy impurity transport * H-mode hybrid scenario * neoclassical and turbulent transport Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/8/083028/pdf/0029-5515_54_8_083028.pdf

  13. Influence of intrinsic spin-flip processes on spin-polarized transport through quantum dots in the cotunneling regime

    International Nuclear Information System (INIS)

    Weymann, I.; Barnas, J.

    2006-01-01

    The influence of intrinsic spin relaxation on spin-polarized cotunneling through quantum dots coupled to ferromagnetic leads is analyzed theoretically. It is shown that the zero bias anomaly, which occurs due to the interplay of single-barrier and double-barrier cotunneling processes, becomes suppressed by spin relaxation processes on the dot. Diode-like features of the transport characteristics in the cotunneling regime have been found in asymmetrical systems. These features are also suppressed by the spin relaxation processes

  14. A micromechanical approach of suffusion based on a length scale analysis of the grain detachment and grain transport processes.

    Science.gov (United States)

    Wautier, Antoine; Bonelli, Stéphane; Nicot, François

    2017-06-01

    Suffusion is the selective erosion of the finest particles of a soil subjected to an internal flow. Among the four types of internal erosion and piping identified today, suffusion is the least understood. Indeed, there is a lack of micromechanical approaches for identifying the critical microstructural parameters responsible for this process. Based on a discrete element modeling of non cohesive granular assemblies, specific micromechanical tools are developed in a unified framework to account for the two first steps of suffusion, namely the grain detachment and the grain transport processes. Thanks to the use of an enhanced force chain definition and autocorrelation functions the typical lengths scales associated with grain detachment are characterized. From the definition of transport paths based on a graph description of the pore space the typical lengths scales associated with grain transport are recovered. For a uniform grain size distribution, a separation of scales between these two processes exists for the finest particles of a soil

  15. Scaling analysis in modeling transport and reaction processes a systematic approach to model building and the art of approximation

    CERN Document Server

    Krantz, William B

    2007-01-01

    This book is unique as the first effort to expound on the subject of systematic scaling analysis. Not written for a specific discipline, the book targets any reader interested in transport phenomena and reaction processes. The book is logically divided into chapters on the use of systematic scaling analysis in fluid dynamics, heat transfer, mass transfer, and reaction processes. An integrating chapter is included that considers more complex problems involving combined transport phenomena. Each chapter includes several problems that are explained in considerable detail. These are followed by several worked examples for which the general outline for the scaling is given. Each chapter also includes many practice problems. This book is based on recognizing the value of systematic scaling analysis as a pedagogical method for teaching transport and reaction processes and as a research tool for developing and solving models and in designing experiments. Thus, the book can serve as both a textbook and a reference boo...

  16. A micromechanical approach of suffusion based on a length scale analysis of the grain detachment and grain transport processes.

    Directory of Open Access Journals (Sweden)

    Wautier Antoine

    2017-01-01

    Full Text Available Suffusion is the selective erosion of the finest particles of a soil subjected to an internal flow. Among the four types of internal erosion and piping identified today, suffusion is the least understood. Indeed, there is a lack of micromechanical approaches for identifying the critical microstructural parameters responsible for this process. Based on a discrete element modeling of non cohesive granular assemblies, specific micromechanical tools are developed in a unified framework to account for the two first steps of suffusion, namely the grain detachment and the grain transport processes. Thanks to the use of an enhanced force chain definition and autocorrelation functions the typical lengths scales associated with grain detachment are characterized. From the definition of transport paths based on a graph description of the pore space the typical lengths scales associated with grain transport are recovered. For a uniform grain size distribution, a separation of scales between these two processes exists for the finest particles of a soil

  17. Chemical Processing and Transport in the Stratospheric Vortex and Subvortex from Satellite Measurements and Modeling

    Science.gov (United States)

    Santee, Michelle; Manney, Gloria; MacKenzie, Ian; Chipperfield, Martyn; Feng, Wuhu; Sander, Stanley; Froidevaux, Lucien; Livesey, Nathaniel; Bernath, Peter; Walker, Kaley; Boone, Chris

    A suite of atmospheric composition measurements from the Microwave Limb Sounder (MLS) on NASA's Aura satellite and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on Canada's SCISAT-1 mission is used to study chemical processing in and dispersal of chemically-processed air from the lower stratospheric polar vortices. In particular, interannual and interhemispheric variability in chlorine activation and deactivation are investigated using measurements of ClO, HCl, and ClONO2. Theoretical understanding is assessed by comparing measurements to customized runs of the SLIMCAT 3D chemical transport model. Results are shown from a newly-updated version of the model that incorporates a sophisticated microphysical scheme as a fully-coupled module, allowing polar stratospheric cloud formation and sedimentation to be calculated interactively in full-chemistry simulations. The impact of recently-published ClOOCl absorption cross sections, which yield a stratospheric ClOOCl photolysis rate substantially lower than previous estimates, on the agreement between modelled and measured chlorine species is evaluated. In addition, measurements of HNO3 and O3 and SLIMCAT results are related to mixing diagnostics to track the springtime export of denitrified, ozone-depleted air from the "subvortex", the transition zone (potential temperatures of 350-450 K) between the region above of strong confinement inside the polar vortex and the region below of less restricted exchange with lower-latitude air. Particularly over Antarctica, such mixing of processed air out of the subvortex may significantly affect the composition of the midlatitude lowermost stratosphere and upper troposphere.

  18. Processes and parameters involved in modeling radionuclide transport from bedded salt repositories. Final report. Technical memorandum

    International Nuclear Information System (INIS)

    Evenson, D.E.; Prickett, T.A.; Showalter, P.A.

    1979-07-01

    The parameters necessary to model radionuclide transport in salt beds are identified and described. A proposed plan for disposal of the radioactive wastes generated by nuclear power plants is to store waste canisters in repository sites contained in stable salt formations approximately 600 meters below the ground surface. Among the principal radioactive wastes contained in these canisters will be radioactive isotopes of neptunium, americium, uranium, and plutonium along with many highly radioactive fission products. A concern with this form of waste disposal is the possibility of ground-water flow occurring in the salt beds and endangering water supplies and the public health. Specifically, the research investigated the processes involved in the movement of radioactive wastes from the repository site by groundwater flow. Since the radioactive waste canisters also generate heat, temperature is an important factor. Among the processes affecting movement of radioactive wastes from a repository site in a salt bed are thermal conduction, groundwater movement, ion exchange, radioactive decay, dissolution and precipitation of salt, dispersion and diffusion, adsorption, and thermomigration. In addition, structural changes in the salt beds as a result of temperature changes are important. Based upon the half-lives of the radioactive wastes, he period of concern is on the order of a million years. As a result, major geologic phenomena that could affect both the salt bed and groundwater flow in the salt beds was considered. These phenomena include items such as volcanism, faulting, erosion, glaciation, and the impact of meteorites. CDM reviewed all of the critical processes involved in regional groundwater movement of radioactive wastes and identified and described the parameters that must be included to mathematically model their behavior. In addition, CDM briefly reviewed available echniques to measure these parameters

  19. Squadron Movements and Associated Transportation Problems: An Inner Look into the Process

    National Research Council Canada - National Science Library

    Hollis, William J; Estep, Anthony S; Walker, Nicholas T

    2008-01-01

    .... Additionally, the project investigates how the transportation funding program could be executed differently to better track funds and to reduce current, questionable and unchallengeable charges...

  20. Experimentally testing the dependence of momentum transport on second derivatives using Gaussian process regression

    Science.gov (United States)

    Chilenski, M. A.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Lee, J. P.; Marzouk, Y. M.; Rice, J. E.; White, A. E.

    2017-12-01

    It remains an open question to explain the dramatic change in intrinsic rotation induced by slight changes in electron density (White et al 2013 Phys. Plasmas 20 056106). One proposed explanation is that momentum transport is sensitive to the second derivatives of the temperature and density profiles (Lee et al 2015 Plasma Phys. Control. Fusion 57 125006), but it is widely considered to be impossible to measure these higher derivatives. In this paper, we show that it is possible to estimate second derivatives of electron density and temperature using a nonparametric regression technique known as Gaussian process regression. This technique avoids over-constraining the fit by not assuming an explicit functional form for the fitted curve. The uncertainties, obtained rigorously using Markov chain Monte Carlo sampling, are small enough that it is reasonable to explore hypotheses which depend on second derivatives. It is found that the differences in the second derivatives of n{e} and T{e} between the peaked and hollow rotation cases are rather small, suggesting that changes in the second derivatives are not likely to explain the experimental results.

  1. Processing of Oak Ridge B ampersand C pond sludge surrogate in the transportable vitrification system

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Young, S.R.; Peeler, D.K.; Smith, M.E.

    1997-01-01

    The Transportable Vitrification System (TVS) developed at the Savannah River Site is designed to process low-level and mixed radioactive wastes into a stable glass product. The TVS consists of a feed preparation and delivery system, a joule-heated melter, and an offgas treatment system. Surrogate Oak Ridge Reservation (ORR) B ampersand amp;C pond sludge was treated in a demonstration of the TVS system at Clemson University and at ORR. After initial tests with soda-lime-silica (SLS) feed, three melter volumes of glass were produced from the surrogate feed. A forthcoming report will describe glass characterization; and melter feeding, operation, and glass pouring. Melter operations described will include slurry characterization and feeding, factors affecting feed melt rates, glass pouring and pour rate constraints, and melter operating temperatures. Residence time modeling of the melter will also be discussed. Characterization of glass; including composition, predicted liquidity and viscosity, Toxic Characteristic Leaching Procedure (TCLP), and devitrification will be covered. Devitrification was a concern in glass container tests and was found to be mostly dependent on the cooling rate. Crucible tests indicated that melter shutdown with glass containing Fe and Li was also a devitrification concern, so the melter was flushed with SLS glass before cooldown

  2. Heterogeneous nucleation promotes carrier transport in solution-processed organic field-effect transistors

    KAUST Repository

    Li, Ruipeng

    2012-09-04

    A new way to investigate and control the growth of solution-cast thin films is presented. The combination of in situ quartz crystal microbalance measurements with dissipation capabilities (QCM-D) and in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) in an environmental chamber provides unique quantitative insights into the time-evolution of the concentration of the solution, the onset of nucleation, and the mode of growth of the organic semiconductor under varied drying conditions. It is demonstrated that careful control over the kinetics of solution drying enhances carrier transport significantly by promoting phase transformation predominantly via heterogeneous nucleation and sustained surface growth of a highly lamellar structure at the solid-liquid interface at the expense of homogeneous nucleation. A new way to investigate and control the growth of drop-cast thin films is presented. The solution-processing of small-molecule thin films of TIPS-pentacene is investigated using time-resolved techniques to reveal the mechanisms of nucleation and growth leading to solid film formation. By tuning the drying speed of the solution, the balance between surface and bulk growth modes is altered, thereby controlling the lamellar formation and tuning the carrier mobility in organic field-effect transistors Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Development of CAD-Based Geometry Processing Module for a Monte Carlo Particle Transport Analysis Code

    International Nuclear Information System (INIS)

    Choi, Sung Hoon; Kwark, Min Su; Shim, Hyung Jin

    2012-01-01

    As The Monte Carlo (MC) particle transport analysis for a complex system such as research reactor, accelerator, and fusion facility may require accurate modeling of the complicated geometry. Its manual modeling by using the text interface of a MC code to define the geometrical objects is tedious, lengthy and error-prone. This problem can be overcome by taking advantage of modeling capability of the computer aided design (CAD) system. There have been two kinds of approaches to develop MC code systems utilizing the CAD data: the external format conversion and the CAD kernel imbedded MC simulation. The first approach includes several interfacing programs such as McCAD, MCAM, GEOMIT etc. which were developed to automatically convert the CAD data into the MCNP geometry input data. This approach makes the most of the existing MC codes without any modifications, but implies latent data inconsistency due to the difference of the geometry modeling system. In the second approach, a MC code utilizes the CAD data for the direct particle tracking or the conversion to an internal data structure of the constructive solid geometry (CSG) and/or boundary representation (B-rep) modeling with help of a CAD kernel. MCNP-BRL and OiNC have demonstrated their capabilities of the CAD-based MC simulations. Recently we have developed a CAD-based geometry processing module for the MC particle simulation by using the OpenCASCADE (OCC) library. In the developed module, CAD data can be used for the particle tracking through primitive CAD surfaces (hereafter the CAD-based tracking) or the internal conversion to the CSG data structure. In this paper, the performances of the text-based model, the CAD-based tracking, and the internal CSG conversion are compared by using an in-house MC code, McSIM, equipped with the developed CAD-based geometry processing module

  4. Utilization of electromigration in civil and environmental engineering--processes, transport rates and matrix changes.

    Science.gov (United States)

    Ottosen, Lisbeth M; Christensen, Iben V; Rorig-Dalgård, Inge; Jensen, Pernille E; Hansen, Henrik K

    2008-07-01

    Electromigration (movement of ions in an applied electric field) is utilized for supply or extraction of ions from various porous materials within both civil and environmental engineering. In civil engineering, most research has been conducted on the removal of chlorides from concrete to hinder reinforcement corrosion while in environmental engineering remediation of heavy metal polluted soil is the issue most studied. Never the less, experiments have been conducted with utilization for several other materials and purposes within both engineering fields. Even though there are many topics of common interest in the use of electromigration for the two fields, there is no tradition for collaboration. The present paper is a review with the aim of pointing out areas of shared interest. Focus is laid on the purposes of the different processes, transport rates of various ions in different materials and on changes in the matrix itself. Desorption and dissolution of the target elements into ionic form is a key issue to most of the processes, and can be the limiting step. The removal rate is generally below 1 cm day(- 1), but it can be much less than 1 mm day(- 1) when desorption is slow and insufficient. Matrix changes occurs under the action of the applied electric field and it includes both physico-chemical and hydrological changes. Some of the solid phases is weathered and new can be formed. Increased fundamental understanding of the effects and side effects, when applying the electric field to a porous material, can lead to improvement of the known technologies and possibly to new applications.

  5. Development of a Groundwater Transport Simulation Tool for Remedial Process Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ivarson, Kristine A.; Hanson, James P.; Tonkin, M.; Miller, Charles W.; Baker, S.

    2015-01-14

    The groundwater remedy for hexavalent chromium at the Hanford Site includes operation of five large pump-and-treat systems along the Columbia River. The systems at the 100-HR-3 and 100-KR-4 groundwater operable units treat a total of about 9,840 liters per minute (2,600 gallons per minute) of groundwater to remove hexavalent chromium, and cover an area of nearly 26 square kilometers (10 square miles). The pump-and-treat systems result in large scale manipulation of groundwater flow direction, velocities, and most importantly, the contaminant plumes. Tracking of the plumes and predicting needed system modifications is part of the remedial process optimization, and is a continual process with the goal of reducing costs and shortening the timeframe to achieve the cleanup goals. While most of the initial system evaluations are conducted by assessing performance (e.g., reduction in contaminant concentration in groundwater and changes in inferred plume size), changes to the well field are often recommended. To determine the placement for new wells, well realignments, and modifications to pumping rates, it is important to be able to predict resultant plume changes. In smaller systems, it may be effective to make small scale changes periodically and adjust modifications based on groundwater monitoring results. Due to the expansive nature of the remediation systems at Hanford, however, additional tools were needed to predict the plume reactions to system changes. A computer simulation tool was developed to support pumping rate recommendations for optimization of large pump-and-treat groundwater remedy systems. This tool, called the Pumping Optimization Model, or POM, is based on a 1-layer derivation of a multi-layer contaminant transport model using MODFLOW and MT3D.

  6. Investigation of the Dominant Processes controlling Volume, Heat, and Freshwater Transports through the Bering Strait

    Science.gov (United States)

    Nguyen, A. T.; Woodgate, R. A.; Heimbach, P.

    2016-02-01

    The 85-km wide Bering Strait serves as the only connection between the Pacific and Arctic oceans. Recent observations have shown increases in northward volume, heat and freshwater fluxes through this narrow and shallow strait, with implications for the prolongation of the ice-free season and enhancement of nutrient supply to the ecosystems in the Chukchi Sea. Further downstream the increased flux influences watermass transformations, heat and freshwater budgets, and stratification in the upper Arctic Ocean. Thus, quantifying the mechanisms that control the mean and variability of the flow through this vital gateway is important for understanding and predicting changes in the Arctic. Here, to identify these key mechanisms, we use 14 years of mooring observations from the Bering Strait and the non-linear inverse-modeling framework of the Arctic Sub-polar gyre sTate Estimate (ASTE). ASTE is a synthesis of the MITgcm coupled ocean-sea ice model with all available satellite and in-situ observations of sea ice and ocean, including hydrographic and mooring data from the Beaufort Sea and the major Arctic gateways (Fram, Bering, and Davis straits), and is developed using the estimation infrastructure of the ECCO consortium. In ASTE's optimization mode, after 19 iterations, misfits to ITP hydrography and SSM/I ice concentration have reduced by 80% and 50% respectively. With ASTE as the baseline solution, we use the "adjoint" tool to compute the sensitivity of the model transports of volume and water properties at the Bering Strait to a set of control variables including ocean hydrography and atmospheric forcing. The partition of dominant sensitivities is connected to the data in two ways: the data serve as a guide to the interpretation of the controlling process while the model sensitivity can provide insights into processes which can be further tested with additional observations.

  7. New separation process of the propane/propylene stream using facilitated transport membranes; Novo processo de separacao da corrente propano/propeno usando membranas de transporte facilitado

    Energy Technology Data Exchange (ETDEWEB)

    Pollo, Liliane Damaris; Habert, Alberto Claudio; Borges, Cristiano Piacsek [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Engenharia Quimica. Centro de Tecnologia], e-mails: lpollo@peq.coppe.ufrj.br, habert@peq.coppe.ufrj.br, cristiano@peq.coppe.ufrj.br

    2010-04-15

    Propylene separation from the propane/propylene mixture is of great interest to the petrochemical industry. This arises from the high value of this product, which is used to manufacture several polymers and composites, especially polypropylene. Currently, the most frequently used separation process is distillation, which consumes large amounts of energy, mainly due to the similar properties of these gases. Therefore, the separation processes by facilitated transport membranes (FTM) seems to be an efficient alternative, as the gas separation occurs without a phase change, significantly reducing energy consumption. The FTM contain carriers that promote the specific transport of olefins through the membrane. Since this is a new technology, the use of suitable carrier agents presents a wide research field. The aim of this study is to synthesize and characterize polymeric membranes containing different carrier agents to separate the propane/propylene mixture. Polymeric membranes based on polyurethane containing silver salts (AgCF{sub 3}SO{sub 3} and AgSbF{sub 6}) and copper salts (CuCF{sub 3}SO{sub 3}) as carriers were synthesized. The membranes were characterized by different techniques and the results showed that the membranes containing silver salts exhibited the best efficiency to separate the propane/propylene mixture. The ideal selectivity of the membrane containing 20% w/w AgCF{sub 3}SO{sub 3}, was five times higher than the selectivity of the membrane without the carrier agent, confirming the facilitated transport behavior. (author)

  8. Source effects on impurity and heat transport in a tokamak

    International Nuclear Information System (INIS)

    Bennett, R.B.

    1980-12-01

    A recently developed generalization of neoclassical theory is extended here to study heat flux contributions to impurity transport, as well as the heat fluxes themselves. The theory accounts for the first four source moments, with external drags, which has been studied previously with either fewer moments or restricted to a collisional plasma. Conditions are established for which a momentum source may be used to modify the particle and heat transport. In the course of this work, the particle and heat transport is evaluated for a two species plasma with arbitrary plasma geometry, beta, and collisionality

  9. New HYDRUS Modules for Simulating Preferential Flow, Colloid-Facilitated Contaminant Transport, and Various Biogeochemical Processes in Soils

    Science.gov (United States)

    Simunek, J.; Sejna, M.; Jacques, D.; Langergraber, G.; Bradford, S. A.; van Genuchten, M. Th.

    2012-04-01

    We have dramatically expanded the capabilities of the HYDRUS (2D/3D) software package by developing new modules to account for processes not available in the standard HYDRUS version. These new modules include the DualPerm, C-Hitch, HP2/3, Wetland, and Unsatchem modules. The dual-permeability modeling approach of Gerke and van Genuchten [1993] simulating preferential flow and transport is implemented into the DualPerm module. Colloid transport and colloid-facilitated solute transport, the latter often observed for many contaminants, such as heavy metals, radionuclides, pharmaceuticals, pesticides, and explosives [Šimůnek et al., 2006] are implemented into the C-Hitch module. HP2 and HP3 are the two and three-dimensional alternatives of the HP1 module, currently available with HYDRUS-1D [Jacques and Šimůnek, 2005], that couple HYDRUS flow and transport routines with the generic geochemical model PHREEQC of Parkhurst and Appelo [1999]. The Wetland module includes two alternative approaches (CW2D of Langergraber and Šimůnek [2005] and CWM1 of Langergraber et al. [2009]) for modeling aerobic, anaerobic, and anoxic biogeochemical processes in natural and constructed wetlands. Finally, the Unsatchem module simulates the transport and reactions of major ions in a soil profile. Brief descriptions and an application of each module will be presented. Except for HP3, all modules simulate flow and transport processes in two-dimensional transport domains. All modules are fully supported by the HYDRUS graphical user interface. Further development of these modules, as well as of several other new modules (such as Overland), is still envisioned. Continued feedback from the research community is encouraged.

  10. Processes affecting suspended sediment transport in the mid-field plume region of the Rhine River, Netherlands.

    Science.gov (United States)

    Flores, R. P.; Rijnsburger, S.; Horner-Devine, A.; Souza, A. J.; Pietrzak, J.

    2016-02-01

    This work will describe dominant processes affecting suspended sediment transport along the Dutch coast, in the mid-field plume region of the Rhine River. We will present field observations from two long-term deployments conducted in the vicinity of the Sand Engine, a mega-nourishment experiment located 10 km north of the Rhine river mouth. To investigate the role of density stratification, winds, tides, waves and river plume processes on sediment transport, frames and moorings were deployed within the excursion of the tidal plume front generated by the freshwater outflow from the Rhine River for 4 and 6 weeks during years 2013 and 2014, respectively. The moorings were designed to measure vertical profiles of suspended sediment concentration (SSC) and salinity, using arrays of CTDs and OBS sensors. Mean tidal velocities were measured using bottom-mounted ADCPs. The near-bed dynamics and the near-bottom sediment concentrations were measured as well using a set of synchronized ADVs and OBSs. By combining the two deployments we observe hydrodynamics and suspended sediment dynamics under a wide range of forcing conditions. Preliminary observations indicate that stratification is highly dependent on wind magnitude and direction, and its role is primarily identified as to induce significant cross-shore sediment transport product of the generation of cross-shore velocities due to the modification of the tidal ellipses and the passage of the surface plume front. The passage of the surface plume front generates strong offshore currents near the bottom, producing transport events that can be similar in magnitude to the dominant alongshore transport. Preliminary results also indicate that storms play an important role in alongshore transport primarily by wave-induced sediment resuspension, but as stratification is suppressed due to the enhancement of mixing processes, no significant cross-shore transport is observed during very energetic conditions.

  11. 23 CFR Appendix A to Part 450 - Linking the Transportation Planning and NEPA Processes

    Science.gov (United States)

    2010-04-01

    ..., regulatory, and resource and transportation agency staff. 19. What training opportunities are available to... mitigation options is the importance of beginning interagency discussions during the transportation planning... environmental staffs, the public, and regulatory agencies to explore areas where impacts must be avoided and...

  12. Advective transport observations with MODPATH-OBS--documentation of the MODPATH observation process

    Science.gov (United States)

    Hanson, R.T.; Kauffman, L.K.; Hill, M.C.; Dickinson, J.E.; Mehl, S.W.

    2013-01-01

    The MODPATH-OBS computer program described in this report is designed to calculate simulated equivalents for observations related to advective groundwater transport that can be represented in a quantitative way by using simulated particle-tracking data. The simulated equivalents supported by MODPATH-OBS are (1) distance from a source location at a defined time, or proximity to an observed location; (2) time of travel from an initial location to defined locations, areas, or volumes of the simulated system; (3) concentrations used to simulate groundwater age; and (4) percentages of water derived from contributing source areas. Although particle tracking only simulates the advective component of conservative transport, effects of non-conservative processes such as retardation can be approximated through manipulation of the effective-porosity value used to calculate velocity based on the properties of selected conservative tracers. This program can also account for simple decay or production, but it cannot account for diffusion. Dispersion can be represented through direct simulation of subsurface heterogeneity and the use of many particles. MODPATH-OBS acts as a postprocessor to MODPATH, so that the sequence of model runs generally required is MODFLOW, MODPATH, and MODPATH-OBS. The version of MODFLOW and MODPATH that support the version of MODPATH-OBS presented in this report are MODFLOW-2005 or MODFLOW-LGR, and MODPATH-LGR. MODFLOW-LGR is derived from MODFLOW-2005, MODPATH 5, and MODPATH 6 and supports local grid refinement. MODPATH-LGR is derived from MODPATH 5. It supports the forward and backward tracking of particles through locally refined grids and provides the output needed for MODPATH_OBS. For a single grid and no observations, MODPATH-LGR results are equivalent to MODPATH 5. MODPATH-LGR and MODPATH-OBS simulations can use nearly all of the capabilities of MODFLOW-2005 and MODFLOW-LGR; for example, simulations may be steady-state, transient, or a combination

  13. The impact of transport processes on rare earth element patterns in marine authigenic and biogenic phosphates

    Science.gov (United States)

    Auer, Gerald; Reuter, Markus; Hauzenberger, Christoph A.; Piller, Werner E.

    2017-04-01

    frequently observed hat-shaped pattern in biogenic phosphates can result from increased middle REE (Neodymium to Holmium) scavenging during taphonomic processes prior to final deposition. Cluster analysis coupled with sedimentological and previously published geochemical data (bulk carbon isotope and X-ray fluorescence spectrometry) allowed the characterization of REE patterns of phosphates in terms of their formation conditions and depositional history, such as the distinction of phosphates formed in situ from reworked and transported phosphate grains.

  14. Transport processes in directional solidification and their effects on microstructure development

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Prantik [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    The processing of materials with unique electronic, mechanical, optical and thermal properties plays a crucial role in modern technology. The quality of these materials depend strongly on the microstructure and the solute/dopant fields in the solid product, that are strongly influenced by the intricate coupling of heat and mass transfer and melt flow in the growth systems. An integrated research program is developed that include precisely characterized experiments and detailed physical and numerical modeling of the complex transport and dynamical processes. Direct numerical simulation of the solidification process is carried out that takes into account the unsteady thermo-solutal convection in the vertical Bridgman crystal growth system, and accurately models the thermal interaction between the furnace and the ampoule by appropriately using experimentally measured thermal profiles. The flow instabilities and transitions and the nonlinear evolution following the transitions are investigated by time series and flow pattern analysis. A range of complex dynamical behavior is predicted with increasing thermal Rayleigh number. The route to chaos appears as: steady convection → transient mono-periodic → transient bi-periodic → transient quasi-periodic → transient intermittent oscillation-relaxation → stable intermittent oscillation-relaxation attractor. The spatio-temporal dynamics of the melt flow is found to be directly related to the spatial patterns observed experimentally in the solidified crystals. The application of the model to two phase Sn-Cd peritectic alloys showed that a new class of tree-like oscillating microstructure develops in the solid phase due to unsteady thermo-solutal convection in the liquid melt. These oscillating layered structures can give the illusion of band structures on a plane of polish. The model is applied to single phase solidification in the Al-Cu and Pb-Sn systems to characterize the effect of convection on the macroscopic

  15. Energy consumption, destruction of exergy and boil off during the process of liquefaction, transport and regasification of liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Stradioto, Diogo Angelo; Schneider, Paulo Smith [Dept. of Mechanical Engineering. Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)], e-mail: pss@mecanica.ufrgs.br

    2010-07-01

    A supply chain of Liquefied Natural Gas (LNG) is composed by several processes like extraction, purification, liquefaction, storage, transport, regasification and distribution. In all these stages, processes need of energy. The main objective of this work is to quantify the energy consumption, mass loss and exergy destruction occurred throughout the chain. Results show that the process of liquefaction is the largest consumer of energy. Storage and transport by ship are responsible for the bigger mass losses and regasification is the process of larger destruction of exergy. A case study is performed considering a stream of pure methane at the input of a liquefaction plant, and evaluates energy along the chain, ending up at the distribution of NG after its regasification. (author)

  16. Varicellovirus UL49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP

    NARCIS (Netherlands)

    Koppers-Lalic, D.; Verweij, M.C.; Lipinska, A.D.; Wang, Y.; Quinten, E.; Reits, E.A.; Koch, J.; Loch, S.; Rezende, M.M.; Daus, F.J.; Bienkowska-Szewczyk, K.; Osterrieder, N.; Mettenleiter, T.C.; Heemskerk, M.H.M.; Tampe, R.; Neefjes, J.J.; Chowdhury, S.I.; Ressing, M.E.; Rijsewijk, F.A.M.; Wiertz, E.J.H.J.

    2008-01-01

    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing

  17. Source estimation for propagation processes on complex networks with an application to delays in public transportation systems

    NARCIS (Netherlands)

    Manitz, J. (Juliane); Harbering, J. (Jonas); M.E. Schmidt (Marie); T. Kneib (Thomas); A. Schöbel (Anita)

    2017-01-01

    textabstractThe correct identification of the source of a propagation process is crucial in many research fields. As a specific application, we consider source estimation of delays in public transportation networks. We propose two approaches: an effective distance median and a backtracking method.

  18. Varicellovirus UL 49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP

    NARCIS (Netherlands)

    Koppers-Lalic, Danijela; Verweij, Marieke C.; Lipińska, Andrea D.; Wang, Ying; Quinten, Edwin; Reits, Eric A.; Koch, Joachim; Loch, Sandra; Rezende, Marisa Marcondes; Daus, Franz; Bieńkowska-Szewczyk, Krystyna; Osterrieder, Nikolaus; Mettenleiter, Thomas C.; Heemskerk, Mirjam H. M.; Tampé, Robert; Neefjes, Jacques J.; Chowdhury, Shafiqul I.; Ressing, Maaike E.; Rijsewijk, Frans A. M.; Wiertz, Emmanuel J. H. J.

    2008-01-01

    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing

  19. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  20. Dual targeting of a processing peptidase into both endosymbiotic organelles mediated by a transport signal of unusual architecture.

    Science.gov (United States)

    Baudisch, Bianca; Klösgen, Ralf Bernd

    2012-03-01

    As a result of the endosymbiotic gene transfer, the majority of proteins of mitochondria and chloroplasts are encoded in the nucleus and synthesized in the cytosol as precursor proteins carrying N-terminal transport signals for the 're-import' into the respective target organelle. Most of these transport signals are monospecific, although some of them have dual targeting properties, that is, they are recognized both by mitochondria and by chloroplasts as target organelles. We have identified alpha-MPP2, one of the two isoforms of the substrate binding subunit of mitochondrial processing peptidase of Arabidopsis thaliana, as a novel member of this class of nuclear-encoded organelle proteins. As demonstrated by in organello transport experiments with isolated organelles and by in vivo localization studies employing fluorescent chimeric reporter proteins, the N-terminal region of the alpha-MPP2 precursor comprises transport signals for the import into mitochondria as well as into chloroplasts. Both signals are found within the N-terminal 79 residues of the precursor protein, where they occupy partly separated and partly overlapping regions. Deletion mapping combined with in organello and in vivo protein transport studies demonstrate an unusual architecture of this transport signal, suggesting a composition of three functionally separated domains.

  1. Testing the validity of the neoclassical migration model: Overall and age-group specific estimation results for German spatial planning regions

    OpenAIRE

    Mitze, Timo; Reinkowski, Janina

    2010-01-01

    This paper assess the empirical validity of the neoclassical migration model to predict German internal migration flows driven by regional labour market disparities. We estimate static and dynamic migration functions for 97 Spatial Planning Regions between 1996--2006 using key labour market signals including income and unemployment differences among a broader set of explanatory variables. Beside an aggregate specification we also estimate the model for age-group related subsamples. Our result...

  2. Dynamic competition and enterprising discovery: Kirzner’s market process theory

    Directory of Open Access Journals (Sweden)

    Ahmet İhsan KAYA

    2011-12-01

    Full Text Available Market process theory is designed by the followers of Austrian School tradition as an alternative to neo-classic price theory in order to explain perceptible markets. Contrary to neo-classic economy which focuses on the concept of equilibrium, market process theory seeks to explore unequilibrium and direction to equilibrium. While doing so, the role of enterprenuer in dealing with limited information which is not taken into consideration in the price theory of neo-classic economy, uncertainty because of time and uncertainty which occurs in market underpins Israel Kirzner's analyses. In the study, Kirzner's competition and enterpreneurship theory is discussed with the contributions of Mises and Hayek. The study constitutes an introduction to market process theory of Kirzner.

  3. URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries

    Directory of Open Access Journals (Sweden)

    Drawert Brian

    2012-06-01

    Full Text Available Abstract Background Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in molecular systems biology. Designing computational software for such applications poses several challenges. Firstly, realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries, including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological phenomena of actual interest. We therefore argue that simulation software needs to be both computationally efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs of increasingly complex biological modeling. Results We have developed URDME, a flexible software framework for general stochastic reaction-transport modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries, and relies on the Reaction-Diffusion Master Equation formalism to model the processes under study. An interface to a mature geometry and mesh handling external software (Comsol Multiphysics provides for a stable and interactive environment for model construction. The core simulation routines are logically separated from the model building interface and written in a low-level language for computational efficiency. The connection to the geometry handling software is realized via a Matlab interface which facilitates script computing, data management, and post-processing. For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively hides the complexity of managing the geometry and meshes, this means that newly developed methods

  4. An introduction to the Boltzmann equation and transport processes in gases

    CERN Document Server

    Kremer, Gilberto M; Colton, David

    2010-01-01

    This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.

  5. Integration of climate change considerations in statewide and regional transportation planning processes

    Science.gov (United States)

    2009-07-01

    This report is part on on-going work for the US Department of Transportations Center for Climate Change and Environmental Forecasting and the Federal Highway Administration to highlight innovative actions and initiatives undertaken by states and m...

  6. CROSSTEX - Wave breaking, Boundary Layer Processes, the Resulting Sediment Transport and Beach Profile Evolution

    National Research Council Canada - National Science Library

    Hsu, Tian-Jian; Trowbridge, John

    2006-01-01

    Two numerical models focused on different scales are revised and extended to model surf zone hydrodynamics and sand transport driven by random waves in order to test with data measured during CPOSSTEX...

  7. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  8. Evaluation of the Montana Department of Transportation's research project solicitation, prioritization, and selection process

    Science.gov (United States)

    2008-05-01

    The Montana Department of Transportation (MDT) contracted the Bureau of Business and Economic Research at the University of Montana Missoula to conduct research to determine how other states solicit, prioritize, and select research problem statem...

  9. 23 CFR 450.206 - Scope of the statewide transportation planning process.

    Science.gov (United States)

    2010-04-01

    ... transportation systems development, land use, employment, economic development, human and natural environment...: (1) Support the economic vitality of the United States, the States, metropolitan areas, and non-metropolitan areas, especially by enabling global competitiveness, productivity, and efficiency; (2) Increase...

  10. Hybrid graphene-metal oxide solution processed electron transport layers for large area high-performance organic photovoltaics.

    Science.gov (United States)

    Beliatis, Michail J; Gandhi, Keyur K; Rozanski, Lynn J; Rhodes, Rhys; McCafferty, Liam; Alenezi, Mohammad R; Alshammari, Abdullah S; Mills, Christopher A; Jayawardena, K D G Imalka; Henley, Simon J; Silva, S Ravi P

    2014-04-02

    Solution processed core-shell nano-structures of metal oxide-reduced graphene oxide (RGO) are used as improved electron transport layers (ETL), leading to an enhancement in photocurrent charge transport in PCDTBT:PC70 BM for both single cell and module photovoltaic devices. As a result, the power conversion efficiency for the devices with RGO-metal oxides for ETL increases 8% in single cells and 20% in module devices. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Broholm, Mette Martina; Binning, Philip John

    2010-01-01

    Clayey tills contaminated with chlorinated solvents are a threat to groundwater and are difficult to remediate. A numerical model is developed for assessing leaching processes and for simulating the remediation via enhanced anaerobic dechlorination. The model simulates the transport...... of a contaminant in a single fracture-clay matrix system coupled with a reactive model for anaerobic dechlorination. The model takes into account microbially driven anaerobic dechlorination, where sequential Monod kinetics with competitive inhibition is used to model the reaction rates, and degradation...... to the physical processes, mainly diffusion in the matrix, than to the biogeochemical processes, when dechlorination is assumed to take place in a limited reaction zone only. The inclusion of sequential dechlorination in clay fracture transport models is crucial, as the contaminant flux to the aquifer...

  12. Renovation and Reconstruction of a Neoclassical Building on the Example of a Public City Library in Nowa Sól

    Science.gov (United States)

    Kucharczyk, Anna

    2016-09-01

    The building of the Nowa Sól public library is located on Bankowa Street, in the Lubuskie Voivodeship. The new seat of the library has been here since 2011; it had previously been located in the building on Parafialna and Szkolna Streets, which did not comply with the requirements of a comfortable library and reading room. Renovations and reconstructions of this neoclassical building began in 2007 and took four years to finish. Over the years, the century- old building had changed, its function - from a residential villa, to a children's hospital, and finally, a clinic for children. During construction works, rib and slab (Ackerman) floors were changed to concrete slabs with higher load-bearing strength and roof truss system replaced to accordingly to the original design. A new lift was built, and the library reading rooms and archives were expanded. The building also gained a new facade as well as new wooden windows and doors. The entire building is surrounded by a park.

  13. Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes

    International Nuclear Information System (INIS)

    Ayten, B.; Westerhof, E.

    2014-01-01

    Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived previously by Harvey et al (1989 Phys. Rev. Lett. 62 426). We study the non-linear electron cyclotron current drive (ECCD) efficiency through bounce-averaged, quasi-linear Fokker–Planck calculations in the magnetic geometry as created by the islands. The calculations are performed for the parameters of a typical NTM stabilization experiment on ASDEX Upgrade. A particular feature of these experiments is that the rays of the EC wave beam propagate tangential to the flux surfaces in the power deposition region. The calculations show significant non-linear effects on the ECCD efficiency, when the ECCD power is increased from its experimental value of 1 MW to a larger value of 4 MW. The nonlinear effects are largest in the case of locked islands or when the magnetic island rotation period is longer than the collisional time scale. The non-linear effects result in an overall reduction of the current drive efficiency for this case with absorption of the EC power on the low-field side of the electron cyclotron resonance layer. As a consequence of the non-linear effects, also the stabilizing effect of the ECCD on the island is reduced from linear expectations. (paper)

  14. Glyphosate distribution in loess soils as a result of dynamic sediment transport processes during a simulated rainstorm

    Science.gov (United States)

    Commelin, Meindert; Martins Bento, Celia; Baartman, Jantiene; Geissen, Violette

    2016-04-01

    Glyphosate is one of the most widely used herbicides in the world. The wide and extensive use of glyphosate makes it important to be certain about the safety of glyphosate to off-target environments and organisms. This research aims to create more detailed insight into the distribution processes of glyphosate, and the effect that dynamic sediment transport processes have on this distribution, during water erosion in agricultural fields. Glyphosate distribution characteristics are investigated for two different soil surfaces: a smooth surface, and a surface with seeding lines on the contour. The capacity to transport glyphosate for different sediment groups was investigated. These groups were water-eroded sediment and sedimentation areas found on the plot surface. The contribution of particle bonded and dissolved transport to total overland transportation of glyphosate was analysed with a mass balance study. The experiment was conducted in the Wageningen UR rainfall simulator. Plots of 0.5m2 were used, with a 5% slope, and a total of six experimental simulations were done. A rainfall event with an intensity of 30mm/h was simulated, applied in four showers of 15 minutes each with 30 minutes pause in between. Glyphosate (16mg/kg) was applied on the top 20cm of each plot, and in the downstream part, soil samples were taken. Glyphosate analysis was done using HPLC-MS/MS (High Performance Liquid Chromatography tandem Mass Spectrometry). Besides that, photo analysis with eCognition was used to derive the soil surface per sediment group. The results show that particle bonded transport of glyphosate contributes significantly (for at least 25%) to glyphosate transport during a rainstorm event. Particle size and organic matter have a large influence on the mobility of glyphosate and on the transported quantity to off-target areas. Moreover, seeding lines on the soil surface decreased total overland transport, both of sediment and glyphosate. Taking this into account, plots

  15. General principles of the nuclear criticality safety for handling, processing and transportation fissile materials in the USSR

    International Nuclear Information System (INIS)

    Vnukov, V.S.; Rjazanov, B.G.; Sviridov, V.I.; Frolov, V.V.; Zubkov, Y.N.

    1991-01-01

    The paper describes the general principles of nuclear criticality safety for handling, processing, transportation and fissile materials storing. Measures to limit the consequences of critical accidents are discussed for the fuel processing plants and fissile materials storage. The system of scientific and technical measures on nuclear criticality safety as well as the system of control and state supervision based on the rules, limits and requirements are described. The criticality safety aspects for various stages of handling nuclear materials are considered. The paper gives descriptions of the methods and approaches for critical risk assessments for the processing facilities, plants and storages. (Author)

  16. Field signatures of non-Fickian transport processes: transit time distributions, spatial correlations, reversibility and hydrogeophysical imaging

    Science.gov (United States)

    Le Borgne, T.; Kang, P. K.; Guihéneuf, N.; Shakas, A.; Bour, O.; Linde, N.; Dentz, M.

    2015-12-01

    Non-Fickian transport phenomena are observed in a wide range of scales across hydrological systems. They are generally manifested by a broad range of transit time distributions, as measured for instance in tracer breakthrough curves. However, similar transit time distributions may be caused by different origins, including broad velocity distributions, flow channeling or diffusive mass transfer [1,2]. The identification of these processes is critical for defining relevant transport models. How can we distinguish the different origins of non-Fickian transport in the field? In this presentation, we will review recent experimental developments to decipher the different causes of anomalous transport, based on tracer tests performed at different scales in cross borehole and push pull conditions, and time lapse hydrogeophysical imaging of tracer motion [3,4]. References:[1] de Anna-, P., T. Le Borgne, M. Dentz, A. M. Tartakovsky, D. Bolster, P. Davy (2013) Flow Intermittency, Dispersion and Correlated Continuous Time Random Walks in Porous Media, Phys. Rev. Lett., 110, 184502 [2] Le Borgne T., Dentz M., and Carrera J. (2008) Lagrangian Statistical Model for Transport in Highly Heterogeneous Velocity Fields. Phys. Rev. Lett. 101, 090601 [3] Kang, P. K., T. Le Borgne, M. Dentz, O. Bour, and R. Juanes (2015), Impact of velocity correlation and distribution on transport in fractured media : Field evidence and theoretical model, Water Resour. Res., 51, 940-959 [4] Dorn C., Linde N., Le Borgne T., O. Bour and L. Baron (2011) Single-hole GPR reflection imaging of solute transport in a granitic aquifer Geophys. Res. Lett. Vol.38, L08401

  17. Learning Electron Transport Chain Process in Photosynthesis Using Video and Serious Game

    Science.gov (United States)

    Espinoza Morales, Cecilia

    This research investigates students' learning about the electron transport chain (ETC) process in photosynthesis by watching a video followed by playing a serious board game-Electron Chute- that models the ETC process. To accomplish this goal, several learning outcomes regarding the misconceptions students' hold about photosynthesis and the ETC process in photosynthesis were defined. Middle school students need opportunities to develop cohesive models that explain the mechanistic processes of biological systems to support their learning. A six-week curriculum on photosynthesis included a one day learning activity using an ETC video and the Electron Chute game to model the ETC process. The ETC model explained how sunlight energy was converted to chemical energy (ATP) at the molecular level involving a flow of electrons. The learning outcomes and the experiences were developed based on the Indiana Academic Standards for biology and the Next Generation Science Standards (NGSS) for the life sciences. Participants were 120 eighth grade science students from an urban public school. The participants were organized into six classes based on their level of academic readiness, regular and challenge, by the school corporation. Four classes were identified as regular classes and two of them as challenge classes. Students in challenge classes had the opportunity to be challenged with more difficult content knowledge and required higher level thinking skills. The regular classes were the mainstream at school. A quasi-experimental design known as non-equivalent group design (NEGD) was used in this study. This experimental design consisted of a pretest-posttest experiment in two similar groups to begin with-the video only and video+game treatments. Intact classes were distributed into the treatments. The video only watched the ETC video and the video+game treatment watched the ETC video and played the Electron Chute game. The instrument (knowledge test) consisted of a multiple

  18. Modeling of flow and mass transport processes in unsaturated soils in combination with technical facilities

    International Nuclear Information System (INIS)

    Hasan, Issa

    2014-01-01

    The modelling of complex systems such as the underground is a means to describe the processes occurring in the reality. The conducting of experiments on a model to obtain qualitative evidence about a real system is referred to as a simulation. Thereby, various models (e.g. physical and mathematical models) can be used. The unsaturated zone (vadose zone) is the region between the land surface and the water table, in which the water content is less than full saturation, and the pressure is lower than the atmospheric pressure. The unsaturated zone is very significant for agriculture, geobiology, aerobic degradation processes and groundwater recharge. The processes of water flow and solute transport in the unsaturated zone can be described by means of numerical simulation programs. The aim of the present work is a comprehensive validation of the simulation program PCSiWaPro registered (developed at the TU-Dresden, Institute of Waste Management and Contaminated Site Treatment) for different applications. Another aim of this work is to investigate the applicability of the current version of PCSiWaPro registered for different cases of a combination between the unsaturated zone and technical facilities. Four application cases with different objectives were investigated within the present work, which are: the simulation of decentralized wastewater infiltration with corresponding column and field experiments, the computation of groundwater recharge by means of lysimeters, the water balance of earth dams and the modelling of landfill covering systems. The application cases differ from each other by the objective of the simulation, the geometry, the size, the specified initial and boundary conditions, the simulation time, the applied materials, the coordinate system, the input and output data. The simulation results clearly showed that PCSiWaPro registered is applicable for all investigated cases under consideration of different flow and solute transport regimes, parameters

  19. Conceptual model for transport processes in the Culebra Dolomite Member, Rustler Formation

    Energy Technology Data Exchange (ETDEWEB)

    Holt, R.M. [Holt Hydrogeology, Placitas, NM (United States)

    1997-08-01

    The Culebra Dolomite Member of the Rustler Formation represents a possible pathway for contaminants from the Waste Isolation Pilot Plant underground repository to the accessible environment. The geologic character of the Culebra is consistent with a double-porosity, multiple-rate model for transport in which the medium is conceptualized as consisting of advective porosity, where solutes are carried by the groundwater flow, and fracture-bounded zones of diffusive porosity, where solutes move through slow advection or diffusion. As the advective travel length or travel time increases, the nature of transport within a double-porosity medium changes. This behavior is important for chemical sorption, because the specific surface area per unit mass of the diffusive porosity is much greater than in the advective porosity. Culebra transport experiments conducted at two different length scales show behavior consistent with a multiple-rate, double-porosity conceptual model for Culebra transport. Tracer tests conducted on intact core samples from the Culebra show no evidence of significant diffusion, suggesting that at the core scale the Culebra can be modeled as a single-porosity medium where only the advective porosity participates in transport. Field tracer tests conducted in the Culebra show strong double-porosity behavior that is best explained using a multiple-rate model.

  20. Structural estimation of jump-diffusion processes in macroeconomics

    DEFF Research Database (Denmark)

    Posch, Olaf

    Understanding the process of economic growth involves comparing competing theoretical models and evaluating their empirical relevance. Our approach is to take the neoclassical stochastic growth model directly to the data and make inferences about the model parameters of interest. In this paper, o...